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NO WARRANTY
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EVENT: Start with the initial nqgthm theory.

; A NOTE ON SHELLS

H by

; John Cowles

; Department of Computer Science
H University of Wyoming

; The following is intended to give the reader some insight into SHELLS.

; Intuitively a nonempty SEQUENCE is an ordered list, possibly with
; duplicates, of objects, ( Objl Obj2 ... ObjN ).

; There are two ways to recursively decompose sequences.
;1. A SEQUENCE is either the EMPTY-SEQUENCE or a pair < 0bj,Seq >.

;2. A SEQUENCE is either the EMPTY-SEQUENCE or a pair [ Seq,0bj ].



; Here Obj is an object, Seq is a sequence, and EMPTY-SEQUENCE is

;  the unique sequence which contains no objects. Different pairing
; brackets, < > and [ ], are used to enphasize which of the

; decompositions is being used.

; Here the Shell Principle is used with decomposition 1 above to
; add sequences as a "new" data type.

EVENT: Add the shell cons-seq-first, with bottom object function symbol empty-
seq, with recognizer function symbol seq-p, and 2 accessors: first, with type
restriction (none-of) and default value empty-seq; final, with type restriction
(one-of seq-p) and default value empty-seq.

; default value

; ( CONS-SEQ-FIRST Obj Seq ) returns < Obj,Seq >.
; ( CONS-SEQ-FIRST Obj Non-Seq ) returns < Obj,EMPTY-SEQUENCE >.

; ( EMPTY-SEQ ) returns the EMPTY-SEQUENCE.

; ( SEQ-P Seq ) returns T.
; ( SEQ-P Non-Seq ) reTurns F.

; ( FIRST < 0bj,Seq > ) returns Obj.
; ( FIRST (EMPTY-SEQ) ) returns (EMPTY-SEQ).
; ( FIRST Non-Seq ) returns (EMPTY-SEQ).

; ( FINAL < Obj,Seq > ) returns Seq.
; ( FINAL (EMPTY-SEQ) ) returns (EMPTY-SEQ).
; ( FINAL Non-Seq ) returns (EMPTY-SEQ).

; The next two functions "coerce" non-sequences into
;  behaving like the EMPTY-SEQUENCE.

DEFINITION:
empty-seq-p (s) = ((s = EMPTY-SEQ) V (- seq-p(s)))

DEFINITION:

coerce-seq ()

= if seq-p(s) then s
else EMPTY-SEQ endif



; The next three functions implement sequence decomposion 2 above.

; ( CONS-SEQ-LAST Seq Obj ) returns [ Seq,0bj ].
; ( CONS-SEQ-LAST Non-Seq Obj ) returns [ (EMPTY-SEQ),Obj J.
; Here [ (EMPTY-SEQ),Obj ] is identified with < Obj, (EMPTY-SEQ) >.

; ( INITIAL [ Seq,0bj ] ) returns Seq.
; ( INITIAL (EMPTY-SER) ) returns (EMPTY-SEQ).
; ( INITIAL Non-Seq ) returns (EMPTY-SEQ).

; ( LAST [ Seq,0bj ] ) returns Obj.
; ( LAST (EMPTY-SEQ) ) returns (EMPTY-SEQ).
; ( LAST Non-Seq ) returns (EMPTY-SEQ).

DEFINITION:
cons-seq-last (s, ¢)
= if empty-seq-p (s) then cons-seq-first (¢, $)
else cons-seq-first (first (s), cons-seq-last (final (s), ¢)) endif

DEFINITION:

initial (s)

= if empty-seq-p (s) then EMPTY-SEQ
elseif final (s) = EMPTY-SEQ then EMPTY-SEQ
else cons-seq-first (first (), initial (final (s))) endif

DEFINITION:

last (s)

= if empty-seq-p (s) then EMPTY-SEQ
elseif final (s) = EMPTY-SEQ then first (s)
else last (final (s)) endif

; The next 12 rewrite rules and 1 elimination rule would have been

;  explicitly added as axioms to the data base by the shell principle

;  1f sequence decomposition 2 had been used, in place of decomposition 1,
;  as the basis for the shell which added sequences as a new type.

THEOREM: initial-cons-seq-last
initial (cons-seqg-last (s, ¢))
= if seq-p(s) then s

else EMPTY-SEQ endif

THEOREM: initial-nseq-p
(= seq-p (s)) — (initial (s) = EMPTY-SEQ)



THEOREM: initial-type-restriction
(= seq-p (s)) — (cons-seqg-last (s, ¢) = cons-seq-last (EMPTY-SEQ, c))

THEOREM: initial-lessp
(seq-p (s) A (s # EMPTY-SEQ)) — (count (initial (s)) < count (s))

THEOREM: initial-lesseqp
count (s) #£ count (initial (s))

THEOREM: last-cons-seq-last
last (cons-seq-last (s, ¢)) = ¢

THEOREM: last-nseq-p
(= seq-p (s)) — (last (s) = EMPTY-SEQ)

THEOREM: last-lessp
(seq-p (8) A (s # EMPTY-SEQ)) — (count (last (s)) < count (s))

THEOREM: last-lesseqp
count (s) ¢ count (last (s))

; The next two lemmas are obvious facts used only as
; hints for the proof of the lemma CONS-SEQ-LAST-EQUAL.

THEOREM: initial-apply-equals
(z = y) — (initial (z) = initial (y))

THEOREM: last-apply-equals
(z = y) — (last (z) = last (y))

THEOREM: cons-seq-last-equal
(cons-seq-last (s1, c1) = cons-seqg-last (s2, ¢2))
= (if seq-p(s?)
then if seq-p (s2) then sI = s2
else sI = EMPTY-SEQ endif
elseif seq-p (s2) then EMPTY-SEQ = s2
else t endif
A (el = ¢2))

THEOREM: cons-seq-last-initial-last
cons-seq-last (initial (s), last (s))
= if seq-p(s) A (s # EMPTY-SEQ) then s
else cons-seg-last (EMPTY-SEQ, EMPTY-SEQ) endif

THEOREM: initial-last-elim
(seq-p (8) A (s # EMPTY-SEQ))
—  (cons-seq-last (initial (s), last (s)) = s)



THEOREM: count-cons-seq-last

count (cons-seq-last (s, ¢))

= (1 + (if seq-p (s) then count (s)
else 0 endif
+ count(c)))

; The next rewrite rule would, in effect, have been implicitly added
; as an axiom to the data base by the shell principle if sequence

; decomposition 2 had been used, in place of decomposition 1, as the
; basis for the shell which added sequences as a new type.

THEOREM: cons-seq-last-not-empty-seq
cons-seq-last (s, ¢) # EMPTY-SEQ

; The next two functions give different versions of REVERSE.

DEFINITION:
reversel (s)
= if empty-seq-p (s) then s
else cons-seqg-last (reversel (final (s)), first (s)) endif

DEFINITION:
reverse2 (s)
= if empty-seq-p (s) then s
else cons-seq-first (last (s), reverse2 (initial (s))) endif

; Use the Theorem Prover to verify the following proposed theorems.
; 1. For i=1 and i=2, ( EQUAL (REVERSEi (REVERSEi S)) S )
; 2. ( EQUAL (REVERSE1 S) (REVERSE2 S) )

>

; The next four functions give different versions of CONCATENATION.

DEFINITION:
concatl (s1, s2)
= if empty-seq-p (s1) then coerce-seq (s2)
else cons-seq-first (first (s1), concatl (final (s1), s2)) endif



DEFINITION:
concat2 (s1, s2)
= if empty-seq-p (s2) then coerce-seq (s1)
else concat2 (cons-seq-last (s1, first (s2)), final (s2)) endif

DEFINITION:
concat3 (s1, s2)
= if empty-seq-p (s2) then coerce-seq (s1)
else cons-seq-last (concat3 (s!, initial (s2)), last (s2)) endif

DEFINITION:
concatd (s1, s2)
= if empty-seq-p (s1) then coerce-seq (s2)
else concat4 (initial (s1), cons-seq-first (last (s1), s2)) endif

; Use the Theorem Prover to verify the following proposed theorems.
; 1. For i=1, i=2, i=3, and i=4, CONCATi is associative.

; 2. For i=1 and i=2; and for j=1, j=2, j=3, and j=4;

; ( EQUAL (REVERSEi (CONCATj S1 S52))

5 (CONCATj (REVERSEi S2) (REVERSEi S1)) )

; 3. For i and j such that 1 <= 1i < j <= 4,
; ( EQUAL (CONCATi S1 S2) (CONCATj S1 S82) )
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