
#|

Copyright (C) 1994 by Computational Logic, Inc. All Rights Reserved.

This script is hereby placed in the public domain, and therefore unlimited
editing and redistribution is permitted.

NO WARRANTY

Computational Logic, Inc. PROVIDES ABSOLUTELY NO WARRANTY. THE EVENT SCRIPT
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE SCRIPT IS WITH YOU. SHOULD THE SCRIPT PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT WILL Computational Logic, Inc. BE LIABLE TO YOU FOR ANY DAMAGES,
ANY LOST PROFITS, LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SCRIPT (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY THIRD PARTIES), EVEN IF YOU HAVE ADVISED US OF THE POSSIBILITY OF
SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

|#

; ------------------------------------------------------------
; was lr-eval5-1.events
; ------------------------------------------------------------

Event: Start with the library "app-c-d-e" using the compiled version.

Theorem: axiom-53
subrp (fn) → (formals (fn) = f)

Event: Disable proper-p-statep-restructuring.

;; Function for testing s->r

Definition:
change-elements (list)
= if listp (list)

then if truep (car (list)) then cons (false, change-elements (cdr (list)))
else cons (true, change-elements (cdr (list))) endif

1



elseif truep (list) then false
else true endif

Event: Disable deposit.

Event: Disable fetch.

Event: Disable add-addr.

Event: Disable sub-addr.

Event: Disable offset.

Event: Disable area-name.

Event: Disable errorp.

Event: Disable p-current-program.

;; The following is inspired by the lemma length-put of Piton.
;; Now in Piton-basis A. Flatau 8-Oct-1990
;(prove-lemma MY-LENGTH-PUT (rewrite)
; (equal (length (put val n lst))
; (if (lessp n (length lst))
; (length lst)
; (add1 n)))
; ((enable put)))
;
;(disable my-length-put)

;; This is similar to the lemma GET-PUT from Piton, but for the commented
;; out hypothesis.

Theorem: my-get-put
((k ∈ N) ∧ (n ∈ N))
→ (get (k , put (val , n, lst))

= if k = n then val
else get (k , lst) endif)

Event: Disable my-get-put.

2



Theorem: listp-cdr-p-frame
listp (cdr (p-frame (bindings, ret-pc)))

Theorem: equal-cddr-p-frame-nil
cddr (p-frame (bindings , ret-pc)) = nil

#||
;; The following is used to test handling of temp variables
(defn FOO (state name)

(let ((prog (app name state)))
(cons state (cons (car prog) (cons (cadr prog) (caddr prog))))))

;(setq ss
; (logic->s ’(change-elements (cons ’*1*true (app x y)))
; ’((x . (*1*true *1*true . *1*false))
; (y . (*1*true . *1*false)))
; ’(change-elements app)))
;(setq lrs (s->lr ss ’main 50 50 50 32))
;(setq foop
; ’(FOO (STATE NAME)
; ((APP NAME STATE)
; (CDR ((TEMP-FETCH) (APP NAME STATE))))
; (CONS STATE
; (CONS (CAR ((TEMP-EVAL) (APP NAME STATE)))
; (CONS (CAR ((TEMP-EVAL)
; (CDR ((TEMP-FETCH) (APP NAME STATE)))))
; (CAR (CDR ((TEMP-FETCH)
; (CDR ((temp-fetch)
; (APP NAME STATE)))))))))))
;
;(setq ss1 (s-state (s-expr ss)
; (s-params ss)
; (s-temps ss)
; (s-consts ss)
; (put-assoc (cdr foop) ’foo (s-progs ss))
; ’run))
;
;(setq ss2 (s-state ’(FOO (CHANGE-ELEMENTS (CONS ’(ADDR (heap . 4))
; (APP ((temp-eval) X) Y)))
; ((temp-fetch) X))
; (s-params ss1)
; (make-temps-entries ’(x))
; (s-consts ss1)
; (s-progs ss1)

3



; ’run))
||#

Definition:
s-l-eval-equiv-hyps (flag , s, c)
= (s-good-statep (s, c)

∧ good-posp (flag , s-pos (s), s-body (s-prog (s)))
∧ (s-err-flag (s-eval (flag , s, c)) = ’run))

Definition:
s-l-eval-flag-run-hyps (flag , s, c)
= (s-good-statep (s, c)

∧ s-all-temps-setp (flag ,
if flag = ’list then s-expr-list (s)
else s-expr (s) endif,
temp-alist-to-set (s-temps (s)))

∧ s-all-progs-temps-setp (s-progs (s))
∧ if flag = ’list

then f 6∈ l-eval (flag ,
s-expand-temps (flag , s-expr-list (s)),
s-params (s),
c)

else l-eval (flag ,
s-expand-temps (flag , s-expr (s)),
s-params (s),
c) endif

∧ s-check-temps-setp (s-temps (s)))

;; ***** The LR-level (R for Resource, L for logic). *****
;; We used to have an LR-STATE shell. Now we just use a P-STATE shell.
;; However we refer to LR-STATES which are P-STATEs with LR level programs.
;; The function LR->P compiles an LR-STATE to a Piton state, by compiling
;; the programs and converting the P-PC to a Piton PC.
;; We use P-STATE shells instead of LR-STATE shell because we used to have
;; define functions analogous to P-OBJECTP (and functions that called
;; P-OBJECTP) that took LR-STATES or parts thereof.

;; We use the Piton notion of a PROPER state. It should be the case that
;; all the LR-STATEs we are interested in are PROPER-P-STATEPs after we
;; apply LR->P to them.

;; An LR PC object is a combination of a Piton PC object and an S level
;; S-PNAME and S-POS. The translation of (s-pname s) and (s-pos s) from
;; the S level is: (TAG ’PC (CONS (S-PNAME S) (S-POS S)))

4



;; Each element of P-PROG-SEGMENT is a program. A program is a list
;; of the form:
;;
;; (name (formal1 formal2 ... formaln)
;; ((temp1 init1)
;; ...
;; (tempk initk))
;; body)
;;
;; The name and each formal and temp is a symbol. The initial values
;; of the temps are tagged values. Body is a form similar to that for
;; the S level, but temporary expressions have been replaced the name of
;; a temporary variable added to them
;; e.g. ((S-TEMP-EVAL) <expr>) -> ((S-TEMP-EVAL) <expr> <var>).
;; In the case of (S-TEMP-FETCH) <expr> is never used but we put it
;; in for consistency and so it is easier to convert back to s-states.
;; Also the numbers in the S level quote constructs have been replaced
;; by data-addresses that should contain pointers to the appropriate
;; structure in the heap.

;; Roughly speaking, a function application of FUN binds the formals to
;; the top n elements of the temp-stk (removing them from that stack and
;; building a ctrl-stk frame), binds the temps to the corresponding tagged
;; values (also in the ctrl-stk frame), and executes each instruction.

;; Producing LR-code from S-code.

Definition: lr-undefined-tag = 0

; Used in node to indicate
; uninitialized temporary variable

Definition: lr-init-tag = 1

; Used in initial nodes that have
; not been used

Definition: lr-false-tag = 2

Definition: lr-true-tag = 3

Definition: lr-add1-tag = 4

Definition: lr-cons-tag = 5

5



Definition: lr-pack-tag = 6

Definition: lr-minus-tag = 7

Definition: lr-heap-name = ’heap

Definition: lr-node-size = 4

Definition: lr-undef-addr = tag (’addr, ’(heap . 0))

Definition: lr-f-addr = add-addr (lr-undef-addr, lr-node-size)

Definition: lr-t-addr = add-addr (lr-f-addr, lr-node-size)

Definition: lr-0-addr = add-addr (lr-t-addr, lr-node-size)

Definition: lr-fp-addr = tag (’addr, ’(free-ptr . 0))

Definition: lr-answer-addr = tag (’addr, ’(answer . 0))

Definition: lr-fetch-fp (data-seg) = fetch (lr-fp-addr, data-seg)

Definition:
lr-minimum-heap-size = offset (add-addr (lr-0-addr, lr-node-size))

;; The heap is a (presumably large) Piton data area. It contains Nodes
;; which are four words. One word is for the tag, one for the reference
;; count, and two for the contents. Some data-types only require one word
;; for the contents (e.g. NUMBERPs) in that case one word is wasted. Some
;; (user-defined) data-types require more than two words. In this case the
;; second word is a pointer to another node. This contains up to three
;; words of data, the fourth word (if the data type needs more that four
;; words) is used to link another node with the same format. The heap is
;; the Piton data area named HEAP.

;; LR-NEW-NODE returns another node to be stuck in memory

Definition:
lr-new-node (tag , ref-count , value1 , value2 )
= list (tag , ref-count , value1 , value2 )

Definition: lr-ref-count-offset = 1

Definition: lr-car-offset = 2

Definition: lr-cdr-offset = 3

Definition: lr-unpack-offset = 2

6



Definition: lr-unbox-nat-offset = 2

Definition: lr-negative-guts-offset = 2

Definition:
lr-boundary-offsetp (offset) = ((offset mod lr-node-size) = 0)

Definition:
lr-boundary-nodep (node) = lr-boundary-offsetp (offset (node))

Definition:
lr-nodep (addr , data-seg)
= ((type (addr) = ’addr)

∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name))

;; LR-GOOD-POINTERP checks that an addr is a node and its ref count field
;; is a natural.

Definition:
lr-good-pointerp (addr , data-seg)
= (lr-nodep (addr , data-seg)

∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg))
= ’nat))

Definition:
lr-expr (p) = cur-expr (offset (p-pc (p)), program-body (p-current-program (p)))

Event: Disable lr-expr.

Definition:
lr-expr-list (p)
= restn (car (last (offset (p-pc (p)))),

cur-expr (butlast (offset (p-pc (p))),
program-body (p-current-program (p))))

Event: Disable lr-expr-list.

;;; Debugging Stuff.

7



Definition:
mark-instr (instruction-list , n)
= if n ' 0

then cons (list (’pc->, car (instruction-list)), cdr (instruction-list))
else cons (car (instruction-list),

mark-instr (cdr (instruction-list), n − 1)) endif

Definition:
fix-program-segment (programs, pc)
= if listp (programs)

then let prog be car (programs)
in
if car (prog) = area-name (pc)
then cons (append (list (car (prog), cadr (prog), caddr (prog)),

mark-instr (program-body (prog), offset (pc))),
fix-program-segment (cdr (programs), pc))

else cons (car (prog),
fix-program-segment (cdr (programs), pc)) endif endlet

else nil endif

Definition:
fix-data-segment (data-segment)
= put-value (append (firstn (offset (lr-fetch-fp (data-segment)),

value (lr-heap-name, data-segment)),
length (value (lr-heap-name, data-segment))
− offset (lr-fetch-fp (data-segment))),

lr-heap-name,
data-segment)

Definition:
find-non-proper-instr (lst , name, p)
= if listp (lst)

then if legal-labelp (car (lst))
∧ proper-p-instructionp (unlabel (car (lst)), name, p)

then find-non-proper-instr (cdr (lst), name, p)
else car (lst) endif

else nil endif

Definition:
find-non-proper-programs (progs, p)
= if listp (progs)

then if proper-p-programp (car (progs), p)
then cons (name (car (progs)),

find-non-proper-programs (cdr (progs), p))
else cons (list (’not,

8



name (car (progs)),
find-non-proper-instr (program-body (car (progs)),

name (car (progs)),
p)),

find-non-proper-programs (cdr (progs), p)) endif
else nil endif

Definition:
pps (state)
= list (’p-state,

p-pc (state),
p-ctrl-stk (state),
p-temp-stk (state),
let p be p-current-program (state)
in
append (list (name (p), formal-vars (p), temp-var-dcls (p)),

mark-instr (program-body (p), offset (p-pc (state)))) endlet,
fix-data-segment (p-data-segment (state)),
p-psw (state))

Definition:
lr-nodify-tag (tag)
= if untag (tag) = lr-false-tag then ’false

elseif untag (tag) = lr-true-tag then ’true
elseif untag (tag) = lr-add1-tag then ’add1
elseif untag (tag) = lr-cons-tag then ’cons
elseif untag (tag) = lr-pack-tag then ’pack
else ’unknown endif

Definition:
lr-nodify (number , nodes, final)
= if listp (nodes)

then cons (list (’node,
number ,
lr-nodify-tag (car (nodes)),
caddr (nodes),
cadddr (nodes)),

lr-nodify (number + lr-node-size, cddddr (nodes), final))
else final endif

Definition:
lr-fix-data-segment (data-seg)
= put-value (lr-nodify (0,

firstn (offset (lr-fetch-fp (data-seg)),
value (lr-heap-name, data-seg)),

9



length (value (lr-heap-name, data-seg))
− offset (lr-fetch-fp (data-seg))),

lr-heap-name,
data-seg)

Definition:
lrps (state)
= p-state (p-pc (state),

p-ctrl-stk (state),
p-temp-stk (state),
p-prog-segment (state),
lr-fix-data-segment (p-data-segment (state)),
p-max-ctrl-stk-size (state),
p-max-temp-stk-size (state),
p-word-size (state),
p-psw (state))

;; Returns the object denoted by addr in the heap.

Definition:
lr-abs (addr , data-seg , n)
= if n ' 0 then nil

else let tag be untag (fetch (addr , data-seg))
in
if tag = lr-false-tag then f
elseif tag = lr-true-tag then t
elseif tag = lr-add1-tag
then untag (fetch (add-addr (addr , lr-unbox-nat-offset),

data-seg))
elseif tag = lr-cons-tag
then cons (lr-abs (fetch (add-addr (addr , lr-car-offset),

data-seg),
data-seg ,
n − 1),

lr-abs (fetch (add-addr (addr , lr-cdr-offset),
data-seg),

data-seg ,
n − 1))

elseif tag = lr-pack-tag
then pack (lr-abs (fetch (add-addr (addr ,

lr-unpack-offset),
data-seg),

data-seg ,
n − 1))

else − untag (fetch (add-addr (addr ,

10



lr-negative-guts-offset),
data-seg)) endif endlet endif

Definition:
top-stk (p-or-p-state)
= let temp-stk be if p-statep (p-or-p-state)

then p-temp-stk (p-or-p-state)
else p-temp-stk (p-or-p-state) endif,

data-segment be if p-statep (p-or-p-state)
then p-data-segment (p-or-p-state)
else p-data-segment (p-or-p-state) endif

in
lr-abs (top (temp-stk), data-segment , 1000) endlet

;; This is accessed by the Piton accessors: NAME, FORMAL-VARS, TEMP-VAR-DCLS
;; and PROGRAM-BODY. Also LOCAL-VARS.

Definition:
lr-make-program (name, formals, temps, body)
= cons (name, cons (formals, cons (temps, body)))

#||
stolen from matt kaufmann’s code for gensym, but modified to probably be
less useful but simplier.

here is a sequence of events for generating a new symbol.
the main function is near the end, and is called gensym.
gensym returns a pair the new symbol and the next number list to try.
here are some examples:

>(r-loop)

trace mode: off abbreviated output mode: on
type ? for help.
*(gensym (unpack ’a*) ’(49) ’(a*0 a*1 a*2 a*3))
’(a*4 53)

*(gensym (unpack ’a*) ’(53) ’(a*0 a*1 a*2 a*3 a*4))
’(a*5 54)

*(gensym (unpack ’a*) ’(50) ’(a*2))
’(a*3 52)

*(gensym (unpack ’a*) ’(50) ’(a*0))
’(a*2 51)

*(gensym (unpack ’a) ’(48) ’(a*0 a*1))
’(a0 49)

*(gensym (unpack ’a) ’(48) ’(a b))

11



’(a0 49)
*(gensym (unpack ’a*2*) ’(51) ’(a*2*3))
’(a*2*4 53)

*(gensym (unpack ’b*) ’(50) ’(a*0 a*1 a*2 a*3))
’(b*2 51)

*ok
exiting r-loop.
nil

||#

Definition: ascii-0 = 48

Definition: ascii-1 = 49

Definition: ascii-9 = 57

Definition: ascii-dash = 45

Definition: list-ascii-0 = list (ascii-0)

Definition: list-ascii-1 = list (ascii-1)

Definition:
increment-numlist (numlist)
= if listp (numlist)

then if car (numlist) = ascii-9
then cons (ascii-0, increment-numlist (cdr (numlist)))
else cons (1 + car (numlist), cdr (numlist)) endif

else list-ascii-1 endif

Definition:
make-symbol (initial , digit-list)
= pack (append (append (initial , digit-list), 0))

Event: Disable make-symbol.

Definition:
count-codelist1 (numlist)
= if listp (numlist)

then car (numlist) + (10 ∗ count-codelist1 (cdr (numlist)))
else 0 endif

12



Definition:
subseqp (list1 , list2 )
= ((length (list2 ) 6< length (list1 ))

∧ (firstn (length (list1 ), list2 ) = list1 ))

Event: Disable subseqp.

Definition:
count-codelist (initial , ascii-list)
= if subseqp (initial , ascii-list)

then count-codelist1 (restn (length (initial), ascii-list))
else 0 endif

Event: Disable count-codelist.

Definition:
max-count-codelist (initial , list)
= if listp (list)

then max (count-codelist (initial , unpack (car (list))),
max-count-codelist (initial , cdr (list)))

else 0 endif

Theorem: increment-num-list-count-code-list1
count-codelist1 (num-list) < count-codelist1 (increment-numlist (num-list))

Theorem: subseqp-append
subseqp (plist (x ), append (x , anything))

Theorem: count-codelist-make-symbol
(x = make-symbol (initial , num-list))
→ (count-codelist (plist (initial), unpack (x ))

= count-codelist1 (num-list))

Theorem: member-make-symbol-max-count-code-list
(make-symbol (initial , num-list) ∈ atom-list)
→ (max-count-codelist (plist (initial), atom-list)

6< count-codelist1 (num-list))

;; Returns a pair, the new symbol and the next number to use

Definition:
gensym (initial , num-list , atom-list)
= if make-symbol (initial , num-list) ∈ atom-list

then gensym (initial , increment-numlist (num-list), atom-list)
else cons (make-symbol (initial , num-list),

increment-numlist (num-list)) endif

13



Theorem: gensym-is-new
car (gensym (initial , num-list , atom-list)) 6∈ atom-list

;; MAKE-TEMP-NAME-ALIST takes a temps-alist triple a la S-TEMPS and
;; returns an alist with entries of the form:
;; (<temp expression> . <variable>) where <variable> is guaranteed to
;; occur only once in the resulting alist and is guaranteed not to occur
;; in FORMALS.

Definition:
lr-make-temp-name-alist-1 (initial , num-list , temp-list , formals)
= if listp (temp-list)

then let gensym be gensym (initial , num-list , formals)
in
cons (cons (car (temp-list), car (gensym)),

lr-make-temp-name-alist-1 (initial ,
cdr (gensym),
cdr (temp-list),
formals)) endlet

else nil endif

Definition:
lr-make-temp-name-alist (temp-list , formals)
= lr-make-temp-name-alist-1 (unpack (’t*), list-ascii-0, temp-list , formals)

Definition:
lr-new-cons (car , cdr)
= lr-new-node (tag (’nat, lr-cons-tag), tag (’nat, 1), car , cdr)

;; Deposit LIST of objects at ADDR, ADDR+1, ADDR+2, ... in DATA-SEG.

Definition:
deposit-a-list (list , addr , data-seg)
= if listp (list)

then deposit (car (list),
addr ,
deposit-a-list (cdr (list), add1-addr (addr), data-seg))

else data-seg endif

Definition:
lr-init-heap-contents (addr , size)
= if size ' 0 then list (tag (’nat, lr-init-tag))

else append (lr-new-node (tag (’nat, lr-init-tag),
add-addr (addr , lr-node-size),
tag (’nat, 0),

14



tag (’nat, 0)),
lr-init-heap-contents (add-addr (addr , lr-node-size),

size − 1)) endif

Definition:
lr-add-to-data-seg (data-seg , new-node)
= if (length (value (lr-heap-name, data-seg)) − 1)

6< (offset (fetch (lr-fp-addr, data-seg)) + length (new-node))
then deposit (fetch (add-addr (fetch (lr-fp-addr, data-seg),

lr-ref-count-offset),
data-seg),

lr-fp-addr,
deposit-a-list (new-node,

fetch (lr-fp-addr, data-seg),
data-seg))

else data-seg endif

Definition:
lr-init-data-seg (heap-size)
= deposit-a-list (list (tag (’nat, lr-false-tag),

tag (’nat, 1),
lr-undef-addr,
lr-undef-addr),

lr-f-addr,
deposit-a-list (list (tag (’nat, lr-undefined-tag),

tag (’nat, 1),
lr-undef-addr,
lr-undef-addr),

lr-undef-addr,
list (list (area-name (lr-fp-addr),

add-addr (lr-f-addr,
lr-node-size)),

list (area-name (lr-answer-addr),
tag (’nat, 0)),

cons (lr-heap-name,
lr-init-heap-contents (tag (’addr,

cons (lr-heap-name,
0)),

heap-size)))))

Definition:
count-list (flag , object)
= if flag = ’list

then if listp (object)
then count-list (t, car (object))

15



+ count-list (’list, cdr (object))
else 1 endif

elseif listp (object)
then 1 + (1 + (count-list (t, car (object))

+ count-list (t, cdr (object))))
elseif object ∈ N then 1 + count (object)
else 1 endif

Theorem: not-equal-0-count-list
count-list (flag , object) 6= 0

Theorem: lessp-count-list-cdr-count-list-whole
listp (object)
→ (count-list (’list, cdr (object)) < count-list (’list, object))

Theorem: lessp-count-not-list-car-count-list-whole
listp (object)
→ (count-list (t, car (object)) < count-list (’list, object))

;; LR-COMPILE-QUOTE returns a pair, the new HEAP and the new TABLE.

Definition:
lr-compile-quote (flag , object , heap, table)
= if flag = ’list

then if listp (object)
then let car-pair be lr-compile-quote (t,

car (object),
heap,
table)

in
lr-compile-quote (’list,

cdr (object),
car (car-pair),
cdr (car-pair)) endlet

else cons (heap, table) endif
elseif definedp (object , table) then cons (heap, table)
elseif listp (object)
then let pair be lr-compile-quote (’list,

list (car (object), cdr (object)),
heap,
table)

in
cons (lr-add-to-data-seg (car (pair),

lr-new-cons (cdr (assoc (car (object),
cdr (pair))),

16



cdr (assoc (cdr (object),
cdr (pair))))),

cons (cons (object , fetch (lr-fp-addr, car (pair))),
cdr (pair))) endlet

elseif object ∈ N
then cons (lr-add-to-data-seg (heap,

lr-new-node (tag (’nat, lr-add1-tag),
tag (’nat, 1),
tag (’nat, object),
lr-undef-addr)),

cons (cons (object , fetch (lr-fp-addr, heap)), table))
elseif truep (object)
then cons (lr-add-to-data-seg (heap,

lr-new-node (tag (’nat, lr-true-tag),
tag (’nat, 1),
lr-undef-addr,
lr-undef-addr)),

cons (cons (object , fetch (lr-fp-addr, heap)), table))
else cons (heap, cons (cons (object , lr-undef-addr), table)) endif

;; LR-DATA-SEG-TABLE-BODY returns a pair, the CAR is the extension of
;; DATA-SEG with any constants laid down in it, the CDR is an alist
;; mapping objects in the logic to addresses in the new DATA-SEG
;; where they are represented. The initial TABLE is such an alist

Definition:
lr-data-seg-table-body (flag , expr , data-seg , table)
= if flag = ’list

then if listp (expr)
then let dst1 be lr-data-seg-table-body (t,

car (expr),
data-seg ,
table)

in
lr-data-seg-table-body (’list,

cdr (expr),
car (dst1 ),
cdr (dst1 )) endlet

else cons (data-seg , table) endif
elseif listp (expr)
then if (car (expr) = s-temp-fetch)

∨ (car (expr) = s-temp-eval)
∨ (car (expr) = s-temp-test)

then lr-data-seg-table-body (t, cadr (expr), data-seg , table)

17



elseif car (expr) = ’quote
then lr-compile-quote (t, cadr (expr), data-seg , table)
else lr-data-seg-table-body (’list,

cdr (expr),
data-seg ,
table) endif

else cons (data-seg , table) endif

Definition:
lr-data-seg-table-list (progs, data-seg , table)
= if listp (progs)

then lr-data-seg-table-list (cdr (progs),
car (lr-data-seg-table-body (t,

s-body (car (progs)),
data-seg ,
table)),

cdr (lr-data-seg-table-body (t,
s-body (car (progs)),
data-seg ,
table)))

else cons (data-seg , table) endif

Definition:
lr-init-data-seg-table (params, data-seg , table)
= if listp (params)

then let ds-tab be lr-compile-quote (t, cdar (params), data-seg , table)
in
lr-init-data-seg-table (cdr (params),

car (ds-tab),
cdr (ds-tab)) endlet

else cons (data-seg , table) endif

Definition:
lr-data-seg-table (progs, params, heap-size)
= let init-ds-table1 be lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
list (cons (f, lr-f-addr)))

in
let init-ds-table2 be lr-init-data-seg-table (params,

car (init-ds-table1 ),
cdr (init-ds-table1 ))

in
lr-data-seg-table-list (progs,

car (init-ds-table2 ),

18



cdr (init-ds-table2 )) endlet endlet

Definition:
pair-formals-with-addresses (formals, table)
= if listp (formals)

then cons (cons (caar (formals), cdr (assoc (cdar (formals), table))),
pair-formals-with-addresses (cdr (formals), table))

else nil endif

Definition:
lr-make-initial-temps (temp-vars)
= if listp (temp-vars)

then cons (cons (car (temp-vars), lr-undef-addr),
lr-make-initial-temps (cdr (temp-vars)))

else nil endif

Definition:
lr-initial-cstk (params, temp-alist , table, pc)
= list (p-frame (append (pair-formals-with-addresses (params, table),

lr-make-initial-temps (strip-cdrs (temp-alist))),
pc))

Definition:
lr-compile-body (flag , body , temp-alist , const-table)
= if flag = ’list

then if listp (body)
then cons (lr-compile-body (t, car (body), temp-alist , const-table),

lr-compile-body (’list,
cdr (body),
temp-alist ,
const-table))

else nil endif
elseif listp (body)
then if (car (body) = s-temp-fetch)

∨ (car (body) = s-temp-eval)
∨ (car (body) = s-temp-test)

then list (car (body),
lr-compile-body (t, cadr (body), temp-alist , const-table),
value (cadr (body), temp-alist))

elseif car (body) = ’quote
then list (’quote, value (cadr (body), const-table))
else cons (car (body),

lr-compile-body (’list,
cdr (body),
temp-alist ,

19



const-table)) endif
else body endif

Definition:
lr-make-temp-var-dcls (temp-alist)
= if listp (temp-alist)

then cons (list (cdar (temp-alist), lr-undef-addr),
lr-make-temp-var-dcls (cdr (temp-alist)))

else nil endif

Definition:
lr-compile-programs (programs, const-table)
= if listp (programs)

then let prog be car (programs)
in
let temp-alist be lr-make-temp-name-alist (s-temp-list (prog),

s-formals (prog))
in
cons (lr-make-program (car (prog),

s-formals (prog),
lr-make-temp-var-dcls (temp-alist),
lr-compile-body (t,

s-body (prog),
temp-alist ,
const-table)),

lr-compile-programs (cdr (programs), const-table)) endlet endlet
else nil endif

Definition:
lr-p-c-size (flag , expr)
= if flag = ’list

then if listp (expr)
then lr-p-c-size (t, car (expr))

+ lr-p-c-size (’list, cdr (expr))
else 0 endif

elseif listp (expr)
then if car (expr) = ’if

then lr-p-c-size (t, cadr (expr))
+ lr-p-c-size (t, caddr (expr))
+ lr-p-c-size (t, cadddr (expr))
+ 4

elseif car (expr) = s-temp-fetch then 1
elseif car (expr) = s-temp-eval
then lr-p-c-size (t, cadr (expr)) + 1
elseif car (expr) = s-temp-test

20



then lr-p-c-size (t, cadr (expr)) + 7
elseif car (expr) = ’quote then 1
else lr-p-c-size (’list, cdr (expr)) + 1 endif

else 1 endif

Definition:
lr-p-c-size-list (n, expr-list)
= if n ' 0 then 0

elseif n < length (expr-list)
then lr-p-c-size (t, get (n, expr-list))

+ lr-p-c-size-list (n − 1, expr-list)
else lr-p-c-size-list (length (expr-list) − 1, expr-list) endif

;; LR-P-PC-1 returns the number of Piton instructions before the start of
;; the expression denoted by POS in the compilation of EXPR.

Definition:
lr-p-pc-1 (expr , pos)
= if ¬ listp (pos) then 0

elseif ¬ listp (expr) then 0
elseif car (pos) ' 0 then 0
elseif car (expr) = ’if
then if car (pos) ' 0 then 0

elseif car (pos) = 1 then lr-p-pc-1 (cadr (expr), cdr (pos))
elseif car (pos) = 2
then 3

+ lr-p-c-size (t, cadr (expr))
+ lr-p-pc-1 (caddr (expr), cdr (pos))

else lr-p-c-size (t, cadr (expr))
+ lr-p-c-size (t, caddr (expr))
+ lr-p-pc-1 (cadddr (expr), cdr (pos))
+ 4 endif

elseif car (expr) = s-temp-fetch then 0
elseif car (expr) = s-temp-eval then lr-p-pc-1 (cadr (expr), cdr (pos))
elseif car (expr) = s-temp-test
then lr-p-pc-1 (cadr (expr), cdr (pos)) + 4
elseif car (expr) = ’quote then 0
else lr-p-c-size-list (car (pos) − 1, expr)

+ lr-p-pc-1 (get (car (pos), expr), cdr (pos)) endif

Definition:
lr-p-pc (l)
= tag (’pc,

cons (area-name (p-pc (l)),
lr-p-pc-1 (program-body (p-current-program (l)), offset (p-pc (l)))))

21



Event: Disable lr-p-pc.

Definition:
s->lr1 (s, l , table)
= p-state (tag (’pc, cons (s-pname (s), s-pos (s))),

p-ctrl-stk (l),
p-temp-stk (l),
lr-compile-programs (s-progs (s), table),
p-data-segment (l),
p-max-ctrl-stk-size (l),
p-max-temp-stk-size (l),
p-word-size (l),
s-err-flag (s))

Event: Disable s->lr1.

;; Returns an P-STATE.
;; FREE-HEAP-SIZE is number of free nodes in resulting P-STATE.

Definition:
s->lr (s, fheap-size, max-ctrl , max-temp, word-size)
= let temp-alist be lr-make-temp-name-alist (strip-cars (s-temps (s)),

strip-cars (s-params (s))),
dataseg-table be lr-data-seg-table (s-progs (s),

s-params (s),
fheap-size)

in
let return-pc be tag (’pc,

cons (s-pname (s),
lr-p-pc-1 (lr-compile-body (t,

s-body (s-prog (s)),
temp-alist ,
cdr (dataseg-table)),

s-pos (s))))
in
s->lr1 (s,

p-state (nil,
lr-initial-cstk (s-params (s),

temp-alist ,
cdr (dataseg-table),
return-pc),

nil,
nil,

22



car (dataseg-table),
max-ctrl ,
max-temp,
word-size,
nil),

cdr (dataseg-table)) endlet endlet

Event: Disable s->lr.

Definition:
lr-params (frame, p)
= firstn (length (formal-vars (p-current-program (p))), bindings (frame))

Event: Disable lr-params.

Definition:
lr-temps (frame, p)
= restn (length (formal-vars (p-current-program (p))), bindings (frame))

Event: Disable lr-temps.

Definition:
lr-set-expr (s1 , s2 , pos)
= p-state (tag (’pc, cons (area-name (p-pc (s2 )), pos)),

p-ctrl-stk (s1 ),
p-temp-stk (s1 ),
p-prog-segment (s2 ),
p-data-segment (s1 ),
p-max-ctrl-stk-size (s1 ),
p-max-temp-stk-size (s1 ),
p-word-size (s1 ),
p-psw (s1 ))

Definition:
lr-set-error (s, flag)
= p-state (p-pc (s),

p-ctrl-stk (s),
p-temp-stk (s),
p-prog-segment (s),
p-data-segment (s),
p-max-ctrl-stk-size (s),
p-max-temp-stk-size (s),
p-word-size (s),
flag)

23



Definition:
lr-set-pos (s, pos)
= p-state (tag (’pc, cons (area-name (p-pc (s)), pos)),

p-ctrl-stk (s),
p-temp-stk (s),
p-prog-segment (s),
p-data-segment (s),
p-max-ctrl-stk-size (s),
p-max-temp-stk-size (s),
p-word-size (s),
p-psw (s))

Definition:
lr-set-tstk (s, temp-stk)
= p-state (p-pc (s),

p-ctrl-stk (s),
temp-stk ,
p-prog-segment (s),
p-data-segment (s),
p-max-ctrl-stk-size (s),
p-max-temp-stk-size (s),
p-word-size (s),
p-psw (s))

Definition:
lr-pop-tstk (s)
= if p-psw (s) = ’run

then if listp (p-temp-stk (s)) then lr-set-tstk (s, pop (p-temp-stk (s)))
else lr-set-error (s, ’lr-pop-tstk-empty-stack) endif

else s endif

Definition:
lr-push-tstk (s, value)
= if p-psw (s) = ’run

then if length (p-temp-stk (s)) < p-max-temp-stk-size (s)
then lr-set-tstk (s, push (value, p-temp-stk (s)))
else lr-set-error (s, ’lr-push-tstk-full-stack) endif

else s endif

Event: Disable lr-push-tstk.

Definition:
lr-if-ok (l)
= if p-max-temp-stk-size (l) 6< (1 + length (p-temp-stk (l))) then l

else lr-set-error (l , ’if-temp-stk-overflow) endif

24



Event: Disable lr-if-ok.

Definition:
lr-set-temp (s, value, var-name)
= if p-psw (s) = ’run

then p-state (p-pc (s),
set-local-var-value (value, var-name, p-ctrl-stk (s)),
p-temp-stk (s),
p-prog-segment (s),
p-data-segment (s),
p-max-ctrl-stk-size (s),
p-max-temp-stk-size (s),
p-word-size (s),
p-psw (s))

else s endif

Event: Disable lr-set-temp.

Definition:
lr-eval-temp-setp (s)
= (local-var-value (caddr (lr-expr (s)), p-ctrl-stk (s)) 6= lr-undef-addr)

Event: Disable lr-eval-temp-setp.

Definition:
lr-do-temp-fetch (s)
= if lr-eval-temp-setp (s)

then lr-push-tstk (s, local-var-value (caddr (lr-expr (s)), p-ctrl-stk (s)))
else lr-set-error (s, ’temp-fetch-not-set) endif

Event: Disable lr-do-temp-fetch.

Definition:
lr-pop-cstk (s)
= if p-psw (s) = ’run

then p-state (p-pc (s),
pop (p-ctrl-stk (s)),
p-temp-stk (s),
p-prog-segment (s),
p-data-segment (s),
p-max-ctrl-stk-size (s),
p-max-temp-stk-size (s),

25



p-word-size (s),
p-psw (s))

else s endif

Event: Disable lr-pop-cstk.

Definition:
lr-type-contents-p (object , tag , contents)
= ((type (object) = tag) ∧ (untag (object) = contents))

;; The following functions are used for the Piton code and to compute the LR
;; value for certain classes of functions (e.g. all shell accessors).

;; NOTE: The ’clock’ functions get a Piton state. This is the state just
;; BEFORE the execution of the appropriate CALL instruction. Therefore
;; to look at the parameters, it is necessary to look at the temp stack.
;; The clock function return the number of Piton instructions necessary to
;; run the CALL and the code for the SUBR.

;; Recognizers

Definition:
p-recognizer-code (name, tag)
= list (name,

’nil,
’nil,
’(fetch),
list (’push-constant, tag (’nat, tag)),
’(eq),
’(test-bool-and-jump f false),
list (’push-constant, lr-t-addr),
’(ret),
list (’dl, ’false, ’nil, list (’push-constant, lr-f-addr)),
’(ret))

Definition: p-recognizer-clock (p-state, tag) = 7

;; Accessor

Definition:
p-accessor-code (name, tag , default , offset)
= list (name,

’(x),
’nil,
’(push-local x),

26



’(fetch),
list (’push-constant, tag (’nat, tag)),
’(eq),
’(test-bool-and-jump t arg1),
list (’push-constant, default),
’(ret),
’(dl arg1 nil (push-local x)),
list (’push-constant, tag (’nat, offset)),
’(add-addr),
’(fetch),
’(ret))

Definition:
p-accessor-clock (p, tag)
= if fetch (top (p-temp-stk (p)), p-data-segment (p)) = tag (’nat, tag)

then 11
else 8 endif

;; Now comes the actual code and values

Definition:
p-car-code = p-accessor-code (’car, lr-cons-tag, lr-0-addr, lr-car-offset)

Definition: p-car-clock (p) = p-accessor-clock (p, lr-cons-tag)

Event: Disable p-car-clock.

Definition:
p-cdr-code = p-accessor-code (’cdr, lr-cons-tag, lr-0-addr, lr-cdr-offset)

Definition: p-cdr-clock (p) = p-accessor-clock (p, lr-cons-tag)

Event: Disable p-cdr-clock.

Definition:
p-cons-code
= list (’cons,

’nil,
’((temp (nat 0))),
’(push-global free-ptr),
list (’push-constant, tag (’nat, lr-cdr-offset)),
’(add-addr),
’(deposit),

27



’(push-global free-ptr),
list (’push-constant, tag (’nat, lr-car-offset)),
’(add-addr),
’(deposit),
’(push-global free-ptr),
’(push-global free-ptr),
list (’push-constant, tag (’nat, lr-ref-count-offset)),
’(add-addr),
’(set-local temp),
’(fetch),
’(push-constant (nat 1)),
’(push-local temp),
’(deposit),
list (’push-constant, tag (’nat, lr-cons-tag)),
’(push-global free-ptr),
’(deposit),
’(pop-global free-ptr),
’(ret))

Definition: p-cons-clock (p) = 23

Event: Disable p-cons-clock.

Definition:
p-false-code
= list (’false,

’nil,
’nil,
list (’push-constant, lr-f-addr),
’(ret))

Definition: p-false-clock (p) = 3

Event: Disable p-false-clock.

;; FALSEP TAKES ONE IMPLICIT ARG ON STACK.

Definition:
p-falsep-code
= list (’falsep,

’nil,
’nil,
list (’push-constant, lr-f-addr),
’(eq),

28



’(test-bool-and-jump t true),
list (’push-constant, lr-f-addr),
’(ret),
list (’dl, ’true, ’nil, list (’push-constant, lr-t-addr)),
’(ret))

Definition: p-falsep-clock (p) = 6

Event: Disable p-falsep-clock.

;; Takes an implicit arg

Definition:
p-listp-code = p-recognizer-code (’listp, lr-cons-tag)

Definition:
p-listp-clock (p) = p-recognizer-clock (p, lr-cons-tag)

Event: Disable p-listp-clock.

Definition:
p-nlistp-code
= list (’nlistp,

’nil,
’nil,
’(fetch),
list (’push-constant, tag (’nat, lr-cons-tag)),
’(eq),
’(test-bool-and-jump f true),
list (’push-constant, lr-f-addr),
’(ret),
list (’dl, ’true, ’nil, list (’push-constant, lr-t-addr)),
’(ret))

Definition: p-nlistp-clock (p) = 7

Event: Disable p-nlistp-clock.

Definition:
p-true-code
= list (’true, ’nil, ’nil, list (’push-constant, lr-t-addr), ’(ret))

Definition: p-true-clock (p) = 3

29



Event: Disable p-true-clock.

;; The old code for TRUEP is shown below. I used to ensure that there was
;; only one occurence of TRUE in the data-segment [namely at address
;; (lr-t-addr)], however only TRUEP took advantage of this. LR-PROPER-HEAPP
;; has been changed to not require only one occurrence, although only one
;; should appear. However this means we actually have to test the tag, a
;; small performance penalty for some simplicity and freedom in the spec.

Definition:
p-truep-code = p-recognizer-code (’truep, lr-true-tag)

;(defn P-TRUEP-CODE ()
; (list ’truep ’() ’()
; (list ’PUSH-CONSTANT (lr-t-addr))
; ’(EQ)
; ’(TEST-BOOL-AND-JUMP T TRUE)
; (list ’PUSH-CONSTANT (lr-f-addr))
; ’(RET)
; (list ’DL ’TRUE ’() (list ’PUSH-CONSTANT (lr-t-addr)))
; ’(RET)))

Definition:
p-truep-clock (p) = p-recognizer-clock (p, lr-false-tag)

;(defn P-TRUEP-CLOCK (p) 6)

Event: Disable p-truep-clock.

Definition:
p-runtime-support-programs
= list (p-car-code,

p-cdr-code,
p-cons-code,
p-false-code,
p-falsep-code,
p-listp-code,
p-nlistp-code,
p-true-code,
p-truep-code)

Event: Disable p-runtime-support-programs.

30



Definition:
lr-convert-digit-to-ascii (digit) = (ascii-0 + digit)

Definition:
lr-convert-num-to-ascii (number , list)
= if number < 10 then cons (lr-convert-digit-to-ascii (number), list)

else lr-convert-num-to-ascii (number ÷ 10,
cons (lr-convert-digit-to-ascii (number mod 10),

list)) endif

Definition:
lr-make-label (n)
= pack (cons (car (unpack (’l)),

cons (ascii-dash, append (lr-convert-num-to-ascii (n, nil), 0))))

Event: Disable lr-make-label.

Definition:
label-instrs (instrs, n)
= if listp (instrs)

then cons (dl (lr-make-label (n), nil, car (instrs)),
label-instrs (cdr (instrs), 1 + n))

else nil endif

Definition:
comp-temp-test (expr , instrs, n)
= append (list (list (’push-local, caddr (expr)),

list (’push-constant, lr-undef-addr),
’(eq),
list (’test-bool-and-jump,

’f,
lr-make-label (n + 6 + length (instrs)))),

append (instrs ,
list (list (’set-local, caddr (expr)),

list (’jump,
lr-make-label (n + 7 + length (instrs))),

list (’push-local, caddr (expr)))))

Definition:
comp-if (test-instrs, then-instrs , else-instrs, n)
= append (test-instrs,

append (list (list (’push-constant, lr-f-addr),
’(eq),
list (’test-bool-and-jump,

31



’t,
lr-make-label (n

+ 4
+ length (test-instrs)
+ length (then-instrs)))),

append (then-instrs ,
cons (list (’jump,

lr-make-label (n
+ 4
+ length (test-instrs)
+ length (then-instrs)
+ length (else-instrs))),

else-instrs))))

;; COMP-BODY-1 returns a list of Piton instructions to compile EXPR.
;; N is the number of Piton instructions previously generated, it is used
;; to generate unique labels.

Definition:
comp-body-1 (flag , expr , n)
= if flag = ’list

then if listp (expr)
then append (comp-body-1 (t, car (expr), n),

comp-body-1 (’list,
cdr (expr),
n + lr-p-c-size (t, car (expr))))

else nil endif
elseif listp (expr)
then if car (expr) = ’if

then comp-if (comp-body-1 (t, cadr (expr), n),
comp-body-1 (t,

caddr (expr),
n + 3 + lr-p-c-size (t, cadr (expr))),

comp-body-1 (t,
cadddr (expr),
n
+ 4
+ lr-p-c-size (t, cadr (expr))
+ lr-p-c-size (t, caddr (expr))),

n)
elseif car (expr) = s-temp-fetch
then list (list (’push-local, caddr (expr)))
elseif car (expr) = s-temp-eval
then append (comp-body-1 (t, cadr (expr), n),

32



list (list (’set-local, caddr (expr))))
elseif car (expr) = s-temp-test
then comp-temp-test (expr , comp-body-1 (t, cadr (expr), n + 4), n)
elseif car (expr) = ’quote
then list (list (’push-constant, cadr (expr)))
else append (comp-body-1 (’list, cdr (expr), n),

if definedp (car (expr),
p-runtime-support-programs)

then list (list (’call, car (expr)))
else list (list (’call,

user-fname (car (expr)))) endif) endif
else list (list (’push-local, expr)) endif

Event: Disable comp-body-1.

Definition:
comp-body (body)
= label-instrs (append (comp-body-1 (t, body , 0), ’((ret))), 0)

Event: Disable comp-body.

Definition:
comp-programs-1 (programs)
= if listp (programs)

then cons (lr-make-program (name (car (programs)),
formal-vars (car (programs)),
temp-var-dcls (car (programs)),
comp-body (program-body (car (programs)))),

comp-programs-1 (cdr (programs)))
else nil endif

Definition:
comp-programs (programs)
= cons (lr-make-program (name (car (programs)),

formal-vars (car (programs)),
temp-var-dcls (car (programs)),
label-instrs (append (comp-body-1 (t,

program-body (car (programs)),
0),

list (list (’set-global,
area-name (lr-answer-addr)),

’(ret))),
0)),

append (comp-programs-1 (cdr (programs)), p-runtime-support-programs))

33



Event: Disable comp-programs.

Definition:
lr-proper-exprp (flag , expr , pnames, formals , temps , table)
= if flag = ’list

then if listp (expr)
then lr-proper-exprp (t, car (expr), pnames, formals, temps , table)

∧ lr-proper-exprp (’list,
cdr (expr),
pnames,
formals ,
temps ,
table)

else expr = nil endif
elseif litatom (expr) then expr ∈ formals
elseif expr ' nil then f
elseif ¬ plistp (expr) then f
elseif car (expr) = s-temp-fetch
then (caddr (expr) ∈ temps) ∧ (length (expr) = 3)
elseif (car (expr) = s-temp-eval) ∨ (car (expr) = s-temp-test)
then (caddr (expr) ∈ temps)

∧ (length (expr) = 3)
∧ lr-proper-exprp (t, cadr (expr), pnames, formals , temps , table)

elseif car (expr) = ’quote
then (type (cadr (expr)) = ’addr)

∧ (cadr (expr) ∈ strip-cdrs (table))
∧ (length (cdr (expr)) = arity (car (expr)))

elseif subrp (car (expr))
then (length (cdr (expr)) = arity (car (expr)))

∧ ((car (expr) = ’if)
∨ definedp (car (expr), p-runtime-support-programs))

∧ (car (expr) 6∈ pnames)
∧ lr-proper-exprp (’list,

cdr (expr),
pnames,
formals,
temps,
table)

elseif body (car (expr))
then (length (cdr (expr)) = arity (car (expr)))

∧ (car (expr) ∈ pnames)
∧ lr-proper-exprp (’list,

cdr (expr),

34



pnames,
formals,
temps ,
table)

else f endif

Definition:
all-undef-addrs (list)
= if listp (list)

then (car (list) = lr-undef-addr) ∧ all-undef-addrs (cdr (list))
else t endif

Definition:
lr-programs-properp-1 (programs, program-names, table)
= if listp (programs)

then all-litatoms (formal-vars (car (programs)))
∧ all-litatoms (strip-cars (temp-var-dcls (car (programs))))
∧ all-undef-addrs (strip-cadrs (temp-var-dcls (car (programs))))
∧ lr-proper-exprp (t,

program-body (car (programs)),
program-names ,
formal-vars (car (programs)),
strip-cars (temp-var-dcls (car (programs))),
table)

∧ lr-programs-properp-1 (cdr (programs), program-names, table)
else t endif

Event: Disable lr-programs-properp-1.

Definition:
lr-programs-properp (l , table)
= (definedp (area-name (p-pc (l)), p-prog-segment (l))

∧ (caar (p-prog-segment (l)) = ’main)
∧ all-user-fnamesp (cdr (strip-cars (p-prog-segment (l))))
∧ lr-programs-properp-1 (p-prog-segment (l),

strip-logic-fnames (cdr (p-prog-segment (l))),
table))

Event: Disable lr-programs-properp.

Theorem: lr-p-c-size-flag-not-list-not-0
(flag 6= ’list) → (lr-p-c-size (flag , expr) 6= 0)

Theorem: difference-decreases
((x 6< y) ∧ (y 6' 0)) → (((x − y) < x ) = t)

35



Definition:
lr->p (p)
= p-state (lr-p-pc (p),

p-ctrl-stk (p),
p-temp-stk (p),
comp-programs (p-prog-segment (p)),
p-data-segment (p),
p-max-ctrl-stk-size (p),
p-max-temp-stk-size (p),
p-word-size (p),
p-psw (p))

Event: Disable lr->p.

Definition:
p-set-pc (p, pc)
= p-state (pc,

p-ctrl-stk (p),
p-temp-stk (p),
p-prog-segment (p),
p-data-segment (p),
p-max-ctrl-stk-size (p),
p-max-temp-stk-size (p),
p-word-size (p),
p-psw (p))

;; It should be the case that (P-CURRENT-INSTRUCTION p) = (CALL subr)
;; therefore we need to run P one more step than the clock functions
;; below to do the CALL.

Definition:
p-run-subr (subr , p)
= case on subr :

case = car
then p (p, p-car-clock (p))
case = cdr
then p (p, p-cdr-clock (p))

case = cons
then p (p, p-cons-clock (p))

case = false
then p (p, p-false-clock (p))

case = falsep
then p (p, p-falsep-clock (p))

case = listp

36



then p (p, p-listp-clock (p))
case = nlistp
then p (p, p-nlistp-clock (p))

case = true
then p (p, p-true-clock (p))

case = truep
then p (p, p-truep-clock (p))

otherwise p-halt (p, ’bad-subr) endcase

Event: Disable p-run-subr.

Definition:
lr-return-pc (l)
= add-addr (lr-p-pc (l), lr-p-c-size (’list, cdr (lr-expr (l))))

Event: Disable lr-return-pc.

Definition:
lr-apply-subr (l , new-l)
= let res be p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l)))
in
p-state (p-pc (new-l),

p-ctrl-stk (res),
p-temp-stk (res),
p-prog-segment (new-l),
p-data-segment (res),
p-max-ctrl-stk-size (res),
p-max-temp-stk-size (res),
p-word-size (res),
p-psw (res)) endlet

Event: Disable lr-apply-subr.

Definition:
lr-funcall (l , new-l)
= let prog be definition (user-fname (car (lr-expr (l))),

p-prog-segment (l)),
newest-l be p-set-pc (lr->p (new-l), lr-return-pc (l))

in
if p-call-okp (list (’call, user-fname (car (lr-expr (l)))),

newest-l)
then p-state (tag (’pc, cons (user-fname (car (lr-expr (l))), nil)),

37



push (make-p-call-frame (formal-vars (prog),
p-temp-stk (new-l),
temp-var-dcls (prog),
add1-addr (p-pc (newest-l))),

p-ctrl-stk (new-l)),
popn (length (formal-vars (prog)), p-temp-stk (new-l)),
p-prog-segment (new-l),
p-data-segment (new-l),
p-max-ctrl-stk-size (new-l),
p-max-temp-stk-size (new-l),
p-word-size (new-l),
’run)

else p-halt (new-l , x-y-error-msg (’p, ’call)) endif endlet

Event: Disable lr-funcall.

;; The following lemmas are needed to admit LR-EVAL

Theorem: p-accessors-lr-set-expr
(p-pc (lr-set-expr (s1 , s2 , pos)) = tag (’pc, cons (area-name (p-pc (s2 )), pos)))
∧ (p-ctrl-stk (lr-set-expr (s1 , s2 , pos)) = p-ctrl-stk (s1 ))
∧ (p-temp-stk (lr-set-expr (s1 , s2 , pos)) = p-temp-stk (s1 ))
∧ (p-prog-segment (lr-set-expr (s1 , s2 , pos)) = p-prog-segment (s2 ))
∧ (p-data-segment (lr-set-expr (s1 , s2 , pos)) = p-data-segment (s1 ))
∧ (p-max-ctrl-stk-size (lr-set-expr (s1 , s2 , pos))

= p-max-ctrl-stk-size (s1 ))
∧ (p-max-temp-stk-size (lr-set-expr (s1 , s2 , pos))

= p-max-temp-stk-size (s1 ))
∧ (p-word-size (lr-set-expr (s1 , s2 , pos)) = p-word-size (s1 ))
∧ (p-psw (lr-set-expr (s1 , s2 , pos)) = p-psw (s1 ))

Event: Disable lr-set-expr.

Theorem: p-accessors-lr-set-tstk
(p-pc (lr-set-tstk (s, ts)) = p-pc (s))
∧ (p-ctrl-stk (lr-set-tstk (s, ts)) = p-ctrl-stk (s))
∧ (p-temp-stk (lr-set-tstk (s, ts)) = ts)
∧ (p-prog-segment (lr-set-tstk (s, ts)) = p-prog-segment (s))
∧ (p-data-segment (lr-set-tstk (s, ts)) = p-data-segment (s))
∧ (p-max-ctrl-stk-size (lr-set-tstk (s, ts)) = p-max-ctrl-stk-size (s))
∧ (p-max-temp-stk-size (lr-set-tstk (s, ts)) = p-max-temp-stk-size (s))
∧ (p-word-size (lr-set-tstk (s, ts)) = p-word-size (s))
∧ (p-psw (lr-set-tstk (s, ts)) = p-psw (s))

38



Event: Disable lr-set-tstk.

Theorem: p-accessors-lr-set-error
(p-pc (lr-set-error (s, flag)) = p-pc (s))
∧ (p-ctrl-stk (lr-set-error (s, flag)) = p-ctrl-stk (s))
∧ (p-temp-stk (lr-set-error (s, flag)) = p-temp-stk (s))
∧ (p-prog-segment (lr-set-error (s, flag)) = p-prog-segment (s))
∧ (p-data-segment (lr-set-error (s, flag)) = p-data-segment (s))
∧ (p-max-ctrl-stk-size (lr-set-error (s, flag)) = p-max-ctrl-stk-size (s))
∧ (p-max-temp-stk-size (lr-set-error (s, flag)) = p-max-temp-stk-size (s))
∧ (p-word-size (lr-set-error (s, flag)) = p-word-size (s))
∧ (p-psw (lr-set-error (s, flag)) = flag)

Event: Disable lr-set-error.

Theorem: p-accessors-lr-set-pos
(p-pc (lr-set-pos (s, pos)) = tag (’pc, cons (area-name (p-pc (s)), pos)))
∧ (p-ctrl-stk (lr-set-pos (s, pos)) = p-ctrl-stk (s))
∧ (p-temp-stk (lr-set-pos (s, pos)) = p-temp-stk (s))
∧ (p-prog-segment (lr-set-pos (s, pos)) = p-prog-segment (s))
∧ (p-data-segment (lr-set-pos (s, pos)) = p-data-segment (s))
∧ (p-max-ctrl-stk-size (lr-set-pos (s, pos)) = p-max-ctrl-stk-size (s))
∧ (p-max-temp-stk-size (lr-set-pos (s, pos)) = p-max-temp-stk-size (s))
∧ (p-word-size (lr-set-pos (s, pos)) = p-word-size (s))
∧ (p-psw (lr-set-pos (s, pos)) = p-psw (s))

Event: Disable lr-set-pos.

Theorem: p-accessors-lr-pop-tstk
(p-pc (lr-pop-tstk (s)) = p-pc (s))
∧ (p-ctrl-stk (lr-pop-tstk (s)) = p-ctrl-stk (s))
∧ (p-prog-segment (lr-pop-tstk (s)) = p-prog-segment (s))
∧ (p-data-segment (lr-pop-tstk (s)) = p-data-segment (s))
∧ (p-max-ctrl-stk-size (lr-pop-tstk (s)) = p-max-ctrl-stk-size (s))
∧ (p-max-temp-stk-size (lr-pop-tstk (s)) = p-max-temp-stk-size (s))
∧ (p-word-size (lr-pop-tstk (s)) = p-word-size (s))

Theorem: p-temp-stk-lr-pop-tstk
p-temp-stk (lr-pop-tstk (s))
= if listp (p-temp-stk (s)) ∧ (p-psw (s) = ’run)

then pop (p-temp-stk (s))
else p-temp-stk (s) endif

Event: Disable lr-pop-tstk.

39



Theorem: area-name-tag
area-name (tag (tag , adp)) = adp-name (adp)

Theorem: offset-tag
offset (tag (tag , adp)) = adp-offset (adp)

Theorem: p-current-program-lr-set-expr
p-current-program (lr-set-expr (s1 , s2 , pos)) = p-current-program (s2 )

Theorem: p-current-program-lr-set-pos
p-current-program (lr-set-pos (s, pos)) = p-current-program (s)

Theorem: lr-expr-lr-set-expr
lr-expr (lr-set-expr (s1 , s2 , dv (offset (p-pc (s2 )), n))) = get (n, lr-expr (s2 ))

Theorem: lr-expr-lr-set-pos-t
lr-expr (lr-set-pos (s, dv (offset (p-pc (s)), n))) = get (n, lr-expr (s))

Theorem: lr-expr-flag-list-car
listp (offset (p-pc (p))) → (car (lr-expr-list (p)) = lr-expr (p))

Theorem: number-cons-lr-expr-t-list
(listp (lr-expr-list (p)) ∧ listp (offset (p-pc (p))))
→ (number-cons (lr-expr (p)) < number-cons (lr-expr-list (p)))

Theorem: lr-expr-lr-set-expr-nx
(listp (offset (p-pc (p))) ∧ listp (lr-expr-list (p)))
→ (lr-expr-list (lr-set-expr (p1 , p, nx (offset (p-pc (p)))))

= cdr (lr-expr-list (p)))

Theorem: lr-expr-list-lr-set-pos-dv-1
listp (lr-expr (p))
→ (lr-expr-list (lr-set-pos (p, dv (offset (p-pc (p)), 1)))

= cdr (lr-expr (p)))

;; If FLAG is ’LIST then state contains a list of expressions,
;; otherwise it is just one.
;; Returns a P-STATE. The result is left on the temp stack.
;; If the error flag of the resulting state is ’HALT then we terminated
;; normally. If the flag is ’RUN we have not terminated yet.
;; If the flag is anything else we got an error.

Definition:
lr-eval (flag , l , c)
= if p-psw (l) 6= ’run then l

elseif flag = ’list

40



then if offset (p-pc (l)) ' nil
then lr-set-error (l , ’bad-list-position)
elseif listp (lr-expr-list (l))
then lr-eval (’list,

lr-set-expr (lr-eval (t, l , c), l , nx (offset (p-pc (l)))),
c)

else l endif
elseif c ' 0 then lr-set-error (l , ’out-of-time)
elseif litatom (lr-expr (l))
then lr-push-tstk (l , local-var-value (lr-expr (l), p-ctrl-stk (l)))
elseif lr-expr (l) ' nil then lr-set-error (l , ’bad-expression)
elseif car (lr-expr (l)) = ’if
then let test be lr-if-ok (lr-eval (t,

lr-set-pos (l ,
dv (offset (p-pc (l)), 1)),

c))
in
if p-psw (test) = ’run
then if top (p-temp-stk (test)) 6= lr-f-addr

then lr-eval (t,
lr-set-expr (lr-pop-tstk (test),

l ,
dv (offset (p-pc (l)), 2)),

c)
else lr-eval (t,

lr-set-expr (lr-pop-tstk (test),
l ,
dv (offset (p-pc (l)), 3)),

c) endif
else test endif endlet

elseif car (lr-expr (l)) = s-temp-eval
then let l1 be lr-eval (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)

in
lr-set-temp (l1 , top (p-temp-stk (l1 )), caddr (lr-expr (l))) endlet

elseif car (lr-expr (l)) = s-temp-test
then let l1 be lr-eval (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)

in
if p-max-temp-stk-size (l)
6< (2 + length (p-temp-stk (l)))

then if lr-eval-temp-setp (l) then lr-do-temp-fetch (l)
else lr-set-temp (l1 ,

top (p-temp-stk (l1 )),
caddr (lr-expr (l))) endif

else lr-set-error (l ,

41



’lr-temp-setp-temp-stack-overflow) endif endlet
elseif car (lr-expr (l)) = s-temp-fetch then lr-do-temp-fetch (l)
elseif car (lr-expr (l)) = ’quote
then lr-push-tstk (l , cadr (lr-expr (l)))
elseif p-psw (lr-eval (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c))

6= ’run
then lr-eval (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
elseif subrp (car (lr-expr (l)))
then lr-apply-subr (l ,

lr-eval (’list,
lr-set-pos (l , dv (offset (p-pc (l)), 1)),
c))

elseif litatom (car (lr-expr (l)))
then let fs be lr-funcall (l ,

lr-eval (’list,
lr-set-pos (l ,

dv (offset (p-pc (l)), 1)),
c))

in
lr-set-expr (lr-pop-cstk (lr-eval (t, fs, c − 1)),

l ,
offset (p-pc (l))) endlet

else lr-set-error (l , ’bad-instruction) endif

;; Proper LR STATES

;; Sometimes we only need to know that LR-PROPER-P-AREASP holds on
;; a data-segment instead of LR-PROPER-P-DATA-SEGMENTP

Definition:
lr-proper-p-areasp (data-seg)
= if data-seg ' nil then data-seg = nil

else let area be car (data-seg)
in
litatom (car (area))
∧ listp (cdr (area))
∧ (¬ definedp (car (area), cdr (data-seg)))
∧ lr-proper-p-areasp (cdr (data-seg)) endlet endif

;; First we prove that LR-EVAL preserves PROPER-P-STATEP.

Theorem: p-accessors-lr-funcall
(p-prog-segment (lr-funcall (l , new-l)) = p-prog-segment (new-l))
∧ (p-data-segment (lr-funcall (l , new-l)) = p-data-segment (new-l))

42



∧ (p-max-ctrl-stk-size (lr-funcall (l , new-l))
= p-max-ctrl-stk-size (new-l))

∧ (p-max-temp-stk-size (lr-funcall (l , new-l))
= p-max-temp-stk-size (new-l))

∧ (p-word-size (lr-funcall (l , new-l)) = p-word-size (new-l))

Theorem: p-accessors-lr-push-tstk
(p-pc (lr-push-tstk (s, v)) = p-pc (s))
∧ (p-ctrl-stk (lr-push-tstk (s, v)) = p-ctrl-stk (s))
∧ (p-prog-segment (lr-push-tstk (s, v)) = p-prog-segment (s))
∧ (p-data-segment (lr-push-tstk (s, v)) = p-data-segment (s))
∧ (p-max-ctrl-stk-size (lr-push-tstk (s, v)) = p-max-ctrl-stk-size (s))
∧ (p-max-temp-stk-size (lr-push-tstk (s, v)) = p-max-temp-stk-size (s))
∧ (p-word-size (lr-push-tstk (s, v)) = p-word-size (s))

Theorem: p-accessors-lr-if-ok
(p-pc (lr-if-ok (l)) = p-pc (l))
∧ (p-ctrl-stk (lr-if-ok (l)) = p-ctrl-stk (l))
∧ (p-temp-stk (lr-if-ok (l)) = p-temp-stk (l))
∧ (p-prog-segment (lr-if-ok (l)) = p-prog-segment (l))
∧ (p-data-segment (lr-if-ok (l)) = p-data-segment (l))
∧ (p-max-ctrl-stk-size (lr-if-ok (l)) = p-max-ctrl-stk-size (l))
∧ (p-max-temp-stk-size (lr-if-ok (l)) = p-max-temp-stk-size (l))
∧ (p-word-size (lr-if-ok (l)) = p-word-size (l))

Theorem: p-accessors-lr-set-temp
(p-pc (lr-set-temp (s, v , n)) = p-pc (s))
∧ (p-ctrl-stk (lr-set-temp (s, v , n))

= if p-psw (s) = ’run
then set-local-var-value (v , n, p-ctrl-stk (s))
else p-ctrl-stk (s) endif)

∧ (p-temp-stk (lr-set-temp (s, v , n)) = p-temp-stk (s))
∧ (p-prog-segment (lr-set-temp (s, v , n)) = p-prog-segment (s))
∧ (p-data-segment (lr-set-temp (s, v , n)) = p-data-segment (s))
∧ (p-max-ctrl-stk-size (lr-set-temp (s, v , n)) = p-max-ctrl-stk-size (s))
∧ (p-max-temp-stk-size (lr-set-temp (s, v , n)) = p-max-temp-stk-size (s))
∧ (p-word-size (lr-set-temp (s, v , n)) = p-word-size (s))
∧ (p-psw (lr-set-temp (s, v , n)) = p-psw (s))

Theorem: p-accessors-lr-do-temp-fetch
(p-pc (lr-do-temp-fetch (s)) = p-pc (s))
∧ (p-ctrl-stk (lr-do-temp-fetch (s)) = p-ctrl-stk (s))
∧ (p-prog-segment (lr-do-temp-fetch (s)) = p-prog-segment (s))
∧ (p-data-segment (lr-do-temp-fetch (s)) = p-data-segment (s))
∧ (p-max-ctrl-stk-size (lr-do-temp-fetch (s)) = p-max-ctrl-stk-size (s))

43



∧ (p-max-temp-stk-size (lr-do-temp-fetch (s)) = p-max-temp-stk-size (s))
∧ (p-word-size (lr-do-temp-fetch (s)) = p-word-size (s))

Theorem: p-accessors-lr-pop-cstk
(p-pc (lr-pop-cstk (s)) = p-pc (s))
∧ (p-ctrl-stk (lr-pop-cstk (s))

= if p-psw (s) = ’run then pop (p-ctrl-stk (s))
else p-ctrl-stk (s) endif)

∧ (p-temp-stk (lr-pop-cstk (s)) = p-temp-stk (s))
∧ (p-prog-segment (lr-pop-cstk (s)) = p-prog-segment (s))
∧ (p-data-segment (lr-pop-cstk (s)) = p-data-segment (s))
∧ (p-max-ctrl-stk-size (lr-pop-cstk (s)) = p-max-ctrl-stk-size (s))
∧ (p-max-temp-stk-size (lr-pop-cstk (s)) = p-max-temp-stk-size (s))
∧ (p-word-size (lr-pop-cstk (s)) = p-word-size (s))
∧ (p-psw (lr-pop-cstk (s)) = p-psw (s))

Theorem: lr-eval-if-p-psw-1
((flag 6= ’list)
∧ (p-psw (lr-eval (flag , l , c)) = ’run)
∧ (car (lr-expr (l)) = ’if)
∧ (p-psw (l) = ’run)
∧ (c 6' 0)
∧ listp (lr-expr (l)))
→ (p-psw (lr-eval (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)) = ’run)

Event: Disable lr-eval-if-p-psw-1.

Theorem: adp-offset-untag-add-addr
adp-offset (untag (add-addr (addr , n))) = (offset (addr) + n)

Theorem: adp-offset-untag-sub-addr
adp-offset (untag (sub-addr (addr , n))) = (offset (addr) − n)

Theorem: adp-name-untag-sub-addr
adp-name (untag (sub-addr (addr , n))) = adp-name (untag (addr))

Theorem: adp-offset-cons
adp-offset (cons (area-name, offset)) = offset

Theorem: p-accessors-lr->p
(p-pc (lr->p (l)) = lr-p-pc (l))
∧ (p-ctrl-stk (lr->p (l)) = p-ctrl-stk (l))
∧ (p-temp-stk (lr->p (l)) = p-temp-stk (l))
∧ (p-prog-segment (lr->p (l)) = comp-programs (p-prog-segment (l)))
∧ (p-data-segment (lr->p (l)) = p-data-segment (l))

44



∧ (p-max-ctrl-stk-size (lr->p (l)) = p-max-ctrl-stk-size (l))
∧ (p-max-temp-stk-size (lr->p (l)) = p-max-temp-stk-size (l))
∧ (p-word-size (lr->p (l)) = p-word-size (l))
∧ (p-psw (lr->p (l)) = p-psw (l))

Theorem: type-lr-p-pc
type (lr-p-pc (l)) = ’pc

Theorem: cddr-nil-lr-p-pc
cddr (lr-p-pc (l)) = nil

Theorem: listp-untag-lr-p-pc
listp (untag (lr-p-pc (l)))

Theorem: numberp-cdr-lr-p-pc
cdr (untag (lr-p-pc (l))) ∈ N

Theorem: car-untag-lr-p-pc
car (untag (lr-p-pc (p))) = car (untag (p-pc (p)))

Theorem: area-name-lr-p-pc
area-name (lr-p-pc (p)) = area-name (p-pc (p))

Theorem: definedp-comp-programs-1-definedp-orig
definedp (x , comp-programs-1 (programs)) = definedp (x , programs)

Theorem: definedp-append
definedp (x , append (l1 , l2 )) = (definedp (x , l1 ) ∨ definedp (x , l2 ))

Theorem: definedp-comp-programs-definedp-orig
definedp (x , programs) → definedp (x , comp-programs (programs))

Theorem: p-accessors-p-halt
(p-pc (p-halt (p, psw)) = p-pc (p))
∧ (p-ctrl-stk (p-halt (p, psw)) = p-ctrl-stk (p))
∧ (p-temp-stk (p-halt (p, psw)) = p-temp-stk (p))
∧ (p-prog-segment (p-halt (p, psw)) = p-prog-segment (p))
∧ (p-data-segment (p-halt (p, psw)) = p-data-segment (p))
∧ (p-max-ctrl-stk-size (p-halt (p, psw)) = p-max-ctrl-stk-size (p))
∧ (p-max-temp-stk-size (p-halt (p, psw)) = p-max-temp-stk-size (p))
∧ (p-word-size (p-halt (p, psw)) = p-word-size (p))
∧ (p-psw (p-halt (p, psw)) = psw)

Event: Disable p-halt.

45



Theorem: p-accessors-p-set-pc
(p-pc (p-set-pc (p, pc)) = pc)
∧ (p-ctrl-stk (p-set-pc (p, pc)) = p-ctrl-stk (p))
∧ (p-temp-stk (p-set-pc (p, pc)) = p-temp-stk (p))
∧ (p-prog-segment (p-set-pc (p, pc)) = p-prog-segment (p))
∧ (p-data-segment (p-set-pc (p, pc)) = p-data-segment (p))
∧ (p-max-ctrl-stk-size (p-set-pc (p, pc)) = p-max-ctrl-stk-size (p))
∧ (p-max-temp-stk-size (p-set-pc (p, pc)) = p-max-temp-stk-size (p))
∧ (p-word-size (p-set-pc (p, pc)) = p-word-size (p))
∧ (p-psw (p-set-pc (p, pc)) = p-psw (p))

Event: Disable p-set-pc.

Theorem: p-psw-not-run
(p-psw (p-state) 6= ’run) → (p (p-state, clock) = p-state)

Theorem: p-psw-p-halt-x-y-error-msg
p (p-halt (p-state, x-y-error-msg (x , y)), n)
= p-halt (p-state, x-y-error-msg (x , y))

Event: Disable p-psw-p-halt-x-y-error-msg.

Theorem: p-accessors-p-run-subr
(p-prog-segment (p-run-subr (subr , p)) = p-prog-segment (p))
∧ (p-max-ctrl-stk-size (p-run-subr (subr , p)) = p-max-ctrl-stk-size (p))
∧ (p-max-temp-stk-size (p-run-subr (subr , p)) = p-max-temp-stk-size (p))
∧ (p-word-size (p-run-subr (subr , p)) = p-word-size (p))

Theorem: p-accessors-lr-apply-subr
(p-pc (lr-apply-subr (l1 , l2 )) = p-pc (l2 ))
∧ (p-prog-segment (lr-apply-subr (l1 , l2 )) = p-prog-segment (l2 ))
∧ (p-max-ctrl-stk-size (lr-apply-subr (l1 , l2 ))

= p-max-ctrl-stk-size (l2 ))
∧ (p-max-temp-stk-size (lr-apply-subr (l1 , l2 ))

= p-max-temp-stk-size (l2 ))
∧ (p-word-size (lr-apply-subr (l1 , l2 )) = p-word-size (l2 ))

Theorem: p-prog-segment-lr-eval
p-prog-segment (lr-eval (flag , l , c)) = p-prog-segment (l)

Theorem: p-max-ctrl-stk-size-lr-eval
p-max-ctrl-stk-size (lr-eval (flag , l , c)) = p-max-ctrl-stk-size (l)

Theorem: p-max-temp-stk-size-lr-eval
p-max-temp-stk-size (lr-eval (flag , l , c)) = p-max-temp-stk-size (l)

46



Theorem: p-word-size-lr-eval
p-word-size (lr-eval (flag , l , c)) = p-word-size (l)

Theorem: area-name-p-pc-lr-eval
area-name (p-pc (lr-eval (flag , l , c))) = area-name (p-pc (l))

Theorem: lr-programs-properp-lr-eval
lr-programs-properp (lr-eval (flag , l , c), table)
= lr-programs-properp (l , table)

Theorem: definedp-deposit
definedp (tag , deposit (anything , addr , data-seg)) = definedp (tag , data-seg)

Theorem: deposit-a-list-cons-opener
deposit-a-list (cons (x , list), addr , data-seg)
= deposit (x , addr , deposit-a-list (list , add1-addr (addr), data-seg))

Theorem: deposit-a-list-nil
deposit-a-list (nil, addr , data-seg) = data-seg

Event: Disable deposit-a-list.

Theorem: assoc-put-assoc-3
assoc (name1 , put-assoc (val , name2 , alist))
= if name1 = name2

then if definedp (name1 , alist) then cons (name1 , val)
else f endif

else assoc (name1 , alist) endif

Event: Disable assoc-put-assoc-3.

Theorem: adpp-lessp-offset-deposit
((offset < length (cdr (assoc (name, data-seg)))) ∧ definedp (name, data-seg))
→ (offset < length (cdr (assoc (name, deposit (anything , anywhere, data-seg)))))

Theorem: adpp-deposit-anything-at-all
adpp (adp, data-seg) → adpp (adp, deposit (anything , addr2 , data-seg))

Event: Disable adpp-lessp-offset-deposit.

Event: Disable adpp-deposit-anything-at-all.

Theorem: adpp-untag-definedp-area-name
adpp (untag (addr), data-seg) → definedp (area-name (addr), data-seg)

47



Event: Disable adpp-untag-definedp-area-name.

Theorem: adpp-cons-pack-definedp-area-name
adpp (cons (pack (xxx ), offset), data-seg) → definedp (pack (xxx ), data-seg)

Theorem: adpp-untag-numberp-offset
adpp (untag (addr), data-seg) → (offset (addr) ∈ N)

Event: Disable adpp-untag-numberp-offset.

Theorem: adpp-untag-listp
adpp (untag (addr), data-seg) → listp (untag (addr))

Event: Disable adpp-untag-listp.

Theorem: adpp-add-addr-0
(adpp (untag (addr), data-seg)
∧ (cddr (addr) = nil)
∧ (type (addr) = ’addr)
∧ (n ' 0))
→ (add-addr (addr , n) = addr)

Event: Disable adpp-add-addr-0.

Theorem: adpp-untag-lessp-offset
adpp (untag (addr), data-seg)
→ (offset (addr) < length (cdr (assoc (area-name (addr), data-seg))))

Event: Disable adpp-untag-lessp-offset.

Theorem: adpp-same-signature
same-signature (data-seg2 , data-seg1 )
→ (adpp (adp, data-seg2 ) = adpp (adp, data-seg1 ))

Event: Disable adpp.

Theorem: p-objectp-similar-p-states
(p-objectp (object , p0 )
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ (p-word-size (p0 ) = p-word-size (p1 )))
→ p-objectp (object , p1 )

48



Theorem: all-p-objectps-lr->p-similar-states
(all-p-objectps (lst , p0 )
∧ (p-word-size (p0 ) = p-word-size (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 )))
→ all-p-objectps (lst , p1 )

Theorem: proper-p-data-segmentp-lr->p-similar-states
(proper-p-data-segmentp (data-seg , p0 )
∧ (p-word-size (p0 ) = p-word-size (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 )))
→ proper-p-data-segmentp (data-seg , p1 )

Theorem: proper-p-temp-var-dclsp-lr->p-similar-states
(proper-p-temp-var-dclsp (temp-var-dcls , p0 )
∧ (p-word-size (p0 ) = p-word-size (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 )))
→ proper-p-temp-var-dclsp (temp-var-dcls , p1 )

Theorem: proper-p-instructionp-similar-p-states
(proper-p-instructionp (ins, name, p0 )
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ (p-word-size (p0 ) = p-word-size (p1 )))
→ proper-p-instructionp (ins, name, p1 )

Theorem: proper-labeled-p-instructionsp-lr->p-similar-states
(proper-labeled-p-instructionsp (lst , name, p0 )
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ (p-word-size (p0 ) = p-word-size (p1 )))
→ proper-labeled-p-instructionsp (lst , name, p1 )

Theorem: proper-p-prog-segmentp-lr->p-similar-states
(proper-p-prog-segmentp (programs , p0 )
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ (p-word-size (p0 ) = p-word-size (p1 )))
→ proper-p-prog-segmentp (programs, p1 )

Theorem: proper-p-temp-stkp-lr->p-similar-states
(proper-p-temp-stkp (temp-stk , p0 )
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 ))

49



∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ (p-word-size (p0 ) = p-word-size (p1 )))
→ proper-p-temp-stkp (temp-stk , p1 )

Theorem: proper-p-alistp-lr->p-similar-states
(proper-p-alistp (bindings, p0 )
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ (p-word-size (p0 ) = p-word-size (p1 )))
→ proper-p-alistp (bindings , p1 )

Theorem: proper-p-ctrl-stkp-lr->p-similar-states
(proper-p-ctrl-stkp (ctrl-stk , name, p0 )
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ (p-word-size (p0 ) = p-word-size (p1 )))
→ proper-p-ctrl-stkp (ctrl-stk , name, p1 )

;; Now we prove what the result of running the SUBRPs. We
;; start with a sample state (that the rewriter can match with
;; P-APPLY-SUBR-STATE) and run it. We are only interested in TEMP-STK and
;; DATA-SEGMENT of the result. However the running of the Piton code can
;; be a bit tedious, so we try and prove both parts at once with the
;; following function P-GOOD-RESULTP. This also has the not ERRORP check
;; inside of it so that we should only have one instance of the Piton
;; interpreter (P) in each theorem. This should hopefully reduce the time
;; (and pain) of proving these theorems.

Definition:
p-good-resultp (p, data-seg , temp-stk , ctrl-stk , pc)
= if p-psw (p) 6= ’run then t

else (p-data-segment (p) = data-seg)
∧ (p-temp-stk (p) = temp-stk)
∧ listp (ctrl-stk)
∧ (p-ctrl-stk (p) = ctrl-stk)
∧ (p-pc (p) = pc) endif

Theorem: assoc-append-1
assoc (x , append (list1 , list2 ))
= if definedp (x , list1 ) then assoc (x , list1 )

else assoc (x , list2 ) endif

Event: Disable assoc-append-1.

Theorem: lr-programs-properp-1-all-user-fnamesp-not-user-fnamep

50



(all-user-fnamesp (strip-cars (programs)) ∧ (¬ user-fnamep (x )))
→ (¬ definedp (x , programs))

Theorem: definitions-subrps-lr-programs-properp
lr-programs-properp (l , table)
→ ((assoc (’car, comp-programs (p-prog-segment (l))) = p-car-code)

∧ (assoc (’cdr, comp-programs (p-prog-segment (l)))
= p-cdr-code)

∧ (assoc (’cons, comp-programs (p-prog-segment (l)))
= p-cons-code)

∧ (assoc (’false, comp-programs (p-prog-segment (l)))
= p-false-code)

∧ (assoc (’falsep, comp-programs (p-prog-segment (l)))
= p-falsep-code)

∧ (assoc (’listp, comp-programs (p-prog-segment (l)))
= p-listp-code)

∧ (assoc (’nlistp, comp-programs (p-prog-segment (l)))
= p-nlistp-code)

∧ (assoc (’true, comp-programs (p-prog-segment (l)))
= p-true-code)

∧ (assoc (’truep, comp-programs (p-prog-segment (l)))
= p-truep-code))

Event: Disable lr-programs-properp-1-all-user-fnamesp-not-user-fnamep.

Event: Disable definitions-subrps-lr-programs-properp.

;; and now some openers for p-good-resultp

Theorem: p-good-resultp-p-state-opener
p-good-resultp (p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
’run),

result-data-seg ,
result-temp-stk ,
result-ctrl-stk ,
result-pc)

= ((data-seg = result-data-seg)

51



∧ (temp-stk = result-temp-stk)
∧ listp (result-ctrl-stk)
∧ (ctrl-stk = result-ctrl-stk)
∧ (pc = result-pc))

Theorem: p-good-resultp-p-halt-errorp-opener
(psw 6= ’run)
→ p-good-resultp (p-halt (p, psw), data-seg , temp-stk , ctrl-stk , pc)

Event: Disable p-good-resultp.

Theorem: all-p-objectps-bad-type
((get (offset , lst) 6= list (type (get (offset , lst)), untag (get (offset , lst))))
∧ (offset ∈ N)
∧ (offset < length (lst)))
→ (¬ all-p-objectps (lst , p))

Theorem: proper-p-data-segmentp-bad-type
((fetch (addr , data-seg)
6= list (type (fetch (addr , data-seg)), untag (fetch (addr , data-seg))))
∧ adpp (untag (addr), data-seg))
→ (¬ proper-p-data-segmentp (data-seg , p))

Theorem: p-current-program-p-state
p-current-program (p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

= assoc (area-name (pc), prog-seg)

Theorem: p-current-instruction-opener
p-current-instruction (p-state (pc,

temp-stk ,
ctrl-stk ,
prog-segment ,
data-segment ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,

52



psw))
= unlabel (get (offset (pc),

program-body (assoc (area-name (pc), prog-segment))))

Event: Disable p-current-instruction-opener.

Theorem: fetch-deposit
((offset (addr1 ) ∈ N) ∧ (offset (addr2 ) ∈ N))
→ (fetch (addr1 , deposit (value, addr2 , data-seg))

= if definedp (area-name (addr2 ), data-seg)
then if area-name (addr1 ) = area-name (addr2 )

then if offset (addr1 ) = offset (addr2 ) then value
else fetch (addr1 , data-seg) endif

else fetch (addr1 , data-seg) endif
else fetch (addr1 , data-seg) endif)

;; add-addr

Theorem: area-name-add-addr
area-name (add-addr (addr , n)) = area-name (addr)

Theorem: offset-add-addr
offset (add-addr (addr , n)) = (offset (addr) + n)

Theorem: adp-name-untag-add-addr
adp-name (untag (add-addr (addr , n))) = area-name (addr)

Theorem: add-addr-of-non-number
(n 6∈ N) → (add-addr (addr , n) = add-addr (addr , 0))

Theorem: add-addr-add-addr
add-addr (add-addr (addr , n), m) = add-addr (addr , n + m)

Theorem: listp-untag-add-addr
listp (untag (add-addr (addr , n)))

Theorem: type-add-addr
type (add-addr (addr , n)) = type (addr)

Theorem: cddr-add-addr
cddr (add-addr (addr , n)) = nil

Theorem: area-name-lr-return-pc
area-name (lr-return-pc (l)) = area-name (p-pc (l))

53



Theorem: listp-untag-lr-return-pc
listp (untag (lr-return-pc (l)))

Theorem: type-lr-return-pc
type (lr-return-pc (l)) = ’pc

Theorem: cddr-lr-return-pc
cddr (lr-return-pc (l)) = nil

Theorem: numberp-offset-return-pc
offset (lr-return-pc (l)) ∈ N

Theorem: numberp-cdr-untag-return-pc
cdr (untag (lr-return-pc (l))) ∈ N

Theorem: car-untag-lr-return-pc
car (untag (lr-return-pc (l))) = car (untag (p-pc (l)))

;; sub-addr

Theorem: area-name-sub-addr
area-name (sub-addr (addr , n)) = area-name (addr)

Theorem: cddr-sub-addr
cddr (sub-addr (addr , n)) = nil

Theorem: type-sub-addr
type (sub-addr (addr , n)) = type (addr)

Theorem: listp-untag-sub-addr
listp (untag (sub-addr (addr , n)))

Theorem: offset-sub-addr
offset (sub-addr (addr , n)) = (offset (addr) − n)

;; LR-BOUNDARY-NODEP

Theorem: lr-boundary-nodep-sub-addr
lr-boundary-nodep (addr)
→ lr-boundary-nodep (sub-addr (addr , identity (lr-node-size)))

Theorem: lr-boundary-nodep-add-addr-lr-node-size
lr-boundary-nodep (addr)
→ lr-boundary-nodep (add-addr (addr , identity (lr-node-size)))

Event: Disable lr-boundary-nodep.

54



;; LR-NODEP

Theorem: lr-nodep-opener
lr-nodep (addr , data-seg)
= ((type (addr) = ’addr)

∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = identity (lr-heap-name)))

Event: Disable lr-nodep.

;; LR-GOOD-POINTERP

Theorem: lr-good-pointerp-opener
lr-good-pointerp (addr , data-seg)
= ((type (addr) = ’addr)

∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = identity (lr-heap-name))
∧ (type (fetch (add-addr (addr , identity (lr-ref-count-offset)),

data-seg))
= ’nat))

Event: Disable lr-good-pointerp.

Theorem: equal-plus-remainder-0-fact
(((offset1 mod max ) = 0)
∧ ((offset2 mod max ) = 0)
∧ (n < max )
∧ (m < max )
∧ (offset1 ∈ N)
∧ (offset2 ∈ N))
→ (((n + offset1 ) = (m + offset2 ))

= ((fix (n) = fix (m)) ∧ (offset1 = offset2 )))

Theorem: lr-boundary-offsetp-equal-plus-fact
(lr-boundary-offsetp (offset1 )
∧ lr-boundary-offsetp (offset2 )
∧ (n < lr-node-size)
∧ (m < lr-node-size)

55



∧ (offset1 ∈ N)
∧ (offset2 ∈ N))
→ (((n + offset1 ) = (m + offset2 ))

= ((fix (n) = fix (m)) ∧ (offset1 = offset2 )))

Theorem: good-posp-list-nx-t-simple
(good-posp (’list, pos, body)
∧ listp (pos)
∧ (car (last (pos)) < length (cur-expr (butlast (pos), body))))
→ (good-posp (’list, nx (pos), body) ∧ good-posp1 (pos, body))

Theorem: lr-programs-properp-1-lr-proper-exprp
(lr-programs-properp-1 (progs, program-names , table) ∧ (prog ∈ progs))
→ lr-proper-exprp (t,

program-body (prog),
program-names ,
formal-vars (prog),
strip-cars (temp-var-dcls (prog)),
table)

Theorem: lr-proper-exprp-list-lr-proper-get-t
lr-proper-exprp (’list, expr , pnames, formals, temps, table)
→ (lr-proper-exprp (t, get (n, expr), pnames, formals, temps, table)

= (n < length (expr)))

Theorem: lr-proper-exprp-t-lr-proper-get-t
((car (expr) 6= s-temp-fetch)
∧ (car (expr) 6= s-temp-eval)
∧ (car (expr) 6= s-temp-test)
∧ (car (expr) 6= ’quote)
∧ (n 6' 0)
∧ lr-proper-exprp (t, expr , pnames, formals, temps, table))
→ (lr-proper-exprp (t, get (n, expr), pnames, formals, temps , table)

= (n < length (expr)))

Event: Disable lr-proper-exprp-list-lr-proper-get-t.

Theorem: lr-proper-exprp-lr-proper-exprp-cur-expr
(lr-proper-exprp (t, body , pnames, formals, temps, table) ∧ good-posp1 (pos, body))
→ lr-proper-exprp (t, cur-expr (pos, body), pnames, formals, temps , table)

Theorem: lr-programs-properp-lr-programs-properp-1
(lr-programs-properp (l , table) ∧ (prog-seg = p-prog-segment (l)))
→ (lr-programs-properp-1 (p-prog-segment (l),

strip-logic-fnames (cdr (prog-seg)),

56



table)
∧ definedp (area-name (p-pc (l)), prog-seg))

Theorem: lr-programs-properp-lr-proper-exprp-lr-expr
(lr-programs-properp (l , table)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l))))
→ lr-proper-exprp (t,

lr-expr (l),
strip-logic-fnames (cdr (p-prog-segment (l))),
formal-vars (p-current-program (l)),
strip-cars (temp-var-dcls (p-current-program (l))),
table)

Theorem: lr-proper-exprp-length-cur-expr
(lr-proper-exprp (t, expr , pnames, formals, temps , table)
∧ listp (expr)
∧ (subrp (car (expr)) ∨ body (car (expr)))
∧ (car (expr) 6= ’quote))
→ (length (expr) = (1 + arity (car (expr))))

Theorem: listp-comp-body-1
listp (comp-body-1 (flag , body , n))
= if flag = ’list then listp (body)

else t endif

Theorem: car-append
listp (x ) → (car (append (x , y)) = car (x ))

Theorem: length-cdr-comp-if-comp-body
length (comp-if (comp-body-1 (t, test , n1 ),

comp-body-1 (t, then, n2 ),
comp-body-1 (t, else, n3 ),
n))

= (length (comp-body-1 (t, test , n1 ))
+ length (comp-body-1 (t, then, n2 ))
+ length (comp-body-1 (t, else, n3 ))
+ 4)

Theorem: lr-p-c-size-list-0-opener
lr-p-c-size-list (0, expr) = 0

Theorem: lr-p-c-size-list-add1-opener
((1 + n) < length (expr))
→ (lr-p-c-size-list (1 + n, expr)

= (lr-p-c-size (t, cadr (expr)) + lr-p-c-size-list (n, cdr (expr))))

57



Theorem: length-comp-body-1-lr-p-c-size
length (comp-body-1 (flag , body , n)) = lr-p-c-size (flag , body)

Event: Disable lr-p-c-size-list-add1-opener.

Theorem: length-label-instrs
length (label-instrs (instrs , n)) = length (instrs)

Theorem: length-comp-body-lr-p-c-size
length (comp-body (body)) = (1 + lr-p-c-size (t, body))

Theorem: lr-p-c-size-flag-list
lr-p-c-size (’list, cdr (expr)) = lr-p-c-size-list (length (expr) − 1, expr)

Theorem: lr-proper-exprp-car-if-cadr
(lr-proper-exprp (t, body , pnames, formals, temps, table)
∧ listp (body)
∧ (car (body) = ’if))
→ lr-proper-exprp (t, cadr (body), pnames, formals, temps, table)

Theorem: lr-proper-exprp-car-if-caddr
(lr-proper-exprp (t, body , pnames, formals, temps, table)
∧ listp (body)
∧ (car (body) = ’if))
→ lr-proper-exprp (t, caddr (body), pnames, formals, temps, table)

Theorem: lr-proper-exprp-car-if-cadddr
(lr-proper-exprp (t, body , pnames, formals , temps, table)
∧ listp (body)
∧ (car (body) = ’if))
→ lr-proper-exprp (t, cadddr (body), pnames, formals , temps , table)

Theorem: good-posp-list-t-offset-program-body
(good-posp (’list, offset (p-pc (l)), program-body (p-current-program (l)))
∧ listp (lr-expr-list (l))
∧ listp (offset (p-pc (l))))
→ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))

Theorem: good-posp-list-nx-offset-program-body
(good-posp (’list, offset (p-pc (l)), program-body (p-current-program (l)))
∧ listp (offset (p-pc (l)))
∧ listp (lr-expr-list (l)))
→ good-posp (’list,

nx (offset (p-pc (l))),
program-body (p-current-program (l)))

58



Theorem: name-formal-vars-temp-var-dcls-program-body-cons
(name (cons (name, rest)) = name)
∧ (formal-vars (cons (name, cons (formal-vars , rest))) = formal-vars)
∧ (temp-var-dcls (cons (name,

cons (formal-vars, cons (temp-var-dcls , program-body))))
= temp-var-dcls)

∧ (program-body (cons (name,
cons (formal-vars, cons (temp-var-dcls , program-body))))

= program-body)

Theorem: program-body-assoc-comp-programs-1
definedp (name, programs)
→ (program-body (assoc (name, comp-programs-1 (programs)))

= comp-body (program-body (assoc (name, programs))))

Theorem: program-body-assoc-comp-programs
definedp (name, programs)
→ (program-body (assoc (name, comp-programs (programs)))

= if name = name (car (programs))
then label-instrs (append (comp-body-1 (t,

program-body (car (programs)),
0),

list (identity (list (’set-global,
area-name (lr-answer-addr))),

’(ret))),
0)

else comp-body (program-body (assoc (name, cdr (programs)))) endif)

Theorem: definedp-area-name-member-p-current-program
definedp (area-name (p-pc (l)), p-prog-segment (l))
→ (p-current-program (l) ∈ p-prog-segment (l))

Definition:
induct-hint-6 (n, body)
= if n < length (body) then induct-hint-6 (1 + n, body)

else t endif

Theorem: lr-p-c-size-list-0
listp (body)
→ ((lr-p-c-size-list (n, body) = 0) = ((n ' 0) ∨ (cdr (body) ' nil)))

Event: Disable lr-p-c-size-list-0.

Theorem: lessp-lr-p-c-size-list-lessp-sub1-length
(lr-p-c-size-list (n, body) 6= 0)

59



→ ((lr-p-c-size-list (n, body) − 1)
< lr-p-c-size-list (length (body) − 1, body))

Theorem: lr-p-pc-1-body-0
lr-p-pc-1 (0, pos) = 0

Theorem: lessp-lr-p-pc-1-lr-p-c-size-helper-1
(listp (body)
∧ (n 6' 0)
∧ (lr-p-pc-1 (get (n, body), pos) < lr-p-c-size (t, get (n, body)))
∧ (lr-p-pc-1 (get (n, body), pos) 6= 0))
→ (((lr-p-c-size-list (n − 1, body) + lr-p-pc-1 (get (n, body), pos)) − 1)

< lr-p-c-size-list (length (body) − 1, body))

Theorem: lessp-lr-p-pc-1-lr-p-c-size
lr-p-pc-1 (body , pos) < lr-p-c-size (t, body)

Event: Disable lessp-lr-p-pc-1-lr-p-c-size-helper-1.

Theorem: not-lessp-p-max-temp-stk-size-lr-push-tstk
(p-psw (lr-push-tstk (l , anything)) = ’run)
→ (p-max-temp-stk-size (l)

6< length (p-temp-stk (lr-push-tstk (l , anything))))

Theorem: proper-p-temp-stkp-lr->p-lr-push-tstk
proper-p-temp-stkp (temp-stkp, lr->p (lr-push-tstk (l , anything)))
= proper-p-temp-stkp (temp-stkp, lr->p (l))

Theorem: proper-p-alistp-p-objectp
(proper-p-alistp (bindings, l) ∧ definedp (name, bindings))
→ p-objectp (cdr (assoc (name, bindings)), l)

Theorem: formal-vars-assoc-comp-programs-1
definedp (name, programs)
→ (formal-vars (assoc (name, comp-programs-1 (programs)))

= formal-vars (assoc (name, programs)))

Theorem: formal-vars-assoc-comp-programs
definedp (name, programs)
→ (formal-vars (assoc (name, comp-programs (programs)))

= formal-vars (assoc (name, programs)))

Theorem: temp-var-dcls-assoc-comp-programs-1
definedp (name, programs)
→ (temp-var-dcls (assoc (name, comp-programs-1 (programs)))

= temp-var-dcls (assoc (name, programs)))

60



Theorem: temp-var-dcls-assoc-comp-programs
definedp (name, programs)
→ (temp-var-dcls (assoc (name, comp-programs (programs)))

= temp-var-dcls (assoc (name, programs)))

Theorem: lr-programs-properp-definedp-car-untag-p-pc
lr-programs-properp (l , table)
→ definedp (car (untag (p-pc (l))), p-prog-segment (l))

Theorem: p-objectp-cdr-assoc-litatom-proper-p-alistp
(proper-p-alistp (bindings, lp)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (strip-cars (bindings)

= append (formal-vars (assoc (car (untag (p-pc (l))),
comp-programs-1 (p-prog-segment (l)))),

strip-cars (temp-var-dcls (assoc (car (untag (p-pc (l))),
comp-programs-1 (p-prog-segment (l)))))))

∧ litatom (lr-expr (l)))
→ p-objectp (cdr (assoc (lr-expr (l), bindings)), lp)

Theorem: proper-p-temp-stkp-lr-push-tstk-assoc-bindings
(lr-programs-properp (l , table)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ proper-p-alistp (bindings (car (p-ctrl-stk (l))), lr->p (l))
∧ litatom (lr-expr (l))
∧ (strip-cars (bindings (car (p-ctrl-stk (l))))

= append (formal-vars (assoc (car (untag (p-pc (l))),
comp-programs-1 (p-prog-segment (l)))),

strip-cars (temp-var-dcls (assoc (car (untag (p-pc (l))),
comp-programs-1 (p-prog-segment (l))))))))

→ (proper-p-temp-stkp (p-temp-stk (lr-push-tstk (l ,
cdr (assoc (lr-expr (l),

bindings (car (p-ctrl-stk (l))))))),
lr->p (l))

= proper-p-temp-stkp (p-temp-stk (l), lr->p (l)))

Theorem: lr-p-pc-lr-push-tstk
lr-p-pc (lr-push-tstk (l , anything)) = lr-p-pc (l)

Theorem: proper-p-statep-lr->p-lr-push-tstk
(proper-p-statep (lr->p (l))
∧ lr-programs-properp (l , table)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ (p-psw (lr-push-tstk (l ,

61



cdr (assoc (lr-expr (l),
bindings (car (p-ctrl-stk (l)))))))

= ’run)
∧ litatom (lr-expr (l)))
→ proper-p-statep (lr->p (lr-push-tstk (l ,

cdr (assoc (lr-expr (l),
bindings (car (p-ctrl-stk (l))))))))

Theorem: good-posp1-cons-lessp-4-if-lr-proper-exprp
((car (cur-expr (pos, body)) = ’if)
∧ good-posp1 (pos, body)
∧ lr-proper-exprp (t, body , pnames, formals , temps, table))
→ (good-posp1 (dv (pos, 1), body)

∧ good-posp1 (dv (pos, 2), body)
∧ good-posp1 (dv (pos, 3), body))

Theorem: good-posp-cons-lessp-4-if-lr-programs-properp
((car (lr-expr (l)) = ’if)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (good-posp1 (dv (offset (p-pc (l)), 1), program-body (p-current-program (l)))

∧ good-posp1 (dv (offset (p-pc (l)), 2),
program-body (p-current-program (l)))

∧ good-posp1 (dv (offset (p-pc (l)), 3),
program-body (p-current-program (l))))

Theorem: proper-p-statep-lr->p-lr-set-pos
(lr-programs-properp (l , table) ∧ proper-p-statep (lr->p (l)))
→ proper-p-statep (lr->p (lr-set-pos (l , pos)))

Theorem: lr-p-pc-lr-pop-tstk
lr-p-pc (lr-pop-tstk (l)) = lr-p-pc (l)

Theorem: proper-p-statep-lr->p-lr-pop-tstk
proper-p-statep (lr->p (l)) → proper-p-statep (lr->p (lr-pop-tstk (l)))

Theorem: good-posp-dv-1-temps-lr-expr
(((car (lr-expr (l)) = s-temp-eval) ∨ (car (lr-expr (l)) = s-temp-test))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l))))
→ good-posp1 (dv (offset (p-pc (l)), 1), program-body (p-current-program (l)))

Theorem: proper-p-alistp-put-assoc
(proper-p-alistp (bindings, l) ∧ p-objectp (object , l))
→ proper-p-alistp (put-assoc (object , var-name, bindings), l)

62



Theorem: listp-p-temp-stk-lr-push-tstk
(p-psw (lr-push-tstk (l , object)) = ’run)
→ listp (p-temp-stk (lr-push-tstk (l , object)))

Theorem: lr-p-pc-lr-set-temp
lr-p-pc (lr-set-temp (l , value, var-name)) = lr-p-pc (l)

Theorem: proper-p-statep-lr-set-temp
(proper-p-statep (lr->p (l)) ∧ listp (p-temp-stk (l)))
→ proper-p-statep (lr->p (lr-set-temp (l , car (p-temp-stk (l)), var-name)))

Theorem: p-objectp-cdr-assoc-bindings-proper-p-alistp
(proper-p-alistp (bindings, l) ∧ definedp (object , bindings))
→ p-objectp (cdr (assoc (object , bindings)), l)

Theorem: definedp-caddr-lr-expr-bindings-ctrl-stk
(lr-programs-properp-1 (progs, program-names , table)
∧ definedp (name, progs)
∧ ((car (cur-expr (pos, program-body (assoc (name, progs))))

= s-temp-fetch)
∨ (car (cur-expr (pos, program-body (assoc (name, progs))))

= s-temp-test))
∧ good-posp1 (pos, program-body (assoc (name, progs)))
∧ (strip-cars (bindings)

= append (formal-vars (assoc (name, comp-programs (progs))),
strip-cars (temp-var-dcls (assoc (name,

comp-programs (progs)))))))
→ definedp (caddr (cur-expr (pos, program-body (assoc (name, progs)))),

bindings)

Theorem: proper-p-temp-stkp-p-temp-stk-lr-do-temp-fetch
(proper-p-framep (top (p-ctrl-stk (l1 )), area-name (p-pc (l1 )), l2 )
∧ lr-programs-properp (l1 , table)
∧ ((car (lr-expr (l1 )) = s-temp-fetch)

∨ (car (lr-expr (l1 )) = s-temp-test))
∧ good-posp1 (offset (p-pc (l1 )), program-body (p-current-program (l1 )))
∧ same-signature (p-data-segment (l1 ), p-data-segment (l2 ))
∧ (p-prog-segment (lr->p (l1 )) = p-prog-segment (l2 ))
∧ (p-word-size (l1 ) = p-word-size (l2 )))
→ (proper-p-temp-stkp (p-temp-stk (lr-do-temp-fetch (l1 )), l2 )

= proper-p-temp-stkp (p-temp-stk (l1 ), l2 ))

Theorem: length-lr-do-temp-fetch
(p-psw (lr-do-temp-fetch (l)) = ’run)
→ (p-max-temp-stk-size (l) 6< length (p-temp-stk (lr-do-temp-fetch (l))))

63



Theorem: lr-p-pc-lr-do-temp-fetch
lr-p-pc (lr-do-temp-fetch (l)) = lr-p-pc (l)

Theorem: proper-p-statep-lr-do-temp-fetch
((p-psw (lr-do-temp-fetch (l)) = ’run)
∧ lr-programs-properp (l , table)
∧ ((car (lr-expr (l)) = s-temp-fetch)

∨ (car (lr-expr (l)) = s-temp-test))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ proper-p-statep (lr->p (l)))
→ proper-p-statep (lr->p (lr-do-temp-fetch (l)))

Theorem: length-lr-push-tstk
(p-psw (lr-push-tstk (l , object)) = ’run)
→ (p-max-temp-stk-size (l)

6< length (p-temp-stk (lr-push-tstk (l , object))))

Theorem: listp-p-temp-stk-lr-do-temp-fetch
(p-psw (lr-do-temp-fetch (l)) = ’run)
→ listp (p-temp-stk (lr-do-temp-fetch (l)))

Theorem: proper-p-prog-segmentp-append
plistp (segment1 )
→ (proper-p-prog-segmentp (append (segment1 , segment2 ), p)

= (proper-p-prog-segmentp (segment1 , p)
∧ proper-p-prog-segmentp (segment2 , p)))

Theorem: lr-programs-properp-expr-quote-type-addr
(lr-programs-properp (l , table)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’quote))
→ (type (cadr (lr-expr (l))) = ’addr)

Theorem: proper-p-instructionp-push-constant-opener
proper-p-instructionp (list (’push-constant, object), name, p)
= proper-p-push-constant-instructionp (list (’push-constant, object),

name,
p)

Theorem: proper-labeled-p-instructionsp-find-labelp-non-litatom
(proper-labeled-p-instructionsp (body , name, p) ∧ (¬ litatom (label)))
→ (find-labelp (label , body) = f)

Theorem: lessp-4-not-zerop-not-1-not-2-3
((n 6' 0) ∧ (n 6= 1) ∧ (n 6= 2) ∧ (n < 4)) → (n = 3)

64



Theorem: lessp-4-not-zerop-not-1-not-2-3-get-car-pos
((car (pos) 6' 0)
∧ (car (pos) 6= 1)
∧ (car (pos) 6= 2)
∧ (car (pos) < 4))
→ (get (car (pos), body) = cadddr (body))

Event: Disable lessp-4-not-zerop-not-1-not-2-3-get-car-pos.

Theorem: lessp-index-lessp-lr-p-c-size-list
lr-p-c-size-list (length (cdr (body)), body) 6< lr-p-c-size-list (n, body)

Theorem: lessp-plus-lr-p-c-size-lr-p-pc-1-helper
(listp (body)
∧ (n 6' 0)
∧ (lr-p-c-size (t, get (n, body)) 6< x )
∧ ((n − 1) < length (cdr (body)))
∧ (len = length (cdr (body))))
→ (((lr-p-c-size-list (len, body) + 1)

< (lr-p-c-size-list (n − 1, body) + x ))
= f)

Theorem: lessp-plus-lr-p-c-size-lr-p-pc-1
(good-posp1 (pos, body) ∧ lr-proper-exprp (t, body , pnames, formals, temps, table))
→ (lr-p-c-size (t, body)

6< (lr-p-pc-1 (body , pos) + lr-p-c-size (t, cur-expr (pos, body))))

Definition:
induct-hint-7 (pos, expr , n)
= if pos ' nil then t

elseif expr ' nil then t
elseif car (expr) = ’if
then let then-n be n + 3 + lr-p-c-size (t, cadr (expr))

in
case on car (pos):
case = 1
then induct-hint-7 (cdr (pos), cadr (expr), n)
case = 2
then induct-hint-7 (cdr (pos), caddr (expr), then-n)

otherwise induct-hint-7 (cdr (pos),
cadddr (expr),
1
+ then-n
+ lr-p-c-size (t, caddr (expr))) endcase endlet

65



elseif car (expr) = s-temp-fetch then t
elseif car (expr) = s-temp-eval
then induct-hint-7 (cdr (pos), cadr (expr), n)
elseif car (expr) = s-temp-test
then induct-hint-7 (cdr (pos), cadr (expr), n + 4)
elseif car (expr) = ’quote then t
else induct-hint-7 (cdr (pos),

get (car (pos), expr),
n + lr-p-c-size-list (car (pos) − 1, expr)) endif

Theorem: lr-p-c-size-s-temp-test-eval-cadr-not-lessp-fact
(listp (expr)
∧ ((car (expr) = s-temp-eval) ∨ (car (expr) = s-temp-test)))
→ (lr-p-c-size (t, cadr (expr)) < lr-p-c-size (t, expr))

Theorem: length-comp-temp-test
(listp (body) ∧ (car (body) = s-temp-test))
→ (length (comp-temp-test (any-body , comp-body-1 (t, cadr (body), n), any-n))

= lr-p-c-size (t, body))

Theorem: plistp-comp-temp-test
plistp (comp-temp-test (body , instrs, n))

Theorem: length-comp-if-alt
(listp (body) ∧ (car (body) = ’if))
→ (length (comp-if (comp-body-1 (t, cadr (body), n1 ),

comp-body-1 (t, caddr (body), n2 ),
comp-body-1 (t, cadddr (body), n3 ),
any-n))

= lr-p-c-size (t, body))

Theorem: plistp-comp-if
(plistp (else-instrs) ∧ listp (else-instrs))
→ plistp (comp-if (test-intrs, then-instrs, else-instrs, n))

Theorem: plistp-comp-body-1
plistp (comp-body-1 (flag , body , n))

Theorem: lr-p-c-size-list-funcall-not-lessp-fact
(listp (expr)
∧ (car (expr) 6= s-temp-fetch)
∧ (car (expr) 6= s-temp-eval)
∧ (car (expr) 6= s-temp-test)
∧ (car (expr) 6= ’quote)
∧ (car (expr) 6= ’if))
→ (lr-p-c-size-list (length (expr) − 1, expr) < lr-p-c-size (t, expr))

66



Theorem: lr-p-c-size-nlistp-body
(¬ listp (body)) → (lr-p-c-size (t, body) = 1)

Theorem: firstn-lr-p-c-size-restn-lr-p-pc-1-comp-body-1-helper-1
(good-posp1 (pos, cadr (body))
∧ (car (body) = ’if)
∧ listp (body)
∧ lr-proper-exprp (t, body , pnames , formals , temps, table))
→ (firstn (lr-p-c-size (t, cur-expr (pos, cadr (body))),

restn (lr-p-pc-1 (cadr (body), pos),
comp-if (comp-body-1 (t, cadr (body), n),

then-instrs ,
else-instrs,
n)))

= firstn (lr-p-c-size (t, cur-expr (pos, cadr (body))),
restn (lr-p-pc-1 (cadr (body), pos),

comp-body-1 (t, cadr (body), n))))

Theorem: firstn-restn-plus-comp-if-1
((j = length (test))
∧ listp (then)
∧ (m < length (then))
∧ (m ∈ N)
∧ listp (test)
∧ (length (then) 6< (k + m)))
→ (firstn (k , restn (3 + j + m, comp-if (test , then, else, n)))

= firstn (k , restn (m, then)))

Theorem: firstn-unlabel-instrs-comp-body-1-lr-p-pc-1-helper-2
(good-posp1 (pos, caddr (body))
∧ (car (body) = ’if)
∧ listp (body)
∧ lr-proper-exprp (t, body , pnames, formals, temps, table))
→ (lr-p-c-size (t, caddr (body))

6< (lr-p-pc-1 (caddr (body), pos)
+ lr-p-c-size (t, cur-expr (pos, caddr (body)))))

Theorem: firstn-restn-plus-comp-if-2
((j = length (test))
∧ (i = length (then))
∧ listp (then)
∧ (m < length (else))
∧ (m ∈ N)
∧ listp (test)
∧ listp (else)

67



∧ (length (else) 6< (m + k)))
→ (firstn (k , restn (j + i + m + 4, comp-if (test , then, else, n)))

= firstn (k , restn (m, else)))

Theorem: firstn-unlabel-instrs-comp-body-1-lr-p-pc-1-helper-3
(good-posp1 (pos, cadddr (body))
∧ (car (body) = ’if)
∧ listp (body)
∧ lr-proper-exprp (t, body , pnames, formals , temps , table))
→ (lr-p-c-size (t, cadddr (body))

6< (lr-p-pc-1 (cadddr (body), pos)
+ lr-p-c-size (t, cur-expr (pos, cadddr (body)))))

Theorem: plus-constant-fact-helper-1
(1 + n + 3 + x + y) = (n + 4 + x + y)

Theorem: firstn-lr-p-c-size-restn-lr-p-pc-1-comp-body-1-helper-4
(good-posp1 (pos, cadr (body))
∧ listp (body)
∧ (car (body) = s-temp-test)
∧ lr-proper-exprp (t, body , pnames , formals, temps, table))
→ (firstn (lr-p-c-size (t, cur-expr (pos, cadr (body))),

restn (lr-p-pc-1 (cadr (body), pos) + 4,
comp-temp-test (body-1 , comp-body-1 (t, cadr (body), n), m)))

= firstn (lr-p-c-size (t, cur-expr (pos, cadr (body))),
restn (lr-p-pc-1 (cadr (body), pos),

comp-body-1 (t, cadr (body), n))))

Theorem: firstn-lr-p-c-size-restn-lr-p-pc-1-comp-body-1-helper-5
(4 + x ) = (x + 4)

Theorem: good-posp1-lr-proper-exprp-get-cadddr
(listp (pos)
∧ listp (body)
∧ (car (body) = ’if)
∧ (car (pos) 6= 1)
∧ (car (pos) 6= 2)
∧ (car (pos) 6= 0)
∧ (car (pos) ∈ N)
∧ lr-proper-exprp (t, body , pnames, formals , temps, table)
∧ ((((car (pos) − 1) − 1) − 1) < length (cdddr (body))))
→ (get (car (pos), body) = cadddr (body))

Theorem: lr-proper-exprp-cadr-temps
(lr-proper-exprp (t, expr , pnames, formals , temps , table)
∧ ((car (expr) = s-temp-eval) ∨ (car (expr) = s-temp-test)))
→ lr-proper-exprp (t, cadr (expr), pnames, formals, temps, table)

68



Theorem: lessp-plus-lr-p-c-size-lr-p-pc-1-temps
(good-posp1 (pos, cadr (body))
∧ listp (body)
∧ ((car (body) = s-temp-eval) ∨ (car (body) = s-temp-test))
∧ lr-proper-exprp (t, body , pnames, formals, temps, table))
→ (lr-p-c-size (t, cadr (body))

6< (lr-p-pc-1 (cadr (body), pos)
+ lr-p-c-size (t, cur-expr (pos, cadr (body)))))

Theorem: firstn-lr-p-c-size-restn-lr-p-pc-1-comp-body-1-helper-6
(listp (body)
∧ (car (body) 6= ’if)
∧ (car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote)
∧ lr-proper-exprp (t, body , pnames, formals , temps , table)
∧ (n 6' 0))
→ (lr-p-c-size-list (length (body) − 1, body)

6< (lr-p-c-size-list (n − 1, body) + lr-p-pc-1 (get (n, body), pos)))

Definition:
induct-hint-10 (n, l , x )
= if ¬ listp (l) then t

elseif n ' 0 then t
elseif listp (cdr (l))
then induct-hint-10 (n − 1, cdr (l), x + lr-p-c-size (t, cadr (l)))
else t endif

Theorem: lr-p-c-size-list-car-opener
((n 6' 0) ∧ (n < length (body)))
→ (lr-p-c-size-list (n, body)

= (lr-p-c-size (t, cadr (body))
+ lr-p-c-size-list (n − 1, cdr (body))))

Theorem: restn-comp-body-1-list-fact
((lr-p-c-size (t, get (m, cdr (body))) 6< j )
∧ (m < length (cdr (body)))
∧ (m ∈ N)
∧ (n ∈ N)
∧ (j ∈ N))
→ (restn (lr-p-c-size-list (m, body) + j ,

comp-body-1 (’list, cdr (body), n))
= restn (j ,

comp-body-1 (’list,

69



restn (m, cdr (body)),
n + lr-p-c-size-list (m, body))))

Event: Disable lr-p-c-size-list-car-opener.

Theorem: firstn-restn-small-enough-cdr-comp-body-1-list
(listp (body) ∧ (lr-p-c-size (t, car (body)) 6< (j + k)))
→ (firstn (j , restn (k , comp-body-1 (’list, body , n)))

= firstn (j , restn (k , comp-body-1 (t, car (body), n))))

Theorem: firstn-lr-p-c-size-restn-lr-p-pc-1-comp-body-1-helper-7
(listp (body)
∧ (car (body) 6= ’if)
∧ (car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote)
∧ (n ∈ N)
∧ lr-proper-exprp (t, body , pnames, formals , temps , table)
∧ (m 6' 0)
∧ (m < length (body))
∧ good-posp1 (pos, get (m, body)))
→ (firstn (lr-p-c-size (t, cur-expr (pos, get (m, body))),

restn (lr-p-c-size-list (m − 1, body)
+ lr-p-pc-1 (get (m, body), pos),
comp-body-1 (’list, cdr (body), n)))

= firstn (lr-p-c-size (t, cur-expr (pos, get (m, body))),
restn (lr-p-pc-1 (get (m, body), pos),

comp-body-1 (t,
get (m, body),
n + lr-p-c-size-list (m − 1, body)))))

Theorem: firstn-lr-p-c-size-restn-lr-p-pc-1-comp-body-1-helper-8
(listp (body)
∧ (car (body) 6= ’if)
∧ (car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote)
∧ lr-proper-exprp (t, body , pnames, formals , temps, table)
∧ (n 6' 0)
∧ (n < length (body))
∧ good-posp1 (pos, get (n, body)))
→ ((lr-p-c-size-list (length (body) − 1, body)

70



− (lr-p-c-size-list (n − 1, body) + lr-p-pc-1 (get (n, body), pos)))
6< lr-p-c-size (t, cur-expr (pos, get (n, body))))

Theorem: firstn-lr-p-c-size-restn-lr-p-pc-1-comp-body-1
(good-posp1 (pos, body)
∧ lr-proper-exprp (t, body , pnames, formals, temps , table)
∧ (n ∈ N))
→ (firstn (lr-p-c-size (t, cur-expr (pos, body)),

restn (lr-p-pc-1 (body , pos), comp-body-1 (t, body , n)))
= comp-body-1 (t, cur-expr (pos, body), n + lr-p-pc-1 (body , pos)))

Event: Disable firstn-lr-p-c-size-restn-lr-p-pc-1-comp-body-1-helper-5.

Theorem: not-lessp-lr-p-c-size-flag-t-1
lr-p-c-size (t, body1 ) 6< 1

Theorem: not-lessp-x-x
(x < x ) = f

Theorem: get-plus
get (x + y , list) = get (y , restn (x , list))

Event: Disable get-plus.

Theorem: get-firstn-different-lists
((k < n) ∧ (firstn (n, list1 ) = firstn (n, list2 )))
→ (get (k , list1 ) = get (k , list2 ))

Theorem: unlabel-list-label
unlabel (list (’dl, lab, comment , instr)) = instr

Theorem: legal-labelp-label-make-label
legal-labelp (list (’dl, lr-make-label (n), comment , instr))

Theorem: lr-make-label-not-numberp
(n 6∈ N) → (lr-make-label (n) = lr-make-label (0))

Definition:
induct-hint-9 (m, instrs, n)
= if listp (instrs) then induct-hint-9 (m − 1, cdr (instrs), 1 + n)

else t endif

Theorem: get-label-instrs
(m < length (instrs))
→ (get (m, label-instrs (instrs, n))

= list (’dl, lr-make-label (n + m), nil, get (m, instrs)))

71



Event: Disable lr-make-label-not-numberp.

Theorem: get-append
get (n, append (x , y))
= if n < length (x ) then get (n, x )

else get (n − length (x ), y) endif

Event: Disable get-append.

Theorem: get-lr-p-c-size-lessp-lr-p-c-size-comp-body-1
(good-posp1 (pos, body)
∧ lr-proper-exprp (t, body , pnames, formals, temps, table)
∧ (n ∈ N)
∧ (m < lr-p-c-size (t, cur-expr (pos, body))))
→ (get (lr-p-pc-1 (body , pos) + m, comp-body-1 (t, body , n))

= get (m,
comp-body-1 (t,

cur-expr (pos, body),
n + lr-p-pc-1 (body , pos))))

Theorem: get-lr-p-pc-1-comp-body-1-cur-expr-comp-body
(good-posp1 (offset (p-pc (l)), program-body (prog))
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’quote)
∧ lr-programs-properp (l , table)
∧ (prog = p-current-program (l)))
→ (get (lr-p-pc-1 (program-body (prog), offset (p-pc (l))),

comp-body (program-body (prog)))
= list (’dl,

lr-make-label (lr-p-pc-1 (program-body (prog),
offset (p-pc (l)))),

nil,
list (’push-constant, cadr (lr-expr (l)))))

Theorem: get-lr-p-pc-1-comp-body-1-quote
(good-posp1 (offset (p-pc (l)), program-body (car (p-prog-segment (l))))
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’quote)
∧ lr-programs-properp (l , table)
∧ (area-name (p-pc (l)) = caar (p-prog-segment (l))))
→ (get (lr-p-pc-1 (program-body (car (p-prog-segment (l))), offset (p-pc (l))),

comp-body-1 (t, program-body (car (p-prog-segment (l))), 0))
= list (’push-constant, cadr (lr-expr (l))))

72



Theorem: proper-p-temp-stkp-p-temp-stk-lr-push-tstk-quote
(lr-programs-properp (l , table)
∧ proper-p-prog-segmentp (comp-programs (p-prog-segment (l)), lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’quote)
∧ proper-p-temp-stkp (p-temp-stk (l), lr->p (l)))
→ proper-p-temp-stkp (p-temp-stk (lr-push-tstk (l , cadr (lr-expr (l)))),

lr->p (l))

Theorem: proper-p-statep-lr-push-tstk-quote
(proper-p-statep (lr->p (l))
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’quote)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-push-tstk (l , cadr (lr-expr (l)))) = ’run))
→ proper-p-statep (lr->p (lr-push-tstk (l , cadr (lr-expr (l)))))

Theorem: good-posp-dv-1-funcall-lr-expr
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= s-temp-eval)
∧ (car (lr-expr (l)) 6= s-temp-test)
∧ (car (lr-expr (l)) 6= s-temp-fetch)
∧ (car (lr-expr (l)) 6= ’quote)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l))))
→ good-posp (’list,

dv (offset (p-pc (l)), 1),
program-body (p-current-program (l)))

Theorem: plistp-pairlist
plistp (pairlist (x , y))

Theorem: all-p-objectps-append
plistp (lst1 )
→ (all-p-objectps (append (lst1 , lst2 ), p)

= (all-p-objectps (lst1 , p) ∧ all-p-objectps (lst2 , p)))

Theorem: all-p-objectps-reverse
plistp (lst) → (all-p-objectps (reverse (lst), p) = all-p-objectps (lst , p))

Theorem: plistp-first-n
plistp (first-n (n, list))

73



Theorem: proper-p-temp-stkp-all-p-objectps
proper-p-temp-stkp (temp-stk , p) → all-p-objectps (temp-stk , p)

Theorem: all-p-objectps-first-n
((length (lst) 6< n) ∧ all-p-objectps (lst , p))
→ all-p-objectps (first-n (n, lst), p)

Theorem: strip-cars-append
strip-cars (append (x , y)) = append (strip-cars (x ), strip-cars (y))

Event: Disable strip-cars-append.

Theorem: strip-cars-pairlist
strip-cars (pairlist (x , y)) = plist (x )

Event: Disable strip-cars-pairlist.

Theorem: strip-cars-pair-temps-with-initial-values
strip-cars (pair-temps-with-initial-values (temp-var-decls))
= strip-cars (temp-var-decls)

Theorem: length-popn
(length (list) 6< n) → (length (popn (n, list)) = (length (list) − n))

Theorem: proper-p-temp-stkp-popn
((length (temp-stk) 6< n) ∧ proper-p-temp-stkp (temp-stk , p))
→ proper-p-temp-stkp (popn (n, temp-stk), p)

Theorem: proper-p-prog-segmentp-length-program-body
(proper-p-prog-segmentp (prog-segment , p) ∧ definedp (name, prog-segment))
→ listp (program-body (assoc (name, prog-segment)))

Theorem: ret-pc-make-p-call-frame
ret-pc (make-p-call-frame (f-vars, temp-stk , temp-var-dcls , ret-pc)) = ret-pc

Theorem: bindings-make-p-call-frame
bindings (make-p-call-frame (f-vars, temp-stk , temp-var-dcls , ret-pc))
= append (pair-formal-vars-with-actuals (f-vars, temp-stk),

pair-temps-with-initial-values (temp-var-dcls))

Theorem: cddr-nil-make-p-call-frame
cddr (make-p-call-frame (f-vars, temp-stk , temp-var-dcls , ret-pc)) = nil

Theorem: listp-cdr-make-p-call-frame
listp (cdr (make-p-call-frame (f-vars, temp-stk , temp-var-dcls, ret-pc)))

74



Theorem: length-pairlist
length (pairlist (x , y)) = length (x )

Theorem: length-pair-temps-with-initial-values
length (pair-temps-with-initial-values (temp-var-dcls))
= length (temp-var-dcls)

Theorem: not-proper-p-statep-not-listp-p-ctrl-stk
(¬ listp (p-ctrl-stk (l))) → (¬ proper-p-statep (lr->p (l)))

Theorem: proper-p-statep-bad-type-1
((fetch (car (p-temp-stk (l)), p-data-segment (l))
6= list (type (fetch (car (p-temp-stk (l)), p-data-segment (l))),

untag (fetch (car (p-temp-stk (l)), p-data-segment (l)))))
∧ adpp (untag (car (p-temp-stk (l))), p-data-segment (l)))
→ (¬ proper-p-statep (lr->p (l)))

Theorem: p-good-resultp-run-car
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call car)))
→ p-good-resultp (p (p-set-pc (lr->p (l), pc),

p-car-clock (p-set-pc (lr->p (l), pc))),
p-data-segment (l),
if fetch (top (p-temp-stk (l)), p-data-segment (l))

= tag (’nat, lr-cons-tag)
then cons (fetch (add-addr (top (p-temp-stk (l)),

lr-car-offset),
p-data-segment (l)),

cdr (p-temp-stk (l)))
else cons (lr-0-addr, cdr (p-temp-stk (l))) endif,
p-ctrl-stk (l),
add-addr (pc, 1))

Theorem: p-good-resultp-run-cdr
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

75



= ’(call cdr)))
→ p-good-resultp (p (p-set-pc (lr->p (l), pc),

p-cdr-clock (p-set-pc (lr->p (l), pc))),
p-data-segment (l),
if fetch (top (p-temp-stk (l)), p-data-segment (l))

= tag (’nat, lr-cons-tag)
then cons (fetch (add-addr (top (p-temp-stk (l)),

lr-cdr-offset),
p-data-segment (l)),

cdr (p-temp-stk (l)))
else cons (lr-0-addr, cdr (p-temp-stk (l))) endif,
p-ctrl-stk (l),
add-addr (pc, 1))

Theorem: p-good-resultp-run-listp
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call listp)))
→ p-good-resultp (p (p-set-pc (lr->p (l), pc),

p-listp-clock (p-set-pc (lr->p (l), pc))),
p-data-segment (l),
if fetch (car (p-temp-stk (l)), p-data-segment (l))

= tag (’nat, lr-cons-tag)
then cons (lr-t-addr, cdr (p-temp-stk (l)))
else cons (lr-f-addr, cdr (p-temp-stk (l))) endif,
p-ctrl-stk (l),
add-addr (pc, 1))

Theorem: p-good-resultp-run-nlistp
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call nlistp)))
→ p-good-resultp (p (p-set-pc (lr->p (l), pc),

p-nlistp-clock (p-set-pc (lr->p (l), pc))),
p-data-segment (l),
if fetch (car (p-temp-stk (l)), p-data-segment (l))

76



= tag (’nat, lr-cons-tag)
then cons (lr-f-addr, cdr (p-temp-stk (l)))
else cons (lr-t-addr, cdr (p-temp-stk (l))) endif,
p-ctrl-stk (l),
add-addr (pc, 1))

Theorem: p-good-resultp-run-truep
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call truep)))
→ p-good-resultp (p (p-set-pc (lr->p (l), pc),

p-truep-clock (p-set-pc (lr->p (l), pc))),
p-data-segment (l),
if fetch (car (p-temp-stk (l)), p-data-segment (l))

= tag (’nat, lr-true-tag)
then cons (lr-t-addr, cdr (p-temp-stk (l)))
else cons (lr-f-addr, cdr (p-temp-stk (l))) endif,
p-ctrl-stk (l),
add-addr (pc, 1))

Event: Disable proper-p-statep-bad-type-1.

Theorem: p-good-resultp-run-cons
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call cons)))
→ p-good-resultp (p (p-set-pc (lr->p (l), pc),

p-cons-clock (p-set-pc (lr->p (l), pc))),
deposit (fetch (add-addr (fetch (lr-fp-addr,

p-data-segment (l)),
lr-ref-count-offset),

p-data-segment (l)),
lr-fp-addr,
deposit-a-list (list (tag (’nat, lr-cons-tag),

tag (’nat, 1),
top1 (p-temp-stk (l)),

77



top (p-temp-stk (l))),
fetch (lr-fp-addr,

p-data-segment (l)),
p-data-segment (l))),

cons (fetch (lr-fp-addr, p-data-segment (l)),
cddr (p-temp-stk (l))),

p-ctrl-stk (l),
add-addr (pc, 1))

Theorem: p-objectp-bad-type
(object 6= list (type (object), untag (object))) → (¬ p-objectp (object , p))

Theorem: proper-p-statep-bad-type-2
((car (p-temp-stk (l))
6= list (type (car (p-temp-stk (l))), untag (car (p-temp-stk (l)))))
∧ listp (p-temp-stk (l)))
→ (¬ proper-p-statep (lr->p (l)))

Theorem: p-good-resultp-run-falsep
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call falsep)))
→ p-good-resultp (p (p-set-pc (lr->p (l), pc),

p-falsep-clock (p-set-pc (lr->p (l), pc))),
p-data-segment (l),
if car (p-temp-stk (l)) = lr-f-addr
then cons (lr-t-addr, cdr (p-temp-stk (l)))
else cons (lr-f-addr, cdr (p-temp-stk (l))) endif,
p-ctrl-stk (l),
add-addr (pc, 1))

Event: Disable proper-p-statep-bad-type-2.

Theorem: p-good-resultp-run-false
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

78



= ’(call false)))
→ p-good-resultp (p (p-set-pc (lr->p (l), pc),

p-false-clock (p-set-pc (lr->p (l), pc))),
p-data-segment (l),
cons (lr-f-addr, p-temp-stk (l)),
p-ctrl-stk (l),
add-addr (pc, 1))

Theorem: p-good-resultp-run-true
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call true)))
→ p-good-resultp (p (p-set-pc (lr->p (l), pc),

p-true-clock (p-set-pc (lr->p (l), pc))),
p-data-segment (l),
cons (lr-t-addr, p-temp-stk (l)),
p-ctrl-stk (l),
add-addr (pc, 1))

Theorem: p-temp-stk-p-ctrl-stk-p-data-segment-run-car
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-car-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call car)))
→ ((p-temp-stk (p (p-set-pc (lr->p (l), pc),

p-car-clock (p-set-pc (lr->p (l), pc))))
= if fetch (top (p-temp-stk (l)), p-data-segment (l))

= tag (’nat, lr-cons-tag)
then cons (fetch (add-addr (top (p-temp-stk (l)), lr-car-offset),

p-data-segment (l)),
cdr (p-temp-stk (l)))

else cons (lr-0-addr, cdr (p-temp-stk (l))) endif)
∧ (p-ctrl-stk (p (p-set-pc (lr->p (l), pc),

p-car-clock (p-set-pc (lr->p (l), pc))))
= p-ctrl-stk (l))

79



∧ (p-data-segment (p (p-set-pc (lr->p (l), pc),
p-car-clock (p-set-pc (lr->p (l), pc))))

= p-data-segment (l)))

Theorem: p-temp-stk-p-ctrl-stk-p-data-segment-run-cdr
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-cdr-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call cdr)))
→ ((p-temp-stk (p (p-set-pc (lr->p (l), pc),

p-cdr-clock (p-set-pc (lr->p (l), pc))))
= if fetch (top (p-temp-stk (l)), p-data-segment (l))

= tag (’nat, lr-cons-tag)
then cons (fetch (add-addr (top (p-temp-stk (l)), lr-cdr-offset),

p-data-segment (l)),
cdr (p-temp-stk (l)))

else cons (lr-0-addr, cdr (p-temp-stk (l))) endif)
∧ (p-ctrl-stk (p (p-set-pc (lr->p (l), pc),

p-cdr-clock (p-set-pc (lr->p (l), pc))))
= p-ctrl-stk (l))

∧ (p-data-segment (p (p-set-pc (lr->p (l), pc),
p-cdr-clock (p-set-pc (lr->p (l), pc))))

= p-data-segment (l)))

Theorem: p-temp-stk-p-ctrl-stk-p-data-segment-run-cons
let fp-addr be fetch (lr-fp-addr, p-data-segment (l))
in
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc),

p-cons-clock (p-set-pc (lr->p (l), pc))))
= ’run)

∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call cons)))
→ ((p-temp-stk (p (p-set-pc (lr->p (l), pc),

p-cons-clock (p-set-pc (lr->p (l), pc))))

80



= cons (fetch (lr-fp-addr, p-data-segment (l)),
cddr (p-temp-stk (l))))

∧ (p-ctrl-stk (p (p-set-pc (lr->p (l), pc),
p-cons-clock (p-set-pc (lr->p (l), pc))))

= p-ctrl-stk (l))
∧ (p-data-segment (p (p-set-pc (lr->p (l), pc),

p-cons-clock (p-set-pc (lr->p (l), pc))))
= deposit (fetch (add-addr (fetch (lr-fp-addr,

p-data-segment (l)),
lr-ref-count-offset),

p-data-segment (l)),
lr-fp-addr,
deposit-a-list (list (tag (’nat,

lr-cons-tag),
tag (’nat, 1),
top1 (p-temp-stk (l)),
top (p-temp-stk (l))),

fetch (lr-fp-addr,
p-data-segment (l)),

p-data-segment (l))))) endlet

Theorem: p-temp-stk-p-ctrl-stk-p-data-segment-run-false
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-false-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call false)))
→ ((p-temp-stk (p (p-set-pc (lr->p (l), pc),

p-false-clock (p-set-pc (lr->p (l), pc))))
= cons (lr-f-addr, p-temp-stk (l)))
∧ (p-ctrl-stk (p (p-set-pc (lr->p (l), pc),

p-false-clock (p-set-pc (lr->p (l), pc))))
= p-ctrl-stk (l))

∧ (p-data-segment (p (p-set-pc (lr->p (l), pc),
p-false-clock (p-set-pc (lr->p (l), pc))))

= p-data-segment (l)))

Theorem: p-temp-stk-p-ctrl-stk-p-data-segment-run-falsep
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)

81



∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-falsep-clock (p-set-pc (lr->p (l), pc))))
= ’run)

∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call falsep)))
→ ((p-temp-stk (p (p-set-pc (lr->p (l), pc),

p-falsep-clock (p-set-pc (lr->p (l), pc))))
= if car (p-temp-stk (l)) = lr-f-addr

then cons (lr-t-addr, cdr (p-temp-stk (l)))
else cons (lr-f-addr, cdr (p-temp-stk (l))) endif)

∧ (p-ctrl-stk (p (p-set-pc (lr->p (l), pc),
p-falsep-clock (p-set-pc (lr->p (l), pc))))

= p-ctrl-stk (l))
∧ (p-data-segment (p (p-set-pc (lr->p (l), pc),

p-falsep-clock (p-set-pc (lr->p (l), pc))))
= p-data-segment (l)))

Theorem: p-temp-stk-p-ctrl-stk-p-data-segment-run-listp
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-listp-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call listp)))
→ ((p-temp-stk (p (p-set-pc (lr->p (l), pc),

p-listp-clock (p-set-pc (lr->p (l), pc))))
= if fetch (car (p-temp-stk (l)), p-data-segment (l))

= tag (’nat, lr-cons-tag)
then cons (lr-t-addr, cdr (p-temp-stk (l)))
else cons (lr-f-addr, cdr (p-temp-stk (l))) endif)

∧ (p-ctrl-stk (p (p-set-pc (lr->p (l), pc),
p-listp-clock (p-set-pc (lr->p (l), pc))))

= p-ctrl-stk (l))
∧ (p-data-segment (p (p-set-pc (lr->p (l), pc),

p-listp-clock (p-set-pc (lr->p (l), pc))))
= p-data-segment (l)))

Theorem: p-temp-stk-p-ctrl-stk-p-data-segment-run-nlistp
(proper-p-statep (lr->p (l))

82



∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-nlistp-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call nlistp)))
→ ((p-temp-stk (p (p-set-pc (lr->p (l), pc),

p-nlistp-clock (p-set-pc (lr->p (l), pc))))
= if fetch (car (p-temp-stk (l)), p-data-segment (l))

= tag (’nat, lr-cons-tag)
then cons (lr-f-addr, cdr (p-temp-stk (l)))
else cons (lr-t-addr, cdr (p-temp-stk (l))) endif)

∧ (p-ctrl-stk (p (p-set-pc (lr->p (l), pc),
p-nlistp-clock (p-set-pc (lr->p (l), pc))))

= p-ctrl-stk (l))
∧ (p-data-segment (p (p-set-pc (lr->p (l), pc),

p-nlistp-clock (p-set-pc (lr->p (l), pc))))
= p-data-segment (l)))

Theorem: p-temp-stk-p-ctrl-stk-p-data-segment-run-true
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-true-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call true)))
→ ((p-temp-stk (p (p-set-pc (lr->p (l), pc),

p-true-clock (p-set-pc (lr->p (l), pc))))
= cons (lr-t-addr, p-temp-stk (l)))
∧ (p-ctrl-stk (p (p-set-pc (lr->p (l), pc),

p-true-clock (p-set-pc (lr->p (l), pc))))
= p-ctrl-stk (l))

∧ (p-data-segment (p (p-set-pc (lr->p (l), pc),
p-true-clock (p-set-pc (lr->p (l), pc))))

= p-data-segment (l)))

Theorem: p-temp-stk-p-ctrl-stk-p-data-segment-run-truep
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)

83



∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-truep-clock (p-set-pc (lr->p (l), pc))))
= ’run)

∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call truep)))
→ ((p-temp-stk (p (p-set-pc (lr->p (l), pc),

p-truep-clock (p-set-pc (lr->p (l), pc))))
= if fetch (car (p-temp-stk (l)), p-data-segment (l))

= tag (’nat, lr-true-tag)
then cons (lr-t-addr, cdr (p-temp-stk (l)))
else cons (lr-f-addr, cdr (p-temp-stk (l))) endif)

∧ (p-ctrl-stk (p (p-set-pc (lr->p (l), pc),
p-truep-clock (p-set-pc (lr->p (l), pc))))

= p-ctrl-stk (l))
∧ (p-data-segment (p (p-set-pc (lr->p (l), pc),

p-truep-clock (p-set-pc (lr->p (l), pc))))
= p-data-segment (l)))

Theorem: get-last-funcall-cur-expr
(listp (expr)
∧ (car (expr) 6= ’if)
∧ (car (expr) 6= s-temp-eval)
∧ (car (expr) 6= s-temp-test)
∧ (car (expr) 6= s-temp-fetch)
∧ (car (expr) 6= ’quote))
→ (get (lr-p-c-size-list (length (expr) − 1, expr), comp-body-1 (t, expr , n))

= if definedp (car (expr), p-runtime-support-programs)
then list (’call, car (expr))
else list (’call, user-fname (car (expr))) endif)

Theorem: not-listp-p-prog-segment-lr-expr
(¬ listp (p-prog-segment (l))) → (¬ listp (lr-expr (l)))

Theorem: get-offset-return-pc-program-body-assoc-comp-programs
(good-posp1 (offset (p-pc (l)),

program-body (assoc (area-name (p-pc (l)), p-prog-segment (l))))
∧ lr-programs-properp (l , table)
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= s-temp-eval)
∧ (car (lr-expr (l)) 6= s-temp-test)
∧ (car (lr-expr (l)) 6= s-temp-fetch)
∧ (car (lr-expr (l)) 6= ’quote)
∧ listp (lr-expr (l)))

84



→ (get (offset (lr-return-pc (l)),
program-body (assoc (area-name (p-pc (l)),

comp-programs (p-prog-segment (l)))))
= list (’dl,

lr-make-label (offset (lr-return-pc (l))),
nil,
if definedp (car (lr-expr (l)), p-runtime-support-programs)
then list (’call, car (lr-expr (l)))
else list (’call, user-fname (car (lr-expr (l)))) endif))

Theorem: listp-p-temp-stk-proper-ctrl-stk-p-run-subr
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (new-l , table)
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= ’run)

∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ (listp (p-temp-stk (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l)))))
∧ (p-ctrl-stk (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= p-ctrl-stk (new-l)))

Theorem: listp-p-temp-stk-proper-ctrl-stk-lr-apply-subr
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-programs-properp (new-l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ (listp (p-temp-stk (lr-apply-subr (l , new-l)))

∧ (p-ctrl-stk (lr-apply-subr (l , new-l)) = p-ctrl-stk (new-l)))

Theorem: cur-expr-nlistp-pos
(pos ' nil) → (cur-expr (pos, body) = body)

Theorem: proper-p-statep-p-run-subr
(proper-p-statep (p) ∧ (p-psw (p-run-subr (subr , p)) = ’run))
→ proper-p-statep (p-run-subr (subr , p))

85



Theorem: same-signature-commutative
same-signature (x , y) = same-signature (y , x )

Theorem: same-signature-p-run-subr
(proper-p-statep (p)
∧ (p-psw (p-run-subr (subr , p)) = ’run)
∧ (data-seg = p-data-segment (p)))
→ same-signature (data-seg , p-data-segment (p-run-subr (subr , p)))

Theorem: proper-p-framep-lr->p-similar-states
(proper-p-framep (frame, name, p0 )
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ (p-word-size (p0 ) = p-word-size (p1 )))
→ proper-p-framep (frame, name, p1 )

Theorem: car-untag-p-pc-lr-eval
car (untag (p-pc (lr-eval (flag , l , c)))) = car (untag (p-pc (l)))

Theorem: lessp-cdr-untag-lr-return-pc-lr-p-c-size
(good-posp1 (offset (p-pc (l)),

program-body (assoc (car (untag (p-pc (l))), p-prog-segment (l))))
∧ lr-programs-properp (l , table)
∧ (subrp (car (lr-expr (l))) ∨ litatom (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ (name = area-name (p-pc (l))))
→ (cdr (untag (lr-return-pc (l)))

< length (program-body (assoc (name,
comp-programs (p-prog-segment (l))))))

Theorem: proper-p-statep-lr-apply-subr-state
(proper-p-statep (lr->p (new-l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l))))
→ proper-p-statep (p-set-pc (lr->p (new-l), lr-return-pc (l)))

Theorem: same-signature-lr-apply-subr
(proper-p-statep (lr->p (new-l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))

86



∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ (data-seg = p-data-segment (new-l)))
→ same-signature (data-seg , p-data-segment (lr-apply-subr (l , new-l)))

Theorem: p-current-program-lr-apply-subr
((area-name (p-pc (new-l)) = area-name (p-pc (l)))
∧ (p-prog-segment (new-l) = p-prog-segment (l)))
→ (p-current-program (lr-apply-subr (l , new-l)) = p-current-program (l))

Theorem: p-current-program-lr-eval
p-current-program (lr-eval (flag , l , c)) = p-current-program (l)

Theorem: proper-p-framep-lr-apply-subr
(proper-p-statep (lr->p (new-l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ (name = area-name (p-pc (new-l))))
→ proper-p-framep (car (p-ctrl-stk (new-l)),

name,
lr->p (lr-apply-subr (l , new-l)))

Theorem: proper-p-statep-lr->p-lessp-ctrl-stk-size
(proper-p-statep (lr->p (l)) ∧ (max = p-max-ctrl-stk-size (l)))
→ ((max < p-ctrl-stk-size (p-ctrl-stk (l))) = f)

Event: Disable proper-p-statep-lr->p-lessp-ctrl-stk-size.

Theorem: proper-p-statep-lr->p-numberp-max-ctrl-stk-size
proper-p-statep (lr->p (l)) → (p-max-ctrl-stk-size (l) ∈ N)

Event: Disable proper-p-statep-lr->p-numberp-max-ctrl-stk-size.

87



Theorem: proper-p-statep-lr->p-numberp-max-temp-stk-size
proper-p-statep (lr->p (l)) → (p-max-temp-stk-size (l) ∈ N)

Event: Disable proper-p-statep-lr->p-numberp-max-temp-stk-size.

Theorem: proper-p-statep-lr->p-numberp-word-size
proper-p-statep (lr->p (l)) → (p-word-size (l) ∈ N)

Event: Disable proper-p-statep-lr->p-numberp-word-size.

Theorem: proper-p-statep-lr->p-lessp-max-ctrl-stk-size
proper-p-statep (lr->p (l))
→ ((p-max-ctrl-stk-size (l) < exp (2, p-word-size (l))) = t)

Event: Disable proper-p-statep-lr->p-lessp-max-ctrl-stk-size.

Theorem: proper-p-statep-lr->p-lessp-max-temp-stk-size
proper-p-statep (lr->p (l))
→ ((p-max-temp-stk-size (l) < exp (2, p-word-size (l))) = t)

Event: Disable proper-p-statep-lr->p-lessp-max-temp-stk-size.

Theorem: proper-p-statep-lr->p-equal-word-size-0
proper-p-statep (lr->p (l)) → (p-word-size (l) 6= 0)

Event: Disable proper-p-statep-lr->p-equal-word-size-0.

Theorem: proper-p-ctrl-stkp-lr-apply-subr
(proper-p-statep (lr->p (new-l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run))
→ proper-p-ctrl-stkp (cdr (p-ctrl-stk (new-l)),

area-name (ret-pc (car (p-ctrl-stk (new-l)))),
lr->p (lr-apply-subr (l , new-l)))

Theorem: proper-p-prog-segmentp-lr-apply-subr
(proper-p-statep (lr->p (new-l))

88



∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ (progs = p-prog-segment (new-l)))
→ proper-p-prog-segmentp (comp-programs (progs),

lr->p (lr-apply-subr (l , new-l)))

Theorem: proper-p-state-p-p-run-subr-opener-1
(proper-p-statep (p) ∧ (p-psw (p-run-subr (subr , p)) = ’run))
→ proper-p-temp-stkp (p-temp-stk (p-run-subr (subr , p)), p-run-subr (subr , p))

Theorem: proper-p-temp-stkp-lr-apply-subr
(proper-p-statep (lr->p (new-l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run))
→ proper-p-temp-stkp (p-temp-stk (lr-apply-subr (l , new-l)),

lr->p (lr-apply-subr (l , new-l)))

Theorem: proper-p-state-p-p-run-subr-opener-2
(proper-p-statep (p) ∧ (p-psw (p-run-subr (subr , p)) = ’run))
→ (p-max-temp-stk-size (p) 6< length (p-temp-stk (p-run-subr (subr , p))))

Theorem: not-lessp-length-p-temp-stk-lr-apply-subr
(proper-p-statep (lr->p (new-l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ (p-max-temp-stk-size (l) = p-max-temp-stk-size (new-l)))
→ (p-max-temp-stk-size (l)

6< length (p-temp-stk (lr-apply-subr (l , new-l))))

89



Theorem: proper-p-state-p-p-run-subr-opener-3
(proper-p-statep (p) ∧ (p-psw (p-run-subr (subr , p)) = ’run))
→ proper-p-data-segmentp (p-data-segment (p-run-subr (subr , p)),

p-run-subr (subr , p))

Theorem: proper-p-data-segmentp-lr-apply-subr
(proper-p-statep (lr->p (new-l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run))
→ proper-p-data-segmentp (p-data-segment (lr-apply-subr (l , new-l)),

lr->p (lr-apply-subr (l , new-l)))

Theorem: lr-programs-properp-lr-set-pos
lr-programs-properp (lr-set-pos (l , pos), table)
= lr-programs-properp (l , table)

Theorem: proper-p-statep-lr-apply-subr
(listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ proper-p-statep (lr->p (l))
∧ proper-p-statep (lr->p (lr-eval (’list, lr-set-pos (l , pos), c)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ (p-psw (lr-apply-subr (l , lr-eval (’list, lr-set-pos (l , pos), c)))

= ’run))
→ proper-p-statep (lr->p (lr-apply-subr (l ,

lr-eval (’list,
lr-set-pos (l , pos),
c))))

Theorem: cdr-untag-lr-p-pc-lr-funcall
(p-psw (lr-funcall (l , new-l)) = ’run)
→ (cdr (untag (lr-p-pc (lr-funcall (l , new-l)))) = 0)

Theorem: listp-p-ctrl-stk-lr-funcall
listp (p-ctrl-stk (new-l)) → listp (p-ctrl-stk (lr-funcall (l , new-l)))

90



Theorem: proper-p-framep-top-p-ctrl-stk-lr-funcall
(p-psw (lr-funcall (l , new-l)) = ’run)
→ (listp (car (p-ctrl-stk (lr-funcall (l , new-l))))

∧ listp (cdr (car (p-ctrl-stk (lr-funcall (l , new-l)))))
∧ (cddr (car (p-ctrl-stk (lr-funcall (l , new-l)))) = nil)
∧ (ret-pc (car (p-ctrl-stk (lr-funcall (l , new-l))))

= add-addr (lr-return-pc (l), 1)))

Theorem: car-untag-p-pc-lr-funcall
(p-psw (lr-funcall (l , new-l)) = ’run)
→ (car (untag (p-pc (lr-funcall (l , new-l))))

= user-fname (car (lr-expr (l))))

Theorem: area-name-p-pc-lr-funcall
(p-psw (lr-funcall (l , new-l)) = ’run)
→ (area-name (p-pc (lr-funcall (l , new-l))) = user-fname (car (lr-expr (l))))

Theorem: strip-cars-bindings-top-p-ctrl-stk-lr-funcall
(p-psw (lr-funcall (l , new-l)) = ’run)
→ (strip-cars (bindings (car (p-ctrl-stk (lr-funcall (l , new-l)))))

= append (formal-vars (assoc (user-fname (car (lr-expr (l))),
p-prog-segment (l))),

strip-cars (temp-var-dcls (assoc (user-fname (car (lr-expr (l))),
p-prog-segment (l))))))

Theorem: formal-vars-assoc-comp-programs-lr-programs-properp
(definedp (name, cdr (p-prog-segment (l))) ∧ lr-programs-properp (l , table))
→ (formal-vars (assoc (name, comp-programs (p-prog-segment (l))))

= formal-vars (assoc (name, p-prog-segment (l))))

Theorem: temp-var-dcls-assoc-comp-programs-lr-programs-properp
(definedp (name, cdr (p-prog-segment (l))) ∧ lr-programs-properp (l , table))
→ (temp-var-dcls (assoc (name, comp-programs (p-prog-segment (l))))

= temp-var-dcls (assoc (name, p-prog-segment (l))))

Theorem: definedp-comp-programs-definedp-lr-programs-properp
(definedp (name, cdr (p-prog-segment (l))) ∧ lr-programs-properp (l , table))
→ definedp (name, comp-programs (p-prog-segment (l)))

Theorem: definedp-lr-funcall-prog-segment
(listp (lr-expr (l))
∧ (¬ subrp (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’quote)
∧ litatom (car (lr-expr (l)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))

91



∧ lr-programs-properp (l , table)
∧ (progs = cdr (p-prog-segment (l))))
→ definedp (user-fname (car (lr-expr (l))), progs)

Theorem: pop-p-ctrl-stk-lr-funcall
(p-psw (lr-funcall (l , new-l)) = ’run)
→ (cdr (p-ctrl-stk (lr-funcall (l , new-l))) = p-ctrl-stk (new-l))

Theorem: proper-p-alistp-lr-funcall
(lr-programs-properp (l , table)
∧ definedp (user-fname (car (lr-expr (l))), cdr (p-prog-segment (new-l)))
∧ proper-p-prog-segmentp (comp-programs (p-prog-segment (new-l)),

lr->p (new-l))
∧ proper-p-temp-stkp (p-temp-stk (new-l), lr->p (new-l))
∧ (p-psw (lr-funcall (l , new-l)) = ’run)
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ proper-p-alistp (bindings (car (p-ctrl-stk (lr-funcall (l , new-l)))),

lr->p (lr-funcall (l , new-l)))

Theorem: proper-p-ctrl-stkp-lr-funcall
(proper-p-ctrl-stkp (cdr (ctrl-stk),

area-name (ret-pc (car (ctrl-stk))),
lr->p (new-l))

∧ proper-p-framep (top (ctrl-stk), name, lr->p (new-l))
∧ listp (ctrl-stk))
→ proper-p-ctrl-stkp (ctrl-stk , name, lr->p (lr-funcall (l , new-l)))

Theorem: not-lessp-p-max-ctrl-stk-size-lr-funcall
(listp (lr-expr (l))
∧ (¬ subrp (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’quote)
∧ litatom (car (lr-expr (l)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-funcall (l , new-l)) = ’run)
∧ (p-max-ctrl-stk-size (l) = p-max-ctrl-stk-size (new-l))
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ (p-max-ctrl-stk-size (l)

6< p-ctrl-stk-size (p-ctrl-stk (lr-funcall (l , new-l))))

Theorem: offset-p-pc-lr-funcall
(p-psw (lr-funcall (l , new-l)) = ’run)
→ (offset (p-pc (lr-funcall (l , new-l))) = nil)

Theorem: lr-eval-t-lr-funcall-p-psw-run
(p-psw (lr-eval (t, lr-funcall (l , new-l), c)) = ’run)
→ (p-psw (lr-funcall (l , new-l)) = ’run)

92



Theorem: proper-p-temp-stkp-lr-funcall
(listp (lr-expr (l))
∧ (¬ subrp (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’quote)
∧ litatom (car (lr-expr (l)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-funcall (l , new-l)) = ’run)
∧ proper-p-temp-stkp (p-temp-stk (new-l), lr->p (new-l))
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ proper-p-temp-stkp (p-temp-stk (lr-funcall (l , new-l)),

lr->p (lr-funcall (l , new-l)))

Theorem: popn-nlistp
(¬ listp (x )) → (¬ listp (popn (n, x )))

Theorem: length-popn-lessp-fact
length (list) 6< length (popn (n, list))

Event: Disable popn-nlistp.

Theorem: not-lessp-p-max-temp-stk-size-lr-funcall
((p-max-temp-stk-size (l) 6< length (p-temp-stk (new-l)))
∧ (p-max-temp-stk-size (l) = p-max-temp-stk-size (new-l)))
→ (p-max-temp-stk-size (l) 6< length (p-temp-stk (lr-funcall (l , new-l))))

Theorem: listp-label-instrs
listp (label-instrs (list , n)) = listp (list)

Theorem: listp-comp-body
listp (comp-body (body))

Theorem: lessp-offset-lr-return-pc-lr-p-c-size-good-posp
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (subrp (car (lr-expr (l))) ∨ litatom (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote))
→ ((1 + offset (lr-return-pc (l)))

< length (program-body (assoc (area-name (p-pc (l)),
comp-programs (p-prog-segment (l))))))

Theorem: proper-p-statep-lr-funcall
(proper-p-statep (lr->p (lr-eval (’list, lr-set-pos (l , pos), c)))
∧ listp (lr-expr (l))

93



∧ (¬ subrp (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’quote)
∧ (car (lr-expr (l)) 6= ’if)
∧ litatom (car (lr-expr (l)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ (p-psw (lr-funcall (l , lr-eval (’list, lr-set-pos (l , pos), c))) = ’run))
→ proper-p-statep (lr->p (lr-funcall (l ,

lr-eval (’list, lr-set-pos (l , pos), c))))

Theorem: proper-p-statep-lr-set-expr-lr-pop-cstk
let l2 be lr-eval (t, lr-funcall (l , new-l), c − 1)
in
(definedp (area-name (p-pc (l)), p-prog-segment (l))
∧ (cdr (p-ctrl-stk (l2 )) = p-ctrl-stk (new-l))
∧ (cdr (p-ctrl-stk (new-l)) = cdr (p-ctrl-stk (l)))
∧ (strip-cars (bindings (car (p-ctrl-stk (new-l))))

= strip-cars (bindings (car (p-ctrl-stk (l)))))
∧ proper-p-statep (lr->p (l2 ))
∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (l2 ) = ’run)
∧ same-signature (p-data-segment (new-l), p-data-segment (l2 ))
∧ (p-prog-segment (new-l) = p-prog-segment (l))
∧ (area-name (p-pc (new-l)) = area-name (p-pc (l)))
∧ (pos = offset (p-pc (l))))
→ proper-p-statep (lr->p (lr-set-expr (lr-pop-cstk (l2 ), l , pos))) endlet

Theorem: p-psw-lr-eval-flag-list-flag-t
((p-psw (lr-eval (’list, lr-set-expr (lr-eval (t, l , c), l , pos), c)) = ’run)
∧ listp (offset (p-pc (l)))
∧ listp (lr-expr-list (l)))
→ (p-psw (lr-eval (t, l , c)) = ’run)

Theorem: lr-programs-properp-lr-set-expr
lr-programs-properp (lr-set-expr (l1 , l2 , pos), table)
= lr-programs-properp (l2 , table)

Theorem: lr-programs-properp-lr-pop-tstk
lr-programs-properp (lr-pop-tstk (l), table) = lr-programs-properp (l , table)

Theorem: lr-programs-properp-lr-funcall
(listp (lr-expr (l))
∧ (¬ subrp (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’quote)

94



∧ litatom (car (lr-expr (l)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ lr-programs-properp (lr-funcall (l , lr-eval (’list, lr-set-pos (l , pos), c)),

table)

Theorem: proper-p-statep-lr->p-lr-set-expr
(lr-programs-properp (l2 , table)
∧ lr-programs-properp (l1 , table)
∧ proper-p-statep (lr->p (l2 ))
∧ proper-p-statep (lr->p (l1 ))
∧ (cdr (p-ctrl-stk (l1 )) = cdr (p-ctrl-stk (l2 )))
∧ (strip-cars (bindings (car (p-ctrl-stk (l1 ))))

= strip-cars (bindings (car (p-ctrl-stk (l2 )))))
∧ (p-prog-segment (l1 ) = p-prog-segment (l2 ))
∧ (p-word-size (l1 ) = p-word-size (l2 ))
∧ (p-max-ctrl-stk-size (l1 ) = p-max-ctrl-stk-size (l2 ))
∧ (p-max-temp-stk-size (l1 ) = p-max-temp-stk-size (l2 )))
→ proper-p-statep (lr->p (lr-set-expr (l1 , l2 , pos)))

Theorem: lr-programs-properp-lr-if-ok
lr-programs-properp (lr-if-ok (l), table) = lr-programs-properp (l , table)

Theorem: proper-p-statep-lr-if-ok
proper-p-statep (lr->p (lr-if-ok (l))) = proper-p-statep (lr->p (l))

Theorem: lr-eval-preserves-proper-p-statep-lr->p
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (proper-p-statep (lr->p (lr-eval (flag , l , c)))

∧ (strip-cars (bindings (car (p-ctrl-stk (lr-eval (flag , l , c)))))
= strip-cars (bindings (car (p-ctrl-stk (l)))))

∧ (cdr (p-ctrl-stk (lr-eval (flag , l , c))) = cdr (p-ctrl-stk (l)))
∧ ((flag = ’list) ∨ listp (p-temp-stk (lr-eval (flag , l , c))))
∧ same-signature (p-data-segment (l),

p-data-segment (lr-eval (flag , l , c))))

Theorem: lr-params-lr-eval
lr-params (frame, lr-eval (flag , l , c)) = lr-params (frame, l)

Theorem: lr-temps-lr-eval
lr-temps (frame, lr-eval (flag , l , c)) = lr-temps (frame, l)

95



;; Later LR-FREE-LIST-NODES will filter out those nodes that are
;; part of for example pack’s or user-defined types that are larger than one
;; node (i.e. have more than two accessors).

Definition:
lr-free-list-nodes (addr , data-seg)
= if offset (addr) < lr-node-size then nil

else let sub-addr be sub-addr (addr , lr-node-size)
in
if type (fetch (add-addr (sub-addr , lr-ref-count-offset),

data-seg))
= ’addr

then cons (sub-addr ,
lr-free-list-nodes (sub-addr , data-seg))

else lr-free-list-nodes (sub-addr , data-seg) endif endlet endif

Theorem: length-delete-member
(addr ∈ node-list)
→ (length (delete (addr , node-list)) = (length (node-list) − 1))

;; Returns smallest address such that the address is too large to be
;; a pointer to a node in DATA-SEG.

Definition:
lr-max-node (data-seg)
= tag (’addr,

cons (lr-heap-name, length (value (lr-heap-name, data-seg)) − 1))

Definition:
lr-check-free-nodes (addr , node-list , data-seg , max-addr)
= if addr ∈ node-list

then lr-check-free-nodes (fetch (add-addr (addr , lr-ref-count-offset),
data-seg),

delete (addr , node-list),
data-seg ,
max-addr)

else addr = max-addr endif

Definition:
lr-proper-free-listp (data-seg)
= (adpp (untag (lr-fp-addr), data-seg)

∧ lr-check-free-nodes (lr-fetch-fp (data-seg),
lr-free-list-nodes (lr-max-node (data-seg),

data-seg),
data-seg ,
lr-max-node (data-seg)))

96



Event: Disable lr-proper-free-listp.

Definition:
lr-check-f-addrp (addr , data-seg) = (addr = lr-f-addr)

Event: Disable lr-check-f-addrp.

Definition:
lr-check-undef-addrp (addr , data-seg) = (addr = lr-undef-addr)

Event: Disable lr-check-undef-addrp.

Definition:
lr-check-numberp-addrp (addr , data-seg)
= ((type (fetch (add-addr (addr , lr-unbox-nat-offset), data-seg)) = ’nat)

∧ lr-good-pointerp (fetch (add-addr (addr , 3), data-seg), data-seg)
∧ (untag (fetch (add-addr (addr , lr-unbox-nat-offset), data-seg)) ∈ N))

Event: Disable lr-check-numberp-addrp.

Definition:
lr-check-listp-addrp (addr , data-seg)
= (lr-good-pointerp (fetch (add-addr (addr , lr-car-offset), data-seg),

data-seg)
∧ lr-good-pointerp (fetch (add-addr (addr , lr-cdr-offset), data-seg),

data-seg))

Event: Disable lr-check-listp-addrp.

Definition:
lr-proper-heapp-nodep (addr , data-seg)
= if ¬ lr-nodep (addr , data-seg) then f

elseif type (fetch (add-addr (addr , lr-ref-count-offset), data-seg))
= ’addr

then offset (addr) 6< (lr-node-size + offset (lr-f-addr))
elseif type (fetch (add-addr (addr , lr-ref-count-offset), data-seg))

6= ’nat then f
elseif type (fetch (addr , data-seg)) 6= ’nat then f
elseif untag (fetch (addr , data-seg)) = lr-undefined-tag
then lr-check-undef-addrp (addr , data-seg)
elseif untag (fetch (addr , data-seg)) = lr-false-tag
then lr-check-f-addrp (addr , data-seg)

97



elseif offset (addr) < offset (lr-t-addr) then f
elseif untag (fetch (addr , data-seg)) = lr-true-tag then t
elseif untag (fetch (addr , data-seg)) = lr-add1-tag
then lr-check-numberp-addrp (addr , data-seg)
elseif untag (fetch (addr , data-seg)) = lr-cons-tag
then lr-check-listp-addrp (addr , data-seg)
else f endif

Event: Disable lr-proper-heapp-nodep.

Definition:
lr-proper-heapp2 (addr , data-seg)
= if offset (addr) < lr-node-size then t

else let sub-addr be sub-addr (addr , lr-node-size)
in
lr-proper-heapp-nodep (sub-addr , data-seg)
∧ lr-proper-heapp2 (sub-addr , data-seg) endlet endif

Definition:
lr-valp (value, addr , data-seg)
= if lr-good-pointerp (addr , data-seg)

then let tag be untag (fetch (addr , data-seg))
in
if listp (value)
then (tag = lr-cons-tag)

∧ lr-valp (car (value),
fetch (add-addr (addr , lr-car-offset),

data-seg),
data-seg)

∧ lr-valp (cdr (value),
fetch (add-addr (addr , lr-cdr-offset),

data-seg),
data-seg)

elseif truep (value) then tag = lr-true-tag
elseif falsep (value) then tag = lr-false-tag
elseif value ∈ N
then (tag = lr-add1-tag)

∧ (value = untag (fetch (add-addr (addr ,
lr-unbox-nat-offset),

data-seg)))
else f endif endlet

else f endif

Definition:

98



lr-proper-heapp1 (addr , data-seg)
= (lr-proper-heapp2 (addr , data-seg)

∧ lr-valp (t, lr-t-addr, data-seg)
∧ lr-valp (0, lr-0-addr, data-seg))

Event: Disable lr-proper-heapp1.

;; This is the minimum heap that allows all the predefineds to be defined.

Definition:
lr-minimum-heapp (data-seg)
= (adpp (untag (lr-undef-addr), data-seg)

∧ adpp (untag (lr-f-addr), data-seg)
∧ adpp (untag (lr-t-addr), data-seg)
∧ adpp (untag (lr-0-addr), data-seg)
∧ adpp (untag (add-addr (lr-0-addr, lr-node-size)), data-seg))

Event: Disable lr-minimum-heapp.

;; This needs to be augmented to test that the word-size is big enough to
;; hold piton tags.

Definition:
lr-proper-heapp (data-seg)
= (lr-minimum-heapp (data-seg)

∧ lr-nodep (lr-max-node (data-seg), data-seg)
∧ lr-proper-free-listp (data-seg)
∧ lr-proper-heapp1 (lr-max-node (data-seg), data-seg))

Event: Disable lr-proper-heapp.

Definition:
lr-check-result1 (value, temp-stk , data-seg)
= if listp (value)

then lr-valp (car (value), top (temp-stk), data-seg)
∧ lr-check-result1 (cdr (value), pop (temp-stk), data-seg)

else t endif

Definition:
lr-check-result (flag , value, temp-stk , data-seg , orig-temp-stk)
= ((orig-temp-stk = if flag = ’list

then restn (length (value), temp-stk)
else cdr (temp-stk) endif)

∧ if flag = ’list

99



then lr-check-result1 (reverse (value), temp-stk , data-seg)
else lr-valp (value, top (temp-stk), data-seg) endif

∧ lr-proper-heapp (data-seg))

Event: Disable lr-check-result.

Definition:
lr-s-similar-params (s-params , lr-params, data-seg)
= if listp (s-params)

then if listp (lr-params)
then (caar (s-params) = caar (lr-params))

∧ lr-valp (cdar (s-params), cdar (lr-params), data-seg)
∧ lr-s-similar-params (cdr (s-params),

cdr (lr-params),
data-seg)

else f endif
else lr-params ' nil endif

Definition:
lr-s-similar-temps (s-temps, lr-temps , data-seg)
= if listp (s-temps)

then if listp (lr-temps)
then if cdar (lr-temps) = lr-undef-addr then ¬ cadar (s-temps)

else cadar (s-temps)
∧ lr-valp (caddar (s-temps),

cdar (lr-temps),
data-seg) endif

∧ lr-s-similar-temps (cdr (s-temps),
cdr (lr-temps),
data-seg)

else f endif
else lr-temps ' nil endif

Definition:
lr-s-similar-const-table (table, data-seg)
= if listp (table)

then lr-valp (caar (table), cdar (table), data-seg)
∧ lr-s-similar-const-table (cdr (table), data-seg)

else t endif

Definition:
lr-s-similar-statesp (s-params , s-temps, l , table)
= (lr-s-similar-params (s-params,

lr-params (top (p-ctrl-stk (l)), l),

100



p-data-segment (l))
∧ lr-s-similar-temps (s-temps,

lr-temps (top (p-ctrl-stk (l)), l),
p-data-segment (l))

∧ lr-s-similar-const-table (table, p-data-segment (l)))

Event: Disable lr-s-similar-statesp.

Theorem: p-accessors-s->lr1
(p-pc (s->lr1 (s, l , table)) = tag (’pc, cons (s-pname (s), s-pos (s))))
∧ (p-ctrl-stk (s->lr1 (s, l , table)) = p-ctrl-stk (l))
∧ (p-temp-stk (s->lr1 (s, l , table)) = p-temp-stk (l))
∧ (p-prog-segment (s->lr1 (s, l , table))

= lr-compile-programs (s-progs (s), table))
∧ (p-data-segment (s->lr1 (s, l , table)) = p-data-segment (l))
∧ (p-max-ctrl-stk-size (s->lr1 (s, l , table)) = p-max-ctrl-stk-size (l))
∧ (p-max-temp-stk-size (s->lr1 (s, l , table)) = p-max-temp-stk-size (l))
∧ (p-word-size (s->lr1 (s, l , table)) = p-word-size (l))
∧ (p-psw (s->lr1 (s, l , table)) = s-err-flag (s))

Theorem: s-eval-err-flag-not-run-fact
(s-err-flag (s) 6= ’run) → (s-eval (flag , s, clock) = s)

;; OFFSET

Theorem: offset-tag-cons
offset (tag (tag , cons (area, offset))) = offset

;; ADP-NAME

Theorem: adp-name-cons
adp-name (cons (x , y)) = x

;; OFFSET-SUB-ADDR -- see above

;; LR-PROPER-P-AREASP

Theorem: definedp-litatom-lr-proper-p-areas
((¬ litatom (name)) ∧ lr-proper-p-areasp (data-seg))
→ (¬ definedp (name, data-seg))

Event: Disable definedp-litatom-lr-proper-p-areas.

101



Theorem: member-lr-free-list-nodes-type-addr
(type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’addr)
→ (addr 6∈ lr-free-list-nodes (max-addr , data-seg))

Event: Disable member-lr-free-list-nodes-type-addr.

Theorem: lessp-length-deposit
length (cdr (assoc (name, deposit (any , addr , data-seg))))
6< length (cdr (assoc (name, data-seg)))

;; GET

Theorem: definedp-listp-cdr-assoc-lr-proper-p-areasp
lr-proper-p-areasp (data-seg)
→ (listp (cdr (assoc (area-name, data-seg)))

= definedp (area-name, data-seg))

Event: Disable definedp-listp-cdr-assoc-lr-proper-p-areasp.

;; LR-MINIMUM-HEAPP

Theorem: lr-minimum-heapp-opener-adpp-lr-f-addr
lr-minimum-heapp (data-seg) → adpp (identity (untag (lr-f-addr)), data-seg)

Theorem: lr-minimum-heapp-opener-adpp-lr-t-addr
lr-minimum-heapp (data-seg) → adpp (identity (untag (lr-t-addr)), data-seg)

Theorem: lr-minimum-heapp-opener-adpp-lr-0-addr
lr-minimum-heapp (data-seg) → adpp (identity (untag (lr-0-addr)), data-seg)

Theorem: lr-minimum-heapp-opener-adpp-lr-undef-addr
lr-minimum-heapp (data-seg)
→ adpp (identity (untag (lr-undef-addr)), data-seg)

Theorem: lr-boundary-offsetp-sub1-length-heap-name
lr-boundary-nodep (lr-max-node (data-seg))
→ lr-boundary-offsetp (length (cdr (assoc (identity (lr-heap-name), data-seg))) − 1)

Theorem: lessp-lr-boundary-offsetp-nodep-plus-node-size-fact-2
(lr-boundary-offsetp (offset1 )
∧ lr-boundary-offsetp (offset2 )
∧ (n < lr-node-size))
→ (((n + offset1 ) < offset2 ) = (offset1 < offset2 ))

Theorem: lr-boundary-offsetp-times-lr-node-size-anything
lr-boundary-offsetp (identity (lr-node-size) ∗ x )

102



Theorem: lr-boundary-offsetp-difference-not-equal-lessp-fact-2
(lr-boundary-offsetp (x ) ∧ lr-boundary-offsetp (y) ∧ (x ∈ N) ∧ (x < y))
→ (((y − lr-node-size) < x ) = f)

Theorem: lr-minimum-heapp-opener-2
lr-minimum-heapp (data-seg)
→ (identity (lr-minimum-heap-size)

< length (cdr (assoc (identity (lr-heap-name), data-seg))))

Event: Disable lr-minimum-heapp-opener-2.

Theorem: lr-minimum-heapp-opener-3
lr-minimum-heapp (data-seg) → definedp (identity (lr-heap-name), data-seg)

Event: Disable lr-minimum-heapp-opener-3.

;; LR-PROPER-FREE-LISTP

Definition:
lr-node-listp (list , data-seg)
= if listp (list)

then lr-nodep (car (list), data-seg)
∧ lr-node-listp (cdr (list), data-seg)

else t endif

Event: Disable lr-node-listp.

Theorem: adpp-adpp-sub-addr
adpp (untag (addr), data-seg) → adpp (untag (sub-addr (addr , n)), data-seg)

Theorem: lr-node-listp-lr-free-list-nodes
(lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ adpp (untag (addr), data-seg2 )
∧ (type (addr) = ’addr))
→ lr-node-listp (lr-free-list-nodes (addr , data-seg1 ), data-seg2 )

Theorem: lr-nodep-member-lr-node-listp
(lr-node-listp (list , data-seg) ∧ (node ∈ list))
→ ((type (node) = ’addr)

∧ (cddr (node) = nil)
∧ listp (node)
∧ adpp (untag (node), data-seg)
∧ lr-boundary-nodep (node)
∧ (area-name (node) = lr-heap-name))

103



Event: Disable lr-nodep-member-lr-node-listp.

Theorem: lr-max-node-lr-nodep-opener-facts
(type (lr-max-node (data-seg)) = ’addr)
∧ (cddr (lr-max-node (data-seg)) = nil)
∧ (area-name (lr-max-node (data-seg)) = lr-heap-name)

Theorem: lr-max-node-adpp-definedp-lr-heap-name
lr-proper-p-areasp (data-seg)
→ (adpp (untag (lr-max-node (data-seg)), data-seg)

= definedp (lr-heap-name, data-seg))

Theorem: offset-lr-max-node
offset (lr-max-node (data-seg))
= (length (cdr (assoc (identity (lr-heap-name), data-seg))) − 1)

Event: Disable lr-max-node.

Theorem: lr-proper-free-listp-opener-1
lr-proper-free-listp (data-seg)
→ adpp (identity (untag (lr-fp-addr)), data-seg)

Theorem: lr-proper-free-listp-opener-2
(lr-proper-free-listp (data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ ((type (fetch (identity (lr-fp-addr), data-seg)) = ’addr)

∧ (cddr (fetch (identity (lr-fp-addr), data-seg)) = nil)
∧ listp (fetch (identity (lr-fp-addr), data-seg))
∧ adpp (untag (fetch (identity (lr-fp-addr), data-seg)), data-seg)
∧ lr-boundary-nodep (fetch (identity (lr-fp-addr), data-seg))
∧ (area-name (fetch (identity (lr-fp-addr), data-seg))

= lr-heap-name))

Theorem: lr-proper-free-listp-opener-2-adpp-untag-numberp-offset
(lr-proper-free-listp (data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (offset (fetch (identity (lr-fp-addr), data-seg)) ∈ N)

Theorem: lr-proper-free-listp-opener-2-adpp-untag-listp
(lr-proper-free-listp (data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ listp (untag (fetch (identity (lr-fp-addr), data-seg)))

104



Theorem: plus-times-fact-1
(n 6' 0) → (((n + (n ∗ w)) < (d ∗ n)) = ((1 + w) < d))

Event: Disable plus-times-fact-1.

Theorem: lessp-difference-fact-1
(((x mod n) = 0) ∧ ((y mod n) = 0) ∧ (x < y) ∧ (x ∈ N))
→ ((x < (y − n)) = (x 6= (y − n)))

Theorem: lessp-difference-lr-boundary-offsetp-fact-1
((offset ∈ N)
∧ lr-boundary-offsetp (offset)
∧ lr-boundary-offsetp (y)
∧ (offset < y))
→ ((offset < (y − identity (lr-node-size)))

= (offset 6= (y − identity (lr-node-size))))

Theorem: lessp-lr-node-on-boundaryp-node-size
(lr-boundary-nodep (addr) ∧ (offset (addr) ∈ N))
→ ((offset (addr) < identity (lr-node-size)) = (offset (addr) = 0))

Theorem: lessp-difference-node-size-sub-addr
((offset (addr) < offset (max-addr))
∧ (area-name (addr) = area-name (max-addr))
∧ lr-boundary-nodep (max-addr)
∧ (type (max-addr) = ’addr)
∧ (offset (max-addr) ∈ N)
∧ (cddr (max-addr) = nil)
∧ lr-boundary-nodep (addr)
∧ (type (addr) = ’addr)
∧ (offset (addr) ∈ N)
∧ (cddr (addr) = nil)
∧ listp (untag (addr)))
→ ((offset (addr) < (offset (max-addr) − identity (lr-node-size)))

= (sub-addr (max-addr , identity (lr-node-size)) 6= addr))

Theorem: lr-nodep-lr-proper-heapp-nodep
(lr-proper-heapp2 (max-addr , data-seg)
∧ (offset (addr) < offset (max-addr))
∧ lr-nodep (max-addr , data-seg)
∧ lr-nodep (addr , data-seg))
→ lr-proper-heapp-nodep (addr , data-seg)

Event: Disable lessp-difference-node-size-sub-addr.

105



Theorem: adpp-area-name-offset-same
(listp (untag (addr1 ))
∧ (offset (addr1 ) ∈ N)
∧ (cddr (addr1 ) = nil)
∧ listp (untag (addr2 ))
∧ (offset (addr2 ) ∈ N)
∧ (cddr (addr2 ) = nil)
∧ (type (addr1 ) = type (addr2 )))
→ ((addr1 = addr2 )

= ((offset (addr1 ) = offset (addr2 ))
∧ (area-name (addr1 ) = area-name (addr2 ))))

Theorem: lr-proper-heapp-nodep-tag-cons
((untag (fetch (addr , data-seg)) = lr-cons-tag)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) = ’nat)
∧ lr-proper-heapp-nodep (addr , data-seg)
∧ ((offset = lr-car-offset) ∨ (offset = lr-cdr-offset)))
→ lr-good-pointerp (fetch (add-addr (addr , offset), data-seg), data-seg)

Theorem: adpp-add-addr-fact-2
(adpp (untag (addr1 ), data-seg)
∧ adpp (untag (add-addr (addr1 , n)), data-seg)
∧ adpp (untag (addr2 ), data-seg)
∧ (¬ adpp (untag (add-addr (addr2 , n)), data-seg))
∧ (area-name (addr1 ) = area-name (addr2 )))
→ (offset (addr1 ) < offset (addr2 ))

Theorem: fetch-lr-nodep-add-addr
((¬ adpp (untag (add-addr (addr , n)), data-seg)) ∧ lr-nodep (addr , data-seg))
→ (fetch (add-addr (addr , n), data-seg) = 0)

Event: Disable fetch-lr-nodep-add-addr.

Theorem: untag-addr-addr-tag
untag (add-addr (tag (tag , adp), n)) = cons (car (adp), cdr (adp) + n)

Theorem: lr-good-pointerp-lessp-offset-max-heap-node
(adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ listp (addr)
∧ (cddr (addr) = nil)
∧ (type (addr) = ’addr)
∧ (area-name (addr) = ’heap)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) = ’nat)

106



∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (offset (addr)

< (length (cdr (assoc (identity (lr-heap-name), data-seg))) − 1))

Event: Disable lr-good-pointerp-lessp-offset-max-heap-node.

Theorem: lr-proper-heapp-opener-1
lr-proper-heapp (data-seg)
→ (lr-minimum-heapp (data-seg) ∧ lr-proper-free-listp (data-seg))

Theorem: lr-proper-heapp-opener-3
((addr = lr-max-node (data-seg)) ∧ lr-proper-heapp (data-seg))
→ lr-proper-heapp2 (addr , data-seg)

Theorem: deposit-free-ptr-preserves-lr-valp
(adpp (untag (lr-fp-addr), data-seg) ∧ lr-valp (value, addr , data-seg))
→ lr-valp (value, addr , deposit (anything , identity (lr-fp-addr), data-seg))

Theorem: lr-proper-p-areasp-deposit-anything-anywhere
lr-proper-p-areasp (data-seg)
→ lr-proper-p-areasp (deposit (anything , addr , data-seg))

Theorem: lr-node-listp-delete
lr-node-listp (list , data-seg)
→ lr-node-listp (delete (anything , list), data-seg)

Event: Disable lr-node-listp-delete.

Theorem: lr-node-listp-deposit-anything-at-all
lr-node-listp (addr , data-seg)
→ lr-node-listp (addr , deposit (anything , addr2 , data-seg))

Event: Disable lr-node-listp-deposit-anything-at-all.

Theorem: cdr-assoc-member-strip-cdrs
definedp (name, list) → (cdr (assoc (name, list)) ∈ strip-cdrs (list))

Event: Disable cdr-assoc-member-strip-cdrs.

Theorem: lr-set-error-lr->p
lr->p (lr-set-error (p, flag)) = lr-set-error (lr->p (p), flag)

107



Theorem: lr-params-lr-set-expr
((area-name (p-pc (l)) = area-name (p-pc (l2 )))
∧ (p-prog-segment (l) = p-prog-segment (l2 )))
→ (lr-params (frame, lr-set-expr (l , l2 , pos)) = lr-params (frame, l))

Theorem: lr-temps-lr-set-expr
((area-name (p-pc (l)) = area-name (p-pc (l2 )))
∧ (p-prog-segment (l) = p-prog-segment (l2 )))
→ (lr-temps (frame, lr-set-expr (l , l2 , pos)) = lr-temps (frame, l))

Theorem: p-current-program-lr-push-tstk
p-current-program (lr-push-tstk (l , any)) = p-current-program (l)

Theorem: p-current-program-lr-set-temp
p-current-program (lr-set-temp (l , value, var)) = p-current-program (l)

Theorem: p-current-program-lr-pop-tstk
p-current-program (lr-pop-tstk (l)) = p-current-program (l)

Theorem: p-current-program-lr-do-temp-fetch
p-current-program (lr-do-temp-fetch (l)) = p-current-program (l)

Theorem: strip-cars-restn
strip-cars (restn (n, list)) = restn (n, strip-cars (list))

Event: Disable strip-cars-restn.

Theorem: strip-cars-firstn
strip-cars (firstn (n, list)) = firstn (n, strip-cars (list))

Event: Disable strip-cars-firstn.

Theorem: lr-params-lr-pop-tstk
lr-params (frame, lr-pop-tstk (l)) = lr-params (frame, l)

Theorem: lr-temps-lr-pop-tstk
lr-temps (frame, lr-pop-tstk (l)) = lr-temps (frame, l)

Theorem: lr-minimum-heapp-same-signature
same-signature (data-seg1 , data-seg2 )
→ (lr-minimum-heapp (data-seg2 ) = lr-minimum-heapp (data-seg1 ))

Event: Disable lr-minimum-heapp-same-signature.

108



Theorem: put-not-listp
((¬ listp (list1 )) ∧ (¬ listp (list2 )))
→ (put (val , n, list1 ) = put (val , n, list2 ))

Theorem: put-zero
put (val , n, 0) = put (val , n, nil)

Event: Disable put-zero.

Theorem: put-put
((offset1 ∈ N) ∧ (offset2 ∈ N))
→ (put (val1 , offset1 , put (val2 , offset2 , list))

= if offset1 = offset2 then put (val1 , offset1 , list)
else put (val2 , offset2 , put (val1 , offset1 , list)) endif)

Theorem: proper-p-data-segmentp-implies-lr-proper-p-areasp
proper-p-data-segmentp (data-seg , p) → lr-proper-p-areasp (data-seg)

Theorem: proper-p-statep-lr->p-implies-lr-proper-p-areasp
proper-p-statep (lr->p (l)) → lr-proper-p-areasp (p-data-segment (l))

Event: Disable proper-p-data-segmentp-implies-lr-proper-p-areasp.

Theorem: lr-proper-free-listp-type-fetch-free-ptr
(lr-proper-free-listp (data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-proper-p-areasp (data-seg))
→ (type (fetch (add-addr (fetch (identity (lr-fp-addr), data-seg),

identity (lr-ref-count-offset)),
data-seg))

6= ’nat)

Theorem: put-assoc-put-assoc-1
put-assoc (val1 , name, put-assoc (val2 , name, alist))
= put-assoc (val1 , name, alist)

Theorem: put-assoc-put-assoc-2
put-assoc (val1 , name1 , put-assoc (val2 , name2 , alist))
= if name1 = name2 then put-assoc (val1 , name1 , alist)

else put-assoc (val2 , name2 , put-assoc (val1 , name1 , alist)) endif

Theorem: deposit-deposit
((offset (addr1 ) ∈ N) ∧ (offset (addr2 ) ∈ N))

109



→ (deposit (value1 , addr1 , deposit (value2 , addr2 , data-seg))
= if (area-name (addr1 ) = area-name (addr2 ))

∧ (offset (addr1 ) = offset (addr2 ))
then deposit (value1 , addr1 , data-seg)
else deposit (value2 ,

addr2 ,
deposit (value1 , addr1 , data-seg)) endif)

Theorem: deposit-ref-count-move-outward
(offset (addr) ∈ N)
→ (deposit (value1 ,

addr ,
deposit (value2 ,

add-addr (addr , identity (lr-ref-count-offset)),
data-seg))

= deposit (value2 ,
add-addr (addr , lr-ref-count-offset),
deposit (value1 , addr , data-seg)))

Definition:
ihint-2 (flag , s, l , table, c)
= if s-err-flag (s) 6= ’run then t

elseif flag = ’list
then if s-pos (s) ' nil then t

elseif listp (s-expr-list (s))
then ihint-2 (t, s, l , table, c)

∧ ihint-2 (’list,
s-set-expr (s-eval (t, s, c), s, nx (s-pos (s))),
lr-eval (t, s->lr1 (s, l , table), c),
table,
c)

else t endif
elseif c ' 0 then t
elseif litatom (s-expr (s)) then t
elseif s-expr (s) ' nil then t
elseif car (s-expr (s)) = ’if
then let lrtest be lr-if-ok (lr-eval (t,

s->lr1 (s-set-pos (s,
dv (s-pos (s),

1)),
l ,
table),

c)),
stest be s-eval (t, s-set-pos (s, dv (s-pos (s), 1)), c)

110



in
if p-psw (lrtest) = ’run
then if top (p-temp-stk (lrtest)) 6= lr-f-addr

then ihint-2 (t,
s-set-pos (s, dv (s-pos (s), 1)),
l ,
table,
c)

∧ ihint-2 (t,
s-set-expr (stest ,

s,
dv (s-pos (s), 2)),

lr-pop-tstk (lrtest),
table,
c)

else ihint-2 (t,
s-set-pos (s, dv (s-pos (s), 1)),
l ,
table,
c)

∧ ihint-2 (t,
s-set-expr (stest ,

s,
dv (s-pos (s), 3)),

lr-pop-tstk (lrtest),
table,
c) endif

else ihint-2 (t,
s-set-pos (s, dv (s-pos (s), 1)),
l ,
table,
c) endif endlet

elseif car (s-expr (s)) = s-temp-eval
then ihint-2 (t, s-set-pos (s, dv (s-pos (s), 1)), l , table, c)
elseif car (s-expr (s)) = s-temp-test
then if p-max-temp-stk-size (l) 6< (2 + length (p-temp-stk (l)))

then if lr-eval-temp-setp (s->lr1 (s, l , table)) then t
else ihint-2 (t, s-set-pos (s, dv (s-pos (s), 1)), l , table, c) endif

else t endif
elseif car (s-expr (s)) = s-temp-fetch then t
elseif car (s-expr (s)) = ’quote then t
elseif s-err-flag (s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c))

6= ’run
then ihint-2 (’list, s-set-pos (s, dv (s-pos (s), 1)), l , table, c)

111



elseif subrp (car (s-expr (s)))
then ihint-2 (’list, s-set-pos (s, dv (s-pos (s), 1)), l , table, c)
elseif litatom (car (s-expr (s)))
then let s-arg-s be s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c),

lr-arg-s be lr-eval (’list,
s->lr1 (s-set-pos (s, dv (s-pos (s), 1)),

l ,
table),

c)
in
ihint-2 (’list, s-set-pos (s, dv (s-pos (s), 1)), l , table, c)
∧ ihint-2 (t,

s-fun-call-state (s-arg-s, car (s-expr (s))),
lr-funcall (s->lr1 (s, l , table), lr-arg-s),
table,
c − 1) endlet

else t endif

Definition:
induct-hint-4 (x , temp-stk)
= if listp (x ) then induct-hint-4 (cdr (x ), cdr (temp-stk))

else t endif

Theorem: lr-check-result1-append
lr-check-result1 (append (x , y), temp-stk , data-seg)
= (lr-check-result1 (x , temp-stk , data-seg)

∧ lr-check-result1 (y , restn (length (x ), temp-stk), data-seg))

Theorem: lr-proper-heapp-opener-4
lr-proper-heapp (data-seg)
→ (adpp (untag (lr-max-node (data-seg)), data-seg)

∧ lr-boundary-nodep (lr-max-node (data-seg)))

Theorem: length-strip-cars
length (strip-cars (temp-vars)) = length (temp-vars)

Theorem: definedp-lr-compile-programs
definedp (name, lr-compile-programs (progs, const-table))
= definedp (name, progs)

Theorem: lr-valp-deposit-fetch-free-pointer-offset-helper-1
((type (fetch (add-addr (addr , identity (lr-ref-count-offset)), data-seg))

= ’nat)
∧ lr-good-pointerp (addr , data-seg)
∧ lr-nodep (free-addr , data-seg)

112



∧ (offset (addr) = offset (free-addr)))
→ (type (fetch (add-addr (free-addr , identity (lr-ref-count-offset)),

data-seg))
= ’nat)

Theorem: lr-boundary-nodep-equal-plus-fact-zero
((type (addr1 ) = ’addr)
∧ (cddr (addr1 ) = nil)
∧ listp (addr1 )
∧ listp (untag (addr1 ))
∧ (offset (addr1 ) ∈ N)
∧ lr-boundary-nodep (addr1 )
∧ (type (addr2 ) = ’addr)
∧ (cddr (addr2 ) = nil)
∧ listp (addr2 )
∧ listp (untag (addr2 ))
∧ (offset (addr2 ) ∈ N)
∧ lr-boundary-nodep (addr2 )
∧ (area-name (addr2 ) = area-name (addr1 ))
∧ (m < lr-node-size))
→ ((offset (addr1 ) = (m + offset (addr2 )))

= ((m ' 0) ∧ (addr1 = addr2 )))

Theorem: lr-boundary-nodep-equal-plus-fact
((type (addr1 ) = ’addr)
∧ (cddr (addr1 ) = nil)
∧ listp (addr1 )
∧ listp (untag (addr1 ))
∧ (offset (addr1 ) ∈ N)
∧ lr-boundary-nodep (addr1 )
∧ (type (addr2 ) = ’addr)
∧ (cddr (addr2 ) = nil)
∧ listp (addr2 )
∧ listp (untag (addr2 ))
∧ (offset (addr2 ) ∈ N)
∧ lr-boundary-nodep (addr2 )
∧ (n < lr-node-size)
∧ (m < lr-node-size)
∧ (area-name (addr1 ) = area-name (addr2 )))
→ (((n + offset (addr1 )) = (m + offset (addr2 )))

= ((fix (n) = fix (m)) ∧ (addr1 = addr2 )))

Theorem: lr-valp-deposit-fetch-free-pointer-offset
((type (fetch (add-addr (free-addr , lr-ref-count-offset), data-seg)) 6= ’nat)
∧ lr-nodep (free-addr , data-seg)

113



∧ (n < lr-node-size)
∧ lr-valp (value, addr , data-seg))
→ lr-valp (value, addr , deposit (anything , add-addr (free-addr , n), data-seg))

Event: Disable lr-valp-deposit-fetch-free-pointer-offset.

Event: Disable lr-valp-deposit-fetch-free-pointer-offset-helper-1.

Theorem: lr-valp-deposit-fetch-free-pointer
((type (fetch (add-addr (free-addr , lr-ref-count-offset), data-seg)) 6= ’nat)
∧ lr-nodep (free-addr , data-seg)
∧ lr-valp (value, addr , data-seg))
→ lr-valp (value, addr , deposit (anything , free-addr , data-seg))

Event: Disable lr-valp-deposit-fetch-free-pointer.

Theorem: not-equal-x-add1-add1-x
(x = (1 + (1 + x ))) = f

Theorem: not-equal-x-add1-x
(x = (1 + x )) = f

Theorem: p-run-subr-preserves-lr-valp
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-programs-properp (new-l , table)
∧ listp (lr-expr (l))
∧ proper-p-statep (lr->p (new-l))
∧ lr-proper-free-listp (p-data-segment (new-l))
∧ adpp (untag (lr-max-node (p-data-segment (new-l))), p-data-segment (new-l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (new-l)))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= ’run)

∧ lr-valp (value, addr , p-data-segment (new-l))
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ lr-valp (value,

addr ,
p-data-segment (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l),
lr-return-pc (l)))))

114



Theorem: numberp-offset-sub-addr
offset (sub-addr (addr , n)) ∈ N

Theorem: lr-free-list-nodes-deposit-non-ref-count
(lr-nodep (addr , data-seg)
∧ lr-nodep (max-addr , data-seg)
∧ (offset 6= lr-ref-count-offset)
∧ (offset ∈ N)
∧ (offset < lr-node-size))
→ (lr-free-list-nodes (max-addr ,

deposit (anything , add-addr (addr , offset), data-seg))
= lr-free-list-nodes (max-addr , data-seg))

Theorem: lr-nodep-member-lr-node-listp-adpp-untag-listp
(lr-node-listp (list , data-seg) ∧ (node ∈ list)) → listp (untag (node))

Event: Disable lr-nodep-member-lr-node-listp-adpp-untag-listp.

Theorem: lr-nodep-member-lr-node-listp-adpp-untag-numberp-offset
(lr-node-listp (list , data-seg) ∧ (node ∈ list)) → (offset (node) ∈ N)

Theorem: lr-nodep-member-lr-node-listp-lr-boundaryp-offsetp
(lr-node-listp (list , data-seg) ∧ (node ∈ list))
→ lr-boundary-offsetp (offset (node))

Theorem: lr-check-free-nodes-deposit-non-ref-count
(lr-nodep (addr2 , data-seg)
∧ lr-nodep (max-addr , data-seg)
∧ (offset 6= lr-ref-count-offset)
∧ (offset ∈ N)
∧ (offset < lr-node-size)
∧ lr-node-listp (node-list , data-seg))
→ (lr-check-free-nodes (addr1 ,

node-list ,
deposit (anything , add-addr (addr2 , offset), data-seg),
max-addr)

= lr-check-free-nodes (addr1 , node-list , data-seg , max-addr))

Event: Disable lr-nodep-member-lr-node-listp-adpp-untag-numberp-offset.

Theorem: adpp-deposit-other-area
(adp-name (adp) 6= area-name (addr))
→ (adpp (adp, deposit (anything , addr , data-seg)) = adpp (adp, data-seg))

Event: Disable adpp-deposit-other-area.

115



Theorem: length-deposit
length (cdr (assoc (name, deposit (anything , addr , data-seg))))
= if definedp (area-name (addr), data-seg)

then if area-name (addr) = name
then if offset (addr) < length (cdr (assoc (name, data-seg)))

then length (cdr (assoc (name, data-seg)))
else 1 + offset (addr) endif

else length (cdr (assoc (name, data-seg))) endif
else length (cdr (assoc (name, data-seg))) endif

Theorem: same-signature-deposit
(adpp (untag (addr), segment2 ) ∧ lr-proper-p-areasp (segment2 ))
→ (same-signature (segment1 , deposit (anything , addr , segment2 ))

= same-signature (segment1 , segment2 ))

Theorem: lr-max-node-same-signature
same-signature (data-seg1 , data-seg2 )
→ (lr-max-node (data-seg2 ) = lr-max-node (data-seg1 ))

Event: Disable lr-max-node-same-signature.

Theorem: lr-max-node-deposit
(adpp (untag (addr), data-seg) ∧ lr-proper-p-areasp (data-seg))
→ (lr-max-node (deposit (anything , addr , data-seg))

= lr-max-node (data-seg))

Theorem: not-adpp-untag-node-not-definedp-lr-heap-name
(¬ definedp (area-name (addr), data-seg))
→ (¬ adpp (untag (addr), data-seg))

Theorem: sub-addr-area-name-offset-same
(listp (untag (addr1 ))
∧ (offset (addr1 ) ∈ N)
∧ (cddr (addr1 ) = nil)
∧ (type (addr1 ) = type (addr2 )))
→ ((addr1 = sub-addr (addr2 , n))

= ((offset (addr1 ) = (offset (addr2 ) − n))
∧ (area-name (addr1 ) = area-name (addr2 ))))

Theorem: lr-free-list-nodes-member-greater-offset
(offset (addr) 6< offset (max-addr))
→ (addr 6∈ lr-free-list-nodes (max-addr , data-seg))

Theorem: lr-free-list-nodes-deposit-lr-ref-count-offset
((type (addr) = ’addr)

116



∧ (cddr (addr) = nil)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = ’heap)
∧ (type (max-addr) = ’addr)
∧ adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = ’heap)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N))
→ (lr-free-list-nodes (max-addr ,

deposit (ref-count ,
add-addr (addr ,

identity (lr-ref-count-offset)),
data-seg))

= delete (addr , lr-free-list-nodes (max-addr , data-seg)))

Event: Disable lr-free-list-nodes-member-greater-offset.

Event: Disable not-adpp-untag-node-not-definedp-lr-heap-name.

Definition:
no-duplicatesp (list)
= if listp (list)

then if car (list) ∈ cdr (list) then f
else no-duplicatesp (cdr (list)) endif

else t endif

Theorem: not-member-occurences-0
(x 6∈ z ) → (occurrences (x , z ) = 0)

Event: Disable not-member-occurences-0.

Theorem: no-duplicatesp-occurences-1
(no-duplicatesp (list) ∧ (e ∈ list)) → (occurrences (e, list) = 1)

Theorem: no-duplicatesp-lr-free-list-nodes
no-duplicatesp (lr-free-list-nodes (addr , data-seg))

Theorem: member-area-name-offset-same
((addr1 ∈ node-list)
∧ (offset (addr1 ) ∈ N)
∧ (cddr (addr1 ) = nil)

117



∧ listp (untag (addr1 ))
∧ listp (untag (addr2 ))
∧ (offset (addr2 ) ∈ N)
∧ (cddr (addr2 ) = nil)
∧ (type (addr1 ) = type (addr2 ))
∧ (area-name (addr1 ) = area-name (addr2 ))
∧ (offset (addr2 ) = offset (addr1 )))
→ (addr2 ∈ node-list)

Theorem: lr-check-free-nodes-delete-deposit
(lr-check-free-nodes (addr2 , node-list , data-seg , max-addr)
∧ (addr1 6∈ node-list)
∧ lr-nodep (addr1 , data-seg)
∧ lr-node-listp (node-list , data-seg)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N))
→ lr-check-free-nodes (addr2 ,

node-list ,
deposit (ref-count ,

add-addr (addr1 ,
identity (lr-ref-count-offset)),

data-seg),
max-addr)

Event: Disable lr-check-free-nodes-delete-deposit.

Event: Disable member-area-name-offset-same.

Theorem: lr-check-free-nodes-deposit-free-ptr
(adpp (identity (untag (lr-fp-addr)), data-seg)
∧ lr-node-listp (node-list , data-seg))
→ (lr-check-free-nodes (addr ,

node-list ,
deposit (anything , identity (lr-fp-addr), data-seg),
max-addr)

= lr-check-free-nodes (addr , node-list , data-seg , max-addr))

Theorem: lr-free-list-nodes-deposit-free-ptr
(lr-nodep (max-addr , data-seg) ∧ adpp (identity (untag (lr-fp-addr)), data-seg))
→ (lr-free-list-nodes (max-addr ,

deposit (anything , identity (lr-fp-addr), data-seg))
= lr-free-list-nodes (max-addr , data-seg))

Theorem: deposit-ref-count-move-inward-2

118



(lr-nodep (addr , data-seg)
∧ (offset 6= lr-ref-count-offset)
∧ (offset 6' 0)
∧ (offset < lr-node-size))
→ (deposit (any1 ,

add-addr (addr , identity (lr-ref-count-offset)),
deposit (any2 , add-addr (addr , offset), data-seg))

= deposit (any2 ,
add-addr (addr , offset),
deposit (any1 ,

add-addr (addr , identity (lr-ref-count-offset)),
data-seg)))

Event: Disable deposit-ref-count-move-inward-2.

Theorem: lr-free-list-nodes-deposit-lr-nodep
(lr-nodep (addr , data-seg) ∧ lr-nodep (max-addr , data-seg))
→ (lr-free-list-nodes (max-addr , deposit (anything , addr , data-seg))

= lr-free-list-nodes (max-addr , data-seg))

Theorem: lr-check-free-nodes-deposit-lr-nodep
(lr-nodep (addr2 , data-seg)
∧ lr-nodep (max-addr , data-seg)
∧ lr-node-listp (node-list , data-seg))
→ (lr-check-free-nodes (addr1 ,

node-list ,
deposit (anything , addr2 , data-seg),
max-addr)

= lr-check-free-nodes (addr1 , node-list , data-seg , max-addr))

Theorem: same-signature-cons
same-signature (data-seg1 , cons (x , data-seg2 ))
= if listp (data-seg1 )

then (signature (car (data-seg1 )) = signature (x ))
∧ same-signature (cdr (data-seg1 ), data-seg2 )

else f endif

Theorem: same-signature-nil
(data-seg1 ' nil)
→ (same-signature (data-seg1 , data-seg2 ) = (data-seg2 ' nil))

Theorem: listp-put-assoc
listp (put-assoc (val , name, alist)) = listp (alist)

119



Theorem: not-same-signature-deposit-too-large-addr
(definedp (area-name (addr), data-seg2 )
∧ lr-proper-p-areasp (data-seg2 )
∧ (offset (addr) 6< length (value (area-name (addr), data-seg1 ))))
→ (¬ same-signature (data-seg1 , deposit (any , addr , data-seg2 )))

Event: Disable same-signature-cons.

Event: Disable same-signature-nil.

Theorem: adpp-deposit-a-list
adpp (adp, data-seg) → adpp (adp, deposit-a-list (list , addr2 , data-seg))

Theorem: lr-proper-p-areasp-deposit-a-list
lr-proper-p-areasp (data-seg)
→ lr-proper-p-areasp (deposit-a-list (list , addr , data-seg))

Theorem: definedp-deposit-a-list
definedp (tag , deposit-a-list (list , addr , data-seg)) = definedp (tag , data-seg)

Theorem: sub1-plus-not-zerop-fact-1
(x 6' 0) → ((((y + x ) − 1) < y) = f)

Theorem: not-adpp-untag-add-addr-adpp-untag
adpp (untag (addr), data-seg)
→ (adpp (untag (add-addr (addr , n)), data-seg)

= ((offset (addr) + n)
< length (cdr (assoc (area-name (addr), data-seg)))))

Theorem: not-same-signature-deposit-a-list-too-large-addr
(definedp (area-name (addr), data-seg2 )
∧ lr-proper-p-areasp (data-seg2 )
∧ (offset (addr) 6< length (value (area-name (addr), data-seg1 ))))
→ (same-signature (data-seg1 , deposit-a-list (list , addr , data-seg2 ))

= if listp (list) then f
else same-signature (data-seg1 , data-seg2 ) endif)

Theorem: same-signature-deposit-a-list
(adpp (untag (addr), data-seg2 )
∧ lr-proper-p-areasp (data-seg2 )
∧ same-signature (data-seg1 , data-seg2 ))
→ (same-signature (data-seg1 , deposit-a-list (list , addr , data-seg2 ))

= ((offset (addr) + (length (list) − 1))
< length (cdr (assoc (area-name (addr), data-seg1 )))))

120



Event: Disable not-same-signature-deposit-too-large-addr.

Event: Disable not-same-signature-deposit-a-list-too-large-addr.

Theorem: deposit-good-node-preserves-lr-proper-free-listp
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (offset (fetch (lr-fp-addr, data-seg))

< (((length (cdr (assoc (lr-heap-name, data-seg))) − 1) − 1) − 1))
∧ (type (tag) = ’nat)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N))
→ lr-proper-free-listp (deposit (fetch (add-addr (fetch (identity (lr-fp-addr),

data-seg),
identity (lr-ref-count-offset)),

data-seg),
identity (lr-fp-addr),
deposit-a-list (list (tag , ref-count , x , y),

fetch (identity (lr-fp-addr),
data-seg),

data-seg)))

Theorem: p-run-subr-preserves-lr-proper-free-listp
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-programs-properp (new-l , table)
∧ listp (lr-expr (l))
∧ proper-p-statep (lr->p (new-l))
∧ lr-proper-free-listp (p-data-segment (new-l))
∧ adpp (untag (lr-max-node (p-data-segment (new-l))), p-data-segment (new-l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (new-l)))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= ’run)

∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l))))
→ lr-proper-free-listp (p-data-segment (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l),
lr-return-pc (l)))))

Event: Disable same-signature-deposit.

121



Theorem: lr-apply-subr-preserves-lr-proper-free-listp
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ proper-p-statep (lr->p (new-l))
∧ lr-proper-free-listp (p-data-segment (new-l))
∧ adpp (untag (lr-max-node (p-data-segment (new-l))),

p-data-segment (new-l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (new-l)))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run))
→ lr-proper-free-listp (p-data-segment (lr-apply-subr (l , new-l))) endlet

Theorem: lr-eval-preserves-proper-p-statep-lr->p-rewrite
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ proper-p-statep (lr->p (lr-eval (flag , l , c)))

Theorem: lr-eval-preserves-cdr-p-ctrl-stk
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (cdr (p-ctrl-stk (lr-eval (flag , l , c))) = cdr (p-ctrl-stk (l)))

Theorem: lr-eval-preserves-strip-cars-bindings-car-p-ctrl-stk
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (strip-cars (bindings (car (p-ctrl-stk (lr-eval (flag , l , c)))))

= strip-cars (bindings (car (p-ctrl-stk (l)))))

Theorem: lr-eval-preserves-lr-max-node
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (lr-max-node (p-data-segment (lr-eval (flag , l , c)))

= lr-max-node (p-data-segment (l)))

122



Theorem: lr-eval-preserves-adpp
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (adpp (adp, p-data-segment (lr-eval (flag , l , c)))

= adpp (adp, p-data-segment (l)))

Theorem: lr-eval-preserves-length-assoc-data-segment
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (length (cdr (assoc (name, p-data-segment (lr-eval (flag , l , c)))))

= length (cdr (assoc (name, p-data-segment (l)))))

Theorem: lr-eval-preserves-proper-p-statep-lr->p-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp (flag , pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , lr-set-pos (l , pos), c)) = ’run))
→ proper-p-statep (lr->p (lr-eval (flag , lr-set-pos (l , pos), c)))

Theorem: lr-eval-preserves-strip-cars-bindings-car-p-ctrl-stk-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp1 (pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (t, lr-set-pos (l , pos), c)) = ’run))
→ (strip-cars (bindings (car (p-ctrl-stk (lr-eval (t, lr-set-pos (l , pos), c)))))

= strip-cars (bindings (car (p-ctrl-stk (l)))))

Theorem: lr-eval-preserves-cdr-p-ctrl-stk-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp1 (pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (t, lr-set-pos (l , pos), c)) = ’run))
→ (cdr (p-ctrl-stk (lr-eval (t, lr-set-pos (l , pos), c)))

= cdr (p-ctrl-stk (l)))

Theorem: lr-eval-preserves-adpp-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp (flag , pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , lr-set-pos (l , pos), c)) = ’run))
→ (adpp (adp, p-data-segment (lr-eval (flag , lr-set-pos (l , pos), c)))

= adpp (adp, p-data-segment (l)))

123



Theorem: lr-eval-preserves-lr-max-node-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp (flag , pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , lr-set-pos (l , pos), c)) = ’run))
→ (lr-max-node (p-data-segment (lr-eval (flag , lr-set-pos (l , pos), c)))

= lr-max-node (p-data-segment (l)))

Theorem: lr-eval-preserves-lr-proper-free-listp
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run)
∧ adpp (untag (lr-max-node (p-data-segment (l))), p-data-segment (l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (l)))
∧ lr-proper-free-listp (p-data-segment (l)))
→ lr-proper-free-listp (p-data-segment (lr-eval (flag , l , c)))

Theorem: lr-apply-subr-preserves-lr-valp
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ proper-p-statep (lr->p (new-l))
∧ lr-proper-free-listp (p-data-segment (new-l))
∧ adpp (untag (lr-max-node (p-data-segment (new-l))),

p-data-segment (new-l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (new-l)))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ lr-valp (value, addr , p-data-segment (new-l)))
→ lr-valp (value, addr , p-data-segment (lr-apply-subr (l , new-l))) endlet

Theorem: lr-eval-preserves-lr-proper-free-listp-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp (flag , pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , lr-set-pos (l , pos), c)) = ’run)
∧ adpp (untag (lr-max-node (p-data-segment (l))), p-data-segment (l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (l)))
∧ lr-proper-free-listp (p-data-segment (l)))
→ lr-proper-free-listp (p-data-segment (lr-eval (flag , lr-set-pos (l , pos), c)))

124



Theorem: lr-eval-preserves-lr-valp
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run)
∧ lr-proper-free-listp (p-data-segment (l))
∧ adpp (untag (lr-max-node (p-data-segment (l))), p-data-segment (l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (l)))
∧ lr-valp (value, addr , p-data-segment (l)))
→ lr-valp (value, addr , p-data-segment (lr-eval (flag , l , c)))

Theorem: lr-check-f-addrp-deposit-anything-anywhere
lr-check-f-addrp (addr , deposit (anything , anywhere, data-seg))
= lr-check-f-addrp (addr , data-seg)

Theorem: lr-check-undef-addrp-deposit-anything-anywhere
lr-check-undef-addrp (addr , deposit (anything , anywhere, data-seg))
= lr-check-undef-addrp (addr , data-seg)

Theorem: lr-check-listp-addrp-deposit-free-ptr-0
lr-check-listp-addrp (addr , deposit (any , identity (lr-fp-addr), data-seg))
= lr-check-listp-addrp (addr , data-seg)

Theorem: lr-check-numberp-addrp-deposit-free-ptr-0
lr-check-numberp-addrp (addr , deposit (any , identity (lr-fp-addr), data-seg))
= lr-check-numberp-addrp (addr , data-seg)

Theorem: lr-proper-heapp-nodep-deposit-free-ptr-0
lr-proper-heapp-nodep (addr , deposit (any , identity (lr-fp-addr), data-seg))
= lr-proper-heapp-nodep (addr , data-seg)

Theorem: lr-proper-heapp2-deposit-free-ptr-0
lr-proper-heapp2 (addr , deposit (any , identity (lr-fp-addr), data-seg))
= lr-proper-heapp2 (addr , data-seg)

Theorem: lr-boundary-offsetp-equal-plus-fact-zero
(lr-boundary-offsetp (offset1 )
∧ lr-boundary-offsetp (offset2 )
∧ (n < lr-node-size)
∧ (offset1 ∈ N)
∧ (offset2 ∈ N))
→ (((n + offset1 ) = offset2 )

= ((n ' 0) ∧ (offset1 = offset2 )))

Theorem: fetch-add-addr-deposit-a-list-node

125



(adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = area-name (max-addr))
∧ (n < lr-node-size))
→ (fetch (add-addr (max-addr , n),

deposit-a-list (list (x0 , x1 , x2 , x3 ), addr , data-seg))
= if offset (addr) = offset (max-addr)

then get (n, list (x0 , x1 , x2 , x3 ))
else fetch (add-addr (max-addr , n), data-seg) endif)

Theorem: fetch-deposit-a-list-node
(adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = area-name (max-addr)))
→ (fetch (max-addr , deposit-a-list (list (x0 , x1 , x2 , x3 ), addr , data-seg))

= if offset (addr) = offset (max-addr) then x0
else fetch (max-addr , data-seg) endif)

Event: Disable lr-boundary-offsetp-equal-plus-fact-zero.

Theorem: lr-check-f-addrp-deposit-a-list
lr-check-f-addrp (addr , deposit-a-list (list , anywhere, data-seg))
= lr-check-f-addrp (addr , data-seg)

Theorem: lr-check-undef-addrp-deposit-a-list
lr-check-undef-addrp (addr , deposit-a-list (list , anywhere, data-seg))
= lr-check-undef-addrp (addr , data-seg)

Theorem: lr-check-numberp-addrp-deposit-a-list-cons
((offset (addr) 6= offset (max-addr))
∧ (type (max-addr) = ’addr)
∧ (cddr (max-addr) = nil)
∧ listp (max-addr)
∧ adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = lr-heap-name)
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)

126



∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ lr-check-numberp-addrp (max-addr , data-seg)
∧ (type (tag) = ’nat)
∧ (untag (tag) ∈ N))
→ lr-check-numberp-addrp (max-addr ,

deposit-a-list (list (x0 , tag , x2 , x3 ),
addr ,
data-seg))

Theorem: lr-check-listp-addrp-deposit-a-list-cons
(lr-good-pointerp (good-pointer1 , data-seg)
∧ lr-good-pointerp (good-pointer2 , data-seg)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (addr) = lr-heap-name)
∧ (area-name (max-addr) = lr-heap-name)
∧ (type (tag) = ’nat)
∧ (untag (tag) ∈ N)
∧ (offset (addr) = offset (max-addr)))
→ lr-check-listp-addrp (max-addr ,

deposit-a-list (list (identity (tag (’nat,
lr-cons-tag)),

tag ,
good-pointer1 ,
good-pointer2 ),

addr ,
data-seg))

Theorem: lr-check-listp-addrp-deposit-a-list-other-place
(adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (addr) = lr-heap-name)
∧ (area-name (max-addr) = lr-heap-name)
∧ lr-check-listp-addrp (max-addr , data-seg)
∧ (offset (addr) 6= offset (max-addr))
∧ (type (ref-count) = ’nat))
→ lr-check-listp-addrp (max-addr ,

deposit-a-list (list (x0 , ref-count , x2 , x3 ),
addr ,
data-seg))

127



Theorem: lr-proper-heapp-nodep-deposit-a-list-cons
(lr-nodep (max-addr , data-seg)
∧ lr-nodep (addr , data-seg)
∧ lr-proper-heapp-nodep (max-addr , data-seg)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’nat)
∧ lr-good-pointerp (good-pointer1 , data-seg)
∧ lr-good-pointerp (good-pointer2 , data-seg)
∧ (type (tag) = ’nat)
∧ (untag (tag) ∈ N))
→ lr-proper-heapp-nodep (max-addr ,

deposit-a-list (list (identity (tag (’nat,
lr-cons-tag)),

tag ,
good-pointer1 ,
good-pointer2 ),

addr ,
data-seg))

Theorem: lr-proper-heapp2-deposit-a-list-cons
(lr-nodep (max-addr , data-seg)
∧ lr-nodep (addr , data-seg)
∧ lr-proper-heapp2 (max-addr , data-seg)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’nat)
∧ lr-good-pointerp (good-pointer1 , data-seg)
∧ lr-good-pointerp (good-pointer2 , data-seg)
∧ (type (tag) = ’nat)
∧ (untag (tag) ∈ N))
→ lr-proper-heapp2 (max-addr ,

deposit-a-list (list (identity (tag (’nat, lr-cons-tag)),
tag ,
good-pointer1 ,
good-pointer2 ),

addr ,
data-seg))

Theorem: not-psw-run-lr-eval
(p-psw (l) 6= ’run) → (lr-eval (flag , l , c) = l)

Theorem: program-body-assoc-lr-compile-programs
program-body (assoc (name, lr-compile-programs (progs, table)))
= lr-compile-body (t,

s-body (assoc (name, progs)),
lr-make-temp-name-alist (s-temp-list (assoc (name, progs)),

s-formals (assoc (name, progs))),
table)

128



Theorem: listp-lr-compile-body
listp (lr-compile-body (flag , body , temp-name-alist , table)) = listp (body)

Theorem: car-lr-compile-body
(flag 6= ’list)
→ (car (lr-compile-body (flag , body , temp-name-alist , table)) = car (body))

Theorem: good-posp1-expand-list-temps
(((temp = s-temp-eval) ∨ (temp = s-temp-test)) ∧ listp (pos))
→ (good-posp1 (pos, list (temp, body , name))

= ((car (pos) = 1) ∧ good-posp1 (cdr (pos), body)))

Theorem: length-lr-compile-body-list
length (lr-compile-body (’list, body , temp-name-alist , table))
= length (body)

Theorem: get-lr-compile-body-list
get (n, lr-compile-body (’list, body , temp-name-alist , table))
= lr-compile-body (t, get (n, body), temp-name-alist , table)

Theorem: get-lr-compile-body
(listp (body)
∧ (car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote)
∧ (n 6' 0))
→ (get (n, lr-compile-body (t, body , temp-name-alist , table))

= lr-compile-body (t, get (n, body), temp-name-alist , table))

Theorem: length-lr-compile-body-t
(listp (body)
∧ (car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote))
→ (length (lr-compile-body (t, body , temp-name-alist , table))

= length (body))

Theorem: good-posp1-lr-compile-body
good-posp1 (pos, lr-compile-body (t, body , temp-name-alist , table))
= good-posp1 (pos, body)

Theorem: cur-expr-lr-compile-body-t
good-posp1 (pos, body)
→ (cur-expr (pos, lr-compile-body (t, body , temp-name-alist , table))

= lr-compile-body (t, cur-expr (pos, body), temp-name-alist , table))

129



Theorem: lr-check-result1-singleton-list-opener
lr-check-result1 (list (x ), temp-stk , data-seg)
= lr-valp (x , car (temp-stk), data-seg)

Theorem: proper-p-temp-stkp-plistp-p-temp-stk
proper-p-temp-stkp (temp-stk , p) → plistp (temp-stk)

Theorem: proper-p-statep-lr->p-plistp-p-temp-stk
proper-p-statep (lr->p (l)) → plistp (p-temp-stk (l))

Theorem: proper-p-statep-lr->p-not-0-p-temp-stk
proper-p-statep (lr->p (l)) → (p-temp-stk (l) 6= 0)

Theorem: plistp-lastcdr-nil
plistp (list) → (lastcdr (list) = nil)

Theorem: lr-eval-preserves-lr-valp-lr-set-expr
(proper-p-statep (lr->p (l))
∧ proper-p-statep (lr->p (lr-set-expr (l1 , l , pos)))
∧ good-posp (flag , pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , lr-set-expr (l1 , l , pos), c)) = ’run)
∧ lr-proper-free-listp (p-data-segment (l))
∧ lr-proper-free-listp (p-data-segment (l1 ))
∧ adpp (untag (lr-max-node (p-data-segment (l))), p-data-segment (l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (l)))
∧ adpp (untag (lr-max-node (p-data-segment (l1 ))), p-data-segment (l1 ))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (l1 )))
∧ lr-valp (value, addr , p-data-segment (l1 ))
∧ (length (cdr (assoc (lr-heap-name, p-data-segment (l1 ))))

= length (cdr (assoc (lr-heap-name, p-data-segment (l))))))
→ lr-valp (value,

addr ,
p-data-segment (lr-eval (flag , lr-set-expr (l1 , l , pos), c)))

Theorem: lr-eval-preserves-proper-p-statep-lr->p-lr-set-expr
(proper-p-statep (lr->p (l))
∧ good-posp (flag , pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , lr-set-expr (l1 , l , pos), c)) = ’run)
∧ lr-programs-properp (l1 , table)
∧ proper-p-statep (lr->p (l1 ))
∧ (cdr (p-ctrl-stk (l1 )) = cdr (p-ctrl-stk (l)))
∧ (strip-cars (bindings (car (p-ctrl-stk (l1 ))))

= strip-cars (bindings (car (p-ctrl-stk (l)))))

130



∧ (p-prog-segment (l1 ) = p-prog-segment (l))
∧ (p-word-size (l1 ) = p-word-size (l))
∧ (p-max-ctrl-stk-size (l1 ) = p-max-ctrl-stk-size (l))
∧ (p-max-temp-stk-size (l1 ) = p-max-temp-stk-size (l)))
→ proper-p-statep (lr->p (lr-eval (flag , lr-set-expr (l1 , l , pos), c)))

Theorem: lr-check-result-flag-list-cons-value
let l2 be lr-eval (’list, lr-set-expr (lr-eval (t, l , c), l , nx (pos)), c)
in
(good-posp (’list, pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ proper-p-statep (lr->p (l))
∧ listp (lr-expr-list (l))
∧ listp (offset (p-pc (l)))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-check-result (t,

value1 ,
p-temp-stk (lr-eval (t, l , c)),
p-data-segment (lr-eval (t, l , c)),
p-temp-stk (l))

∧ lr-check-result (’list,
value2 ,
p-temp-stk (l2 ),
p-data-segment (l2 ),
p-temp-stk (lr-eval (t, l , c)))

∧ (p-psw (l2 ) = ’run)
∧ (pos = offset (p-pc (l)))
∧ (temp-stk = p-temp-stk (l)))
→ lr-check-result (’list,

cons (value1 , value2 ),
p-temp-stk (l2 ),
p-data-segment (l2 ),
temp-stk) endlet

Theorem: lr-check-result-nil
lr-proper-heapp (data-seg)
→ lr-check-result (’list, nil, temp-stk , data-seg , temp-stk)

Theorem: litatom-lr-compile-body
litatom (lr-compile-body (t, body , temp-name-alist , table)) = litatom (body)

Theorem: lr-params-lr-push-tstk
lr-params (frame, lr-push-tstk (l , anything)) = lr-params (frame, l)

Theorem: lr-temps-lr-push-tstk
lr-temps (frame, lr-push-tstk (l , anything)) = lr-temps (frame, l)

131



Theorem: program-body-p-current-program-s->lr1
program-body (p-current-program (s->lr1 (s, l , table)))
= lr-compile-body (t,

s-body (s-prog (s)),
lr-make-temp-name-alist (s-temp-list (s-prog (s)),

s-formals (s-prog (s))),
table)

Theorem: name-car-lr-compile-programs-progs
name (car (lr-compile-programs (s-progs (s), table))) = caar (s-progs (s))

Theorem: car-car-lr-compile-programs-progs
caar (lr-compile-programs (s-progs (s), table)) = caar (s-progs (s))

Theorem: s-good-statep-program-body-car-lr-compile-programs
s-good-statep (s, c)
→ (program-body (car (lr-compile-programs (s-progs (s), table)))

= lr-compile-body (t,
s-body (car (s-progs (s))),
lr-make-temp-name-alist (s-temp-list (car (s-progs (s))),

s-formals (car (s-progs (s)))),
table))

Theorem: good-posp-lr-compile-body
good-posp (flag , pos, lr-compile-body (t, body , temp-name-alist , table))
= good-posp (flag , pos, body)

Theorem: strip-cars-lr-compile-programs
strip-cars (lr-compile-programs (progs, table)) = strip-cars (progs)

Theorem: listp-lr-expr-list-s->lr1
good-posp (’list, s-pos (s), s-body (s-prog (s)))
→ (listp (lr-expr-list (s->lr1 (s, l , table))) = listp (s-expr-list (s)))

Theorem: formal-vars-lr-compile-programs
formal-vars (assoc (name, lr-compile-programs (progs, table)))
= s-formals (assoc (name, progs))

Theorem: formal-vars-p-current-program-s->lr1
formal-vars (p-current-program (s->lr1 (s, l , table))) = s-formals (s-prog (s))

Theorem: temp-var-dcls-lr-compile-programs
definedp (name, progs)
→ (temp-var-dcls (assoc (name, lr-compile-programs (progs, table)))

= lr-make-temp-var-dcls (lr-make-temp-name-alist (s-temp-list (assoc (name,
progs)),

s-formals (assoc (name,
progs)))))

132



Theorem: temp-var-dcls-assoc-p-current-program-s->lr1
definedp (s-pname (s), s-progs (s))
→ (temp-var-dcls (p-current-program (s->lr1 (s, l , table)))

= lr-make-temp-var-dcls (lr-make-temp-name-alist (s-temp-list (s-prog (s)),
s-formals (s-prog (s)))))

Theorem: lr-set-expr-s->lr1-s-set-expr
s->lr1 (s-set-expr (s-eval (t, s, c), s, nx (s-pos (s))),

lr-eval (t, s->lr1 (s, l , table), c),
table)

= lr-set-error (lr-set-expr (lr-eval (t, s->lr1 (s, l , table), c),
s->lr1 (s, l , table),
nx (s-pos (s))),

s-err-flag (s-eval (t, s, c)))

Theorem: p-current-program-lr-set-error
p-current-program (lr-set-error (l , err-flag)) = p-current-program (l)

Theorem: lr-set-error-lr-set-error
lr-set-error (lr-set-error (l , err-flag1 ), err-flag2 )
= lr-set-error (l , err-flag2 )

Theorem: proper-p-statep-lr-set-error
proper-p-statep (lr-set-error (l , err-flag)) = proper-p-statep (l)

Theorem: lr-params-lr-set-error
lr-params (frame, lr-set-error (l , err-flag)) = lr-params (frame, l)

Theorem: lr-temps-lr-set-error
lr-temps (frame, lr-set-error (l , err-flag)) = lr-temps (frame, l)

Theorem: lr-s-similar-statesp-lr-set-error
lr-s-similar-statesp (params, temps , lr-set-error (l , err-flag), table)
= lr-s-similar-statesp (params, temps, l , table)

Theorem: lr-s-similar-statesp-lr-set-expr
((area-name (p-pc (l1 )) = area-name (p-pc (l2 )))
∧ (p-prog-segment (l1 ) = p-prog-segment (l2 )))
→ (lr-s-similar-statesp (params, temps, lr-set-expr (l1 , l2 , pos), table)

= lr-s-similar-statesp (params, temps , l1 , table))

Theorem: lr-eval-zerop-clock
((c ' 0) ∧ (flag 6= ’list) ∧ (p-psw (l) = ’run))
→ (lr-eval (flag , l , c) = lr-set-error (l , ’out-of-time))

133



Theorem: litatom-lr-expr-s->lr1
(good-posp1 (s-pos (s), s-body (s-prog (s))) ∧ litatom (s-expr (s)))
→ (lr-expr (s->lr1 (s, l , table)) = s-expr (s))

Theorem: lr-eval-litatom-opener
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (flag 6= ’list)
∧ (c 6' 0)
∧ litatom (s-expr (s))
∧ (s-err-flag (s) = ’run))
→ (lr-eval (flag , s->lr1 (s, l , table), c)

= lr-push-tstk (s->lr1 (s, l , table),
local-var-value (s-expr (s), p-ctrl-stk (l))))

Theorem: lr-s-similar-statesp-lr-push-tstk-litatom
lr-s-similar-statesp (s-params, s-temps, lr-push-tstk (l , value), table)
= lr-s-similar-statesp (s-params , s-temps , l , table)

Theorem: lr-s-similar-params-assoc-definedp
(lr-s-similar-params (s-params, lr-params, data-seg)
∧ definedp (name, lr-params))
→ lr-valp (cdr (assoc (name, s-params)), cdr (assoc (name, lr-params)), data-seg)

Theorem: proper-p-statep-lr->p-strip-cars-bindings-ctrl-stk
(proper-p-statep (lr->p (l))
∧ definedp (area-name (p-pc (l)), p-prog-segment (l)))
→ (strip-cars (bindings (car (p-ctrl-stk (l))))

= append (formal-vars (assoc (area-name (p-pc (l)), p-prog-segment (l))),
strip-cars (temp-var-dcls (assoc (area-name (p-pc (l)),

p-prog-segment (l))))))

Definition:
induct-hint-11 (v , y)
= if listp (v)

then if listp (y) then induct-hint-11 (cdr (v), cdr (y))
else t endif

else t endif

Theorem: equal-append-same-length-fact
(length (v) = length (y))
→ ((append (strip-cars (v), w) = append (y , z ))

= ((strip-cars (v) = plist (y)) ∧ (w = z )))

Theorem: definedp-strip-cars-append-member-x
(strip-cars (x ) = append (y , z ))
→ ((e ∈ y) = definedp (e, firstn (length (y), x )))

134



Theorem: proper-p-statep-lr->p-member-formals-definedp-bindings
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ definedp (s-pname (s), s-progs (s))
∧ (x ∈ s-formals (assoc (s-pname (s), s-progs (s)))))
→ definedp (x ,

firstn (length (s-formals (assoc (s-pname (s), s-progs (s)))),
bindings (car (p-ctrl-stk (l)))))

Theorem: lr-valp-addr-0
¬ lr-valp (addr , 0, data-seg)

Theorem: lr-valp-cdr-assoc-firstn-cdr-assoc
lr-valp (addr , cdr (assoc (name, firstn (n, list))), data-seg)
→ lr-valp (addr , cdr (assoc (name, list)), data-seg)

Theorem: lr-s-similar-statesp-lr-s-similar-params-opener
(lr-s-similar-statesp (s-params, s-temps, l , table)
∧ (frame = car (p-ctrl-stk (l)))
∧ (data-seg = p-data-segment (l)))
→ lr-s-similar-params (s-params, lr-params (frame, l), data-seg)

Theorem: lr-s-similar-statesp-lr-s-similar-temps-opener
(lr-s-similar-statesp (s-params, s-temps , l , table)
∧ (frame = car (p-ctrl-stk (l)))
∧ (data-seg = p-data-segment (l)))
→ lr-s-similar-temps (s-temps, lr-temps (frame, l), data-seg)

Theorem: strip-cars-lr-make-temp-var-dcls
strip-cars (lr-make-temp-var-dcls (temp-alist)) = strip-cdrs (temp-alist)

Theorem: lr-check-result-lr-push-tstk
let value be cdr (assoc (s-expr (s), bindings (car (p-ctrl-stk (l)))))
in
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ definedp (s-pname (s), s-progs (s))
∧ (s-err-flag (s) = ’run)
∧ litatom (s-expr (s))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ (p-psw (lr-push-tstk (s->lr1 (s, l , table), value)) = ’run)
∧ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr1 (s, l , table),
table))

135



→ lr-check-result (t,
cdr (assoc (s-expr (s), s-params (s))),
p-temp-stk (lr-push-tstk (s->lr1 (s, l , table),

value)),
p-data-segment (l),
p-temp-stk (l)) endlet

Theorem: s->lr1-s-set-pos-lr-set-pos
s->lr1 (s-set-pos (s, pos), l , table) = lr-set-pos (s->lr1 (s, l , table), pos)

Theorem: lr-params-lr-set-pos
lr-params (frame, lr-set-pos (l , pos)) = lr-params (frame, l)

Theorem: lr-temps-lr-set-pos
lr-temps (frame, lr-set-pos (l , pos)) = lr-temps (frame, l)

Theorem: lr-s-similar-statesp-lr-s-set-pos
lr-s-similar-statesp (s-params, s-temps , lr-set-pos (l , pos), table)
= lr-s-similar-statesp (s-params, s-temps, l , table)

Theorem: lr-set-expr-s->lr1-s-set-expr-lr-pop-tstk
s->lr1 (s-set-expr (s-eval (t, s-set-pos (s, pos), c), s, dv (s-pos (s), n)),

lr-pop-tstk (lr-if-ok (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c))),
table)

= lr-set-error (lr-set-expr (lr-pop-tstk (lr-if-ok (lr-eval (t,
lr-set-pos (s->lr1 (s,

l ,
table),

pos),
c))),

s->lr1 (s, l , table),
dv (s-pos (s), n)),

s-err-flag (s-eval (t, s-set-pos (s, pos), c)))

Theorem: lr-s-similar-statesp-lr-pop-tstk
lr-s-similar-statesp (s-params, s-temps , lr-pop-tstk (l), table)
= lr-s-similar-statesp (s-params, s-temps, l , table)

Theorem: listp-lr-expr-s->lr1
good-posp1 (s-pos (s), s-body (s-prog (s)))
→ (listp (lr-expr (s->lr1 (s, l , table))) = listp (s-expr (s)))

Theorem: litatom-lr-expr-s->lr1-s-expr
good-posp1 (s-pos (s), s-body (s-prog (s)))
→ (litatom (lr-expr (s->lr1 (s, l , table))) = litatom (s-expr (s)))

136



Theorem: car-lr-expr-s->lr1
good-posp1 (s-pos (s), s-body (s-prog (s)))
→ (car (lr-expr (s->lr1 (s, l , table))) = car (s-expr (s)))

Theorem: equal-p-psw-lr-eval-run-lr-eval-lr-set-error
(p-psw (l) = ’run)
→ (lr-eval (flag , lr-set-error (l , ’run), c) = lr-eval (flag , l , c))

Theorem: lr-proper-heapp-lr-good-pointerp-lr-proper-heapp-nodep
(lr-good-pointerp (addr , data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg))
→ lr-proper-heapp-nodep (addr , data-seg)

Theorem: lr-check-result-f-not-lr-f-addr
((car (temp-stk) 6= lr-f-addr)
∧ lr-proper-p-areasp (data-seg)
∧ listp (temp-stk))
→ (lr-check-result (t, f, temp-stk , data-seg , orig-temp-stk) = f)

Theorem: lr-check-result-t-chain
((flag 6= ’list)
∧ lr-check-result (t, ans, temp-stk2 , data-seg2 , cdr (temp-stk1 ))
∧ lr-check-result (t, anything , temp-stk1 , data-seg1 , temp-stk0 ))
→ lr-check-result (flag , ans, temp-stk2 , data-seg2 , temp-stk0 )

Theorem: lr-check-result-not-f-lr-f-addr
((car (temp-stk) = lr-f-addr)
∧ listp (temp-stk)
∧ lr-proper-p-areasp (data-seg)
∧ (ans 6= f))
→ (lr-check-result (t, ans, temp-stk , data-seg , orig-temp-stk) = f)

Theorem: lr-eval-leaves-listp-p-temp-stk
(proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ (flag 6= ’list)
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ listp (p-temp-stk (lr-eval (flag , l , c)))

Theorem: lr-eval-s->lr1-if-opener-1
let lr-test be lr-if-ok (lr-eval (t,

lr-set-pos (s->lr1 (s, l , table),
dv (s-pos (s), 1)),

137



c))
in
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = ’if)
∧ (flag 6= ’list)
∧ (p-psw (lr-test) = ’run)
∧ (top (p-temp-stk (lr-test)) 6= lr-f-addr))
→ (lr-eval (flag , s->lr1 (s, l , table), c)

= lr-eval (t,
lr-set-expr (lr-pop-tstk (lr-test),

s->lr1 (s, l , table),
dv (s-pos (s), 2)),

c)) endlet

Theorem: lr-eval-s->lr1-if-opener-2
let lr-test be lr-if-ok (lr-eval (t,

lr-set-pos (s->lr1 (s, l , table),
dv (s-pos (s), 1)),

c))
in
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = ’if)
∧ (flag 6= ’list)
∧ (p-psw (lr-test) = ’run)
∧ (top (p-temp-stk (lr-test)) = lr-f-addr))
→ (lr-eval (flag , s->lr1 (s, l , table), c)

= lr-eval (t,
lr-set-expr (lr-pop-tstk (lr-test),

s->lr1 (s, l , table),
dv (s-pos (s), 3)),

c)) endlet

Theorem: lr-eval-s->lr1-if-opener-3
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (flag 6= ’list)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = ’if)
∧ (c 6' 0)
∧ s-good-statep (s, c)
∧ (p-psw (lr-if-ok (lr-eval (t,

lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)),
c)))

138



6= ’run))
→ (lr-eval (flag , s->lr1 (s, l , table), c)

= lr-if-ok (lr-eval (t,
lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)),
c)))

Theorem: lr-eval-s->lr1-temp-eval-opener
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (car (s-expr (s)) = s-temp-eval)
∧ (flag 6= ’list)
∧ (c 6' 0)
∧ listp (s-expr (s))
∧ s-good-statep (s, c))
→ (lr-eval (flag , s->lr1 (s, l , table), c)

= lr-set-temp (lr-eval (t,
lr-set-pos (s->lr1 (s, l , table),

dv (s-pos (s), 1)),
c),

top (p-temp-stk (lr-eval (t,
lr-set-pos (s->lr1 (s,

l ,
table),

dv (s-pos (s), 1)),
c))),

caddr (lr-expr (s->lr1 (s, l , table)))))

Theorem: lr-eval-s->lr1-temp-test-opener
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (car (s-expr (s)) = s-temp-test)
∧ (flag 6= ’list)
∧ (c 6' 0)
∧ listp (s-expr (s))
∧ s-good-statep (s, c))
→ (lr-eval (flag , s->lr1 (s, l , table), c)

= if p-max-temp-stk-size (l) 6< (2 + length (p-temp-stk (l)))
then if lr-eval-temp-setp (s->lr1 (s, l , table))

then lr-do-temp-fetch (s->lr1 (s, l , table))
else lr-set-temp (lr-eval (t,

lr-set-pos (s->lr1 (s,
l ,
table),

dv (s-pos (s), 1)),
c),

top (p-temp-stk (lr-eval (t,

139



lr-set-pos (s->lr1 (s,
l ,
table),

dv (s-pos (s),
1)),

c))),
caddr (lr-expr (s->lr1 (s, l , table)))) endif

else lr-set-error (s->lr1 (s, l , table),
’lr-temp-setp-temp-stack-overflow) endif)

Theorem: lr-eval-s->lr1-temp-fetch-opener
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (car (s-expr (s)) = s-temp-fetch)
∧ (flag 6= ’list)
∧ (c 6' 0)
∧ listp (s-expr (s))
∧ s-good-statep (s, c))
→ (lr-eval (flag , s->lr1 (s, l , table), c)

= lr-do-temp-fetch (s->lr1 (s, l , table)))

Theorem: lr-eval-s->lr1-quote-opener
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (car (s-expr (s)) = ’quote)
∧ (flag 6= ’list)
∧ (c 6' 0)
∧ listp (s-expr (s))
∧ s-good-statep (s, c))
→ (lr-eval (flag , s->lr1 (s, l , table), c)

= lr-push-tstk (s->lr1 (s, l , table),
cadr (lr-expr (s->lr1 (s, l , table)))))

Theorem: lr-params-lr-set-temp
lr-params (frame, lr-set-temp (l , value, var-name)) = lr-params (frame, l)

Theorem: lr-temps-lr-set-temp
lr-temps (frame, lr-set-temp (l , value, var-name)) = lr-temps (frame, l)

Theorem: firstn-put-assoc
firstn (n, put-assoc (val , name, alist)) = put-assoc (val , name, firstn (n, alist))

Theorem: strip-cars-nil-fact
(nil = strip-cars (y)) = (¬ listp (y))

Definition:
induct-hint-13 (e, x , y)

140



= if listp (x )
then if listp (y)

then if e = caar (x ) then t
else induct-hint-13 (e, cdr (x ), cdr (y)) endif

else t endif
else t endif

Theorem: strip-cars-equal-definedp-equal
(strip-cars (x ) = strip-cars (y)) → (definedp (e, x ) = definedp (e, y))

Theorem: lr-eval-preserves-definedp-firstn-bindings-car-p-ctrl-stk
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (definedp (x , firstn (n, bindings (car (p-ctrl-stk (lr-eval (flag , l , c))))))

= definedp (x , firstn (n, bindings (car (p-ctrl-stk (l))))))

Definition:
disjointp (list1 , list2 )
= if listp (list1 )

then (car (list1 ) 6∈ list2 ) ∧ disjointp (cdr (list1 ), list2 )
else t endif

Theorem: member-disjointp-non-member-1
(disjointp (x , y) ∧ (e ∈ x )) → (e 6∈ y)

Theorem: lr-eval-preserves-definedp-fn-bindings-car-ctrl-stk-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp1 (pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (t, lr-set-pos (l , pos), c)) = ’run))
→ (definedp (x ,

firstn (n,
bindings (car (p-ctrl-stk (lr-eval (t,

lr-set-pos (l , pos),
c))))))

= definedp (x , firstn (n, bindings (car (p-ctrl-stk (l))))))

Theorem: lr-params-p-frame-not-definedp-put-assoc-anything
(proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ good-posp1 (pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ disjointp (formal-vars (p-current-program (l)),

141



strip-cars (temp-var-dcls (p-current-program (l))))
∧ listp (lr-expr (l))
∧ ((car (lr-expr (l)) = s-temp-eval)

∨ (car (lr-expr (l)) = s-temp-test))
∧ (p-psw (lr-eval (t, lr-set-pos (l , pos), c)) = ’run))
→ (lr-params (p-frame (put-assoc (anything ,

caddr (lr-expr (l)),
bindings (car (p-ctrl-stk (lr-eval (t,

lr-set-pos (l ,
pos),

c))))),
ret-pc),

l)
= lr-params (car (p-ctrl-stk (lr-eval (t, lr-set-pos (l , pos), c))), l))

Definition:
induct-hint-14 (s-temps, lr-temps , temp-alist)
= if listp (s-temps)

then if listp (lr-temps)
then if listp (temp-alist)

then if cdar (lr-temps) = lr-undef-addr
then induct-hint-14 (cdr (s-temps),

cdr (lr-temps),
cdr (temp-alist))

else induct-hint-14 (cdr (s-temps),
cdr (lr-temps),
cdr (temp-alist)) endif

else t endif
else t endif

else t endif

Theorem: put-assoc-opener-1
((name 6= caar (alist)) ∧ listp (alist))
→ (put-assoc (val , name, alist)

= cons (car (alist), put-assoc (val , name, cdr (alist))))

Theorem: put-assoc-opener-2
(listp (alist3 )
∧ (caar (alist3 ) 6∈ strip-cars (cdr (alist3 )))
∧ definedp (s-expr , alist1 )
∧ (strip-cars (alist1 ) = strip-cars (alist2 ))
∧ (strip-cdrs (alist2 ) = strip-cars (cdr (alist3 ))))
→ (put-assoc (val , cdr (assoc (s-expr , alist2 )), alist3 )

= cons (car (alist3 ),
put-assoc (val , cdr (assoc (s-expr , alist2 )), cdr (alist3 ))))

142



Theorem: not-lr-valp-lr-undef-addr
(lr-proper-heapp (data-seg) ∧ lr-proper-p-areasp (data-seg))
→ (¬ lr-valp (value, identity (lr-undef-addr), data-seg))

Theorem: lr-s-similar-temps-put-assoc-put-assoc-helper-1
(listp (s-temps)
∧ listp (lr-temps)
∧ lr-s-similar-temps (s-temps, lr-temps, data-seg)
∧ lr-valp (value, addr , data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (name1 = caar (s-temps))
∧ (name2 = caar (lr-temps)))
→ lr-s-similar-temps (put-assoc (list (t, value), name1 , s-temps),

put-assoc (addr , name2 , lr-temps),
data-seg)

Theorem: lr-s-similar-temps-put-assoc-put-assoc-helper
(lr-s-similar-temps (s-temps, lr-temps, data-seg)
∧ lr-valp (value, addr , data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (strip-cars (temp-alist) = strip-cars (s-temps))
∧ (strip-cdrs (temp-alist) = strip-cars (lr-temps))
∧ no-duplicatesp (strip-cars (lr-temps))
∧ definedp (s-expr , s-temps))
→ lr-s-similar-temps (put-assoc (list (t, value), s-expr , s-temps),

put-assoc (addr ,
cdr (assoc (s-expr , temp-alist)),
lr-temps),

data-seg)

Theorem: disjointp-cons-arg2
(disjointp (list1 , list2 ) ∧ (x 6∈ list1 ))
→ disjointp (list1 , cons (x , list2 ))

Theorem: disjointp-nlistp-arg2
(list2 ' nil) → disjointp (list1 , list2 )

Theorem: disjointp-lr-make-temp-name-alist-1
disjointp (formals,

strip-cdrs (lr-make-temp-name-alist-1 (initial ,
num-list ,
temp-list ,
formals)))

143



Theorem: lr-s-similar-statesp-s-change-temp-helper-2
let lr-eval be lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c)
in
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ good-posp1 (pos, s-body (s-prog (s)))
∧ lr-s-similar-statesp (s-params , s-temps (s-eval), lr-eval , table)
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ listp (s-expr (s))
∧ ((car (s-expr (s)) = s-temp-eval)

∨ (car (s-expr (s)) = s-temp-test))
∧ (p-psw (lr-eval) = ’run)
∧ (lr-expr = caddr (lr-expr (s->lr1 (s, l , table)))))
→ (lr-s-similar-statesp (s-params,

s-temps (s-change-temp (s-eval ,
s-expr ,
value)),

lr-set-temp (lr-eval , addr , lr-expr),
table)

= lr-s-similar-temps (put-assoc (list (t, value),
s-expr ,
s-temps (s-eval)),

lr-temps (p-frame (put-assoc (addr ,
lr-expr ,
bindings (car (p-ctrl-stk (lr-eval)))),

ret-pc (car (p-ctrl-stk (lr-eval)))),
s->lr1 (s, l , table)),

p-data-segment (lr-eval))) endlet

Theorem: good-posp1-dv-1-temps-lr-expr
(((car (s-expr (s)) = s-temp-eval) ∨ (car (s-expr (s)) = s-temp-test))
∧ listp (s-expr (s))
∧ good-posp1 (s-pos (s), s-body (assoc (s-pname (s), s-progs (s)))))
→ good-posp1 (dv (s-pos (s), 1), s-body (assoc (s-pname (s), s-progs (s))))

Theorem: put-assoc-restn
(¬ definedp (name, firstn (n, alist)))
→ (put-assoc (val , name, restn (n, alist))

= restn (n, put-assoc (val , name, alist)))

Theorem: disjointp-plist-arg-2
disjointp (x , plist (y)) = disjointp (x , y)

Theorem: not-disjointp-member-arg1-cons-arg2
(v ∈ y) → (¬ disjointp (y , cons (v , z )))

144



Theorem: member-disjointp-cons-arg2
(v 6∈ y) → (disjointp (y , cons (v , z )) = disjointp (y , z ))

Theorem: disjointp-commutative
disjointp (x , y) = disjointp (y , x )

Theorem: disjointp-lr-make-temp-name-alist-2
disjointp (strip-cdrs (lr-make-temp-name-alist-1 (initial ,

num-list ,
temp-list ,
formals)),

formals)

Theorem: proper-p-statep-lr->p-s->lr1-strip-cars-bindings-ctrl-stk
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ definedp (s-pname (s), s-progs (s)))
→ (strip-cars (bindings (car (p-ctrl-stk (l))))

= append (s-formals (assoc (s-pname (s), s-progs (s))),
strip-cdrs (lr-make-temp-name-alist (s-temp-list (assoc (s-pname (s),

s-progs (s))),
s-formals (assoc (s-pname (s),

s-progs (s)))))))

Theorem: lr-programs-properp-lr->p-s->lr1-definedp-s-pname
(¬ definedp (s-pname (s), s-progs (s)))
→ (¬ lr-programs-properp (s->lr1 (s, l , table), table))

Theorem: lr-temps-p-frame-put-assoc
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ definedp (s-pname (s), s-progs (s))
∧ listp (s-expr (s))
∧ ((car (s-expr (s)) = s-temp-eval)

∨ (car (s-expr (s)) = s-temp-test))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (p-psw (lr-eval (t, l2 , c)) = ’run)
∧ (lr-expr = caddr (lr-expr (s->lr1 (s, l , table))))
∧ (l2 = lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1))))
→ (lr-temps (p-frame (put-assoc (val ,

lr-expr ,
bindings (car (p-ctrl-stk (lr-eval (t, l2 , c))))),

ret-pc),
s->lr1 (s, l , table))

= put-assoc (val ,
caddr (lr-expr (s->lr1 (s, l , table))),

145



lr-temps (car (p-ctrl-stk (lr-eval (t, l2 , c))),
s->lr1 (s, l , table))))

Theorem: strip-cars-lr-temps-strip-cars-temp-var-dcls
(s-good-statep (s, c)
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ (frame = top (p-ctrl-stk (s->lr1 (s, l , table)))))
→ (strip-cars (lr-temps (frame, s->lr1 (s, l , table)))

= strip-cdrs (lr-make-temp-name-alist (s-temp-list (assoc (s-pname (s),
s-progs (s))),

s-formals (assoc (s-pname (s),
s-progs (s))))))

Event: Disable proper-p-statep-lr->p-s->lr1-strip-cars-bindings-ctrl-stk.

Theorem: lr-s-similar-statesp-s-change-temp-helper-1
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ listp (s-expr (s))
∧ ((car (s-expr (s)) = s-temp-eval)

∨ (car (s-expr (s)) = s-temp-test)
∨ (car (s-expr (s)) = s-temp-fetch)))

→ (caddr (lr-expr (s->lr1 (s, l , table)))
= cdr (assoc (cadr (s-expr (s)),

lr-make-temp-name-alist (s-temp-list (s-prog (s)),
s-formals (s-prog (s))))))

Theorem: lr-s-similar-statesp-s->lr1-lr-similar-temps
lr-s-similar-statesp (s-params, s-temps, l , table)
→ lr-s-similar-temps (s-temps,

lr-temps (top (p-ctrl-stk (l)), l),
p-data-segment (l))

Theorem: count-codelist1-cons
count-codelist1 (cons (x , y)) = (x + (10 ∗ count-codelist1 (y)))

Theorem: equal-append-initial
(append (x , y) = append (x , z )) = (y = z )

Theorem: plist-listp-x-append-x-not-0
plistp (x ) → ((append (x , 0) = 0) = (x = nil))

Theorem: equal-append-final-0
(append (y , 0) = append (z , 0)) = (plist (y) = plist (z ))

146



Theorem: count-codelist1-append-non-listp
(¬ listp (z ))
→ (count-codelist1 (append (num-list , z )) = count-codelist1 (num-list))

Theorem: not-equal-make-symbol-car-gensym
(count-codelist1 (num-list1 ) < count-codelist1 (num-list2 ))
→ (make-symbol (initial , num-list1 )

6= car (gensym (initial , num-list2 , atom-list)))

Theorem: count-codelist1-cdr-gensym
(count-codelist1 (num-list1 ) < count-codelist1 (num-list2 ))
→ (count-codelist1 (num-list1 )

< count-codelist1 (cdr (gensym (initial , num-list2 , atom-list))))

Theorem: not-member-make-symbol-lr-make-temp-name-alist-1-incr
(count-codelist1 (num-list1 ) < count-codelist1 (num-list2 ))
→ ((make-symbol (initial , num-list1 )

∈ strip-cdrs (lr-make-temp-name-alist-1 (initial ,
num-list2 ,
temp-list ,
formals)))

= f)

Theorem: not-member-car-gensym-lr-make-temp-name-alist-1-cdr
(car (gensym (initial , num-list , atoms))
∈ strip-cdrs (lr-make-temp-name-alist-1 (initial ,

cdr (gensym (initial ,
num-list ,
atoms)),

temp-list ,
formals)))

= f

Theorem: no-duplicatesp-strip-cdrs-lr-make-temp-name-alist-1
no-duplicatesp (strip-cdrs (lr-make-temp-name-alist-1 (initial ,

num-list ,
temp-list ,
formals)))

Theorem: no-duplicatesp-strip-cdrs-lr-make-temp-name-alist
no-duplicatesp (strip-cdrs (lr-make-temp-name-alist (temp-list , formals)))

Theorem: definedp-s-temps-s-eval
(s-err-flag (s-eval (flag , s, c)) = ’run)
→ (definedp (x , s-temps (s-eval (flag , s, c))) = definedp (x , s-temps (s)))

147



Theorem: strip-cars-lr-make-temp-name-alist-1
strip-cars (lr-make-temp-name-alist-1 (initial , num-list , temp-list , formals))
= plist (temp-list)

Theorem: strip-cars-lr-make-temp-name-alist
strip-cars (lr-make-temp-name-alist (temp-list , formals)) = plist (temp-list)

Theorem: lr-eval-preserves-strip-cars-lr-temps-car-p-ctrl-stk
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (strip-cars (lr-temps (car (p-ctrl-stk (lr-eval (flag , l , c))), l2 ))

= strip-cars (lr-temps (car (p-ctrl-stk (l)), l2 )))

Theorem: lr-s-similar-statesp-s-change-temp
let s-l be s->lr1 (s, l , table),

lr-eval be lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c)
in
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-s-similar-statesp (s-params , s-temps (s-eval), lr-eval , table)
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ listp (p-temp-stk (lr-eval))
∧ lr-check-result (t,

s-ans (s-eval),
p-temp-stk (lr-eval),
p-data-segment (lr-eval),
orig-temp-stk)

∧ listp (s-expr (s))
∧ ((car (s-expr (s)) = s-temp-eval)

∨ (car (s-expr (s)) = s-temp-test))
∧ (p-psw (lr-eval) = ’run)
∧ (s-err-flag (s-eval) = ’run)
∧ (s-eval = s-eval (t, s-set-pos (s, pos), c))
∧ (value = caddr (lr-expr (s-l)))
∧ (pos = dv (s-pos (s), 1)))
→ lr-s-similar-statesp (s-params,

s-temps (s-change-temp (s-eval ,
cadr (s-expr (s)),
s-ans (s-eval))),

lr-set-temp (lr-eval ,
car (p-temp-stk (lr-eval)),
value),

148



table) endlet

Event: Disable lr-s-similar-statesp-s-change-temp-helper-2.

Theorem: lr-temps-lr-do-temp-fetch
lr-temps (frame, lr-do-temp-fetch (l)) = lr-temps (frame, l)

Theorem: lr-params-lr-do-temp-fetch
lr-params (frame, lr-do-temp-fetch (l)) = lr-params (frame, l)

Theorem: lr-s-simlar-statesp-lr-do-temp-fetch
lr-s-similar-statesp (s-params , s-temps , lr-do-temp-fetch (l), table)
= lr-s-similar-statesp (s-params, s-temps , l , table)

Theorem: not-member-no-duplicates-cdr-assoc-helper
(no-duplicatesp (list)
∧ (strip-cdrs (alist) = list)
∧ (name 6∈ list)
∧ definedp (s-expr , alist))
→ (cdr (assoc (s-expr , alist)) 6= name)

Theorem: not-member-no-duplicates-cdr-assoc
(no-duplicatesp (list)
∧ (strip-cdrs (alist1 ) = list)
∧ (name 6∈ list)
∧ definedp (s-expr , alist2 )
∧ (strip-cars (alist2 ) = strip-cars (alist1 )))
→ (cdr (assoc (s-expr , alist1 )) 6= name)

Theorem: not-equal-lr-s-eval-temp-setp-not-lr-s-similar-temps
((lr-expr = cdr (assoc (s-expr , temp-alist)))
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-s-similar-temps (s-temps, lr-temps, data-seg)
∧ (strip-cars (temp-alist) = strip-cars (s-temps))
∧ (strip-cdrs (temp-alist) = strip-cars (lr-temps))
∧ no-duplicatesp (strip-cars (lr-temps))
∧ definedp (s-expr , s-temps))
→ ((cdr (assoc (lr-expr , lr-temps)) 6= lr-undef-addr)

↔ cadr (assoc (s-expr , s-temps)))

Theorem: definedp-strip-cars-append-member-x-2
(strip-cars (x ) = append (y , z ))
→ ((e ∈ z ) = definedp (e, restn (length (y), x )))

149



Theorem: not-iff-lr-s-temp-setp-not-lr-s-similar-statesp-helper
((x ∈ strip-cdrs (lr-make-temp-name-alist (s-temp-list (assoc (s-pname (s),

s-progs (s))),
s-formals (assoc (s-pname (s),

s-progs (s))))))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ definedp (s-pname (s), s-progs (s)))
→ (cdr (assoc (x , lr-temps (car (p-ctrl-stk (l)), s->lr1 (s, l , table))))

= cdr (assoc (x , bindings (car (p-ctrl-stk (l))))))

Theorem: lr-programs-properp-member-lr-expr-temps
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ ((car (lr-expr (l)) = s-temp-fetch)

∨ (car (lr-expr (l)) = s-temp-eval)
∨ (car (lr-expr (l)) = s-temp-test)))

→ (caddr (lr-expr (l))
∈ strip-cars (temp-var-dcls (p-current-program (l))))

Theorem: not-iff-lr-s-temp-setp-not-lr-s-similar-statesp
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ listp (s-expr (s))
∧ ((car (s-expr (s)) = s-temp-test)

∨ (car (s-expr (s)) = s-temp-fetch))
∧ (¬ (lr-eval-temp-setp (s->lr1 (s, l , table))

↔ s-temp-setp (cadr (s-expr (s)), s-temps (s))))
∧ s-good-statep (s, c))
→ (¬ lr-s-similar-statesp (s-params, s-temps (s), s->lr1 (s, l , table), table))

Theorem: lr-valp-lr-s-eval-lr-s-similar-temps
((lr-expr = cdr (assoc (s-expr , temp-alist)))
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-s-similar-temps (s-temps , lr-temps, data-seg)
∧ (strip-cars (temp-alist) = strip-cars (s-temps))
∧ (strip-cdrs (temp-alist) = strip-cars (lr-temps))
∧ no-duplicatesp (strip-cars (lr-temps))
∧ definedp (s-expr , s-temps)
∧ (cdr (assoc (lr-expr , lr-temps)) 6= lr-undef-addr))
→ lr-valp (caddr (assoc (s-expr , s-temps)),

cdr (assoc (lr-expr , lr-temps)),
data-seg)

150



Theorem: member-cdr-assoc-strip-cdrs-definedp
definedp (x , alist) → (cdr (assoc (x , alist)) ∈ strip-cdrs (alist))

Theorem: definedp-pairlist
definedp (x , pairlist (temp-list , anything)) = (x ∈ temp-list)

Theorem: definedp-lr-make-temp-name-alist-1
definedp (x , lr-make-temp-name-alist-1 (initial , num-list , temp-list , formals))
= (x ∈ temp-list)

Theorem: definedp-lr-make-temp-name-alist
definedp (x , lr-make-temp-name-alist (temp-list , formals))
= (x ∈ temp-list)

Theorem: p-temp-stk-lr-do-temp-fetch-p-psw-run
(p-psw (lr-do-temp-fetch (l)) = ’run)
→ (p-temp-stk (lr-do-temp-fetch (l))

= push (local-var-value (caddr (lr-expr (l)), p-ctrl-stk (l)),
p-temp-stk (l)))

Theorem: lr-check-result-lr-do-temp-fetch
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-good-statep (s, c)
∧ (c 6' 0)
∧ listp (s-expr (s))
∧ ((car (s-expr (s)) = s-temp-test)

∨ (car (s-expr (s)) = s-temp-fetch))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ lr-eval-temp-setp (s->lr1 (s, l , table))
∧ (value = caddr (lr-expr (s->lr1 (s, l , table)))))
→ lr-check-result (t,

caddr (assoc (cadr (s-expr (s)), s-temps (s))),
cons (cdr (assoc (value, bindings (car (p-ctrl-stk (l))))),

p-temp-stk (l)),
p-data-segment (l),
p-temp-stk (l))

Theorem: lr-do-temp-fetch-run-lr-eval-temp-setp
(p-psw (lr-do-temp-fetch (l)) = ’run) → lr-eval-temp-setp (l)

Theorem: lr-s-similar-const-table-lr-valp-assoc
(definedp (value, table) ∧ lr-s-similar-const-table (table, data-seg))
→ lr-valp (value, cdr (assoc (value, table)), data-seg)

151



Theorem: lr-proper-exprp-list-quote-opener
(flag 6= ’list)
→ (lr-proper-exprp (flag ,

list (’quote, addr),
program-names,
formals ,
temps,
table)

= ((type (addr) = ’addr) ∧ (addr ∈ strip-cdrs (table))))

Theorem: lr-check-result-lr-push-tstk-quote
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = ’quote)
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ lr-proper-heapp (p-data-segment (l))
∧ (p-psw (lr-push-tstk (s->lr1 (s, l , table),

cadr (lr-expr (s->lr1 (s, l , table)))))
= ’run))

→ lr-check-result (t,
cadr (s-expr (s)),
p-temp-stk (lr-push-tstk (s->lr1 (s, l , table),

cadr (lr-expr (s->lr1 (s, l , table))))),
p-data-segment (l),
p-temp-stk (l))

Theorem: lr-eval-subrp-user-funcall-opener
let lr-eval-list be lr-eval (’list,

lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)),
c)

in
((flag 6= ’list)
∧ (c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= s-temp-eval)
∧ (car (s-expr (s)) 6= s-temp-test)
∧ (car (s-expr (s)) 6= s-temp-fetch)
∧ (car (s-expr (s)) 6= ’quote)
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-good-statep (s, c))
→ (lr-eval (flag , s->lr1 (s, l , table), c)

152



= if p-psw (lr-eval-list) 6= ’run then lr-eval-list
elseif subrp (car (s-expr (s)))
then lr-apply-subr (s->lr1 (s, l , table), lr-eval-list)
elseif litatom (car (s-expr (s)))
then lr-set-expr (lr-pop-cstk (lr-eval (t,

lr-funcall (s->lr1 (s,
l ,
table),

lr-eval-list),
c − 1)),

s->lr1 (s, l , table),
s-pos (s))

else lr-set-error (s->lr1 (s, l , table),
’bad-instruction) endif) endlet

Theorem: length-cdr-lr-expr-funcall
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ (subrp (car (lr-expr (l))) ∨ litatom (car (lr-expr (l)))))
→ (length (cdr (lr-expr (l))) = arity (car (lr-expr (l))))

Definition:
induct-hint-8 (n, value, temp-stk)
= if n ' 0 then t

else induct-hint-8 (n − 1, cdr (value), cdr (temp-stk)) endif

Theorem: lr-check-result1-lr-valp-get-n-lessp-length
(lr-check-result1 (values, temp-stk , data-seg) ∧ (n < length (values)))
→ lr-valp (get (n, values), get (n, temp-stk), data-seg)

Theorem: lr-valp-lr-good-pointerp
lr-valp (value, addr , data-seg) → lr-good-pointerp (addr , data-seg)

Theorem: lr-check-result1-lr-good-pointerp-get-n-lessp-car
(lr-check-result1 (values, temp-stk , data-seg) ∧ (length (values) 6< 1))
→ ((type (car (temp-stk)) = ’addr)

∧ (cddr (car (temp-stk)) = nil)
∧ listp (car (temp-stk))
∧ adpp (untag (car (temp-stk)), data-seg)
∧ lr-boundary-nodep (car (temp-stk))
∧ (area-name (car (temp-stk)) = identity (lr-heap-name))
∧ (type (fetch (add-addr (car (temp-stk),

identity (lr-ref-count-offset)),
data-seg))

= ’nat))

153



Theorem: lr-check-result1-lr-good-pointerp-get-n-lessp-cadr
(lr-check-result1 (values , temp-stk , data-seg) ∧ (length (values) 6< 2))
→ ((type (cadr (temp-stk)) = ’addr)

∧ (cddr (cadr (temp-stk)) = nil)
∧ listp (cadr (temp-stk))
∧ adpp (untag (cadr (temp-stk)), data-seg)
∧ lr-boundary-nodep (cadr (temp-stk))
∧ (area-name (cadr (temp-stk)) = identity (lr-heap-name))
∧ (type (fetch (add-addr (cadr (temp-stk),

identity (lr-ref-count-offset)),
data-seg))

= ’nat))

Theorem: p-run-subr-preserves-lr-proper-heapp2
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-programs-properp (new-l , table)
∧ listp (lr-expr (l))
∧ proper-p-statep (lr->p (new-l))
∧ lr-proper-free-listp (p-data-segment (new-l))
∧ adpp (untag (lr-max-node (p-data-segment (new-l))), p-data-segment (new-l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (new-l)))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= ’run)

∧ lr-proper-heapp2 (addr , p-data-segment (new-l))
∧ lr-nodep (addr , p-data-segment (new-l))
∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ lr-check-result (’list,

value,
p-temp-stk (new-l),
p-data-segment (new-l),
p-temp-stk (l))

∧ (length (value) = length (cdr (lr-expr (l)))))
→ lr-proper-heapp2 (addr ,

p-data-segment (p-run-subr (car (lr-expr (l)),
p-set-pc (lr->p (new-l),

lr-return-pc (l)))))

Theorem: lr-apply-subr-preserves-lr-proper-heapp2
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))

154



∧ good-posp (’list, pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ proper-p-statep (lr->p (l))
∧ lr-proper-free-listp (p-data-segment (l))
∧ lr-proper-heapp2 (addr , p-data-segment (new-l))
∧ adpp (untag (lr-max-node (p-data-segment (l))), p-data-segment (l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (l)))
∧ lr-nodep (addr , p-data-segment (l))
∧ lr-check-result (’list,

value,
p-temp-stk (new-l),
p-data-segment (new-l),
p-temp-stk (l))

∧ (length (value) = length (cdr (lr-expr (l))))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run))
→ lr-proper-heapp2 (addr , p-data-segment (lr-apply-subr (l , new-l))) endlet

Definition:
induct-hint-15 (s, c)
= if listp (s-pos (s))

then if listp (s-expr-list (s))
then induct-hint-15 (s-set-expr (s-eval (t, s, c), s, nx (s-pos (s))), c)
else t endif

else t endif

Theorem: length-s-eval-list
(listp (s-pos (s)) ∧ (s-err-flag (s-eval (’list, s, c)) = ’run))
→ (length (s-ans (s-eval (’list, s, c))) = length (s-expr-list (s)))

Theorem: plistp-lr-compile-body
listp (body) → plistp (lr-compile-body (flag , body , temp-alist , const-alist))

Theorem: plistp-lr-expr-s->lr1
(good-posp1 (s-pos (s), s-body (s-prog (s))) ∧ listp (s-expr (s)))
→ plistp (lr-expr (s->lr1 (s, l , table)))

Theorem: length-cdr-lr-expr-funcall-s->lr1
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’quote)

155



∧ (subrp (car (s-expr (s))) ∨ litatom (car (s-expr (s)))))
→ (length (cdr (lr-expr (s->lr1 (s, l , table)))) = length (cdr (s-expr (s))))

Theorem: adpp-same-signature-lr-apply-subr
same-signature (p-data-segment (new-l), p-data-segment (lr-apply-subr (l , new-l)))
→ (adpp (adp, p-data-segment (lr-apply-subr (l , new-l)))

= adpp (adp, p-data-segment (new-l)))

Theorem: lr-apply-subr-preserves-lr-proper-heapp
let new-l be lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c)
in
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ definedp (s-pname (s), s-progs (s))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= s-temp-eval)
∧ (car (s-expr (s)) 6= s-temp-test)
∧ (car (s-expr (s)) 6= s-temp-fetch)
∧ (car (s-expr (s)) 6= ’quote)
∧ subrp (car (s-expr (s)))
∧ (car (s-expr (s)) 6= ’if)
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-check-result (’list,

s-ans (s-eval (’list, s-set-pos (s, pos), c)),
p-temp-stk (new-l),
p-data-segment (new-l),
p-temp-stk (l))

∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (s->lr1 (s, l , table), new-l)) = ’run)
∧ lr-proper-heapp (p-data-segment (new-l))
∧ lr-proper-heapp (p-data-segment (l))
∧ (s-err-flag (s-eval (’list, s-set-pos (s, pos), c)) = ’run)
∧ (pos = dv (s-pos (s), 1)))
→ lr-proper-heapp (p-data-segment (lr-apply-subr (s->lr1 (s, l , table),

new-l))) endlet

Theorem: lr-s-similar-params-lr-apply-subr
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ proper-p-statep (lr->p (new-l))

156



∧ lr-proper-heapp (p-data-segment (new-l))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ lr-s-similar-params (s-params, lr-params, p-data-segment (new-l)))
→ lr-s-similar-params (s-params,

lr-params,
p-data-segment (lr-apply-subr (l , new-l))) endlet

Theorem: lr-params-lr-apply-subr
((area-name (p-pc (new-l)) = area-name (p-pc (l)))
∧ (p-prog-segment (new-l) = p-prog-segment (l)))
→ (lr-params (frame, lr-apply-subr (l , new-l)) = lr-params (frame, l))

Theorem: lr-temps-lr-apply-subr
((area-name (p-pc (new-l)) = area-name (p-pc (l)))
∧ (p-prog-segment (new-l) = p-prog-segment (l)))
→ (lr-temps (frame, lr-apply-subr (l , new-l)) = lr-temps (frame, l))

Theorem: lr-s-similar-temps-lr-apply-subr
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ proper-p-statep (lr->p (new-l))
∧ lr-proper-heapp (p-data-segment (new-l))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ lr-s-similar-temps (s-temps, lr-temps , p-data-segment (new-l)))
→ lr-s-similar-temps (s-temps,

lr-temps ,
p-data-segment (lr-apply-subr (l , new-l))) endlet

Theorem: lr-s-similar-const-table-lr-apply-subr
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table1 )
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ proper-p-statep (lr->p (new-l))
∧ lr-proper-heapp (p-data-segment (new-l))

157



∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ lr-s-similar-const-table (table2 , p-data-segment (new-l)))
→ lr-s-similar-const-table (table2 ,

p-data-segment (lr-apply-subr (l , new-l))) endlet

Theorem: lr-s-similar-statesp-lr-apply-subr
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ proper-p-statep (lr->p (new-l))
∧ lr-proper-heapp (p-data-segment (new-l))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ lr-s-similar-statesp (s-params, s-temps, new-l , table))
→ lr-s-similar-statesp (s-params,

s-temps,
lr-apply-subr (l , new-l),
table) endlet

Theorem: proper-p-statep-lr->p-lr-eval-list-helper
let cur-expr be cur-expr (offset (p-pc (l)),

program-body (p-current-program (l)))
in
((length (cur-expr) < 1)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ listp (cur-expr)
∧ (car (cur-expr) 6= ’if)
∧ (car (cur-expr) 6= ’quote)
∧ (litatom (car (cur-expr)) ∨ subrp (car (cur-expr)))
∧ proper-p-statep (lr->p (l))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ proper-p-statep (lr->p (lr-eval (’list, lr-set-pos (l , pos), c))) endlet

Theorem: proper-p-statep-lr->p-lr-eval-list
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)

158



∧ (subrp (car (lr-expr (l))) ∨ litatom (car (lr-expr (l))))
∧ proper-p-statep (lr->p (l))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ proper-p-statep (lr->p (lr-eval (’list, lr-set-pos (l , pos), c)))

Event: Disable proper-p-statep-lr->p-lr-eval-list-helper.

Theorem: not-listp-p-temp-stk-not-lr-check-result1
lr-check-result1 (value, temp-stk , data-seg)
→ (length (temp-stk) 6< length (value))

Theorem: restn-add1-opener-alt
restn (1 + n, list)
= if listp (list) then restn (n, cdr (list))

else list endif

Theorem: cdr-p-temp-stk-p-run-subr
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ subrp (car (lr-expr (l)))
∧ (p-temp-stk (l)

= restn (length (cdr (lr-expr (l))), p-temp-stk (new-l)))
∧ lr-check-result1 (value,

p-temp-stk (new-l),
p-data-segment (new-l))

∧ (length (value) = length (cdr (lr-expr (l))))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= ’run)

∧ (p-psw (new-l) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ (cdr (p-temp-stk (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l),
lr-return-pc (l)))))

= p-temp-stk (l)) endlet

Event: Disable restn-add1-opener-alt.

159



Theorem: cdr-p-temp-stk-lr-apply-subr
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ subrp (car (lr-expr (l)))
∧ (p-temp-stk (l)

= restn (length (cdr (lr-expr (l))), p-temp-stk (new-l)))
∧ lr-check-result1 (value,

p-temp-stk (new-l),
p-data-segment (new-l))

∧ (length (value) = length (cdr (lr-expr (l))))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ (cdr (p-temp-stk (lr-apply-subr (l , new-l))) = p-temp-stk (l)) endlet

Theorem: lr-check-result1-reverse-length-1-opener
(length (values) = 1)
→ (lr-check-result1 (reverse (values), temp-stk , data-seg)

= (lr-valp (car (values), car (temp-stk), data-seg)
∧ lr-good-pointerp (car (temp-stk), data-seg)))

Theorem: lr-check-result1-reverse-length-2-opener
(length (values) = 2)
→ (lr-check-result1 (reverse (values), temp-stk , data-seg)

= (lr-valp (cadr (values), car (temp-stk), data-seg)
∧ lr-good-pointerp (cadr (temp-stk), data-seg)
∧ lr-valp (car (values), cadr (temp-stk), data-seg)
∧ lr-good-pointerp (car (temp-stk), data-seg)))

Theorem: lr-valp-fetch-tag-cons-lr-valp-car-cdr
(lr-valp (value, addr , data-seg)
∧ (fetch (addr , data-seg) = tag (’nat, lr-cons-tag)))
→ (lr-valp (car (value),

fetch (add-addr (addr , identity (lr-car-offset)), data-seg),
data-seg)

∧ lr-valp (cdr (value),
fetch (add-addr (addr , identity (lr-cdr-offset)), data-seg),
data-seg))

Theorem: lr-good-pointerp-type-tag-nat

160



(lr-proper-heapp (data-seg) ∧ lr-good-pointerp (addr , data-seg))
→ (type (fetch (addr , data-seg)) = ’nat)

Theorem: lr-proper-heapp-lr-valp-f-helper
(lr-proper-heapp-nodep (lr-f-addr, data-seg)
∧ lr-proper-heapp-nodep (addr , data-seg)
∧ lr-nodep (addr , data-seg)
∧ lr-minimum-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg))
→ (lr-valp (f, addr , data-seg) = (addr = lr-f-addr))

Theorem: lr-proper-heapp-lr-valp-f
(lr-proper-heapp (data-seg) ∧ lr-proper-p-areasp (data-seg))
→ (lr-valp (f, addr , data-seg) = (addr = lr-f-addr))

Theorem: lr-valp-equal-value-fact
(lr-valp (value1 , addr , data-seg) ∧ lr-valp (value2 , addr , data-seg))
→ (value1 = value2 )

Theorem: lr-proper-heapp-lr-valp-0
lr-proper-heapp (data-seg)
→ (lr-valp (value, identity (lr-0-addr), data-seg) = (value = 0))

Theorem: lr-proper-heapp-lr-valp-lr-f-addr
(lr-proper-heapp (data-seg) ∧ lr-proper-p-areasp (data-seg))
→ (lr-valp (value, identity (lr-f-addr), data-seg) = (value = f))

Theorem: lr-proper-heapp-lr-valp-lr-t-addr
lr-proper-heapp (data-seg)
→ (lr-valp (value, identity (lr-t-addr), data-seg) = (value = t))

Theorem: lr-valp-fetch-tag-not-cons-lr-valp-car-cdr-0
(proper-p-statep (lr->p (l))
∧ lr-proper-heapp (p-data-segment (l))
∧ (fetch (car (p-temp-stk (l)), p-data-segment (l))

6= tag (’nat, lr-cons-tag))
∧ ((car (value) 6= 0) ∨ (cdr (value) 6= 0)))
→ (¬ lr-valp (value, car (p-temp-stk (l)), p-data-segment (l)))

Theorem: lr-valp-not-tag-cons-not-listp
((¬ listp (value)) ∧ (fetch (addr , data-seg) = tag (’nat, lr-cons-tag)))
→ (¬ lr-valp (value, addr , data-seg))

Theorem: lr-valp-fetch-tag-not-cons-lr-valp-listp
(proper-p-statep (lr->p (l))
∧ lr-proper-heapp (p-data-segment (l))

161



∧ (fetch (car (p-temp-stk (l)), p-data-segment (l))
6= tag (’nat, lr-cons-tag))

∧ listp (value))
→ (¬ lr-valp (value, car (p-temp-stk (l)), p-data-segment (l)))

Theorem: lr-valp-cons
lr-valp (cons (x , y), addr , data-seg)
= if lr-good-pointerp (addr , data-seg)

then (untag (fetch (addr , data-seg)) = lr-cons-tag)
∧ lr-valp (x ,

fetch (add-addr (addr , lr-car-offset), data-seg),
data-seg)

∧ lr-valp (y ,
fetch (add-addr (addr , lr-cdr-offset), data-seg),
data-seg)

else f endif

Theorem: lr-valp-deposit-a-list-cons
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-nodep (lr-max-node (data-seg), data-seg)
∧ lr-minimum-heapp (data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-valp (value, addr , data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (fp-addr = fetch (identity (lr-fp-addr), data-seg)))
→ lr-valp (value, addr , deposit-a-list (list (x0 , x1 , x2 , x3 ), fp-addr , data-seg))

Theorem: lr-valp-car-p-temp-stk-p-run-subr-cons-helper
(lr-proper-heapp (data-seg)
∧ lr-valp (car , car-addr , data-seg)
∧ lr-valp (cdr , cdr-addr , data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (type (ref-count) = ’nat))
→ lr-valp (cons (car , cdr),

fetch (identity (lr-fp-addr), data-seg),
deposit-a-list (list (identity (tag (’nat, lr-cons-tag)),

ref-count ,
car-addr ,
cdr-addr),

fetch (identity (lr-fp-addr), data-seg),
data-seg))

Event: Disable lr-valp-cons.

162



Theorem: lr-valp-not-tag-true-not-listp
((¬ truep (value)) ∧ (fetch (addr , data-seg) = tag (’nat, lr-true-tag)))
→ (¬ lr-valp (value, addr , data-seg))

Theorem: lr-valp-fetch-tag-not-true-lr-valp-listp
(proper-p-statep (lr->p (l))
∧ lr-proper-heapp (p-data-segment (l))
∧ (fetch (car (p-temp-stk (l)), p-data-segment (l))

6= tag (’nat, lr-true-tag)))
→ (¬ lr-valp (t, car (p-temp-stk (l)), p-data-segment (l)))

Theorem: lr-valp-car-p-temp-stk-p-run-subr
(lr-proper-heapp (p-data-segment (l))
∧ lr-check-result1 (reverse (values), p-temp-stk (l), p-data-segment (l))
∧ (length (values) = arity (subr))
∧ proper-p-statep (lr->p (l))
∧ lr-programs-properp (l , table)
∧ (p-psw (p-run-subr (subr , p-set-pc (lr->p (l), pc))) = ’run)
∧ (p-psw (l) = ’run)
∧ (area-name (pc) = area-name (p-pc (l)))
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= list (’call, subr)))
→ lr-valp (apply-subr (subr , values),

car (p-temp-stk (p-run-subr (subr , p-set-pc (lr->p (l), pc)))),
p-data-segment (p-run-subr (subr , p-set-pc (lr->p (l), pc))))

Theorem: lr-programs-properp-not-definedp-subrp-runtime-support
(subrp (car (s-expr (s)))
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (¬ definedp (car (s-expr (s)), p-runtime-support-programs))
∧ good-posp1 (s-pos (s), s-body (s-prog (s))))
→ (¬ lr-programs-properp (s->lr1 (s, l , table), table))

Theorem: lr-valp-apply-subr-lr-apply-subr
let new-l be lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c)
in
(listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (car (s-expr (s)) 6= s-temp-eval)
∧ (car (s-expr (s)) 6= s-temp-test)
∧ (car (s-expr (s)) 6= s-temp-fetch)

163



∧ subrp (car (s-expr (s)))
∧ lr-proper-heapp (p-data-segment (new-l))
∧ lr-check-result1 (reverse (values),

p-temp-stk (new-l),
p-data-segment (new-l))

∧ (length (values) = length (cdr (lr-expr (s->lr1 (s, l , table)))))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (s->lr1 (s, l , table), new-l)) = ’run)
∧ (pos = dv (s-pos (s), 1)))
→ lr-valp (apply-subr (car (s-expr (s)), values),

car (p-temp-stk (lr-apply-subr (s->lr1 (s, l , table), new-l))),
p-data-segment (lr-apply-subr (s->lr1 (s, l , table), new-l))) endlet

Event: Disable lr-programs-properp-not-definedp-subrp-runtime-support.

Theorem: lr-check-result-lr-apply-subr
let new-l be lr-eval (’list,

lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)),
c),

pos be dv (s-pos (s), 1)
in
(listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (car (s-expr (s)) 6= s-temp-eval)
∧ (car (s-expr (s)) 6= s-temp-test)
∧ (car (s-expr (s)) 6= s-temp-fetch)
∧ subrp (car (s-expr (s)))
∧ lr-check-result (’list,

s-ans (s-eval (’list, s-set-pos (s, pos), c)),
p-temp-stk (new-l),
p-data-segment (new-l),
p-temp-stk (l))

∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (s->lr1 (s, l , table), new-l)) = ’run)

164



∧ (s-err-flag (s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c))
= ’run))

→ lr-check-result (t,
apply-subr (car (s-expr (s)),

s-ans (s-eval (’list,
s-set-pos (s, pos),
c))),

p-temp-stk (lr-apply-subr (s->lr1 (s, l , table),
new-l)),

p-data-segment (lr-apply-subr (s->lr1 (s, l , table),
new-l)),

p-temp-stk (l)) endlet

Theorem: s->lr1-lr-funcall-s-fun-call-state
(listp (s-expr (s))
∧ (¬ subrp (car (s-expr (s))))
∧ (car (s-expr (s)) 6= ’quote)
∧ (car (s-expr (s)) 6= ’if)
∧ litatom (car (s-expr (s)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (p-psw (lr-funcall (s->lr1 (s, l , table), lr-eval)) = ’run)
∧ (s-progs (s-eval) = s-progs (s))
∧ (p-prog-segment (lr-eval) = p-prog-segment (s->lr1 (s, l , table))))
→ (s->lr1 (s-fun-call-state (s-eval , car (s-expr (s))),

lr-funcall (s->lr1 (s, l , table), lr-eval),
table)

= lr-funcall (s->lr1 (s, l , table), lr-eval))

Theorem: lr-params-lr-funcall
((p-psw (lr-funcall (l1 , l2 )) = ’run)
∧ (p-prog-segment (l1 ) = p-prog-segment (l2 )))
→ (lr-params (car (p-ctrl-stk (lr-funcall (l1 , l2 ))), lr-funcall (l1 , l2 ))

= pair-formal-vars-with-actuals (formal-vars (assoc (user-fname (car (lr-expr (l1 ))),
p-prog-segment (l1 ))),

p-temp-stk (l2 )))

Theorem: lr-temps-lr-funcall
((p-psw (lr-funcall (l1 , l2 )) = ’run)
∧ (p-prog-segment (l1 ) = p-prog-segment (l2 )))
→ (lr-temps (car (p-ctrl-stk (lr-funcall (l1 , l2 ))), lr-funcall (l1 , l2 ))

= pair-temps-with-initial-values (temp-var-dcls (assoc (user-fname (car (lr-expr (l1 ))),
p-prog-segment (l1 )))))

Theorem: listp-pairlist
listp (pairlist (x , y)) = listp (x )

165



Theorem: car-reverse-last
car (reverse (list)) = car (last (list))

Theorem: get-sub1-length-car-last
(listp (list) ∧ (n = (length (list) − 1)))
→ (get (n, list) = car (last (list)))

Theorem: car-last-first-n-add1-get
car (last (first-n (1 + n, list))) = get (n, list)

Theorem: length-butlast
length (butlast (x )) = (length (x ) − 1)

Definition:
induct-hint-1 (x , y , z )
= if listp (x )

then if listp (y)
then if listp (z )

then induct-hint-1 (cdr (x ), butlast (y), butlast (z ))
else t endif

else t endif
else t endif

Theorem: lr-check-result1-append-2
(length (values) = length (temp-stk1 ))
→ (lr-check-result1 (values, append (temp-stk1 , temp-stk2 ), data-seg)

= lr-check-result1 (values , temp-stk1 , data-seg))

Theorem: lr-check-result1-butlast
(lr-check-result1 (values , temp-stk , data-seg)
∧ (length (temp-stk) = length (values))
∧ listp (temp-stk)
∧ listp (values))
→ lr-check-result1 (butlast (values), butlast (temp-stk), data-seg)

Theorem: reverse-butlast
listp (x ) → (reverse (butlast (x )) = cdr (reverse (x )))

Theorem: lr-s-similar-params-lr-valp-get
((n < length (s-params))
∧ (strip-cars (s-params) = strip-cars (lr-params))
∧ lr-s-similar-params (s-params, lr-params, data-seg))
→ lr-valp (cdr (get (n, s-params)), cdr (get (n, lr-params)), data-seg)

166



Theorem: lr-s-similar-params-lr-funcall-helper-1
(lr-s-similar-params (pairlist (cdr (formals), cdr (reverse (values))),

pairlist (cdr (formals), cdr (reverse (temp-stk))),
data-seg)

∧ listp (formals)
∧ listp (values)
∧ listp (temp-stk)
∧ lr-check-result1 (values, temp-stk , data-seg)
∧ ((1 + length (cdr (formals))) = length (temp-stk))
∧ (length (temp-stk) = length (values)))
→ lr-valp (car (last (values)), car (last (temp-stk)), data-seg)

Theorem: lr-s-similar-params-lr-funcall
(lr-check-result1 (values, temp-stk , data-seg)
∧ (length (temp-stk) = length (values))
∧ (length (temp-stk) = length (formals)))
→ lr-s-similar-params (pairlist (formals , reverse (values)),

pairlist (formals, reverse (temp-stk)),
data-seg)

Theorem: append-first-n-restn
(length (l) 6< i) → (append (first-n (i , l), restn (i , l)) = l)

Theorem: lr-check-result1-first-n-temp-stk
(length (p-temp-stk (l)) 6< length (values))
→ (lr-check-result1 (values, p-temp-stk (l), data-seg)

= lr-check-result1 (values,
first-n (length (values), p-temp-stk (l)),
data-seg))

Theorem: lr-push-tstk-length
(p-psw (lr-push-tstk (l , object)) = ’run)
→ (length (p-temp-stk (lr-push-tstk (l , object)))

= (1 + length (p-temp-stk (l))))

Theorem: length-add1-add1-cddr-fact
(length (x ) = (1 + (1 + length (y)))) → (length (cddr (x )) = length (y))

Theorem: length-p-temp-stk-p-run-subr-helper-1
(length (p-temp-stk (lr-eval (’list, lr-set-pos (l , pos), c)))
= (1 + (1 + length (p-temp-stk (l)))))
→ (length (cddr (p-temp-stk (lr-eval (’list, lr-set-pos (l , pos), c))))

= length (p-temp-stk (l)))

Theorem: length-p-temp-stk-p-run-subr

167



let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ subrp (car (lr-expr (l)))
∧ (length (p-temp-stk (new-l))

= (length (p-temp-stk (l)) + arity (car (lr-expr (l)))))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= ’run)

∧ (p-psw (new-l) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ (length (p-temp-stk (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l),
lr-return-pc (l)))))

= (1 + length (p-temp-stk (l)))) endlet

Theorem: length-p-temp-stk-lr-apply-subr
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ subrp (car (lr-expr (l)))
∧ (length (p-temp-stk (new-l))

= (length (p-temp-stk (l)) + arity (car (lr-expr (l)))))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ (length (p-temp-stk (lr-apply-subr (l , new-l)))

= (1 + length (p-temp-stk (l)))) endlet

Definition:
lr-proper-formalsp (programs)
= if listp (programs)

then ((logic-fname (name (car (programs))) = ’quote)
∨ (length (formal-vars (car (programs)))

= arity (logic-fname (name (car (programs))))))
∧ lr-proper-formalsp (cdr (programs))

else t endif

168



Theorem: length-formal-vars-lr-proper-formalsp-arity
(definedp (name, programs)
∧ (logic-fname (name) 6= ’quote)
∧ lr-proper-formalsp (programs))
→ (length (formal-vars (assoc (name, programs)))

= arity (logic-fname (name)))

Theorem: arity-formals-not-quote
(formals (name) ∧ (name 6= ’quote))
→ (arity (name) = length (formals (name)))

Theorem: lr-proper-formalsp-lr-compile-programs
s-programs-okp (programs)
→ lr-proper-formalsp (lr-compile-programs (programs, table))

Event: Disable arity-formals-not-quote.

Event: Disable lr-proper-formalsp.

Theorem: lr-programs-properp-funcall-not-caar-prog-seg
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ (¬ subrp (car (lr-expr (l))))
∧ litatom (car (lr-expr (l)))
∧ listp (p-prog-segment (l))
∧ (user-fname (car (lr-expr (l))) = caar (p-prog-segment (l)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l))))
→ (¬ lr-programs-properp (l , table))

Theorem: length-p-temp-stk-lr-funcall
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ (p-psw (new-l) = ’run)
∧ (¬ subrp (car (lr-expr (l))))
∧ litatom (car (lr-expr (l)))
∧ (length (p-temp-stk (lr-eval (t, lr-funcall (l , new-l), c − 1)))

= (1 + length (p-temp-stk (lr-funcall (l , new-l)))))
∧ (length (p-temp-stk (new-l))

= (length (p-temp-stk (l)) + arity (car (lr-expr (l)))))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-proper-formalsp (cdr (p-prog-segment (l)))

169



∧ (p-psw (lr-funcall (l , new-l)) = ’run))
→ (length (p-temp-stk (lr-funcall (l , new-l))) = length (p-temp-stk (l)))

Theorem: length-p-temp-stk-lr-eval
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (length (p-temp-stk (lr-eval (flag , l , c)))

= if flag = ’list
then length (lr-expr-list (l)) + length (p-temp-stk (l))
else 1 + length (p-temp-stk (l)) endif)

Theorem: length-p-temp-stk-lr-eval-flag-list
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp (’list, pos, s-body (s-prog (s)))
∧ s-good-statep (s, c)
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ (p-psw (lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c))

= ’run))
→ (length (p-temp-stk (lr-eval (’list,

lr-set-pos (s->lr1 (s, l , table), pos),
c)))

= (length (s-expr-list (s-set-pos (s, pos)))
+ length (p-temp-stk (l))))

Theorem: reverse-reverse-alt
reverse (reverse (l)) = plist (l)

Theorem: pairlist-plist-1
pairlist (x , plist (y)) = pairlist (x , y)

Theorem: s-good-statep-length-cdr-s-expr-funcall
(s-good-statep (s, c)
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’quote)
∧ (car (s-expr (s)) 6= ’if)
∧ (litatom (car (s-expr (s))) ∨ subrp (car (s-expr (s)))))
→ (length (cdr (s-expr (s))) = arity (car (s-expr (s))))

Theorem: lr-s-similar-temps-make-temps-pair-temps
lr-s-similar-temps (make-temps-entries (temp-list),

pair-temps-with-initial-values (lr-make-temp-var-dcls (lr-make-temp-name-alist-1 (initial ,

170



num-list ,
temp-list ,
formals))),

data-seg)

Theorem: lr-s-similar-temps-lr-funcall
lr-s-similar-temps (make-temps-entries (s-temp-list (assoc (name, progs))),

pair-temps-with-initial-values (temp-var-dcls (assoc (name,
lr-compile-programs (progs,

table)))),
data-seg)

Theorem: lr-eval-preserves-lr-s-similar-const-table
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table1 )
∧ (p-psw (lr-eval (flag , l , c)) = ’run)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-s-similar-const-table (table2 , p-data-segment (l)))
→ lr-s-similar-const-table (table2 , p-data-segment (lr-eval (flag , l , c)))

Theorem: lr-s-similar-statesp-lr-funcall
let pos be dv (s-pos (s), 1)
in
(listp (s-expr (s))
∧ (¬ subrp (car (s-expr (s))))
∧ (car (s-expr (s)) 6= ’quote)
∧ (car (s-expr (s)) 6= ’if)
∧ litatom (car (s-expr (s)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-funcall (s->lr1 (s, l , table), lr-eval)) = ’run)
∧ (p-psw (lr-eval) = ’run)
∧ lr-check-result (’list,

values,
p-temp-stk (lr-eval),
p-data-segment (lr-eval),
p-temp-stk (l))

∧ lr-proper-heapp (p-data-segment (l))
∧ (s-err-flag (s-eval (’list, s-set-pos (s, pos), c)) = ’run)
∧ (formals = s-formals (assoc (user-fname (car (s-expr (s))),

s-progs (s))))
∧ (lr-eval = lr-eval (’list,

171



lr-set-pos (s->lr1 (s, l , table), pos),
c))

∧ (values = s-ans (s-eval (’list, s-set-pos (s, pos), c)))
∧ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr1 (s, l , table),
table))

→ lr-s-similar-statesp (pairlist (formals, values),
make-temps-entries (s-temp-list (assoc (user-fname (car (s-expr (s))),

s-progs (s)))),
lr-funcall (s->lr1 (s, l , table), lr-eval),
table) endlet

Theorem: lr-params-lr-set-expr-lr-pop-cstk
((area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ (lr-params (frame,

lr-set-expr (lr-pop-cstk (lr-eval (t, lr-funcall (l , new-l), c)),
l ,
pos))

= lr-params (frame, l))

Theorem: lr-temps-lr-set-expr-lr-pop-cstk
((area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ (lr-temps (frame,

lr-set-expr (lr-pop-cstk (lr-eval (t, lr-funcall (l , new-l), c)),
l ,
pos))

= lr-temps (frame, l))

Theorem: lr-eval-preserves-lr-s-similar-params
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-s-similar-params (s-params, lr-params, p-data-segment (l)))
→ lr-s-similar-params (s-params,

lr-params,
p-data-segment (lr-eval (flag , l , c)))

Theorem: lr-eval-preserves-lr-s-similar-temps
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))

172



∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-s-similar-temps (s-temps, lr-temps, p-data-segment (l)))
→ lr-s-similar-temps (s-temps, lr-temps, p-data-segment (lr-eval (flag , l , c)))

Theorem: lr-s-similar-statesp-lr-set-expr-lr-pop-cstk
let funcall be lr-funcall (s->lr1 (s, l , table),

lr-eval (’list,
lr-set-pos (s->lr1 (s, l , table), pos),
c)),

lr-eval be lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c)
in
(lr-s-similar-statesp (s-params (s), s-temps (s-eval), lr-eval , table)
∧ listp (s-expr (s))
∧ (¬ subrp (car (s-expr (s))))
∧ (car (s-expr (s)) 6= ’quote)
∧ (car (s-expr (s)) 6= ’if)
∧ litatom (car (s-expr (s)))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-proper-heapp (p-data-segment (lr-eval))
∧ (pos = dv (s-pos (s), 1))
∧ (p-psw (lr-eval (t, funcall , c − 1)) = ’run)
∧ (p-psw (lr-eval) = ’run))
→ lr-s-similar-statesp (s-params (s),

s-temps (s-eval),
lr-set-expr (lr-pop-cstk (lr-eval (t,

funcall ,
c − 1)),

s->lr1 (s, l , table),
s-pos (s)),

table) endlet

Theorem: popn-restn
(length (list) 6< n) → (popn (n, list) = restn (n, list))

Theorem: lr-check-result-lr-funcall
let new-l be lr-eval (’list,

lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)),
c),

pos be dv (s-pos (s), 1),
s-eval be s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c)

in

173



(listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ litatom (car (s-expr (s)))
∧ lr-check-result (’list,

s-ans (s-eval),
p-temp-stk (new-l),
p-data-segment (new-l),
p-temp-stk (l))

∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-funcall (s->lr1 (s, l , table), new-l)) = ’run)
∧ (s-err-flag (s-eval) = ’run)
∧ lr-check-result (t,

s-ans (s-eval (t,
s-fun-call-state (s-eval ,

car (s-expr (s))),
c − 1)),

p-temp-stk (lr-eval (t,
lr-funcall (s->lr1 (s,

l ,
table),

new-l),
c − 1)),

p-data-segment (lr-eval (t,
lr-funcall (s->lr1 (s,

l ,
table),

new-l),
c − 1)),

p-temp-stk (lr-funcall (s->lr1 (s, l , table), new-l))))
→ lr-check-result (t,

s-ans (s-eval (t,
s-fun-call-state (s-eval ,

car (s-expr (s))),
c − 1)),

p-temp-stk (lr-eval (t,
lr-funcall (s->lr1 (s, l , table),

new-l),
c − 1)),

174



p-data-segment (lr-eval (t,
lr-funcall (s->lr1 (s,

l ,
table),

new-l),
c − 1)),

p-temp-stk (l)) endlet

Event: Disable popn-restn.

Theorem: lr-eval-s->lr1-flag-list-opener-1
(good-posp (’list, s-pos (s), s-body (s-prog (s)))
∧ listp (s-expr-list (s))
∧ listp (s-pos (s))
∧ (s-err-flag (s) = ’run))
→ (lr-eval (’list, s->lr1 (s, l , table), c)

= lr-eval (’list,
lr-set-expr (lr-eval (t, s->lr1 (s, l , table), c),

s->lr1 (s, l , table),
nx (s-pos (s))),

c))

Theorem: lr-eval-s->lr1-flag-list-opener-2
(good-posp (’list, s-pos (s), s-body (s-prog (s)))
∧ (¬ listp (s-expr-list (s)))
∧ listp (s-pos (s))
∧ (s-err-flag (s) = ’run))
→ (lr-eval (’list, s->lr1 (s, l , table), c) = s->lr1 (s, l , table))

Theorem: lr-check-result-lr-proper-heapp
lr-check-result (flag , value, temp-stk , data-seg , orig-temp-stk)
→ lr-proper-heapp (data-seg)

Theorem: lr-programs-properp-lr-set-error
lr-programs-properp (lr-set-error (l , error), table)
= lr-programs-properp (l , table)

Theorem: p-psw-lr-pop-tstk-lr-eval-flag-t
(proper-p-statep (lr->p (l))
∧ good-posp1 (pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-if-ok (lr-eval (t, lr-set-pos (l , pos), c))) = ’run))
→ (p-psw (lr-pop-tstk (lr-if-ok (lr-eval (t, lr-set-pos (l , pos), c))))

= ’run)

175



Theorem: lr-eval-leaves-listp-p-temp-stk-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp1 (pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (t, lr-set-pos (l , pos), c)) = ’run))
→ listp (p-temp-stk (lr-eval (t, lr-set-pos (l , pos), c)))

Theorem: p-psw-run-lr-if-ok-p-psw-run
(p-psw (lr-if-ok (l)) = ’run) → (p-psw (l) = ’run)

Theorem: lr-s-similar-statesp-lr-if-ok
lr-s-similar-statesp (s-params , s-temps , lr-if-ok (l), table)
= lr-s-similar-statesp (s-params, s-temps, l , table)

Theorem: lr-eval-s-eval-equivalence
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp (flag , s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (flag , s->lr1 (s, l , table), c)) = ’run))
→ (lr-s-similar-statesp (s-params (s),

s-temps (s-eval (flag , s, c)),
lr-eval (flag , s->lr1 (s, l , table), c),
table)

∧ lr-check-result (if flag = ’list then ’list
else t endif,
s-ans (s-eval (flag , s, c)),
p-temp-stk (lr-eval (flag , s->lr1 (s, l , table), c)),
p-data-segment (lr-eval (flag ,

s->lr1 (s, l , table),
c)),

p-temp-stk (l))
∧ (s-err-flag (s-eval (flag , s, c)) = ’run))

Event: Disable p-psw-run-lr-if-ok-p-psw-run.

; ------------------------------------------------------------
; was lr-eval5.events
; ------------------------------------------------------------

;; The following define functions for each SUBR that tell how many

176



;; resources are used. In the computations of the maximum control
;; stack size we break out the parts needed for formals and
;; temporaries and building a new control-stack frame. For example in
;; CONS we have (plus 2 0 1 ...), the 2 is for building a new frame,
;; the 0 is for the formals (CONS leaves its args on the temp stack)
;; and 1 for temporaries.

Definition:
s-apply-car-r (s) = list (1, 2 + 1 + 0 + 0, 0, 0)

Definition:
s-apply-cdr-r (s) = list (1, 2 + 1 + 0 + 0, 0, 0)

;; CONS takes two implicit args

Definition:
s-apply-cons-r (s) = list (2, 2 + 0 + 1 + 0, 0, 1)

Definition:
s-apply-false-r (s) = list (1, 2 + 0 + 0 + 0, 0, 0)

;; FALSEP takes one implicit arg on stack.

Definition:
s-apply-falsep-r (s) = list (1, 2 + 0 + 0 + 0, 0, 0)

;; LISTP takes an implicit arg

Definition:
s-apply-listp-r (s) = list (1, 2 + 0 + 0 + 0, 0, 0)

;; NLISTP takes an implicit arg

Definition:
s-apply-nlistp-r (s) = list (1, 2 + 0 + 0 + 0, 0, 0)

Definition:
s-apply-true-r (s) = list (1, 2 + 0 + 0 + 0, 0, 0)

Definition:
s-apply-truep-r (s) = list (1, 2 + 0 + 0 + 0, 0, 0)

Definition:
s-apply-subr-r (subr , s)
= case on subr :

case = car
then s-apply-car-r (s)

177



case = cdr
then s-apply-cdr-r (s)

case = cons
then s-apply-cons-r (s)

case = false
then s-apply-false-r (s)

case = falsep
then s-apply-falsep-r (s)

case = listp
then s-apply-listp-r (s)

case = nlistp
then s-apply-nlistp-r (s)

case = true
then s-apply-true-r (s)

case = truep
then s-apply-truep-r (s)

otherwise list (0, 0, 0, 0) endcase

Definition:
max-r (list1 , list2 )
= list (max (car (list1 ), car (list2 )),

max (cadr (list1 ), cadr (list2 )),
max (caddr (list1 ), caddr (list2 )),
cadddr (list1 ) + cadddr (list2 ))

Event: Disable max-r.

Definition:
s-add-temp-r (list , n)
= list (n + car (list), cadr (list), caddr (list), cadddr (list))

;; S-EVAL-R is somewhat similar to S-EVAL. It returns a list of four
;; numbers representing. the maximum temp stack size, maximum ctrl stack
;; size, maximum word size and number of free heap nodes respectively needed
;; to execute the compilation of the S-STATE s in Piton without getting an
;; error.

Definition:
s-eval-r (flag , s, c)
= if s-err-flag (s) 6= ’run then list (0, 0, 0, 0)

elseif flag = ’list
then if s-pos (s) ' nil then list (0, 0, 0, 0)

elseif listp (s-expr-list (s))
then max-r (s-eval-r (t, s, c),

178



s-add-temp-r (s-eval-r (’list,
s-set-expr (s-eval (t, s, c),

s,
nx (s-pos (s))),

c),
1))

else list (0, 0, 0, 0) endif
elseif c ' 0 then list (0, 0, 0, 0)
elseif litatom (s-expr (s)) then list (1, 0, 0, 0)
elseif s-expr (s) ' nil then list (0, 0, 0, 0)
elseif car (s-expr (s)) = ’if
then let test be s-eval (t, s-set-pos (s, dv (s-pos (s), 1)), c)

in
if s-err-flag (test) = ’run
then if s-ans (test)

then max-r (s-add-temp-r (s-eval-r (t,
s-set-pos (s,

dv (s-pos (s),
1)),

c),
1),

s-eval-r (t,
s-set-expr (test ,

s,
dv (s-pos (s), 2)),

c))
else max-r (s-add-temp-r (s-eval-r (t,

s-set-pos (s,
dv (s-pos (s),

1)),
c),

1),
s-eval-r (t,

s-set-expr (test ,
s,
dv (s-pos (s), 3)),

c)) endif
else s-eval-r (t, s-set-pos (s, dv (s-pos (s), 1)), c) endif endlet

elseif car (s-expr (s)) = s-temp-eval
then s-eval-r (t, s-set-pos (s, dv (s-pos (s), 1)), c)
elseif car (s-expr (s)) = s-temp-test
then if s-temp-setp (cadr (s-expr (s)), s-temps (s)) then list (2, 0, 0, 0)

else max-r (list (2, 0, 0, 0),
s-eval-r (t, s-set-pos (s, dv (s-pos (s), 1)), c)) endif

179



elseif car (s-expr (s)) = s-temp-fetch then list (1, 0, 0, 0)
elseif car (s-expr (s)) = ’quote then list (1, 0, 0, 0)
elseif s-err-flag (s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c))

6= ’run
then s-eval-r (’list, s-set-pos (s, dv (s-pos (s), 1)), c)
elseif subrp (car (s-expr (s)))
then max-r (s-eval-r (’list, s-set-pos (s, dv (s-pos (s), 1)), c),

s-add-temp-r (s-apply-subr-r (car (s-expr (s)),
s-eval (’list,

s-set-pos (s,
dv (s-pos (s),

1)),
c)),

arity (car (s-expr (s)))))
elseif litatom (car (s-expr (s)))
then let arg-s be s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c)

in
let fstate be s-fun-call-state (arg-s, car (s-expr (s)))
in
let arg-r be s-eval-r (t, fstate, c − 1)
in
max-r (s-eval-r (’list,

s-set-pos (s, dv (s-pos (s), 1)),
c),

list (car (arg-r),
2
+ length (s-params (fstate))
+ length (s-temps (fstate))
+ cadr (arg-r),
caddr (arg-r),
cadddr (arg-r))) endlet endlet endlet

else list (0, 0, 0, 0) endif

Definition: s-eval-temp-r (flag , s, c) = car (s-eval-r (flag , s, c))

Definition: s-eval-ctrl-r (flag , s, c) = cadr (s-eval-r (flag , s, c))

Definition: s-eval-ws-r (flag , s, c) = caddr (s-eval-r (flag , s, c))

Definition:
s-eval-heap-r (flag , s, c) = cadddr (s-eval-r (flag , s, c))

Definition:
s-max-subr-reqs
= max (log (2, lr-cons-tag),

180



max (log (2, lr-true-tag),
max (log (2, lr-cdr-offset), log (2, lr-car-offset))))

Event: Disable s-max-subr-reqs.

Theorem: numberp-car-cadr-caddr-cadddr-s-apply-subr-r
(car (s-apply-subr-r (subr , s)) ∈ N)
∧ (cadr (s-apply-subr-r (subr , s)) ∈ N)
∧ (caddr (s-apply-subr-r (subr , s)) ∈ N)
∧ (cadddr (s-apply-subr-r (subr , s)) ∈ N)

Event: Disable s-apply-subr-r.

Theorem: numberp-max-r
(car (max-r (list1 , list2 )) ∈ N)
∧ (cadr (max-r (list1 , list2 )) ∈ N)
∧ (caddr (max-r (list1 , list2 )) ∈ N)
∧ (cadddr (max-r (list1 , list2 )) ∈ N)

Theorem: numberp-s-eval-temp-ctrl-ws-heap-r
(s-eval-temp-r (flag , s, c) ∈ N)
∧ (s-eval-ctrl-r (flag , s, c) ∈ N)
∧ (s-eval-ws-r (flag , s, c) ∈ N)
∧ (s-eval-heap-r (flag , s, c) ∈ N)

Event: Disable s-eval-temp-r.

Event: Disable s-eval-ctrl-r.

Event: Disable s-eval-ws-r.

Event: Disable s-eval-heap-r.

Definition:
lr-count-free-nodes (addr , node-list , data-seg)
= if addr ∈ node-list

then 1 + lr-count-free-nodes (fetch (add-addr (addr , lr-ref-count-offset),
data-seg),

delete (addr , node-list),
data-seg)

else 0 endif

181



Definition:
lr-check-resourcesp (flag , s, l , c)
= ((p-max-temp-stk-size (l)

6< (length (p-temp-stk (l)) + s-eval-temp-r (flag , s, c)))
∧ (p-max-ctrl-stk-size (l)

6< (p-ctrl-stk-size (p-ctrl-stk (l))
+ s-eval-ctrl-r (flag , s, c)))

∧ (p-word-size (l) 6< s-eval-ws-r (flag , s, c))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (l)),

lr-free-list-nodes (lr-max-node (p-data-segment (l)),
p-data-segment (l)),

p-data-segment (l))
6< s-eval-heap-r (flag , s, c)))

Event: Disable lr-check-resourcesp.

Theorem: not-lessp-max-r-car
(car (max-r (list1 , list2 )) 6< car (list1 ))
∧ (car (max-r (list1 , list2 )) 6< car (list2 ))

Theorem: not-lessp-max-r-cadr
(cadr (max-r (list1 , list2 )) 6< cadr (list1 ))
∧ (cadr (max-r (list1 , list2 )) 6< cadr (list2 ))

Theorem: not-lessp-max-r-caddr
(caddr (max-r (list1 , list2 )) 6< caddr (list1 ))
∧ (caddr (max-r (list1 , list2 )) 6< caddr (list2 ))

Theorem: not-lessp-max-r-cadddr
(cadddr (max-r (list1 , list2 )) 6< cadddr (list1 ))
∧ (cadddr (max-r (list1 , list2 )) 6< cadddr (list2 ))

Theorem: lr-check-resourcesp-listp-s-expr-list
((s-err-flag (s) = ’run)
∧ listp (s-pos (s))
∧ listp (s-expr-list (s))
∧ good-posp (’list, s-pos (s), s-body (s-prog (s)))
∧ lr-check-resourcesp (’list, s, l , c))
→ lr-check-resourcesp (t, s, l , c)

Theorem: lr-eval-preserves-lr-proper-heapp
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp (flag , s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)

182



∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (flag , s->lr1 (s, l , table), c)) = ’run))
→ lr-proper-heapp (p-data-segment (lr-eval (flag , s->lr1 (s, l , table), c)))

Theorem: lr-eval-preserves-lr-s-similar-statesp
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp (flag , s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (flag , s->lr1 (s, l , table), c)) = ’run))
→ lr-s-similar-statesp (s-params (s),

s-temps (s-eval (flag , s, c)),
lr-eval (flag , s->lr1 (s, l , table), c),
table)

Theorem: s-eval-flag-run-flag-t-subsetp-s-collect-all-temps
(s-good-statep (s, c)
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-all-temps-setp (flag , s-expr (s), temp-alist-to-set (s-temps (s)))
∧ s-all-progs-temps-setp (s-progs (s))
∧ (s-err-flag (s-eval (flag , s, c)) = ’run)
∧ s-check-temps-setp (s-temps (s))
∧ (flag 6= ’list))
→ subsetp (s-collect-all-temps (flag , s-expr (s)),

temp-alist-to-set (s-temps (s-eval (flag , s, c))))

Theorem: s-eval-flag-run-flag-t-s-check-temps-setp
(s-good-statep (s, c)
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-all-temps-setp (flag , s-expr (s), temp-alist-to-set (s-temps (s)))
∧ s-all-progs-temps-setp (s-progs (s))
∧ (s-err-flag (s-eval (flag , s, c)) = ’run)
∧ s-check-temps-setp (s-temps (s))
∧ (flag 6= ’list))
→ s-check-temps-setp (s-temps (s-eval (flag , s, c)))

Theorem: lr-eval-preserves-length-bindings-car-p-ctrl-stk
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (length (bindings (car (p-ctrl-stk (lr-eval (flag , l , c)))))

= length (bindings (car (p-ctrl-stk (l)))))

183



Theorem: lr-eval-s->lr1-preserves-p-ctrl-stk-size
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (p-ctrl-stk-size (p-ctrl-stk (lr-eval (flag , l , c)))

= p-ctrl-stk-size (p-ctrl-stk (l)))

Theorem: length-p-temp-stk-lr-eval-flag-not-list
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp (flag , s-pos (s), s-body (s-prog (s)))
∧ s-good-statep (s, c)
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ (p-psw (lr-eval (flag , s->lr1 (s, l , table), c)) = ’run)
∧ (flag 6= ’list))
→ (length (p-temp-stk (lr-eval (flag , s->lr1 (s, l , table), c)))

= (1 + length (p-temp-stk (l))))

Theorem: lr-eval-preserves-lr-proper-heapp-lr-set-pos
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp (flag , pos, s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (flag , lr-set-pos (s->lr1 (s, l , table), pos), c)) = ’run))
→ lr-proper-heapp (p-data-segment (lr-eval (flag ,

lr-set-pos (s->lr1 (s, l , table),
pos),

c)))

Theorem: lr-eval-preserves-lr-s-similar-statesp-lr-set-pos
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp (flag , pos, s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (flag , lr-set-pos (s->lr1 (s, l , table), pos), c)) = ’run))
→ lr-s-similar-statesp (s-params (s),

s-temps (s-eval (flag , s-set-pos (s, pos), c)),
lr-eval (flag , lr-set-pos (s->lr1 (s, l , table), pos), c),
table)

Theorem: lr-eval-s-eval-flag-t-s-ans-f-lr-set-pos

184



(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (pos, s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c)) = ’run)
∧ (¬ s-ans (s-eval (t, s-set-pos (s, pos), c))))
→ (car (p-temp-stk (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c)))

= lr-f-addr)

Theorem: lr-eval-s-eval-flag-t-s-ans-non-f-lr-set-pos
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (pos, s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c)) = ’run)
∧ s-ans (s-eval (t, s-set-pos (s, pos), c)))
→ (car (p-temp-stk (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c)))

6= identity (lr-f-addr))

Theorem: subsetp-not-member-both
((addr 6∈ set2 ) ∧ subsetp (set1 , set2 )) → (addr 6∈ set1 )

Theorem: lr-count-free-nodes-deposit-free-ptr
(adpp (’(free-ptr . 0), data-seg) ∧ lr-node-listp (node-list , data-seg))
→ (lr-count-free-nodes (addr ,

node-list ,
deposit (anything , identity (lr-fp-addr), data-seg))

= lr-count-free-nodes (addr , node-list , data-seg))

Theorem: lr-count-free-nodes-deposit-non-ref-count
(lr-nodep (addr2 , data-seg)
∧ (offset 6= lr-ref-count-offset)
∧ (offset ∈ N)
∧ (offset < lr-node-size)
∧ lr-node-listp (node-list , data-seg))
→ (lr-count-free-nodes (addr1 ,

node-list ,
deposit (anything , add-addr (addr2 , offset), data-seg))

= lr-count-free-nodes (addr1 , node-list , data-seg))

Theorem: lr-count-free-nodes-deposit-lr-nodep

185



(lr-nodep (addr2 , data-seg) ∧ lr-node-listp (node-list , data-seg))
→ (lr-count-free-nodes (addr1 , node-list , deposit (anything , addr2 , data-seg))

= lr-count-free-nodes (addr1 , node-list , data-seg))

Theorem: lr-count-free-nodes-delete-deposit
((addr1 6∈ node-list)
∧ lr-nodep (addr1 , data-seg)
∧ lr-node-listp (node-list , data-seg)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N))
→ (lr-count-free-nodes (addr2 ,

node-list ,
deposit (ref-count ,

add-addr (addr1 ,
identity (lr-ref-count-offset)),

data-seg))
= lr-count-free-nodes (addr2 , node-list , data-seg))

Theorem: lr-count-free-nodes-max-addr-lr-free-list-nodes
lr-count-free-nodes (max-addr ,

lr-free-list-nodes (max-addr , data-seg1 ),
data-seg2 )

= 0

Theorem: lr-count-lr-free-list-nodes-p-run-cons
let dds be deposit-a-list (list (identity (tag (’nat, 5)),

ref-count ,
any1 ,
any2 ),

fetch (identity (lr-fp-addr), data-seg),
data-seg)

in
(lr-proper-heapp (data-seg)
∧ (max-addr = lr-max-node (data-seg))
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N)
∧ (fetch (identity (lr-fp-addr), data-seg) 6= max-addr))
→ ((1 + lr-count-free-nodes (fetch (add-addr (fetch (identity (lr-fp-addr),

data-seg),
identity (lr-ref-count-offset)),

data-seg),
lr-free-list-nodes (max-addr , dds),
dds))

= lr-count-free-nodes (fetch (identity (lr-fp-addr),
data-seg),

186



lr-free-list-nodes (max-addr ,
data-seg),

data-seg)) endlet

Theorem: not-p-max-node-fetch-fp-addr-not-errorp-p-run-cons
((p-psw (p (p-set-pc (lr->p (new-l), pc), p-cons-clock (p-set-pc (lr->p (new-l), pc))))

= ’run)
∧ proper-p-statep (lr->p (new-l))
∧ proper-p-statep (p-set-pc (lr->p (new-l), pc))
∧ (max-node = lr-max-node (p-data-segment (new-l)))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ lr-proper-heapp (p-data-segment (new-l))
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call cons)))
→ (fetch (identity (lr-fp-addr), p-data-segment (new-l)) 6= max-node)

Theorem: get-comp-body-lr-compile-programs
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= s-temp-eval)
∧ (car (s-expr (s)) 6= s-temp-test)
∧ (car (s-expr (s)) 6= s-temp-fetch)
∧ (car (s-expr (s)) 6= ’quote)
∧ listp (s-expr (s)))
→ (get (offset (lr-return-pc (s->lr1 (s, l , table))),

program-body (assoc (s-pname (s),
comp-programs (lr-compile-programs (s-progs (s),

table)))))
= list (’dl,

lr-make-label (offset (lr-return-pc (s->lr1 (s, l , table)))),
nil,
if definedp (car (s-expr (s)), p-runtime-support-programs)
then list (’call, car (s-expr (s)))
else list (’call, user-fname (car (s-expr (s)))) endif))

Theorem: lr-count-lr-free-list-nodes-p-run-subr
let p be p-set-pc (lr->p (lr-eval (’list,

lr-set-pos (s->lr1 (s, l , table), pos),
c)),

lr-return-pc (s->lr1 (s, l , table))),
new-l be lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c)

187



in
(listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ subrp (car (s-expr (s)))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (p-run-subr (car (s-expr (s)), p)) = ’run)
∧ (p-psw (new-l) = ’run)
∧ (pos = dv (s-pos (s), 1))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr1 (s, l , table),
table))

→ (lr-count-free-nodes (fetch (identity (lr-fp-addr),
p-data-segment (new-l)),

lr-free-list-nodes (lr-max-node (p-data-segment (l)),
p-data-segment (new-l)),

p-data-segment (new-l))
= (lr-count-free-nodes (fetch (identity (lr-fp-addr),

p-data-segment (p-run-subr (car (s-expr (s)),
p))),

lr-free-list-nodes (lr-max-node (p-data-segment (l)),
p-data-segment (p-run-subr (car (s-expr (s)),

p))),
p-data-segment (p-run-subr (car (s-expr (s)),

p)))
+ cadddr (s-apply-subr-r (car (s-expr (s)),

s-eval (’list,
s-set-pos (s, pos),
c))))) endlet

Theorem: lr-count-lr-free-list-nodes-lr-apply-subr
let new-l be lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c)
in
(listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ subrp (car (s-expr (s)))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ (p-psw (new-l) = ’run)

188



∧ (p-psw (lr-apply-subr (s->lr1 (s, l , table), new-l)) = ’run)
∧ s-good-statep (s, c)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr1 (s, l , table),
table)

∧ (pos = dv (s-pos (s), 1))
∧ (max-addr = lr-max-node (p-data-segment (l)))
∧ (s-eval-size = s-eval-heap-r (’list, s-set-pos (s, pos), c))
∧ ((lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),

lr-free-list-nodes (max-addr ,
p-data-segment (new-l)),

p-data-segment (new-l))
+ s-eval-size)

= lr-count-free-nodes (fetch (lr-fp-addr,
p-data-segment (l)),

lr-free-list-nodes (max-addr ,
p-data-segment (l)),

p-data-segment (l))))
→ ((s-eval-size

+ cadddr (s-apply-subr-r (car (s-expr (s)),
s-eval (’list,

s-set-pos (s, pos),
c)))

+ lr-count-free-nodes (fetch (identity (lr-fp-addr),
p-data-segment (lr-apply-subr (s->lr1 (s,

l ,
table),

new-l))),
lr-free-list-nodes (max-addr ,

p-data-segment (lr-apply-subr (s->lr1 (s,
l ,
table),

new-l))),
p-data-segment (lr-apply-subr (s->lr1 (s,

l ,
table),

new-l))))
= lr-count-free-nodes (fetch (identity (lr-fp-addr),

p-data-segment (l)),
lr-free-list-nodes (max-addr ,

p-data-segment (l)),
p-data-segment (l))) endlet

189



Theorem: lr-eval-s-eval-equivalence-lr-check-result-flag-list
let lr-eval be lr-eval (’list,

lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)),
c)

in
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr1 (s, l , table),
table)

∧ s-good-statep (s, c)
∧ (p-psw (lr-eval) = ’run)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= s-temp-eval)
∧ (car (s-expr (s)) 6= s-temp-test)
∧ (car (s-expr (s)) 6= s-temp-fetch)
∧ (car (s-expr (s)) 6= ’quote))
→ lr-check-result (’list,

s-ans (s-eval (’list,
s-set-pos (s, dv (s-pos (s), 1)),
c)),

p-temp-stk (lr-eval),
p-data-segment (lr-eval),
p-temp-stk (l)) endlet

Theorem: cadddr-max-r
cadddr (max-r (list1 , list2 )) = (cadddr (list1 ) + cadddr (list2 ))

Theorem: lr-eval-s-eval-heap-r-lr-count-lr-free-list-nodes
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp (flag , s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (flag , s->lr1 (s, l , table), c)) = ’run)
∧ (s-err-flag (s-eval (flag , s, c)) = ’run))
→ ((lr-count-free-nodes (fetch (lr-fp-addr,

p-data-segment (lr-eval (flag ,
s->lr1 (s, l , table),

190



c))),
lr-free-list-nodes (lr-max-node (p-data-segment (l)),

p-data-segment (lr-eval (flag ,
s->lr1 (s,

l ,
table),

c))),
p-data-segment (lr-eval (flag , s->lr1 (s, l , table), c)))

+ s-eval-heap-r (flag , s, c))
= lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (l)),

lr-free-list-nodes (lr-max-node (p-data-segment (l)),
p-data-segment (l)),

p-data-segment (l)))

Theorem: lr-check-resourcesp-list-set-expr-nx
(listp (s-pos (s))
∧ listp (s-expr-list (s))
∧ good-posp (’list, s-pos (s), s-body (s-prog (s)))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (t, s->lr1 (s, l , table), c)) = ’run)
∧ (s-err-flag (s-eval (t, s, c)) = ’run)
∧ lr-check-resourcesp (’list, s, l , c))
→ lr-check-resourcesp (’list,

s-set-expr (s-eval (t, s, c), s, nx (s-pos (s))),
lr-eval (t, s->lr1 (s, l , table), c),
c)

Theorem: lr-check-resourcesp-lr-push-tstk-flag-run
(lr-check-resourcesp (flag , s, l , c)
∧ (flag 6= ’list)
∧ litatom (s-expr (s))
∧ (c 6' 0)
∧ (s-err-flag (s) = ’run))
→ (p-psw (lr-push-tstk (s->lr1 (s, l , table),

cdr (assoc (s-expr (s), bindings (car (p-ctrl-stk (l)))))))
= ’run)

Theorem: lr-check-resourcesp-s-set-pos-if-cadr
(lr-check-resourcesp (flag , s, l , c)
∧ s-good-statep (s, c)
∧ (flag 6= ’list)

191



∧ (c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = ’if))
→ lr-check-resourcesp (t, s-set-pos (s, dv (s-pos (s), 1)), l , c)

Theorem: s-eval-subsetp-s-collect-temp-alist-s-set-pos-if
(listp (s-expr (s))
∧ (car (s-expr (s)) = ’if)
∧ s-good-statep (s, c)
∧ good-posp1 (dv (s-pos (s), 1), s-body (s-prog (s)))
∧ s-check-temps-setp (s-temps (s))
∧ s-all-temps-setp (t, cadr (s-expr (s)), temp-alist-to-set (s-temps (s)))
∧ s-all-progs-temps-setp (s-progs (s))
∧ (s-err-flag (s-eval (t, s-set-pos (s, dv (s-pos (s), 1)), c)) = ’run))
→ subsetp (s-collect-all-temps (t, cadr (s-expr (s))),

temp-alist-to-set (s-temps (s-eval (t,
s-set-pos (s, dv (s-pos (s), 1)),
c))))

Theorem: length-p-temp-stk-lr-pop-tstk-lr-eval-flag-t
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (pos, s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-if-ok (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c)))

= ’run))
→ (length (p-temp-stk (lr-pop-tstk (lr-if-ok (lr-eval (t,

lr-set-pos (s->lr1 (s,
l ,
table),

pos),
c)))))

= length (p-temp-stk (l)))

Theorem: lr-eval-s->lr1-preserves-p-ctrl-stk-size-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp (flag , pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , lr-set-pos (l , pos), c)) = ’run))
→ (p-ctrl-stk-size (p-ctrl-stk (lr-eval (flag , lr-set-pos (l , pos), c)))

= p-ctrl-stk-size (p-ctrl-stk (l)))

Theorem: lr-check-resourcesp-lr-pop-tstk-lr-eval-1
let lr-eval be lr-if-ok (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c))
in

192



((c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = ’if)
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr1 (s, l , table),
table)

∧ s-good-statep (s, c)
∧ (p-psw (lr-eval) = ’run)
∧ (pos = dv (s-pos (s), 1))
∧ (s-err-flag (s-eval (t, s-set-pos (s, pos), c)) = ’run)
∧ s-ans (s-eval (t, s-set-pos (s, dv (s-pos (s), 1)), c))
∧ lr-check-resourcesp (flag , s, l , c)
∧ (flag 6= ’list))
→ lr-check-resourcesp (t,

s-set-expr (s-eval (t, s-set-pos (s, pos), c),
s,
dv (s-pos (s), 2)),

lr-pop-tstk (lr-eval),
c) endlet

Theorem: lr-check-resourcesp-lr-pop-tstk-lr-eval-2
let lr-eval be lr-if-ok (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c))
in
((c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = ’if)
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr1 (s, l , table),
table)

∧ s-good-statep (s, c)
∧ (p-psw (lr-eval) = ’run)
∧ (pos = dv (s-pos (s), 1))
∧ (s-err-flag (s-eval (t, s-set-pos (s, pos), c)) = ’run)
∧ (¬ s-ans (s-eval (t, s-set-pos (s, dv (s-pos (s), 1)), c)))

193



∧ lr-check-resourcesp (flag , s, l , c)
∧ (flag 6= ’list))
→ lr-check-resourcesp (t,

s-set-expr (s-eval (t, s-set-pos (s, pos), c),
s,
dv (s-pos (s), 3)),

lr-pop-tstk (lr-eval),
c) endlet

Theorem: lr-check-resourcesp-s-temp-eval
((c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = s-temp-eval)
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (pos = dv (s-pos (s), 1))
∧ lr-check-resourcesp (flag , s, l , c)
∧ (flag 6= ’list))
→ lr-check-resourcesp (t, s-set-pos (s, pos), l , c)

Theorem: lr-check-resourcesp-s-temp-test
((c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = s-temp-test)
∧ (¬ s-temp-setp (cadr (s-expr (s)), s-temps (s)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (pos = dv (s-pos (s), 1))
∧ lr-check-resourcesp (flag , s, l , c)
∧ (flag 6= ’list))
→ lr-check-resourcesp (t, s-set-pos (s, pos), l , c)

Theorem: lr-do-temp-fetch-lr-check-resourcesp-temp-test
(lr-check-resourcesp (flag , s, l , c)
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ listp (s-expr (s))
∧ ((car (s-expr (s)) = s-temp-test)

∨ (car (s-expr (s)) = s-temp-fetch))
∧ s-good-statep (s, c)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ (c 6' 0)
∧ s-temp-setp (cadr (s-expr (s)), s-temps (s))
∧ (flag 6= ’list))
→ (p-psw (lr-do-temp-fetch (s->lr1 (s, l , table))) = ’run)

194



Theorem: lr-push-tstk-lr-check-resourcesp-quote
(lr-check-resourcesp (flag , s, l , c)
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = ’quote)
∧ s-good-statep (s, c)
∧ (c 6' 0)
∧ (flag 6= ’list))
→ (p-psw (lr-push-tstk (s->lr1 (s, l , table),

cadr (lr-expr (s->lr1 (s, l , table)))))
= ’run)

Theorem: lr-check-resourcesp-funcall
((c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= s-temp-eval)
∧ (car (s-expr (s)) 6= s-temp-test)
∧ (car (s-expr (s)) 6= s-temp-fetch)
∧ (car (s-expr (s)) 6= ’quote)
∧ (s-err-flag (s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c)) = ’run)
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ lr-check-resourcesp (flag , s, l , c)
∧ (flag 6= ’list))
→ lr-check-resourcesp (’list, s-set-pos (s, dv (s-pos (s), 1)), l , c)

Theorem: numberp-s-eval-temp-ctrl-ws-heap-r-opened
(car (s-eval-r (flag , s, c)) ∈ N)
∧ (cadr (s-eval-r (flag , s, c)) ∈ N)
∧ (caddr (s-eval-r (flag , s, c)) ∈ N)
∧ (cadddr (s-eval-r (flag , s, c)) ∈ N)

Theorem: lessp-1-not-zerop-exp
((m 6' 0) ∧ (1 < n)) → (1 < exp (n, m))

Theorem: lessp-1-not-zerop-log
((1 < c) ∧ (n ∈ N)) → ((log (c, n) < 1) = (n < 1))

Definition:
induct-hint-18 (c, n, m)
= if c < 2 then t

195



elseif n ' 0 then t
elseif m ' 0 then t
else induct-hint-18 (c, n ÷ c, m − 1) endif

Theorem: times-quotient-lessp-fact-1
((c 6' 0) ∧ (n ∈ N) ∧ (m ∈ N))
→ ((n < (c ∗ m)) = ((n ÷ c) < m))

Theorem: exp-log-lessp-fact-1
((1 < c) ∧ (n ∈ N) ∧ (m ∈ N))
→ ((n < exp (c, m)) = (log (c, n) < (1 + m)))

Event: Disable times-quotient-lessp-fact-1.

Theorem: adpp-untag-add-addr-offset-car
(lr-good-pointerp (addr , data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (untag (fetch (addr , data-seg)) = lr-cons-tag)
∧ lr-proper-heapp (data-seg))
→ adpp (untag (add-addr (addr , identity (lr-car-offset))), data-seg)

Theorem: adpp-untag-add-addr-offset-cdr
(lr-good-pointerp (addr , data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (untag (fetch (addr , data-seg)) = lr-cons-tag)
∧ lr-proper-heapp (data-seg))
→ adpp (untag (add-addr (addr , identity (lr-cdr-offset))), data-seg)

Theorem: exp-log-2-lessp-add1-fact-1
((1 + n) < exp (2, m)) = (log (2, 1 + n) < (1 + m))

;; The P-TEST-BOOL-AND-JUMP cause a lot of case splits after being opened
;; and the result rewritten with P-OBJECTP-TYPE, so we prove two simple
;; lemmas and disable it, this should hopefully speed up the proof.

Theorem: p-test-bool-and-jump-okp-t-cons-bool-t
p-test-bool-and-jump-okp (list (ins-name, ’t, label),

p-state (pc,
ctrl-stk ,
cons (’(bool t), temp-stk),
prog-seg ,
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

= t

196



Theorem: p-test-bool-and-jump-okp-f-cons-bool-t
p-test-bool-and-jump-okp (list (ins-name, ’f, label),

p-state (pc,
ctrl-stk ,
cons (’(bool t), temp-stk),
prog-seg ,
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

= t

Theorem: p-test-bool-and-jump-okp-t-cons-bool-f
p-test-bool-and-jump-okp (list (ins-name, ’t, label),

p-state (pc,
ctrl-stk ,
cons (’(bool f), temp-stk),
prog-seg ,
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

= t

Theorem: p-test-bool-and-jump-okp-f-cons-bool-f
p-test-bool-and-jump-okp (list (ins-name, ’f, label),

p-state (pc,
ctrl-stk ,
cons (’(bool f), temp-stk),
prog-seg ,
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

= t

Event: Disable p-test-bool-and-jump-okp.

Theorem: p-psw-run-run-car-lr-check-resourcesp
(lr-check-result (’list,

s-ans (new-s),

197



p-temp-stk (new-l),
p-data-segment (new-l),
orig-temp-stk)

∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call car))
∧ (p-max-temp-stk-size (new-l)

6< (length (p-temp-stk (new-l))
+ car (s-apply-subr-r (’car, new-s))))

∧ (p-max-ctrl-stk-size (new-l)
6< (p-ctrl-stk-size (p-ctrl-stk (new-l))

+ cadr (s-apply-subr-r (’car, new-s))))
∧ (p-word-size (new-l)

6< max (s-max-subr-reqs, caddr (s-apply-subr-r (’car, new-s))))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),

lr-free-list-nodes (lr-max-node (p-data-segment (new-l)),
p-data-segment (new-l)),

p-data-segment (new-l))
6< cadddr (s-apply-subr-r (’car, new-s)))

∧ (length (p-temp-stk (new-l)) 6< arity (’car))
∧ (length (s-ans (new-s)) = arity (’car)))
→ (p-psw (p (p-set-pc (lr->p (new-l), pc),

p-car-clock (p-set-pc (lr->p (new-l), pc))))
= ’run)

Theorem: p-psw-run-run-cdr-lr-check-resourcesp
(lr-check-result (’list,

s-ans (new-s),
p-temp-stk (new-l),
p-data-segment (new-l),
orig-temp-stk)

∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call cdr))
∧ (p-max-temp-stk-size (new-l)

6< (length (p-temp-stk (new-l))

198



+ car (s-apply-subr-r (’cdr, new-s))))
∧ (p-max-ctrl-stk-size (new-l)

6< (p-ctrl-stk-size (p-ctrl-stk (new-l))
+ cadr (s-apply-subr-r (’cdr, new-s))))

∧ (p-word-size (new-l)
6< max (s-max-subr-reqs, caddr (s-apply-subr-r (’cdr, new-s))))

∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),
lr-free-list-nodes (lr-max-node (p-data-segment (new-l)),

p-data-segment (new-l)),
p-data-segment (new-l))

6< cadddr (s-apply-subr-r (’cdr, new-s)))
∧ (length (p-temp-stk (new-l)) 6< arity (’cdr))
∧ (length (s-ans (new-s)) = arity (’cdr)))
→ (p-psw (p (p-set-pc (lr->p (new-l), pc),

p-cdr-clock (p-set-pc (lr->p (new-l), pc))))
= ’run)

Theorem: lessp-plus-remainder-0-fact
(((offset1 mod max ) = 0)
∧ ((offset2 mod max ) = 0)
∧ (n < max )
∧ (offset1 ∈ N)
∧ (offset2 ∈ N))
→ (((n + offset1 ) < offset2 ) = (offset1 < offset2 ))

Theorem: lr-boundary-nodep-lessp-plus-fact
(lr-boundary-nodep (addr1 )
∧ lr-boundary-nodep (addr2 )
∧ (n < lr-node-size)
∧ (offset (addr1 ) ∈ N)
∧ (offset (addr2 ) ∈ N))
→ (((n + offset (addr1 )) < offset (addr2 ))

= (offset (addr1 ) < offset (addr2 )))

Theorem: adpp-untag-add-addr-lr-nodep-not-max-addr
(adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = ’heap)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (offset (addr) < offset (lr-max-node (data-seg)))
∧ (n < lr-node-size))
→ adpp (untag (add-addr (addr , n)), data-seg)

Theorem: adpp-untag-add-addr-offset-on-free-listp

199



(lr-proper-p-areasp (data-seg)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< 1)

∧ lr-proper-heapp (data-seg)
∧ (n < lr-node-size))
→ adpp (untag (add-addr (fetch (identity (lr-fp-addr), data-seg), n)), data-seg)

Theorem: p-psw-run-run-cons-lr-check-resourcesp
(lr-check-result (’list,

s-ans (new-s),
p-temp-stk (new-l),
p-data-segment (new-l),
orig-temp-stk)

∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call cons))
∧ (p-max-temp-stk-size (new-l)

6< (length (p-temp-stk (new-l))
+ car (s-apply-subr-r (’cons, new-s))))

∧ (p-max-ctrl-stk-size (new-l)
6< (p-ctrl-stk-size (p-ctrl-stk (new-l))

+ cadr (s-apply-subr-r (’cons, new-s))))
∧ (p-word-size (new-l)

6< max (s-max-subr-reqs, caddr (s-apply-subr-r (’cons, new-s))))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),

lr-free-list-nodes (lr-max-node (p-data-segment (new-l)),
p-data-segment (new-l)),

p-data-segment (new-l))
6< cadddr (s-apply-subr-r (’cons, new-s)))

∧ (length (p-temp-stk (new-l)) 6< arity (’cons))
∧ (length (s-ans (new-s)) = arity (’cons)))
→ (p-psw (p (p-set-pc (lr->p (new-l), pc),

p-cons-clock (p-set-pc (lr->p (new-l), pc))))
= ’run)

Theorem: p-psw-run-run-false-lr-check-resourcesp
(lr-check-result (’list,

200



s-ans (new-s),
p-temp-stk (new-l),
p-data-segment (new-l),
orig-temp-stk)

∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call false))
∧ (p-max-temp-stk-size (new-l)

6< (length (p-temp-stk (new-l))
+ car (s-apply-subr-r (’false, new-s))))

∧ (p-max-ctrl-stk-size (new-l)
6< (p-ctrl-stk-size (p-ctrl-stk (new-l))

+ cadr (s-apply-subr-r (’false, new-s))))
∧ (p-word-size (new-l)

6< max (s-max-subr-reqs, caddr (s-apply-subr-r (’false, new-s))))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),

lr-free-list-nodes (lr-max-node (p-data-segment (new-l)),
p-data-segment (new-l)),

p-data-segment (new-l))
6< cadddr (s-apply-subr-r (’false, new-s)))

∧ (length (p-temp-stk (new-l)) 6< arity (’false))
∧ (length (s-ans (new-s)) = arity (’false)))
→ (p-psw (p (p-set-pc (lr->p (new-l), pc),

p-false-clock (p-set-pc (lr->p (new-l), pc))))
= ’run)

Theorem: p-psw-run-run-falsep-lr-check-resourcesp
(lr-check-result (’list,

s-ans (new-s),
p-temp-stk (new-l),
p-data-segment (new-l),
orig-temp-stk)

∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call falsep))
∧ (p-max-temp-stk-size (new-l)

201



6< (length (p-temp-stk (new-l))
+ car (s-apply-subr-r (’falsep, new-s))))

∧ (p-max-ctrl-stk-size (new-l)
6< (p-ctrl-stk-size (p-ctrl-stk (new-l))

+ cadr (s-apply-subr-r (’falsep, new-s))))
∧ (p-word-size (new-l)

6< max (s-max-subr-reqs, caddr (s-apply-subr-r (’falsep, new-s))))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),

lr-free-list-nodes (lr-max-node (p-data-segment (new-l)),
p-data-segment (new-l)),

p-data-segment (new-l))
6< cadddr (s-apply-subr-r (’falsep, new-s)))

∧ (length (p-temp-stk (new-l)) 6< arity (’falsep))
∧ (length (s-ans (new-s)) = arity (’falsep)))
→ (p-psw (p (p-set-pc (lr->p (new-l), pc),

p-falsep-clock (p-set-pc (lr->p (new-l), pc))))
= ’run)

Theorem: p-psw-run-run-listp-lr-check-resourcesp
(lr-check-result (’list,

s-ans (new-s),
p-temp-stk (new-l),
p-data-segment (new-l),
orig-temp-stk)

∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call listp))
∧ (p-max-temp-stk-size (new-l)

6< (length (p-temp-stk (new-l))
+ car (s-apply-subr-r (’listp, new-s))))

∧ (p-max-ctrl-stk-size (new-l)
6< (p-ctrl-stk-size (p-ctrl-stk (new-l))

+ cadr (s-apply-subr-r (’listp, new-s))))
∧ (p-word-size (new-l)

6< max (s-max-subr-reqs, caddr (s-apply-subr-r (’listp, new-s))))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),

lr-free-list-nodes (lr-max-node (p-data-segment (new-l)),
p-data-segment (new-l)),

p-data-segment (new-l))
6< cadddr (s-apply-subr-r (’listp, new-s)))

202



∧ (length (p-temp-stk (new-l)) 6< arity (’listp))
∧ (length (s-ans (new-s)) = arity (’listp)))
→ (p-psw (p (p-set-pc (lr->p (new-l), pc),

p-listp-clock (p-set-pc (lr->p (new-l), pc))))
= ’run)

Theorem: p-psw-run-run-nlistp-lr-check-resourcesp
(lr-check-result (’list,

s-ans (new-s),
p-temp-stk (new-l),
p-data-segment (new-l),
orig-temp-stk)

∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call nlistp))
∧ (p-max-temp-stk-size (new-l)

6< (length (p-temp-stk (new-l))
+ car (s-apply-subr-r (’nlistp, new-s))))

∧ (p-max-ctrl-stk-size (new-l)
6< (p-ctrl-stk-size (p-ctrl-stk (new-l))

+ cadr (s-apply-subr-r (’nlistp, new-s))))
∧ (p-word-size (new-l)

6< max (s-max-subr-reqs, caddr (s-apply-subr-r (’nlistp, new-s))))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),

lr-free-list-nodes (lr-max-node (p-data-segment (new-l)),
p-data-segment (new-l)),

p-data-segment (new-l))
6< cadddr (s-apply-subr-r (’nlistp, new-s)))

∧ (length (p-temp-stk (new-l)) 6< arity (’nlistp))
∧ (length (s-ans (new-s)) = arity (’nlistp)))
→ (p-psw (p (p-set-pc (lr->p (new-l), pc),

p-nlistp-clock (p-set-pc (lr->p (new-l), pc))))
= ’run)

Theorem: p-psw-run-run-true-lr-check-resourcesp
(lr-check-result (’list,

s-ans (new-s),
p-temp-stk (new-l),
p-data-segment (new-l),
orig-temp-stk)

203



∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call true))
∧ (p-max-temp-stk-size (new-l)

6< (length (p-temp-stk (new-l))
+ car (s-apply-subr-r (’true, new-s))))

∧ (p-max-ctrl-stk-size (new-l)
6< (p-ctrl-stk-size (p-ctrl-stk (new-l))

+ cadr (s-apply-subr-r (’true, new-s))))
∧ (p-word-size (new-l)

6< max (s-max-subr-reqs, caddr (s-apply-subr-r (’true, new-s))))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),

lr-free-list-nodes (lr-max-node (p-data-segment (new-l)),
p-data-segment (new-l)),

p-data-segment (new-l))
6< cadddr (s-apply-subr-r (’true, new-s)))

∧ (length (p-temp-stk (new-l)) 6< arity (’true))
∧ (length (s-ans (new-s)) = arity (’true)))
→ (p-psw (p (p-set-pc (lr->p (new-l), pc),

p-true-clock (p-set-pc (lr->p (new-l), pc))))
= ’run)

Theorem: p-psw-run-run-truep-lr-check-resourcesp
(lr-check-result (’list,

s-ans (new-s),
p-temp-stk (new-l),
p-data-segment (new-l),
orig-temp-stk)

∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call truep))
∧ (p-max-temp-stk-size (new-l)

6< (length (p-temp-stk (new-l))
+ car (s-apply-subr-r (’truep, new-s))))

∧ (p-max-ctrl-stk-size (new-l)
6< (p-ctrl-stk-size (p-ctrl-stk (new-l))

204



+ cadr (s-apply-subr-r (’truep, new-s))))
∧ (p-word-size (new-l)

6< max (s-max-subr-reqs, caddr (s-apply-subr-r (’truep, new-s))))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),

lr-free-list-nodes (lr-max-node (p-data-segment (new-l)),
p-data-segment (new-l)),

p-data-segment (new-l))
6< cadddr (s-apply-subr-r (’truep, new-s)))

∧ (length (p-temp-stk (new-l)) 6< arity (’truep))
∧ (length (s-ans (new-s)) = arity (’truep)))
→ (p-psw (p (p-set-pc (lr->p (new-l), pc),

p-truep-clock (p-set-pc (lr->p (new-l), pc))))
= ’run)

Theorem: length-last
listp (l) → (length (last (l)) = 1)

Theorem: equal-plus-lessp-fact
((x + z ) = y) → ((y < (n + x )) = (z < n))

Theorem: not-lessp-lr-count-free-nodes-lr-eval-list-lr-set-pos
let new-l be lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c)
in
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr1 (s, l , table),
table)

∧ s-good-statep (s, c)
∧ (p-psw (new-l) = ’run)
∧ (s-err-flag (s-eval (’list, s-set-pos (s, pos), c)) = ’run)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= s-temp-eval)
∧ (car (s-expr (s)) 6= s-temp-test)
∧ (car (s-expr (s)) 6= s-temp-fetch)
∧ (car (s-expr (s)) 6= ’quote)
∧ (pos = dv (s-pos (s), 1))
∧ (max-addr = lr-max-node (p-data-segment (l))))
→ ((lr-count-free-nodes (fetch (identity (lr-fp-addr),

p-data-segment (new-l)),
lr-free-list-nodes (max-addr ,

205



p-data-segment (new-l)),
p-data-segment (new-l))

< n)
= (lr-count-free-nodes (fetch (identity (lr-fp-addr),

p-data-segment (l)),
lr-free-list-nodes (max-addr ,

p-data-segment (l)),
p-data-segment (l))

< (s-eval-heap-r (’list,
s-set-pos (s, dv (s-pos (s), 1)),
c)

+ n))) endlet

Event: Disable equal-plus-lessp-fact.

Theorem: lr-programs-properp-definedp-subrp-runtime-support
((¬ definedp (car (lr-expr (l)), p-runtime-support-programs))
∧ (car (lr-expr (l)) 6= ’if)
∧ subrp (car (lr-expr (l)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l))))
→ (¬ lr-programs-properp (l , table))

Theorem: p-psw-run-p-run-subr-lr-check-resourcesp
let new-l be lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c),

new-s be s-eval (’list, s-set-pos (s, pos), c),
pc be lr-return-pc (s->lr1 (s, l , table)),
r be s-apply-subr-r (car (s-expr (s)), s-eval (’list, s-set-pos (s, pos), c))

in
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ (c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (s-err-flag (new-s) = ’run)
∧ subrp (car (s-expr (s)))
∧ (p-psw (new-l) = ’run)
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr1 (s, l , table),
table)

∧ s-good-statep (s, c)

206



∧ (p-max-temp-stk-size (l)
6< (length (p-temp-stk (l))

+ arity (car (s-expr (s)))
+ car (r)))

∧ (p-max-ctrl-stk-size (l)
6< (p-ctrl-stk-size (p-ctrl-stk (l)) + cadr (r)))

∧ (p-word-size (l) 6< max (s-max-subr-reqs, caddr (r)))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (l)),

lr-free-list-nodes (lr-max-node (p-data-segment (l)),
p-data-segment (l)),

p-data-segment (l))
6< (cadddr (r)

+ s-eval-heap-r (’list, s-set-pos (s, pos), c)))
∧ (pos = dv (s-pos (s), 1)))
→ (p-psw (p-run-subr (car (s-expr (s)), p-set-pc (lr->p (new-l), pc)))

= ’run) endlet

Event: Disable lr-programs-properp-definedp-subrp-runtime-support.

Theorem: not-lessp-help-fact
((x 6< y) ∧ (x 6< z )) → ((x < max (y , z )) = f)

Theorem: p-psw-run-lr-apply-subr-lr-check-resourcesp
((c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (s-err-flag (s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c)) = ’run)
∧ subrp (car (s-expr (s)))
∧ (p-psw (lr-eval (’list,

lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)),
c))

= ’run)
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ lr-check-resourcesp (flag , s, l , c)
∧ (p-word-size (l) 6< s-max-subr-reqs)
∧ (flag 6= ’list))
→ (p-psw (lr-apply-subr (s->lr1 (s, l , table),

lr-eval (’list,

207



lr-set-pos (s->lr1 (s, l , table),
dv (s-pos (s), 1)),

c)))
= ’run)

Theorem: strip-logic-fnames-lr-compile-programs
strip-logic-fnames (lr-compile-programs (programs , const-table))
= strip-logic-fnames (programs)

Theorem: strip-logic-fnames-cdr-lr-compile-programs
strip-logic-fnames (cdr (lr-compile-programs (programs, const-table)))
= strip-logic-fnames (cdr (programs))

Theorem: lr-programs-properp-s->lr1-definedp-cdr-s-progs
(lr-programs-properp (s->lr1 (s, l , table), table)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ litatom (car (s-expr (s)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-programs-okp (cdr (s-progs (s))))
→ definedp (user-fname (car (s-expr (s))), cdr (s-progs (s)))

Theorem: s-programs-okp-formals-not-f
(s-programs-okp (progs) ∧ (prog ∈ progs)) → (s-formals (prog) 6= f)

Theorem: not-lessp-plus-arity-length-formals
(listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ litatom (car (s-expr (s)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-good-statep (s, c))
→ (((arity (car (s-expr (s))) + x ) < length (formals (car (s-expr (s)))))

= f)

Theorem: length-lr-make-temp-var-dcls
length (lr-make-temp-var-dcls (temp-alist)) = length (temp-alist)

Theorem: length-lr-make-temp-name-alist-1
length (lr-make-temp-name-alist-1 (initial , num-list , temp-list , formals))
= length (temp-list)

208



Theorem: length-lr-make-temp-name-alist
length (lr-make-temp-name-alist (temp-list , formals)) = length (temp-list)

Theorem: p-ctrl-stk-size-0
(p-ctrl-stk-size (ctrl-stk) = 0) = (¬ listp (ctrl-stk))

Theorem: length-make-temps-entries
length (make-temps-entries (list)) = length (list)

Theorem: s-eval-ctrl-r-funcall-opener
let arg-s be s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c)
in
((c 6' 0)
∧ s-good-statep (s, c)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ litatom (car (s-expr (s)))
∧ (flag 6= ’list)
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (s-err-flag (arg-s) = ’run))
→ (s-eval-ctrl-r (flag , s, c)

= max (s-eval-ctrl-r (’list,
s-set-pos (s, dv (s-pos (s), 1)),
c),

1 + (1 + (length (formals (car (s-expr (s))))
+ length (s-temp-list (assoc (user-fname (car (s-expr (s))),

s-progs (s))))
+ s-eval-ctrl-r (t,

s-fun-call-state (arg-s,
car (s-expr (s))),

c − 1))))) endlet

Theorem: s-good-statep-formals-assoc-cdr-s-progs
(s-good-statep (s, c)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ litatom (car (s-expr (s)))
∧ (progs = cdr (s-progs (s))))
→ (s-formals (assoc (user-fname (car (s-expr (s))), progs))

= formals (car (s-expr (s))))

209



Theorem: not-lessp-p-ctrl-stk-size-make-p-call-frame
let s-prog be assoc (user-fname (car (s-expr (s))), cdr (s-progs (s))),

lr-eval be lr-eval (’list,
lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)),
c)

in
(listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ litatom (car (s-expr (s)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-good-statep (s, c)
∧ (c 6' 0)
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ (length (temp-list) = length (s-temp-list (s-prog)))
∧ (p-psw (lr-eval) = ’run)
∧ (s-err-flag (s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c))

= ’run)
∧ (p-max-ctrl-stk-size (l)

6< (p-ctrl-stk-size (p-ctrl-stk (l))
+ s-eval-ctrl-r (flag , s, c)))

∧ (flag 6= ’list))
→ (p-max-ctrl-stk-size (l)

6< p-ctrl-stk-size (cons (make-p-call-frame (formals (car (s-expr (s))),
temp-stk ,
temp-list ,
pc),

p-ctrl-stk (lr-eval)))) endlet

Theorem: definedp-0
definedp (x , 0) = f

Theorem: not-definedp-user-fname-p-runtime-support-programs
¬ definedp (user-fname (name), p-runtime-support-programs)

Theorem: comp-programs-assoc-cons-opener
(user-fname (name) 6= prog1-name)
→ (assoc (user-fname (name),

comp-programs (cons (cons (prog1-name, prog1 ), progs)))
= assoc (user-fname (name), comp-programs-1 (progs)))

Theorem: lr-check-resourcesp-lr-funcall-p-psw-run
((c 6' 0)

210



∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ litatom (car (s-expr (s)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ (p-psw (lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c))

= ’run)
∧ (s-err-flag (s-eval (’list, s-set-pos (s, pos), c)) = ’run)
∧ (pos = dv (s-pos (s), 1))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ s-good-statep (s, c)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-check-resourcesp (flag , s, l , c)
∧ (flag 6= ’list))
→ (p-psw (lr-funcall (s->lr1 (s, l , table),

lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c)))
= ’run)

Theorem: lessp-max-arg2
max (x , y) 6< y

Theorem: not-lessp-plus-arity-length-formals-alt
(listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ litatom (car (s-expr (s)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-good-statep (s, c))
→ (((x + arity (car (s-expr (s)))) < length (formals (car (s-expr (s)))))

= f)

Theorem: listp-lr-compile-programs
listp (lr-compile-programs (progs, table)) = listp (progs)

Theorem: caar-lr-compile-programs
listp (progs) → (caar (lr-compile-programs (progs, table)) = caar (progs))

Theorem: length-p-temp-stk-lr-eval-lr-funcall
let lr-eval be lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c)
in
(listp (s-expr (s))
∧ (¬ subrp (car (s-expr (s))))

211



∧ (car (s-expr (s)) 6= ’quote)
∧ (car (s-expr (s)) 6= ’if)
∧ litatom (car (s-expr (s)))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-good-statep (s, c)
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ (p-psw (lr-eval) = ’run)
∧ (p-psw (lr-funcall (s->lr1 (s, l , table), lr-eval)) = ’run)
∧ (s-err-flag (s-eval (’list, s-set-pos (s, pos), c)) = ’run)
∧ (pos = dv (s-pos (s), 1)))
→ (length (p-temp-stk (lr-funcall (s->lr1 (s, l , table), lr-eval)))

= length (p-temp-stk (l))) endlet

Theorem: p-ctrl-stk-size-p-ctrl-stk-lr-funcall
(p-psw (lr-funcall (l , new-l)) = ’run)
→ (p-ctrl-stk-size (p-ctrl-stk (lr-funcall (l , new-l)))

= (2
+ length (formal-vars (assoc (user-fname (car (lr-expr (l))),

p-prog-segment (l))))
+ length (temp-var-dcls (assoc (user-fname (car (lr-expr (l))),

p-prog-segment (l))))
+ p-ctrl-stk-size (p-ctrl-stk (new-l))))

Theorem: lr-programs-properp-s->lr1-definedp-s-progs
(lr-programs-properp (s->lr1 (s, l , table), table)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ litatom (car (s-expr (s)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-programs-okp (cdr (s-progs (s))))
→ definedp (user-fname (car (s-expr (s))), s-progs (s))

Theorem: s-eval-ctrl-heap-temp-ws-s-fun-call-state-opener
let s-eval be s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c)
in
((c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ litatom (car (s-expr (s)))
∧ s-good-statep (s, c)

212



∧ (s-err-flag (s-eval) = ’run)
∧ (flag 6= ’list))
→ ((s-eval-ctrl-r (flag , s, c)

= max (s-eval-ctrl-r (’list,
s-set-pos (s, dv (s-pos (s), 1)),
c),

2
+ length (s-formals (assoc (user-fname (car (s-expr (s))),

s-progs (s))))
+ length (s-temp-list (assoc (user-fname (car (s-expr (s))),

s-progs (s))))
+ s-eval-ctrl-r (t,

s-fun-call-state (s-eval ,
car (s-expr (s))),

c − 1)))
∧ (s-eval-heap-r (flag , s, c)

= (s-eval-heap-r (’list,
s-set-pos (s, dv (s-pos (s), 1)),
c)

+ s-eval-heap-r (t,
s-fun-call-state (s-eval ,

car (s-expr (s))),
c − 1)))

∧ (s-eval-temp-r (flag , s, c)
= max (s-eval-temp-r (’list,

s-set-pos (s, dv (s-pos (s), 1)),
c),

s-eval-temp-r (t,
s-fun-call-state (s-eval ,

car (s-expr (s))),
c − 1)))

∧ (s-eval-ws-r (flag , s, c)
= max (s-eval-ws-r (’list,

s-set-pos (s, dv (s-pos (s), 1)),
c),

s-eval-ws-r (t,
s-fun-call-state (s-eval ,

car (s-expr (s))),
c − 1)))) endlet

Theorem: lr-check-resourcesp-lr-funcall-s-fun-call-state
((c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)

213



∧ (car (s-expr (s)) 6= s-temp-eval)
∧ (car (s-expr (s)) 6= s-temp-test)
∧ (car (s-expr (s)) 6= s-temp-fetch)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ litatom (car (s-expr (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ (p-psw (lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c))

= ’run)
∧ (s-err-flag (s-eval (’list, s-set-pos (s, pos), c)) = ’run)
∧ (pos = dv (s-pos (s), 1))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ s-good-statep (s, c)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-check-resourcesp (flag , s, l , c)
∧ (flag 6= ’list)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table))
→ lr-check-resourcesp (t,

s-fun-call-state (s-eval (’list,
s-set-pos (s, pos),
c),

car (s-expr (s))),
lr-funcall (s->lr1 (s, l , table),

lr-eval (’list,
lr-set-pos (s->lr1 (s, l , table),

pos),
c)),

c − 1)

Event: Disable s-eval-ctrl-heap-temp-ws-s-fun-call-state-opener.

Theorem: s-eval-flag-run-car-s-apply-subr-r-not-zero
(listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (s-err-flag (s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c)) = ’run)
∧ subrp (car (s-expr (s)))
∧ (p-psw (lr-apply-subr (s->lr1 (s, l , table), new-l)) = ’run)
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-good-statep (s, c))
→ (car (s-apply-subr-r (car (s-expr (s)),

s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c)))
6< 1)

214



Theorem: length-p-temp-stk-lr-eval-lr-set-pos-flag-t
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (pos, s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c)) = ’run))
→ (length (p-temp-stk (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c)))

= (1 + length (p-temp-stk (l))))

Theorem: s-eval-flag-run-s-eval-temp-r-not-zero
((p-psw (lr-eval (flag , s->lr1 (s, l , table), c)) = ’run)
∧ (s-err-flag (s-eval (flag , s, c)) = ’run)
∧ good-posp (flag , s-pos (s), s-body (s-prog (s)))
∧ s-good-statep (s, c)
∧ (flag 6= ’list))
→ (s-eval-temp-r (flag , s, c) 6< 1)

Theorem: p-psw-run-p-psw-lr-if-ok-not-run-check-resourcesp
((flag 6= ’list)
∧ (c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = ’if)
∧ s-good-statep (s, c)
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ (s-err-flag (s-eval (t, s-set-pos (s, dv (s-pos (s), 1)), c)) = ’run)
∧ (p-psw (lr-if-ok (lr-eval (t,

lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)),
c)))

6= ’run)
∧ (p-psw (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)), c))

= ’run)
∧ good-posp1 (s-pos (s), s-body (s-prog (s))))
→ (¬ lr-check-resourcesp (flag , s, l , c))

Theorem: not-lr-check-resourcesp-temp-test-bad-max-temp-stk-size
((flag 6= ’list)
∧ (c 6= 0)
∧ (c ∈ N)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = s-temp-test)
∧ (p-max-temp-stk-size (l) < (2 + length (p-temp-stk (l))))
∧ s-good-statep (s, c))
→ (¬ lr-check-resourcesp (flag , s, l , c))

215



Theorem: lr-eval-s-eval-flag-run
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp (flag , s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ s-all-temps-setp (flag ,

if flag = ’list then s-expr-list (s)
else s-expr (s) endif,
temp-alist-to-set (s-temps (s)))

∧ s-all-progs-temps-setp (s-progs (s))
∧ s-check-temps-setp (s-temps (s))
∧ (s-err-flag (s-eval (flag , s, c)) = ’run)
∧ lr-check-resourcesp (flag , s, l , c)
∧ (p-word-size (l) 6< s-max-subr-reqs))
→ (p-psw (lr-eval (flag , s->lr1 (s, l , table), c)) = ’run)

Theorem: plistp-lr-compile-body-1
plistp (prog) → plistp (lr-compile-body (flag , prog , temp-alist , table))

Definition:
l-restrict-subrps (flag , expr)
= if flag = ’list

then if listp (expr)
then l-restrict-subrps (t, car (expr))

∧ l-restrict-subrps (’list, cdr (expr))
else t endif

elseif listp (expr)
then if car (expr) = ’quote then t

elseif car (expr) = ’if
then l-restrict-subrps (’list, cdr (expr))
elseif subrp (car (expr))
then definedp (car (expr), p-runtime-support-programs)

∧ l-restrict-subrps (’list, cdr (expr))
elseif body (car (expr)) then l-restrict-subrps (’list, cdr (expr))
else t endif

else t endif

Definition:
l-restrict-subrps-progs (pnames)
= if listp (pnames)

then l-restrict-subrps (t, body (car (pnames)))
∧ l-restrict-subrps-progs (cdr (pnames))

else t endif

216



Definition:
s-restrict-subrps (flag , expr)
= if flag = ’list

then if listp (expr)
then s-restrict-subrps (t, car (expr))

∧ s-restrict-subrps (’list, cdr (expr))
else t endif

elseif listp (expr)
then if car (expr) = ’quote then t

elseif (car (expr) = s-temp-fetch)
∨ (car (expr) = s-temp-eval)
∨ (car (expr) = s-temp-test)

then s-restrict-subrps (t, cadr (expr))
elseif car (expr) = ’if
then s-restrict-subrps (’list, cdr (expr))
elseif subrp (car (expr))
then definedp (car (expr), p-runtime-support-programs)

∧ s-restrict-subrps (’list, cdr (expr))
elseif body (car (expr)) then s-restrict-subrps (’list, cdr (expr))
else t endif

else t endif

Definition:
s-restrict-subrps-progs (progs)
= if listp (progs)

then s-restrict-subrps (t, s-body (car (progs)))
∧ s-restrict-subrps-progs (cdr (progs))

else t endif

Theorem: s-proper-exprp-plist-temp-list
s-proper-exprp (flag , expr , program-names , formals, plist (temp-list))
= s-proper-exprp (flag , expr , program-names , formals , temp-list)

Theorem: not-listp-s-progs-not-s-good-statep
(¬ listp (s-progs (s))) → (¬ s-good-statep (s, c))

Theorem: length-lr-init-heap-contents
length (lr-init-heap-contents (addr , size)) = (1 + (size ∗ lr-node-size))

Theorem: fetch-cons
fetch (list (x , cons (name1 , n)), cons (cons (name2 , contents), rest-data-seg))
= if name1 = name2 then get (n, contents)

else fetch (list (x , cons (name1 , n)), rest-data-seg) endif

Theorem: lr-s-similar-const-table-cons

217



lr-s-similar-const-table (cons (cons (object , addr), table), data-seg)
= (lr-valp (object , addr , data-seg)

∧ lr-s-similar-const-table (table, data-seg))

Theorem: lr-s-similar-const-table-nil
lr-s-similar-const-table (nil, data-seg)

Theorem: lr-init-heap-contents-add1-opener
lr-init-heap-contents (addr , 1 + size)
= append (lr-new-node (tag (’nat, lr-init-tag),

add-addr (addr , lr-node-size),
tag (’nat, 0),
tag (’nat, 0)),

lr-init-heap-contents (add-addr (addr , lr-node-size), size))

Theorem: deposit-cons
deposit (object ,

list (x , cons (name1 , n)),
cons (cons (name2 , contents), rest-data-seg))

= if name1 = name2
then cons (cons (name1 , put (object , n, contents)), rest-data-seg)
else cons (cons (name2 , contents),

deposit (object , list (x , cons (name1 , n)), rest-data-seg)) endif

Theorem: adpp-cons-pack-opener
(n ∈ N)
→ (adpp (cons (pack (xxx ), n), cons (cons (pack (yyy), contents), rest))

= if xxx = yyy then n < length (contents)
else adpp (cons (pack (xxx ), n), rest) endif)

Theorem: fetch-deposit-a-list
((offset (addr1 ) ∈ N) ∧ (offset (addr2 ) ∈ N) ∧ listp (list))
→ (fetch (addr1 , deposit-a-list (list , addr2 , data-seg))

= if definedp (area-name (addr2 ), data-seg)
then if area-name (addr1 ) = area-name (addr2 )

then if (offset (addr1 ) 6< offset (addr2 ))
∧ (offset (addr1 )

< (offset (addr2 ) + length (list)))
then get (offset (addr1 ) − offset (addr2 ), list)
else fetch (addr1 , data-seg) endif

else fetch (addr1 , data-seg) endif
else fetch (addr1 , data-seg) endif)

Theorem: lr-valp-0-lr-0-addr-opener
lr-valp (0, identity (lr-0-addr), data-seg)

218



= (adpp (identity (untag (lr-0-addr)), data-seg)
∧ (type (fetch (identity (add-addr (lr-0-addr, lr-ref-count-offset)),

data-seg))
= ’nat)

∧ (untag (fetch (identity (lr-0-addr), data-seg)) = lr-add1-tag)
∧ (untag (fetch (identity (add-addr (lr-0-addr, lr-unbox-nat-offset)),

data-seg))
= 0))

Event: Disable lr-valp-0-lr-0-addr-opener.

Theorem: lr-valp-t-lr-t-addr-opener
lr-valp (t, identity (lr-t-addr), data-seg)
= (adpp (identity (untag (lr-t-addr)), data-seg)

∧ (type (fetch (identity (add-addr (lr-t-addr, lr-ref-count-offset)),
data-seg))

= ’nat)
∧ (untag (fetch (identity (lr-t-addr), data-seg)) = lr-true-tag))

Event: Disable lr-valp-t-lr-t-addr-opener.

Theorem: lr-valp-f-lr-f-addr-opener
lr-valp (f, identity (lr-f-addr), data-seg)
= (adpp (identity (untag (lr-f-addr)), data-seg)

∧ (type (fetch (identity (add-addr (lr-f-addr, lr-ref-count-offset)),
data-seg))

= ’nat)
∧ (untag (fetch (identity (lr-f-addr), data-seg)) = lr-false-tag))

Event: Disable lr-valp-f-lr-f-addr-opener.

Theorem: definedp-table-definedp-cdr-lr-compile-quote
definedp (x , table)
→ definedp (x , cdr (lr-compile-quote (flag , object , data-seg , table)))

Theorem: definedp-car-lr-compile-quote
definedp (x , car (lr-compile-quote (flag , object , data-seg , table)))
= definedp (x , data-seg)

Theorem: lr-proper-p-areasp-car-lr-compile-quote
lr-proper-p-areasp (data-seg)
→ lr-proper-p-areasp (car (lr-compile-quote (flag , object , data-seg , table)))

219



Theorem: length-deposit-a-list
listp (list)
→ (length (cdr (assoc (name, deposit-a-list (list , addr , data-seg))))

= if definedp (area-name (addr), data-seg)
then if area-name (addr) = name

then if length (cdr (assoc (name, data-seg)))
< (offset (addr) + length (list))

then offset (addr) + length (list)
else length (cdr (assoc (name, data-seg))) endif

else length (cdr (assoc (name, data-seg))) endif
else length (cdr (assoc (name, data-seg))) endif)

Theorem: adpp-lr-compile-quote
adpp (addr , data-seg)
→ adpp (addr , car (lr-compile-quote (flag , object , data-seg , table)))

Theorem: adpp-untag-definedp-area-name-free-ptr
adpp (untag (lr-fp-addr), data-seg)
→ definedp (identity (area-name (lr-fp-addr)), data-seg)

Theorem: lr-max-node-deposit-a-list
(adpp (untag (addr), data-seg)
∧ listp (list)
∧ ((offset (addr) + length (list))

< length (cdr (assoc (area-name (addr), data-seg)))))
→ (lr-max-node (deposit-a-list (list , addr , data-seg))

= lr-max-node (data-seg))

Definition:
all-p-objects-lookup (list , table, p)
= if listp (list)

then p-objectp (cdr (assoc (car (list), table)), p)
∧ all-p-objects-lookup (cdr (list), table, p)

else t endif

Theorem: proper-p-alistp-all-litatoms-all-p-objectps-lookup
(all-litatoms (strip-cars (params))
∧ all-p-objects-lookup (strip-cdrs (params), table, p))
→ proper-p-alistp (pair-formals-with-addresses (params, table), p)

Theorem: definedp-table-definedp-cdr-lr-data-seg-table-body
definedp (object , table)
→ definedp (object , cdr (lr-data-seg-table-body (flag , expr , data-seg , table)))

Theorem: definedp-table-definedp-cdr-lr-data-seg-table-list
definedp (object , table)
→ definedp (object , cdr (lr-data-seg-table-list (progs, data-seg , table)))

220



Theorem: definedp-table-definedp-cdr-lr-init-data-seg-table
definedp (object , table)
→ definedp (object , cdr (lr-init-data-seg-table (params, data-seg , table)))

Theorem: definedp-table-definedp-car-lr-data-seg-table-body
definedp (name, data-seg)
→ definedp (name, car (lr-data-seg-table-body (flag , expr , data-seg , table)))

Theorem: definedp-table-definedp-car-lr-data-seg-table-list
definedp (name, data-seg)
→ definedp (name, car (lr-data-seg-table-list (progs, data-seg , table)))

Theorem: equal-lengths-same-signature-car-lr-compile-quote
same-signature (data-seg , car (lr-compile-quote (flag , object , data-seg , table)))
→ (length (cdr (assoc (name,

car (lr-compile-quote (flag , object , data-seg , table)))))
= length (cdr (assoc (name, data-seg))))

Theorem: adpp-same-signature-car-lr-compile-quote
same-signature (data-seg , car (lr-compile-quote (flag , object , data-seg , table)))
→ (adpp (adp, car (lr-compile-quote (flag , object , data-seg , table)))

= adpp (adp, data-seg))

Theorem: same-signature-car-lr-compile-quote-helper
let pair be lr-compile-quote (’list,

list (car (object), cdr (object)),
data-seg ,
table)

in
(lr-proper-free-listp (car (pair))
∧ same-signature (data-seg , car (pair))
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ ((length (cdr (assoc (lr-heap-name, data-seg))) − 1)

6< (offset (fetch (lr-fp-addr, car (pair))) + length (list))))
→ same-signature (data-seg ,

deposit-a-list (list ,
fetch (identity (lr-fp-addr),

car (pair)),
car (pair))) endlet

Theorem: same-signature-car-lr-compile-quote-generalized
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)

221



∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (same-signature (data-seg ,

car (lr-compile-quote (flag , object , data-seg , table)))
∧ lr-proper-free-listp (car (lr-compile-quote (flag ,

object ,
data-seg ,
table))))

Event: Disable equal-lengths-same-signature-car-lr-compile-quote.

Event: Disable adpp-same-signature-car-lr-compile-quote.

Theorem: lr-proper-free-listp-car-lr-compile-quote
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ lr-proper-free-listp (car (lr-compile-quote (flag , object , data-seg , table)))

Theorem: p-objectp-car-lr-compile-quote
(p-objectp (object1 ,

p-state (pc,
ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

∧ lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ p-objectp (object1 ,

p-state (pc,
ctrl-stk ,
temp-stk ,
prog-seg ,
car (lr-compile-quote (flag , object2 , data-seg , table)),
max-ctrl ,
max-temp,

222



word-size,
psw))

Theorem: lr-proper-p-areasp-car-lr-data-seg-table-body
lr-proper-p-areasp (data-seg)
→ lr-proper-p-areasp (car (lr-data-seg-table-body (flag ,

expr ,
data-seg ,
table)))

Theorem: same-signature-car-lr-compile-quote
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ same-signature (data-seg ,

car (lr-compile-quote (flag , object , data-seg , table)))

Theorem: same-signature-car-lr-data-seg-table-body
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (same-signature (data-seg ,

car (lr-data-seg-table-body (flag , expr , data-seg , table)))
∧ lr-proper-free-listp (car (lr-data-seg-table-body (flag ,

expr ,
data-seg ,
table))))

Event: Disable same-signature-car-lr-compile-quote.

Theorem: lr-max-node-car-lr-data-seg-table-body
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (lr-max-node (car (lr-data-seg-table-body (flag , body , data-seg , table)))

= lr-max-node (data-seg))

Theorem: same-signature-car-lr-data-seg-table-list-helper
let dst-body be lr-data-seg-table-body (t, s-body (prog), data-seg , table)
in
(same-signature (car (dst-body),

223



car (lr-data-seg-table-list (progs,
car (dst-body),
cdr (dst-body))))

∧ lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ same-signature (data-seg ,

car (lr-data-seg-table-list (progs,
car (dst-body),
cdr (dst-body)))) endlet

Theorem: same-signature-car-lr-data-seg-table-list
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ same-signature (data-seg ,

car (lr-data-seg-table-list (progs, data-seg , table)))

Event: Disable same-signature-car-lr-data-seg-table-list-helper.

Theorem: length-car-lr-compile-quote
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (length (cdr (assoc (name,

car (lr-compile-quote (flag , object , data-seg , table)))))
= length (cdr (assoc (name, data-seg))))

Theorem: lr-max-node-car-lr-compile-quote
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (lr-max-node (car (lr-compile-quote (flag , object , data-seg , table)))

= lr-max-node (data-seg))

Theorem: lr-proper-free-listp-car-lr-init-data-seg-table
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ lr-proper-free-listp (car (lr-init-data-seg-table (params, data-seg , table)))

224



Theorem: adpp-untag-lr-fp-addr-lr-init-data-seg
adpp (identity (untag (lr-fp-addr)), lr-init-data-seg (heap-size))

Theorem: lr-max-node-lr-init-data-seg
(heap-size 6< 2)
→ (lr-max-node (lr-init-data-seg (heap-size))

= tag (’addr,
cons (identity (lr-heap-name),

identity (lr-node-size) ∗ heap-size)))

Theorem: fetch-lr-fp-addr-lr-init-data-seg
fetch (identity (lr-fp-addr), lr-init-data-seg (heap-size))
= identity (add-addr (lr-f-addr, lr-node-size))

Theorem: lr-boundary-nodep-not-lessp-fact-helper
((x < (y ∗ z )) ∧ ((x mod y) = 0) ∧ (x ∈ N))
→ ((x < (y ∗ (z − 1))) = (x 6= (y ∗ (z − 1))))

Theorem: lessp-times-difference-fact
((z 6' 0) ∧ (x 6' 0) ∧ ((x mod y) = 0))
→ (((x − y) < (y ∗ (z − 1))) = (x < (y ∗ z )))

Theorem: lessp-times-difference-node-on-boundaryp-fact
((heap-size 6' 0) ∧ (offset (addr) 6' 0) ∧ lr-boundary-nodep (addr))
→ ((((((offset (addr) − 1) − 1) − 1) − 1)

< (identity (lr-node-size) ∗ (heap-size − 1)))
= (offset (addr) < (identity (lr-node-size) ∗ heap-size)))

Theorem: lr-boundary-nodep-lessp-lr-node-size-0
lr-boundary-nodep (addr)
→ ((((offset (addr) − 1) = 1) = f)

∧ ((((offset (addr) − 1) − 1) = 1) = f))

Theorem: lr-boundary-nodep-lessp-lr-node-size-1
((offset (addr) ∈ N) ∧ lr-boundary-nodep (addr) ∧ (n < lr-node-size))
→ ((n < offset (addr)) = (offset (addr) 6= 0))

Theorem: lr-boundary-nodep-lessp-lr-node-size-2
lr-boundary-nodep (addr) → ((offset (addr) = 1) = f)

Definition:
induct-hint-17 (addr1 , size, addr2 )
= if size ' 0 then t

elseif offset (addr2 ) ' 0 then t
else induct-hint-17 (add-addr (addr1 , lr-node-size),

size − 1,
sub-addr (addr2 , lr-node-size)) endif

225



Theorem: get-cdr-lr-init-heap-contents
((offset (addr2 ) < (lr-node-size ∗ heap-size))
∧ lr-boundary-nodep (addr2 )
∧ (offset (addr2 ) ∈ N)
∧ (offset (addr1 ) ∈ N))
→ (get (offset (addr2 ), cdr (lr-init-heap-contents (addr1 , heap-size)))

= add-addr (add-addr (addr1 , offset (addr2 )), lr-node-size))

Event: Disable lr-boundary-nodep-lessp-lr-node-size-0.

Event: Disable lr-boundary-nodep-lessp-lr-node-size-1.

Event: Disable lr-boundary-nodep-lessp-lr-node-size-2.

Theorem: length-cdr-assoc-lr-heap-name-lr-init-data-seg
(heap-size 6< 2)
→ (length (cdr (assoc (identity (lr-heap-name), lr-init-data-seg (heap-size))))

= (1 + (heap-size ∗ identity (lr-node-size))))

Theorem: fetch-add-addr-ref-count-offset-lr-init-data-seg-help-1
((offset (addr) = 0)
∧ (type (addr) = ’addr)
∧ (area-name (addr) = ’heap))
→ (add-addr (addr , 4) = ’(addr (heap . 4)))

Theorem: equal-add-addr-fact
(type (addr1 ) = type (addr2 ))
→ ((add-addr (addr1 , n1 ) = add-addr (addr2 , n2 ))

= ((area-name (addr1 ) = area-name (addr2 ))
∧ ((offset (addr1 ) + n1 ) = (offset (addr2 ) + n2 ))))

Definition:
lr-all-nodes (min-offset , max-addr)
= if offset (max-addr) ' 0 then nil

elseif min-offset 6< offset (max-addr) then nil
else cons (sub-addr (max-addr , lr-node-size),

lr-all-nodes (min-offset ,
sub-addr (max-addr , lr-node-size))) endif

Definition:
induct-hint-19 (addr , max-addr)
= if offset (addr) < offset (max-addr)

then induct-hint-19 (add-addr (addr , lr-node-size), max-addr)
else t endif

226



Theorem: lessp-times-plus-fact
(n 6' 0) → (((n ∗ v) < (n + (n ∗ w))) = (v < (1 + w)))

Theorem: lessp-sub1-lessp-fact
((x ∈ N) ∧ (y ∈ N) ∧ (x 6= 0) ∧ (x 6= y))
→ (((x − 1) < y) = (x < y))

Theorem: remainder-difference-not-equal-lessp-fact
(((x mod n) = 0)
∧ ((y mod n) = 0)
∧ (x 6= (y − n))
∧ (y 6< n)
∧ (x ∈ N)
∧ (y ∈ N))
→ ((x < (y − n)) = (x < y))

Event: Disable lessp-sub1-lessp-fact.

Theorem: lr-boundaryp-nodep-difference-node-size
lr-boundary-offsetp (offset)
→ lr-boundary-offsetp (offset − lr-node-size)

Theorem: lr-boundary-offsetp-difference-not-equal-lessp-fact-1
(lr-boundary-offsetp (x )
∧ lr-boundary-offsetp (y)
∧ (x 6= (y − lr-node-size))
∧ (y 6< lr-node-size)
∧ (x ∈ N)
∧ (y ∈ N))
→ ((x < (y − lr-node-size)) = (x < y))

Theorem: member-lr-all-nodes-helper
((offset (max-addr) 6' 0)
∧ (offset (addr) ∈ N)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ listp (untag (addr))
∧ lr-boundary-nodep (addr)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (addr) = area-name (max-addr))
∧ (type (addr) = type (max-addr))
∧ (addr 6= sub-addr (max-addr , lr-node-size)))
→ ((offset (addr) < ((((offset (max-addr) − 1) − 1) − 1) − 1))

= (offset (addr) < offset (max-addr)))

227



Theorem: member-lr-all-nodes
((type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ listp (untag (addr))
∧ (offset (addr) ∈ N)
∧ (type (max-addr) = ’addr)
∧ (cddr (max-addr) = nil)
∧ listp (max-addr)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = lr-heap-name)
∧ listp (untag (max-addr))
∧ lr-boundary-offsetp (min-offset)
∧ (offset (addr) 6< min-offset))
→ ((addr ∈ lr-all-nodes (min-offset , max-addr))

= (offset (addr) < offset (max-addr)))

Event: Disable member-lr-all-nodes-helper.

Theorem: lr-all-nodes-nil
(lr-all-nodes (min-offset , max-addr) = nil)
= ((offset (max-addr) ' 0) ∨ (min-offset 6< offset (max-addr)))

Theorem: delete-append
delete (e, append (x , y))
= if e ∈ x then append (delete (e, x ), y)

else append (x , delete (e, y)) endif

Theorem: lessp-difference-node-size-sub-addr-2
((offset < offset (addr))
∧ lr-boundary-nodep (addr)
∧ (offset (addr) ∈ N)
∧ lr-boundary-offsetp (offset))
→ (((offset (addr) − identity (lr-node-size)) < offset) = f)

Theorem: not-member-lr-all-nodes-too-small-addr
(lr-boundary-nodep (addr)
∧ lr-boundary-nodep (max-addr)
∧ lr-boundary-offsetp (min-offset)
∧ (offset (addr) < min-offset)
∧ (min-offset ∈ N))
→ (addr 6∈ lr-all-nodes (min-offset , max-addr))

228



Theorem: plist-delete
plist (delete (e, x )) = delete (e, plist (x ))

Theorem: lr-check-free-nodes-plist-node-list
lr-check-free-nodes (addr , plist (node-list), data-seg , max-addr)
= lr-check-free-nodes (addr , node-list , data-seg , max-addr)

Theorem: lr-all-nodes-offset-same-max
lr-all-nodes (offset (addr), addr) = nil

Theorem: lr-all-nodes-offset-max-addr-opener-helper
((offset (addr) 6' 0)
∧ lr-boundary-nodep (addr)
∧ (offset ∈ N)
∧ lr-boundary-offsetp (offset)
∧ (offset < offset (addr)))
→ ((offset < ((((offset (addr) − 1) − 1) − 1) − 1))

= (offset 6= ((((offset (addr) − 1) − 1) − 1) − 1)))

Theorem: lr-all-nodes-lessp-max-addr-opener
((type (max-addr) = ’addr)
∧ listp (max-addr)
∧ (cddr (max-addr) = nil)
∧ listp (untag (max-addr))
∧ (offset (max-addr) ∈ N)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = lr-heap-name)
∧ (min-offset < offset (max-addr))
∧ (min-offset ∈ N)
∧ lr-boundary-offsetp (min-offset))
→ (lr-all-nodes (min-offset , max-addr)

= append (lr-all-nodes (min-offset + identity (lr-node-size),
max-addr),

list (tag (’addr,
cons (identity (lr-heap-name), min-offset)))))

Theorem: fetch-init-init-data-seg-generalized
((offset (addr) ∈ N)
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ listp (untag (addr))
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ (offset (addr) < (identity (lr-node-size) ∗ heap-size))

229



∧ (cdr (assoc (lr-heap-name, data-seg))
= lr-init-heap-contents (identity (tag (’addr,

cons (lr-heap-name, 0))),
heap-size)))

→ (fetch (add-addr (addr , identity (lr-ref-count-offset)), data-seg)
= add-addr (addr , 4))

Theorem: lessp-difference-node-size-sub-addr-3
((offset (addr) < (lr-node-size ∗ heap-size))
∧ lr-boundary-nodep (addr)
∧ (offset (addr) ∈ N))
→ (((((((identity (lr-node-size) ∗ heap-size) − 1) − 1) − 1) − 1)

< offset (addr))
= f)

Theorem: lr-boundary-nodep-tag-cons-times-lr-node-size
lr-boundary-nodep (tag (x , cons (name, identity (lr-node-size) ∗ heap-size)))

Theorem: tag-type-name-offset-equal-same
((type (addr) = x )
∧ (cddr (addr) = nil)
∧ listp (untag (addr))
∧ (offset (addr) ∈ N)
∧ (area-name (addr) = name))
→ (tag (x , cons (name, offset (addr))) = addr)

Theorem: lr-check-free-nodes-lr-free-list-nodes-init-data-seg
let init-data-seg be list (cons (area-name (lr-fp-addr), any1 ),

cons (area-name (lr-answer-addr), any2 ),
cons (lr-heap-name,

lr-init-heap-contents (tag (’addr,
cons (lr-heap-name,

0)),
heap-size)))

in
((offset (max-addr) 6< offset (addr))
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ listp (untag (addr))
∧ (offset (addr) ∈ N)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ (max-addr = lr-max-node (init-data-seg)))
→ lr-check-free-nodes (addr ,

230



lr-all-nodes (offset (addr), max-addr),
list (cons (identity (area-name (lr-fp-addr)),

any1 ),
cons (identity (area-name (lr-answer-addr)),

any2 ),
cons (identity (lr-heap-name),

lr-init-heap-contents (identity (tag (’addr,
cons (lr-heap-name,

0))),
heap-size))),

max-addr) endlet

Event: Disable fetch-init-init-data-seg-generalized.

Theorem: lr-free-list-nodes-deposit-a-list-lr-nodep
((type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ (type (max-addr) = ’addr)
∧ (cddr (max-addr) = nil)
∧ listp (max-addr)
∧ adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = lr-heap-name))
→ (lr-free-list-nodes (max-addr ,

deposit-a-list (list (a, b, c, d), addr , data-seg))
= lr-free-list-nodes (max-addr ,

deposit (b,
add-addr (addr ,

identity (lr-ref-count-offset)),
data-seg)))

Theorem: lr-check-free-nodes-deposit-a-list-lr-nodep
((type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ (type (max-addr) = ’addr)
∧ (cddr (max-addr) = nil)

231



∧ listp (max-addr)
∧ adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = lr-heap-name)
∧ lr-node-listp (node-list , data-seg))
→ (lr-check-free-nodes (addr1 ,

node-list ,
deposit-a-list (list (a, b, c, d), addr , data-seg),
max-addr)

= lr-check-free-nodes (addr1 ,
node-list ,
deposit (b,

add-addr (addr ,
identity (lr-ref-count-offset)),

data-seg),
max-addr))

Theorem: lr-all-nodes-not-lessp-min-offset-max-addr
(min-offset 6< offset (max-addr))
→ (lr-all-nodes (min-offset , max-addr) = nil)

Theorem: fetch-init-init-data-seg-sub-addr
(((identity (lr-node-size) ∗ heap-size) 6< offset (addr))
∧ (offset (addr) ∈ N)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ listp (untag (addr))
∧ (type (addr) = ’addr)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ ((offset (addr) − identity (lr-node-size))

< (lr-node-size ∗ heap-size))
∧ (offset (addr) 6= 0)
∧ (cdr (assoc (lr-heap-name, data-seg))

= lr-init-heap-contents (tag (’addr, cons (lr-heap-name, 0)),
heap-size)))

→ (fetch (add-addr (sub-addr (addr , identity (lr-node-size)),
identity (lr-ref-count-offset)),

data-seg)
= addr)

Theorem: lr-free-list-nodes-lr-init-heap-contents-generalized
(lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = lr-heap-name)
∧ (type (max-addr) = ’addr)

232



∧ (cddr (max-addr) = nil)
∧ listp (max-addr)
∧ listp (untag (max-addr))
∧ ((lr-node-size ∗ heap-size) 6< offset (max-addr))
∧ (cdr (assoc (lr-heap-name, data-seg))

= lr-init-heap-contents (identity (tag (’addr,
cons (lr-heap-name, 0))),

heap-size)))
→ (lr-free-list-nodes (max-addr , data-seg) = lr-all-nodes (0, max-addr))

Theorem: lr-free-list-nodes-lr-init-heap-contents
(lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = lr-heap-name)
∧ (type (max-addr) = ’addr)
∧ (cddr (max-addr) = nil)
∧ listp (max-addr)
∧ listp (untag (max-addr))
∧ ((lr-node-size ∗ heap-size) 6< offset (max-addr)))
→ (lr-free-list-nodes (max-addr ,

list (cons (identity (area-name (lr-fp-addr)), any1 ),
cons (identity (area-name (lr-answer-addr)),

any2 ),
cons (identity (lr-heap-name),

lr-init-heap-contents (identity (tag (’addr,
cons (lr-heap-name,

0))),
heap-size))))

= lr-all-nodes (0, max-addr))

Theorem: lr-node-listp-lr-all-nodes
(lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ adpp (untag (addr), data-seg)
∧ (type (addr) = ’addr))
→ lr-node-listp (lr-all-nodes (min-offset , addr), data-seg)

Theorem: plistp-lr-all-nodes
plistp (lr-all-nodes (min-offset , max-addr))

Theorem: lr-free-list-nodes-lr-init-data-seg
(heap-size 6< 2)
→ (lr-free-list-nodes (tag (’addr,

cons (identity (lr-heap-name),
identity (lr-node-size) ∗ heap-size)),

lr-init-data-seg (heap-size))

233



= lr-all-nodes (identity (offset (add-addr (lr-f-addr, lr-node-size))),
tag (’addr,

cons (identity (lr-heap-name),
identity (lr-node-size) ∗ heap-size))))

Theorem: lr-proper-free-listp-lr-init-data-seg-helper
(heap-size 6< 2)
→ lr-check-free-nodes (identity (add-addr (lr-f-addr, lr-node-size)),

lr-all-nodes (identity (offset (add-addr (lr-f-addr,
lr-node-size))),

tag (’addr,
cons (identity (lr-heap-name),

identity (lr-node-size)
∗ heap-size))),

lr-init-data-seg (heap-size),
tag (’addr,

cons (identity (lr-heap-name),
identity (lr-node-size) ∗ heap-size)))

Theorem: lr-proper-free-listp-lr-init-data-seg
(heap-size 6< 2) → lr-proper-free-listp (lr-init-data-seg (heap-size))

Theorem: definedp-lr-heap-name-lr-init-data-seg
definedp (identity (lr-heap-name), lr-init-data-seg (heap-size))

Theorem: lr-proper-p-areasp-lr-heap-name-lr-init-data-seg
lr-proper-p-areasp (lr-init-data-seg (heap-size))

Theorem: lr-proper-p-areasp-car-lr-init-data-seg-table
lr-proper-p-areasp (data-seg)
→ lr-proper-p-areasp (car (lr-init-data-seg-table (params, data-seg , table)))

Theorem: lr-proper-p-areasp-car-lr-data-seg-table-list
lr-proper-p-areasp (data-seg)
→ lr-proper-p-areasp (car (lr-data-seg-table-list (progs, data-seg , table)))

Theorem: definedp-table-definedp-car-lr-init-data-seg-table
definedp (name, car (lr-init-data-seg-table (params, data-seg , table)))
= definedp (name, data-seg)

Theorem: all-p-objects-lookup-cons-table
(all-p-objects-lookup (list , table, p) ∧ p-objectp (y , p))
→ all-p-objects-lookup (list , cons (cons (x , y), table), p)

234



Theorem: p-objectp-opener-alt-lr-proper-free-listp
(lr-proper-free-listp (p-data-segment (p))
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (data-seg = p-data-segment (p)))
→ p-objectp (fetch (identity (lr-fp-addr), data-seg), p)

Theorem: p-objectp-lookup-deposit-a-list
p-objectp (object ,

p-state (pc,
ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

→ p-objectp (object ,
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
deposit-a-list (stuff , addr , data-seg),
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: all-p-objects-lookup-deposit-a-list
all-p-objects-lookup (list ,

table,
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

→ all-p-objects-lookup (list ,
table,
p-state (pc,

235



ctrl-stk ,
temp-stk ,
prog-seg ,
deposit-a-list (stuff , addr , data-seg),
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: p-objectp-lookup-deposit
p-objectp (object ,

p-state (pc,
ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

→ p-objectp (object ,
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
deposit (anything , addr , data-seg),
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: all-p-objects-lookup-deposit
all-p-objects-lookup (list ,

table,
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

→ all-p-objects-lookup (list ,

236



table,
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
deposit (anything , addr , data-seg),
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: definedp-name-p-objectp-tag-0-lr-proper-p-areasp
lr-proper-p-areasp (data-seg)
→ (p-objectp (list (’addr, cons (name, 0)),

p-state (pc,
ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

= definedp (name, data-seg))

Theorem: all-p-objects-lookup-lr-compile-quote
(all-p-objects-lookup (list ,

table,
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

∧ lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ all-p-objects-lookup (list ,

cdr (lr-compile-quote (flag , object , data-seg , table)),
p-state (pc,

237



ctrl-stk ,
temp-stk ,
prog-seg ,
car (lr-compile-quote (flag ,

object ,
data-seg ,
table)),

max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: all-p-objects-lookup-lr-data-seg-table-body
(all-p-objects-lookup (list ,

table,
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

∧ lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ all-p-objects-lookup (list ,

cdr (lr-data-seg-table-body (flag ,
body ,
data-seg ,
table)),

p-state (pc,
ctrl-stk ,
temp-stk ,
prog-seg ,
car (lr-data-seg-table-body (flag ,

body ,
data-seg ,
table)),

max-ctrl-stk-size,
max-temp-stk-size,
word-size,

238



psw))

Theorem: all-p-objects-lookup-lr-data-seg-table-list
(all-p-objects-lookup (list ,

table,
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

∧ lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ all-p-objects-lookup (list ,

cdr (lr-data-seg-table-list (progs, data-seg , table)),
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
car (lr-data-seg-table-list (progs,

data-seg ,
table)),

max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: p-objectp-lookup-lr-init-data-seg-table
(p-objectp (object ,

p-state (pc,
ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

∧ lr-proper-free-listp (data-seg)

239



∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ p-objectp (object ,

p-state (pc,
ctrl-stk ,
temp-stk ,
prog-seg ,
car (lr-init-data-seg-table (params, data-seg , table)),
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: assoc-definedp-table-lr-compile-quote
definedp (object1 , table)
→ (assoc (object1 , cdr (lr-compile-quote (flag , object2 , data-seg , table)))

= assoc (object1 , table))

Theorem: assoc-definedp-table-lr-init-data-seg-table
definedp (object , table)
→ (assoc (object , cdr (lr-init-data-seg-table (params, data-seg , table)))

= assoc (object , table))

Theorem: definedp-table-lr-compile-quote-self
(flag 6= ’list)
→ definedp (object , cdr (lr-compile-quote (flag , object , data-seg , table)))

Theorem: lr-s-similar-const-table-lr-good-pointerp-opener
(lr-s-similar-const-table (table, data-seg) ∧ definedp (object , table))
→ ((type (cdr (assoc (object , table))) = ’addr)

∧ (cddr (cdr (assoc (object , table))) = nil)
∧ listp (cdr (assoc (object , table)))
∧ adpp (untag (cdr (assoc (object , table))), data-seg)
∧ lr-boundary-nodep (cdr (assoc (object , table)))
∧ (area-name (cdr (assoc (object , table)))

= identity (lr-heap-name))
∧ (type (fetch (add-addr (cdr (assoc (object , table)),

identity (lr-ref-count-offset)),
data-seg))

= ’nat))

Theorem: lr-s-similar-const-table-deposit-lr-fp-addr
(adpp (untag (lr-fp-addr), data-seg)
∧ lr-s-similar-const-table (table, data-seg))

240



→ lr-s-similar-const-table (table,
deposit (anything ,

identity (lr-fp-addr),
data-seg))

Theorem: adpp-fetch-lr-fp-addr-car-lr-compile-quote
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ adpp (untag (fetch (identity (lr-fp-addr),

car (lr-compile-quote (flag , object , data-seg , table)))),
data-seg)

Definition:
lr-good-pointerp-tablep (table, data-seg)
= if listp (table)

then lr-good-pointerp (cdar (table), data-seg)
∧ lr-good-pointerp-tablep (cdr (table), data-seg)

else t endif

Theorem: lr-good-pointerp-tablep-definedp-table
(lr-good-pointerp-tablep (table, data-seg) ∧ definedp (object , table))
→ lr-good-pointerp (cdr (assoc (object , table)), data-seg)

Theorem: lr-proper-free-listp-opener-2-area-name-alt
(lr-proper-free-listp (data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (car (untag (fetch (identity (lr-fp-addr), data-seg))) = lr-heap-name)

Theorem: lr-good-pointerp-tablep-deposit-free-ptr
lr-good-pointerp-tablep (table,

deposit (anything , identity (lr-fp-addr), data-seg))
= lr-good-pointerp-tablep (table, data-seg)

Theorem: add1-lr-boundary-nodep
(lr-boundary-nodep (addr1 ) ∧ lr-boundary-nodep (addr2 ))
→ ((offset (addr1 ) = (1 + offset (addr2 ))) = f)

Theorem: lr-boundary-offsetp-plus
lr-boundary-offsetp (n)
→ (lr-boundary-offsetp (m + n) = lr-boundary-offsetp (m))

Theorem: add1-add1-lr-boundary-nodep
(lr-boundary-nodep (addr1 ) ∧ lr-boundary-nodep (addr2 ))
→ ((offset (addr1 ) = (1 + (1 + offset (addr2 )))) = f)

241



Theorem: lr-good-pointerp-tablep-deposit-a-list
(lr-good-pointerp-tablep (table, data-seg)
∧ (offset (addr) ∈ N)
∧ lr-boundary-nodep (addr)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N)
∧ (area-name (addr) = lr-heap-name)
∧ (type (tag) = ’nat))
→ lr-good-pointerp-tablep (table,

deposit-a-list (list (tag , ref-count , x , y),
addr ,
data-seg))

Theorem: lr-good-pointerp-table-cons
((type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name))
→ (lr-good-pointerp-tablep (cons (cons (object , addr), table), data-seg)

= ((type (fetch (add-addr (addr , identity (lr-ref-count-offset)),
data-seg))

= ’nat)
∧ lr-good-pointerp-tablep (table, data-seg)))

Theorem: lr-proper-free-listp-length-sub1-not-lessp
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ ((length (cdr (assoc (identity (lr-heap-name), data-seg))) − 1)

6< offset (fetch (identity (lr-fp-addr),
car (lr-compile-quote (flag , object , data-seg , table)))))

Theorem: lr-minimum-heapp-lr-compile-quote
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (lr-minimum-heapp (car (lr-compile-quote (flag , object , data-seg , table)))

= lr-minimum-heapp (data-seg))

Definition:
s-heap-reqs (flag , object , data-seg , table)

242



= if flag = ’list
then if listp (object)

then let pair be lr-compile-quote (t,
car (object),
data-seg ,
table)

in
s-heap-reqs (t, car (object), data-seg , table)
+ s-heap-reqs (’list,

cdr (object),
car (pair),
cdr (pair)) endlet

else 0 endif
elseif definedp (object , table) then 0
elseif listp (object)
then 1 + s-heap-reqs (’list,

list (car (object), cdr (object)),
data-seg ,
table)

elseif object ∈ N then 1
elseif truep (object) then 1
else 0 endif

Event: Disable s-heap-reqs.

Definition:
s-heap-reqs-body (flag , expr , data-seg , table)
= if flag = ’list

then if listp (expr)
then let dst1 be lr-data-seg-table-body (t,

car (expr),
data-seg ,
table)

in
s-heap-reqs-body (t, car (expr), data-seg , table)
+ s-heap-reqs-body (’list,

cdr (expr),
car (dst1 ),
cdr (dst1 )) endlet

else 0 endif
elseif listp (expr)
then if (car (expr) = s-temp-fetch)

∨ (car (expr) = s-temp-eval)
∨ (car (expr) = s-temp-test)

243



then s-heap-reqs-body (t, cadr (expr), data-seg , table)
elseif car (expr) = ’quote
then s-heap-reqs (t, cadr (expr), data-seg , table)
else s-heap-reqs-body (’list, cdr (expr), data-seg , table) endif

else 0 endif

Definition:
s-heap-reqs-list (progs, data-seg , table)
= if listp (progs)

then s-heap-reqs-body (t, s-body (car (progs)), data-seg , table)
+ s-heap-reqs-list (cdr (progs),

car (lr-data-seg-table-body (t,
s-body (car (progs)),
data-seg ,
table)),

cdr (lr-data-seg-table-body (t,
s-body (car (progs)),
data-seg ,
table)))

else 0 endif

Definition:
s-init-heap-reqs (params, data-seg , table)
= if listp (params)

then s-heap-reqs (t, cdar (params), data-seg , table)
+ s-init-heap-reqs (cdr (params),

car (lr-compile-quote (t,
cdar (params),
data-seg ,
table)),

cdr (lr-compile-quote (t,
cdar (params),
data-seg ,
table)))

else 0 endif

Definition:
s-total-heap-reqs (progs, params, heap-size)
= let init-ds-table1 be lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
list (cons (f, lr-f-addr)))

in
let init-ds-table2 be lr-init-data-seg-table (params,

car (init-ds-table1 ),

244



cdr (init-ds-table1 ))
in
2
+ s-heap-reqs (’list,

list (t, 0),
lr-init-data-seg (heap-size),
list (cons (f, lr-f-addr)))

+ s-init-heap-reqs (params,
car (init-ds-table1 ),
cdr (init-ds-table1 ))

+ s-heap-reqs-list (progs,
car (init-ds-table2 ),
cdr (init-ds-table2 )) endlet endlet

Definition:
s-ws-reqs (flag , object , data-seg , table)
= if flag = ’list

then if listp (object)
then let pair be lr-compile-quote (t,

car (object),
data-seg ,
table)

in
max (s-ws-reqs (t, car (object), data-seg , table),

s-ws-reqs (’list,
cdr (object),
car (pair),
cdr (pair))) endlet

else 0 endif
elseif definedp (object , table) then 0
elseif listp (object)
then max (log (2, lr-cons-tag),

s-ws-reqs (’list,
list (car (object), cdr (object)),
data-seg ,
table))

elseif object ∈ N then max (log (2, lr-add1-tag), log (2, object))
elseif truep (object) then log (2, lr-true-tag)
elseif falsep (object) then log (2, lr-false-tag)
else 0 endif

Event: Disable s-ws-reqs.

Definition:

245



s-ws-reqs-body (flag , expr , data-seg , table)
= if flag = ’list

then if listp (expr)
then let dst1 be lr-data-seg-table-body (t,

car (expr),
data-seg ,
table)

in
max (s-ws-reqs-body (t, car (expr), data-seg , table),

s-ws-reqs-body (’list,
cdr (expr),
car (dst1 ),
cdr (dst1 ))) endlet

else 0 endif
elseif listp (expr)
then if (car (expr) = s-temp-fetch)

∨ (car (expr) = s-temp-eval)
∨ (car (expr) = s-temp-test)

then s-ws-reqs-body (t, cadr (expr), data-seg , table)
elseif car (expr) = ’quote
then s-ws-reqs (t, cadr (expr), data-seg , table)
else s-ws-reqs-body (’list, cdr (expr), data-seg , table) endif

else 0 endif

Definition:
s-ws-reqs-list (progs, data-seg , table)
= if listp (progs)

then max (s-ws-reqs-body (t, s-body (car (progs)), data-seg , table),
s-ws-reqs-list (cdr (progs),

car (lr-data-seg-table-body (t,
s-body (car (progs)),
data-seg ,
table)),

cdr (lr-data-seg-table-body (t,
s-body (car (progs)),
data-seg ,
table))))

else 0 endif

Definition:
s-init-ws-reqs (params, data-seg , table)
= if listp (params)

then max (s-ws-reqs (t, cdar (params), data-seg , table),
s-init-ws-reqs (cdr (params),

246



car (lr-compile-quote (t,
cdar (params),
data-seg ,
table)),

cdr (lr-compile-quote (t,
cdar (params),
data-seg ,
table))))

else 0 endif

Definition:
s-total-ws-reqs (progs, params, heap-size)
= let init-ds-table1 be lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
list (cons (f, lr-f-addr)))

in
let init-ds-table2 be lr-init-data-seg-table (params,

car (init-ds-table1 ),
cdr (init-ds-table1 ))

in
max (s-ws-reqs (’list,

list (f, t, 0),
lr-init-data-seg (heap-size),
nil),

max (s-init-ws-reqs (params,
car (init-ds-table1 ),
cdr (init-ds-table1 )),

max (s-ws-reqs-list (progs,
car (init-ds-table2 ),
cdr (init-ds-table2 )),

s-max-subr-reqs))) endlet endlet

Definition:
s-restricted-objectp (flag , object)
= if flag = ’list

then if listp (object)
then s-restricted-objectp (t, car (object))

∧ s-restricted-objectp (’list, cdr (object))
else t endif

elseif object = t then t
elseif object = f then t
elseif listp (object)
then s-restricted-objectp (’list, list (car (object), cdr (object)))

247



elseif object ∈ N then t
else f endif

Definition:
s-data-seg-body-restrictedp (flag , expr)
= if flag = ’list

then if listp (expr)
then s-data-seg-body-restrictedp (t, car (expr))

∧ s-data-seg-body-restrictedp (’list, cdr (expr))
else t endif

elseif listp (expr)
then if (car (expr) = s-temp-fetch)

∨ (car (expr) = s-temp-eval)
∨ (car (expr) = s-temp-test)

then s-data-seg-body-restrictedp (t, cadr (expr))
elseif car (expr) = ’quote
then s-restricted-objectp (t, cadr (expr))
else s-data-seg-body-restrictedp (’list, cdr (expr)) endif

else t endif

Definition:
s-data-seg-list-restrictedp (progs)
= if listp (progs)

then s-data-seg-body-restrictedp (t, s-body (car (progs)))
∧ s-data-seg-list-restrictedp (cdr (progs))

else t endif

Definition:
s-init-data-seg-restrictedp (params)
= if listp (params)

then s-restricted-objectp (t, cdar (params))
∧ s-init-data-seg-restrictedp (cdr (params))

else t endif

Definition:
s-restrictedp (progs, params)
= (s-init-data-seg-restrictedp (params)

∧ s-data-seg-list-restrictedp (progs))

Theorem: lr-minimum-heapp-not-equal-length-1
lr-minimum-heapp (data-seg)
→ (length (cdr (assoc (identity (lr-heap-name), data-seg))) 6= 1)

Theorem: lr-count-free-nodes-at-most
length (node-list) 6< lr-count-free-nodes (addr , node-list , data-seg)

248



Theorem: lr-proper-free-listp-lr-count-free-nodes-max-addr
(lr-proper-free-listp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-proper-p-areasp (data-seg)
∧ (length (cdr (assoc (lr-heap-name, data-seg)))

= (1 + offset (fetch (lr-fp-addr, data-seg))))
∧ (max-addr = lr-max-node (data-seg)))
→ (lr-count-free-nodes (fetch (identity (lr-fp-addr), data-seg),

lr-free-list-nodes (max-addr , data-seg),
data-seg)

= 0)

Event: Disable lr-count-free-nodes-at-most.

Theorem: lr-count-free-nodes-deposit-a-list-lr-nodep
((type (addr1 ) = ’addr)
∧ (cddr (addr1 ) = nil)
∧ listp (addr1 )
∧ adpp (untag (addr1 ), data-seg)
∧ lr-boundary-nodep (addr1 )
∧ (area-name (addr1 ) = lr-heap-name)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-node-listp (node-list , data-seg)
∧ (addr1 6∈ node-list))
→ (lr-count-free-nodes (addr2 ,

node-list ,
deposit-a-list (list (x , ref-count , y , z ),

addr1 ,
data-seg))

= lr-count-free-nodes (addr2 , delete (addr1 , node-list), data-seg))

Theorem: lr-proper-free-listp-member-free-addr-lr-free-list-nodes
(adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (max-addr = lr-max-node (data-seg))
∧ (offset (fetch (lr-fp-addr, data-seg))

< (length (cdr (assoc (lr-heap-name, data-seg))) − 1))
∧ lr-proper-free-listp (data-seg))
→ (fetch (identity (lr-fp-addr), data-seg)

∈ lr-free-list-nodes (max-addr , data-seg))

249



Theorem: lr-count-free-nodes-lr-compile-quote-s-heap-reqs-help1
(adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (offset (fetch (lr-fp-addr, data-seg))

< (length (cdr (assoc (lr-heap-name, data-seg))) − 1))
∧ lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (max-addr = lr-max-node (data-seg)))
→ (lr-count-free-nodes (fetch (identity (lr-fp-addr), data-seg),

lr-free-list-nodes (max-addr , data-seg),
data-seg)

= (1 + lr-count-free-nodes (fetch (add-addr (fetch (identity (lr-fp-addr),
data-seg),

identity (lr-ref-count-offset)),
data-seg),

delete (fetch (identity (lr-fp-addr),
data-seg),

lr-free-list-nodes (max-addr ,
data-seg)),

data-seg)))

Theorem: lr-proper-free-listp-lr-count-free-nodes-max-addr-alt
(lr-proper-free-listp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-proper-p-areasp (data-seg)
∧ (offset (fetch (lr-fp-addr, data-seg))

6< (length (cdr (assoc (lr-heap-name, data-seg))) − 1))
∧ (max-addr = lr-max-node (data-seg)))
→ (lr-count-free-nodes (fetch (identity (lr-fp-addr), data-seg),

lr-free-list-nodes (max-addr , data-seg),
data-seg)

= 0)

Theorem: s-heap-reqs-object-t
((flag 6= ’list) ∧ (¬ definedp (t, table)))
→ (s-heap-reqs (flag , t, data-seg , table) = 1)

Theorem: lessp-lr-boundary-offsetp-nodep-plus-node-size-fact-1
(lr-boundary-offsetp (offset) ∧ lr-boundary-nodep (addr))
→ ((offset < (identity (lr-node-size) + offset (addr)))

= (offset (addr) 6< offset))

Theorem: lr-count-free-nodes-lr-compile-quote-s-heap-reqs
(lr-proper-free-listp (data-seg)

250



∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-minimum-heapp (data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (flag , object , data-seg , table)))

→ ((lr-count-free-nodes (fetch (lr-fp-addr,
car (lr-compile-quote (flag ,

object ,
data-seg ,
table))),

lr-free-list-nodes (lr-max-node (data-seg),
car (lr-compile-quote (flag ,

object ,
data-seg ,
table))),

car (lr-compile-quote (flag , object , data-seg , table)))
+ s-heap-reqs (flag , object , data-seg , table))

= lr-count-free-nodes (fetch (lr-fp-addr, data-seg),
lr-free-list-nodes (lr-max-node (data-seg),

data-seg),
data-seg))

Theorem: lr-compile-quote-lr-good-pointerp-tablep-help-1
let ccar be lr-compile-quote (t, object , data-seg , table)
in
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-minimum-heapp (data-seg)
∧ (lr-count-free-nodes (fetch (identity (lr-fp-addr), data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< (s-heap-reqs (t, object , data-seg , table) + x )))

→ (lr-count-free-nodes (fetch (identity (lr-fp-addr), car (ccar)),
lr-free-list-nodes (lr-max-node (data-seg),

car (ccar)),
car (ccar))

6< x ) endlet

251



Theorem: s-heap-reqs-flag-list-nil-opener
s-heap-reqs (’list, nil, data-seg , table) = 0

Theorem: lr-compile-quote-flag-list-nil-opener
lr-compile-quote (’list, nil, data-seg , table) = cons (data-seg , table)

Theorem: s-heap-reqs-flag-list-cons-opener
s-heap-reqs (’list, cons (x , y), data-seg , table)
= (s-heap-reqs (t, x , data-seg , table)

+ s-heap-reqs (’list,
y ,
car (lr-compile-quote (t, x , data-seg , table)),
cdr (lr-compile-quote (t, x , data-seg , table))))

Theorem: lr-compile-quote-flag-list-cons-opener
lr-compile-quote (’list, cons (x , y), data-seg , table)
= lr-compile-quote (’list,

y ,
car (lr-compile-quote (t, x , data-seg , table)),
cdr (lr-compile-quote (t, x , data-seg , table)))

Theorem: lr-compile-quote-lr-good-pointerp-tablep-help-2
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-minimum-heapp (data-seg)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6= 0)

∧ (lr-count-free-nodes (fetch (add-addr (fetch (lr-fp-addr, data-seg),
lr-ref-count-offset),

data-seg),
delete (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg)),

data-seg)
6< s-heap-reqs (’list,

list (car (object), cdr (object)),
data-seg ,
table))

∧ listp (object))
→ ((length (cdr (assoc (identity (lr-heap-name), data-seg))) − 1)

252



6< (offset (fetch (identity (lr-fp-addr),
car (lr-compile-quote (’list,

list (car (object),
cdr (object)),

data-seg ,
table))))

+ identity (lr-node-size)))

Event: Disable s-heap-reqs-flag-list-cons-opener.

Event: Disable lr-compile-quote-flag-list-cons-opener.

Theorem: lr-compile-quote-lr-good-pointerp-tablep-help-3
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-minimum-heapp (data-seg)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< 1))

→ ((length (cdr (assoc (identity (lr-heap-name), data-seg))) − 1)
6< (offset (fetch (identity (lr-fp-addr), data-seg))

+ identity (lr-node-size)))

Theorem: lr-compile-quote-lr-good-pointerp-tablep
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-minimum-heapp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-restricted-objectp (flag , object)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (flag , object , data-seg , table))

∧ definedp (f, table))
→ lr-good-pointerp-tablep (cdr (lr-compile-quote (flag ,

object ,

253



data-seg ,
table)),

car (lr-compile-quote (flag ,
object ,
data-seg ,
table)))

Theorem: lr-nodep-car-lr-compile-quote
lr-nodep (addr , data-seg)
→ lr-nodep (addr , car (lr-compile-quote (flag , object , data-seg , table)))

Theorem: lr-proper-free-listp-opener-2-lr-nodep
(lr-proper-free-listp (data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (addr = fetch (identity (lr-fp-addr), data-seg)))
→ lr-nodep (addr , data-seg)

Theorem: lr-nodep-deposit-a-list
lr-nodep (addr1 , data-seg)
→ lr-nodep (addr1 , deposit-a-list (list , addr2 , data-seg))

Definition:
induct-hint-16 (object , list , data-seg , table)
= if list ' nil then t

elseif object = car (list) then t
else induct-hint-16 (object ,

cdr (list),
car (lr-compile-quote (t,

car (list),
data-seg ,
table)),

cdr (lr-compile-quote (t,
car (list),
data-seg ,
table))) endif

Theorem: definedp-object-cdr-lr-compile-quote-list
(object ∈ list)
→ definedp (object , cdr (lr-compile-quote (’list, list , data-seg , table)))

Theorem: lr-good-pointerp-cdr-assoc-car-lr-compile-quote-list
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)

254



∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-minimum-heapp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-restricted-objectp (’list, object-list)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6= 0)

∧ ((lr-count-free-nodes (fetch (lr-fp-addr, data-seg),
lr-free-list-nodes (lr-max-node (data-seg),

data-seg),
data-seg) − 1)

6< s-heap-reqs (’list, object-list , data-seg , table))
∧ definedp (f, table)
∧ (object ∈ object-list))
→ lr-good-pointerp (cdr (assoc (object ,

cdr (lr-compile-quote (’list,
object-list ,
data-seg ,
table)))),

car (lr-compile-quote (’list,
object-list ,
data-seg ,
table)))

Theorem: lr-good-pointerp-deposit-non-ref-not-good-pointerp
(lr-boundary-nodep (addr)
∧ adpp (untag (addr), data-seg)
∧ (area-name (addr) = ’heap)
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ (n < lr-node-size)
∧ (n 6= lr-ref-count-offset)
∧ definedp (lr-heap-name, data-seg)
∧ lr-good-pointerp (good-pointer , data-seg)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’nat))
→ lr-good-pointerp (good-pointer , deposit (x , add-addr (addr , n), data-seg))

Theorem: lr-good-pointerp-deposit-ref-count-not-good-pointerp
(lr-boundary-nodep (addr)
∧ adpp (untag (addr), data-seg)
∧ (area-name (addr) = ’heap)

255



∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ (type (x ) = ’nat)
∧ definedp (lr-heap-name, data-seg)
∧ lr-good-pointerp (good-pointer , data-seg)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’nat))
→ lr-good-pointerp (good-pointer ,

deposit (x ,
add-addr (addr , identity (lr-ref-count-offset)),
data-seg))

Theorem: lr-good-pointerp-deposit-non-add-addr-not-good-pointerp
(lr-boundary-nodep (addr)
∧ adpp (untag (addr), data-seg)
∧ (area-name (addr) = ’heap)
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ definedp (lr-heap-name, data-seg)
∧ lr-good-pointerp (good-pointer , data-seg)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’nat))
→ lr-good-pointerp (good-pointer , deposit (x , addr , data-seg))

Theorem: lr-check-numberp-addrp-deposit-a-list-cons-same-addr
((type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = ’heap)
∧ (offset (addr) 6< (lr-node-size + offset (lr-f-addr)))
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg))

= ’addr)
∧ lr-good-pointerp (good-pointer , data-seg)
∧ definedp (’heap, data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N)
∧ (type (tagged-number) = ’nat)
∧ (untag (tagged-number) ∈ N))
→ lr-check-numberp-addrp (addr ,

deposit-a-list (list (identity (tag (’nat,
lr-add1-tag)),

256



ref-count ,
tagged-number ,
good-pointer),

addr ,
data-seg))

Theorem: lr-proper-heapp-nodep-deposit-a-list-numberp
(lr-nodep (max-addr , data-seg)
∧ lr-nodep (addr , data-seg)
∧ lr-proper-heapp-nodep (max-addr , data-seg)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’nat)
∧ lr-good-pointerp (good-pointer , data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N)
∧ (type (tagged-number) = ’nat)
∧ (untag (tagged-number) ∈ N))
→ lr-proper-heapp-nodep (max-addr ,

deposit-a-list (list (identity (tag (’nat,
lr-add1-tag)),

ref-count ,
tagged-number ,
good-pointer),

addr ,
data-seg))

Theorem: lr-proper-heapp2-deposit-a-list-numberp
(lr-nodep (max-addr , data-seg)
∧ lr-nodep (addr , data-seg)
∧ lr-proper-heapp2 (max-addr , data-seg)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’nat)
∧ lr-good-pointerp (good-pointer , data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (type (tag) = ’nat)
∧ (untag (tag) ∈ N)
∧ (type (tagged-number) = ’nat)
∧ (untag (tagged-number) ∈ N))
→ lr-proper-heapp2 (max-addr ,

deposit-a-list (list (identity (tag (’nat, lr-add1-tag)),
tag ,
tagged-number ,
good-pointer),

257



addr ,
data-seg))

Theorem: lr-good-pointerp-lr-undef-addr
(lr-minimum-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp2 (lr-max-node (data-seg), data-seg)
∧ lr-nodep (lr-max-node (data-seg), data-seg))
→ lr-good-pointerp (identity (lr-undef-addr), data-seg)

Theorem: lr-proper-heapp-nodep-deposit-a-list-truep
(lr-nodep (max-addr , data-seg)
∧ lr-nodep (addr , data-seg)
∧ lr-proper-heapp-nodep (max-addr , data-seg)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’nat)
∧ lr-good-pointerp (good-pointer1 , data-seg)
∧ lr-good-pointerp (good-pointer2 , data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N))
→ lr-proper-heapp-nodep (max-addr ,

deposit-a-list (list (identity (tag (’nat,
lr-true-tag)),

ref-count ,
good-pointer1 ,
good-pointer2 ),

addr ,
data-seg))

Theorem: lr-proper-heapp2-deposit-a-list-truep
(lr-nodep (max-addr , data-seg)
∧ lr-nodep (addr , data-seg)
∧ lr-proper-heapp2 (max-addr , data-seg)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’nat)
∧ lr-good-pointerp (good-pointer1 , data-seg)
∧ lr-good-pointerp (good-pointer2 , data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (type (tag) = ’nat)
∧ (untag (tag) ∈ N))
→ lr-proper-heapp2 (max-addr ,

deposit-a-list (list (identity (tag (’nat, lr-true-tag)),
tag ,
good-pointer1 ,

258



good-pointer2 ),
addr ,
data-seg))

Theorem: lr-compile-quote-preserves-lr-proper-heapp2
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-nodep (lr-max-node (data-seg), data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-restricted-objectp (flag , object)
∧ lr-minimum-heapp (data-seg)
∧ lr-proper-heapp2 (lr-max-node (data-seg), data-seg)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (flag , object , data-seg , table)))

→ lr-proper-heapp2 (lr-max-node (data-seg),
car (lr-compile-quote (flag , object , data-seg , table)))

Theorem: plistp-pair-formals-with-addresses
plistp (pair-formals-with-addresses (formals, table))

Theorem: strip-cars-pair-formals-with-addresses
strip-cars (pair-formals-with-addresses (formals, table))
= strip-cars (formals)

Theorem: strip-cars-lr-make-initial-temps
strip-cars (lr-make-initial-temps (temp-vars)) = plist (temp-vars)

Theorem: lr-s-similar-const-table-implies-lr-good-pointerp-tablep
lr-s-similar-const-table (table, data-seg)
→ lr-good-pointerp-tablep (table, data-seg)

Theorem: lr-s-similar-const-table-deposit-cons
(lr-proper-heapp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ lr-proper-p-areasp (data-seg))
→ lr-s-similar-const-table (table,

deposit-a-list (list (x0 , x1 , x2 , x3 ),
fetch (identity (lr-fp-addr),

data-seg),
data-seg))

259



Theorem: lr-valp-deposit-a-list-cons-cons
(listp (object)
∧ lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N)
∧ definedp (car (object), table)
∧ definedp (cdr (object), table)
∧ definedp (lr-heap-name, data-seg)
∧ (addr = fetch (identity (lr-fp-addr), data-seg)))
→ lr-valp (object ,

addr ,
deposit-a-list (list (identity (tag (’nat, lr-cons-tag)),

ref-count ,
cdr (assoc (car (object), table)),
cdr (assoc (cdr (object), table))),

addr ,
data-seg))

Theorem: lr-valp-deposit-a-list-cons-numberp
((object ∈ N)
∧ lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N)
∧ definedp (lr-heap-name, data-seg)
∧ (addr = fetch (identity (lr-fp-addr), data-seg)))
→ lr-valp (object ,

addr ,
deposit-a-list (list (identity (tag (’nat, lr-add1-tag)),

ref-count ,
tag (’nat, object),
identity (lr-undef-addr)),

addr ,
data-seg))

Theorem: lr-compile-quote-preserves-lr-valp
(lr-proper-p-areasp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-restricted-objectp (flag , object)
∧ lr-minimum-heapp (data-seg)
∧ lr-nodep (lr-max-node (data-seg), data-seg)
∧ lr-proper-free-listp (data-seg)

260



∧ lr-proper-heapp2 (lr-max-node (data-seg), data-seg)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (flag , object , data-seg , table))

∧ lr-valp (value, addr , data-seg))
→ lr-valp (value, addr , car (lr-compile-quote (flag , object , data-seg , table)))

Theorem: lr-compile-quote-preserves-lr-proper-heapp
(lr-proper-p-areasp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ lr-proper-heapp (data-seg)
∧ s-restricted-objectp (flag , object)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (flag , object , data-seg , table)))

→ lr-proper-heapp (car (lr-compile-quote (flag , object , data-seg , table)))

Theorem: lr-valp-deposit-a-list-cons-truep
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N)
∧ definedp (lr-heap-name, data-seg)
∧ (addr = fetch (identity (lr-fp-addr), data-seg)))
→ lr-valp (t,

addr ,
deposit-a-list (list (identity (tag (’nat, lr-true-tag)),

ref-count ,
identity (lr-undef-addr),
identity (lr-undef-addr)),

addr ,
data-seg))

Theorem: lr-s-similar-const-table-lr-compile-quote
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ s-restricted-objectp (flag , object)
∧ definedp (f, table)

261



∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),
lr-free-list-nodes (lr-max-node (data-seg),

data-seg),
data-seg)

6< s-heap-reqs (flag , object , data-seg , table)))
→ lr-s-similar-const-table (cdr (lr-compile-quote (flag ,

object ,
data-seg ,
table)),

car (lr-compile-quote (flag ,
object ,
data-seg ,
table)))

Theorem: p-objectp-cdr-assoc-car-lr-compile-quote
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ s-restricted-objectp (flag , object)
∧ (word-size 6< s-ws-reqs (flag , object , data-seg , table))
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (flag , object , data-seg , table))

∧ (flag 6= ’list))
→ p-objectp (cdr (assoc (object ,

cdr (lr-compile-quote (flag , object , data-seg , table)))),
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
car (lr-compile-quote (flag , object , data-seg , table)),
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: lr-count-free-nodes-s-init-heap-reqs
let ccar be lr-compile-quote (t, object , data-seg , table)
in
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)

262



∧ lr-s-similar-const-table (table, data-seg)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< (s-heap-reqs (t, object , data-seg , table)

+ s-init-heap-reqs (params, car (ccar), cdr (ccar)))))
→ (lr-count-free-nodes (fetch (identity (lr-fp-addr), car (ccar)),

lr-free-list-nodes (lr-max-node (data-seg),
car (ccar)),

car (ccar))
6< s-init-heap-reqs (params, car (ccar), cdr (ccar))) endlet

Theorem: all-p-objects-lookup-strip-cdrs-lr-init-data-seg-table
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ definedp (f, table)
∧ definedp (t, table)
∧ s-init-data-seg-restrictedp (params)
∧ (word-size 6< s-init-ws-reqs (params, data-seg , table))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table)))

→ all-p-objects-lookup (strip-cdrs (params),
cdr (lr-init-data-seg-table (params, data-seg , table)),
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
car (lr-init-data-seg-table (params,

data-seg ,
table)),

max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: lr-minimum-heapp-lr-init-data-seg
(heap-size 6< 4) → lr-minimum-heapp (lr-init-data-seg (heap-size))

Theorem: adpp-cons-heap-name-node-size-lr-init-data-seg
(heap-size 6< 2)

263



→ adpp (cons (identity (lr-heap-name), identity (lr-node-size)
∗ heap-size),

lr-init-data-seg (heap-size))

Theorem: lr-check-f-addrp-lr-undef-addr-lr-init-data-seg
((offset (addr) = identity (offset (lr-undef-addr)))
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ (area-name (addr) = lr-heap-name)
∧ adpp (untag (addr), data-seg))
→ lr-check-undef-addrp (addr , data-seg)

Theorem: fetch-offset-lr-t-addr-ref-count-offset-compile-quote-t
((type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ (area-name (addr) = lr-heap-name)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (¬ definedp (t, table))
∧ lr-proper-free-listp (data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (offset (fetch (lr-fp-addr, data-seg)) < lr-minimum-heap-size)
∧ lr-proper-p-areasp (data-seg)
∧ ((length (cdr (assoc (lr-heap-name, data-seg))) − 1)

6< (offset (addr) + lr-node-size)))
→ (fetch (add-addr (addr , identity (lr-ref-count-offset)),

car (lr-compile-quote (t, t, data-seg , table)))
= if offset (addr) = offset (fetch (lr-fp-addr, data-seg))

then identity (tag (’nat, 1))
else fetch (add-addr (addr , identity (lr-ref-count-offset)),

data-seg) endif)

Theorem: definedp-cdr-lr-compile-quote-t
definedp (x , cdr (lr-compile-quote (t, t, data-seg , table)))
= ((x = t) ∨ definedp (x , table))

Theorem: fetch-lr-fp-addr-compile-quote-t
((¬ definedp (t, table))
∧ lr-proper-free-listp (data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ ((length (value (lr-heap-name, data-seg)) − 1)

6< (offset (fetch (lr-fp-addr, data-seg)) + lr-node-size))

264



∧ lr-proper-p-areasp (data-seg))
→ (fetch (identity (lr-fp-addr), car (lr-compile-quote (t, t, data-seg , table)))

= fetch (add-addr (fetch (identity (lr-fp-addr), data-seg),
identity (lr-ref-count-offset)),

data-seg))

Theorem: numberp-lessp-4-not-3-not-2-not-1-must-be-0
((c ∈ N) ∧ (c 6= 3) ∧ (c 6= 2) ∧ (c 6= 1) ∧ (c < 4))
→ (c = 0)

Event: Disable fetch-offset-lr-t-addr-ref-count-offset-compile-quote-t.

Theorem: lessp-minimum-heap-size-not-0-f-t-must-be-undef-alt-1-help
(lr-boundary-offsetp (offset)
∧ (offset ∈ N)
∧ (offset 6= offset (lr-undef-addr))
∧ (offset 6= offset (lr-f-addr))
∧ (offset 6= offset (lr-t-addr))
∧ (offset 6= offset (lr-0-addr)))
→ (offset 6< lr-minimum-heap-size)

Theorem: lessp-minimum-heap-size-not-0-f-t-must-be-undef-alt-1
((offset (addr) < lr-minimum-heap-size)
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ (area-name (addr) = ’heap)
∧ adpp (untag (addr), lr-init-data-seg (heap-size))
∧ lr-boundary-nodep (addr)
∧ (offset (addr) 6= offset (lr-0-addr))
∧ (offset (addr) 6= offset (lr-t-addr))
∧ (offset (addr) 6= offset (lr-f-addr)))
→ (fetch (addr , lr-init-data-seg (heap-size))

= identity (tag (’nat, lr-undefined-tag)))

Theorem: lessp-lr-boundary-offsetp-3
(lr-boundary-offsetp (offset) ∧ (offset ∈ N))
→ ((offset < 3) = (offset = 0))

Theorem: numberp-lessp-2-not-1-must-be-0
((c ∈ N) ∧ (c 6= 1) ∧ (c < 2)) → (c = 0)

Theorem: not-lessp-difference-lr-boundary-offsetp-fact
((offset ∈ N) ∧ (offset < (lr-node-size + offset (lr-f-addr))))
→ (lr-boundary-offsetp (offset)

265



= ((offset = identity (offset (lr-f-addr)))
∨ (offset = identity (offset (lr-undef-addr)))))

Theorem: fetch-ref-count-lr-init-data-seg-free-list
(((lr-node-size ∗ heap-size) 6< (offset (addr) + lr-node-size))
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ (area-name (addr) = lr-heap-name)
∧ listp (untag (addr))
∧ lr-boundary-nodep (addr)
∧ (heap-size 6< 2))
→ (fetch (add-addr (addr , identity (lr-ref-count-offset)),

lr-init-data-seg (heap-size))
= if offset (lr-f-addr) < offset (addr)

then add-addr (addr , identity (lr-node-size))
else identity (tag (’nat, 1)) endif)

Theorem: lessp-offset-lr-init-data-seg-adpp-untag-lessp-offset
(adpp (untag (addr), lr-init-data-seg (heap-size))
∧ lr-boundary-offsetp (offset)
∧ lr-boundary-offsetp (offset (addr))
∧ (offset < offset (addr))
∧ (area-name (addr) = lr-heap-name)
∧ (heap-size 6< 2))
→ ((offset < (identity (lr-node-size) ∗ heap-size)) = t)

Theorem: lr-count-free-nodes-lr-all-nodes
(lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ listp (untag (addr))
∧ (offset (addr) ∈ N)
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = lr-heap-name)
∧ adpp (untag (max-addr), lr-init-data-seg (heap-size))
∧ (type (max-addr) = ’addr)
∧ (cddr (max-addr) = nil)
∧ listp (max-addr)
∧ (offset (lr-f-addr) < offset (addr))
∧ (heap-size 6< 2))
→ (lr-count-free-nodes (addr ,

lr-all-nodes (offset (addr), max-addr),

266



lr-init-data-seg (heap-size))
= length (lr-all-nodes (offset (addr), max-addr)))

Theorem: same-signature-car-lr-init-data-seg-table-help-1
let comp-obj be lr-compile-quote (t, object , data-seg , table)
in
(same-signature (car (comp-obj ),

car (lr-init-data-seg-table (params,
car (comp-obj ),
cdr (comp-obj ))))

∧ lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ same-signature (data-seg ,

car (lr-init-data-seg-table (params,
car (comp-obj ),
cdr (comp-obj )))) endlet

Theorem: same-signature-car-lr-init-data-seg-table
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ same-signature (data-seg ,

car (lr-init-data-seg-table (params, data-seg , table)))

Theorem: lr-max-node-car-lr-init-data-seg-table
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (lr-max-node (car (lr-init-data-seg-table (params, data-seg , table)))

= lr-max-node (data-seg))

Theorem: s-heap-reqs-object-0
((flag 6= ’list) ∧ (¬ definedp (0, table)))
→ (s-heap-reqs (flag , 0, data-seg , table) = 1)

Theorem: lr-free-list-nodes-deposit-0
((type (max-addr) = ’addr)
∧ (cddr (max-addr) = nil)
∧ listp (max-addr)
∧ adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)

267



∧ (area-name (max-addr) = lr-heap-name)
∧ (¬ definedp (0, table))
∧ lr-proper-free-listp (data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-proper-p-areasp (data-seg)
∧ ((length (cdr (assoc (lr-heap-name, data-seg))) − 1)

6< (offset (fetch (lr-fp-addr, data-seg)) + lr-node-size)))
→ (lr-free-list-nodes (max-addr ,

car (lr-compile-quote (t, 0, data-seg , table)))
= lr-free-list-nodes (max-addr ,

deposit (identity (tag (’nat, 1)),
add-addr (fetch (identity (lr-fp-addr),

data-seg),
identity (lr-ref-count-offset)),

data-seg)))

Theorem: lr-free-list-nodes-deposit-t
((type (max-addr) = ’addr)
∧ (cddr (max-addr) = nil)
∧ listp (max-addr)
∧ adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = lr-heap-name)
∧ (¬ definedp (t, table))
∧ lr-proper-free-listp (data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-proper-p-areasp (data-seg)
∧ ((length (cdr (assoc (lr-heap-name, data-seg))) − 1)

6< (offset (fetch (lr-fp-addr, data-seg)) + lr-node-size)))
→ (lr-free-list-nodes (max-addr ,

car (lr-compile-quote (t, t, data-seg , table)))
= lr-free-list-nodes (max-addr ,

deposit (identity (tag (’nat, 1)),
add-addr (fetch (identity (lr-fp-addr),

data-seg),
identity (lr-ref-count-offset)),

data-seg)))

Theorem: fetch-lr-fp-addr-compile-quote-0
((¬ definedp (0, table))
∧ ((length (cdr (assoc (lr-heap-name, data-seg))) − 1)

6< (offset (fetch (lr-fp-addr, data-seg)) + lr-node-size))

268



∧ definedp (area-name (lr-fp-addr), data-seg))
→ (fetch (identity (lr-fp-addr),

car (lr-compile-quote (t, 0, data-seg , table)))
= fetch (add-addr (fetch (identity (lr-fp-addr), data-seg),

identity (lr-ref-count-offset)),
data-seg))

Theorem: fetch-add-addr-ref-count-f-addr-lr-init-data-seg
(heap-size 6< 2)
→ (fetch (identity (add-addr (lr-f-addr, lr-ref-count-offset)),

lr-init-data-seg (heap-size))
= identity (tag (’nat, 1)))

Theorem: lr-good-pointerp-tablep-f-lr-f-addr-lr-init-data-seg
(heap-size 6< 4)
→ lr-good-pointerp-tablep (list (cons (f, identity (lr-f-addr))),

lr-init-data-seg (heap-size))

Theorem: lr-proper-heapp-nodep-lr-undef-addr-lr-init-data-seg
(heap-size 6< 2)
→ lr-proper-heapp-nodep (identity (lr-undef-addr),

lr-init-data-seg (heap-size))

Definition:
induct-hint-2 (offset)
= if offset < offset (add-addr (lr-f-addr, lr-node-size)) then t

else induct-hint-2 (offset − lr-node-size) endif

Theorem: lr-boundary-offsetp-difference-lr-node-size
lr-boundary-offsetp (offset)
→ lr-boundary-offsetp (offset − identity (lr-node-size))

Theorem: fetch-lr-f-addr-lr-init-data-seg
(heap-size 6< 2)
→ (fetch (identity (lr-f-addr), lr-init-data-seg (heap-size))

= identity (tag (’nat, lr-false-tag)))

Theorem: lr-proper-heapp-nodep-lr-init-data-seg-helper
((offset 6< offset (lr-f-addr))
∧ (heap-size 6< 2)
∧ (offset ∈ N)
∧ lr-boundary-nodep (tag (’addr, cons (lr-heap-name, offset)))
∧ ((lr-node-size ∗ heap-size) 6< (offset + lr-node-size)))
→ lr-proper-heapp-nodep (tag (’addr, cons (identity (lr-heap-name), offset)),

lr-init-data-seg (heap-size))

269



Theorem: lr-proper-heapp2-lr-init-data-seg-helper
((heap-size 6< 2)
∧ (offset < length (cdr (assoc (lr-heap-name,

lr-init-data-seg (heap-size)))))
∧ (offset ∈ N)
∧ lr-boundary-nodep (tag (’addr, cons (lr-heap-name, offset))))
→ lr-proper-heapp2 (tag (’addr, cons (lr-heap-name, offset)),

lr-init-data-seg (heap-size))

Theorem: lr-proper-heapp2-lr-init-data-seg
(heap-size 6< 2)
→ lr-proper-heapp2 (tag (’addr,

cons (identity (lr-heap-name),
identity (lr-node-size) ∗ heap-size)),

lr-init-data-seg (heap-size))

Theorem: fetch-add-addr-ref-count-lr-t-addr-lr-init-data-seg
(heap-size 6< 4)
→ (fetch (identity (add-addr (lr-t-addr, lr-ref-count-offset)),

lr-init-data-seg (heap-size))
= identity (add-addr (lr-t-addr, lr-node-size)))

Theorem: fetch-t-addr-compile-quote-list-init-data-seg
((heap-size 6< 4) ∧ (¬ definedp (t, table)))
→ (fetch (identity (lr-t-addr),

car (lr-compile-quote (’list,
list (t, 0),
lr-init-data-seg (heap-size),
table)))

= identity (tag (’nat, lr-true-tag)))

Theorem: fetch-ref-count-t-addr-compile-quote-list-init-data-seg
((heap-size 6< 4) ∧ (¬ definedp (t, table)))
→ (fetch (identity (add-addr (lr-t-addr, lr-ref-count-offset)),

car (lr-compile-quote (’list,
list (t, 0),
lr-init-data-seg (heap-size),
table)))

= identity (tag (’nat, 1)))

Theorem: fetch-add-addr-ref-count-lr-0-addr-lr-init-data-seg
(heap-size 6< 4)
→ (fetch (identity (add-addr (lr-0-addr, lr-ref-count-offset)),

lr-init-data-seg (heap-size))
= identity (add-addr (lr-0-addr, lr-node-size)))

270



Theorem: fetch-0-addr-compile-quote-list-init-data-seg
((heap-size 6< 4) ∧ (¬ definedp (t, table)) ∧ (¬ definedp (0, table)))
→ (fetch (identity (lr-0-addr),

car (lr-compile-quote (’list,
list (t, 0),
lr-init-data-seg (heap-size),
table)))

= identity (tag (’nat, lr-add1-tag)))

Theorem: fetch-ref-count-0-addr-compile-quote-list-init-data-seg
((heap-size 6< 4) ∧ (¬ definedp (t, table)) ∧ (¬ definedp (0, table)))
→ (fetch (identity (add-addr (lr-0-addr, lr-ref-count-offset)),

car (lr-compile-quote (’list,
list (t, 0),
lr-init-data-seg (heap-size),
table)))

= identity (tag (’nat, 1)))

Theorem: fetch-unbox-nat-0-addr-compile-quote-list-init-data-seg
((heap-size 6< 4) ∧ (¬ definedp (t, table)) ∧ (¬ definedp (0, table)))
→ (fetch (identity (add-addr (lr-0-addr, lr-unbox-nat-offset)),

car (lr-compile-quote (’list,
list (t, 0),
lr-init-data-seg (heap-size),
table)))

= identity (tag (’nat, 0)))

Theorem: lr-proper-heapp-lr-compile-quote-ft-lr-init-data-seg
(heap-size 6< 4)
→ lr-proper-heapp (car (lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
list (cons (f, identity (lr-f-addr))))))

Theorem: cdr-compile-quote-list-t0-lr-init-data-seg-cons-table
((¬ definedp (0, table)) ∧ (¬ definedp (t, table)) ∧ (heap-size 6< 4))
→ (cdr (lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
table))

= cons (cons (0, identity (lr-0-addr)),
cons (cons (t, identity (lr-t-addr)), table)))

Theorem: fetch-f-addr-compile-quote-list-init-data-seg
((heap-size 6< 4) ∧ (¬ definedp (t, table)) ∧ (¬ definedp (0, table)))

271



→ (fetch (identity (lr-f-addr),
car (lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
table)))

= identity (tag (’nat, lr-false-tag)))

Theorem: fetch-ref-count-f-addr-compile-quote-list-init-data-seg
((heap-size 6< 4) ∧ (¬ definedp (t, table)) ∧ (¬ definedp (0, table)))
→ (fetch (identity (add-addr (lr-f-addr, lr-ref-count-offset)),

car (lr-compile-quote (’list,
list (t, 0),
lr-init-data-seg (heap-size),
table)))

= identity (tag (’nat, 1)))

Theorem: lr-s-similar-const-table-compile-quote-t0-init-data-seg
(heap-size 6< 4)
→ lr-s-similar-const-table (cdr (lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
list (cons (f,

identity (lr-f-addr))))),
car (lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
list (cons (f,

identity (lr-f-addr))))))

Event: Disable cdr-compile-quote-list-t0-lr-init-data-seg-cons-table.

Theorem: fetch-fp-addr-compile-quote-list-t0-lr-init-data-seg-cons-table
((¬ definedp (0, table)) ∧ (¬ definedp (t, table)) ∧ (heap-size 6< 4))
→ (fetch (identity (lr-fp-addr),

car (lr-compile-quote (’list,
list (t, 0),
lr-init-data-seg (heap-size),
table)))

= identity (add-addr (lr-0-addr, lr-node-size)))

Theorem: lr-free-list-nodes-lr-compile-quote-t0
((¬ definedp (t, table)) ∧ (¬ definedp (0, table)) ∧ (heap-size 6< 4))
→ (lr-free-list-nodes (tag (’addr,

cons (identity (lr-heap-name),

272



identity (lr-node-size) ∗ heap-size)),
car (lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
table)))

= lr-all-nodes (identity (lr-node-size + offset (lr-0-addr)),
tag (’addr,

cons (identity (lr-heap-name),
identity (lr-node-size) ∗ heap-size))))

Theorem: listp-lr-all-nodes
listp (lr-all-nodes (min-offset , max-addr))
= ((offset (max-addr) 6' 0) ∧ (min-offset < offset (max-addr)))

Theorem: length-lr-all-nodes
(lr-boundary-offsetp (offset) ∧ (offset ∈ N) ∧ lr-boundary-nodep (addr))
→ (length (lr-all-nodes (offset , addr))

= ((offset (addr) − offset) ÷ identity (lr-node-size)))

Theorem: lr-count-free-nodes-append-lr-all-nodes-fact
(((lr-node-size ∗ heap-size) 6< lr-minimum-heap-size)
∧ (¬ definedp (t, table))
∧ (¬ definedp (0, table)))
→ (lr-count-free-nodes (identity (add-addr (lr-0-addr, lr-node-size)),

lr-all-nodes (identity (lr-minimum-heap-size),
tag (’addr,

cons (identity (lr-heap-name),
identity (lr-node-size)
∗ heap-size))),

car (lr-compile-quote (’list,
list (t, 0),
lr-init-data-seg (heap-size),
table)))

= (heap-size − lr-node-size))

Theorem: proper-p-alistp-pair-formal-with-addresses
(all-litatoms (strip-cars (params))
∧ s-init-data-seg-restrictedp (params)
∧ (heap-size 6< s-total-heap-reqs (s-progs (s), params, heap-size))
∧ (word-size 6< s-total-ws-reqs (s-progs (s), params, heap-size)))
→ proper-p-alistp (pair-formals-with-addresses (params,

cdr (lr-data-seg-table (s-progs (s),
params,
heap-size))),

lr->p (s->lr1 (s,

273



p-state (pc,
ctrl-stk ,
temp-stk ,
prog-seg ,
car (lr-data-seg-table (s-progs (s),

params,
heap-size)),

max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw),

cdr (lr-data-seg-table (s-progs (s),
params,
heap-size)))))

Theorem: proper-p-alistp-lr-make-initial-temps
(lr-proper-heapp (data-seg)
∧ all-litatoms (temp-vars)
∧ lr-proper-p-areasp (data-seg))
→ proper-p-alistp (lr-make-initial-temps (temp-vars),

lr->p (s->lr1 (s,
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw),

table)))

Theorem: lr-minimum-heapp-lr-data-seg-table-body
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (lr-minimum-heapp (car (lr-data-seg-table-body (flag , body , data-seg , table)))

= lr-minimum-heapp (data-seg))

Theorem: lr-count-free-nodes-lr-compile-quote-s-heap-reqs-flag-t
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-minimum-heapp (data-seg)

274



∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (t, object , data-seg , table)))

→ ((s-heap-reqs (t, object , data-seg , table)
+ lr-count-free-nodes (fetch (identity (lr-fp-addr),

car (lr-compile-quote (t,
object ,
data-seg ,
table))),

lr-free-list-nodes (lr-max-node (data-seg),
car (lr-compile-quote (t,

object ,
data-seg ,
table))),

car (lr-compile-quote (t,
object ,
data-seg ,
table))))

= lr-count-free-nodes (fetch (identity (lr-fp-addr), data-seg),
lr-free-list-nodes (lr-max-node (data-seg),

data-seg),
data-seg))

Theorem: lr-count-free-nodes-lr-data-seg-table-body-s-heap-reqs
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-minimum-heapp (data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-body (flag , body , data-seg , table)))

→ ((lr-count-free-nodes (fetch (lr-fp-addr,
car (lr-data-seg-table-body (flag ,

body ,
data-seg ,
table))),

lr-free-list-nodes (lr-max-node (data-seg),
car (lr-data-seg-table-body (flag ,

275



body ,
data-seg ,
table))),

car (lr-data-seg-table-body (flag ,
body ,
data-seg ,
table)))

+ s-heap-reqs-body (flag , body , data-seg , table))
= lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg))

Theorem: lr-data-seg-table-body-lr-good-pointerp-tablep-help1
let data-seg-tab be lr-data-seg-table-body (t, car (body), data-seg , table)
in
(listp (body)
∧ lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-minimum-heapp (data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< (s-heap-reqs-body (t, car (body), data-seg , table)

+ s-heap-reqs-body (’list,
cdr (body),
car (data-seg-tab),
cdr (data-seg-tab)))))

→ (lr-count-free-nodes (fetch (identity (lr-fp-addr),
car (data-seg-tab)),

lr-free-list-nodes (lr-max-node (data-seg),
car (data-seg-tab)),

car (data-seg-tab))
6< s-heap-reqs-body (’list,

cdr (body),
car (data-seg-tab),
cdr (data-seg-tab))) endlet

Theorem: lr-data-seg-table-body-lr-good-pointerp-tablep
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)

276



∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-minimum-heapp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-data-seg-body-restrictedp (flag , body)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-body (flag , body , data-seg , table)))

→ lr-good-pointerp-tablep (cdr (lr-data-seg-table-body (flag ,
body ,
data-seg ,
table)),

car (lr-data-seg-table-body (flag ,
body ,
data-seg ,
table)))

Theorem: lr-data-seg-table-list-lr-good-pointerp-tablep-helper-1
let dst-body be lr-data-seg-table-body (t,

s-body (car (progs)),
data-seg ,
table)

in
(listp (progs)
∧ lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-minimum-heapp (data-seg)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< (s-heap-reqs-body (t, s-body (car (progs)), data-seg , table)

+ s-heap-reqs-list (cdr (progs),
car (dst-body),
cdr (dst-body)))))

→ (lr-count-free-nodes (fetch (identity (lr-fp-addr), car (dst-body)),
lr-free-list-nodes (lr-max-node (data-seg),

car (dst-body)),
car (dst-body))

277



6< s-heap-reqs-list (cdr (progs),
car (dst-body),
cdr (dst-body))) endlet

Theorem: lr-init-data-seg-table-lr-good-pointerp-tablep
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-minimum-heapp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-init-data-seg-restrictedp (params)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table)))

→ lr-good-pointerp-tablep (cdr (lr-init-data-seg-table (params,
data-seg ,
table)),

car (lr-init-data-seg-table (params,
data-seg ,
table)))

Theorem: lr-proper-heapp-car-lr-data-seg-table-body
(lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-data-seg-body-restrictedp (flag , body)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-body (flag , body , data-seg , table)))

→ lr-proper-heapp (car (lr-data-seg-table-body (flag , body , data-seg , table)))

Theorem: lr-proper-heapp-car-lr-data-seg-table-list
(lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-data-seg-list-restrictedp (progs)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

278



lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-list (progs, data-seg , table)))

→ lr-proper-heapp (car (lr-data-seg-table-list (progs, data-seg , table)))

Theorem: lr-proper-heapp-car-lr-init-data-seg-table
(lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-init-data-seg-restrictedp (params)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table)))

→ lr-proper-heapp (car (lr-init-data-seg-table (params, data-seg , table)))

Theorem: lr-count-free-nodes-lr-init-data-seg-table-s-init-heap-reqs
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-minimum-heapp (data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table)))

→ ((lr-count-free-nodes (fetch (lr-fp-addr,
car (lr-init-data-seg-table (params,

data-seg ,
table))),

lr-free-list-nodes (lr-max-node (data-seg),
car (lr-init-data-seg-table (params,

data-seg ,
table))),

car (lr-init-data-seg-table (params,
data-seg ,
table)))

+ s-init-heap-reqs (params, data-seg , table))
= lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),

279



data-seg),
data-seg))

Theorem: lr-proper-heapp-car-lr-data-seg-table-helper-1
let data-seg-table be lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
list (cons (f, identity (lr-f-addr))))

in
((heap-size 6< (2

+ 2
+ s-init-heap-reqs (params,

car (data-seg-table),
cdr (data-seg-table))

+ x ))
∧ (max-addr = lr-max-node (car (data-seg-table))))
→ (lr-count-free-nodes (fetch (identity (lr-fp-addr),

car (lr-init-data-seg-table (params,
car (data-seg-table),
cdr (data-seg-table)))),

lr-free-list-nodes (max-addr ,
car (lr-init-data-seg-table (params,

car (data-seg-table),
cdr (data-seg-table)))),

car (lr-init-data-seg-table (params,
car (data-seg-table),
cdr (data-seg-table))))

6< x ) endlet

Theorem: lr-proper-heapp-car-lr-data-seg-table
((heap-size 6< s-total-heap-reqs (progs, params, heap-size))
∧ s-restrictedp (progs, params))
→ lr-proper-heapp (car (lr-data-seg-table (progs, params, heap-size)))

Theorem: litatom-car-gensym
litatom (car (gensym (initial , num-list , atom-list)))

Theorem: all-litatoms-strip-cdrs-lr-make-temp-name-alist-1
all-litatoms (strip-cdrs (lr-make-temp-name-alist-1 (initial ,

num-list ,
temp-list ,
formals)))

Theorem: all-litatoms-strip-cdrs-lr-make-temp-name-alist
all-litatoms (strip-cdrs (lr-make-temp-name-alist (temp-list , formals)))

280



Theorem: lr-proper-p-areasp-car-lr-data-seg-table
lr-proper-p-areasp (car (lr-data-seg-table (progs, params, heap-size)))

Theorem: plist-strip-cdrs
plist (strip-cdrs (x )) = strip-cdrs (x )

Theorem: lr-make-temp-name-alist-1-plist-arg-1
lr-make-temp-name-alist-1 (initial , num-list , plist (temp-list), formals)
= lr-make-temp-name-alist-1 (initial , num-list , temp-list , formals)

Theorem: lr-make-temp-name-alist-plist-arg-1
lr-make-temp-name-alist (plist (temp-list), formals)
= lr-make-temp-name-alist (temp-list , formals)

Theorem: length-lr-make-initial-temps
length (lr-make-initial-temps (temp-vars)) = length (temp-vars)

Theorem: length-strip-cdrs
length (strip-cdrs (alist)) = length (alist)

Theorem: length-pair-formals-with-addresses
length (pair-formals-with-addresses (formals , alist)) = length (formals)

Theorem: s-good-statep-length-s-temp-list
s-good-statep (s, c)
→ (length (s-temp-list (s-prog (s))) = length (s-temps (s)))

Theorem: plistp-comp-programs-1
plistp (comp-programs-1 (progs))

Theorem: proper-p-instructionp-ret
proper-p-instructionp (’(ret), name, p)

Theorem: proper-p-instructionp-eq
proper-p-instructionp (’(eq), name, p)

Theorem: proper-p-instructionp-fetch
proper-p-instructionp (’(fetch), name, p)

Theorem: proper-p-instructionp-deposit
proper-p-instructionp (’(deposit), name, p)

Theorem: proper-p-instructionp-add-addr
proper-p-instructionp (’(add-addr), name, p)

Theorem: proper-p-instructionp-pop-global-free-ptr
lr-proper-heapp (p-data-segment (l))
→ proper-p-instructionp (’(pop-global free-ptr), name, lr->p (l))

281



Theorem: proper-p-instructionp-push-global-free-ptr
lr-proper-heapp (p-data-segment (l))
→ proper-p-instructionp (’(push-global free-ptr), name, lr->p (l))

Theorem: proper-p-instructionp-push-local-temp-car
lr-programs-properp (l , table)
→ proper-p-instructionp (’(push-local x), ’car, lr->p (l))

Theorem: proper-p-instructionp-push-local-temp-cdr
lr-programs-properp (l , table)
→ proper-p-instructionp (’(push-local x), ’cdr, lr->p (l))

Theorem: proper-p-instructionp-push-local-temp-cons
lr-programs-properp (l , table)
→ proper-p-instructionp (’(push-local temp), ’cons, lr->p (l))

Theorem: proper-p-instructionp-set-local-temp-cons
lr-programs-properp (l , table)
→ proper-p-instructionp (’(set-local temp), ’cons, lr->p (l))

Theorem: proper-labeled-p-instructionsp-append
plistp (instrs1 )
→ (proper-labeled-p-instructionsp (append (instrs1 , instrs2 ), name, p)

= (proper-labeled-p-instructionsp (instrs1 , name, p)
∧ proper-labeled-p-instructionsp (instrs2 , name, p)))

Theorem: lessp-number-cons-cur-expr-dv-1-listp
listp (cur-expr (pos, body))
→ (number-cons (cur-expr (dv (pos, 1), body))

< number-cons (cur-expr (pos, body)))

Theorem: lessp-number-cons-cur-expr-dv-2-listp
listp (cur-expr (pos, body))
→ (number-cons (cur-expr (dv (pos, 2), body))

< number-cons (cur-expr (pos, body)))

Theorem: lessp-number-cons-cur-expr-dv-3-listp
listp (cur-expr (pos, body))
→ (number-cons (cur-expr (dv (pos, 3), body))

< number-cons (cur-expr (pos, body)))

Theorem: lessp-number-cons-restn-cdr
(listp (pos)
∧ (car (last (pos)) < length (cur-expr (butlast (pos), body)))
∧ listp (cur-expr (butlast (pos), body)))
→ (number-cons (restn (car (last (pos)), cdr (cur-expr (butlast (pos), body))))

< number-cons (restn (car (last (pos)), cur-expr (butlast (pos), body))))

282



Theorem: proper-p-instructionp-test-bool-and-jump-label
proper-p-instructionp (list (’test-bool-and-jump, x , lab), name, p)
= find-labelp (lab, program-body (assoc (name, p-prog-segment (p))))

Theorem: proper-p-instructionp-jump-label
proper-p-instructionp (list (’jump, lab), name, p)
= find-labelp (lab, program-body (assoc (name, p-prog-segment (p))))

Theorem: plist-lr-convert-num-to-ascii
plistp (lr-convert-num-to-ascii (number , list)) = plistp (list)

Theorem: zerop-lr-convert-num-to-ascii
(number ' 0)
→ (lr-convert-num-to-ascii (number , list) = cons (ascii-0, list))

Theorem: lr-convert-digit-to-ascii-equal
(lr-convert-digit-to-ascii (m) = lr-convert-digit-to-ascii (n))
= (fix (m) = fix (n))

Theorem: zerop-lr-convert-digit-to-ascii
(number ' 0) → (lr-convert-digit-to-ascii (number) = ascii-0)

Theorem: equal-ascii-0-lr-convert-digit-to-ascii
(lr-convert-digit-to-ascii (number) = identity (ascii-0)) = (number ' 0)

Theorem: length-lr-convert-num-to-ascii
length (lr-convert-num-to-ascii (number , list)) 6< (1 + length (list))

Definition:
induct-hint-22 (n, m, list)
= if n < 10 then t

elseif m < 10 then t
else induct-hint-22 (n ÷ 10,

m ÷ 10,
cons (lr-convert-digit-to-ascii (n mod 10),

list)) endif

Theorem: lr-convert-num-to-ascii-equal-arg1
(lr-convert-num-to-ascii (x , list1 ) = lr-convert-num-to-ascii (x , list2 ))
= (list1 = list2 )

Definition:
induct-hint-23 (n, m, list1 , list2 )
= if n < 10 then t

elseif m < 10 then t
else induct-hint-23 (n ÷ 10,

283



m ÷ 10,
cons (lr-convert-digit-to-ascii (n mod 10),

list1 ),
cons (lr-convert-digit-to-ascii (m mod 10),

list2 )) endif

Theorem: lr-convert-num-to-ascii-equal-arg2-lengths-helper-1
(length (list1 ) = length (list2 ))
→ (lr-convert-num-to-ascii (number , cons (x , list1 )) 6= cons (y , list2 ))

Theorem: lr-convert-num-to-ascii-equal-arg2-lengths
((length (list1 ) = length (list2 )) ∧ (list1 6= list2 ))
→ (lr-convert-num-to-ascii (x , list1 )

6= lr-convert-num-to-ascii (y , list2 ))

Theorem: lr-convert-num-to-ascii-equal-arg2-helper-1
(x 6= y)
→ (lr-convert-num-to-ascii (w , cons (x , list))

6= lr-convert-num-to-ascii (z , cons (y , list)))

Theorem: lr-convert-num-to-ascii-equal-arg2
(lr-convert-num-to-ascii (m, list) = lr-convert-num-to-ascii (n, list))
= (fix (m) = fix (n))

Theorem: lr-make-label-equal
(lr-make-label (m) = lr-make-label (n)) = (fix (m) = fix (n))

Theorem: find-labelp-lr-make-label-label-instrs
find-labelp (lr-make-label (m), label-instrs (instrs, n))
= ((m 6< n) ∧ (m < (n + length (instrs))))

Theorem: find-labelp-lr-make-label-comp-body
(n < length (comp-body (body)))
→ find-labelp (lr-make-label (n), comp-body (body))

Theorem: label-instrs-append
(n ∈ N)
→ (label-instrs (append (instrs1 , instrs2 ), n)

= append (label-instrs (instrs1 , n),
label-instrs (instrs2 , n + length (instrs1 ))))

Theorem: proper-p-temp-var-dclsp-all-litatoms-all-undef-addrs
(all-litatoms (strip-cars (temp-var-dcls))
∧ all-undef-addrs (strip-cadrs (temp-var-dcls))
∧ lr-proper-heapp (p-data-segment (p))
∧ lr-proper-p-areasp (p-data-segment (p)))
→ proper-p-temp-var-dclsp (temp-var-dcls, p)

284



Theorem: plistp-label-instrs
plistp (label-instrs (instrs , n))

Definition:
not-labelledp-instrs (instrs)
= if listp (instrs)

then (¬ labelledp (car (instrs)))
∧ not-labelledp-instrs (cdr (instrs))

else t endif

Theorem: label-instrs-proper-labeled-p-instructionsp
(proper-labeled-p-instructionsp (instrs , name, p)
∧ not-labelledp-instrs (instrs))
→ proper-labeled-p-instructionsp (label-instrs (instrs , n), name, p)

Theorem: not-labelledp-instrs-append
not-labelledp-instrs (append (instrs1 , instrs2 ))
= (not-labelledp-instrs (instrs1 ) ∧ not-labelledp-instrs (instrs2 ))

Theorem: not-labelledp-instrs-comp-body-1
not-labelledp-instrs (comp-body-1 (flag , body , n))

Theorem: comp-body-1-list-not-listp
(¬ listp (body)) → (comp-body-1 (’list, body , n) = nil)

Theorem: proper-labeled-p-instructionsp-nil
proper-labeled-p-instructionsp (nil, name, p)

Theorem: proper-labeled-p-instructionsp-comp-body-1-helper-1
(proper-labeled-p-instructionsp (comp-body-1 (t, test-body , n1 ),

name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

∧ proper-labeled-p-instructionsp (comp-body-1 (t, then-body , n2 ),
name,
p-state (pc,

ctrl-stk ,
temp-stk ,

285



comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

∧ proper-labeled-p-instructionsp (else-instrs,
name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (name, prog-seg)
∧ (((n

+ lr-p-c-size (t, test-body)
+ lr-p-c-size (t, then-body)
+ length (else-instrs)
+ 4)− 1)

< lr-p-c-size (t, program-body (assoc (name, prog-seg)))))
→ proper-labeled-p-instructionsp (comp-if (comp-body-1 (t, test-body , n1 ),

comp-body-1 (t, then-body , n2 ),
else-instrs,
n),

name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Theorem: proper-labeled-p-instructionsp-comp-body-1-helper-2
(listp (body)
∧ ((car (body) = s-temp-fetch) ∨ (car (body) = s-temp-test))

286



∧ lr-proper-exprp (t,
body ,
program-names ,
formal-vars (assoc (name, prog-seg)),
strip-cars (temp-var-dcls (assoc (name, prog-seg))),
table)

∧ definedp (name, prog-seg))
→ proper-labeled-p-instructionsp (list (list (’push-local, caddr (body))),

name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Theorem: proper-labeled-p-instructionsp-comp-body-1-helper-3
(listp (body)
∧ ((car (body) = s-temp-eval) ∨ (car (body) = s-temp-test))
∧ lr-proper-exprp (t,

body ,
program-names ,
formal-vars (assoc (name, prog-seg)),
strip-cars (temp-var-dcls (assoc (name, prog-seg))),
table)

∧ definedp (name, prog-seg))
→ proper-labeled-p-instructionsp (list (list (’set-local, caddr (body))),

name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Theorem: proper-labeled-p-instructionsp-comp-body-1-helper-4
(listp (body)
∧ (car (body) = s-temp-test)

287



∧ proper-labeled-p-instructionsp (comp-body-1 (t, cadr (body), n + 4),
name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

∧ lr-proper-exprp (t,
body ,
program-names ,
formal-vars (assoc (name, prog-seg)),
strip-cars (temp-var-dcls (assoc (name, prog-seg))),
table)

∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (lr-p-c-size (t, program-body (assoc (name, prog-seg)))

6< (n + lr-p-c-size (t, cadr (body)) + 7))
∧ definedp (name, prog-seg))
→ proper-labeled-p-instructionsp (comp-temp-test (body ,

comp-body-1 (t,
cadr (body),
n + 4),

n),
name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Definition:
assoc-cdr (x , l)
= if listp (l)

then if x = cdar (l) then car (l)
else assoc-cdr (x , cdr (l)) endif

else f endif

288



Theorem: lr-s-similar-const-table-lr-valp-member-strip-cdrs
((addr ∈ strip-cdrs (table)) ∧ lr-s-similar-const-table (table, data-seg))
→ lr-valp (car (assoc-cdr (addr , table)), addr , data-seg)

Theorem: lr-s-similar-const-table-type-addr-member-strip-cdrs
((addr ∈ strip-cdrs (table)) ∧ lr-s-similar-const-table (table, data-seg))
→ ((type (addr) = ’addr)

∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = identity (lr-heap-name))
∧ (type (fetch (add-addr (addr , identity (lr-ref-count-offset)),

data-seg))
= ’nat))

Theorem: proper-labeled-p-instructionsp-comp-body-1-helper-5
(listp (body)
∧ (car (body) = ’quote)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-proper-exprp (t,

body ,
strip-logic-fnames (cdr (prog-seg)),
formal-vars (assoc (name, prog-seg)),
strip-cars (temp-var-dcls (assoc (name, prog-seg))),
table)

∧ lr-s-similar-const-table (table, data-seg)
∧ definedp (name, prog-seg))
→ proper-labeled-p-instructionsp (list (list (’push-constant,

cadr (body))),
name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Event: Disable lr-s-similar-const-table-type-addr-member-strip-cdrs.

Theorem: lr-proper-exprp-flag-list-cdr-funcall

289



(listp (body)
∧ (car (body) 6= ’if)
∧ (car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote)
∧ lr-proper-exprp (t, body , program-names , formals , temps , table))
→ lr-proper-exprp (’list, cdr (body), program-names, formals, temps, table)

Theorem: proper-labeled-p-instructionsp-comp-body-1-helper-6-1
(listp (body)
∧ (car (body) 6= ’if)
∧ (car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote)
∧ lr-proper-exprp (t,

body ,
strip-logic-fnames (cdr (prog-seg)),
formals ,
temps,
table)

∧ definedp (car (body), p-runtime-support-programs))
→ proper-labeled-p-instructionsp (list (list (’call, car (body))),

name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Theorem: proper-labeled-p-instructionsp-comp-body-1-helper-6-2
(listp (body)
∧ (car (body) 6= ’if)
∧ (car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote)
∧ lr-proper-exprp (t,

body ,

290



strip-logic-fnames (cdr (prog-seg)),
formals,
temps ,
table)

∧ (¬ definedp (car (body), p-runtime-support-programs))
∧ all-user-fnamesp (cdr (strip-cars (prog-seg)))
∧ definedp (name, prog-seg))
→ proper-labeled-p-instructionsp (list (list (’call,

user-fname (car (body)))),
name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Theorem: proper-labeled-p-instructionsp-comp-body-1-helper-7
((¬ listp (body))
∧ lr-proper-exprp (t,

body ,
program-names,
formal-vars (assoc (name, prog-seg)),
temps,
table)

∧ definedp (name, prog-seg))
→ proper-labeled-p-instructionsp (list (list (’push-local, body)),

name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Theorem: not-definedp-not-listp
(¬ listp (alist)) → (¬ definedp (name, alist))

Theorem: proper-labeled-p-instructionsp-comp-body-1

291



(lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ all-user-fnamesp (cdr (strip-cars (prog-seg)))
∧ lr-proper-exprp (if flag = ’list then ’list

else t endif,
body ,
strip-logic-fnames (cdr (prog-seg)),
formal-vars (assoc (name, prog-seg)),
strip-cars (temp-var-dcls (assoc (name, prog-seg))),
table)

∧ lr-s-similar-const-table (table, data-seg)
∧ ((n + lr-p-c-size (if flag = ’list then ’list

else t endif,
body))

< (1 + lr-p-c-size (t, program-body (assoc (name, prog-seg)))))
∧ definedp (name, prog-seg))
→ proper-labeled-p-instructionsp (comp-body-1 (flag , body , n),

name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Theorem: all-undef-addrs-strip-cadrs-lr-make-temp-var-dcls
all-undef-addrs (strip-cadrs (lr-make-temp-var-dcls (temp-alist)))

Theorem: proper-p-programp-p-car-code
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< s-max-subr-reqs)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
→ proper-p-programp (p-car-code, lr->p (l))

Theorem: proper-p-programp-p-cdr-code
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< s-max-subr-reqs)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))

292



→ proper-p-programp (p-cdr-code, lr->p (l))

Theorem: proper-p-programp-p-cons-code
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< s-max-subr-reqs)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
→ proper-p-programp (p-cons-code, lr->p (l))

Theorem: proper-p-programp-p-false-code
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< log (2, lr-false-tag))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
→ proper-p-programp (p-false-code, lr->p (l))

Theorem: proper-p-programp-p-falsep-code
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< log (2, lr-false-tag))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
→ proper-p-programp (p-falsep-code, lr->p (l))

Theorem: proper-p-programp-p-listp-code
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< s-max-subr-reqs)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
→ proper-p-programp (p-listp-code, lr->p (l))

Theorem: proper-p-programp-p-nlistp-code
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< s-max-subr-reqs)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
→ proper-p-programp (p-nlistp-code, lr->p (l))

Theorem: proper-p-programp-p-true-code
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)

293



∧ (p-word-size (l) 6< log (2, lr-true-tag))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
→ proper-p-programp (p-true-code, lr->p (l))

Theorem: proper-p-programp-p-truep-code
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< log (2, lr-true-tag))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
→ proper-p-programp (p-truep-code, lr->p (l))

Theorem: lr-s-similar-const-table-lr-data-seg-table-body
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ s-data-seg-body-restrictedp (flag , body)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-body (flag , body , data-seg , table)))

→ lr-s-similar-const-table (cdr (lr-data-seg-table-body (flag ,
body ,
data-seg ,
table)),

car (lr-data-seg-table-body (flag ,
body ,
data-seg ,
table)))

Theorem: lr-s-similar-const-table-lr-data-seg-table-list
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ s-data-seg-list-restrictedp (progs)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-list (progs, data-seg , table)))

→ lr-s-similar-const-table (cdr (lr-data-seg-table-list (progs,

294



data-seg ,
table)),

car (lr-data-seg-table-list (progs,
data-seg ,
table)))

Theorem: lr-s-similar-const-table-lr-init-data-seg-table
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ s-init-data-seg-restrictedp (params)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table)))

→ lr-s-similar-const-table (cdr (lr-init-data-seg-table (params,
data-seg ,
table)),

car (lr-init-data-seg-table (params,
data-seg ,
table)))

Theorem: lr-s-similar-const-table-cdr-car-lr-data-seg-table
((heap-size 6< s-total-heap-reqs (progs, params, heap-size))
∧ s-restrictedp (progs, params))
→ lr-s-similar-const-table (cdr (lr-data-seg-table (progs, params, heap-size)),

car (lr-data-seg-table (progs, params, heap-size)))

Definition:
induct-hint-3 (flag , pos, prog)
= if flag = ’list

then if pos ' nil then t
elseif listp (restn (car (last (pos)),

cur-expr (butlast (pos), s-body (prog))))
then induct-hint-3 (t, pos, prog)

∧ induct-hint-3 (’list, nx (pos), prog)
else t endif

elseif listp (cur-expr (pos, s-body (prog)))
then if car (cur-expr (pos, s-body (prog))) = ’if

then induct-hint-3 (t, dv (pos, 1), prog)
∧ induct-hint-3 (t, dv (pos, 2), prog)
∧ induct-hint-3 (t, dv (pos, 3), prog)

elseif car (cur-expr (pos, s-body (prog))) = s-temp-fetch then t

295



elseif (car (cur-expr (pos, s-body (prog))) = s-temp-eval)
∨ (car (cur-expr (pos, s-body (prog))) = s-temp-test)

then induct-hint-3 (t, dv (pos, 1), prog)
elseif car (cur-expr (pos, s-body (prog))) = ’quote then t
else induct-hint-3 (’list, dv (pos, 1), prog) endif

else t endif

Theorem: lr-proper-exprp-p-lr-compile-programs-helper-1
listp (pos)
→ (lr-compile-body (t,

get (car (last (pos)), cur-expr (butlast (pos), body)),
temp-alist ,
table)

= lr-compile-body (t, cur-expr (pos, body), temp-alist , table))

Theorem: good-posp1-cons-lessp-4-if-s-proper-exprp
((car (cur-expr (pos, body)) = ’if)
∧ good-posp1 (pos, body)
∧ s-proper-exprp (t, body , program-names, formals, temp-list))
→ (good-posp1 (dv (pos, 1), body)

∧ good-posp1 (dv (pos, 2), body)
∧ good-posp1 (dv (pos, 3), body))

Theorem: lr-proper-exprp-flag-list-cons
lr-proper-exprp (’list, cons (car , cdr), program-names , formals , temps, table)
= (lr-proper-exprp (’list, cdr , program-names, formals , temps , table)

∧ lr-proper-exprp (t, car , program-names , formals , temps, table))

Theorem: lr-proper-exprp-flag-list-nil
lr-proper-exprp (’list, nil, program-names, formals, temps , table)

Theorem: length-3-cdr-cddr-not-nil
((length (x ) = 3) ∧ plistp (x ))
→ ((cdddr (x ) = nil) ∧ (cddr (x ) 6= nil) ∧ (cdr (x ) 6= nil))

Theorem: lr-proper-exprp-flag-not-list-cons-if-helper
(flag 6= ’list)
→ (lr-proper-exprp (flag ,

list (’if, test , then, else),
program-names ,
formals,
temp-alist ,
table)

= ((’if 6∈ program-names)
∧ lr-proper-exprp (t,

296



test ,
program-names,
formals ,
temp-alist ,
table)

∧ lr-proper-exprp (t,
then,
program-names ,
formals ,
temp-alist ,
table)

∧ lr-proper-exprp (t,
else,
program-names ,
formals ,
temp-alist ,
table)))

Theorem: lr-proper-exprp-flag-not-list-cons-if
((flag 6= ’list)
∧ listp (cur-expr (pos, body))
∧ (car (cur-expr (pos, body)) = ’if)
∧ good-posp1 (pos, body)
∧ lr-proper-exprp (t,

lr-compile-body (t,
cur-expr (dv (pos, 3), body),
temp-alist ,
table),

program-names ,
formals,
strip-cdrs (temp-alist),
table)

∧ lr-proper-exprp (t,
lr-compile-body (t,

cur-expr (dv (pos, 2), body),
temp-alist ,
table),

program-names ,
formals,
strip-cdrs (temp-alist),
table)

∧ lr-proper-exprp (t,
lr-compile-body (t,

cur-expr (dv (pos, 1), body),

297



temp-alist ,
table),

program-names ,
formals ,
strip-cdrs (temp-alist),
table)

∧ s-proper-exprp (t, body , program-names , formals , strip-cars (temp-alist)))
→ lr-proper-exprp (flag ,

cons (’if,
lr-compile-body (’list,

cdr (cur-expr (pos, body)),
temp-alist ,
table)),

program-names,
formals,
strip-cdrs (temp-alist),
table)

Theorem: lr-proper-exprp-flag-not-list-cons-temp-fetch
((flag 6= ’list)
∧ good-posp1 (pos, body)
∧ listp (cur-expr (pos, body))
∧ (car (cur-expr (pos, body)) = s-temp-fetch)
∧ s-proper-exprp (t, body , program-names , formals, strip-cars (temp-alist)))
→ lr-proper-exprp (flag ,

list (identity (s-temp-fetch),
x ,
cdr (assoc (cadr (cur-expr (pos, body)), temp-alist))),

program-names ,
formals,
strip-cdrs (temp-alist),
table)

Theorem: good-posp1-dv-1-temp-eval-test
(good-posp1 (pos, body)
∧ ((car (cur-expr (pos, body)) = s-temp-eval)

∨ (car (cur-expr (pos, body)) = s-temp-test))
∧ listp (cur-expr (pos, body)))
→ good-posp1 (dv (pos, 1), body)

Theorem: length-last-fact
(length (x ) = 1) → (last (x ) = x )

Theorem: lr-proper-exprp-flag-not-list-cons-temp-eval
((flag 6= ’list)

298



∧ listp (cur-expr (pos, body))
∧ good-posp1 (pos, body)
∧ (car (cur-expr (pos, body)) = s-temp-eval)
∧ lr-proper-exprp (t,

lr-compile-body (t,
cur-expr (dv (pos, 1), body),
temp-alist ,
table),

program-names ,
formals ,
strip-cdrs (temp-alist),
table)

∧ s-proper-exprp (t, body , program-names, formals, strip-cars (temp-alist)))
→ lr-proper-exprp (flag ,

list (identity (s-temp-eval),
lr-compile-body (t,

cadr (cur-expr (pos, body)),
temp-alist ,
table),

cdr (assoc (cadr (cur-expr (pos, body)), temp-alist))),
program-names ,
formals,
strip-cdrs (temp-alist),
table)

Theorem: lr-proper-exprp-flag-not-list-cons-temp-test
((flag 6= ’list)
∧ listp (cur-expr (pos, body))
∧ good-posp1 (pos, body)
∧ (car (cur-expr (pos, body)) = s-temp-test)
∧ lr-proper-exprp (t,

lr-compile-body (t,
cur-expr (dv (pos, 1), body),
temp-alist ,
table),

program-names ,
formals ,
strip-cdrs (temp-alist),
table)

∧ s-proper-exprp (t, body , program-names, formals, strip-cars (temp-alist)))
→ lr-proper-exprp (flag ,

list (identity (s-temp-test),
lr-compile-body (t,

cadr (cur-expr (pos, body)),

299



temp-alist ,
table),

cdr (assoc (cadr (cur-expr (pos, body)), temp-alist))),
program-names ,
formals,
strip-cdrs (temp-alist),
table)

Definition:
lr-data-seg-table-body-n (n, body , data-seg , table)
= if n ' 0 then cons (data-seg , table)

else lr-data-seg-table-body-n (n − 1,
cdr (body),
car (lr-data-seg-table-body (t,

car (body),
data-seg ,
table)),

cdr (lr-data-seg-table-body (t,
car (body),
data-seg ,
table))) endif

Definition:
induct-hint-20 (pos, body , data-seg , table)
= if pos ' nil then t

elseif body ' nil then f
elseif car (body) = s-temp-fetch then f
elseif (car (body) = s-temp-eval) ∨ (car (body) = s-temp-test)
then induct-hint-20 (cdr (pos), cadr (body), data-seg , table)
elseif car (body) = ’quote then f
else induct-hint-20 (cdr (pos),

get (car (pos), body),
car (lr-data-seg-table-body-n (car (pos) − 1,

cdr (body),
data-seg ,
table)),

cdr (lr-data-seg-table-body-n (car (pos) − 1,
cdr (body),
data-seg ,
table))) endif

Theorem: lr-data-seg-body-list-n
lr-data-seg-table-body (’list, body , data-seg , table)
= lr-data-seg-table-body-n (length (body), body , data-seg , table)

300



Theorem: definedp-table-definedp-cdr-lr-data-seg-table-body-n
definedp (object , table)
→ definedp (object , cdr (lr-data-seg-table-body-n (n, body , data-seg , table)))

Theorem: definedp-lr-data-seg-body-list-n-not-lessp
(definedp (x , cdr (lr-data-seg-table-body-n (n, body , data-seg , table)))
∧ (m 6< n))
→ definedp (x , cdr (lr-data-seg-table-body-n (m, body , data-seg , table)))

Theorem: lr-data-seg-table-body-add1-opener
(n < length (body))
→ (lr-data-seg-table-body-n (1 + n, body , data-seg , table)

= lr-data-seg-table-body (t,
get (n, body),
car (lr-data-seg-table-body-n (n,

body ,
data-seg ,
table)),

cdr (lr-data-seg-table-body-n (n,
body ,
data-seg ,
table))))

Theorem: lr-data-seg-table-body-flag-t-flag-t
(definedp (object ,

cdr (lr-data-seg-table-body (t,
get (n, body),
car (lr-data-seg-table-body-n (n,

body ,
data-seg ,
table)),

cdr (lr-data-seg-table-body-n (n,
body ,
data-seg ,
table)))))

∧ (n ∈ N)
∧ (n < length (body)))
→ definedp (object ,

cdr (lr-data-seg-table-body (’list, body , data-seg , table)))

Theorem: definedp-cadr-cur-expr-quote-lr-data-seg-table-body
(listp (cur-expr (pos, body))
∧ (car (cur-expr (pos, body)) = ’quote)
∧ good-posp1 (pos, body))
→ definedp (cadr (cur-expr (pos, body)),

cdr (lr-data-seg-table-body (t, body , data-seg , table)))

301



Theorem: definedp-cadr-cur-expr-quote-lr-data-seg-table-list
(listp (cur-expr (pos, s-body (prog)))
∧ (car (cur-expr (pos, s-body (prog))) = ’quote)
∧ (prog ∈ progs)
∧ good-posp1 (pos, s-body (prog)))
→ definedp (cadr (cur-expr (pos, s-body (prog))),

cdr (lr-data-seg-table-list (progs, data-seg , table)))

Theorem: definedp-cadr-cur-expr-quote-lr-data-seg-table
(listp (cur-expr (pos, s-body (prog)))
∧ (car (cur-expr (pos, s-body (prog))) = ’quote)
∧ (prog ∈ progs)
∧ good-posp1 (pos, s-body (prog)))
→ definedp (cadr (cur-expr (pos, s-body (prog))),

cdr (lr-data-seg-table (progs, params, heap-size)))

Theorem: lr-proper-exprp-p-lr-compile-programs-helper-2
(listp (cur-expr (pos, s-body (prog)))
∧ (car (cur-expr (pos, s-body (prog))) = ’quote)
∧ (prog ∈ progs)
∧ good-posp1 (pos, s-body (prog))
∧ (heap-size 6< s-total-heap-reqs (progs, params, heap-size))
∧ s-restrictedp (progs, params))
→ (type (cdr (assoc (cadr (cur-expr (pos, s-body (prog))),

cdr (lr-data-seg-table (progs, params, heap-size)))))
= ’addr)

Theorem: good-posp-dv-1-funcall-opened
(listp (cur-expr (pos, s-body (prog)))
∧ (car (cur-expr (pos, s-body (prog))) 6= ’if)
∧ (car (cur-expr (pos, s-body (prog))) 6= s-temp-eval)
∧ (car (cur-expr (pos, s-body (prog))) 6= s-temp-test)
∧ (car (cur-expr (pos, s-body (prog))) 6= s-temp-fetch)
∧ (car (cur-expr (pos, s-body (prog))) 6= ’quote)
∧ good-posp1 (pos, s-body (prog)))
→ good-posp (’list, dv (pos, 1), s-body (prog))

Theorem: s-restrict-subrps-list-lr-proper-get-t
(s-restrict-subrps (’list, cdr (expr))
∧ listp (expr)
∧ (n 6' 0)
∧ (n < length (expr)))
→ s-restrict-subrps (t, get (n, expr))

Theorem: s-restrict-subrps-t-lr-proper-get-t

302



((car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote)
∧ listp (body)
∧ s-proper-exprp (t, body , program-names , formals, temp-list)
∧ (n 6' 0)
∧ (n < length (body))
∧ s-restrict-subrps (t, body))
→ s-restrict-subrps (t, get (n, body))

Event: Disable s-restrict-subrps-list-lr-proper-get-t.

Theorem: s-restrict-subrps-s-restrict-subrps-cur-expr
(s-restrict-subrps (t, body)
∧ s-proper-exprp (t, body , program-names , formals , temp-list)
∧ good-posp1 (pos, body))
→ s-restrict-subrps (t, cur-expr (pos, body))

Theorem: lr-proper-exprp-flag-not-list-cons-funcall
((flag 6= ’list)
∧ listp (cur-expr (pos, s-body (prog)))
∧ good-posp1 (pos, s-body (prog))
∧ (car (cur-expr (pos, s-body (prog))) 6= ’if)
∧ (car (cur-expr (pos, s-body (prog))) 6= s-temp-fetch)
∧ (car (cur-expr (pos, s-body (prog))) 6= s-temp-eval)
∧ (car (cur-expr (pos, s-body (prog))) 6= s-temp-test)
∧ (car (cur-expr (pos, s-body (prog))) 6= ’quote)
∧ lr-proper-exprp (’list,

lr-compile-body (’list,
cdr (cur-expr (pos, s-body (prog))),
temp-alist ,
table),

program-names ,
formals,
temps,
table)

∧ s-restrict-subrps (t, s-body (prog))
∧ s-proper-exprp (t, s-body (prog), program-names , formals , temp-list))
→ lr-proper-exprp (flag ,

cons (car (cur-expr (pos, s-body (prog))),
lr-compile-body (’list,

cdr (cur-expr (pos, s-body (prog))),
temp-alist ,

303



table)),
program-names ,
formals ,
temps ,
table)

Theorem: lr-proper-exprp-flag-not-list-not-listp
((flag 6= ’list)
∧ (¬ listp (cur-expr (pos, body)))
∧ good-posp1 (pos, body)
∧ s-proper-exprp (t, body , program-names , formals, temp-list))
→ lr-proper-exprp (flag ,

cur-expr (pos, body),
program-names,
formals,
temps ,
table)

Theorem: lr-proper-exprp-p-lr-compile-programs
(s-restrict-subrps (t, s-body (prog))
∧ (prog ∈ progs)
∧ subsetp (progs, all-progs)
∧ s-proper-exprp (t,

s-body (prog),
program-names ,
formals,
strip-cars (temp-alist))

∧ good-posp (flag , pos, s-body (prog))
∧ (heap-size 6< s-total-heap-reqs (all-progs, params, heap-size))
∧ s-restrictedp (all-progs, params))
→ lr-proper-exprp (flag ,

lr-compile-body (flag ,
if flag = ’list
then restn (car (last (pos)),

cur-expr (butlast (pos),
s-body (prog)))

else cur-expr (pos, s-body (prog)) endif,
temp-alist ,
cdr (lr-data-seg-table (all-progs,

params,
heap-size))),

program-names,
formals ,
strip-cdrs (temp-alist),
cdr (lr-data-seg-table (all-progs, params, heap-size)))

304



Event: Disable lr-proper-exprp-p-lr-compile-programs-helper-1.

Theorem: all-litatoms-s-formals-member-s-programs-properp
((prog ∈ progs) ∧ s-programs-properp (progs, program-names))
→ all-litatoms (s-formals (prog))

Theorem: s-restrict-subrps-s-body-member-s-restrict-subrps-progs
(s-restrict-subrps-progs (progs) ∧ (prog ∈ progs))
→ s-restrict-subrps (t, s-body (prog))

Theorem: lr-proper-exprp-p-lr-compile-programs-flag-t
(s-restrict-subrps-progs (all-progs)
∧ (prog ∈ all-progs)
∧ s-programs-properp (all-progs, program-names)
∧ (heap-size 6< s-total-heap-reqs (all-progs, params, heap-size))
∧ s-restrictedp (all-progs, params)
∧ (temp-alist = lr-make-temp-name-alist (s-temp-list (prog),

s-formals (prog))))
→ lr-proper-exprp (t,

lr-compile-body (t,
s-body (prog),
temp-alist ,
cdr (lr-data-seg-table (all-progs,

params,
heap-size))),

program-names,
s-formals (prog),
strip-cdrs (temp-alist),
cdr (lr-data-seg-table (all-progs, params, heap-size)))

Theorem: lr-programs-properp-1-lr-compile-programs
(s-programs-properp (all-progs, program-names)
∧ s-programs-okp (progs)
∧ s-restrict-subrps-progs (all-progs)
∧ subsetp (progs, all-progs)
∧ (heap-size 6< s-total-heap-reqs (all-progs, params, heap-size))
∧ s-restrictedp (all-progs, params))
→ lr-programs-properp-1 (lr-compile-programs (progs,

cdr (lr-data-seg-table (all-progs,
params,
heap-size))),

program-names,
cdr (lr-data-seg-table (all-progs,

params,
heap-size)))

305



Event: Disable all-litatoms-s-formals-member-s-programs-properp.

Theorem: subsetp-cdr
subsetp (cdr (x ), x )

Theorem: lr-programs-properp-s->lr-opened
(s-good-statep (s, c)
∧ s-restrict-subrps-progs (s-progs (s))
∧ (heap-size 6< s-total-heap-reqs (s-progs (s), s-params (s), heap-size))
∧ s-restrictedp (s-progs (s), s-params (s))
∧ litatom (name (car (s-progs (s)))))
→ lr-programs-properp (s->lr1 (s,

p-state (pc,
ctrl-stk ,
temp-stk ,
anything ,
data-seg ,
max-ctrl ,
max-temp,
word-size,
nil),

cdr (lr-data-seg-table (s-progs (s),
s-params (s),
heap-size))),

cdr (lr-data-seg-table (s-progs (s),
s-params (s),
heap-size)))

Theorem: fall-off-proofp-append-cons-ret
fall-off-proofp (append (instrs, list (list (’dl, label , comment , ’(ret)))))

Theorem: proper-labeled-p-instructionsp-label-ret
litatom (label)
→ proper-labeled-p-instructionsp (list (list (’dl, label , comment , ’(ret))),

name,
p)

Theorem: member-definedp-car
(x ∈ y) → definedp (car (x ), y)

Theorem: all-litatoms-s-formals-member-lr-programs-properp
((prog ∈ prog-seg) ∧ (¬ all-litatoms (formal-vars (prog))))
→ (¬ lr-programs-properp-1 (prog-seg , program-names , table))

306



Theorem: properp-p-temp-var-dclps-member-lr-programs-properp
((prog ∈ progs)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-programs-properp-1 (progs, strip-logic-fnames (cdr (prog-seg)), table))
→ proper-p-temp-var-dclsp (temp-var-dcls (prog),

p-state (pc,
ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: member-f-definedp-0
(f ∈ alist) → definedp (0, alist)

Theorem: member-no-duplicatesp-assoc-equal
((x ∈ alist) ∧ no-duplicatesp (strip-cars (alist)) ∧ good-alistp (alist))
→ (assoc (car (x ), alist) = x )

Event: Disable member-f-definedp-0.

Theorem: lr-proper-exprp-program-body-not-listp
(¬ listp (prog))
→ (¬ lr-proper-exprp (t, program-body (prog), pnames, formals, temps, table))

Theorem: good-alistp-lr-programs-properp
(¬ good-alistp (prog-seg))
→ (¬ lr-programs-properp-1 (prog-seg , program-names , table))

Event: Disable lr-proper-exprp-program-body-not-listp.

Theorem: proper-p-prog-segmentp-comp-programs-1-helper
(lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-programs-properp-1 (prog-seg ,

strip-logic-fnames (cdr (prog-seg)),
table)

∧ all-user-fnamesp (cdr (strip-cars (prog-seg)))
∧ lr-s-similar-const-table (table, data-seg)
∧ (prog ∈ prog-seg)

307



∧ no-duplicatesp (strip-cars (prog-seg)))
→ proper-labeled-p-instructionsp (comp-body-1 (t, program-body (prog), 0),

car (prog),
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Theorem: proper-p-prog-segmentp-comp-programs-1
(lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-programs-properp-1 (prog-seg ,

strip-logic-fnames (cdr (prog-seg)),
table)

∧ all-user-fnamesp (cdr (strip-cars (prog-seg)))
∧ lr-s-similar-const-table (table, data-seg)
∧ no-duplicatesp (strip-cars (prog-seg))
∧ subsetp (progs, prog-seg)
∧ all-litatoms (strip-cars (progs)))
→ proper-p-prog-segmentp (comp-programs-1 (progs),

p-state (pc,
ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Event: Disable all-litatoms-s-formals-member-lr-programs-properp.

Theorem: proper-p-instructionp-set-global
adpp (cons (name, 0), p-data-segment (l))
→ proper-p-instructionp (list (’set-global, name), x , lr->p (l))

Theorem: proper-p-programp-append-car-prog-segment
(lr-programs-properp-1 (prog-seg , strip-logic-fnames (cdr (prog-seg)), table)
∧ definedp (area-name (p-pc (l)), p-prog-segment (l))

308



∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l))
∧ lr-s-similar-const-table (table, p-data-segment (l))
∧ adpp (untag (lr-answer-addr), p-data-segment (l))
∧ (prog-seg = p-prog-segment (l))
∧ all-litatoms (strip-cars (prog-seg))
∧ all-user-fnamesp (strip-cars (cdr (p-prog-segment (l)))))
→ proper-p-programp (cons (name (car (prog-seg)),

cons (formal-vars (car (prog-seg)),
cons (temp-var-dcls (car (prog-seg)),

append (label-instrs (comp-body-1 (t,
program-body (car (prog-seg)),
0),

0),
list (list (’dl,

lr-make-label (n1 ),
coment1 ,
list (’set-global,

identity (area-name (lr-answer-addr)))),
list (’dl,

lr-make-label (n2 ),
comment2 ,
’(ret))))))),

lr->p (l))

Theorem: all-litatoms-all-user-fnamesp-plistp
(all-user-fnamesp (list) ∧ plistp (list)) → all-litatoms (list)

Theorem: plistp-strip-cars
plistp (strip-cars (x ))

Theorem: lr-programs-properp-all-user-fnamesp-strip-cars-cdr
lr-programs-properp (l , table)
→ all-user-fnamesp (strip-cars (cdr (p-prog-segment (l))))

Theorem: lr-programs-properp-caar-main
lr-programs-properp (l , table) → (caar (p-prog-segment (l)) = ’main)

Theorem: proper-p-prog-segmentp-p-runtime-support-programs
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< s-max-subr-reqs)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
→ proper-p-prog-segmentp (p-runtime-support-programs, lr->p (l))

309



Theorem: proper-p-prog-segmentp-comp-programs
(lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l))
∧ (progs = p-prog-segment (l))
∧ lr-programs-properp (l , table)
∧ lr-s-similar-const-table (table, p-data-segment (l))
∧ no-duplicatesp (strip-cars (p-prog-segment (l)))
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< s-max-subr-reqs)
∧ adpp (untag (lr-answer-addr), p-data-segment (l)))
→ proper-p-prog-segmentp (comp-programs (progs), lr->p (l))

Event: Disable lr-programs-properp-caar-main.

Theorem: no-duplicatesp-remove-duplicates
no-duplicatesp (remove-duplicates (x ))

Theorem: all-p-objectps-put
(all-p-objectps (lst , p) ∧ p-objectp (value, p) ∧ (offset < length (lst)))
→ all-p-objectps (put (value, offset , lst), p)

Theorem: proper-p-data-segmentp-deposit-helper
(proper-p-data-segmentp (data-seg , p)
∧ (offset (addr) < length (cdr (assoc (area-name (addr), data-seg))))
∧ p-objectp (value, p))
→ proper-p-data-segmentp (deposit (value, addr , data-seg), p)

Theorem: proper-p-data-segmentp-deposit
(proper-p-data-segmentp (data-seg , p)
∧ adpp (untag (addr), data-seg)
∧ p-objectp (value, p))
→ proper-p-data-segmentp (deposit (value, addr , data-seg), p)

Theorem: all-p-objectps-get
(all-p-objectps (lst , p)
∧ (offset < length (lst))
∧ all-p-objectps (lst , p))
→ p-objectp (get (offset , lst), p)

Theorem: proper-p-data-segmentp-fetch
(proper-p-data-segmentp (data-seg , p)
∧ (offset (addr) < length (cdr (assoc (area-name (addr), data-seg))))
∧ definedp (area-name (addr), data-seg))
→ p-objectp (fetch (addr , data-seg), p)

310



Theorem: lr-s-similar-const-table-p-objectp-definedp
(lr-s-similar-const-table (table, data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (flag , object2 , data-seg , table))

∧ definedp (object1 , cdr (lr-compile-quote (flag , object2 , data-seg , table)))
∧ same-signature (p-data-segment (p), data-seg)
∧ s-restricted-objectp (flag , object2 ))
→ p-objectp (cdr (assoc (object1 ,

cdr (lr-compile-quote (flag , object2 , data-seg , table)))),
p)

Theorem: lessp-x-sub1-facts
(x < ((y − 1) − 1)) → ((x < y) ∧ (x < (y − 1)))

Theorem: proper-p-data-segmentp-deposit-a-list-cons
((area-name (addr) = lr-heap-name)
∧ adpp (untag (addr), data-seg)
∧ ((offset (addr) + 3) < length (cdr (assoc (lr-heap-name, data-seg))))
∧ p-objectp (a, p)
∧ p-objectp (b, p)
∧ p-objectp (c, p)
∧ p-objectp (d , p)
∧ proper-p-data-segmentp (data-seg , p))
→ proper-p-data-segmentp (deposit-a-list (list (a, b, c, d), addr , data-seg), p)

Theorem: proper-p-data-segmentp-deposit-a-list-cons-cons
let ds-tab be lr-compile-quote (’list, list (x , y), data-seg , table),

count-nodes be lr-count-free-nodes (fetch (lr-fp-addr, data-seg),
lr-free-list-nodes (lr-max-node (data-seg),

data-seg),
data-seg)

in
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ definedp (f, table)
∧ ((count-nodes − 1)

6< s-heap-reqs (’list, list (x , y), data-seg , table))
∧ (count-nodes 6= 0)

311



∧ proper-p-data-segmentp (car (ds-tab), p)
∧ ((length (cdr (assoc (lr-heap-name, data-seg))) − 1)

6< (offset (fetch (lr-fp-addr, car (ds-tab)))
+ lr-node-size))

∧ (p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-max-subr-reqs)
∧ same-signature (p-data-segment (p), data-seg)
∧ s-restricted-objectp (’list, list (x , y)))
→ proper-p-data-segmentp (deposit-a-list (list (identity (tag (’nat,

lr-cons-tag)),
identity (tag (’nat,

1)),
cdr (assoc (x ,

cdr (ds-tab))),
cdr (assoc (y ,

cdr (ds-tab)))),
fetch (identity (lr-fp-addr),

car (ds-tab)),
car (ds-tab)),

p) endlet

Theorem: proper-p-data-segmentp-deposit-a-list-cons-numberp
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ (p-word-size (p) 6< log (2, number))
∧ (number ∈ N)
∧ proper-p-data-segmentp (data-seg , p)
∧ ((length (cdr (assoc (lr-heap-name, data-seg))) − 1)

6< (offset (fetch (lr-fp-addr, data-seg)) + lr-node-size))
∧ (p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-max-subr-reqs)
∧ same-signature (p-data-segment (p), data-seg))
→ proper-p-data-segmentp (deposit-a-list (list (identity (tag (’nat,

lr-add1-tag)),
identity (tag (’nat, 1)),
tag (’nat, number),
identity (lr-undef-addr)),

fetch (identity (lr-fp-addr),
data-seg),

data-seg),
p)

Theorem: proper-p-data-segmentp-deposit-a-list-cons-truep
(lr-proper-p-areasp (data-seg)

312



∧ lr-proper-heapp (data-seg)
∧ proper-p-data-segmentp (data-seg , p)
∧ ((length (cdr (assoc (lr-heap-name, data-seg))) − 1)

6< (offset (fetch (lr-fp-addr, data-seg)) + lr-node-size))
∧ (p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< log (2, lr-true-tag))
∧ same-signature (p-data-segment (p), data-seg))
→ proper-p-data-segmentp (deposit-a-list (list (identity (tag (’nat,

lr-true-tag)),
identity (tag (’nat, 1)),
identity (lr-undef-addr),
identity (lr-undef-addr)),

fetch (identity (lr-fp-addr),
data-seg),

data-seg),
p)

Event: Disable proper-p-data-segmentp-deposit-a-list-cons.

Theorem: s-ws-reqs-flag-not-list-t
((flag 6= ’list) ∧ (¬ definedp (t, table)))
→ (s-ws-reqs (flag , t, data-seg , table) = identity (log (2, lr-true-tag)))

Theorem: lr-compile-quote-preserves-proper-p-data-segmentp
(lr-s-similar-const-table (table, data-seg)
∧ s-restricted-objectp (flag , object)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (f, table)
∧ (p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-ws-reqs (flag , object , data-seg , table))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (flag , object , data-seg , table))

∧ proper-p-data-segmentp (data-seg , p)
∧ same-signature (p-data-segment (p), data-seg))
→ proper-p-data-segmentp (car (lr-compile-quote (flag ,

object ,
data-seg ,
table)),

p)

313



Theorem: lr-data-seg-table-body-preserves-proper-p-data-segmentp
(lr-s-similar-const-table (table, data-seg)
∧ s-data-seg-body-restrictedp (flag , body)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ proper-p-data-segmentp (data-seg , p)
∧ definedp (f, table)
∧ (p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-ws-reqs-body (flag , body , data-seg , table))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-body (flag , body , data-seg , table))

∧ same-signature (p-data-segment (p), data-seg))
→ proper-p-data-segmentp (car (lr-data-seg-table-body (flag ,

body ,
data-seg ,
table)),

p)

Theorem: lr-data-seg-table-list-preserves-proper-p-data-segmentp
(lr-s-similar-const-table (table, data-seg)
∧ s-data-seg-list-restrictedp (progs)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ proper-p-data-segmentp (data-seg , p)
∧ definedp (f, table)
∧ (p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-ws-reqs-list (progs, data-seg , table))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-list (progs, data-seg , table))

∧ same-signature (p-data-segment (p), data-seg))
→ proper-p-data-segmentp (car (lr-data-seg-table-list (progs,

data-seg ,
table)),

p)

Theorem: lr-init-data-seg-table-preserves-proper-p-data-segmentp
(lr-s-similar-const-table (table, data-seg)
∧ s-init-data-seg-restrictedp (params)

314



∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ proper-p-data-segmentp (data-seg , p)
∧ definedp (f, table)
∧ (p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-init-ws-reqs (params, data-seg , table))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table))

∧ same-signature (p-data-segment (p), data-seg))
→ proper-p-data-segmentp (car (lr-init-data-seg-table (params,

data-seg ,
table)),

p)

Theorem: all-p-objectps-lr-init-heap-contents-helper-helper
(heap-size 6' 0)
→ ((identity (lr-node-size)

+ x
+ (identity (lr-node-size) ∗ (heap-size − 1)))

= (x + (identity (lr-node-size) ∗ heap-size)))

Theorem: all-p-objectps-lr-init-heap-contents-helper
((p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-max-subr-reqs)
∧ (heap-size 6< 4)
∧ lr-proper-p-areasp (p-data-segment (p))
∧ lr-minimum-heapp (p-data-segment (p))
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ (offset (addr) ∈ N)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ definedp (lr-heap-name, p-data-segment (p))
∧ (((lr-node-size ∗ heap-size) + offset (addr))

< length (cdr (assoc (lr-heap-name, p-data-segment (p))))))
→ all-p-objectps (lr-init-heap-contents (addr , heap-size), p)

Event: Disable all-p-objectps-lr-init-heap-contents-helper-helper.

Theorem: all-p-objectps-lr-init-heap-contents

315



((p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-max-subr-reqs)
∧ (heap-size 6< 4)
∧ lr-proper-p-areasp (p-data-segment (p))
∧ same-signature (p-data-segment (p), lr-init-data-seg (heap-size)))
→ all-p-objectps (lr-init-heap-contents (identity (tag (’addr,

cons (lr-heap-name,
0))),

heap-size),
p)

Theorem: proper-p-data-segmentp-lr-init-data-seg-helper
((p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-max-subr-reqs)
∧ (heap-size 6< 4)
∧ lr-proper-p-areasp (p-data-segment (p))
∧ same-signature (p-data-segment (p), lr-init-data-seg (heap-size)))
→ proper-p-data-segmentp (deposit-a-list (list (tag (’nat, lr-false-tag),

tag (’nat, 1),
lr-undef-addr,
lr-undef-addr),

lr-f-addr,
deposit-a-list (list (tag (’nat,

lr-undefined-tag),
tag (’nat,

1),
lr-undef-addr,
lr-undef-addr),

lr-undef-addr,
list (list (area-name (lr-fp-addr),

add-addr (lr-f-addr,
lr-node-size)),

list (area-name (lr-answer-addr),
tag (’nat,

0)),
cons (lr-heap-name,

lr-init-heap-contents (tag (’addr,
cons (lr-heap-name,

0)),
heap-size))))),

p)

Theorem: proper-p-data-segmentp-lr-init-data-seg
((p-word-size (p) ∈ N)

316



∧ (p-word-size (p) 6< s-max-subr-reqs)
∧ (heap-size 6< 4)
∧ lr-proper-p-areasp (p-data-segment (p))
∧ same-signature (p-data-segment (p), lr-init-data-seg (heap-size)))
→ proper-p-data-segmentp (lr-init-data-seg (heap-size), p)

Theorem: proper-p-data-segmentp-lr-init-data-seg-compile-t0
((p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-max-subr-reqs)
∧ (heap-size 6< 4)
∧ lr-proper-p-areasp (p-data-segment (p))
∧ same-signature (p-data-segment (p), lr-init-data-seg (heap-size)))
→ proper-p-data-segmentp (car (lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
list (cons (f, addr)))),

p)

Theorem: same-signature-car-lr-data-seg-table-list-reducer
(lr-proper-free-listp (data-seg2 )
∧ lr-proper-p-areasp (data-seg2 )
∧ definedp (lr-heap-name, data-seg2 )
∧ lr-boundary-nodep (lr-max-node (data-seg2 )))
→ (same-signature (data-seg1 ,

car (lr-data-seg-table-list (progs, data-seg2 , table)))
↔ same-signature (data-seg1 , data-seg2 ))

Theorem: same-signature-car-lr-init-data-seg-table-reducer
(lr-proper-free-listp (data-seg2 )
∧ lr-proper-p-areasp (data-seg2 )
∧ definedp (lr-heap-name, data-seg2 )
∧ lr-boundary-nodep (lr-max-node (data-seg2 )))
→ (same-signature (data-seg1 ,

car (lr-init-data-seg-table (params, data-seg2 , table)))
↔ same-signature (data-seg1 , data-seg2 ))

Theorem: same-signature-car-lr-compile-quote-reducer
(lr-proper-free-listp (data-seg2 )
∧ lr-proper-p-areasp (data-seg2 )
∧ definedp (lr-heap-name, data-seg2 )
∧ lr-boundary-nodep (lr-max-node (data-seg2 )))
→ (same-signature (data-seg1 ,

car (lr-compile-quote (flag , object , data-seg2 , table)))
↔ same-signature (data-seg1 , data-seg2 ))

317



Theorem: proper-p-data-segmentp-lr-data-seg-table
((p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-max-subr-reqs)
∧ lr-proper-p-areasp (p-data-segment (p))
∧ s-restrictedp (progs, params)
∧ (heap-size 6< s-total-heap-reqs (progs, params, heap-size))
∧ (p-word-size (p) 6< s-total-ws-reqs (progs, params, heap-size))
∧ same-signature (p-data-segment (p),

car (lr-data-seg-table (progs, params, heap-size))))
→ proper-p-data-segmentp (car (lr-data-seg-table (progs, params, heap-size)),

p)

Theorem: adpp-untag-answer-addr-car-lr-data-seg-table
adpp (identity (untag (lr-answer-addr)),

car (lr-data-seg-table (progs, params, heap-size)))

Theorem: program-body-assoc-cdr-lr-compile-programs
(name 6= caar (progs))
→ (program-body (assoc (name, cdr (lr-compile-programs (progs, table))))

= lr-compile-body (t,
s-body (assoc (name, cdr (progs))),
lr-make-temp-name-alist (s-temp-list (assoc (name,

cdr (progs))),
s-formals (assoc (name,

cdr (progs)))),
table))

Theorem: s-total-ws-reqs-not-lessp-s-max-subr-reqs
(word-size 6< s-total-ws-reqs (progs, params, heap-size))
→ (word-size 6< s-max-subr-reqs)

Theorem: proper-p-statep-lr->p-s->lr
(s-good-statep (s, c)
∧ all-litatoms (strip-cars (s-params (s)))
∧ (max-ctrl 6< (2 + length (s-params (s)) + length (s-temps (s))))
∧ (word-size ∈ N)
∧ (max-temp < exp (2, word-size))
∧ (max-ctrl < exp (2, word-size))
∧ (max-temp ∈ N)
∧ (max-ctrl ∈ N)
∧ (heap-size 6< s-total-heap-reqs (s-progs (s), s-params (s), heap-size))
∧ s-restrict-subrps-progs (s-progs (s))
∧ litatom (name (car (s-progs (s))))
∧ no-duplicatesp (strip-cars (s-progs (s)))
∧ (strip-cars (s-params (s)) = s-formals (s-prog (s)))

318



∧ s-restrictedp (s-progs (s), s-params (s))
∧ (word-size 6< s-total-ws-reqs (s-progs (s), s-params (s), heap-size)))
→ proper-p-statep (lr->p (s->lr (s, heap-size, max-ctrl , max-temp, word-size)))

Theorem: lr-programs-properp-s->lr
(s-good-statep (s, c)
∧ s-restrict-subrps-progs (s-progs (s))
∧ s-restrictedp (s-progs (s), s-params (s))
∧ (heap-size 6< s-total-heap-reqs (s-progs (s), s-params (s), heap-size))
∧ litatom (name (car (s-progs (s)))))
→ lr-programs-properp (s->lr (s, heap-size, max-ctrl , max-temp, word-size),

cdr (lr-data-seg-table (s-progs (s),
s-params (s),
heap-size)))

Definition:
lr-total-heap-reqs (expr , alist , program-names , heap-size, c)
= (s-total-heap-reqs (s-progs (logic->s (expr , alist , program-names)),

alist ,
heap-size)

+ s-eval-heap-r (t, logic->s (expr , alist , program-names), c))

Definition:
lr-max-ctrl-reqs (expr , alist , program-names , c)
= (2

+ length (s-params (logic->s (expr , alist , program-names)))
+ length (s-temps (logic->s (expr , alist , program-names)))
+ s-eval-ctrl-r (t, logic->s (expr , alist , program-names), c))

Definition:
lr-max-temp-reqs (expr , alist , program-names , c)
= s-eval-temp-r (t, logic->s (expr , alist , program-names), c)

Definition:
lr-max-word-size-reqs (expr , alist , program-names , heap-size, c)
= max (s-total-ws-reqs (s-progs (logic->s (expr , alist , program-names)),

s-params (logic->s (expr , alist , program-names)),
heap-size),

s-eval-ws-r (t, logic->s (expr , alist , program-names), c))

Theorem: lr-eval-s-eval-equivalence-s->lr
let s-lr be s->lr (s, heap-size, max-ctrl , max-temp, word-size)
in
(proper-p-statep (lr->p (s-lr))
∧ lr-programs-properp (s-lr ,

319



cdr (lr-data-seg-table (s-progs (s),
s-params (s),
heap-size)))

∧ lr-s-similar-statesp (s-params (s),
s-temps (s),
s-lr ,
cdr (lr-data-seg-table (s-progs (s),

s-params (s),
heap-size)))

∧ s-restrictedp (s-progs (s), s-params (s))
∧ (heap-size 6< s-total-heap-reqs (s-progs (s),

s-params (s),
heap-size))

∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (t, s-lr , c)) = ’run)
∧ (s-pname (s) = name (car (s-progs (s))))
∧ (s-pos (s) = nil))
→ lr-valp (s-ans (s-eval (t, s, c)),

car (p-temp-stk (lr-eval (t, s-lr , c))),
p-data-segment (lr-eval (t, s-lr , c))) endlet

Theorem: same-signature-car-lr-data-seg-table
(heap-size 6< s-total-heap-reqs (progs, params, heap-size))
→ same-signature (lr-init-data-seg (heap-size),

car (lr-data-seg-table (progs, params, heap-size)))

Theorem: lr-max-node-car-lr-data-seg-table
(heap-size 6< s-total-heap-reqs (progs, params, heap-size))
→ (lr-max-node (car (lr-data-seg-table (progs, params, heap-size)))

= tag (’addr,
cons (identity (lr-heap-name),

identity (lr-node-size) ∗ heap-size)))

Theorem: lr-count-free-nodes-lr-data-seg-table-list-s-heap-reqs-help
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-minimum-heapp (data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-body (t, body , data-seg , table)))

→ ((s-heap-reqs-body (t, body , data-seg , table)

320



+ lr-count-free-nodes (fetch (identity (lr-fp-addr),
car (lr-data-seg-table-body (t,

body ,
data-seg ,
table))),

lr-free-list-nodes (lr-max-node (data-seg),
car (lr-data-seg-table-body (t,

body ,
data-seg ,
table))),

car (lr-data-seg-table-body (t,
body ,
data-seg ,
table))))

= lr-count-free-nodes (fetch (identity (lr-fp-addr), data-seg),
lr-free-list-nodes (lr-max-node (data-seg),

data-seg),
data-seg))

Theorem: lr-count-free-nodes-lr-data-seg-table-list-s-heap-reqs
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-minimum-heapp (data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-list (progs, data-seg , table)))

→ ((lr-count-free-nodes (fetch (lr-fp-addr,
car (lr-data-seg-table-list (progs,

data-seg ,
table))),

lr-free-list-nodes (lr-max-node (data-seg),
car (lr-data-seg-table-list (progs,

data-seg ,
table))),

car (lr-data-seg-table-list (progs, data-seg , table)))
+ s-heap-reqs-list (progs, data-seg , table))

= lr-count-free-nodes (fetch (lr-fp-addr, data-seg),
lr-free-list-nodes (lr-max-node (data-seg),

data-seg),
data-seg))

321



Theorem: lr-max-node-car-lr-data-seg-table-list
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (lr-max-node (car (lr-data-seg-table-list (progs, data-seg , table)))

= lr-max-node (data-seg))

Theorem: lr-count-free-nodes-lr-data-seg-table-list-s-heap-reqs-1
(lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-list (progs, data-seg , table))

∧ (max-addr = lr-max-node (car (lr-data-seg-table-list (progs,
data-seg ,
table)))))

→ (lr-count-free-nodes (fetch (identity (lr-fp-addr),
car (lr-data-seg-table-list (progs,

data-seg ,
table))),

lr-free-list-nodes (max-addr ,
car (lr-data-seg-table-list (progs,

data-seg ,
table))),

car (lr-data-seg-table-list (progs, data-seg , table)))
= (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
− s-heap-reqs-list (progs, data-seg , table)))

Theorem: lr-count-free-nodes-lr-init-data-seg-table-s-heap-reqs-1
(lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table))

∧ (max-addr = lr-max-node (car (lr-init-data-seg-table (params,
data-seg ,

322



table)))))
→ (lr-count-free-nodes (fetch (identity (lr-fp-addr),

car (lr-init-data-seg-table (params,
data-seg ,
table))),

lr-free-list-nodes (max-addr ,
car (lr-init-data-seg-table (params,

data-seg ,
table))),

car (lr-init-data-seg-table (params, data-seg , table)))
= (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
− s-init-heap-reqs (params, data-seg , table)))

Theorem: not-lessp-lr-count-free-nodes-lr-data-seg-table-heap-r
((heap-size 6< (s-total-heap-reqs (progs, params, heap-size) + x ))
∧ s-restrictedp (progs, params))
→ (lr-count-free-nodes (fetch (identity (lr-fp-addr),

car (lr-data-seg-table (progs,
params,
heap-size))),

lr-free-list-nodes (lr-max-node (car (lr-data-seg-table (progs,
params,
heap-size))),

car (lr-data-seg-table (progs,
params,
heap-size))),

car (lr-data-seg-table (progs, params, heap-size)))
6< x )

Theorem: lr-eval-s-eval-flag-run-s->lr
let s-lr be s->lr (s, heap-size, max-ctrl , max-temp, word-size)
in
(proper-p-statep (lr->p (s-lr))
∧ lr-programs-properp (s-lr ,

cdr (lr-data-seg-table (s-progs (s),
s-params (s),
heap-size)))

∧ lr-s-similar-statesp (s-params (s),
s-temps (s),
s-lr ,
cdr (lr-data-seg-table (s-progs (s),

323



s-params (s),
heap-size)))

∧ s-restrictedp (s-progs (s), s-params (s))
∧ s-good-statep (s, c)
∧ s-all-temps-setp (t,

s-body (car (s-progs (s))),
temp-alist-to-set (s-temps (s)))

∧ s-all-progs-temps-setp (s-progs (s))
∧ s-check-temps-setp (s-temps (s))
∧ (s-err-flag (s-eval (t, s, c)) = ’run)
∧ (heap-size 6< (s-total-heap-reqs (s-progs (s),

s-params (s),
heap-size)

+ s-eval-heap-r (t, s, c)))
∧ (max-ctrl 6< (p-ctrl-stk-size (p-ctrl-stk (s-lr))

+ s-eval-ctrl-r (t, s, c)))
∧ (max-temp 6< s-eval-temp-r (t, s, c))
∧ (word-size 6< s-eval-ws-r (t, s, c))
∧ (word-size 6< s-max-subr-reqs)
∧ (s-pname (s) = name (car (s-progs (s))))
∧ (s-pos (s) = nil))
→ (p-psw (lr-eval (t, s-lr , c)) = ’run) endlet

Theorem: all-undef-addr-strip-cdrs-lr-make-initial-temps
all-undef-addrs (strip-cdrs (lr-make-initial-temps (x )))

Theorem: lr-s-similar-temps-make-temps-entries-initial-temps
(all-undef-addrs (strip-cdrs (lr-temps))
∧ (length (s-temps) = length (lr-temps)))
→ lr-s-similar-temps (make-temps-entries (s-temps), lr-temps, data-seg)

Definition:
object-addrs (object-list , table)
= if listp (object-list)

then cons (cdr (assoc (car (object-list), table)),
object-addrs (cdr (object-list), table))

else nil endif

Theorem: lr-valp-lr-compile-quote
(lr-proper-p-areasp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ s-restricted-objectp (flag , object)
∧ lr-proper-heapp (data-seg)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

324



lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (flag , object , data-seg , table)))

→ if flag = ’list
then lr-check-result1 (object ,

object-addrs (object ,
cdr (lr-compile-quote (flag ,

object ,
data-seg ,
table))),

car (lr-compile-quote (flag , object , data-seg , table)))
else lr-valp (object ,

cdr (assoc (object ,
cdr (lr-compile-quote (flag ,

object ,
data-seg ,
table)))),

car (lr-compile-quote (flag , object , data-seg , table))) endif

Theorem: lr-init-data-seg-table-preserves-lr-valp
(lr-proper-p-areasp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-init-data-seg-restrictedp (params)
∧ lr-proper-heapp (data-seg)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table))

∧ lr-valp (value, addr , data-seg))
→ lr-valp (value, addr , car (lr-init-data-seg-table (params, data-seg , table)))

Theorem: lr-valp-lr-compile-quote-flag-t
(lr-proper-p-areasp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ s-restricted-objectp (t, object)
∧ lr-proper-heapp (data-seg)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)

325



6< s-heap-reqs (t, object , data-seg , table)))
→ lr-valp (object ,

cdr (assoc (object ,
cdr (lr-compile-quote (t, object , data-seg , table)))),

car (lr-compile-quote (t, object , data-seg , table)))

Theorem: lr-s-similar-params-pair-formals-lr-init-data-seg
(lr-proper-p-areasp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ s-init-data-seg-restrictedp (params)
∧ lr-proper-heapp (data-seg)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table)))

→ lr-s-similar-params (params,
pair-formals-with-addresses (params,

cdr (lr-init-data-seg-table (params,
data-seg ,
table))),

car (lr-init-data-seg-table (params, data-seg , table)))

Theorem: lr-data-seg-table-body-preserves-lr-valp
(lr-proper-p-areasp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-data-seg-body-restrictedp (flag , body)
∧ lr-proper-heapp (data-seg)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-body (flag , body , data-seg , table))

∧ lr-valp (value, addr , data-seg))
→ lr-valp (value,

addr ,
car (lr-data-seg-table-body (flag , body , data-seg , table)))

Theorem: lr-data-seg-table-list-preserves-lr-valp
(lr-proper-p-areasp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-data-seg-list-restrictedp (progs)
∧ lr-proper-heapp (data-seg)

326



∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-list (progs, data-seg , table))

∧ lr-valp (value, addr , data-seg))
→ lr-valp (value, addr , car (lr-data-seg-table-list (progs, data-seg , table)))

Theorem: lr-data-seg-table-list-preserves-lr-s-similar-params
(lr-proper-p-areasp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-data-seg-list-restrictedp (progs)
∧ lr-proper-heapp (data-seg)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-list (progs, data-seg , table))

∧ lr-s-similar-params (s-params , lr-params, data-seg))
→ lr-s-similar-params (s-params,

lr-params,
car (lr-data-seg-table-list (progs, data-seg , table)))

Definition:
all-definedp (list , alist)
= if listp (list)

then definedp (car (list), alist) ∧ all-definedp (cdr (list), alist)
else t endif

Theorem: assoc-definedp-table-lr-data-seg-table-body
definedp (object , table)
→ (assoc (object , cdr (lr-data-seg-table-body (flag , expr , data-seg , table)))

= assoc (object , table))

Theorem: assoc-definedp-table-lr-data-seg-table-list
definedp (object , table)
→ (assoc (object , cdr (lr-data-seg-table-list (progs, data-seg , table)))

= assoc (object , table))

Theorem: pair-formals-with-addresses-lr-data-seg-table-list
all-definedp (strip-cdrs (params), table)
→ (pair-formals-with-addresses (params,

cdr (lr-data-seg-table-list (progs,

327



data-seg ,
table)))

= pair-formals-with-addresses (params, table))

Theorem: all-definedp-strip-cdrs-lr-init-data-seg-table
(lr-s-similar-const-table (table, data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ definedp (f, table)
∧ s-init-data-seg-restrictedp (params)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table)))

→ all-definedp (strip-cdrs (params),
cdr (lr-init-data-seg-table (params, data-seg , table)))

Theorem: lr-s-similar-params-pair-formals-with-addresses
((heap-size 6< s-total-heap-reqs (progs, params, heap-size))
∧ s-restrictedp (progs, params))
→ lr-s-similar-params (params,

pair-formals-with-addresses (params,
cdr (lr-data-seg-table (progs,

params,
heap-size))),

car (lr-data-seg-table (progs, params, heap-size)))

Theorem: lr-s-similar-statesp-s->lr-lr-data-seg-table
((heap-size 6< s-total-heap-reqs (s-progs (s), s-params (s), heap-size))
∧ s-restrictedp (s-progs (s), s-params (s))
∧ (strip-cars (s-params (s)) = s-formals (car (s-progs (s))))
∧ (s-pname (s) = name (car (s-progs (s))))
∧ (s-temps (s) = make-temps-entries (s-temp-list (car (s-progs (s))))))
→ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr (s, heap-size, max-ctrl , max-temp, word-size),
cdr (lr-data-seg-table (s-progs (s),

s-params (s),
heap-size)))

Theorem: p-ctrl-stk-size-p-ctrl-stk-s->lr
p-ctrl-stk-size (p-ctrl-stk (s->lr (s, heap-size, max-ctrl , max-temp, word-size)))
= (2 + length (s-params (s)) + length (s-temps (s)))

328



Theorem: s->lr-ok
let s-lr be s->lr (s, heap-size, max-ctrl , max-temp, word-size)
in
(s-good-statep (s, c)
∧ s-all-temps-setp (t,

s-body (car (s-progs (s))),
temp-alist-to-set (s-temps (s)))

∧ s-all-progs-temps-setp (s-progs (s))
∧ (s-temps (s)

= make-temps-entries (s-temp-list (car (s-progs (s)))))
∧ s-check-temps-setp (s-temps (s))
∧ s-restrictedp (s-progs (s), s-params (s))
∧ (heap-size 6< (s-total-heap-reqs (s-progs (s),

s-params (s),
heap-size)

+ s-eval-heap-r (t, s, c)))
∧ s-restrict-subrps-progs (s-progs (s))
∧ (max-ctrl 6< (2

+ length (s-params (s))
+ length (s-temps (s))
+ s-eval-ctrl-r (t, s, c)))

∧ (max-ctrl ∈ N)
∧ (max-ctrl < exp (2, word-size))
∧ (max-temp ∈ N)
∧ (max-temp 6< s-eval-temp-r (t, s, c))
∧ (max-temp < exp (2, word-size))
∧ (word-size 6< max (s-total-ws-reqs (s-progs (s),

s-params (s),
heap-size),

s-eval-ws-r (t, s, c)))
∧ (word-size ∈ N)
∧ litatom (name (car (s-progs (s))))
∧ (s-pname (s) = name (car (s-progs (s))))
∧ (s-pos (s) = nil)
∧ all-litatoms (strip-cars (s-params (s)))
∧ no-duplicatesp (strip-cars (s-progs (s)))
∧ (strip-cars (s-params (s)) = s-formals (car (s-progs (s))))
∧ (s-err-flag (s-eval (t, s, c)) = ’run))
→ lr-valp (s-ans (s-eval (t, s, c)),

car (p-temp-stk (lr-eval (t, s-lr , c))),
p-data-segment (lr-eval (t, s-lr , c))) endlet

Theorem: s-good-state-logic->s
(l-proper-programsp (prog-names)

329



∧ l-proper-exprp (t, expr , prog-names , strip-cars (alist))
∧ all-litatoms (strip-cars (alist)))
→ s-good-statep (logic->s (expr , alist , prog-names), c)

Theorem: s-body-car-s-progs-logic->s
s-body (car (s-progs (logic->s (expr , alist , pnames)))) = expr

Theorem: l-proper-programsp-s-progs-logic->s
(l-proper-programsp (pnames) ∧ l-proper-exprp (t, expr , pnames, formals))
→ s-all-progs-temps-setp (s-progs (logic->s (expr , alist , pnames)))

Theorem: s-temps-logic->s
s-temps (logic->s (expr , alist , pnames)) = nil

Theorem: s-temp-list-car-s-progs-logic->s
s-temp-list (car (s-progs (logic->s (expr , alist , pnames)))) = nil

Theorem: s-params-logic->s
s-params (logic->s (expr , alist , pnames)) = alist

Definition:
l-data-seg-body-restrictedp (flag , expr)
= if flag = ’list

then if listp (expr)
then l-data-seg-body-restrictedp (t, car (expr))

∧ l-data-seg-body-restrictedp (’list, cdr (expr))
else t endif

elseif listp (expr)
then if car (expr) = ’quote

then s-restricted-objectp (t, cadr (expr))
else l-data-seg-body-restrictedp (’list, cdr (expr)) endif

else t endif

Definition:
l-data-seg-list-restrictedp (fun-names)
= if listp (fun-names)

then l-data-seg-body-restrictedp (t, body (car (fun-names)))
∧ l-data-seg-list-restrictedp (cdr (fun-names))

else t endif

Definition:
l-restrictedp (fun-names, alist)
= (s-init-data-seg-restrictedp (alist)

∧ l-data-seg-list-restrictedp (fun-names))

330



Theorem: l-data-seg-body-restrictedp-s-data-seg-body-restrictedp
l-data-seg-body-restrictedp (flag , body)
→ s-data-seg-body-restrictedp (flag , body)

Theorem: l-data-seg-body-restrictedp-delete-all
l-data-seg-list-restrictedp (pnames)
→ l-data-seg-list-restrictedp (delete-all (name, pnames))

Theorem: l-data-seg-list-restrictedp-s-data-seg-list-restrictedp
(l-data-seg-list-restrictedp (pnames) ∧ l-data-seg-body-restrictedp (t, expr))
→ s-data-seg-list-restrictedp (s-progs (logic->s (expr , alist , pnames)))

Theorem: l-restrict-subrps-s-restrict-subrps
(l-restrict-subrps (flag , expr)
∧ l-proper-exprp (flag , expr , program-names , formals))
→ s-restrict-subrps (flag , expr)

Theorem: l-restrict-subrps-progs-delete-all
l-restrict-subrps-progs (pnames)
→ l-restrict-subrps-progs (delete-all (name, pnames))

Theorem: l-restrict-subrps-progs-s-restrict-subrps-progs
(l-restrict-subrps-progs (pnames)
∧ l-proper-programsp-1 (pnames, program-names))
→ s-restrict-subrps-progs (s-construct-programs (remove-duplicates (pnames)))

Theorem: l-restrict-subrps-progs-s-restrict-subrps-progs-logic->s
(l-restrict-subrps-progs (pnames)
∧ l-restrict-subrps (t, expr)
∧ l-proper-exprp (t, expr , program-names , formals)
∧ l-proper-programsp (pnames))
→ s-restrict-subrps-progs (s-progs (logic->s (expr , alist , pnames)))

Theorem: name-car-s-progs-logic->s
name (car (s-progs (logic->s (expr , alist , pnames)))) = ’main

Theorem: s-pname-logic->s
s-pname (logic->s (expr , alist , pnames)) = ’main

Theorem: s-pos-logic->s
s-pos (logic->s (expr , alist , pnames)) = nil

Theorem: definedp-user-fname-s-construct-programs
(litatom (name) ∧ all-litatoms-not-plist (pnames))
→ (definedp (user-fname (name), s-construct-programs (pnames))

= (name ∈ pnames))

331



Theorem: no-duplicatesp-strip-cars-s-construct-programs
all-litatoms-not-plist (pnames)
→ (no-duplicatesp (strip-cars (s-construct-programs (pnames)))

= no-duplicatesp (pnames))

Theorem: all-user-fnamesp-strip-cars-s-construct-programs
all-litatoms-not-plist (pnames)
→ all-user-fnamesp (strip-cars (s-construct-programs (pnames)))

Theorem: no-duplicatesp-strip-cars-s-progs-logic->s
all-litatoms-not-plist (pnames)
→ no-duplicatesp (strip-cars (s-progs (logic->s (expr , alist , pnames))))

Theorem: s-formals-car-s-progs-logic->s
s-formals (car (s-progs (logic->s (expr , alist , pnames)))) = strip-cars (alist)

Theorem: s-expr-logic->s
s-expr (logic->s (expr , alist , pnames)) = expr

Theorem: all-litatoms-not-plist-lr-proper-programsp
l-proper-programsp (prog-names) → all-litatoms-not-plist (prog-names)

Theorem: logic->lr-ok-really
(l-proper-exprp (t, expr , pnames, strip-cars (alist))
∧ l-proper-programsp (pnames)
∧ all-litatoms (strip-cars (alist))
∧ l-data-seg-body-restrictedp (t, expr)
∧ l-restrictedp (pnames, alist)
∧ v&c$ (t, expr , alist)
∧ (cdr (v&c$ (t, expr , alist)) < c)
∧ l-restrict-subrps (t, expr)
∧ l-restrict-subrps-progs (pnames)
∧ (heap-size 6< lr-total-heap-reqs (expr , alist , pnames, heap-size, c))
∧ (max-ctrl 6< lr-max-ctrl-reqs (expr , alist , pnames, c))
∧ (max-ctrl < exp (2, word-size))
∧ (max-ctrl ∈ N)
∧ (max-temp 6< lr-max-temp-reqs (expr , alist , pnames, c))
∧ (max-temp < exp (2, word-size))
∧ (max-temp ∈ N)
∧ (word-size 6< lr-max-word-size-reqs (expr , alist , pnames , heap-size, c))
∧ (word-size ∈ N))
→ lr-valp (car (v&c$ (t, expr , alist)),

car (p-temp-stk (lr-eval (t,
s->lr (logic->s (expr , alist , pnames),

heap-size,

332



max-ctrl ,
max-temp,
word-size),

c))),
p-data-segment (lr-eval (t,

s->lr (logic->s (expr , alist , pnames),
heap-size,
max-ctrl ,
max-temp,
word-size),

c)))

; ------------------------------------------------------------
; was p1.events
; ------------------------------------------------------------

Definition:
logic->p (expr , alist , pnames, heap-size, max-ctrl , max-temp, word-size)
= lr->p (s->lr (logic->s (expr , alist , pnames),

heap-size,
max-ctrl ,
max-temp,
word-size))

Definition:
p-run-subr-clock (l , new-l)
= case on car (lr-expr (l)):

case = car
then p-car-clock (p-set-pc (lr->p (new-l), lr-return-pc (l)))
case = cdr
then p-cdr-clock (p-set-pc (lr->p (new-l), lr-return-pc (l)))

case = cons
then p-cons-clock (p-set-pc (lr->p (new-l), lr-return-pc (l)))

case = false
then p-false-clock (p-set-pc (lr->p (new-l), lr-return-pc (l)))

case = falsep
then p-falsep-clock (p-set-pc (lr->p (new-l), lr-return-pc (l)))

case = listp
then p-listp-clock (p-set-pc (lr->p (new-l), lr-return-pc (l)))

case = nlistp
then p-nlistp-clock (p-set-pc (lr->p (new-l), lr-return-pc (l)))

case = true
then p-true-clock (p-set-pc (lr->p (new-l), lr-return-pc (l)))

case = truep

333



then p-truep-clock (p-set-pc (lr->p (new-l), lr-return-pc (l)))
otherwise 0 endcase

Event: Disable p-run-subr-clock.

Definition:
p-clock1 (flag , l , c)
= if p-psw (l) 6= ’run then 0

elseif flag = ’list
then if offset (p-pc (l)) ' nil then 0

elseif listp (lr-expr-list (l))
then p-clock1 (t, l , c)

+ p-clock1 (’list,
lr-set-expr (lr-eval (t, l , c),

l ,
nx (offset (p-pc (l)))),

c)
else 0 endif

elseif c ' 0 then 0
elseif litatom (lr-expr (l)) then 1
elseif lr-expr (l) ' nil then 0
elseif car (lr-expr (l)) = ’if
then let test be lr-if-ok (lr-eval (t,

lr-set-pos (l ,
dv (offset (p-pc (l)), 1)),

c))
in
if p-psw (test) = ’run
then if top (p-temp-stk (test)) 6= lr-f-addr

then p-clock1 (t,
lr-set-pos (l , dv (offset (p-pc (l)), 1)),
c)

+ 3
+ p-clock1 (t,

lr-set-expr (lr-pop-tstk (test),
l ,
dv (offset (p-pc (l)),

2)),
c)

+ 1
else p-clock1 (t,

lr-set-pos (l ,
dv (offset (p-pc (l)), 1)),

c)

334



+ 3
+ p-clock1 (t,

lr-set-expr (lr-pop-tstk (test),
l ,
dv (offset (p-pc (l)),

3)),
c) endif

else p-clock1 (t,
lr-set-pos (l , dv (offset (p-pc (l)), 1)),
c) endif endlet

elseif car (lr-expr (l)) = s-temp-eval
then p-clock1 (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c) + 1
elseif car (lr-expr (l)) = s-temp-test
then if lr-eval-temp-setp (l) then 5

else 4
+ p-clock1 (t,

lr-set-pos (l , dv (offset (p-pc (l)), 1)),
c)

+ 2 endif
elseif car (lr-expr (l)) = s-temp-fetch then 1
elseif car (lr-expr (l)) = ’quote then 1
elseif p-psw (lr-eval (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c))

6= ’run
then p-clock1 (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
elseif subrp (car (lr-expr (l)))
then p-clock1 (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)

+ p-run-subr-clock (l ,
lr-eval (’list,

lr-set-pos (l ,
dv (offset (p-pc (l)), 1)),

c))
elseif litatom (car (lr-expr (l)))
then let fs be lr-funcall (l ,

lr-eval (’list,
lr-set-pos (l ,

dv (offset (p-pc (l)), 1)),
c))

in
p-clock1 (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
+ 1
+ p-clock1 (t, fs, c − 1)
+ 1 endlet

else 0 endif

335



Definition:
lr-good-pointerps (list , data-seg)
= if listp (list)

then lr-good-pointerp (car (list), data-seg)
∧ lr-good-pointerps (cdr (list), data-seg)

else t endif

Definition:
lr-proper-ctrl-stkp (ctrl-stk , data-seg)
= if ctrl-stk ' nil then ctrl-stk = nil

else lr-good-pointerps (strip-cdrs (bindings (top (ctrl-stk))),
data-seg)

∧ lr-proper-ctrl-stkp (pop (ctrl-stk), data-seg) endif

Definition:
lr-p-proper-statep (temp-stk , ctrl-stk , data-seg , table)
= (lr-proper-ctrl-stkp (ctrl-stk , data-seg)

∧ lr-good-pointerps (temp-stk , data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg))

Event: Disable lr-p-proper-statep.

Theorem: definedp-cdr-assoc-lr-good-pointerps
((addr ∈ list) ∧ lr-good-pointerps (list , data-seg))
→ lr-good-pointerp (addr , data-seg)

Theorem: lr-p-proper-statep-lr-push-tstk-cdr-assoc-lr-expr
(litatom (lr-expr (l))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)

∧ (p-psw (lr-push-tstk (l ,
cdr (assoc (lr-expr (l),

bindings (car (p-ctrl-stk (l)))))))
= ’run))

→ lr-p-proper-statep (p-temp-stk (lr-push-tstk (l ,
cdr (assoc (lr-expr (l),

bindings (car (p-ctrl-stk (l))))))),
p-ctrl-stk (l),

336



p-data-segment (l),
table)

Theorem: lr-p-proper-statep-cdr-temp-stk
lr-p-proper-statep (temp-stk , ctrl-stk , data-seg , table)
→ lr-p-proper-statep (cdr (temp-stk), ctrl-stk , data-seg , table)

Theorem: lr-good-pointerps-put-assoc
(lr-good-pointerp (addr , data-seg)
∧ lr-good-pointerps (strip-cdrs (bindings), data-seg))
→ lr-good-pointerps (strip-cdrs (put-assoc (addr , expr , bindings)), data-seg)

Theorem: lr-p-proper-statep-cons-p-frame-put-assoc
(lr-p-proper-statep (temp-stk , ctrl-stk , data-seg , table)
∧ listp (temp-stk)
∧ listp (ctrl-stk)
∧ (cdr-ctrl-stk = cdr (ctrl-stk)))
→ lr-p-proper-statep (temp-stk ,

cons (p-frame (put-assoc (car (temp-stk),
expr ,
bindings (car (ctrl-stk))),

ret-pc),
cdr-ctrl-stk),

data-seg ,
table)

Theorem: lr-eval-leaves-listp-p-ctrl-stk-lr->p-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp (flag , pos, program-body (p-current-program (l)))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , lr-set-pos (l , pos), c)) = ’run))
→ listp (p-ctrl-stk (lr-eval (flag , lr-set-pos (l , pos), c)))

Theorem: lr-p-proper-statep-cdr-assoc-caddr-lr-expr-bindings
(proper-p-statep (lr->p (l))
∧ lr-p-proper-statep (temp-stk , p-ctrl-stk (l), data-seg , table)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ ((car (lr-expr (l)) = s-temp-test)

∨ (car (lr-expr (l)) = s-temp-fetch)))
→ lr-p-proper-statep (cons (cdr (assoc (caddr (lr-expr (l)),

bindings (car (p-ctrl-stk (l))))),
temp-stk),

337



p-ctrl-stk (l),
data-seg ,
table)

Theorem: member-strip-cdrs-lr-good-pointerp-tablep
((object ∈ strip-cdrs (table)) ∧ lr-good-pointerp-tablep (table, data-seg))
→ lr-good-pointerp (object , data-seg)

Theorem: lr-p-proper-statep-p-temps-stk-lr-push-tstk-quote
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’quote)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-push-tstk (l , cadr (lr-expr (l)))) = ’run)
∧ lr-p-proper-statep (p-temp-stk (l), ctrl-stk , data-seg , table))
→ lr-p-proper-statep (p-temp-stk (lr-push-tstk (l , cadr (lr-expr (l)))),

ctrl-stk ,
data-seg ,
table)

Theorem: p-run-subr-preserves-lr-good-pointerp-tablep
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ (p-psw (new-l) = ’run)
∧ subrp (car (lr-expr (l)))
∧ lr-good-pointerp-tablep (table2 , p-data-segment (new-l))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table1 )
∧ lr-programs-properp (new-l , table1 )
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= ’run)

∧ lr-proper-heapp (p-data-segment (new-l))
∧ proper-p-statep (lr->p (new-l))
∧ (p-prog-segment (new-l) = p-prog-segment (l)))
→ lr-good-pointerp-tablep (table2 ,

p-data-segment (p-run-subr (car (lr-expr (l)),
p-set-pc (lr->p (new-l),

lr-return-pc (l)))))

Theorem: lr-good-pointerps-deposit-free-ptr
lr-good-pointerps (list , deposit (anything , identity (lr-fp-addr), data-seg))
= lr-good-pointerps (list , data-seg)

338



Theorem: lr-proper-ctrl-stkp-deposit-free-ptr
lr-proper-ctrl-stkp (ctrl-stk , deposit (anything , identity (lr-fp-addr), data-seg))
= lr-proper-ctrl-stkp (ctrl-stk , data-seg)

Theorem: lr-good-pointerp-deposit-a-list-node
(lr-good-pointerp (addr1 , data-seg)
∧ (type (addr2 ) = ’addr)
∧ (cddr (addr2 ) = nil)
∧ listp (addr2 )
∧ adpp (untag (addr2 ), data-seg)
∧ lr-boundary-nodep (addr2 )
∧ (area-name (addr2 ) = ’heap)
∧ (type (ref-count) = ’nat))
→ lr-good-pointerp (addr1 ,

deposit-a-list (list (x , ref-count , y , z ), addr2 , data-seg))

Theorem: lr-good-pointerps-deposit-a-list-node
(lr-good-pointerps (list , data-seg)
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = ’heap)
∧ (type (ref-count) = ’nat))
→ lr-good-pointerps (list ,

deposit-a-list (list (x , ref-count , y , z ), addr , data-seg))

Theorem: lr-proper-ctrl-stkp-deposit-a-list-node
(lr-proper-ctrl-stkp (list , data-seg)
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = ’heap)
∧ (type (ref-count) = ’nat))
→ lr-proper-ctrl-stkp (list ,

deposit-a-list (list (x , ref-count , y , z ),
addr ,
data-seg))

Theorem: p-run-subr-preserves-lr-proper-ctrl-stkp
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)

339



∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ proper-p-statep (lr->p (l))
∧ lr-proper-heapp (p-data-segment (lr-eval (’list, lr-set-pos (l , pos), c)))
∧ lr-proper-ctrl-stkp (p-ctrl-stk (lr-eval (’list, lr-set-pos (l , pos), c)),

p-data-segment (lr-eval (’list,
lr-set-pos (l , pos),
c)))

∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (lr-eval (’list, lr-set-pos (l , pos), c)),
lr-return-pc (l))))

= ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ lr-proper-ctrl-stkp (p-ctrl-stk (lr-eval (’list, lr-set-pos (l , pos), c)),

p-data-segment (p-run-subr (car (lr-expr (l)),
p-set-pc (lr->p (lr-eval (’list,

lr-set-pos (l ,
pos),

c)),
lr-return-pc (l)))))

Theorem: lr-good-pointerps-cons-lr-f-addr-lr-proper-heapp
(lr-good-pointerps (list , data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg))
→ lr-good-pointerps (cons (identity (lr-f-addr), list), data-seg)

Theorem: lr-good-pointerps-cons-lr-t-addr-lr-proper-heapp
(lr-good-pointerps (list , data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg))
→ lr-good-pointerps (cons (identity (lr-t-addr), list), data-seg)

Theorem: lr-good-pointerps-cons-lr-0-addr-lr-proper-heapp
(lr-good-pointerps (list , data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg))
→ lr-good-pointerps (cons (identity (lr-0-addr), list), data-seg)

Theorem: lr-good-pointerps-cdr
lr-good-pointerps (list , data-seg) → lr-good-pointerps (cdr (list), data-seg)

340



Theorem: lr-good-pointerps-cons-fetch-car-temp-stk-cdr-car
(lr-good-pointerps (temp-stk , data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (length (temp-stk) 6< 1)
∧ (fetch (car (temp-stk), data-seg) = tag (’nat, lr-cons-tag)))
→ lr-good-pointerps (cons (fetch (add-addr (car (temp-stk),

identity (lr-car-offset)),
data-seg),

cdr (temp-stk)),
data-seg)

Theorem: lr-good-pointerps-cons-fetch-car-temp-stk-cdr-cdr
(lr-good-pointerps (temp-stk , data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (length (temp-stk) 6< 1)
∧ (fetch (car (temp-stk), data-seg) = tag (’nat, lr-cons-tag)))
→ lr-good-pointerps (cons (fetch (add-addr (car (temp-stk),

identity (lr-cdr-offset)),
data-seg),

cdr (temp-stk)),
data-seg)

Theorem: lr-good-pointerps-cons-fetch-fp-addr-deposit-a-list-cons
(lr-proper-heapp (data-seg)
∧ lr-good-pointerps (temp-stk , data-seg)
∧ (fp-addr = fetch (identity (lr-fp-addr), data-seg))
∧ (type (ref-count) = ’nat))
→ lr-good-pointerps (cons (fetch (identity (lr-fp-addr), data-seg), temp-stk),

deposit-a-list (list (x , ref-count , y , z ),
fp-addr ,
data-seg))

Theorem: p-run-subr-preserves-lr-good-pointerps
let lr-eval be lr-eval (’list, lr-set-pos (l , pos), c)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ proper-p-statep (lr->p (l))
∧ lr-proper-heapp (p-data-segment (lr-eval))

341



∧ lr-good-pointerps (p-temp-stk (lr-eval), p-data-segment (lr-eval))
∧ (p-psw (lr-eval) = ’run)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (lr-eval), lr-return-pc (l))))
= ’run)

∧ (length (p-temp-stk (lr-eval)) 6< arity (car (lr-expr (l))))
∧ (pos = dv (offset (p-pc (l)), 1)))
→ lr-good-pointerps (p-temp-stk (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (lr-eval),
lr-return-pc (l)))),

p-data-segment (p-run-subr (car (lr-expr (l)),
p-set-pc (lr->p (lr-eval),

lr-return-pc (l))))) endlet

Theorem: p-run-subr-preserves-lr-proper-heapp2-alt
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-programs-properp (new-l , table)
∧ listp (lr-expr (l))
∧ proper-p-statep (lr->p (new-l))
∧ lr-proper-free-listp (p-data-segment (new-l))
∧ adpp (untag (lr-max-node (p-data-segment (new-l))), p-data-segment (new-l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (new-l)))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= ’run)

∧ lr-good-pointerps (p-temp-stk (new-l), p-data-segment (new-l))
∧ (length (p-temp-stk (new-l)) 6< arity (car (lr-expr (l))))
∧ lr-proper-heapp2 (addr , p-data-segment (new-l))
∧ lr-nodep (addr , p-data-segment (new-l))
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ lr-proper-heapp2 (addr ,

p-data-segment (p-run-subr (car (lr-expr (l)),
p-set-pc (lr->p (new-l),

lr-return-pc (l)))))

Theorem: p-run-subr-preserves-lr-proper-heapp
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-programs-properp (new-l , table)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ subrp (car (lr-expr (l)))

342



∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= ’run)

∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ lr-proper-heapp (p-data-segment (new-l))
∧ lr-good-pointerps (p-temp-stk (new-l), p-data-segment (new-l))
∧ (length (p-temp-stk (new-l)) 6< arity (car (lr-expr (l)))))
→ lr-proper-heapp (p-data-segment (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l),
lr-return-pc (l)))))

Theorem: lr-apply-subr-preserves-lr-p-proper-statep
let lr-eval be lr-eval (’list, lr-set-pos (l , pos), c)
in
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ (car (lr-expr (l)) 6= s-temp-eval)
∧ (car (lr-expr (l)) 6= s-temp-test)
∧ (car (lr-expr (l)) 6= s-temp-fetch)
∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ subrp (car (lr-expr (l)))
∧ lr-p-proper-statep (p-temp-stk (lr-eval),

p-ctrl-stk (lr-eval),
p-data-segment (lr-eval),
table)

∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-apply-subr (l , lr-eval)) = ’run)
∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (pos = dv (offset (p-pc (l)), 1)))
→ lr-p-proper-statep (p-temp-stk (lr-apply-subr (l , lr-eval)),

p-ctrl-stk (lr-eval),
p-data-segment (lr-apply-subr (l , lr-eval)),
table) endlet

Theorem: strip-cdrs-append
strip-cdrs (append (x , y)) = append (strip-cdrs (x ), strip-cdrs (y))

Theorem: strip-cdrs-pairlist
(length (x ) 6< length (y))

343



→ (strip-cdrs (pairlist (x , y)) = first-n (length (x ), y))

Theorem: lr-good-pointerps-append
lr-good-pointerps (append (x , y), data-seg)
= (lr-good-pointerps (x , data-seg) ∧ lr-good-pointerps (y , data-seg))

Theorem: lr-good-pointerps-reverse
lr-good-pointerps (reverse (x ), data-seg) = lr-good-pointerps (x , data-seg)

Theorem: lr-good-pointerps-first-n
(lr-good-pointerps (list , data-seg) ∧ (length (list) 6< n))
→ lr-good-pointerps (first-n (n, list), data-seg)

Definition:
all-numberps (list)
= if listp (list) then (car (list) ∈ N) ∧ all-numberps (cdr (list))

else t endif

Theorem: all-numberps-strip-cadrs-numberp-cdr-assoc
all-numberps (strip-cadrs (list)) → (cadr (assoc (x , list)) ∈ N)

Theorem: all-numberps-strip-cadrs-subr-arity-alist
all-numberps (strip-cadrs (subr-arity-alist))

Theorem: numberp-arity
arity (x ) ∈ N

Theorem: strip-cdrs-pair-temps-with-initial-values
strip-cdrs (pair-temps-with-initial-values (temp-var-dcls))
= strip-cadrs (temp-var-dcls)

Theorem: lr-good-pointerps-all-undef-addrs
(lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ all-undef-addrs (list))
→ lr-good-pointerps (list , data-seg)

Theorem: all-undef-addrs-strip-cadrs-temp-vars-programs-properp-1
(lr-programs-properp-1 (programs, program-names , table)
∧ definedp (name, programs))
→ all-undef-addrs (strip-cadrs (temp-var-dcls (assoc (name, programs))))

Theorem: all-undef-addrs-strip-cadrs-temp-vars-programs-properp
(lr-programs-properp (l , table) ∧ definedp (name, cdr (p-prog-segment (l))))
→ all-undef-addrs (strip-cadrs (temp-var-dcls (assoc (name,

cdr (p-prog-segment (l))))))

344



Theorem: lr-good-pointerps-popn
(lr-good-pointerps (list , data-seg) ∧ (length (list) 6< n))
→ lr-good-pointerps (popn (n, list), data-seg)

Theorem: lr-p-proper-statep-lr-funcall
((p-psw (lr-eval (t, lr-funcall (l , new-l), c − 1)) = ’run)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ litatom (car (lr-expr (l)))
∧ (¬ subrp (car (lr-expr (l))))
∧ proper-p-statep (lr->p (new-l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)

∧ lr-p-proper-statep (p-temp-stk (new-l),
p-ctrl-stk (new-l),
p-data-segment (new-l),
table)

∧ (length (p-temp-stk (new-l)) 6< arity (car (lr-expr (l))))
∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ lr-programs-properp (l , table))
→ lr-p-proper-statep (p-temp-stk (lr-funcall (l , new-l)),

p-ctrl-stk (lr-funcall (l , new-l)),
p-data-segment (new-l),
table)

Theorem: length-p-temp-stk-lr-eval-flag-list-alt
(proper-p-statep (lr->p (l))
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ (¬ subrp (car (lr-expr (l))))
∧ litatom (car (lr-expr (l)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c))

= ’run))
→ (length (p-temp-stk (lr-eval (’list,

lr-set-pos (l , dv (offset (p-pc (l)), 1)),
c)))

= (arity (car (lr-expr (l))) + length (p-temp-stk (l))))

345



Theorem: lr-p-proper-statep-cdr-lr-ctrl-stk
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (¬ subrp (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’quote)
∧ litatom (car (lr-expr (l)))
∧ lr-p-proper-statep (temp-stk ,

p-ctrl-stk (lr-eval (t,
lr-funcall (l ,

lr-eval (’list,
lr-set-pos (l ,

pos),
c)),

c − 1)),
data-segment ,
table)

∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ proper-p-statep (lr->p (l))
∧ (p-psw (lr-eval (t,

lr-funcall (l , lr-eval (’list, lr-set-pos (l , pos), c)),
c − 1))

= ’run)
∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ lr-p-proper-statep (temp-stk ,

cdr (p-ctrl-stk (lr-eval (t,
lr-funcall (l ,

lr-eval (’list,
lr-set-pos (l ,

pos),
c)),

c − 1))),
data-segment ,
table)

Theorem: lr-eval-preserves-lr-p-proper-statep
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ (p-psw (lr-eval (flag , l , c)) = ’run)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)

346



∧ lr-programs-properp (l , table)
∧ lr-proper-formalsp (cdr (p-prog-segment (l))))
→ lr-p-proper-statep (p-temp-stk (lr-eval (flag , l , c)),

p-ctrl-stk (lr-eval (flag , l , c)),
p-data-segment (lr-eval (flag , l , c)),
table)

Theorem: p-plus
p (p, c1 + c2 ) = p (p (p, c1 ), c2 )

Theorem: p-set-pc-lr->p-lr-set-expr
(p-prog-segment (l1 ) = p-prog-segment (l2 ))
→ (lr->p (lr-set-expr (l1 , l2 , pos))

= p-set-pc (lr->p (l1 ), lr-p-pc (lr-set-expr (l1 , l2 , pos))))

Event: Disable p-set-pc-lr->p-lr-set-expr.

Theorem: member-assoc-area-name-cdr-lr-programs-properp
((assoc (area-name (p-pc (l)), cdr (p-prog-segment (l))) 6∈ p-prog-segment (l))
∧ (area-name (p-pc (l)) 6= caar (p-prog-segment (l))))
→ (¬ lr-programs-properp (l , table))

Event: Disable member-assoc-area-name-cdr-lr-programs-properp.

Theorem: not-listp-prog-segment-not-lr-programs-properp
(¬ listp (p-prog-segment (l))) → (¬ lr-programs-properp (l , table))

Event: Disable not-listp-prog-segment-not-lr-programs-properp.

Theorem: unlabel-get-lr-p-pc-program-body-assoc-comp-programs
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (get (lr-p-pc-1 (program-body (p-current-program (l)), offset (p-pc (l))),

program-body (assoc (area-name (p-pc (l)),
comp-programs (p-prog-segment (l)))))

= list (’dl,
lr-make-label (offset (lr-p-pc (l))),
nil,
car (comp-body-1 (t, lr-expr (l), offset (lr-p-pc (l))))))

Theorem: car-comp-body-1-litatom
litatom (body)
→ (car (comp-body-1 (t, body , n)) = list (’push-local, body))

347



Theorem: lr-p-pc-1-append-helper-1
(listp (body) ∧ (car (body) = ’if) ∧ (n 6' 0))
→ (lr-p-pc-1 (body , cons (n, pos))

= if n = 1 then lr-p-pc-1 (cadr (body), pos)
elseif n = 2
then 3

+ lr-p-c-size (t, cadr (body))
+ lr-p-pc-1 (caddr (body), pos)

else lr-p-c-size (t, cadr (body))
+ lr-p-c-size (t, caddr (body))
+ lr-p-pc-1 (cadddr (body), pos)
+ 4 endif)

Theorem: lr-p-pc-1-append-helper-2
(listp (body) ∧ (car (body) = s-temp-eval))
→ (lr-p-pc-1 (body , cons (1, pos)) = lr-p-pc-1 (cadr (body), pos))

Theorem: lr-p-pc-1-append-helper-3
(listp (body) ∧ (car (body) = s-temp-test))
→ (lr-p-pc-1 (body , cons (1, pos)) = (lr-p-pc-1 (cadr (body), pos) + 4))

Theorem: lr-p-pc-1-append-helper-4
(listp (body)
∧ (car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote)
∧ (car (body) 6= ’if)
∧ (n 6' 0))
→ (lr-p-pc-1 (body , cons (n, pos))

= (lr-p-c-size-list (n − 1, body) + lr-p-pc-1 (get (n, body), pos)))

Theorem: lr-p-pc-1-append
(good-posp1 (pos1 , body)
∧ lr-proper-exprp (t, body , pnames, formals , temps , table))
→ (lr-p-pc-1 (body , append (pos1 , pos2 ))

= (lr-p-pc-1 (body , pos1 ) + lr-p-pc-1 (cur-expr (pos1 , body), pos2 )))

Theorem: append-butlast-list-car-last
listp (x ) → (append (butlast (x ), list (car (last (x )))) = plist (x ))

Theorem: listp-plist-car
listp (x ) → (car (plist (x )) = car (x ))

Theorem: lr-p-pc-1-plist
lr-p-pc-1 (body , plist (pos)) = lr-p-pc-1 (body , pos)

348



Theorem: lr-p-pc-1-listp-offset
(listp (pos)
∧ good-posp1 (butlast (pos), body)
∧ lr-proper-exprp (t, body , pnames, formals, temps , table))
→ (lr-p-pc-1 (body , pos)

= (lr-p-pc-1 (body , butlast (pos))
+ lr-p-pc-1 (cur-expr (butlast (pos), body),

list (car (last (pos))))))

Theorem: lr-p-pc-1-nil
lr-p-pc-1 (body , nil) = 0

Theorem: lr-p-pc-1-nx-helper
(listp (expr)
∧ (car (expr) 6= s-temp-fetch)
∧ (car (expr) 6= s-temp-eval)
∧ (car (expr) 6= s-temp-test)
∧ (car (expr) 6= ’quote)
∧ (n 6' 0)
∧ (n < length (expr)))
→ (lr-p-pc-1 (expr , list (n))

= if car (expr) = ’if
then case on n:

case = 1
then 0
case = 2
then 3 + lr-p-c-size (t, cadr (expr))

otherwise lr-p-c-size (t, cadr (expr))
+ lr-p-c-size (t, caddr (expr))
+ 4 endcase

else lr-p-c-size-list (n − 1, expr) endif)

Theorem: lr-p-pc-1-nx
(lr-programs-properp (l , table)
∧ good-posp (’list, offset (p-pc (l)), program-body (p-current-program (l)))
∧ listp (offset (p-pc (l)))
∧ listp (lr-expr-list (l))
∧ (car (cur-expr (butlast (offset (p-pc (l))),

program-body (p-current-program (l))))
6= ’if))

→ (lr-p-pc-1 (program-body (p-current-program (l)), nx (offset (p-pc (l))))
= (lr-p-pc-1 (program-body (p-current-program (l)), offset (p-pc (l)))

+ lr-p-c-size (t, lr-expr (l))))

Event: Disable lr-p-pc-1-listp-offset.

349



Theorem: lr-p-pc-1-dv-1-car-lr-expr-if
((car (lr-expr (l)) = ’if)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (body = program-body (p-current-program (l))))
→ (lr-p-pc-1 (body , dv (offset (p-pc (l)), 1))

= lr-p-pc-1 (body , offset (p-pc (l))))

Theorem: lr-p-pc-1-dv-2-car-lr-expr-if
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (lr-p-pc-1 (program-body (p-current-program (l)), dv (offset (p-pc (l)), 2))

= (3
+ lr-p-c-size (t, cadr (lr-expr (l)))
+ lr-p-pc-1 (program-body (p-current-program (l)),

offset (p-pc (l)))))

Theorem: lr-p-pc-1-dv-3-car-lr-expr-if
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (lr-p-pc-1 (program-body (p-current-program (l)), dv (offset (p-pc (l)), 3))

= (lr-p-c-size (t, cadr (lr-expr (l)))
+ 3
+ lr-p-c-size (t, caddr (lr-expr (l)))
+ 1
+ lr-p-pc-1 (program-body (p-current-program (l)),

offset (p-pc (l)))))

Theorem: lr-p-c-size-not-1-car-if
(listp (expr) ∧ (car (expr) = ’if)) → (lr-p-c-size (t, expr) 6= 1)

Theorem: lr-p-c-size-ge-plus-2-size-cadr-car-if
(listp (expr) ∧ (car (expr) = ’if))
→ ((1 + (1 + lr-p-c-size (t, cadr (expr)))) < lr-p-c-size (t, expr))

Theorem: get-comp-if-helper-helper
((n 6< (x + y + 3)) ∧ (n 6= (x + y + 3)))
→ (get (n − (x + 3 + y), cons (w , l3 ))

= get (n − (x + y + 4), l3 ))

Theorem: get-comp-if-helper

350



get (n, append (l1 , append (list (x , y , z ), append (l2 , cons (w , l3 )))))
= if n < length (l1 ) then get (n, l1 )

elseif n < (length (l1 ) + 3)
then get (n − length (l1 ), list (x , y , z ))
elseif n < (length (l1 ) + length (l2 ) + 3)
then get (n − (length (l1 ) + 3), l2 )
elseif n = (length (l1 ) + length (l2 ) + 3) then w
else get (n − (length (l1 ) + length (l2 ) + 4), l3 ) endif

Theorem: get-comp-if
get (n, comp-if (test-instrs , then-instrs, else-instrs, m))
= if n < length (test-instrs) then get (n, test-instrs)

elseif n < (length (test-instrs) + 3)
then get (n − length (test-instrs),

list (identity (list (’push-constant, lr-f-addr)),
’(eq),
list (’test-bool-and-jump,

’t,
lr-make-label (m

+ 4
+ length (test-instrs)
+ length (then-instrs)))))

elseif n < (length (test-instrs) + length (then-instrs) + 3)
then get (n − (length (test-instrs) + 3), then-instrs)
elseif n = (length (test-instrs) + length (then-instrs) + 3)
then list (’jump,

lr-make-label (m
+ 4
+ length (test-instrs)
+ length (then-instrs)
+ length (else-instrs)))

else get (n − (length (test-instrs)
+ length (then-instrs)
+ 4),

else-instrs) endif

Definition:
p-final-pc (flag , l , n)
= if flag = ’list

then add-addr (lr-p-pc (l), n + lr-p-c-size (’list, lr-expr-list (l)))
else add-addr (lr-p-pc (l), n + lr-p-c-size (flag , lr-expr (l))) endif

Event: Disable p-final-pc.

Theorem: proper-p-statep-p-set-pc

351



(proper-p-statep (p) ∧ (area-name (p-pc (p)) = area-name (pc)))
→ (proper-p-statep (p-set-pc (p, pc)) = p-objectp-type (’pc, pc, p))

Theorem: proper-p-statep-p-set-pc-equal-p-set-pc
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p (lr->p (l), p-clock1 (t, l , c))

= p-set-pc (lr->p (lr-eval (t, l , c)),
tag (’pc,

cons (area-name (p-pc (l)),
lr-p-pc-1 (program-body (p-current-program (l)),

offset (p-pc (l)))
+ lr-p-c-size (t, lr-expr (l))))))

∧ proper-p-statep (lr->p (lr-eval (t, l , c))))
→ proper-p-statep (p (lr->p (l), p-clock1 (t, l , c)))

Theorem: lr-eval-p-pc-equivalence-helper-1
p (lr->p (l1 ), p-clock1 (flag1 , l2 , c1 ) + p-clock1 (flag2 , l3 , c2 ))
= p (p (lr->p (l1 ), p-clock1 (flag1 , l2 , c1 )), p-clock1 (flag2 , l3 , c2 ))

Theorem: lr-eval-p-pc-equivalence-helper-1-5
(listp (offset (p-pc (l))) ∧ listp (lr-expr-list (l)))
→ (p-final-pc (’list,

lr-set-expr (lr-eval (t, l , c), l , nx (offset (p-pc (l)))),
0)

= tag (’pc,
cons (area-name (p-pc (l)),

lr-p-pc-1 (program-body (p-current-program (l)),
nx (offset (p-pc (l))))

+ lr-p-c-size-list (length (lr-expr-list (l)) − 1,
lr-expr-list (l)))))

Theorem: lr-eval-p-pc-equivalence-helper-2
((p-psw (l) = ’run)
∧ listp (offset (p-pc (l)))
∧ (¬ listp (lr-expr-list (l))))
→ (p-set-pc (lr->p (l),

tag (’pc,
cons (area-name (p-pc (l)),

lr-p-pc-1 (program-body (p-current-program (l)),
offset (p-pc (l))))))

= p (lr->p (l), 0))

Theorem: lr-eval-p-pc-equivalence-helper-3
((p-psw (l) = ’run)

352



∧ (flag 6= ’list)
∧ litatom (lr-expr (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (length (p-temp-stk (l)) < p-max-temp-stk-size (l)))
→ (p-set-pc (lr->p (lr-set-tstk (l ,

cons (cdr (assoc (lr-expr (l),
bindings (car (p-ctrl-stk (l))))),

p-temp-stk (l)))),
p-final-pc (flag , l , 0))

= p (lr->p (l), 1))

Theorem: lr->p-lr-set-pos-dv-1-car-lr-expr-if
((car (lr-expr (l)) = ’if)
∧ listp (lr-expr (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (lr->p (lr-set-pos (l , dv (offset (p-pc (l)), 1))) = lr->p (l))

Theorem: lr-p-proper-statep-listp-p-temp-stk-type-car-addr
(lr-p-proper-statep (temp-stk , ctrl-stk , data-seg , table) ∧ listp (temp-stk))
→ (type (car (temp-stk)) = ’addr)

Theorem: proper-p-statep-lessp-length-p-temp-stk-max-temp-stk-size
proper-p-statep (lr->p (l))
→ (p-max-temp-stk-size (l) 6< length (p-temp-stk (l)))

Theorem: length-p-temp-stk-lr-eval-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp1 (pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (t, lr-set-pos (l , pos), c)) = ’run))
→ (length (p-temp-stk (lr-eval (t, lr-set-pos (l , pos), c)))

= (1 + length (p-temp-stk (l))))

Theorem: not-lessp-length-proper-p-statep-lr-eval-lr-set-pos
(good-posp1 (pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ proper-p-statep (lr->p (l))
∧ (length (p-temp-stk (l)) 6< (p-max-temp-stk-size (l) − 1))
∧ lr-proper-formalsp (cdr (p-prog-segment (l))))
→ (p-psw (lr-if-ok (lr-eval (t, lr-set-pos (l , pos), c))) 6= ’run)

Theorem: lr-pop-tstk-lr-if-ok
(p-psw (lr-if-ok (l)) = ’run)
→ (lr-pop-tstk (lr-if-ok (l)) = lr-pop-tstk (l))

353



Theorem: add-addr-p-final-pc
(add-addr (p-final-pc (flag , l , n), 1 + m)
= add-addr (p-final-pc (flag , l , 1 + n), m))
∧ (add-addr (p-final-pc (flag , l , n), 0) = p-final-pc (flag , l , n))

Theorem: lessp-3-lr-p-c-size-car-if
(listp (expr) ∧ (car (expr) = ’if)) → (3 < lr-p-c-size (t, expr))

Theorem: comp-body-1-car-expr-if
((car (expr) = ’if) ∧ listp (expr))
→ (comp-body-1 (t, expr , n)

= comp-if (comp-body-1 (t, cadr (expr), n),
comp-body-1 (t,

caddr (expr),
n + 3 + lr-p-c-size (t, cadr (expr))),

comp-body-1 (t,
cadddr (expr),
n
+ 4
+ lr-p-c-size (t, cadr (expr))
+ lr-p-c-size (t, caddr (expr))),

n))

Theorem: get-lr-p-c-size-lessp-restn-lr-p-pc-1-comp-body-1
(good-posp1 (pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ (m < 3)
∧ (name = area-name (p-pc (l)))
∧ (pos = offset (p-pc (l))))
→ (unlabel (get (offset (p-final-pc (t, lr-set-pos (l , dv (pos, 1)), m)),

program-body (assoc (name, comp-programs (p-prog-segment (l))))))
= get (m,

list (list (’push-constant, lr-f-addr),
’(eq),
list (’test-bool-and-jump,

’t,
lr-make-label (lr-p-pc-1 (program-body (p-current-program (l)),

pos)
+ 4
+ lr-p-c-size (t,

cadr (lr-expr (l)))
+ lr-p-c-size (t,

caddr (lr-expr (l))))))))

354



Theorem: area-name-p-final-pc
area-name (p-final-pc (flag , l , n)) = area-name (p-pc (l))

Theorem: lr-eval-p-pc-equivalence-helper-4-helper-1
let test be lr-eval (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
in
((p-psw (l) = ’run)
∧ (c 6' 0)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ (p-psw (lr-if-ok (test)) = ’run)
∧ (car (p-temp-stk (test)) 6= lr-f-addr)
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)

∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (t,

lr-set-expr (lr-pop-tstk (test),
l ,
dv (offset (p-pc (l)), 2)),

c))
= ’run))

→ (p (p-set-pc (lr->p (test),
p-final-pc (t,

lr-set-pos (l , dv (offset (p-pc (l)), 1)),
0)),

3)
= p-set-pc (lr->p (lr-pop-tstk (test)),

tag (’pc,
cons (area-name (p-pc (l)),

3
+ lr-p-c-size (t,

cadr (lr-expr (l)))
+ lr-p-pc-1 (program-body (p-current-program (l)),

offset (p-pc (l))))))) endlet

Theorem: lessp-plus-lr-p-c-size-cadr-caddr-3-car-if
(listp (expr) ∧ (car (expr) = ’if))
→ ((lr-p-c-size (t, cadr (expr)) + lr-p-c-size (t, caddr (expr)))

< (((lr-p-c-size (t, expr) − 1) − 1) − 1))

355



Theorem: get-plus-lr-p-c-size-cadr-caddr-4-comp-body-cur-expr
((size1 = length (test)) ∧ (size2 = length (then)))
→ (get (3 + size1 + size2 , comp-if (test , then, else, n))

= list (’jump,
lr-make-label (4

+ n
+ length (test)
+ length (then)
+ length (else))))

Theorem: cur-expr-add1-opener
cur-expr (cons (1 + n, pos), body) = cur-expr (pos, get (n, cdr (body)))

Theorem: lr-p-pc-1-car-expr-if-2
(listp (expr) ∧ (car (expr) = ’if))
→ (lr-p-pc-1 (expr , ’(2)) = (3 + lr-p-c-size (t, cadr (expr))))

Theorem: get-plus-lr-p-pc-1-lr-pc-size-cadr-assoc-comp-body-if-4
(good-posp1 (offset (p-pc (l1 )), program-body (p-current-program (l1 )))
∧ lr-programs-properp (l1 , table)
∧ listp (lr-expr (l1 ))
∧ (car (lr-expr (l1 )) = ’if)
∧ (pos = dv (offset (p-pc (l1 )), 2))
∧ (area-name (p-pc (l2 )) = area-name (p-pc (l1 )))
∧ (p-prog-segment (l2 ) = p-prog-segment (l1 )))
→ (get (offset (p-final-pc (t, lr-set-expr (l2 , l1 , pos), 0)),

program-body (assoc (area-name (p-pc (l1 )),
comp-programs (p-prog-segment (l1 )))))

= list (’dl,
lr-make-label (offset (p-final-pc (t,

lr-set-expr (l2 , l1 , pos),
0))),

nil,
list (’jump,

lr-make-label (4
+ lr-p-pc-1 (program-body (p-current-program (l1 )),

offset (p-pc (l1 )))
+ lr-p-c-size (t,

cadr (lr-expr (l1 )))
+ lr-p-c-size (t,

caddr (lr-expr (l1 )))
+ lr-p-c-size (t,

cadddr (lr-expr (l1 )))))))

Theorem: find-label-lr-make-label-label-instrs

356



((m 6< n) ∧ (m ∈ N) ∧ (m < (n + length (instrs))))
→ (find-label (lr-make-label (m), label-instrs (instrs, n)) = (m − n))

Theorem: find-label-past-else-lr-expr-car-if
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ (expr = lr-expr (l))
∧ (body = program-body (p-current-program (l)))
∧ (pos = offset (p-pc (l)))
∧ lr-programs-properp (l , table)
∧ good-posp1 (pos, body))
→ (find-label (lr-make-label (1 + (1 + (1 + (1 + (lr-p-c-size (t,

cadr (expr))
+ lr-p-c-size (t,

caddr (expr))
+ lr-p-c-size (t,

cadddr (expr))
+ lr-p-pc-1 (body ,

pos)))))),
program-body (assoc (area-name (p-pc (l)),

comp-programs (p-prog-segment (l)))))
= (1 + (1 + (1 + (1 + (lr-p-c-size (t, cadr (expr))

+ lr-p-c-size (t, caddr (expr))
+ lr-p-c-size (t, cadddr (expr))
+ lr-p-pc-1 (body , pos)))))))

Theorem: lr-eval-p-pc-equivalence-helper-4-helper-2
let test be lr-eval (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
in
let then be lr-set-expr (lr-pop-tstk (test), l , dv (offset (p-pc (l)), 2))
in
((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ (c 6= 0)
∧ (c ∈ N)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ (p-psw (lr-if-ok (test)) = ’run)
∧ (car (p-temp-stk (test)) 6= lr-f-addr)
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)),

program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

357



p-ctrl-stk (l),
p-data-segment (l),
table)

∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (t, then, c)) = ’run))
→ (p (p-set-pc (lr->p (lr-eval (t, then, c)),

p-final-pc (t, then, 0)),
1)

= p-set-pc (lr->p (lr-eval (t, then, c)),
p-final-pc (flag , l , 0))) endlet endlet

Theorem: lr-eval-p-pc-equivalence-helper-4
let test be lr-eval (t, lr-set-pos (l , pos), c),

cadr-size be lr-p-c-size (t, cadr (lr-expr (l))),
lr-p-pc-1 be lr-p-pc-1 (program-body (p-current-program (l)),

offset (p-pc (l))),
then be lr-set-expr (lr-pop-tstk (lr-eval (t, lr-set-pos (l , pos), c)),

l ,
dv (offset (p-pc (l)), 2))

in
((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ (c 6= 0)
∧ (c ∈ N)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ (p-psw (lr-if-ok (test)) = ’run)
∧ (car (p-temp-stk (test)) 6= lr-f-addr)
∧ (p (lr->p (l), p-clock1 (t, lr-set-pos (l , pos), c))

= p-set-pc (lr->p (lr-eval (t, lr-set-pos (l , pos), c)),
p-final-pc (t, lr-set-pos (l , pos), 0)))

∧ (p (p-set-pc (lr->p (lr-pop-tstk (test)),
tag (’pc,

cons (area-name (p-pc (l)),
3 + cadr-size + lr-p-pc-1 ))),

p-clock1 (t, then, c))
= p-set-pc (lr->p (lr-eval (t, then, c)),

p-final-pc (t, then, 0)))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),

358



table)
∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (t, then, c)) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ (p (lr->p (l),

p-clock1 (t, lr-set-pos (l , pos), c)
+ 3
+ p-clock1 (t, then, c)
+ 1)

= p-set-pc (lr->p (lr-eval (t, then, c)),
p-final-pc (flag , l , 0))) endlet

Theorem: lessp-plus-lr-p-pc-1-lr-p-c-size-3-1-lr-expr-car-if
((car (lr-expr (l)) = ’if)
∧ listp (lr-expr (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ ((lr-p-c-size (t, cadr (lr-expr (l)))

+ 3
+ lr-p-c-size (t, caddr (lr-expr (l)))
+ 1
+ lr-p-pc-1 (program-body (p-current-program (l)), offset (p-pc (l))))

< length (program-body (assoc (area-name (p-pc (l)),
comp-programs (p-prog-segment (l))))))

Theorem: find-label-else-start-lr-expr-car-if
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ (expr = lr-expr (l))
∧ (body = program-body (p-current-program (l)))
∧ (pos = offset (p-pc (l)))
∧ lr-programs-properp (l , table)
∧ good-posp1 (pos, body))
→ (find-label (lr-make-label (1 + (1 + (1 + (1 + (lr-p-c-size (t,

cadr (expr))
+ lr-p-c-size (t,

caddr (expr))
+ lr-p-pc-1 (body ,

pos)))))),
program-body (assoc (area-name (p-pc (l)),

comp-programs (p-prog-segment (l)))))
= (1 + (1 + (1 + (1 + (lr-p-c-size (t, cadr (expr))

+ lr-p-c-size (t, caddr (expr))
+ lr-p-pc-1 (body , pos)))))))

359



Theorem: lr-eval-p-pc-equivalence-helper-5-helper-1
let test be lr-eval (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
in
((p-psw (l) = ’run)
∧ (c 6' 0)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ (p-psw (lr-if-ok (test)) = ’run)
∧ (car (p-temp-stk (test)) = lr-f-addr)
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)

∧ lr-proper-formalsp (cdr (p-prog-segment (l))))
→ (p (p-set-pc (lr->p (test),

p-final-pc (t,
lr-set-pos (l , dv (offset (p-pc (l)), 1)),
0)),

3)
= p-set-pc (lr->p (lr-pop-tstk (test)),

tag (’pc,
cons (area-name (p-pc (l)),

lr-p-c-size (t, cadr (lr-expr (l)))
+ 3
+ lr-p-c-size (t,

caddr (lr-expr (l)))
+ 1
+ lr-p-pc-1 (program-body (p-current-program (l)),

offset (p-pc (l))))))) endlet

Theorem: lr-eval-p-pc-equivalence-helper-5-helper-2
let test be lr-eval (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
in
let else be lr-set-expr (lr-pop-tstk (test), l , dv (offset (p-pc (l)), 3))
in
((flag 6= ’list)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ good-posp1 (offset (p-pc (l)),

program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))

360



→ (p-final-pc (flag , l , 0) = p-final-pc (t, else, 0)) endlet endlet

Theorem: lr-eval-p-pc-equivalence-helper-5
let test be lr-eval (t, lr-set-pos (l , pos), c),

cadr-size be lr-p-c-size (t, cadr (lr-expr (l))),
caddr-size be lr-p-c-size (t, caddr (lr-expr (l))),
lr-p-pc-1 be lr-p-pc-1 (program-body (p-current-program (l)),

offset (p-pc (l))),
else be lr-set-expr (lr-pop-tstk (lr-eval (t, lr-set-pos (l , pos), c)),

l ,
dv (offset (p-pc (l)), 3))

in
((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ (c 6= 0)
∧ (c ∈ N)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ (p-psw (lr-if-ok (test)) = ’run)
∧ (car (p-temp-stk (test)) = lr-f-addr)
∧ (p (p-set-pc (lr->p (lr-pop-tstk (test)),

tag (’pc,
cons (area-name (p-pc (l)),

cadr-size
+ 3
+ caddr-size
+ 1
+ lr-p-pc-1 ))),

p-clock1 (t, else, c))
= p-set-pc (lr->p (lr-eval (t, else, c)),

p-final-pc (t, else, 0)))
∧ (p (lr->p (l), p-clock1 (t, lr-set-pos (l , pos), c))

= p-set-pc (lr->p (test),
p-final-pc (t, lr-set-pos (l , pos), 0)))

∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)

∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (t, else, c)) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))

361



→ (p (lr->p (l),
p-clock1 (t, lr-set-pos (l , pos), c)
+ 3
+ p-clock1 (t, else, c))

= p-set-pc (lr->p (lr-eval (t, else, c)),
p-final-pc (flag , l , 0))) endlet

Theorem: lr-p-pc-1-dv-1-car-lr-expr-temp-eval
((car (lr-expr (l)) = s-temp-eval)
∧ listp (lr-expr (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (body = program-body (p-current-program (l))))
→ (lr-p-pc-1 (body , dv (offset (p-pc (l)), 1))

= lr-p-pc-1 (body , offset (p-pc (l))))

Theorem: comp-body-1-car-expr-temp-eval
(listp (expr) ∧ (car (expr) = s-temp-eval))
→ (comp-body-1 (t, expr , n)

= append (comp-body-1 (t, cadr (expr), n),
list (list (’set-local, caddr (expr)))))

Theorem: lr-eval-p-pc-equivalence-helper-5-get-lr-p-c-size
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-eval)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (body = program-body (p-current-program (l)))
∧ (progs = p-prog-segment (l)))
→ (unlabel (get (lr-p-pc-1 (body , offset (p-pc (l)))

+ lr-p-c-size (t, cadr (lr-expr (l))),
program-body (assoc (area-name (p-pc (l)),

comp-programs (progs)))))
= list (’set-local, caddr (lr-expr (l))))

Theorem: lr->p-lr-set-pos-dv-1-car-lr-expr-temp-eval
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-eval)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (lr->p (lr-set-pos (l , dv (offset (p-pc (l)), 1))) = lr->p (l))

Theorem: lr-eval-p-pc-equivalence-helper-6-helper
let lr-eval be lr-eval (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
in

362



((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ (c 6= 0)
∧ (c ∈ N)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-eval)
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval) = ’run))
→ (p (p-set-pc (lr->p (lr-eval),

p-final-pc (t,
lr-set-pos (l , dv (offset (p-pc (l)), 1)),
0)),

1)
= p-set-pc (lr->p (lr-set-temp (lr-eval ,

car (p-temp-stk (lr-eval)),
caddr (lr-expr (l)))),

p-final-pc (flag , l , 0))) endlet

Theorem: lr-eval-p-pc-equivalence-helper-6
((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ (c 6= 0)
∧ (c ∈ N)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-eval)
∧ (p (lr->p (l), p-clock1 (t, lr-set-pos (l , pos), c))

= p-set-pc (lr->p (lr-eval (t, lr-set-pos (l , pos), c)),
p-final-pc (t, lr-set-pos (l , pos), 0)))

∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (t, lr-set-pos (l , pos), c)) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ (p-set-pc (lr->p (lr-set-temp (lr-eval (t, lr-set-pos (l , pos), c),

car (p-temp-stk (lr-eval (t,
lr-set-pos (l , pos),
c))),

caddr (lr-expr (l)))),
p-final-pc (flag , l , 0))

= p (lr->p (l), p-clock1 (t, lr-set-pos (l , pos), c) + 1))

Theorem: get-comp-temp-test

363



(listp (expr) ∧ (car (expr) = s-temp-test))
→ (get (m, comp-body-1 (t, expr , n))

= if m < 4
then get (m,

list (list (’push-local, caddr (expr)),
list (’push-constant,

identity (lr-undef-addr)),
’(eq),
list (’test-bool-and-jump,

’f,
lr-make-label (n

+ 6
+ lr-p-c-size (t,

cadr (expr))))))
elseif m < (lr-p-c-size (t, cadr (expr)) + 4)
then get (m − 4, comp-body-1 (t, cadr (expr), n + 4))
else get (m − (lr-p-c-size (t, cadr (expr)) + 4),

list (list (’set-local, caddr (expr)),
list (’jump,

lr-make-label (n
+ 7
+ lr-p-c-size (t,

cadr (expr)))),
list (’push-local, caddr (expr)))) endif)

Theorem: lr-p-c-size-temp-test-opener
(listp (expr) ∧ (car (expr) = s-temp-test))
→ (lr-p-c-size (t, expr) = (lr-p-c-size (t, cadr (expr)) + 7))

Theorem: get-+-lr-p-pc-1-lessp-3-temp-test-assoc-comp-programs
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-test)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (n < 4)
∧ (progs = p-prog-segment (l))
∧ (body = program-body (p-current-program (l)))
∧ (pos = offset (p-pc (l))))
→ (unlabel (get (lr-p-pc-1 (body , pos) + n,

program-body (assoc (area-name (p-pc (l)),
comp-programs (progs)))))

= get (n,
list (list (’push-local, caddr (lr-expr (l))),

identity (list (’push-constant, lr-undef-addr)),

364



’(eq),
list (’test-bool-and-jump,

’f,
lr-make-label (lr-p-pc-1 (body , pos)

+ 6
+ lr-p-c-size (t,

cadr (lr-expr (l))))))))

Theorem: car-comp-body-lr-expr-3-temp-test
(listp (expr) ∧ (car (expr) = s-temp-test))
→ (car (comp-body-1 (t, expr , n)) = list (’push-local, caddr (expr)))

Theorem: get-+-lr-p-pc-1-n-2-size-temp-test-assoc-comp-programs
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-test)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (n 6< 4)
∧ (6 6< n)
∧ (progs = p-prog-segment (l))
∧ (body = program-body (p-current-program (l)))
∧ (pos = offset (p-pc (l))))
→ (unlabel (get (lr-p-pc-1 (body , pos)

+ n
+ lr-p-c-size (t, cadr (lr-expr (l))),
program-body (assoc (area-name (p-pc (l)),

comp-programs (progs)))))
= get (n − 4,

list (list (’set-local, caddr (lr-expr (l))),
list (’jump,

lr-make-label (lr-p-pc-1 (body , pos)
+ 7
+ lr-p-c-size (t,

cadr (lr-expr (l))))),
list (’push-local, caddr (lr-expr (l))))))

Event: Disable get-comp-temp-test.

Event: Disable lr-p-c-size-temp-test-opener.

Theorem: definedp-caddr-lr-expr-bindings-ctrl-stk-rewrite
(lr-programs-properp (l , table)
∧ ((car (lr-expr (l)) = s-temp-fetch)

∨ (car (lr-expr (l)) = s-temp-test))

365



∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ proper-p-statep (lr->p (l)))
→ definedp (caddr (lr-expr (l)), bindings (car (p-ctrl-stk (l))))

Theorem: member-lr-good-pointerps-type-addr-untag-whole
((addr ∈ list)
∧ (type (addr) = ’addr)
∧ (untag (addr) = rest)
∧ (addr 6= list (’addr, rest)))
→ (¬ lr-good-pointerps (list , data-seg))

Theorem: find-label-temp-test-end-lr-expr-car-temp-test
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-test)
∧ (body = program-body (p-current-program (l)))
∧ (pos = offset (p-pc (l)))
∧ (expr = lr-expr (l))
∧ lr-programs-properp (l , table)
∧ good-posp1 (pos, body)
∧ (7 6< n))
→ (find-label (lr-make-label (lr-p-pc-1 (body , pos)

+ n
+ lr-p-c-size (t, cadr (expr))),

program-body (assoc (area-name (p-pc (l)),
comp-programs (p-prog-segment (l)))))

= (lr-p-pc-1 (body , pos) + n + lr-p-c-size (t, cadr (expr))))

Theorem: lr-p-proper-statep-lr-good-pointerps-strip-cdrs-binding
(lr-p-proper-statep (p-temp-stk (l), p-ctrl-stk (l), p-data-segment (l), table)
∧ proper-p-statep (lr->p (l)))
→ lr-good-pointerps (strip-cdrs (bindings (car (p-ctrl-stk (l)))),

p-data-segment (l))

Theorem: lr-eval-p-pc-equivalence-helper-7
((flag 6= ’list)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-test)
∧ (p-max-temp-stk-size (l) 6< (2 + length (p-temp-stk (l))))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)

366



∧ (p-psw (lr-do-temp-fetch (l)) = ’run))
→ (p-set-pc (lr->p (lr-do-temp-fetch (l)), p-final-pc (flag , l , 0))

= p (lr->p (l), 5))

Theorem: lr-p-pc-dv-1-s-temp-test
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-test)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (lr-p-pc-1 (program-body (p-current-program (l)), dv (offset (p-pc (l)), 1))

= (lr-p-pc-1 (program-body (p-current-program (l)), offset (p-pc (l)))
+ 4))

Theorem: lr-eval-p-pc-equivalence-helper-8-helper-1
((p-psw (l) = ’run)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-test)
∧ (p-max-temp-stk-size (l) 6< (2 + length (p-temp-stk (l))))
∧ (local-var-value (caddr (lr-expr (l)), p-ctrl-stk (l)) = lr-undef-addr)
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (lr->p (lr-set-pos (l , dv (offset (p-pc (l)), 1))) = p (lr->p (l), 4))

Theorem: lr-eval-p-pc-equivalence-helper-8-helper-2-helper
(4 + lr-p-c-size (t, expr) + 1) = (5 + lr-p-c-size (t, expr))

Theorem: lr-eval-p-pc-equivalence-helper-8-helper-2
let lr-eval be lr-eval (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
in
((flag 6= ’list)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-test)
∧ (p-max-temp-stk-size (l) 6= 0)
∧ (p-max-temp-stk-size (l) ∈ N)
∧ (p-max-temp-stk-size (l) 6= 1)
∧ (((p-max-temp-stk-size (l) − 1) − 1) 6< length (p-temp-stk (l)))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval) = ’run))
→ (p-set-pc (lr->p (lr-set-temp (lr-eval ,

car (p-temp-stk (lr-eval)),
caddr (lr-expr (l)))),

p-final-pc (flag , l , 0))

367



= p (p-set-pc (lr->p (lr-eval),
p-final-pc (t,

lr-set-pos (l ,
dv (offset (p-pc (l)), 1)),

0)),
2)) endlet

Event: Disable lr-eval-p-pc-equivalence-helper-8-helper-2-helper.

Theorem: lr-eval-p-pc-equivalence-helper-8
((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-test)
∧ (p-max-temp-stk-size (l) 6< (2 + length (p-temp-stk (l))))
∧ (¬ lr-eval-temp-setp (l))
∧ (p (lr->p (lr-set-pos (l , pos)), p-clock1 (t, lr-set-pos (l , pos), c))

= p-set-pc (lr->p (lr-eval (t, lr-set-pos (l , pos), c)),
p-final-pc (t, lr-set-pos (l , pos), 0)))

∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)

∧ (p-psw (lr-eval (t, lr-set-pos (l , pos), c)) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ (p-set-pc (lr->p (lr-set-temp (lr-eval (t, lr-set-pos (l , pos), c),

car (p-temp-stk (lr-eval (t,
lr-set-pos (l , pos),
c))),

caddr (lr-expr (l)))),
p-final-pc (flag , l , 0))

= p (lr->p (l), 4 + p-clock1 (t, lr-set-pos (l , pos), c) + 2))

Theorem: comp-body-1-car-expr-temp-fetch
(listp (expr) ∧ (car (expr) = s-temp-fetch))
→ (comp-body-1 (t, expr , n) = list (list (’push-local, caddr (expr))))

Theorem: get-lr-p-pc-1-comp-body-1-temp-fetch
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-fetch)

368



∧ lr-programs-properp (l , table)
∧ (prog = assoc (area-name (p-pc (l)), p-prog-segment (l))))
→ (get (lr-p-pc-1 (program-body (prog), offset (p-pc (l))),

comp-body-1 (t, program-body (prog), 0))
= list (’push-local, caddr (lr-expr (l))))

Theorem: lr-eval-p-pc-equivalence-helper-9
((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-fetch)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-do-temp-fetch (l)) = ’run))
→ (p-set-pc (lr->p (lr-do-temp-fetch (l)), p-final-pc (flag , l , 0))

= p (lr->p (l), 1))

Theorem: lr-eval-p-pc-equivalence-helper-10
((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’quote)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (length (p-temp-stk (l)) < p-max-temp-stk-size (l)))
→ (p-set-pc (lr->p (lr-set-tstk (l , cons (cadr (lr-expr (l)), p-temp-stk (l)))),

p-final-pc (flag , l , 0))
= p (lr->p (l), 1))

Theorem: lr-expr-cur-expr-if-same
(car (cur-expr (offset (p-pc (l)), program-body (p-current-program (l)))) = ’if)
= (car (lr-expr (l)) = ’if)

Theorem: lr-p-pc-lr-set-pos-dv-1-car-lr-expr-funcall
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= s-temp-eval)
∧ (car (lr-expr (l)) 6= s-temp-test)
∧ (car (lr-expr (l)) 6= s-temp-fetch)
∧ (car (lr-expr (l)) 6= ’quote)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (lr-p-pc (lr-set-pos (l , dv (offset (p-pc (l)), 1))) = lr-p-pc (l))

Theorem: lr->p-lr-set-pos-dv-1-car-lr-expr-funcall

369



(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= s-temp-eval)
∧ (car (lr-expr (l)) 6= s-temp-test)
∧ (car (lr-expr (l)) 6= s-temp-fetch)
∧ (car (lr-expr (l)) 6= ’quote)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (lr->p (lr-set-pos (l , dv (offset (p-pc (l)), 1))) = lr->p (l))

Theorem: p-set-pc-lr->p-equal-p-fact
(p-set-pc (lr->p (p-state (pc1 ,

ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw)),

pc2 )
= p)

= ((p-pc (p) = pc2 )
∧ (p-ctrl-stk (p) = ctrl-stk)
∧ (p-temp-stk (p) = temp-stk)
∧ (p-data-segment (p) = data-seg)
∧ (p-prog-segment (p) = comp-programs (prog-seg))
∧ (p-max-ctrl-stk-size (p) = max-ctrl)
∧ (p-max-temp-stk-size (p) = max-temp)
∧ (p-word-size (p) = word-size)
∧ (p-psw (p) = psw))

Event: Disable p-set-pc-lr->p-equal-p-fact.

Theorem: lr->p-p-run-subr-p-run-subr-clock
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ subrp (car (lr-expr (l))))
→ (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l),
add-addr (lr-p-pc (l),

lr-p-c-size-list (arity (car (lr-expr (l))),

370



lr-expr (l)))))
= p (p-set-pc (lr->p (new-l),

add-addr (lr-p-pc (l),
lr-p-c-size-list (arity (car (lr-expr (l))),

lr-expr (l)))),
p-run-subr-clock (l , new-l)))

Theorem: p-pc-run-car
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-car-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call car)))
→ (p-pc (p (p-set-pc (lr->p (l), pc), p-car-clock (p-set-pc (lr->p (l), pc))))

= add-addr (pc, 1))

Theorem: p-pc-run-cdr
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-cdr-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call cdr)))
→ (p-pc (p (p-set-pc (lr->p (l), pc), p-cdr-clock (p-set-pc (lr->p (l), pc))))

= add-addr (pc, 1))

Theorem: p-pc-run-cons
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-cons-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call cons)))
→ (p-pc (p (p-set-pc (lr->p (l), pc), p-cons-clock (p-set-pc (lr->p (l), pc))))

= add-addr (pc, 1))

371



Theorem: p-pc-run-false
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-false-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call false)))
→ (p-pc (p (p-set-pc (lr->p (l), pc), p-false-clock (p-set-pc (lr->p (l), pc))))

= add-addr (pc, 1))

Theorem: p-pc-run-falsep
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-falsep-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call falsep)))
→ (p-pc (p (p-set-pc (lr->p (l), pc), p-falsep-clock (p-set-pc (lr->p (l), pc))))

= add-addr (pc, 1))

Theorem: p-pc-run-listp
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-listp-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call listp)))
→ (p-pc (p (p-set-pc (lr->p (l), pc), p-listp-clock (p-set-pc (lr->p (l), pc))))

= add-addr (pc, 1))

Theorem: p-pc-run-nlistp
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-nlistp-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)

372



∧ (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),

p-prog-segment (lr->p (l))))))
= ’(call nlistp)))

→ (p-pc (p (p-set-pc (lr->p (l), pc), p-nlistp-clock (p-set-pc (lr->p (l), pc))))
= add-addr (pc, 1))

Theorem: p-pc-run-true
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-true-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call true)))
→ (p-pc (p (p-set-pc (lr->p (l), pc), p-true-clock (p-set-pc (lr->p (l), pc))))

= add-addr (pc, 1))

Theorem: p-pc-run-truep
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-truep-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call truep)))
→ (p-pc (p (p-set-pc (lr->p (l), pc), p-truep-clock (p-set-pc (lr->p (l), pc))))

= add-addr (pc, 1))

Theorem: p-run-subr-p-pc-add-addr-lr-p-pc-lr-p-c-size
let pos be dv (offset (p-pc (l)), 1)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ proper-p-statep (lr->p (l))
∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

373



p-set-pc (lr->p (lr-eval (’list,
lr-set-pos (l , pos),
c)),

lr-return-pc (l))))
= ’run))

→ (p-pc (p-run-subr (car (lr-expr (l)),
p-set-pc (lr->p (lr-eval (’list,

lr-set-pos (l , pos),
c)),

lr-return-pc (l))))
= add-addr (lr-return-pc (l), 1)) endlet

Theorem: lr-eval-p-pc-equivalence-helper-11
((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ (c 6= 0)
∧ (c ∈ N)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= s-temp-eval)
∧ (car (lr-expr (l)) 6= s-temp-test)
∧ (car (lr-expr (l)) 6= s-temp-fetch)
∧ (car (lr-expr (l)) 6= ’quote)
∧ subrp (car (lr-expr (l)))
∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ (p (lr->p (l), p-clock1 (’list, lr-set-pos (l , pos), c))

= p-set-pc (lr->p (lr-eval (’list, lr-set-pos (l , pos), c)),
p-final-pc (’list, lr-set-pos (l , pos), 0)))

∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-apply-subr (l , lr-eval (’list, lr-set-pos (l , pos), c)))

= ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ (p-set-pc (lr->p (lr-apply-subr (l , lr-eval (’list, lr-set-pos (l , pos), c))),

p-final-pc (flag , l , 0))
= p (lr->p (l),

p-clock1 (’list, lr-set-pos (l , pos), c)
+ p-run-subr-clock (l ,

lr-eval (’list, lr-set-pos (l , pos), c))))

Theorem: p-set-pc-twice
p-set-pc (p-set-pc (p, pc1 ), pc2 ) = p-set-pc (p, pc2 )

Theorem: lr-eval-p-pc-equivalence-helper-12-helper-1

374



(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ (¬ subrp (car (lr-expr (l))))
∧ litatom (car (lr-expr (l)))
∧ (p-psw (lr-eval (t, lr-funcall (l , new-l), c − 1)) = ’run)
∧ (p-psw (new-l) = ’run)
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ (p (p-set-pc (lr->p (new-l),

add-addr (lr-p-pc (l),
lr-p-c-size-list (arity (car (lr-expr (l))),

lr-expr (l)))),
1)

= lr->p (lr-funcall (l , new-l)))

Theorem: lr-expr-funcall
((p-psw (lr-funcall (l , new-l)) = ’run)
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ (lr-expr (lr-funcall (l , new-l))

= program-body (assoc (user-fname (car (lr-expr (l))),
p-prog-segment (l))))

Theorem: unlabel-car-last-comp-body
unlabel (car (last (comp-body (body)))) = ’(ret)

Theorem: unlabel-get-last-funcall-body-assoc-comp-programs
(listp (lr-expr (l))
∧ (¬ subrp (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’quote)
∧ litatom (car (lr-expr (l)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (prog-seg = p-prog-segment (l)))
→ (unlabel (get (lr-p-c-size (t,

program-body (assoc (user-fname (car (lr-expr (l))),
prog-seg))),

program-body (assoc (user-fname (car (lr-expr (l))),
comp-programs (prog-seg)))))

= ’(ret))

Theorem: lr-eval-preserves-cdr-p-ctrl-stk-lr-funcall
(listp (lr-expr (l))
∧ (¬ subrp (car (lr-expr (l))))

375



∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ litatom (car (lr-expr (l)))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (t, lr-funcall (l , new-l), c − 1)) = ’run)
∧ (p-psw (new-l) = ’run)
∧ (new-l = lr-eval (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)))
→ (cdr (p-ctrl-stk (lr-eval (t, lr-funcall (l , new-l), c − 1)))

= p-ctrl-stk (new-l))

Theorem: lr-eval-preserves-ret-pc-car-p-ctrl-stk
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (ret-pc (car (p-ctrl-stk (lr-eval (flag , l , c))))

= ret-pc (car (p-ctrl-stk (l))))

Theorem: lr-eval-preserves-ret-pc-car-p-ctrl-stk-lr-funcall
(listp (lr-expr (l))
∧ (¬ subrp (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ litatom (car (lr-expr (l)))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (t, lr-funcall (l , new-l), c − 1)) = ’run)
∧ (p-psw (new-l) = ’run)
∧ (new-l = lr-eval (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)))
→ (ret-pc (car (p-ctrl-stk (lr-eval (t, lr-funcall (l , new-l), c − 1))))

= add-addr (lr-return-pc (l), 1))

Theorem: lr-eval-p-pc-equivalence-helper-12-helper-2
let new-l be lr-eval (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ (¬ subrp (car (lr-expr (l))))
∧ proper-p-statep (lr->p (l))

376



∧ litatom (car (lr-expr (l)))
∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (t, lr-funcall (l , new-l), c − 1)) = ’run)
∧ (p-psw (new-l) = ’run))
→ (p (p-set-pc (lr->p (lr-eval (t, lr-funcall (l , new-l), c − 1)),

add-addr (lr-p-pc (lr-funcall (l , new-l)),
lr-p-c-size (t,

lr-expr (lr-funcall (l , new-l))))),
1)

= p-set-pc (lr->p (lr-pop-cstk (lr-eval (t,
lr-funcall (l , new-l),
c − 1))),

add-addr (lr-p-pc (l),
lr-p-c-size-list (arity (car (lr-expr (l))),

lr-expr (l))
+ 1))) endlet

Theorem: lr-eval-p-pc-equivalence-helper-12
let fs be lr-funcall (l , lr-eval (’list, lr-set-pos (l , pos), c))
in
((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ (c 6= 0)
∧ (c ∈ N)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= s-temp-eval)
∧ (car (lr-expr (l)) 6= s-temp-test)
∧ (car (lr-expr (l)) 6= s-temp-fetch)
∧ (car (lr-expr (l)) 6= ’quote)
∧ (¬ subrp (car (lr-expr (l))))
∧ litatom (car (lr-expr (l)))
∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ (p (lr->p (fs), p-clock1 (t, fs, c − 1))

= p-set-pc (lr->p (lr-eval (t, fs, c − 1)),
p-final-pc (t, fs, 0)))

∧ (p (lr->p (l), p-clock1 (’list, lr-set-pos (l , pos), c))
= p-set-pc (lr->p (lr-eval (’list, lr-set-pos (l , pos), c)),

p-final-pc (’list, lr-set-pos (l , pos), 0)))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (t, fs, c − 1)) = ’run)

377



∧ (pos = dv (offset (p-pc (l)), 1)))
→ (p-set-pc (lr->p (lr-pop-cstk (lr-eval (t, fs, c − 1))),

p-final-pc (flag , l , 0))
= p (lr->p (l),

p-clock1 (’list, lr-set-pos (l , pos), c)
+ 1
+ p-clock1 (t, fs, c − 1)
+ 1)) endlet

Theorem: lr-eval-p-pc-equivalence
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ ((flag 6= ’list)

∨ (car (cur-expr (butlast (offset (p-pc (l))),
program-body (p-current-program (l))))

6= ’if))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)

∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (p (lr->p (l), p-clock1 (flag , l , c))

= p-set-pc (lr->p (lr-eval (flag , l , c)), p-final-pc (flag , l , 0)))

Event: Disable lr-expr-cur-expr-if-same.

Definition:
logic->p-clock (expr ,

alist ,
program-names ,
heap-size,
max-temp-stk-size,
max-ctrl-stk-size,
word-size)

= (p-clock1 (t,
s->lr (logic->s (expr , alist , program-names),

heap-size,
max-temp-stk-size,
max-ctrl-stk-size,
word-size),

cdr (v&c$ (t, expr , alist)) + 1)
+ 2)

378



Definition:
total-heap-reqs (expr , alist , program-names , heap-size)
= lr-total-heap-reqs (expr ,

alist ,
program-names ,
heap-size,
cdr (v&c$ (t, expr , alist)) + 1)

Definition:
max-ctrl-reqs (expr , alist , program-names)
= lr-max-ctrl-reqs (expr ,

alist ,
program-names,
cdr (v&c$ (t, expr , alist)) + 1)

Definition:
max-temp-reqs (expr , alist , program-names)
= lr-max-temp-reqs (expr ,

alist ,
program-names ,
cdr (v&c$ (t, expr , alist)) + 1)

Definition:
max-word-size-reqs (expr , alist , program-names, heap-size)
= lr-max-word-size-reqs (expr ,

alist ,
program-names ,
heap-size,
cdr (v&c$ (t, expr , alist)) + 1)

Theorem: s-formals-s-prog-logic->s
s-formals (s-prog (logic->s (expr , alist , pnames))) = strip-cars (alist)

Theorem: deposit-answer-addr-preserves-lr-valp
(adpp (untag (lr-answer-addr), data-seg) ∧ lr-valp (value, addr , data-seg))
→ lr-valp (value,

addr ,
deposit (anything , identity (lr-answer-addr), data-seg))

Theorem: p-last-2-instrs-main-program
(adpp (untag (lr-answer-addr), p-data-segment (l))
∧ (p-psw (l) = ’run)
∧ listp (p-temp-stk (l))
∧ lr-valp (value, car (p-temp-stk (l)), p-data-segment (l)))
→ lr-valp (value,

379



fetch (identity (lr-answer-addr),
p-data-segment (p (p-set-pc (lr->p (l),

tag (’pc,
cons (name (car (p-prog-segment (l))),

lr-p-c-size (t,
program-body (car (p-prog-segment (l))))))),

2))),
p-data-segment (p (p-set-pc (lr->p (l),

tag (’pc,
cons (name (car (p-prog-segment (l))),

lr-p-c-size (t,
program-body (car (p-prog-segment (l))))))),

2)))

Theorem: lr-programs-properp-s->lr-logic->s
(l-proper-exprp (t, expr , pnames , strip-cars (alist))
∧ l-proper-programsp (pnames)
∧ all-litatoms (strip-cars (alist))
∧ l-data-seg-body-restrictedp (t, expr)
∧ l-restrict-subrps-progs (pnames)
∧ l-restrict-subrps (t, expr)
∧ l-restrictedp (pnames, alist)
∧ (heap-size 6< s-total-heap-reqs (s-progs (logic->s (expr , alist , pnames)),

alist ,
heap-size)))

→ lr-programs-properp (s->lr (logic->s (expr , alist , pnames),
heap-size,
max-ctrl ,
max-temp,
word-size),

cdr (lr-data-seg-table (s-progs (logic->s (expr ,
alist ,
pnames)),

alist ,
heap-size)))

Theorem: logic->p-ok-really-helper-1
(proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)

380



∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (t, l , c)) = ’run)
∧ adpp (untag (lr-answer-addr), p-data-segment (l))
∧ (area-name (p-pc (l)) = name (car (p-prog-segment (l))))
∧ (offset (p-pc (l)) = nil)
∧ lr-valp (value,

car (p-temp-stk (lr-eval (t, l , c))),
p-data-segment (lr-eval (t, l , c))))

→ lr-valp (value,
fetch (lr-answer-addr,

p-data-segment (p (p (lr->p (l), p-clock1 (t, l , c)), 2))),
p-data-segment (p (p (lr->p (l), p-clock1 (t, l , c)), 2)))

Theorem: name-car-p-prog-segment-s->lr
name (car (p-prog-segment (s->lr (s, heap-size, max-ctrl , max-temp, word-size))))
= name (car (s-progs (s)))

Theorem: p-pc-s->lr
p-pc (s->lr (s, heap-size, max-temp, max-ctrl , word-size))
= tag (’pc, cons (s-pname (s), s-pos (s)))

Theorem: adpp-untag-lr-answer-addr-s->lr
adpp (identity (untag (lr-answer-addr)),

p-data-segment (s->lr (s, heap-size, max-ctrl , max-temp, word-size)))

Theorem: lr-s-similar-statesp-s->lr-logic->s-lr-data-seg-table
((heap-size 6< s-total-heap-reqs (s-progs (logic->s (expr , alist , pnames)),

alist ,
heap-size))

∧ l-restrictedp (pnames , alist)
∧ l-data-seg-body-restrictedp (t, expr))
→ lr-s-similar-statesp (alist ,

nil,
s->lr (logic->s (expr , alist , pnames),

heap-size,
max-ctrl ,
max-temp,
word-size),

cdr (lr-data-seg-table (s-progs (logic->s (expr ,
alist ,
pnames)),

alist ,
heap-size)))

Theorem: s-eval-flag-run-v&c$-not-f-flag-t

381



(v&c$ (t, expr , alist)
∧ (cdr (v&c$ (t, expr , alist)) < c)
∧ l-proper-programsp (pnames)
∧ l-proper-exprp (t, expr , pnames , strip-cars (alist))
∧ all-litatoms (strip-cars (alist)))
→ (s-err-flag (s-eval (t, logic->s (expr , alist , pnames), c)) = ’run)

Theorem: lr-proper-formalsp-cdr-p-prog-segment-s->lr-logic->s
(l-proper-programsp (pnames)
∧ l-proper-exprp (t, expr , pnames, strip-cars (alist))
∧ all-litatoms (strip-cars (alist)))
→ lr-proper-formalsp (cdr (p-prog-segment (s->lr (logic->s (expr ,

alist ,
pnames),

heap-size,
max-ctrl ,
max-temp,
word-size))))

Theorem: lr-s-similar-params-lr-good-pointerps-strip-cdrs
lr-s-similar-params (s-params, lr-params, data-seg)
→ lr-good-pointerps (strip-cdrs (lr-params), data-seg)

Theorem: lr-p-proper-statep-s->lr
((heap-size 6< s-total-heap-reqs (s-progs (s), s-params (s), heap-size))
∧ s-restrictedp (s-progs (s), s-params (s))
∧ (params = s-params (s)))
→ lr-p-proper-statep (p-temp-stk (s->lr (s,

heap-size,
max-ctrl ,
max-temp,
word-size)),

p-ctrl-stk (s->lr (s,
heap-size,
max-ctrl ,
max-temp,
word-size)),

p-data-segment (s->lr (s,
heap-size,
max-ctrl ,
max-temp,
word-size)),

cdr (lr-data-seg-table (s-progs (s), params, heap-size)))

Theorem: proper-p-statep-lr->p-s->lr-logic->s

382



(l-proper-exprp (t, expr , pnames, strip-cars (alist))
∧ l-proper-programsp (pnames)
∧ all-litatoms (strip-cars (alist))
∧ l-data-seg-body-restrictedp (t, expr)
∧ l-restrictedp (pnames, alist)
∧ l-restrict-subrps (t, expr)
∧ l-restrict-subrps-progs (pnames)
∧ (heap-size 6< (s-total-heap-reqs (s-progs (logic->s (expr , alist , pnames)),

alist ,
heap-size)

+ s-eval-heap-r (t, logic->s (expr , alist , pnames), c)))
∧ (max-ctrl 6< lr-max-ctrl-reqs (expr , alist , pnames, c))
∧ (max-ctrl < exp (2, word-size))
∧ (max-ctrl ∈ N)
∧ (max-temp 6< lr-max-temp-reqs (expr , alist , pnames , c))
∧ (max-temp < exp (2, word-size))
∧ (max-temp ∈ N)
∧ (word-size 6< lr-max-word-size-reqs (expr , alist , pnames, heap-size, c))
∧ (word-size ∈ N))
→ proper-p-statep (lr->p (s->lr (logic->s (expr , alist , pnames),

heap-size,
max-ctrl ,
max-temp,
word-size)))

Theorem: logic->p-ok-really
(l-proper-exprp (t, expr , pnames, strip-cars (alist))
∧ l-proper-programsp (pnames)
∧ all-litatoms (strip-cars (alist))
∧ l-data-seg-body-restrictedp (t, expr)
∧ l-restrictedp (pnames, alist)
∧ v&c$ (t, expr , alist)
∧ l-restrict-subrps (t, expr)
∧ l-restrict-subrps-progs (pnames)
∧ (heap-size 6< total-heap-reqs (expr , alist , pnames, heap-size))
∧ (max-ctrl 6< max-ctrl-reqs (expr , alist , pnames))
∧ (max-ctrl < exp (2, word-size))
∧ (max-ctrl ∈ N)
∧ (max-temp 6< max-temp-reqs (expr , alist , pnames))
∧ (max-temp < exp (2, word-size))
∧ (max-temp ∈ N)
∧ (word-size 6< max-word-size-reqs (expr , alist , pnames, heap-size))
∧ (word-size ∈ N))
→ lr-valp (car (v&c$ (t, expr , alist)),

383



fetch (lr-answer-addr,
p-data-segment (p (logic->p (expr ,

alist ,
pnames ,
heap-size,
max-ctrl ,
max-temp,
word-size),

logic->p-clock (expr ,
alist ,
pnames ,
heap-size,
max-ctrl ,
max-temp,
word-size)))),

p-data-segment (p (logic->p (expr ,
alist ,
pnames,
heap-size,
max-ctrl ,
max-temp,
word-size),

logic->p-clock (expr ,
alist ,
pnames,
heap-size,
max-ctrl ,
max-temp,
word-size))))

384



Index
add-addr, 6, 7, 10, 11, 14, 15, 37,

44, 48, 53–55, 75–81, 91,
96–99, 102, 106, 109, 110,
112–115, 117–121, 126, 128,
153, 154, 160, 162, 181, 185,
186, 196, 199, 200, 218, 219,
225, 226, 230–232, 234, 240,
242, 250, 252, 255–258, 264–
266, 268–273, 289, 316, 341,
351, 354, 371–377

add-addr-add-addr, 53
add-addr-of-non-number, 53
add-addr-p-final-pc, 354
add1-add1-lr-boundary-nodep, 241
add1-addr, 14, 38, 47
add1-lr-boundary-nodep, 241
adp-name, 40, 44, 53, 101, 115
adp-name-cons, 101
adp-name-untag-add-addr, 53
adp-name-untag-sub-addr, 44
adp-offset, 40, 44
adp-offset-cons, 44
adp-offset-untag-add-addr, 44
adp-offset-untag-sub-addr, 44
adpp, 7, 47, 48, 52, 55, 75, 96, 99,

102–104, 106, 107, 109, 112,
114–118, 120–127, 130, 153–
156, 185, 196, 199, 200, 218–
221, 225, 231–233, 235, 240–
242, 249, 250, 254–258, 264–
268, 289, 308–311, 318, 339,
342, 379, 381

adpp-add-addr-0, 48
adpp-add-addr-fact-2, 106
adpp-adpp-sub-addr, 103
adpp-area-name-offset-same, 106
adpp-cons-heap-name-node-size-l

r-init-data-seg, 263
adpp-cons-pack-definedp-area-na

me, 48
adpp-cons-pack-opener, 218

adpp-deposit-a-list, 120
adpp-deposit-anything-at-all, 47
adpp-deposit-other-area, 115
adpp-fetch-lr-fp-addr-car-lr-co

mpile-quote, 241
adpp-lessp-offset-deposit, 47
adpp-lr-compile-quote, 220
adpp-same-signature, 48
adpp-same-signature-car-lr-compi

le-quote, 221
adpp-same-signature-lr-apply-su

br, 156
adpp-untag-add-addr-lr-nodep-not

-max-addr, 199
adpp-untag-add-addr-offset-car, 196
adpp-untag-add-addr-offset-cdr, 196
adpp-untag-add-addr-offset-on-f

ree-listp, 200
adpp-untag-answer-addr-car-lr-d

ata-seg-table, 318
adpp-untag-definedp-area-name, 47
adpp-untag-definedp-area-name-f

ree-ptr, 220
adpp-untag-lessp-offset, 48
adpp-untag-listp, 48
adpp-untag-lr-answer-addr-s->

lr, 381
adpp-untag-lr-fp-addr-lr-init-d

ata-seg, 225
adpp-untag-numberp-offset, 48
all-definedp, 327, 328
all-definedp-strip-cdrs-lr-init

-data-seg-table, 328
all-litatoms, 35, 220, 273, 274, 280,

284, 305, 306, 308, 309, 318,
329, 330, 332, 380, 382, 383

all-litatoms-all-user-fnamesp-p
listp, 309

all-litatoms-not-plist, 331, 332
all-litatoms-not-plist-lr-prope

r-programsp, 332

385



all-litatoms-s-formals-member-l
r-programs-properp, 306

all-litatoms-s-formals-member-s
-programs-properp, 305

all-litatoms-strip-cdrs-lr-make
-temp-name-alist, 280
-temp-name-alist-1, 280

all-numberps, 344
all-numberps-strip-cadrs-numberp

-cdr-assoc, 344
all-numberps-strip-cadrs-subr-a

rity-alist, 344
all-p-objectps, 49, 52, 73, 74, 310,

315, 316
all-p-objectps-append, 73
all-p-objectps-bad-type, 52
all-p-objectps-first-n, 74
all-p-objectps-get, 310
all-p-objectps-lr->p-similar-

states, 49
all-p-objectps-lr-init-heap-conte

nts, 316
nts-helper, 315
nts-helper-helper, 315

all-p-objectps-put, 310
all-p-objectps-reverse, 73
all-p-objects-lookup, 220, 234–239,

263
all-p-objects-lookup-cons-table, 234
all-p-objects-lookup-deposit, 236
all-p-objects-lookup-deposit-a-

list, 235
all-p-objects-lookup-lr-compile

-quote, 237
all-p-objects-lookup-lr-data-se

g-table-body, 238
g-table-list, 239

all-p-objects-lookup-strip-cdrs
-lr-init-data-seg-table, 263

all-undef-addr-strip-cdrs-lr-ma
ke-initial-temps, 324

all-undef-addrs, 35, 284, 292, 324,
344

all-undef-addrs-strip-cadrs-lr-

make-temp-var-dcls, 292
all-undef-addrs-strip-cadrs-temp

-vars-programs-properp, 344
-vars-programs-properp-1, 344

all-user-fnamesp, 35, 51, 291, 292,
307–309, 332

all-user-fnamesp-strip-cars-s-c
onstruct-programs, 332

append-butlast-list-car-last, 348
append-first-n-restn, 167
area-name, 7, 8, 15, 21, 23, 24, 33,

35, 38–40, 45, 47, 48, 52–
55, 57, 59, 63, 72, 75–94,
103–106, 108, 110, 113, 115–
118, 120, 121, 126, 127, 133,
134, 153, 154, 157, 163, 172,
187, 198–204, 218, 220, 226–
233, 240, 242, 249, 255, 256,
264–266, 268, 269, 289, 308–
311, 315, 316, 339, 343, 347,
352, 354–362, 364–366, 369,
371–373, 381

area-name-add-addr, 53
area-name-lr-p-pc, 45
area-name-lr-return-pc, 53
area-name-p-final-pc, 355
area-name-p-pc-lr-eval, 47
area-name-p-pc-lr-funcall, 91
area-name-sub-addr, 54
area-name-tag, 40
arity, 34, 57, 153, 163, 168–170, 180,

198–205, 207, 208, 211, 342–
345, 370, 371, 375, 377

arity-formals-not-quote, 169
ascii-0, 12, 31, 283
ascii-1, 12
ascii-9, 12
ascii-dash, 12, 31
assoc-append-1, 50
assoc-cdr, 288, 289
assoc-definedp-table-lr-compile

-quote, 240
assoc-definedp-table-lr-data-se

g-table-body, 327

386



g-table-list, 327
assoc-definedp-table-lr-init-dat

a-seg-table, 240
assoc-put-assoc-3, 47
axiom-53, 1

bindings, 23, 61, 62, 74, 91, 92, 94,
95, 122, 123, 130, 134, 135,
141, 142, 144, 145, 150, 151,
183, 191, 336, 337, 353, 366

bindings-make-p-call-frame, 74
butlast, 7, 56, 166, 282, 295, 296,

304, 348, 349, 378

caar-lr-compile-programs, 211
cadddr-max-r, 190
car-append, 57
car-car-lr-compile-programs-pro

gs, 132
car-comp-body-1-litatom, 347
car-comp-body-lr-expr-3-temp-te

st, 365
car-last-first-n-add1-get, 166
car-lr-compile-body, 129
car-lr-expr-s->lr1, 137
car-reverse-last, 166
car-untag-lr-p-pc, 45
car-untag-lr-return-pc, 54
car-untag-p-pc-lr-eval, 86
car-untag-p-pc-lr-funcall, 91
cddr-add-addr, 53
cddr-lr-return-pc, 54
cddr-nil-lr-p-pc, 45
cddr-nil-make-p-call-frame, 74
cddr-sub-addr, 54
cdr-assoc-member-strip-cdrs, 107
cdr-compile-quote-list-t0-lr-init

-data-seg-cons-table, 271
cdr-p-temp-stk-lr-apply-subr, 160
cdr-p-temp-stk-p-run-subr, 159
cdr-untag-lr-p-pc-lr-funcall, 90
change-elements, 1
comp-body, 33, 58, 59, 72, 93, 284,

375

comp-body-1, 32, 33, 57–59, 66–72,
84, 285, 286, 288, 292, 308,
309, 347, 354, 362, 364, 365,
368, 369

comp-body-1-car-expr-if, 354
comp-body-1-car-expr-temp-eval, 362
comp-body-1-car-expr-temp-fetch, 368
comp-body-1-list-not-listp, 285
comp-if, 31, 32, 57, 66–68, 286, 351,

354, 356
comp-programs, 33, 36, 44, 45, 51,

59–61, 63, 73, 85, 86, 89,
91–93, 187, 210, 285–292,
307, 308, 310, 347, 354, 356,
357, 359, 362, 364–366, 370,
375

comp-programs-1, 33, 45, 59–61, 210,
281, 308

comp-programs-assoc-cons-opener, 210
comp-temp-test, 31, 33, 66, 68, 288
count-codelist, 13
count-codelist-make-symbol, 13
count-codelist1, 12, 13, 146, 147
count-codelist1-append-non-listp, 147
count-codelist1-cdr-gensym, 147
count-codelist1-cons, 146
count-list, 15, 16
cur-expr, 7, 56, 62, 63, 65, 67–72,

85, 129, 158, 282, 295–304,
348, 349, 356, 369, 378

cur-expr-add1-opener, 356
cur-expr-lr-compile-body-t, 129
cur-expr-nlistp-pos, 85

definedp, 16, 33–35, 42, 45, 47, 48,
50, 51, 53, 57, 59–61, 63,
74, 84, 85, 91, 92, 94, 101–
104, 107, 112, 116, 120, 132–
135, 141–145, 147, 149–151,
156, 163, 169, 187, 199, 206,
208, 210, 212, 216–224, 234,
237–243, 245, 249–256, 259–
264, 267–279, 286–292, 294,
295, 301, 302, 306–308, 310,

387



311, 313–315, 317, 320–322,
324–328, 331, 344, 366

definedp-0, 210
definedp-append, 45
definedp-area-name-member-p-cur

rent-program, 59
definedp-caddr-lr-expr-bindings

-ctrl-stk, 63
-ctrl-stk-rewrite, 365

definedp-cadr-cur-expr-quote-lr
-data-seg-table, 302
-data-seg-table-body, 301
-data-seg-table-list, 302

definedp-car-lr-compile-quote, 219
definedp-cdr-assoc-lr-good-pointe

rps, 336
definedp-cdr-lr-compile-quote-t, 264
definedp-comp-programs-1-define

dp-orig, 45
definedp-comp-programs-definedp

-lr-programs-properp, 91
-orig, 45

definedp-deposit, 47
definedp-deposit-a-list, 120
definedp-listp-cdr-assoc-lr-prope

r-p-areasp, 102
definedp-litatom-lr-proper-p-are

as, 101
definedp-lr-compile-programs, 112
definedp-lr-data-seg-body-list-

n-not-lessp, 301
definedp-lr-funcall-prog-segment, 91
definedp-lr-heap-name-lr-init-d

ata-seg, 234
definedp-lr-make-temp-name-alist, 151

-1, 151
definedp-name-p-objectp-tag-0-l

r-proper-p-areasp, 237
definedp-object-cdr-lr-compile-q

uote-list, 254
definedp-pairlist, 151
definedp-s-temps-s-eval, 147
definedp-strip-cars-append-membe

r-x, 134

r-x-2, 149
definedp-table-definedp-car-lr-

data-seg-table-body, 221
data-seg-table-list, 221

definedp-table-definedp-car-lr-i
nit-data-seg-table, 234

definedp-table-definedp-cdr-lr-
compile-quote, 219
data-seg-table-body, 220
data-seg-table-body-n, 301
data-seg-table-list, 220

definedp-table-definedp-cdr-lr-i
nit-data-seg-table, 221

definedp-table-lr-compile-quote
-self, 240

definedp-user-fname-s-construct
-programs, 331

definition, 37
definitions-subrps-lr-programs-p

roperp, 51
delete, 96, 107, 117, 181, 228, 229,

249, 250, 252
delete-all, 331
delete-append, 228
deposit, 14, 15, 47, 53, 78, 81, 102,

107, 110, 114–121, 125, 185,
186, 218, 231, 232, 236, 237,
241, 255, 256, 268, 310, 338,
339, 379

deposit-a-list, 14, 15, 47, 78, 81, 120,
121, 126–128, 162, 186, 218,
220, 221, 231, 232, 235, 236,
242, 249, 254, 257–261, 311–
313, 316, 339, 341

deposit-a-list-cons-opener, 47
deposit-a-list-nil, 47
deposit-answer-addr-preserves-l

r-valp, 379
deposit-cons, 218
deposit-deposit, 109
deposit-free-ptr-preserves-lr-v

alp, 107
deposit-good-node-preserves-lr-p

roper-free-listp, 121

388



deposit-ref-count-move-inward-2, 119
deposit-ref-count-move-outward, 110
difference-decreases, 35
disjointp, 141–145
disjointp-commutative, 145
disjointp-cons-arg2, 143
disjointp-lr-make-temp-name-ali

st-1, 143
st-2, 145

disjointp-nlistp-arg2, 143
disjointp-plist-arg-2, 144
dl, 31
dv, 40–42, 44, 62, 73, 110–112, 136–

140, 144, 145, 148, 152, 156,
158–160, 164, 165, 168, 171,
173, 179, 180, 188–190, 192–
195, 205–215, 282, 295–299,
302, 334, 335, 340, 342, 343,
345, 346, 350, 353–363, 367–
370, 373, 374, 376, 378

equal-add-addr-fact, 226
equal-append-final-0, 146
equal-append-initial, 146
equal-append-same-length-fact, 134
equal-ascii-0-lr-convert-digit-t

o-ascii, 283
equal-cddr-p-frame-nil, 3
equal-lengths-same-signature-ca

r-lr-compile-quote, 221
equal-p-psw-lr-eval-run-lr-eval

-lr-set-error, 137
equal-plus-lessp-fact, 205
equal-plus-remainder-0-fact, 55
exp, 88, 195, 196, 318, 329, 332, 383
exp-log-2-lessp-add1-fact-1, 196
exp-log-lessp-fact-1, 196

fall-off-proofp, 306
fall-off-proofp-append-cons-ret, 306
fetch, 6, 7, 10, 11, 15, 17, 27, 52, 53,

55, 75–84, 96–98, 102, 104,
106, 109, 112–114, 121, 126,
128, 153, 154, 160–163, 181,

182, 186–189, 191, 196, 198–
207, 217–219, 221, 225, 230,
232, 235, 240–242, 249–266,
268–272, 275–280, 289, 294,
295, 310–315, 320–328, 341,
380, 381, 384

fetch-0-addr-compile-quote-list
-init-data-seg, 271

fetch-add-addr-deposit-a-list-n
ode, 126

fetch-add-addr-ref-count-f-addr
-lr-init-data-seg, 269

fetch-add-addr-ref-count-lr-0-a
ddr-lr-init-data-seg, 270

fetch-add-addr-ref-count-lr-t-a
ddr-lr-init-data-seg, 270

fetch-add-addr-ref-count-offset
-lr-init-data-seg-help-1, 226

fetch-cons, 217
fetch-deposit, 53
fetch-deposit-a-list, 218
fetch-deposit-a-list-node, 126
fetch-f-addr-compile-quote-list

-init-data-seg, 271
fetch-fp-addr-compile-quote-list

-t0-lr-init-data-seg-cons-table, 272
fetch-init-init-data-seg-genera

lized, 229
fetch-init-init-data-seg-sub-ad

dr, 232
fetch-lr-f-addr-lr-init-data-se

g, 269
fetch-lr-fp-addr-compile-quote-

0, 268
fetch-lr-fp-addr-compile-quote-t, 264
fetch-lr-fp-addr-lr-init-data-se

g, 225
fetch-lr-nodep-add-addr, 106
fetch-offset-lr-t-addr-ref-count

-offset-compile-quote-t, 264
fetch-ref-count-0-addr-compile-q

uote-list-init-data-seg, 271
fetch-ref-count-f-addr-compile-q

uote-list-init-data-seg, 272

389



fetch-ref-count-lr-init-data-se
g-free-list, 266

fetch-ref-count-t-addr-compile-q
uote-list-init-data-seg, 270

fetch-t-addr-compile-quote-list
-init-data-seg, 270

fetch-unbox-nat-0-addr-compile-q
uote-list-init-data-seg, 271

find-label, 357, 359, 366
find-label-else-start-lr-expr-c

ar-if, 359
find-label-lr-make-label-label-i

nstrs, 357
find-label-past-else-lr-expr-ca

r-if, 357
find-label-temp-test-end-lr-exp

r-car-temp-test, 366
find-labelp, 64, 283, 284
find-labelp-lr-make-label-comp-

body, 284
find-labelp-lr-make-label-label

-instrs, 284
find-non-proper-instr, 8, 9
find-non-proper-programs, 8, 9
first-n, 73, 74, 166, 167, 344
firstn, 8, 9, 13, 23, 67, 68, 70, 71,

108, 134, 135, 140, 141, 144
firstn-lr-p-c-size-restn-lr-p-p

c-1-comp-body-1, 71
c-1-comp-body-1-helper-1, 67
c-1-comp-body-1-helper-4, 68
c-1-comp-body-1-helper-5, 68
c-1-comp-body-1-helper-6, 69
c-1-comp-body-1-helper-7, 70
c-1-comp-body-1-helper-8, 70

firstn-put-assoc, 140
firstn-restn-plus-comp-if-1, 67
firstn-restn-plus-comp-if-2, 67
firstn-restn-small-enough-cdr-c

omp-body-1-list, 70
firstn-unlabel-instrs-comp-body

-1-lr-p-pc-1-helper-2, 67
-1-lr-p-pc-1-helper-3, 68

fix-data-segment, 8, 9

fix-program-segment, 8
formal-vars, 9, 23, 33, 35, 38, 56,

57, 59–61, 63, 91, 132, 134,
141, 165, 168, 169, 212, 287–
289, 291, 292, 306, 309

formal-vars-assoc-comp-programs, 60
-1, 60
-lr-programs-properp, 91

formal-vars-lr-compile-programs, 132
formal-vars-p-current-program-s

->lr1, 132

gensym, 13, 14, 147, 280
gensym-is-new, 14
get, 2, 21, 40, 52, 53, 56, 60, 65,

66, 68–72, 75–85, 126, 129,
153, 163, 166, 187, 198, 200–
204, 217, 218, 226, 296, 300–
303, 310, 347, 348, 350, 351,
354, 356, 362, 364, 365, 369,
371–373, 375

get-+-lr-p-pc-1-lessp-3-temp-te
st-assoc-comp-programs, 364

get-+-lr-p-pc-1-n-2-size-temp-te
st-assoc-comp-programs, 365

get-append, 72
get-cdr-lr-init-heap-contents, 226
get-comp-body-lr-compile-progra

ms, 187
get-comp-if, 351
get-comp-if-helper, 351
get-comp-if-helper-helper, 350
get-comp-temp-test, 364
get-firstn-different-lists, 71
get-label-instrs, 71
get-last-funcall-cur-expr, 84
get-lr-compile-body, 129
get-lr-compile-body-list, 129
get-lr-p-c-size-lessp-lr-p-c-si

ze-comp-body-1, 72
get-lr-p-c-size-lessp-restn-lr-p

-pc-1-comp-body-1, 354
get-lr-p-pc-1-comp-body-1-cur-e

xpr-comp-body, 72

390



get-lr-p-pc-1-comp-body-1-quote, 72
get-lr-p-pc-1-comp-body-1-temp-

fetch, 368
get-offset-return-pc-program-bo

dy-assoc-comp-programs, 84
get-plus, 71
get-plus-lr-p-c-size-cadr-caddr

-4-comp-body-cur-expr, 356
get-plus-lr-p-pc-1-lr-pc-size-c

adr-assoc-comp-body-if-4, 356
get-sub1-length-car-last, 166
good-alistp, 307
good-alistp-lr-programs-properp, 307
good-posp, 4, 56, 58, 73, 95, 122–

125, 130–132, 141, 148, 155,
170–172, 175, 176, 182–184,
190–192, 215, 216, 302, 304,
337, 346, 349, 376, 378

good-posp-cons-lessp-4-if-lr-pr
ograms-properp, 62

good-posp-dv-1-funcall-lr-expr, 73
good-posp-dv-1-funcall-opened, 302
good-posp-dv-1-temps-lr-expr, 62
good-posp-list-nx-offset-progra

m-body, 58
good-posp-list-nx-t-simple, 56
good-posp-list-t-offset-program

-body, 58
good-posp-lr-compile-body, 132
good-posp1, 56–58, 61–65, 67–73, 84–

95, 114, 121–124, 129, 134–
141, 144–146, 148, 150–160,
163–165, 168–171, 173–176,
183, 185, 187, 188, 190, 192–
195, 205–212, 214, 215, 296–
299, 301–304, 336–339, 341–
343, 345–350, 352–370, 373–
377, 380

good-posp1-cons-lessp-4-if-lr-p
roper-exprp, 62

good-posp1-cons-lessp-4-if-s-pr
oper-exprp, 296

good-posp1-dv-1-temp-eval-test, 298
good-posp1-dv-1-temps-lr-expr, 144

good-posp1-expand-list-temps, 129
good-posp1-lr-compile-body, 129
good-posp1-lr-proper-exprp-get-

cadddr, 68

ihint-2, 110–112
increment-num-list-count-code-li

st1, 13
increment-numlist, 12, 13
induct-hint-1, 166
induct-hint-10, 69
induct-hint-11, 134
induct-hint-13, 140, 141
induct-hint-14, 142
induct-hint-15, 155
induct-hint-16, 254
induct-hint-17, 225
induct-hint-18, 195, 196
induct-hint-19, 226
induct-hint-2, 269
induct-hint-20, 300
induct-hint-22, 283
induct-hint-23, 283, 284
induct-hint-3, 295, 296
induct-hint-4, 112
induct-hint-6, 59
induct-hint-7, 65, 66
induct-hint-8, 153
induct-hint-9, 71

l-data-seg-body-restrictedp, 330–332,
380, 381, 383

l-data-seg-body-restrictedp-delete
-all, 331

l-data-seg-body-restrictedp-s-d
ata-seg-body-restrictedp, 331

l-data-seg-list-restrictedp, 330, 331
l-data-seg-list-restrictedp-s-d

ata-seg-list-restrictedp, 331
l-eval, 4
l-proper-exprp, 330–332, 380, 382,

383
l-proper-programsp, 329–332, 380, 382,

383

391



l-proper-programsp-1, 331
l-proper-programsp-s-progs-logi

c->s, 330
l-restrict-subrps, 216, 331, 332, 380,

383
l-restrict-subrps-progs, 216, 331, 332,

380, 383
l-restrict-subrps-progs-delete-

all, 331
l-restrict-subrps-progs-s-restri

ct-subrps-progs, 331
ct-subrps-progs-logic->s, 331

l-restrict-subrps-s-restrict-su
brps, 331

l-restrictedp, 330, 332, 380, 381, 383
label-instrs, 31, 33, 58, 59, 71, 93,

284, 285, 309, 357
label-instrs-append, 284
label-instrs-proper-labeled-p-i

nstructionsp, 285
labelledp, 285
last, 7, 56, 166, 167, 205, 282, 295,

296, 298, 304, 348, 349, 375
lastcdr, 130
legal-labelp, 8, 71
legal-labelp-label-make-label, 71
length, 8, 10, 13, 15, 21, 23, 24, 31,

32, 34, 38, 41, 47, 48, 52,
56–60, 63–72, 74, 75, 84,
86, 89, 93, 96, 99, 102–104,
107, 111, 112, 116, 120, 121,
123, 129, 130, 134, 135, 139,
149, 153–156, 158–160, 163,
164, 166–170, 173, 180, 182–
184, 192, 198–205, 207–213,
215, 217, 218, 220, 221, 224,
226, 242, 248–250, 252, 253,
264, 267, 268, 270, 273, 281–
284, 286, 296, 298, 300–303,
310–313, 315, 318, 319, 324,
328, 329, 341–345, 349, 351–
353, 356, 357, 359, 366–369

length-3-cdr-cddr-not-nil, 296
length-add1-add1-cddr-fact, 167

length-butlast, 166
length-car-lr-compile-quote, 224
length-cdr-assoc-lr-heap-name-l

r-init-data-seg, 226
length-cdr-comp-if-comp-body, 57
length-cdr-lr-expr-funcall, 153
length-cdr-lr-expr-funcall-s->

lr1, 155
length-comp-body-1-lr-p-c-size, 58
length-comp-body-lr-p-c-size, 58
length-comp-if-alt, 66
length-comp-temp-test, 66
length-delete-member, 96
length-deposit, 116
length-deposit-a-list, 220
length-formal-vars-lr-proper-fo

rmalsp-arity, 169
length-label-instrs, 58
length-last, 205
length-last-fact, 298
length-lr-all-nodes, 273
length-lr-compile-body-list, 129
length-lr-compile-body-t, 129
length-lr-convert-num-to-ascii, 283
length-lr-do-temp-fetch, 63
length-lr-init-heap-contents, 217
length-lr-make-initial-temps, 281
length-lr-make-temp-name-alist, 209
length-lr-make-temp-name-alist-

1, 208
length-lr-make-temp-var-dcls, 208
length-lr-push-tstk, 64
length-make-temps-entries, 209
length-p-temp-stk-lr-apply-subr, 168
length-p-temp-stk-lr-eval, 170
length-p-temp-stk-lr-eval-flag-

list, 170
list-alt, 345
not-list, 184

length-p-temp-stk-lr-eval-lr-fu
ncall, 211

length-p-temp-stk-lr-eval-lr-set
-pos, 353
-pos-flag-t, 215

392



length-p-temp-stk-lr-funcall, 169
length-p-temp-stk-lr-pop-tstk-l

r-eval-flag-t, 192
length-p-temp-stk-p-run-subr, 168
length-p-temp-stk-p-run-subr-he

lper-1, 167
length-pair-formals-with-addres

ses, 281
length-pair-temps-with-initial-v

alues, 75
length-pairlist, 75
length-popn, 74
length-popn-lessp-fact, 93
length-s-eval-list, 155
length-strip-cars, 112
length-strip-cdrs, 281
lessp-1-not-zerop-exp, 195
lessp-1-not-zerop-log, 195
lessp-3-lr-p-c-size-car-if, 354
lessp-4-not-zerop-not-1-not-2-3, 64

-get-car-pos, 65
lessp-cdr-untag-lr-return-pc-lr

-p-c-size, 86
lessp-count-list-cdr-count-list

-whole, 16
lessp-count-not-list-car-count-

list-whole, 16
lessp-difference-fact-1, 105
lessp-difference-lr-boundary-of

fsetp-fact-1, 105
lessp-difference-node-size-sub-

addr, 105
addr-2, 228
addr-3, 230

lessp-index-lessp-lr-p-c-size-li
st, 65

lessp-length-deposit, 102
lessp-lr-boundary-offsetp-3, 265
lessp-lr-boundary-offsetp-nodep

-plus-node-size-fact-1, 250
-plus-node-size-fact-2, 102

lessp-lr-node-on-boundaryp-node
-size, 105

lessp-lr-p-c-size-list-lessp-su

b1-length, 59
lessp-lr-p-pc-1-lr-p-c-size, 60
lessp-lr-p-pc-1-lr-p-c-size-helpe

r-1, 60
lessp-max-arg2, 211
lessp-minimum-heap-size-not-0-f

-t-must-be-undef-alt-1, 265
-t-must-be-undef-alt-1-help, 265

lessp-number-cons-cur-expr-dv-1
-listp, 282

lessp-number-cons-cur-expr-dv-2
-listp, 282

lessp-number-cons-cur-expr-dv-3
-listp, 282

lessp-number-cons-restn-cdr, 282
lessp-offset-lr-init-data-seg-a

dpp-untag-lessp-offset, 266
lessp-offset-lr-return-pc-lr-p-

c-size-good-posp, 93
lessp-plus-lr-p-c-size-cadr-cad

dr-3-car-if, 355
lessp-plus-lr-p-c-size-lr-p-pc-

1-helper, 65
1-temps, 69
1, 65

lessp-plus-lr-p-pc-1-lr-p-c-size
-3-1-lr-expr-car-if, 359

lessp-plus-remainder-0-fact, 199
lessp-sub1-lessp-fact, 227
lessp-times-difference-fact, 225
lessp-times-difference-node-on-

boundaryp-fact, 225
lessp-times-plus-fact, 227
lessp-x-sub1-facts, 311
list-ascii-0, 12, 14
list-ascii-1, 12
listp-cdr-make-p-call-frame, 74
listp-cdr-p-frame, 3
listp-comp-body, 93
listp-comp-body-1, 57
listp-label-instrs, 93
listp-lr-all-nodes, 273
listp-lr-compile-body, 129
listp-lr-compile-programs, 211

393



listp-lr-expr-list-s->lr1, 132
listp-lr-expr-s->lr1, 136
listp-p-ctrl-stk-lr-funcall, 90
listp-p-temp-stk-lr-do-temp-fet

ch, 64
listp-p-temp-stk-lr-push-tstk, 63
listp-p-temp-stk-proper-ctrl-st

k-lr-apply-subr, 85
k-p-run-subr, 85

listp-pairlist, 165
listp-plist-car, 348
listp-put-assoc, 119
listp-untag-add-addr, 53
listp-untag-lr-p-pc, 45
listp-untag-lr-return-pc, 54
listp-untag-sub-addr, 54
litatom-car-gensym, 280
litatom-lr-compile-body, 131
litatom-lr-expr-s->lr1, 134
litatom-lr-expr-s->lr1-s-expr, 136
local-var-value, 25, 41, 134, 151, 367
log, 180, 181, 195, 196, 245, 293,

294, 312, 313
logic->lr-ok-really, 332
logic->p, 333, 384
logic->p-clock, 378, 384
logic->p-ok-really, 383
logic->p-ok-really-helper-1, 380
logic->s, 319, 330–333, 378–383
logic-fname, 168, 169
lr->p, 36, 37, 44, 45, 60–64, 73, 75–

90, 92–95, 107, 109, 114,
121–125, 130, 131, 134, 135,
137, 141, 144–146, 148, 150,
151, 154–161, 163, 164, 168,
170–176, 182–185, 187, 188,
190–195, 198–207, 210–212,
214–216, 274, 281, 282, 292–
294, 308–310, 319, 323, 333,
334, 336–338, 340–343, 345–
347, 352, 353, 355, 357–363,
366–378, 380, 381, 383

lr->p-lr-set-pos-dv-1-car-lr-e
xpr-funcall, 370

xpr-if, 353
xpr-temp-eval, 362

lr->p-p-run-subr-p-run-subr-c
lock, 370

lr-0-addr, 6, 27, 75, 76, 79, 80, 99,
102, 161, 218, 219, 265, 270–
273, 340

lr-abs, 10, 11
lr-add-to-data-seg, 15, 17
lr-add1-tag, 5, 9, 10, 17, 98, 219,

245, 256, 257, 260, 271, 312
lr-all-nodes, 226, 228, 229, 231–234,

266, 267, 273
lr-all-nodes-lessp-max-addr-ope

ner, 229
lr-all-nodes-nil, 228
lr-all-nodes-not-lessp-min-offset

-max-addr, 232
lr-all-nodes-offset-max-addr-ope

ner-helper, 229
lr-all-nodes-offset-same-max, 229
lr-answer-addr, 6, 15, 33, 59, 230,

231, 233, 309, 310, 316, 318,
379–381, 384

lr-apply-subr, 37, 42, 46, 85, 87–
90, 122, 124, 153, 155–158,
160, 164, 165, 168, 189, 208,
214, 343, 374

lr-apply-subr-preserves-lr-p-pr
oper-statep, 343

lr-apply-subr-preserves-lr-prope
r-free-listp, 122
r-heapp, 156
r-heapp2, 154

lr-apply-subr-preserves-lr-valp, 124
lr-boundary-nodep, 7, 54, 55, 102–

107, 109, 112–114, 117, 121,
122, 124–127, 130, 153–155,
162, 199, 221–233, 235, 237–
242, 249–256, 259, 264–270,
273–279, 289, 315, 317, 320–
322, 339, 342

lr-boundary-nodep-add-addr-lr-n
ode-size, 54

394



lr-boundary-nodep-equal-plus-fa
ct, 113
ct-zero, 113

lr-boundary-nodep-lessp-lr-node
-size-0, 225
-size-1, 225
-size-2, 225

lr-boundary-nodep-lessp-plus-fa
ct, 199

lr-boundary-nodep-not-lessp-fact
-helper, 225

lr-boundary-nodep-sub-addr, 54
lr-boundary-nodep-tag-cons-time

s-lr-node-size, 230
lr-boundary-offsetp, 7, 55, 102, 103,

105, 115, 125, 227–229, 241,
250, 265, 266, 269, 273

lr-boundary-offsetp-difference-
lr-node-size, 269
not-equal-lessp-fact-1, 227
not-equal-lessp-fact-2, 103

lr-boundary-offsetp-equal-plus-
fact, 55
fact-zero, 125

lr-boundary-offsetp-plus, 241
lr-boundary-offsetp-sub1-length

-heap-name, 102
lr-boundary-offsetp-times-lr-no

de-size-anything, 102
lr-boundaryp-nodep-difference-n

ode-size, 227
lr-car-offset, 6, 10, 27, 28, 75, 79,

97, 98, 106, 160, 162, 181,
196, 341

lr-cdr-offset, 6, 10, 27, 76, 80, 97,
98, 106, 160, 162, 181, 196,
341

lr-check-f-addrp, 97, 125, 126
lr-check-f-addrp-deposit-a-list, 126
lr-check-f-addrp-deposit-anythi

ng-anywhere, 125
lr-check-f-addrp-lr-undef-addr-

lr-init-data-seg, 264

lr-check-free-nodes, 96, 115, 118, 119,
229, 231, 232, 234

lr-check-free-nodes-delete-depo
sit, 118

lr-check-free-nodes-deposit-a-li
st-lr-nodep, 231

lr-check-free-nodes-deposit-free
-ptr, 118

lr-check-free-nodes-deposit-lr-
nodep, 119

lr-check-free-nodes-deposit-non
-ref-count, 115

lr-check-free-nodes-lr-free-list
-nodes-init-data-seg, 230

lr-check-free-nodes-plist-node-
list, 229

lr-check-listp-addrp, 97, 98, 125, 127
lr-check-listp-addrp-deposit-a-

list-cons, 127
list-other-place, 127

lr-check-listp-addrp-deposit-free
-ptr-0, 125

lr-check-numberp-addrp, 97, 98, 125,
127, 257

lr-check-numberp-addrp-deposit-
a-list-cons, 126
a-list-cons-same-addr, 256
free-ptr-0, 125

lr-check-resourcesp, 182, 191–195, 207,
211, 214–216

lr-check-resourcesp-funcall, 195
lr-check-resourcesp-list-set-exp

r-nx, 191
lr-check-resourcesp-listp-s-exp

r-list, 182
lr-check-resourcesp-lr-funcall-

s-fun-call-state, 213
lr-check-resourcesp-lr-funcall-p

-psw-run, 210
lr-check-resourcesp-lr-pop-tstk

-lr-eval-1, 192
-lr-eval-2, 193

lr-check-resourcesp-lr-push-tst
k-flag-run, 191

395



lr-check-resourcesp-s-set-pos-i
f-cadr, 191

lr-check-resourcesp-s-temp-eval, 194
lr-check-resourcesp-s-temp-test, 194
lr-check-result, 99, 131, 136, 137, 148,

151, 152, 154–156, 164, 165,
171, 174–176, 190, 198, 200–
204

lr-check-result-f-not-lr-f-addr, 137
lr-check-result-flag-list-cons-v

alue, 131
lr-check-result-lr-apply-subr, 164
lr-check-result-lr-do-temp-fetc

h, 151
lr-check-result-lr-funcall, 173
lr-check-result-lr-proper-heapp, 175
lr-check-result-lr-push-tstk, 135
lr-check-result-lr-push-tstk-qu

ote, 152
lr-check-result-nil, 131
lr-check-result-not-f-lr-f-addr, 137
lr-check-result-t-chain, 137
lr-check-result1, 99, 100, 112, 130,

153, 154, 159, 160, 163, 164,
166, 167, 325

lr-check-result1-append, 112
lr-check-result1-append-2, 166
lr-check-result1-butlast, 166
lr-check-result1-first-n-temp-st

k, 167
lr-check-result1-lr-good-pointe

rp-get-n-lessp-cadr, 154
rp-get-n-lessp-car, 153

lr-check-result1-lr-valp-get-n-
lessp-length, 153

lr-check-result1-reverse-length
-1-opener, 160
-2-opener, 160

lr-check-result1-singleton-list
-opener, 130

lr-check-undef-addrp, 97, 125, 126,
264

lr-check-undef-addrp-deposit-a-
list, 126

lr-check-undef-addrp-deposit-an
ything-anywhere, 125

lr-compile-body, 19, 20, 22, 128, 129,
131, 132, 155, 216, 296–300,
303–305, 318

lr-compile-programs, 20, 22, 101, 112,
128, 132, 169, 171, 187, 208,
211, 305, 318

lr-compile-quote, 16, 18, 219–224, 237,
238, 240–245, 247, 251–255,
259, 261, 262, 264, 265, 267–
273, 275, 280, 311, 313, 317,
325, 326

lr-compile-quote-flag-list-cons
-opener, 252

lr-compile-quote-flag-list-nil-
opener, 252

lr-compile-quote-lr-good-pointe
rp-tablep, 253
rp-tablep-help-1, 251
rp-tablep-help-2, 252
rp-tablep-help-3, 253

lr-compile-quote-preserves-lr-p
roper-heapp, 261
roper-heapp2, 259

lr-compile-quote-preserves-lr-v
alp, 260

lr-compile-quote-preserves-prope
r-p-data-segmentp, 313

lr-cons-tag, 5, 9, 10, 14, 27–29, 75–
77, 79–83, 98, 106, 127, 128,
160–162, 180, 196, 245, 260,
312, 341

lr-convert-digit-to-ascii, 31, 283, 284
lr-convert-digit-to-ascii-equal, 283
lr-convert-num-to-ascii, 31, 283, 284
lr-convert-num-to-ascii-equal-a

rg1, 283
rg2, 284
rg2-helper-1, 284
rg2-lengths, 284
rg2-lengths-helper-1, 284

lr-count-free-nodes, 181, 182, 185–
189, 191, 198–207, 248–253,

396



255, 259, 261–263, 267, 273,
275–280, 294, 295, 311, 313–
315, 320–323, 325–328

lr-count-free-nodes-append-lr-a
ll-nodes-fact, 273

lr-count-free-nodes-at-most, 248
lr-count-free-nodes-delete-depo

sit, 186
lr-count-free-nodes-deposit-a-li

st-lr-nodep, 249
lr-count-free-nodes-deposit-free

-ptr, 185
lr-count-free-nodes-deposit-lr-

nodep, 186
lr-count-free-nodes-deposit-non

-ref-count, 185
lr-count-free-nodes-lr-all-node

s, 266
lr-count-free-nodes-lr-compile-q

uote-s-heap-reqs, 250
uote-s-heap-reqs-flag-t, 274
uote-s-heap-reqs-help1, 250

lr-count-free-nodes-lr-data-seg
-table-body-s-heap-reqs, 275
-table-list-s-heap-reqs, 321
-table-list-s-heap-reqs-1, 322
-table-list-s-heap-reqs-help, 320

lr-count-free-nodes-lr-init-dat
a-seg-table-s-heap-reqs-1, 322
a-seg-table-s-init-heap-reqs, 279

lr-count-free-nodes-max-addr-lr
-free-list-nodes, 186

lr-count-free-nodes-s-init-heap
-reqs, 262

lr-count-lr-free-list-nodes-lr-
apply-subr, 188

lr-count-lr-free-list-nodes-p-r
un-cons, 186
un-subr, 187

lr-data-seg-body-list-n, 300
lr-data-seg-table, 18, 22, 273, 274,

280, 281, 295, 302, 304–306,
318–320, 323, 324, 328, 380–
382

lr-data-seg-table-body, 17, 18, 220,
221, 223, 238, 243, 244, 246,
274–278, 294, 300, 301, 314,
321, 326, 327

lr-data-seg-table-body-add1-ope
ner, 301

lr-data-seg-table-body-flag-t-f
lag-t, 301

lr-data-seg-table-body-lr-good-p
ointerp-tablep, 276
ointerp-tablep-help1, 276

lr-data-seg-table-body-n, 300, 301
lr-data-seg-table-body-preserve

s-lr-valp, 326
s-proper-p-data-segmentp, 314

lr-data-seg-table-list, 18, 19, 220, 221,
224, 234, 239, 279, 295, 302,
314, 317, 321, 322, 327, 328

lr-data-seg-table-list-lr-good-p
ointerp-tablep-helper-1, 277

lr-data-seg-table-list-preserve
s-lr-s-similar-params, 327
s-lr-valp, 326
s-proper-p-data-segmentp, 314

lr-do-temp-fetch, 25, 41–44, 63, 64,
108, 139, 140, 149, 151, 194,
367, 369

lr-do-temp-fetch-lr-check-resou
rcesp-temp-test, 194

lr-do-temp-fetch-run-lr-eval-te
mp-setp, 151

lr-eval, 40–42, 44, 46, 47, 86, 87, 90,
92–95, 110, 112, 122–125,
128, 130, 131, 133, 134, 136–
142, 144–146, 148, 152–154,
156–160, 163, 164, 167–176,
183–185, 187, 188, 190–193,
205–208, 210, 211, 214–216,
320, 324, 329, 333–335, 337,
340, 341, 343, 345–347, 352,
353, 355, 357–363, 367, 368,
373–378, 381

lr-eval-if-p-psw-1, 44
lr-eval-leaves-listp-p-ctrl-stk

397



-lr->p-lr-set-pos, 337
lr-eval-leaves-listp-p-temp-stk, 137

-lr-set-pos, 176
lr-eval-litatom-opener, 134
lr-eval-p-pc-equivalence, 378
lr-eval-p-pc-equivalence-helper

-1, 352
-1-5, 352
-10, 369
-11, 374
-12, 377
-12-helper-1, 375
-12-helper-2, 376
-2, 352
-3, 352
-4, 358
-4-helper-1, 355
-4-helper-2, 357
-5, 361
-5-get-lr-p-c-size, 362
-5-helper-1, 360
-5-helper-2, 360
-6, 363
-6-helper, 362
-7, 366
-8, 368
-8-helper-1, 367
-8-helper-2, 367
-8-helper-2-helper, 367
-9, 369

lr-eval-preserves-adpp, 123
lr-eval-preserves-adpp-lr-set-p

os, 123
lr-eval-preserves-cdr-p-ctrl-st

k, 122
k-lr-funcall, 375
k-lr-set-pos, 123

lr-eval-preserves-definedp-first
n-bindings-car-p-ctrl-stk, 141

lr-eval-preserves-definedp-fn-bi
ndings-car-ctrl-stk-set-pos, 141

lr-eval-preserves-length-assoc-
data-segment, 123

lr-eval-preserves-length-bindin

gs-car-p-ctrl-stk, 183
lr-eval-preserves-lr-max-node, 122
lr-eval-preserves-lr-max-node-l

r-set-pos, 124
lr-eval-preserves-lr-p-proper-st

atep, 346
lr-eval-preserves-lr-proper-free

-listp, 124
-listp-lr-set-pos, 124

lr-eval-preserves-lr-proper-heapp, 182
-lr-set-pos, 184

lr-eval-preserves-lr-s-similar-
const-table, 171
statesp, 183
statesp-lr-set-pos, 184

lr-eval-preserves-lr-s-similar-p
arams, 172

lr-eval-preserves-lr-s-similar-te
mps, 172

lr-eval-preserves-lr-valp, 125
lr-eval-preserves-lr-valp-lr-set

-expr, 130
lr-eval-preserves-proper-p-statep

-lr->p, 95
-lr->p-lr-set-expr, 130
-lr->p-lr-set-pos, 123
-lr->p-rewrite, 122

lr-eval-preserves-ret-pc-car-p-
ctrl-stk, 376
ctrl-stk-lr-funcall, 376

lr-eval-preserves-strip-cars-bi
ndings-car-p-ctrl-stk, 122
ndings-car-p-ctrl-stk-lr-set-pos,

123
lr-eval-preserves-strip-cars-lr

-temps-car-p-ctrl-stk, 148
lr-eval-s->lr1-flag-list-opene

r-1, 175
r-2, 175

lr-eval-s->lr1-if-opener-1, 137
lr-eval-s->lr1-if-opener-2, 138
lr-eval-s->lr1-if-opener-3, 138
lr-eval-s->lr1-preserves-p-ct

rl-stk-size, 184

398



rl-stk-size-lr-set-pos, 192
lr-eval-s->lr1-quote-opener, 140
lr-eval-s->lr1-temp-eval-opene

r, 139
lr-eval-s->lr1-temp-fetch-ope

ner, 140
lr-eval-s->lr1-temp-test-opene

r, 139
lr-eval-s-eval-equivalence, 176
lr-eval-s-eval-equivalence-lr-c

heck-result-flag-list, 190
lr-eval-s-eval-equivalence-s->

lr, 319
lr-eval-s-eval-flag-run, 216
lr-eval-s-eval-flag-run-s->lr, 323
lr-eval-s-eval-flag-t-s-ans-f-l

r-set-pos, 185
lr-eval-s-eval-flag-t-s-ans-non

-f-lr-set-pos, 185
lr-eval-s-eval-heap-r-lr-count-

lr-free-list-nodes, 190
lr-eval-subrp-user-funcall-opene

r, 152
lr-eval-t-lr-funcall-p-psw-run, 92
lr-eval-temp-setp, 25, 41, 111, 139,

150, 151, 335, 368
lr-eval-zerop-clock, 133
lr-expr, 7, 25, 37, 40–42, 44, 57, 61–

64, 72, 73, 84–95, 114, 121,
122, 124, 134, 136, 137, 139,
140, 142, 144–146, 148, 150–
160, 164, 165, 168, 169, 195,
206, 212, 333–338, 340–343,
345–347, 349–371, 373–377

lr-expr-cur-expr-if-same, 369
lr-expr-flag-list-car, 40
lr-expr-funcall, 375
lr-expr-list, 7, 40, 41, 58, 94, 131,

132, 170, 334, 349, 351, 352
lr-expr-list-lr-set-pos-dv-1, 40
lr-expr-lr-set-expr, 40
lr-expr-lr-set-expr-nx, 40
lr-expr-lr-set-pos-t, 40
lr-f-addr, 6, 15, 18, 26, 28, 29, 31,

41, 76–79, 81–84, 97, 99,
102, 111, 137, 138, 161, 185,
219, 225, 234, 244, 245, 247,
256, 265, 266, 269, 271, 272,
280, 316, 334, 340, 351, 354,
355, 357, 358, 360, 361

lr-false-tag, 5, 9, 10, 15, 30, 97, 98,
219, 245, 269, 272, 293, 316

lr-fetch-fp, 6, 8–10, 96
lr-fix-data-segment, 9, 10
lr-fp-addr, 6, 15, 17, 77, 78, 80, 81,

96, 104, 107, 109, 118, 121,
125, 162, 182, 185–191, 198–
207, 220, 221, 225, 230, 231,
233, 235, 240–242, 249–255,
259–265, 268, 269, 272, 275–
280, 294, 295, 311–316, 320–
328, 338, 339, 341

lr-free-list-nodes, 96, 102, 103, 115–
119, 182, 186–189, 191, 198–
207, 231, 233, 249–253, 255,
259, 261–263, 268, 273, 275–
280, 294, 295, 311, 313–315,
320–323, 325–328

lr-free-list-nodes-deposit-0, 267
lr-free-list-nodes-deposit-a-li

st-lr-nodep, 231
lr-free-list-nodes-deposit-free

-ptr, 118
lr-free-list-nodes-deposit-lr-n

odep, 119
lr-free-list-nodes-deposit-lr-re

f-count-offset, 116
lr-free-list-nodes-deposit-non-

ref-count, 115
lr-free-list-nodes-deposit-t, 268
lr-free-list-nodes-lr-compile-q

uote-t0, 272
lr-free-list-nodes-lr-init-data

-seg, 233
lr-free-list-nodes-lr-init-heap

-contents, 233
-contents-generalized, 232

lr-free-list-nodes-member-greate

399



r-offset, 116
lr-funcall, 37, 42, 43, 90–95, 112,

153, 165, 169–175, 211, 212,
214, 335, 345, 346, 375–377

lr-good-pointerp, 7, 55, 97, 98, 106,
112, 127, 128, 137, 153, 160–
162, 196, 241, 255–258, 336–
339

lr-good-pointerp-cdr-assoc-car-
lr-compile-quote-list, 254

lr-good-pointerp-deposit-a-list
-node, 339

lr-good-pointerp-deposit-non-ad
d-addr-not-good-pointerp, 256

lr-good-pointerp-deposit-non-re
f-not-good-pointerp, 255

lr-good-pointerp-deposit-ref-co
unt-not-good-pointerp, 255

lr-good-pointerp-lessp-offset-m
ax-heap-node, 106

lr-good-pointerp-lr-undef-addr, 258
lr-good-pointerp-opener, 55
lr-good-pointerp-table-cons, 242
lr-good-pointerp-tablep, 241, 242, 253–

255, 259–261, 269, 277–279,
325–327, 336, 338

lr-good-pointerp-tablep-definedp
-table, 241

lr-good-pointerp-tablep-deposit
-a-list, 242
-free-ptr, 241

lr-good-pointerp-tablep-f-lr-f-
addr-lr-init-data-seg, 269

lr-good-pointerp-type-tag-nat, 161
lr-good-pointerps, 336–345, 366, 382
lr-good-pointerps-all-undef-add

rs, 344
lr-good-pointerps-append, 344
lr-good-pointerps-cdr, 340
lr-good-pointerps-cons-fetch-ca

r-temp-stk-cdr-car, 341
r-temp-stk-cdr-cdr, 341

lr-good-pointerps-cons-fetch-fp
-addr-deposit-a-list-cons, 341

lr-good-pointerps-cons-lr-0-add
r-lr-proper-heapp, 340

lr-good-pointerps-cons-lr-f-add
r-lr-proper-heapp, 340

lr-good-pointerps-cons-lr-t-add
r-lr-proper-heapp, 340

lr-good-pointerps-deposit-a-list
-node, 339

lr-good-pointerps-deposit-free-pt
r, 338

lr-good-pointerps-first-n, 344
lr-good-pointerps-popn, 345
lr-good-pointerps-put-assoc, 337
lr-good-pointerps-reverse, 344
lr-heap-name, 6–10, 15, 55, 96, 102–

104, 107, 121, 126, 127, 130,
153, 154, 199, 221–226, 228–
234, 237–242, 248–256, 259–
261, 264, 266–270, 272–279,
289, 311–313, 315–317, 320–
322

lr-if-ok, 24, 41, 43, 95, 110, 136, 138,
139, 175, 176, 192, 193, 215,
334, 353, 355, 357, 358, 360,
361

lr-init-data-seg, 15, 18, 225, 226, 233,
234, 244, 245, 247, 263–267,
269–273, 280, 316, 317, 320

lr-init-data-seg-table, 18, 221, 224,
234, 240, 245, 247, 263, 267,
278–280, 295, 315, 317, 323,
325, 326, 328

lr-init-data-seg-table-lr-good-p
ointerp-tablep, 278

lr-init-data-seg-table-preserve
s-lr-valp, 325
s-proper-p-data-segmentp, 314

lr-init-heap-contents, 14, 15, 217, 218,
226, 230–233, 315, 316

lr-init-heap-contents-add1-opene
r, 218

lr-init-tag, 5, 14, 218
lr-initial-cstk, 19, 22
lr-make-initial-temps, 19, 259, 274,

400



281, 324
lr-make-label, 31, 32, 71, 72, 85, 187,

284, 309, 347, 351, 354, 356,
357, 359, 364–366

lr-make-label-equal, 284
lr-make-label-not-numberp, 71
lr-make-program, 11, 20, 33
lr-make-temp-name-alist, 14, 20, 22,

128, 132, 133, 145–148, 150,
151, 209, 280, 281, 305, 318

lr-make-temp-name-alist-1, 14, 143,
145, 147, 148, 151, 171, 208,
280, 281

lr-make-temp-name-alist-1-plist
-arg-1, 281

lr-make-temp-name-alist-plist-a
rg-1, 281

lr-make-temp-var-dcls, 20, 132, 133,
135, 171, 208, 292

lr-max-ctrl-reqs, 319, 332, 379, 383
lr-max-node, 96, 99, 102, 104, 107,

109, 112, 114, 116, 121, 122,
124, 125, 130, 154, 155, 162,
182, 186–189, 191, 198–205,
207, 220–225, 230, 235, 237–
242, 249–255, 257–264, 267,
268, 274–280, 294, 295, 311,
313–315, 317, 320–323, 325–
328, 342

lr-max-node-adpp-definedp-lr-he
ap-name, 104

lr-max-node-car-lr-compile-quote, 224
lr-max-node-car-lr-data-seg-tab

le, 320
le-body, 223
le-list, 322

lr-max-node-car-lr-init-data-se
g-table, 267

lr-max-node-deposit, 116
lr-max-node-deposit-a-list, 220
lr-max-node-lr-init-data-seg, 225
lr-max-node-lr-nodep-opener-fact

s, 104
lr-max-node-same-signature, 116

lr-max-temp-reqs, 319, 332, 379, 383
lr-max-word-size-reqs, 319, 332, 379,

383
lr-minimum-heap-size, 6, 103, 264,

265, 273
lr-minimum-heapp, 99, 102, 103, 107,

108, 161, 162, 242, 248, 251–
253, 255, 258–260, 263, 274–
279, 315, 320, 321

lr-minimum-heapp-lr-compile-quote,
242

lr-minimum-heapp-lr-data-seg-ta
ble-body, 274

lr-minimum-heapp-lr-init-data-se
g, 263

lr-minimum-heapp-not-equal-lengt
h-1, 248

lr-minimum-heapp-opener-2, 103
lr-minimum-heapp-opener-3, 103
lr-minimum-heapp-opener-adpp-lr

-0-addr, 102
-f-addr, 102
-t-addr, 102
-undef-addr, 102

lr-minimum-heapp-same-signature, 108
lr-minus-tag, 6
lr-negative-guts-offset, 7, 11
lr-new-cons, 14, 17
lr-new-node, 6, 14, 15, 17, 218
lr-node-listp, 103, 107, 115, 118, 119,

185, 186, 232, 233, 249
lr-node-listp-delete, 107
lr-node-listp-deposit-anything-

at-all, 107
lr-node-listp-lr-all-nodes, 233
lr-node-listp-lr-free-list-node

s, 103
lr-node-size, 6, 7, 9, 14, 15, 54, 55,

96–99, 102, 103, 105, 113–
115, 119, 125, 126, 185, 199,
200, 217, 218, 225–230, 232–
234, 250, 253, 255, 256, 264–
266, 268–270, 272, 273, 312,
313, 315, 316, 320

401



lr-nodep, 7, 55, 97, 99, 103, 105,
106, 112–115, 118, 119, 128,
154, 155, 161, 162, 185, 186,
254, 257–260, 342

lr-nodep-car-lr-compile-quote, 254
lr-nodep-deposit-a-list, 254
lr-nodep-lr-proper-heapp-nodep, 105
lr-nodep-member-lr-node-listp, 103
lr-nodep-member-lr-node-listp-a

dpp-untag-listp, 115
dpp-untag-numberp-offset, 115

lr-nodep-member-lr-node-listp-l
r-boundaryp-offsetp, 115

lr-nodep-opener, 55
lr-nodify, 9, 10
lr-nodify-tag, 9
lr-p-c-size, 20, 21, 32, 35, 37, 57, 58,

60, 65–72, 286, 288, 292,
348–352, 354–362, 364–367,
375, 377, 380

lr-p-c-size-flag-list, 58
lr-p-c-size-flag-not-list-not-0, 35
lr-p-c-size-ge-plus-2-size-cadr

-car-if, 350
lr-p-c-size-list, 21, 57–60, 65, 66, 69–

71, 84, 348, 349, 352, 371,
375, 377

lr-p-c-size-list-0, 59
lr-p-c-size-list-0-opener, 57
lr-p-c-size-list-add1-opener, 57
lr-p-c-size-list-car-opener, 69
lr-p-c-size-list-funcall-not-le

ssp-fact, 66
lr-p-c-size-nlistp-body, 67
lr-p-c-size-not-1-car-if, 350
lr-p-c-size-s-temp-test-eval-ca

dr-not-lessp-fact, 66
lr-p-c-size-temp-test-opener, 364
lr-p-pc, 21, 36, 37, 44, 45, 61–64,

90, 347, 351, 369–371, 375,
377

lr-p-pc-1, 21, 22, 60, 65, 67–72, 347–
350, 352, 354–362, 364–367,
369

lr-p-pc-1-append, 348
lr-p-pc-1-append-helper-1, 348
lr-p-pc-1-append-helper-2, 348
lr-p-pc-1-append-helper-3, 348
lr-p-pc-1-append-helper-4, 348
lr-p-pc-1-body-0, 60
lr-p-pc-1-car-expr-if-2, 356
lr-p-pc-1-dv-1-car-lr-expr-if, 350
lr-p-pc-1-dv-1-car-lr-expr-temp

-eval, 362
lr-p-pc-1-dv-2-car-lr-expr-if, 350
lr-p-pc-1-dv-3-car-lr-expr-if, 350
lr-p-pc-1-listp-offset, 349
lr-p-pc-1-nil, 349
lr-p-pc-1-nx, 349
lr-p-pc-1-nx-helper, 349
lr-p-pc-1-plist, 348
lr-p-pc-dv-1-s-temp-test, 367
lr-p-pc-lr-do-temp-fetch, 64
lr-p-pc-lr-pop-tstk, 62
lr-p-pc-lr-push-tstk, 61
lr-p-pc-lr-set-pos-dv-1-car-lr-e

xpr-funcall, 369
lr-p-pc-lr-set-temp, 63
lr-p-proper-statep, 336–338, 343, 345–

347, 353, 355, 358–361, 366,
368, 378, 380, 382

lr-p-proper-statep-cdr-assoc-ca
ddr-lr-expr-bindings, 337

lr-p-proper-statep-cdr-lr-ctrl-
stk, 346

lr-p-proper-statep-cdr-temp-stk, 337
lr-p-proper-statep-cons-p-frame

-put-assoc, 337
lr-p-proper-statep-listp-p-temp

-stk-type-car-addr, 353
lr-p-proper-statep-lr-funcall, 345
lr-p-proper-statep-lr-good-pointe

rps-strip-cdrs-binding, 366
lr-p-proper-statep-lr-push-tstk

-cdr-assoc-lr-expr, 336
lr-p-proper-statep-p-temps-stk-

lr-push-tstk-quote, 338
lr-p-proper-statep-s->lr, 382

402



lr-pack-tag, 6, 9, 10
lr-params, 23, 95, 100, 108, 131, 133,

135, 136, 140, 142, 149, 157,
165, 172

lr-params-lr-apply-subr, 157
lr-params-lr-do-temp-fetch, 149
lr-params-lr-eval, 95
lr-params-lr-funcall, 165
lr-params-lr-pop-tstk, 108
lr-params-lr-push-tstk, 131
lr-params-lr-set-error, 133
lr-params-lr-set-expr, 108
lr-params-lr-set-expr-lr-pop-cst

k, 172
lr-params-lr-set-pos, 136
lr-params-lr-set-temp, 140
lr-params-p-frame-not-definedp-p

ut-assoc-anything, 141
lr-pop-cstk, 25, 42, 44, 94, 153, 172,

173, 377, 378
lr-pop-tstk, 24, 39, 41, 62, 94, 108,

111, 136, 138, 175, 192–194,
334, 335, 353, 355, 357, 358,
360, 361

lr-pop-tstk-lr-if-ok, 353
lr-programs-properp, 35, 47, 51, 56,

57, 61–64, 72, 73, 75–95,
114, 121–125, 130, 131, 135,
137, 141, 144, 145, 148, 150,
152–160, 163, 164, 168–176,
182–185, 187, 188, 190–195,
198, 200–208, 210–212, 214–
216, 282, 292–294, 306, 309,
310, 319, 320, 323, 336–339,
341–347, 349, 350, 352–378,
380

lr-programs-properp-1, 35, 56, 57,
63, 305–308, 344

lr-programs-properp-1-all-user-
fnamesp-not-user-fnamep, 51

lr-programs-properp-1-lr-compile
-programs, 305

lr-programs-properp-1-lr-proper
-exprp, 56

lr-programs-properp-all-user-fn
amesp-strip-cars-cdr, 309

lr-programs-properp-caar-main, 309
lr-programs-properp-definedp-ca

r-untag-p-pc, 61
lr-programs-properp-definedp-su

brp-runtime-support, 206
lr-programs-properp-expr-quote-t

ype-addr, 64
lr-programs-properp-funcall-not

-caar-prog-seg, 169
lr-programs-properp-lr->p-s->

lr1-definedp-s-pname, 145
lr-programs-properp-lr-eval, 47
lr-programs-properp-lr-funcall, 94
lr-programs-properp-lr-if-ok, 95
lr-programs-properp-lr-pop-tstk, 94
lr-programs-properp-lr-programs

-properp-1, 56
lr-programs-properp-lr-proper-e

xprp-lr-expr, 57
lr-programs-properp-lr-set-erro

r, 175
lr-programs-properp-lr-set-expr, 94
lr-programs-properp-lr-set-pos, 90
lr-programs-properp-member-lr-e

xpr-temps, 150
lr-programs-properp-not-definedp

-subrp-runtime-support, 163
lr-programs-properp-s->lr, 319
lr-programs-properp-s->lr-logi

c->s, 380
lr-programs-properp-s->lr-ope

ned, 306
lr-programs-properp-s->lr1-de

finedp-cdr-s-progs, 208
finedp-s-progs, 212

lr-proper-ctrl-stkp, 336, 339, 340
lr-proper-ctrl-stkp-deposit-a-li

st-node, 339
lr-proper-ctrl-stkp-deposit-free

-ptr, 339
lr-proper-exprp, 34, 35, 56–58, 62,

403



65, 67–72, 152, 287–292, 296–
300, 303–305, 307, 348, 349

lr-proper-exprp-cadr-temps, 68
lr-proper-exprp-car-if-cadddr, 58
lr-proper-exprp-car-if-caddr, 58
lr-proper-exprp-car-if-cadr, 58
lr-proper-exprp-flag-list-cdr-f

uncall, 290
lr-proper-exprp-flag-list-cons, 296
lr-proper-exprp-flag-list-nil, 296
lr-proper-exprp-flag-not-list-c

ons-funcall, 303
ons-if, 297
ons-if-helper, 296
ons-temp-eval, 298
ons-temp-fetch, 298
ons-temp-test, 299

lr-proper-exprp-flag-not-list-n
ot-listp, 304

lr-proper-exprp-length-cur-expr, 57
lr-proper-exprp-list-lr-proper-

get-t, 56
lr-proper-exprp-list-quote-opene

r, 152
lr-proper-exprp-lr-proper-exprp

-cur-expr, 56
lr-proper-exprp-p-lr-compile-pr

ograms, 304
ograms-flag-t, 305
ograms-helper-1, 296
ograms-helper-2, 302

lr-proper-exprp-program-body-not
-listp, 307

lr-proper-exprp-t-lr-proper-get
-t, 56

lr-proper-formalsp, 168–170, 343, 345,
347, 353, 355, 358–361, 377,
378, 381, 382

lr-proper-formalsp-cdr-p-prog-se
gment-s->lr-logic->s, 382

lr-proper-formalsp-lr-compile-p
rograms, 169

lr-proper-free-listp, 96, 99, 104, 107,
109, 114, 121, 122, 124, 125,

130, 154, 155, 162, 221–224,
234, 235, 237–239, 241, 242,
249–254, 259, 260, 264, 267,
268, 274–279, 317, 320–322,
342

lr-proper-free-listp-car-lr-compi
le-quote, 222

lr-proper-free-listp-car-lr-init
-data-seg-table, 224

lr-proper-free-listp-length-sub
1-not-lessp, 242

lr-proper-free-listp-lr-count-f
ree-nodes-max-addr, 249
ree-nodes-max-addr-alt, 250

lr-proper-free-listp-lr-init-dat
a-seg, 234
a-seg-helper, 234

lr-proper-free-listp-member-free
-addr-lr-free-list-nodes, 249

lr-proper-free-listp-opener-1, 104
lr-proper-free-listp-opener-2, 104
lr-proper-free-listp-opener-2-a

dpp-untag-listp, 104
dpp-untag-numberp-offset, 104
rea-name-alt, 241

lr-proper-free-listp-opener-2-l
r-nodep, 254

lr-proper-free-listp-type-fetch
-free-ptr, 109

lr-proper-heapp, 99, 100, 107, 112,
131, 135, 137, 143, 149–152,
156–158, 161–164, 171–173,
175, 176, 182–191, 193–196,
200, 205–207, 211, 214, 216,
259–263, 271, 274, 278–282,
284, 286, 288, 289, 292–295,
307–315, 322, 324–328, 336,
338, 340, 341, 343, 344

lr-proper-heapp-car-lr-data-seg
-table, 280
-table-body, 278
-table-helper-1, 280
-table-list, 278

lr-proper-heapp-car-lr-init-dat

404



a-seg-table, 279
lr-proper-heapp-lr-compile-quote

-ft-lr-init-data-seg, 271
lr-proper-heapp-lr-good-pointerp

-lr-proper-heapp-nodep, 137
lr-proper-heapp-lr-valp-0, 161
lr-proper-heapp-lr-valp-f, 161
lr-proper-heapp-lr-valp-f-helpe

r, 161
lr-proper-heapp-lr-valp-lr-f-ad

dr, 161
lr-proper-heapp-lr-valp-lr-t-ad

dr, 161
lr-proper-heapp-nodep, 97, 98, 105,

106, 125, 128, 137, 161, 257,
258, 269

lr-proper-heapp-nodep-deposit-a
-list-cons, 128
-list-numberp, 257
-list-truep, 258

lr-proper-heapp-nodep-deposit-f
ree-ptr-0, 125

lr-proper-heapp-nodep-lr-init-d
ata-seg-helper, 269

lr-proper-heapp-nodep-lr-undef-
addr-lr-init-data-seg, 269

lr-proper-heapp-nodep-tag-cons, 106
lr-proper-heapp-opener-1, 107
lr-proper-heapp-opener-3, 107
lr-proper-heapp-opener-4, 112
lr-proper-heapp1, 98, 99
lr-proper-heapp2, 98, 99, 105, 107,

125, 128, 154, 155, 257–259,
261, 270, 342

lr-proper-heapp2-deposit-a-list
-cons, 128
-numberp, 257
-truep, 258

lr-proper-heapp2-deposit-free-pt
r-0, 125

lr-proper-heapp2-lr-init-data-se
g, 270
g-helper, 270

lr-proper-p-areasp, 42, 101, 102, 104,
107, 109, 116, 120, 121, 137,
143, 149, 150, 161, 162, 196,
200, 219, 221–224, 234, 237–
242, 249–254, 256–265, 267,
268, 274–279, 281, 284, 286,
288, 289, 292–295, 307–318,
320–322, 324–328, 340, 341,
344

lr-proper-p-areasp-car-lr-compi
le-quote, 219

lr-proper-p-areasp-car-lr-data-
seg-table, 281
seg-table-body, 223
seg-table-list, 234

lr-proper-p-areasp-car-lr-init-
data-seg-table, 234

lr-proper-p-areasp-deposit-a-li
st, 120

lr-proper-p-areasp-deposit-anyt
hing-anywhere, 107

lr-proper-p-areasp-lr-heap-name
-lr-init-data-seg, 234

lr-push-tstk, 24, 25, 41–43, 60–64,
73, 108, 131, 134–136, 140,
152, 167, 191, 195, 336, 338

lr-push-tstk-length, 167
lr-push-tstk-lr-check-resourcesp

-quote, 195
lr-ref-count-offset, 6, 7, 15, 28, 55,

77, 81, 96, 97, 102, 106,
109, 110, 112–115, 117–119,
121, 128, 153, 154, 181, 185,
186, 219, 230–232, 240, 242,
250, 252, 255–258, 264–266,
268–272, 289

lr-return-pc, 37, 53, 54, 85, 86, 91,
93, 114, 121, 154, 159, 168,
187, 206, 333, 334, 338, 340,
342, 343, 374, 376

lr-s-similar-const-table, 100, 101, 151,
158, 171, 218, 240, 241, 259–
263, 272, 289, 292, 294, 295,
307–311, 313, 314, 324–326,

405



328
lr-s-similar-const-table-cdr-ca

r-lr-data-seg-table, 295
lr-s-similar-const-table-compile

-quote-t0-init-data-seg, 272
lr-s-similar-const-table-cons, 218
lr-s-similar-const-table-deposit

-cons, 259
-lr-fp-addr, 240

lr-s-similar-const-table-implie
s-lr-good-pointerp-tablep, 259

lr-s-similar-const-table-lr-app
ly-subr, 157

lr-s-similar-const-table-lr-compi
le-quote, 261

lr-s-similar-const-table-lr-dat
a-seg-table-body, 294
a-seg-table-list, 294

lr-s-similar-const-table-lr-goo
d-pointerp-opener, 240

lr-s-similar-const-table-lr-init
-data-seg-table, 295

lr-s-similar-const-table-lr-valp
-assoc, 151
-member-strip-cdrs, 289

lr-s-similar-const-table-nil, 218
lr-s-similar-const-table-p-obje

ctp-definedp, 311
lr-s-similar-const-table-type-a

ddr-member-strip-cdrs, 289
lr-s-similar-params, 100, 101, 134,

135, 157, 166, 167, 172, 326–
328, 382

lr-s-similar-params-assoc-define
dp, 134

lr-s-similar-params-lr-apply-su
br, 156

lr-s-similar-params-lr-funcall, 167
lr-s-similar-params-lr-funcall-

helper-1, 167
lr-s-similar-params-lr-good-poi

nterps-strip-cdrs, 382
lr-s-similar-params-lr-valp-get, 166
lr-s-similar-params-pair-formal

s-lr-init-data-seg, 326
s-with-addresses, 328

lr-s-similar-statesp, 100, 133–136, 144,
146, 148–152, 158, 172, 173,
176, 183–185, 188–191, 193,
194, 205–207, 214, 216, 320,
324, 328, 381

lr-s-similar-statesp-lr-apply-s
ubr, 158

lr-s-similar-statesp-lr-funcall, 171
lr-s-similar-statesp-lr-if-ok, 176
lr-s-similar-statesp-lr-pop-tst

k, 136
lr-s-similar-statesp-lr-push-tst

k-litatom, 134
lr-s-similar-statesp-lr-s-set-p

os, 136
lr-s-similar-statesp-lr-s-simil

ar-params-opener, 135
ar-temps-opener, 135

lr-s-similar-statesp-lr-set-err
or, 133

lr-s-similar-statesp-lr-set-exp
r, 133
r-lr-pop-cstk, 173

lr-s-similar-statesp-s->lr-lo
gic->s-lr-data-seg-table, 381

lr-s-similar-statesp-s->lr-lr
-data-seg-table, 328

lr-s-similar-statesp-s->lr1-l
r-similar-temps, 146

lr-s-similar-statesp-s-change-te
mp, 148
mp-helper-1, 146
mp-helper-2, 144

lr-s-similar-temps, 100, 101, 135, 143,
144, 146, 149, 150, 157, 171,
173, 324

lr-s-similar-temps-lr-apply-sub
r, 157

lr-s-similar-temps-lr-funcall, 171
lr-s-similar-temps-make-temps-e

ntries-initial-temps, 324
lr-s-similar-temps-make-temps-p

406



air-temps, 170
lr-s-similar-temps-put-assoc-put

-assoc-helper, 143
-assoc-helper-1, 143

lr-s-simlar-statesp-lr-do-temp-
fetch, 149

lr-set-error, 23–25, 39, 41, 42, 107,
133, 136, 137, 140, 153, 175

lr-set-error-lr->p, 107
lr-set-error-lr-set-error, 133
lr-set-expr, 23, 38, 40–42, 94, 95,

108, 130, 131, 133, 136, 138,
153, 172, 173, 175, 334, 335,
347, 352, 355–358, 360, 361

lr-set-expr-s->lr1-s-set-expr, 133
-lr-pop-tstk, 136

lr-set-pos, 24, 39–42, 44, 62, 90, 93–
95, 122–124, 136–142, 144,
145, 148, 152, 154, 156–160,
163, 164, 167, 168, 170, 172,
173, 175, 176, 184, 185, 187,
188, 190, 192, 193, 205–208,
210, 211, 214, 215, 334, 335,
337, 340, 341, 343, 345, 346,
353–355, 357–363, 367–370,
373, 374, 376–378

lr-set-temp, 25, 41, 43, 63, 108, 139,
140, 144, 148, 363, 367, 368

lr-set-tstk, 24, 38, 353, 369
lr-t-addr, 6, 26, 29, 76–79, 82–84,

98, 99, 102, 161, 219, 265,
270, 271, 340

lr-temps, 23, 95, 101, 108, 131, 133,
135, 136, 140, 144–146, 148–
150, 157, 165, 172

lr-temps-lr-apply-subr, 157
lr-temps-lr-do-temp-fetch, 149
lr-temps-lr-eval, 95
lr-temps-lr-funcall, 165
lr-temps-lr-pop-tstk, 108
lr-temps-lr-push-tstk, 131
lr-temps-lr-set-error, 133
lr-temps-lr-set-expr, 108
lr-temps-lr-set-expr-lr-pop-cst

k, 172
lr-temps-lr-set-pos, 136
lr-temps-lr-set-temp, 140
lr-temps-p-frame-put-assoc, 145
lr-total-heap-reqs, 319, 332, 379
lr-true-tag, 5, 9, 10, 17, 30, 77, 84,

98, 163, 181, 219, 245, 258,
261, 270, 294, 313

lr-type-contents-p, 26
lr-unbox-nat-offset, 7, 10, 97, 98, 219,

271
lr-undef-addr, 6, 15, 17, 19, 20, 25,

31, 35, 97, 99, 100, 102,
142, 143, 149, 150, 258, 260,
261, 264–266, 269, 312, 313,
316, 364, 367

lr-undefined-tag, 5, 15, 97, 265, 316
lr-unpack-offset, 6, 10
lr-valp, 98–100, 107, 114, 124, 125,

130, 134, 135, 143, 150, 151,
153, 160–164, 166, 167, 218,
219, 260, 261, 289, 320, 325–
327, 329, 333, 379–381, 384

lr-valp-0-lr-0-addr-opener, 218
lr-valp-addr-0, 135
lr-valp-apply-subr-lr-apply-sub

r, 163
lr-valp-car-p-temp-stk-p-run-su

br, 163
br-cons-helper, 162

lr-valp-cdr-assoc-firstn-cdr-as
soc, 135

lr-valp-cons, 162
lr-valp-deposit-a-list-cons, 162
lr-valp-deposit-a-list-cons-con

s, 260
lr-valp-deposit-a-list-cons-num

berp, 260
lr-valp-deposit-a-list-cons-truep, 261
lr-valp-deposit-fetch-free-pointe

r, 114
r-offset, 113
r-offset-helper-1, 112

lr-valp-equal-value-fact, 161

407



lr-valp-f-lr-f-addr-opener, 219
lr-valp-fetch-tag-cons-lr-valp-

car-cdr, 160
lr-valp-fetch-tag-not-cons-lr-v

alp-car-cdr-0, 161
alp-listp, 161

lr-valp-fetch-tag-not-true-lr-v
alp-listp, 163

lr-valp-lr-compile-quote, 324
lr-valp-lr-compile-quote-flag-t, 325
lr-valp-lr-good-pointerp, 153
lr-valp-lr-s-eval-lr-s-similar-te

mps, 150
lr-valp-not-tag-cons-not-listp, 161
lr-valp-not-tag-true-not-listp, 163
lr-valp-t-lr-t-addr-opener, 219
lrps, 10

make-p-call-frame, 38, 74, 210
make-symbol, 12, 13, 147
make-temps-entries, 170–172, 209, 324,

328, 329
mark-instr, 8, 9
max-count-codelist, 13
max-ctrl-reqs, 379, 383
max-r, 178–182, 190
max-temp-reqs, 379, 383
max-word-size-reqs, 379, 383
member-area-name-offset-same, 117
member-assoc-area-name-cdr-lr-p

rograms-properp, 347
member-cdr-assoc-strip-cdrs-defi

nedp, 151
member-definedp-car, 306
member-disjointp-cons-arg2, 145
member-disjointp-non-member-1, 141
member-f-definedp-0, 307
member-lr-all-nodes, 228
member-lr-all-nodes-helper, 227
member-lr-free-list-nodes-type-

addr, 102
member-lr-good-pointerps-type-a

ddr-untag-whole, 366
member-make-symbol-max-count-co

de-list, 13
member-no-duplicatesp-assoc-equ

al, 307
member-strip-cdrs-lr-good-pointe

rp-tablep, 338
my-get-put, 2

name, 8, 9, 33, 59, 132, 168, 306,
309, 318–320, 324, 328, 329,
331, 380, 381

name-car-lr-compile-programs-pr
ogs, 132

name-car-p-prog-segment-s->lr, 381
name-car-s-progs-logic->s, 331
name-formal-vars-temp-var-dcls-p

rogram-body-cons, 59
no-duplicatesp, 117, 143, 147, 149,

150, 307, 308, 310, 318, 329,
332

no-duplicatesp-lr-free-list-node
s, 117

no-duplicatesp-occurences-1, 117
no-duplicatesp-remove-duplicate

s, 310
no-duplicatesp-strip-cars-s-con

struct-programs, 332
no-duplicatesp-strip-cars-s-pro

gs-logic->s, 332
no-duplicatesp-strip-cdrs-lr-ma

ke-temp-name-alist, 147
ke-temp-name-alist-1, 147

not-adpp-untag-add-addr-adpp-unt
ag, 120

not-adpp-untag-node-not-definedp
-lr-heap-name, 116

not-definedp-not-listp, 291
not-definedp-user-fname-p-runti

me-support-programs, 210
not-disjointp-member-arg1-cons-

arg2, 144
not-equal-0-count-list, 16
not-equal-lr-s-eval-temp-setp-n

ot-lr-s-similar-temps, 149
not-equal-make-symbol-car-gensy

408



m, 147
not-equal-x-add1-add1-x, 114
not-equal-x-add1-x, 114
not-iff-lr-s-temp-setp-not-lr-s

-similar-statesp, 150
-similar-statesp-helper, 150

not-labelledp-instrs, 285
not-labelledp-instrs-append, 285
not-labelledp-instrs-comp-body-

1, 285
not-lessp-difference-lr-boundar

y-offsetp-fact, 265
not-lessp-help-fact, 207
not-lessp-length-p-temp-stk-lr-

apply-subr, 89
not-lessp-length-proper-p-statep

-lr-eval-lr-set-pos, 353
not-lessp-lr-count-free-nodes-l

r-data-seg-table-heap-r, 323
r-eval-list-lr-set-pos, 205

not-lessp-lr-p-c-size-flag-t-1, 71
not-lessp-max-r-cadddr, 182
not-lessp-max-r-caddr, 182
not-lessp-max-r-cadr, 182
not-lessp-max-r-car, 182
not-lessp-p-ctrl-stk-size-make-p

-call-frame, 210
not-lessp-p-max-ctrl-stk-size-l

r-funcall, 92
not-lessp-p-max-temp-stk-size-l

r-funcall, 93
r-push-tstk, 60

not-lessp-plus-arity-length-for
mals, 208
mals-alt, 211

not-lessp-x-x, 71
not-listp-p-prog-segment-lr-exp

r, 84
not-listp-p-temp-stk-not-lr-che

ck-result1, 159
not-listp-prog-segment-not-lr-p

rograms-properp, 347
not-listp-s-progs-not-s-good-st

atep, 217

not-lr-check-resourcesp-temp-te
st-bad-max-temp-stk-size, 215

not-lr-valp-lr-undef-addr, 143
not-member-car-gensym-lr-make-te

mp-name-alist-1-cdr, 147
not-member-lr-all-nodes-too-sma

ll-addr, 228
not-member-make-symbol-lr-make-te

mp-name-alist-1-incr, 147
not-member-no-duplicates-cdr-as

soc, 149
soc-helper, 149

not-member-occurences-0, 117
not-p-max-node-fetch-fp-addr-not

-errorp-p-run-cons, 187
not-proper-p-statep-not-listp-p

-ctrl-stk, 75
not-psw-run-lr-eval, 128
not-same-signature-deposit-a-li

st-too-large-addr, 120
not-same-signature-deposit-too-

large-addr, 120
number-cons, 40, 282
number-cons-lr-expr-t-list, 40
numberp-arity, 344
numberp-car-cadr-caddr-cadddr-s

-apply-subr-r, 181
numberp-cdr-lr-p-pc, 45
numberp-cdr-untag-return-pc, 54
numberp-lessp-2-not-1-must-be-0, 265
numberp-lessp-4-not-3-not-2-not

-1-must-be-0, 265
numberp-max-r, 181
numberp-offset-return-pc, 54
numberp-offset-sub-addr, 115
numberp-s-eval-temp-ctrl-ws-heap

-r, 181
-r-opened, 195

nx, 40, 41, 56, 58, 110, 131, 133,
155, 175, 179, 191, 295, 334,
349, 352

object-addrs, 324, 325
occurrences, 117

409



offset, 6–10, 15, 21, 40–42, 44, 48,
53, 54, 57, 58, 61–64, 72,
73, 75–98, 101, 104–107, 109,
110, 113–118, 120–127, 131,
137, 141, 148, 150, 153, 154,
156–160, 163, 168–172, 183,
184, 187, 198–204, 206, 218,
220, 221, 225–234, 241, 242,
249, 250, 253, 256, 264–269,
273, 310–313, 315, 334–343,
345–347, 349, 350, 352–378,
380, 381

offset-add-addr, 53
offset-lr-max-node, 104
offset-p-pc-lr-funcall, 92
offset-sub-addr, 54
offset-tag, 40
offset-tag-cons, 101

p, 36, 37, 46, 75–84, 187, 198–205,
347, 352, 353, 355, 358–363,
367–369, 371–375, 377, 378,
380, 381, 384

p-accessor-clock, 27
p-accessor-code, 26, 27
p-accessors-lr->p, 44
p-accessors-lr-apply-subr, 46
p-accessors-lr-do-temp-fetch, 43
p-accessors-lr-funcall, 42
p-accessors-lr-if-ok, 43
p-accessors-lr-pop-cstk, 44
p-accessors-lr-pop-tstk, 39
p-accessors-lr-push-tstk, 43
p-accessors-lr-set-error, 39
p-accessors-lr-set-expr, 38
p-accessors-lr-set-pos, 39
p-accessors-lr-set-temp, 43
p-accessors-lr-set-tstk, 38
p-accessors-p-halt, 45
p-accessors-p-run-subr, 46
p-accessors-p-set-pc, 46
p-accessors-s->lr1, 101
p-call-okp, 37

p-car-clock, 27, 36, 75, 79, 80, 198,
333, 371

p-car-code, 27, 30, 51, 292
p-cdr-clock, 27, 36, 76, 80, 199, 333,

371
p-cdr-code, 27, 30, 51, 293
p-clock1, 334, 335, 352, 358, 359,

361–363, 368, 374, 377, 378,
381

p-cons-clock, 28, 36, 77, 80, 81, 187,
200, 333, 371

p-cons-code, 27, 30, 51, 293
p-ctrl-stk, 9, 10, 22–25, 36–39, 41,

43–46, 50, 61–63, 75–85, 87,
88, 90–92, 94, 95, 100, 101,
122, 123, 130, 134, 135, 141,
142, 144–146, 148, 150, 151,
165, 182–184, 191, 192, 198–
204, 207, 210, 212, 324, 328,
336–338, 340, 343, 345–347,
353, 355, 358, 360, 361, 366–
368, 370, 376, 378, 380, 382

p-ctrl-stk-size, 87, 92, 182, 184, 192,
198–204, 207, 209, 210, 212,
324, 328

p-ctrl-stk-size-0, 209
p-ctrl-stk-size-p-ctrl-stk-lr-f

uncall, 212
p-ctrl-stk-size-p-ctrl-stk-s->

lr, 328
p-current-instruction, 53
p-current-instruction-opener, 52
p-current-program, 7, 9, 21, 23, 40,

52, 57–59, 61–64, 72, 73,
85–95, 108, 114, 121–125,
130–133, 137, 141, 142, 148,
150, 153–160, 168–172, 175,
176, 183, 184, 192, 206, 336–
339, 341–343, 345–347, 349,
350, 352–370, 373–378, 380

p-current-program-lr-apply-subr, 87
p-current-program-lr-do-temp-fet

ch, 108
p-current-program-lr-eval, 87

410



p-current-program-lr-pop-tstk, 108
p-current-program-lr-push-tstk, 108
p-current-program-lr-set-error, 133
p-current-program-lr-set-expr, 40
p-current-program-lr-set-pos, 40
p-current-program-lr-set-temp, 108
p-current-program-p-state, 52
p-data-segment, 9–11, 22–25, 27, 36–

39, 42–46, 48–50, 63, 75–
84, 86, 87, 90, 94, 95, 101,
109, 114, 121–125, 130, 131,
135, 136, 144, 146, 148, 150–
152, 154–165, 171–176, 182–
185, 187–191, 193–195, 198–
207, 211, 214, 216, 235, 281,
282, 284, 292–294, 308–318,
320, 329, 333, 336–338, 340–
343, 345–347, 355, 358, 360,
361, 366, 368, 370, 378–382,
384

p-false-clock, 28, 36, 79, 81, 201, 333,
372

p-false-code, 28, 30, 51, 293
p-falsep-clock, 29, 36, 78, 82, 202,

333, 372
p-falsep-code, 28, 30, 51, 293
p-final-pc, 351–356, 358–363, 367–

369, 374, 377, 378
p-frame, 3, 19, 142, 144, 145, 337
p-good-resultp, 50–52, 75–79
p-good-resultp-p-halt-errorp-ope

ner, 52
p-good-resultp-p-state-opener, 51
p-good-resultp-run-car, 75
p-good-resultp-run-cdr, 75
p-good-resultp-run-cons, 77
p-good-resultp-run-false, 78
p-good-resultp-run-falsep, 78
p-good-resultp-run-listp, 76
p-good-resultp-run-nlistp, 76
p-good-resultp-run-true, 79
p-good-resultp-run-truep, 77
p-halt, 37, 38, 45, 46, 52
p-last-2-instrs-main-program, 379

p-listp-clock, 29, 37, 76, 82, 203, 333,
372

p-listp-code, 29, 30, 51, 293
p-max-ctrl-stk-size, 10, 22–25, 36–

39, 43–46, 87, 88, 92, 95,
101, 131, 182, 198–204, 207,
210, 370

p-max-ctrl-stk-size-lr-eval, 46
p-max-temp-stk-size, 10, 22–25, 36–

39, 41, 43–46, 60, 63, 64,
88, 89, 93, 95, 101, 111,
131, 139, 182, 198, 200–204,
207, 215, 353, 366–370

p-max-temp-stk-size-lr-eval, 46
p-nlistp-clock, 29, 37, 76, 83, 203,

333, 372, 373
p-nlistp-code, 29, 30, 51, 293
p-objectp, 48, 60–63, 78, 220, 222,

223, 234–237, 239, 240, 262,
310, 311

p-objectp-bad-type, 78
p-objectp-car-lr-compile-quote, 222
p-objectp-cdr-assoc-bindings-pr

oper-p-alistp, 63
p-objectp-cdr-assoc-car-lr-compi

le-quote, 262
p-objectp-cdr-assoc-litatom-prope

r-p-alistp, 61
p-objectp-lookup-deposit, 236
p-objectp-lookup-deposit-a-list, 235
p-objectp-lookup-lr-init-data-se

g-table, 239
p-objectp-opener-alt-lr-proper-

free-listp, 235
p-objectp-similar-p-states, 48
p-objectp-type, 352
p-pc, 7, 9, 10, 21, 23–25, 35, 37–

47, 50, 53, 54, 57–59, 61–
64, 72, 73, 84–95, 101, 108,
114, 121–125, 131, 133, 134,
137, 141, 148, 150, 153, 154,
156–160, 163, 168–172, 183,
184, 206, 308, 334–343, 345–
347, 349, 350, 352–378, 380,

411



381
p-pc-run-car, 371
p-pc-run-cdr, 371
p-pc-run-cons, 371
p-pc-run-false, 372
p-pc-run-falsep, 372
p-pc-run-listp, 372
p-pc-run-nlistp, 372
p-pc-run-true, 373
p-pc-run-truep, 373
p-pc-s->lr, 381
p-plus, 347
p-prog-segment, 10, 23–25, 35–39,

42–46, 48–51, 56, 57, 59,
61, 63, 72, 73, 75–95, 101,
108, 114, 121, 131, 133, 134,
154, 157, 163, 165, 169, 170,
172, 187, 198, 200–204, 212,
283, 308–310, 338, 342–345,
347, 353–362, 364–366, 369–
373, 375, 377, 378, 380–382

p-prog-segment-lr-eval, 46
p-psw, 9, 10, 23–26, 36–46, 50, 60,

62–64, 73, 75–95, 101, 111,
114, 121–125, 128, 130, 131,
133, 135, 137, 138, 141, 142,
144, 145, 148, 151–160, 163–
165, 167–176, 183–185, 187–
195, 198–208, 210–212, 214–
216, 320, 324, 334–338, 340,
342, 343, 345, 346, 352, 353,
355, 357–361, 363, 367–379,
381

p-psw-lr-eval-flag-list-flag-t, 94
p-psw-lr-pop-tstk-lr-eval-flag-t, 175
p-psw-not-run, 46
p-psw-p-halt-x-y-error-msg, 46
p-psw-run-lr-apply-subr-lr-chec

k-resourcesp, 207
p-psw-run-lr-if-ok-p-psw-run, 176
p-psw-run-p-psw-lr-if-ok-not-ru

n-check-resourcesp, 215
p-psw-run-p-run-subr-lr-check-re

sourcesp, 206

p-psw-run-run-car-lr-check-reso
urcesp, 197

p-psw-run-run-cdr-lr-check-reso
urcesp, 198

p-psw-run-run-cons-lr-check-res
ourcesp, 200

p-psw-run-run-false-lr-check-re
sourcesp, 200

p-psw-run-run-falsep-lr-check-re
sourcesp, 201

p-psw-run-run-listp-lr-check-re
sourcesp, 202

p-psw-run-run-nlistp-lr-check-re
sourcesp, 203

p-psw-run-run-true-lr-check-res
ourcesp, 203

p-psw-run-run-truep-lr-check-re
sourcesp, 204

p-recognizer-clock, 26, 29, 30
p-recognizer-code, 26, 29, 30
p-run-subr, 36, 37, 46, 85, 86, 89,

90, 114, 121, 154, 159, 163,
168, 188, 207, 338, 340, 342,
343, 371, 374

p-run-subr-clock, 333, 335, 371, 374
p-run-subr-p-pc-add-addr-lr-p-p

c-lr-p-c-size, 373
p-run-subr-preserves-lr-good-poi

nterp-tablep, 338
nterps, 341

p-run-subr-preserves-lr-proper-
ctrl-stkp, 339
free-listp, 121
heapp, 342
heapp2, 154
heapp2-alt, 342

p-run-subr-preserves-lr-valp, 114
p-runtime-support-programs, 30, 33,

34, 84, 85, 163, 187, 206,
210, 216, 217, 290, 291, 309

p-set-pc, 36, 37, 46, 75–86, 114, 121,
154, 159, 163, 168, 187, 198–
205, 207, 333, 334, 338, 340,
342, 343, 347, 352, 353, 355,

412



358–363, 367–375, 377, 378,
380

p-set-pc-lr->p-equal-p-fact, 370
p-set-pc-lr->p-lr-set-expr, 347
p-set-pc-twice, 374
p-state, 10, 22–26, 36–38, 51–53, 196,

197, 222, 223, 235–240, 262,
263, 274, 285–292, 306–308,
370

p-statep, 11
p-temp-stk, 9–11, 22–25, 27, 36–39,

41, 43–46, 50, 60, 61, 63,
64, 73, 75–85, 89, 92, 93,
95, 101, 111, 130, 131, 136–
140, 148, 151, 152, 154–156,
159–165, 167–171, 174–176,
182, 184, 185, 190, 192, 198–
205, 207, 212, 215, 320, 329,
333, 334, 336, 338, 342, 343,
345–347, 353, 355, 357, 358,
360, 361, 363, 366–370, 378–
382

p-temp-stk-lr-do-temp-fetch-p-p
sw-run, 151

p-temp-stk-lr-pop-tstk, 39
p-temp-stk-p-ctrl-stk-p-data-se

gment-run-car, 79
gment-run-cdr, 80
gment-run-cons, 80
gment-run-false, 81
gment-run-falsep, 81
gment-run-listp, 82
gment-run-nlistp, 82
gment-run-true, 83
gment-run-truep, 83

p-test-bool-and-jump-okp, 196, 197
p-test-bool-and-jump-okp-f-cons

-bool-f, 197
-bool-t, 197

p-test-bool-and-jump-okp-t-cons
-bool-f, 197
-bool-t, 196

p-true-clock, 29, 37, 79, 83, 204, 333,
373

p-true-code, 29, 30, 51, 294
p-truep-clock, 30, 37, 77, 84, 205,

334, 373
p-truep-code, 30, 51, 294
p-word-size, 10, 22–26, 36–39, 43–

50, 63, 86, 88, 95, 101, 131,
182, 198–205, 207, 216, 292–
294, 309, 310, 312–318, 370

p-word-size-lr-eval, 47
pair-formal-vars-with-actuals, 74, 165
pair-formals-with-addresses, 19, 220,

259, 273, 281, 326, 328
pair-formals-with-addresses-lr-

data-seg-table-list, 327
pair-temps-with-initial-values, 74, 75,

165, 171, 344
pairlist-plist-1, 170
plist, 13, 74, 134, 144, 146, 148, 170,

217, 229, 259, 281, 348
plist-delete, 229
plist-listp-x-append-x-not-0, 146
plist-lr-convert-num-to-ascii, 283
plist-strip-cdrs, 281
plistp, 34, 64, 66, 73, 130, 146, 155,

216, 233, 259, 281–283, 285,
296, 309

plistp-comp-body-1, 66
plistp-comp-if, 66
plistp-comp-programs-1, 281
plistp-comp-temp-test, 66
plistp-first-n, 73
plistp-label-instrs, 285
plistp-lastcdr-nil, 130
plistp-lr-all-nodes, 233
plistp-lr-compile-body, 155
plistp-lr-compile-body-1, 216
plistp-lr-expr-s->lr1, 155
plistp-pair-formals-with-addres

ses, 259
plistp-pairlist, 73
plistp-strip-cars, 309
plus-constant-fact-helper-1, 68
plus-times-fact-1, 105
pop, 24, 25, 39, 44, 99, 336

413



pop-p-ctrl-stk-lr-funcall, 92
popn, 38, 74, 93, 173, 345
popn-nlistp, 93
popn-restn, 173
pps, 9
program-body, 7–9, 21, 33, 35, 53,

56–59, 61–64, 72–95, 114,
121–125, 128, 130–132, 137,
141, 148, 150, 153–160, 163,
168–172, 175, 176, 183, 184,
187, 192, 198, 200–204, 206,
283, 286, 288, 292, 307–309,
318, 336–339, 341–343, 345–
347, 349, 350, 352–378, 380

program-body-assoc-cdr-lr-compi
le-programs, 318

program-body-assoc-comp-program
s, 59
s-1, 59

program-body-assoc-lr-compile-p
rograms, 128

program-body-p-current-program-
s->lr1, 132

proper-labeled-p-instructionsp, 49, 64,
282, 285–292, 306, 308

proper-labeled-p-instructionsp-
append, 282
comp-body-1, 292
comp-body-1-helper-1, 285
comp-body-1-helper-2, 286
comp-body-1-helper-3, 287
comp-body-1-helper-4, 287
comp-body-1-helper-5, 289
comp-body-1-helper-6-1, 290
comp-body-1-helper-6-2, 290
comp-body-1-helper-7, 291
find-labelp-non-litatom, 64
label-ret, 306
lr->p-similar-states, 49
nil, 285

proper-p-alistp, 50, 60–63, 92, 220,
274

proper-p-alistp-all-litatoms-al
l-p-objectps-lookup, 220

proper-p-alistp-lr->p-similar
-states, 50

proper-p-alistp-lr-funcall, 92
proper-p-alistp-lr-make-initial

-temps, 274
proper-p-alistp-p-objectp, 60
proper-p-alistp-pair-formal-wit

h-addresses, 273
proper-p-alistp-put-assoc, 62
proper-p-ctrl-stkp, 50, 88, 92
proper-p-ctrl-stkp-lr->p-simi

lar-states, 50
proper-p-ctrl-stkp-lr-apply-sub

r, 88
proper-p-ctrl-stkp-lr-funcall, 92
proper-p-data-segmentp, 49, 52, 90,

109, 310–318
proper-p-data-segmentp-bad-type, 52
proper-p-data-segmentp-deposit, 310
proper-p-data-segmentp-deposit-

a-list-cons, 311
a-list-cons-cons, 311
a-list-cons-numberp, 312
a-list-cons-truep, 312
helper, 310

proper-p-data-segmentp-fetch, 310
proper-p-data-segmentp-implies-

lr-proper-p-areasp, 109
proper-p-data-segmentp-lr->p-

similar-states, 49
proper-p-data-segmentp-lr-apply

-subr, 90
proper-p-data-segmentp-lr-data-

seg-table, 318
proper-p-data-segmentp-lr-init-

data-seg, 316
data-seg-compile-t0, 317
data-seg-helper, 316

proper-p-framep, 63, 86, 87, 92
proper-p-framep-lr->p-similar

-states, 86
proper-p-framep-lr-apply-subr, 87
proper-p-framep-top-p-ctrl-stk-

lr-funcall, 91

414



proper-p-instructionp, 8, 49, 64, 281–
283, 308

proper-p-instructionp-add-addr, 281
proper-p-instructionp-deposit, 281
proper-p-instructionp-eq, 281
proper-p-instructionp-fetch, 281
proper-p-instructionp-jump-labe

l, 283
proper-p-instructionp-pop-globa

l-free-ptr, 281
proper-p-instructionp-push-const

ant-opener, 64
proper-p-instructionp-push-glob

al-free-ptr, 282
proper-p-instructionp-push-loca

l-temp-car, 282
l-temp-cdr, 282
l-temp-cons, 282

proper-p-instructionp-ret, 281
proper-p-instructionp-set-globa

l, 308
proper-p-instructionp-set-local

-temp-cons, 282
proper-p-instructionp-similar-p

-states, 49
proper-p-instructionp-test-bool

-and-jump-label, 283
proper-p-prog-segmentp, 49, 64, 73,

74, 89, 92, 308–310
proper-p-prog-segmentp-append, 64
proper-p-prog-segmentp-comp-pro

grams, 310
grams-1, 308
grams-1-helper, 307

proper-p-prog-segmentp-length-p
rogram-body, 74

proper-p-prog-segmentp-lr->p-
similar-states, 49

proper-p-prog-segmentp-lr-apply
-subr, 88

proper-p-prog-segmentp-p-runtime
-support-programs, 309

proper-p-programp, 8, 292–294, 309
proper-p-programp-append-car-pr

og-segment, 308
proper-p-programp-p-car-code, 292
proper-p-programp-p-cdr-code, 292
proper-p-programp-p-cons-code, 293
proper-p-programp-p-false-code, 293
proper-p-programp-p-falsep-code, 293
proper-p-programp-p-listp-code, 293
proper-p-programp-p-nlistp-code, 293
proper-p-programp-p-true-code, 293
proper-p-programp-p-truep-code, 294
proper-p-push-constant-instructi

onp, 64
proper-p-state-p-p-run-subr-ope

ner-1, 89
ner-2, 89
ner-3, 90

proper-p-statep, 61–64, 73, 75–83,
85–90, 93–95, 109, 114, 121–
125, 130, 131, 133–135, 137,
141, 144–146, 148, 150, 151,
154–161, 163, 164, 168, 170–
176, 182–185, 187, 188, 190–
195, 198, 200–207, 210–212,
214–216, 319, 323, 336–338,
340–343, 345, 346, 352, 353,
355, 357, 358, 360, 361, 363,
366–368, 371–374, 376–378,
380, 383

proper-p-statep-bad-type-1, 75
proper-p-statep-bad-type-2, 78
proper-p-statep-lessp-length-p-te

mp-stk-max-temp-stk-size, 353
proper-p-statep-lr->p-equal-w

ord-size-0, 88
proper-p-statep-lr->p-implies

-lr-proper-p-areasp, 109
proper-p-statep-lr->p-lessp-ct

rl-stk-size, 87
proper-p-statep-lr->p-lessp-m

ax-ctrl-stk-size, 88
ax-temp-stk-size, 88

proper-p-statep-lr->p-lr-eval
-list, 158
-list-helper, 158

415



proper-p-statep-lr->p-lr-pop-t
stk, 62

proper-p-statep-lr->p-lr-push
-tstk, 61

proper-p-statep-lr->p-lr-set-e
xpr, 95

proper-p-statep-lr->p-lr-set-p
os, 62

proper-p-statep-lr->p-member-
formals-definedp-bindings, 135

proper-p-statep-lr->p-not-0-p
-temp-stk, 130

proper-p-statep-lr->p-numberp
-max-ctrl-stk-size, 87
-max-temp-stk-size, 88
-word-size, 88

proper-p-statep-lr->p-plistp-p
-temp-stk, 130

proper-p-statep-lr->p-s->lr, 318
-logic->s, 383
1-strip-cars-bindings-ctrl-stk, 145

proper-p-statep-lr->p-strip-c
ars-bindings-ctrl-stk, 134

proper-p-statep-lr-apply-subr, 90
proper-p-statep-lr-apply-subr-st

ate, 86
proper-p-statep-lr-do-temp-fetc

h, 64
proper-p-statep-lr-funcall, 93
proper-p-statep-lr-if-ok, 95
proper-p-statep-lr-push-tstk-qu

ote, 73
proper-p-statep-lr-set-error, 133
proper-p-statep-lr-set-expr-lr-p

op-cstk, 94
proper-p-statep-lr-set-temp, 63
proper-p-statep-p-run-subr, 85
proper-p-statep-p-set-pc, 352
proper-p-statep-p-set-pc-equal-p

-set-pc, 352
proper-p-temp-stkp, 49, 50, 60, 61,

63, 73, 74, 89, 92, 93, 130
proper-p-temp-stkp-all-p-objectp

s, 74

proper-p-temp-stkp-lr->p-lr-p
ush-tstk, 60

proper-p-temp-stkp-lr->p-simi
lar-states, 49

proper-p-temp-stkp-lr-apply-sub
r, 89

proper-p-temp-stkp-lr-funcall, 93
proper-p-temp-stkp-lr-push-tstk

-assoc-bindings, 61
proper-p-temp-stkp-p-temp-stk-l

r-do-temp-fetch, 63
r-push-tstk-quote, 73

proper-p-temp-stkp-plistp-p-temp
-stk, 130

proper-p-temp-stkp-popn, 74
proper-p-temp-var-dclsp, 49, 284, 307
proper-p-temp-var-dclsp-all-lit

atoms-all-undef-addrs, 284
proper-p-temp-var-dclsp-lr->p

-similar-states, 49
properp-p-temp-var-dclps-member

-lr-programs-properp, 307
push, 24, 38, 151
put, 2, 109, 218, 310
put-assoc, 47, 62, 109, 119, 140, 142–

146, 337
put-assoc-opener-1, 142
put-assoc-opener-2, 142
put-assoc-put-assoc-1, 109
put-assoc-put-assoc-2, 109
put-assoc-restn, 144
put-not-listp, 109
put-put, 109
put-value, 8, 10
put-zero, 109

remainder-difference-not-equal-
lessp-fact, 227

remove-duplicates, 310, 331
restn, 7, 13, 23, 67–71, 99, 108, 112,

144, 149, 159, 160, 167, 173,
282, 295, 304

restn-add1-opener-alt, 159
restn-comp-body-1-list-fact, 69

416



ret-pc, 74, 88, 91, 92, 144, 376
ret-pc-make-p-call-frame, 74
reverse, 73, 100, 160, 163, 164, 166,

167, 170, 344
reverse-butlast, 166
reverse-reverse-alt, 170

s->lr, 22, 319, 323, 328, 329, 333,
378, 380–383

s->lr-ok, 329
s->lr1, 22, 23, 101, 110–112, 132–

140, 144–146, 148, 150–153,
155, 156, 163–165, 170–176,
182–185, 187–195, 205–208,
210–212, 214–216, 274, 306

s->lr1-lr-funcall-s-fun-call-
state, 165

s->lr1-s-set-pos-lr-set-pos, 136
s-add-temp-r, 178–180
s-all-progs-temps-setp, 4, 183, 192,

216, 324, 329, 330
s-all-temps-setp, 4, 183, 192, 216,

324, 329
s-ans, 148, 155, 156, 164, 165, 172,

174, 176, 179, 185, 190, 193,
197–205, 320, 329

s-apply-car-r, 177
s-apply-cdr-r, 177, 178
s-apply-cons-r, 177, 178
s-apply-false-r, 177, 178
s-apply-falsep-r, 177, 178
s-apply-listp-r, 177, 178
s-apply-nlistp-r, 177, 178
s-apply-subr-r, 177, 180, 181, 188,

189, 198–206, 214
s-apply-true-r, 177, 178
s-apply-truep-r, 177, 178
s-body, 4, 18, 20, 22, 128, 132, 134–

140, 144–146, 148, 150–152,
155, 156, 163–165, 170, 171,
173–176, 182–185, 187, 188,
190–195, 205–212, 214–217,
223, 244, 246, 248, 277, 295,

296, 302–305, 318, 324, 329,
330

s-body-car-s-progs-logic->s, 330
s-change-temp, 144, 148
s-check-temps-setp, 4, 183, 192, 216,

324, 329
s-collect-all-temps, 183, 192
s-construct-programs, 331, 332
s-data-seg-body-restrictedp, 248, 277,

278, 294, 314, 326, 331
s-data-seg-list-restrictedp, 248, 278,

294, 314, 326, 327, 331
s-err-flag, 4, 22, 101, 110, 111, 133–

136, 147, 148, 155, 156, 165,
171, 174–176, 178–180, 182,
183, 190–193, 195, 205–207,
209–216, 324, 329, 382

s-eval, 4, 101, 110–112, 133, 136,
147, 148, 155, 156, 164, 165,
171–174, 176, 179, 180, 183–
185, 188–195, 205–207, 209–
212, 214–216, 320, 324, 329,
382

s-eval-ctrl-heap-temp-ws-s-fun-
call-state-opener, 212

s-eval-ctrl-r, 180–182, 209, 210, 213,
319, 324, 329

s-eval-ctrl-r-funcall-opener, 209
s-eval-err-flag-not-run-fact, 101
s-eval-flag-run-car-s-apply-sub

r-r-not-zero, 214
s-eval-flag-run-flag-t-s-check-te

mps-setp, 183
s-eval-flag-run-flag-t-subsetp-

s-collect-all-temps, 183
s-eval-flag-run-s-eval-temp-r-n

ot-zero, 215
s-eval-flag-run-v&c$-not-f-fl

ag-t, 382
s-eval-heap-r, 180–182, 189, 191, 206,

207, 213, 319, 324, 329, 383
s-eval-r, 178–180, 195
s-eval-subsetp-s-collect-temp-a

list-s-set-pos-if, 192

417



s-eval-temp-r, 180–182, 213, 215, 319,
324, 329

s-eval-ws-r, 180–182, 213, 319, 324,
329

s-expand-temps, 4
s-expr, 4, 110–112, 134–140, 144–

146, 148, 150–153, 155, 156,
163–165, 170–174, 179, 180,
183, 187–195, 205–216, 332

s-expr-list, 4, 110, 132, 155, 170, 175,
178, 182, 191, 216

s-expr-logic->s, 332
s-formals, 20, 128, 132, 133, 135,

145, 146, 150, 171, 208, 209,
213, 305, 318, 328, 329, 332,
379

s-formals-car-s-progs-logic->
s, 332

s-formals-s-prog-logic->s, 379
s-fun-call-state, 112, 165, 174, 180,

209, 213, 214
s-good-state-logic->s, 329
s-good-statep, 4, 132, 138–140, 144,

146, 148, 150–152, 164, 170,
171, 174, 176, 183–185, 188–
195, 205–212, 214–217, 281,
306, 318–320, 324, 329, 330

s-good-statep-formals-assoc-cdr
-s-progs, 209

s-good-statep-length-cdr-s-expr
-funcall, 170

s-good-statep-length-s-temp-list, 281
s-good-statep-program-body-car-

lr-compile-programs, 132
s-heap-reqs, 242–245, 250–253, 255,

259, 261–263, 267, 275, 311,
313, 325, 326

s-heap-reqs-body, 243, 244, 275–278,
294, 314, 320, 326

s-heap-reqs-flag-list-cons-opene
r, 252

s-heap-reqs-flag-list-nil-opene
r, 252

s-heap-reqs-list, 244, 245, 277–279,

294, 314, 321, 322, 327
s-heap-reqs-object-0, 267
s-heap-reqs-object-t, 250
s-init-data-seg-restrictedp, 248, 263,

273, 278, 279, 295, 314, 325,
326, 328, 330

s-init-heap-reqs, 244, 245, 263, 278–
280, 295, 315, 322, 323, 325,
326, 328

s-init-ws-reqs, 246, 247, 263, 315
s-l-eval-equiv-hyps, 4
s-l-eval-flag-run-hyps, 4
s-max-subr-reqs, 180, 198–205, 207,

216, 247, 292, 293, 309, 310,
312, 315–318, 324

s-params, 4, 22, 135, 136, 151, 152,
172, 173, 176, 180, 183–185,
188–191, 193, 194, 205–207,
214, 216, 306, 318–320, 323,
324, 328–330, 382

s-params-logic->s, 330
s-pname, 22, 101, 133, 135, 144–146,

150, 156, 187, 320, 324, 328,
329, 331, 381

s-pname-logic->s, 331
s-pos, 4, 22, 101, 110–112, 132–140,

144–146, 148, 150–153, 155,
156, 163–165, 170, 171, 173–
176, 178–180, 182–184, 187–
195, 205–216, 320, 324, 329,
331, 381

s-pos-logic->s, 331
s-prog, 4, 22, 132–140, 144–146, 148,

150–152, 155, 156, 163–165,
170, 171, 173–176, 182–185,
187, 188, 190–195, 205–212,
214–216, 281, 318, 379

s-programs-okp, 169, 208, 212, 305
s-programs-okp-formals-not-f, 208
s-programs-properp, 305
s-progs, 4, 22, 101, 132, 133, 135,

144–146, 150, 156, 165, 171,
172, 183, 187, 192, 208–210,
212, 213, 216, 217, 273, 274,

418



306, 318–320, 323, 324, 328–
332, 380–383

s-proper-exprp, 217, 296, 298, 299,
303, 304

s-proper-exprp-plist-temp-list, 217
s-restrict-subrps, 217, 302–305, 331
s-restrict-subrps-list-lr-prope

r-get-t, 302
s-restrict-subrps-progs, 217, 305, 306,

318, 319, 329, 331
s-restrict-subrps-s-body-member

-s-restrict-subrps-progs, 305
s-restrict-subrps-s-restrict-su

brps-cur-expr, 303
s-restrict-subrps-t-lr-proper-get

-t, 303
s-restricted-objectp, 247, 248, 253,

255, 259–262, 311–313, 324,
325, 330

s-restrictedp, 248, 280, 295, 302, 304–
306, 318–320, 323, 324, 328,
329, 382

s-set-expr, 110, 111, 133, 136, 155,
179, 191, 193, 194

s-set-pos, 110–112, 136, 148, 156,
164, 165, 170–173, 179, 180,
184, 185, 188–190, 192–195,
205–207, 209–215

s-temp-eval, 17, 19–21, 32, 34, 41,
56, 62, 66, 68–70, 73, 84,
111, 129, 139, 142, 144–146,
148, 150, 152, 156, 163, 164,
179, 187, 190, 194, 195, 205,
214, 217, 243, 246, 248, 287,
290, 296, 298–300, 302, 303,
335, 343, 348, 349, 362, 363,
369, 370, 374, 377

s-temp-fetch, 17, 19–21, 32, 34, 42,
56, 63, 64, 66, 69, 70, 73,
84, 111, 129, 140, 146, 150–
152, 156, 163, 164, 180, 187,
190, 194, 195, 205, 214, 217,
243, 246, 248, 286, 290, 295,
298, 300, 302, 303, 335, 337,

343, 348, 349, 365, 368–370,
374, 377

s-temp-list, 20, 128, 132, 133, 145,
146, 150, 171, 172, 209, 210,
213, 281, 305, 318, 328–330

s-temp-list-car-s-progs-logic->
s, 330

s-temp-setp, 150, 179, 194
s-temp-test, 17, 19–21, 33, 34, 41,

56, 62–64, 66, 68–70, 73,
84, 111, 129, 139, 142, 144–
146, 148, 150–152, 156, 163,
164, 179, 187, 190, 194, 195,
205, 214, 215, 217, 243, 246,
248, 286, 287, 290, 296, 298–
300, 302, 303, 335, 337, 343,
348, 349, 364–370, 374, 377

s-temps, 4, 22, 135, 144, 147, 148,
150–152, 172, 173, 176, 179,
180, 183–185, 188–194, 205–
207, 214, 216, 281, 318–320,
323, 324, 328–330

s-temps-logic->s, 330
s-total-heap-reqs, 244, 273, 280, 295,

302, 304–306, 318–320, 323,
324, 328, 329, 380–383

s-total-ws-reqs, 247, 273, 318, 319,
329

s-total-ws-reqs-not-lessp-s-max
-subr-reqs, 318

s-ws-reqs, 245–247, 262, 313
s-ws-reqs-body, 245, 246, 314
s-ws-reqs-flag-not-list-t, 313
s-ws-reqs-list, 246, 247, 314
same-signature, 48–50, 63, 86, 87,

94, 95, 108, 116, 119, 120,
156, 221–224, 267, 311–318,
320

same-signature-car-lr-compile-q
uote, 223
uote-generalized, 221
uote-helper, 221
uote-reducer, 317

same-signature-car-lr-data-seg-t

419



able, 320
able-body, 223
able-list, 224
able-list-helper, 223
able-list-reducer, 317

same-signature-car-lr-init-data
-seg-table, 267
-seg-table-help-1, 267
-seg-table-reducer, 317

same-signature-commutative, 86
same-signature-cons, 119
same-signature-deposit, 116
same-signature-deposit-a-list, 120
same-signature-lr-apply-subr, 86
same-signature-nil, 119
same-signature-p-run-subr, 86
set-local-var-value, 25, 43
signature, 119
strip-cadrs, 35, 284, 292, 344
strip-cars-append, 74
strip-cars-bindings-top-p-ctrl-

stk-lr-funcall, 91
strip-cars-equal-definedp-equal, 141
strip-cars-firstn, 108
strip-cars-lr-compile-programs, 132
strip-cars-lr-make-initial-temp

s, 259
strip-cars-lr-make-temp-name-ali

st, 148
st-1, 148

strip-cars-lr-make-temp-var-dcl
s, 135

strip-cars-lr-temps-strip-cars-te
mp-var-dcls, 146

strip-cars-nil-fact, 140
strip-cars-pair-formals-with-ad

dresses, 259
strip-cars-pair-temps-with-initi

al-values, 74
strip-cars-pairlist, 74
strip-cars-restn, 108
strip-cdrs, 19, 34, 107, 135, 142, 143,

145–147, 149–152, 220, 263,
280, 281, 289, 297–300, 304,

305, 324, 327, 328, 336–338,
343, 344, 366, 382

strip-cdrs-append, 343
strip-cdrs-pair-temps-with-initi

al-values, 344
strip-cdrs-pairlist, 343
strip-logic-fnames, 35, 56, 57, 208,

289–292, 307, 308
strip-logic-fnames-cdr-lr-compi

le-programs, 208
strip-logic-fnames-lr-compile-p

rograms, 208
sub-addr, 44, 54, 96, 98, 103, 105,

115, 116, 225–227, 232
sub-addr-area-name-offset-same, 116
sub1-plus-not-zerop-fact-1, 120
subr-arity-alist, 344
subseqp, 13
subseqp-append, 13
subsetp, 183, 185, 192, 304–306, 308
subsetp-cdr, 306
subsetp-not-member-both, 185

tag, 6, 14, 15, 17, 21–24, 26–29, 37–
40, 75–77, 79–84, 96, 101,
106, 127, 128, 160–163, 186,
218, 225, 229–234, 256–258,
260, 261, 264–266, 268–273,
312, 313, 316, 320, 341, 352,
355, 358, 360, 361, 380, 381

tag-type-name-offset-equal-same, 230
temp-alist-to-set, 4, 183, 192, 216,

324, 329
temp-var-dcls, 9, 33, 35, 38, 56, 57,

59–61, 63, 91, 132–134, 142,
150, 165, 171, 212, 287–289,
292, 307, 309, 344

temp-var-dcls-assoc-comp-progra
ms, 61
ms-1, 60
ms-lr-programs-properp, 91

temp-var-dcls-assoc-p-current-p
rogram-s->lr1, 133

temp-var-dcls-lr-compile-progra

420



ms, 132
times-quotient-lessp-fact-1, 196
top, 11, 27, 41, 63, 75, 76, 78–81,

92, 99–101, 111, 138–140,
146, 334, 336

top-stk, 11
top1, 77, 81
total-heap-reqs, 379, 383
type, 7, 26, 34, 45, 48, 52–55, 64, 75,

78, 96, 97, 102–106, 109,
112–114, 116–118, 121, 126–
128, 152–154, 161, 162, 186,
219, 226–233, 240, 242, 249,
255–258, 260, 261, 264–268,
289, 302, 315, 339, 341, 353,
366

type-add-addr, 53
type-lr-p-pc, 45
type-lr-return-pc, 54
type-sub-addr, 54

unlabel, 8, 53, 71, 75–84, 163, 187,
198, 200–204, 354, 362, 364,
365, 371–373, 375

unlabel-car-last-comp-body, 375
unlabel-get-last-funcall-body-a

ssoc-comp-programs, 375
unlabel-get-lr-p-pc-program-bod

y-assoc-comp-programs, 347
unlabel-list-label, 71
untag, 7, 9–11, 26, 44, 45, 47, 48,

52–55, 61, 75, 78, 86, 90,
91, 96–99, 102–107, 109, 112–
118, 120–122, 124–128, 130,
153–155, 162, 186, 196, 199,
200, 219, 220, 225, 227–233,
235, 240–242, 249, 250, 254–
258, 260, 261, 264–268, 289,
309–311, 318, 339, 342, 366,
379, 381

untag-addr-addr-tag, 106
user-fname, 33, 37, 84, 85, 91, 92,

165, 169, 171, 172, 187, 208–
210, 212, 213, 291, 331, 375

user-fnamep, 51

value, 8–10, 15, 19, 96, 120, 264

x-y-error-msg, 38, 46

zerop-lr-convert-digit-to-ascii, 283
zerop-lr-convert-num-to-ascii, 283

421


