#]
Copyright (C) 1994 by Computational Logic, Inc. All Rights Reserved.

This script is hereby placed in the public domain, and therefore unlimited
editing and redistribution is permitted.

NO WARRANTY

Computational Logic, Inc. PROVIDES ABSOLUTELY NO WARRANTY. THE EVENT SCRIPT
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE SCRIPT IS WITH YOU. SHOULD THE SCRIPT PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT WILL Computational Logic, Inc. BE LIABLE TO YOU FOR ANY DAMAGES,
ANY LOST PROFITS, LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SCRIPT (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY THIRD PARTIES), EVEN IF YOU HAVE ADVISED US OF THE POSSIBILITY OF
SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

; was lr-evalb-1.events

EVENT: Start with the library "app-c-d-e" using the compiled version.

THEOREM: axiom-53
subrp (fn) — (formals (fn) = f)

EVENT: Disable proper-p-statep-restructuring.

;3 Function for testing s->r

DEFINITION:
change-elements (list)
= if listp (list)
then if truep (car (list)) then cons (FALSE, change-elements (cdr (list)))
else cons (TRUE, change-elements (cdr (list))) endif

elseif truep (list) then FALSE
else TRUE endif

EVENT: Disable deposit.

EvENT: Disable fetch.

EVENT: Disable add-addr.

EvVENT: Disable sub-addr.

EVENT: Disable offset.

EVENT: Disable area-name.
EVENT: Disable errorp.

EVENT: Disable p-current-program.

;; The following is inspired by the lemma length-put of Piton.
;3 Now in Piton-basis A. Flatau 8-0ct-1990

; (prove-lemma MY-LENGTH-PUT (rewrite)

; (equal (length (put val n 1lst))

; (if (lessp n (length 1lst))

; (length 1st)

; (add1 n)))

; ((enable put)))

; (disable my-length-put)

;3 This is similar to the lemma GET-PUT from Piton, but for the commented
;; out hypothesis.

THEOREM: my-get-put
((keN)A (neN))
— (get (k, put (val, n, Ist))
= if Kk = n then val
else get (k, Ist) endif)

EVENT: Disable my-get-put.

THEOREM: listp-cdr-p-frame
listp (cdr (p-frame (bindings, ret-pc)))

THEOREM: equal-cddr-p-frame-nil
cddr (p-frame (bindings, ret-pc)) = nil

#1 1
;5 The following is used to test handling of temp variables
(defn FOO (state name)
(let ((prog (app name state)))
(cons state (cons (car prog) (cons (cadr prog) (caddr prog))))))

; (setq ss

; (logic->s ’(change-elements (cons ’*1xtrue (app x y)))
;0 2((x . (x1xtrue *1*xtrue . *1xfalse))

; (y . (x1xtrue . *1xfalse)))

; ’ (change-elements app)))

; (setq 1lrs (s->1r ss ’main 50 50 50 32))

; (setq foop

; > (FOO (STATE NAME)

; ((APP NAME STATE)

; (CDR ((TEMP-FETCH) (APP NAME STATE))))
5 (CONS STATE

s (CONS (CAR ((TEMP-EVAL) (APP NAME STATE)))
; (CONS (CAR ((TEMP-EVAL)

5 (CDR ((TEMP-FETCH) (APP NAME STATE)))))
; (CAR (CDR ((TEMP-FETCH)

; (CDR ((temp-fetch)

; (APP NAME STATE)))))))))))

; (setq ss1 (s-state (s-expr ss)

; (s-params ss)

; (s-temps ss)

; (s-consts ss)

; (put-assoc (cdr foop) ’foo (s-progs ss))
; ’run))

; (setq ss2 (s-state ’(FOO (CHANGE-ELEMENTS (CONS ’(ADDR (heap . 4))
; (APP ((temp-eval) X) Y)))

; ((temp-fetch) X))

; (s-params ssl1)

; (make-temps-entries ’(x))

; (s-consts ssl)

; (s-progs ssl)

; ’run))
RE:

DEFINITION:

s-l-eval-equiv-hyps (flag, s, c)

= (s-good-statep (s, ¢)
A good-posp (flag, s-pos (s), s-body (s-prog (s)))
A (s-err-flag (s-eval (flag, s, ¢)) = ’run))

DEFINITION:
s-l-eval-flag-run-hyps (flag, s, ¢)
= (s-good-statep (s, c)
A s-all-temps-setp (flag,
if flag = *1ist then s-expr-list (s)
else s-expr (s) endif,
temp-alist-to-set (s-temps (s)))
A s-all-progs-temps-setp (s-progs (s))
A if flag = ’list
then f ¢ l-eval (flag,
s-expand-temps (flag, s-expr-list (s)),
s-params (),
)
else l-eval (flag,
s-expand-temps (flag, s-expr (s)),
s-params (),
¢) endif
A s-check-temps-setp (s-temps (s)))

;3 ***%*xx The LR-level (R for Resource, L for logic). s*kxx

;; We used to have an LR-STATE shell. Now we just use a P-STATE shell.

;; However we refer to LR-STATES which are P-STATEs with LR level programs.
;3 The function LR->P compiles an LR-STATE to a Piton state, by compiling
;; the programs and converting the P-PC to a Piton PC.

;; We use P-STATE shells instead of LR-STATE shell because we used to have
;; define functions analogous to P-OBJECTP (and functions that called

;35 P-OBJECTP) that took LR-STATES or parts thereof.

;; We use the Piton notion of a PROPER state. It should be the case that
;35 all the LR-STATEs we are interested in are PROPER-P-STATEPs after we
;3 apply LR->P to them.

;; An LR PC object is a combination of a Piton PC object and an S level
;5 S-PNAME and S-POS. The translation of (s-pname s) and (s-pos s) from
;; the S level is: (TAG ’PC (CONS (S-PNAME S) (S-POS S)))

;; Each element of P-PROG-SEGMENT is a program. A program is a list
;; of the form:

;; (name (formall formal2 ... formaln)
H ((templ initl)

HH (tempk initk))
HK body)

;3 The name and each formal and temp is a symbol. The initial values

;; of the temps are tagged values. Body is a form similar to that for
;; the S level, but temporary expressions have been replaced the name of
;; a temporary variable added to them

;3 e.g. ((S-TEMP-EVAL) <expr>) -> ((S-TEMP-EVAL) <expr> <var>).

;5 In the case of (S-TEMP-FETCH) <expr> is never used but we put it

;; in for consistency and so it is easier to convert back to s-states.
;3 Also the numbers in the S level quote constructs have been replaced
;; by data-addresses that should contain pointers to the appropriate

;; structure in the heap.

;; Roughly speaking, a function application of FUN binds the formals to

;3 the top n elements of the temp-stk (removing them from that stack and
;; building a ctrl-stk frame), binds the temps to the corresponding tagged
;; values (also in the ctrl-stk frame), and executes each instruction.

;3 Producing LR-code from S-code.

DEFINITION: LR-UNDEFINED-TAG = 0

; Used in node to indicate
; uninitialized temporary variable

DEFINITION: LR-INIT-TAG = 1

; Used in initial nodes that have
; not been used

DEFINITION: LR-FALSE-TAG = 2
DEFINITION: LR-TRUE-TAG = 3
DEFINITION: LR-ADD1-TAG = 4

DEFINITION: LR-CONS-TAG = 5

DEFINITION:

DEFINITION:

DEFINITION:

DEFINITION:

DEFINITION:

DEFINITION:

DEFINITION:

DEFINITION:

DEFINITION:

DEFINITION:

DEFINITION:

DEFINITION:

LR-PACK-TAG = 6

LR-MINUS-TAG = 7

LR-HEAP-NAME = ’heap
LR-NODE-SIZE = 4

LR-UNDEF-ADDR = tag (’addr, ’ (heap . 0))
LR-F-ADDR = add-addr (LR-UNDEF-ADDR, LR-NODE-SIZE)
LR-T-ADDR = add-addr (LR-F-ADDR, LR-NODE-SIZE)
LR-0-ADDR = add-addr (LR-T-ADDR, LR-NODE-SIZE)
LR-FP-ADDR = tag (’addr, ’ (free-ptr . 0))
LR-ANSWER-ADDR = tag (’addr, ’ (answer . 0))

Ir-fetch-fp (data-seg) = fetch (LR-FP-ADDR, data-seg)

LR-MINIMUM-HEAP-SIZE = offset (add-addr (LR-0-ADDR, LR-NODE-SIZE))

;; The heap is a (presumably large) Piton data area.
One word is for the tag, one for the reference
Some data-types only require one word
;35 for the contents (e.g. NUMBERPs) in that case one word is wasted.
data-types require more than two words. In this case the
This contains up to three
the fourth word (if the data type needs more that four
The heap is

;3 which are four words.
and two for the contents.

;3 count,

;; (user-defined)
;; second word is
;; words of data,
;; words) is used
;; the Piton data

a pointer to another node.

to link another node with the same format.
area named HEAP.

;3 LR-NEW-NODE returns another node to be stuck in memory

DEFINITION:

Ir-new-node (tag, ref-count, valuel , value2)
= list (tag, ref-count, valuel, value2)

DEFINITION:

DEFINITION:

DEFINITION:

DEFINITION:

LR-REF-COUNT-OFFSET = 1

LR-CAR-OFFSET = 2

LR-CDR-OFFSET = 3

LR-UNPACK-OFFSET = 2

It contains Nodes

DEFINITION: LR-UNBOX-NAT-OFFSET = 2
DEFINITION: LR-NEGATIVE-GUTS-OFFSET = 2

DEFINITION:
Ir-boundary-offsetp (offset) = ((offset mod LR-NODE-SIZE) = 0)

DEFINITION:
Ir-boundary-nodep (node) = lr-boundary-offsetp (offset (node))

DEFINITION:

Ir-nodep (addr, data-seq)

= ((type (addr) = ’addr)

(cddr (addr) = nil)

listp (addr)

A adpp (untag (addr), data-seg)

A Ir-boundary-nodep (addr)

A (area-name (addr) = LR-HEAP-NAME))

> >

;3 LR—-GOOD-POINTERP checks that an addr is a node and its ref count field
;; 1s a natural.

DEFINITION:
Ir-good-pointerp (addr, data-seq)
= (lr-nodep (addr, data-seg)
A (type (fetch (add-addr (addr, LR-REF-COUNT-OFFSET), data-seg))
= ’nat))

DEFINITION:
Ir-expr (p) = cur-expr (offset (p-pc (p)), program-body (p-current-program (p)))

EvVENT: Disable Ir-expr.

DEFINITION:
Ir-expr-list (p)
= restn (car (last (offset (p-pc (p)))),
cur-expr (butlast (offset (p-pc (p))),
program-body (p-current-program (p))))

EVENT: Disable Ir-expr-list.

;35 Debugging Stuff.

DEFINITION:
mark-instr (instruction-list, n)
= ifn~0
then cons (list (’pc—>, car (instruction-list)), cdr (instruction-list))
else couns (car (instruction-list),
mark-instr (cdr (instruction-list), n — 1)) endif

DEFINITION:
fix-program-segment (programs, pc)
= if listp (programs)
then let prog be car (programs)
in
if car (prog) = area-name (pc)
then cons (append (list (car (prog), cadr (prog), caddr (prog)),
mark-instr (program-body (prog), offset (pc))),
fix-program-segment (cdr (programs), pc))
else cons (car (prog),
fix-program-segment (cdr (programs), pc)) endif endlet
else nil endif

DEFINITION:
fix-data-segment (data-segment)
= put-value (append (firstn (offset (Ir-fetch-fp (data-segment)),
value (LR-HEAP-NAME, data-segment)),
length (value (LR-HEAP-NAME, data-segment))
— offset (Ir-fetch-fp (data-segment))),
LR-HEAP-NAME,
data-segment)

DEFINITION:
find-non-proper-instr (Ist, name, p)
= if listp (Ist)
then if legal-labelp (car (Ist))
A proper-p-instructionp (unlabel (car (Ist)), name, p)
then find-non-proper-instr (cdr (Ist), name, p)
else car (Ist) endif
else nil endif

DEFINITION:
find-non-proper-programs (progs, p)
= if listp (progs)
then if proper-p-programp (car (progs), p)
then cons (name (car (progs)),
find-non-proper-programs (cdr (progs), p))
else cons (list (’not,

name (car (progs)),
find-non-proper-instr (program-body (car (progs)),
name (car (progs)),
p)),
find-non-proper-programs (cdr (progs), p)) endif
else nil endif

DEFINITION:
pps (state)
= list (’p-state,
p-pc (state),
p-ctrl-stk (state),
p-temp-stk (state),
let p be p-current-program (state)
in
append (list (name (p), formal-vars (p), temp-var-dcls (p)),
mark-instr (program-body (p), offset (p-pc (state)))) endlet,
fix-data-segment (p-data-segment (state)),
p-psw (state))

DEFINITION:

Ir- nodlfy—tag (tag)

= if untag (tag) = LR-FALSE-TAG then ’false
elseif untag (tag) = LR-TRUE-TAG then ’true
elseif untag (tag) = LR-ADD1-TAG then ’addl
elseif untag (tag) = LR-CONS-TAG then ’cons
elseif untag (tag) = LR-PACK-TAG then ’pack
else ’unknown endif

DEFINITION:
Ir-nodify (number, nodes, final)
= if listp (nodes)
then couns (list (*node,
number,
Ir-nodify-tag (car (nodes)),
caddr (nodes),
cadddr (nodes)),
Ir-nodify (number 4+ LR-NODE-SIZE, cddddr (nodes), final))
else final endif

DEFINITION:
Ir-fix-data-segment (data-seg)
= put-value (Ir-nodify (0,
firstn (offset (Ir-fetch-fp (data-seg)),
value (LR-HEAP-NAME, data-seg)),

length (value (LR-HEAP-NAME, data-seg))
— offset (Ir-fetch-fp (data-seg))),
LR-HEAP-NAME,
data-seq)

DEFINITION:

Irps (state)

= p-state (p-pc (state),
p-ctrl-stk (state),
p-temp-stk (state),
p-prog-segment (state),
Ir-fix-data-segment (p-data-segment (state)),
p-max-ctrl-stk-size (state),
p-max-temp-stk-size (state),
p-word-size (state),
p-psw (state))

;; Returns the object denoted by addr in the heap.

DEFINITION:

Ir-abs (addr, data-seg, n)

= if n ~ 0 then nil

else let tag be untag (fetch (addr, data-seq))
in
if tag = LR-FALSE-TAG then f
elseif tag = LR-TRUE-TAG then t
elseif tag = LR-ADD1-TAG
then untag (fetch (add-addr (addr, LR-UNBOX-NAT-OFFSET),
data-seq))

elseif tag = LR-CONS-TAG
then couns (Ir-abs (fetch (add-addr (addr, LR-CAR-OFFSET),

data-seg),
data-seg,
n 1),
Ir-abs (fetch (add-addr (addr, LR-CDR-OFFSET),
data-seg),
data-seq,
n—1))

elseif tag = LR-PACK-TAG
then pack (Ir-abs (fetch (add-addr (addr,
LR-UNPACK-OFFSET),

data-seg),
data-seq,
n —1))

else — untag (fetch (add-addr (addr,

10

LR-NEGATIVE-GUTS-OFFSET),
data-seq)) endif endlet endif

DEFINITION:
top-stk (p-or-p-state)
= let temp-stk be if p-statep (p-or-p-state)
then p-temp-stk (p-or-p-state)
else p-temp-stk (p-or-p-state) endif,
data-segment be if p-statep (p-or-p-state)
then p-data-segment (p-or-p-state)
else p-data-segment (p-or-p-state) endif
in
Ir-abs (top (temp-stk), data-segment, 1000) endlet

;; This is accessed by the Piton accessors: NAME, FORMAL-VARS, TEMP-VAR-DCLS
;; and PROGRAM-BODY. Also LOCAL-VARS.

DEFINITION:
Ir-make-program (name, formals, temps, body)
= cons (name, cons (formals, cons (temps, body)))

#| |
stolen from matt kaufmann’s code for gensym, but modified to probably be
less useful but simplier.

here is a sequence of events for generating a new symbol.

the main function is near the end, and is called gensym.

gensym returns a pair the new symbol and the next number list to try.
here are some examples:

>(r-loop)

trace mode: off abbreviated output mode: on
type 7 for help.
(gensym (unpack ’a) ’(49) ’(ax0 axl a*2 ax*3))
> (ax4 53)
*(gensym (unpack ’ax) ’(53) ’(a*x0 axl a*2 a*3 ax4))
> (axb5 54)
*(gensym (unpack ’ax) ’(50) ’(ax2))
> (a*3 52)
(gensym (unpack ’ax) ’(50) ’(ax0))
> (a*2 51)
*(gensym (unpack ’a) ’(48) ’(ax0 ax1))
> (a0 49)
*(gensym (unpack ’a) ’(48) ’(a b))

11

> (a0 49)

*(gensym (unpack ’a*2x) ’(51) ’(a*x2%3))
> (a*2%4 53)

*(gensym (unpack ’bx) ’(50) ’(a*x0 axl a*2 a*3))
> (b*2 51)

*ok

exiting r-loop.

nil

| 1#

DEFINITION: ASCII-0 = 48

DEFINITION: ASCII-1 = 49

DEFINITION: ASCII-9 = 57

DEFINITION: ASCII-DASH = 45
DEFINITION: LIST-ASCII-0 = list (ASCII-0)
DEFINITION: LIST-ASCII-1 = list (ASCII-1)

DEFINITION:
increment-numlist (numlist)
= if listp (numlist)
then if car (numlist) = ASCII-9
then cons (ASCII-0, increment-numlist (cdr (numlist)))
else cons (1 + car (numlist), cdr (numlist)) endif
else LisT-AscII-1 endif

DEFINITION:
make-symbol (initial, digit-list)
= pack (append (append (initial, digit-list), 0))

EVENT: Disable make-symbol.

DEFINITION:

count-codelist1 (numlist)

= if listp (numlist)
then car (numlist) + (10 % count-codelist1 (cdr (numlist)))
else 0 endif

12

DEFINITION:
subseqp (list1, list2)
= ((length (list2) &£ length (list1))
A (firstn (length (list1), list2) = list1))

EVENT: Disable subseqp.

DEFINITION:

count-codelist (initial, ascii-list)

= if subseqp (initial, ascii-list)
then count-codelist1 (restn (length (initial), ascii-list))
else 0 endif

EVENT: Disable count-codelist.

DEFINITION:
max-count-codelist (initial, list)
= if listp (list)
then max (count-codelist (initial, unpack (car (list))),
max-count-codelist (initial, cdr (list)))
else 0 endif

THEOREM: increment-num-list-count-code-list1
count-codelist1 (num-list) < count-codelistl (increment-numlist (num-list))

THEOREM: subseqp-append
subseqp (plist (z), append (z, anything))

THEOREM: count-codelist-make-symbol

(z = make-symbol (initial, num-list))

— (count-codelist (plist (initial), unpack (x))
= count-codelist1 (num-list))

THEOREM: member-make-symbol-max-count-code-list
(make-symbol (initial, num-list) € atom-list)
— (max-count-codelist (plist (initial), atom-list)

£ count-codelist1 (num-list))

;; Returns a pair, the new symbol and the next number to use

DEFINITION:
gensym (initial, num-list, atom-list)
= if make-symbol (initial, num-list) € atom-list
then gensym (initial, increment-numlist (num-list), atom-list)
else cons (make-symbol (initial, num-list),
increment-numlist (num-list)) endif

13

THEOREM: gensym-is-new
car (gensym (initial, num-list, atom-list)) & atom-list

; MAKE-TEMP-NAME-ALIST takes a temps-alist triple a la S-TEMPS and

; returns an alist with entries of the form:

;; (<temp expression> . <variable>) where <variable> is guaranteed to

; occur only once in the resulting alist and is guaranteed not to occur
;3 in FORMALS.

DEFINITION:
Ir-make-temp-name-alist-1 (initial, num-list, temp-list, formals)
= if listp (temp-list)
then let gensym be gensym (initial, num-list, formals)
in
couns (couns (car (temp-list), car (gensym)),
Ir-make-temp-name-alist-1 (initial,
cdr (gensym),
cdr (temp-list),
formals)) endlet
else nil endif

DEFINITION:
Ir-make-temp-name-alist (temp-list, formals)
= Ir-make-temp-name-alist-1 (unpack (’t*), LIST-ASCII-0, temp-list, formals)

DEFINITION:
Ir-new-cons (car, cdr)
= Ir-new-node (tag (’nat, LR-CONS-TAG), tag (’nat, 1), car, cdr)

;; Deposit LIST of objects at ADDR, ADDR+1, ADDR+2, ... in DATA-SEG.

DEFINITION:
deposit-a-list (list, addr, data-seg)
= if listp (list)
then deposit (car (list),
addr,
deposit-a-list (cdr (list), add1-addr (addr), data-seg))
else data-seg endif

DEFINITION:
Ir-init-heap-contents (addr, size)
= if size ~ 0 then list (tag (’nat, LR-INIT-TAG))
else append (Ir-new-node (tag (’nat, LR-INIT-TAG),
add-addr (addr, LR-NODE-SIZE),
tag (’nat, 0),

14

tag (*nat, 0)),
Ir-init-heap-contents (add-addr (addr, LR-NODE-SIZE),
size — 1)) endif

DEFINITION:
Ir-add-to-data-seg (data-seg, new-node)
= if (length (value (LR-HEAP-NAME, data-seg)) — 1)
&£ (offset (fetch (LR-FP-ADDR, data-seg)) + length (new-node))
then deposit (fetch (add-addr (fetch (LR-FP-ADDR, data-seg),
LR-REF-COUNT-OFFSET),
data-seg),
LR-FP-ADDR,
deposit-a-list (new-node,
fetch (LR-FP-ADDR, data-seq),
data-seq))
else data-seg endif

DEFINITION:
Ir-init-data-seg (heap-size)
= deposit-a-list (list (tag (’nat, LR-FALSE-TAG),
tag (’nat, 1),
LR-UNDEF-ADDR,
LR-UNDEF-ADDR),
LR-F-ADDR,
deposit-a-list (list (tag (’nat, LR-UNDEFINED-TAG),
tag (’nat, 1),
LR-UNDEF-ADDR,
LR-UNDEF-ADDR),
LR-UNDEF-ADDR,
list (list (area-name (LR-FP-ADDR),
add-addr (LR-F-ADDR,
LR-NODE-SIZE)),
list (area-name (LR-ANSWER-ADDR),
tag (’nat, 0)),
cons (LR-HEAP-NAME,
Ir-init-heap-contents (tag (’addr,
cons (LR-HEAP-NAME,
O))?
heap-size)))))

DEFINITION:
count-list (flag, object)
= if flag = ’list
then if listp (object)
then count-list (t, car (object))

15

+ count-list (*1ist, cdr (object))
else 1 endif
elseif listp (object)
then 1 + (1 + (count-list (t, car (object))
+ count-list (t, cdr (object))))
elseif object € N then 1 + count (object)
else 1 endif

THEOREM: not-equal-0-count-list
count-list (flag, object) # 0

THEOREM: lessp-count-list-cdr-count-list-whole

listp (object)

— (count-list (’1ist, cdr (object)) < count-list (*1ist, object))

THEOREM: lessp-count-not-list-car-count-list-whole

listp (object)
(count-list (t, car (object)) < count-list (’1ist, object))

—

;3 LR-COMPILE-QUOTE returns a pair, the new HEAP and the new TABLE.

DEFINITION:
Ir-compile-quote (flag, object, heap, table)
= if flag = ’list
then if listp (object)

then let car-pair be lr-compile-quote (t,
car (object),
heap,
table)

in
Ir-compile-quote (’List,

cdr (object),

car (car-pair),

cdr (car-pair)) endlet

else cons (heap, table) endif
elseif definedp (object, table) then cons (heap, table)

elseif listp (object)
then let pair be lr-compile-quote (’1list,
list (car (object), cdr (object)),
heap,
table)
in
cons (Ir-add-to-data-seg (car (pair),
Ir-new-cons (cdr (assoc (car (object),
cdr (pair))),

16

cdr (assoc (cdr (object),
cdr (pair)))),
cons (cons (object, fetch (LR-FP-ADDR, car (pair))),
cdr (pair))) endlet
elseif object € N
then couns (Ir-add-to-data-seg (heap,
Ir-new-node (tag (’nat, LR-ADD1-TAG),
tag (’nat, 1),
tag (’nat, object),
LR-UNDEF-ADDR)),
cons (cons (object, fetch (LR-FP-ADDR, heap)), table))
elseif truep (object)
then couns (Ir-add-to-data-seg (heap,
Ir-new-node (tag (’nat, LR-TRUE-TAG),
tag (*nat, 1),
LR-UNDEF-ADDR,
LR-UNDEF-ADDR)),
cous (cous (object, fetch (LR-FP-ADDR, heap)), table))
else cons (heap, cons (cons (object, LR-UNDEF-ADDR), table)) endif

;3 LR-DATA-SEG-TABLE-BODY returns a pair, the CAR is the extension of
;3 DATA-SEG with any constants laid down in it, the CDR is an alist
;; mapping objects in the logic to addresses in the new DATA-SEG

;; where they are represented. The initial TABLE is such an alist

DEFINITION:
Ir-data-seg-table-body (flag, expr, data-seg, table)
= if flag = ’list
then if listp (ezpr)
then let dst! be Ir-data-seg-table-body (t,

car (expr),
data-seq,
table)
in
Ir-data-seg-table-body (’list,
cdr (expr),
car (dst1)

cdr (dst1)) endlet
else cons (data-seg, table) endif
elseif listp (expr)
then if (car (ezpr) = S-TEMP-FETCH)
V' (car (expr) = S-TEMP-EVAL)
V' (car (expr) = S-TEMP-TEST)
then Ir-data-seg-table-body (t, cadr (expr), data-seg, table)

17

elseif car (expr) = ’quote
then Ir-compile-quote (t, cadr (expr), data-seg, table)
else Ir-data-seg-table-body (’1ist,
cdr (expr),
data-seq,
table) endif
else cons (data-seg, table) endif

DEFINITION:
Ir-data-seg-table-list (progs, data-seg, table)
= if listp (progs)
then Ir-data-seg-table-list (cdr (progs),
car (Ir-data-seg-table-body (t,
s-body (car (progs)),
data-seq,
table)),
cdr (Ir-data-seg-table-body (t,
s-body (car (progs)),
data-seg,
table)))
else cons (data-seg, table) endif

DEFINITION:
Ir-init-data-seg-table (params, data-seg, table)
= if listp (params)
then let ds-tab be Ir-compile-quote (t, cdar (params), data-seg, table)
in
Ir-init-data-seg-table (cdr (params),
car (ds-tab),
cdr (ds-tab)) endlet
else cons (data-seg, table) endif

DEFINITION:
Ir-data-seg-table (progs, params, heap-size)
= let init-ds-tablel be Ir-compile-quote (’list,
list (t, 0),
Ir-init-data-seg (heap-size),
list (cons (f, LR-F-ADDR)))
in
let init-ds-table2 be lr-init-data-seg-table (params,
car (init-ds-tablel),
cdr (init-ds-tablel))
in
Ir-data-seg-table-list (progs,
car (init-ds-table2),

18

cdr (init-ds-table2)) endlet endlet

DEFINITION:
pair-formals-with-addresses (formals, table)
= if listp (formals)
then couns (cons (caar (formals), cdr (assoc (cdar (formals), table))),
pair-formals-with-addresses (cdr (formals), table))
else nil endif

DEFINITION:
Ir-make-initial-temps (temp-vars)
= if listp (temp-vars)
then couns (cons (car (temp-vars), LR-UNDEF-ADDR),
lr-make-initial-temps (cdr (temp-vars)))
else nil endif

DEFINITION:
Ir-initial-cstk (params, temp-alist, table, pc)
= list (p-frame (append (pair-formals-with-addresses (params, table),
Ir-make-initial-temps (strip-cdrs (temp-alist))),
pc))

DEFINITION:
Ir-compile-body (flag, body, temp-alist, const-table)
= if flag = ’list
then if listp (body)
then cons (Ir-compile-body (t, car (body), temp-alist, const-table),
Ir-compile-body (’1ist,
cdr (body),
temp-alist,
const-table))
else nil endif
elseif listp (body)
then if (car (body) = S-TEMP-FETCH)
vV (car (body) = S-TEMP-EVAL)
V' (car (body) = S-TEMP-TEST)
then list (car (body),
Ir-compile-body (t, cadr (body), temp-alist, const-table),
value (cadr (body), temp-alist))
elseif car (body) = ’quote
then list (’quote, value (cadr (body), const-table))
else cons (car (body),
Ir-compile-body (’1ist,
cdr (body),
temp-alist,

19

const-table)) endif
else body endif

DEFINITION:
Ir-make-temp-var-dcls (temp-alist)
= if listp (temp-alist)
then couns (list (cdar (temp-alist), LR-UNDEF-ADDR),
Ir-make-temp-var-dcls (cdr (temp-alist)))
else nil endif

DEFINITION:
Ir-compile-programs (programs, const-table)
= if listp (programs)
then let prog be car (programs)
in
let temp-alist be Ir-make-temp-name-alist (s-temp-list (prog),
s-formals (prog))
in
cons (Ir-make-program (car (prog),
s-formals (prog),
Ir-make-temp-var-dcls (temp-alist),
Ir-compile-body (t,
s-body (prog),
temp-alist,
const-table)),
Ir-compile-programs (cdr (programs), const-table)) endlet endlet
else nil endif

DEFINITION:
lr-p-c-size (flag, expr)
= if flag = ’list
then if listp (expr)
then Ir-p-c-size (t, car (expr))
+ Ir-p-c-size (*1list, cdr (ezpr))
else 0 endif
elseif listp (expr)
then if car (ezpr) = ’if
then Ir-p-c-size (t, cadr (ezpr))
+ lr-p-c-size (t, caddr (expr))
+ lr-p-c-size (t, cadddr (ezxpr))
+ 4
elseif car (ezpr) = S-TEMP-FETCH then 1
elseif car (expr) = S-TEMP-EVAL
then Ir-p-c-size (t, cadr (ezpr)) + 1
elseif car (expr) = S-TEMP-TEST

20

then Ir-p-c-size (t, cadr (expr)) + 7

elseif car (expr) = ’quote then 1

else Ir-p-c-size (’list, cdr (expr)) + 1 endif
else 1 endif

DEFINITION:
lr-p-c-size-list (n, expr-list)
= if n~0 then 0
elseif n < length (expr-list)
then Ir-p-c-size (t, get (n, expr-list))
+ lr-p-c-size-list (n — 1, expr-list)
else Ir-p-c-size-list (length (expr-list) — 1, expr-list) endif

;3 LR-P-PC-1 returns the number of Piton instructions before the start of
;; the expression denoted by POS in the compilation of EXPR.

DEFINITION:
Ir-p-pc-1 (expr, pos)
= if = listp (pos) then 0
elseif - listp (ezpr) then 0
elseif car (pos) ~ 0 then 0
elseif car (ezpr) = ’if
then if car (pos) ~ 0 then 0
elseif car (pos) = 1 then Ir-p-pc-1 (cadr (ezpr), cdr (pos))
elseif car (pos) = 2
then 3
+ lr-p-c-size (t, cadr (expr))
+ lr-p-pc-1 (caddr (expr), cdr (pos))
else Ir-p-c-size (t, cadr (expr))
+ Ir-p-c-size (t, caddr (exzpr))
+ lr-p-pc-1 (cadddr (ezpr), cdr (pos))
+ 4 endif
elseif car (ezpr) = S-TEMP-FETCH then 0
elseif car (ezpr) = S-TEMP-EVAL then Ir-p-pc-1 (cadr (expr), cdr (pos))
elseif car (expr) = S-TEMP-TEST
then Ir-p-pc-1 (cadr (ezpr), cdr (pos)) + 4
elseif car (expr) = >quote then 0
else Ir-p-c-size-list (car (pos) — 1, expr)
+ lr-p-pc-1(get (car (pos), expr), cdr (pos)) endif

DEFINITION:
Ir-p-pe (1)
= tag(’pc,
cons (area-name (p-pc (1)),
Ir-p-pe-1 (program-body (p-current-program (1)), offset (p-pc (1)))))

21

EvENT: Disable lr-p-pc.

DEFINITION:

s->Irl (s, I, table)

= p-state (tag (’pc, cons (s-pname (s), s-pos (s))),
p-ctrl-stk (1),
p-temp-stk (1),
Ir-compile-programs (s-progs (s), table),
p-data-segment (1),
p-max-ctrl-stk-size (1),
p-max-temp-stk-size (1),
p-word-size (1),
s-err-flag ()

EVENT: Disable s->Irl.

;; Returns an P-STATE.
;3 FREE-HEAP-SIZE is number of free nodes in resulting P-STATE.

DEFINITION:
s->1r (s, fheap-size, maz-ctrl, maz-temp, word-size)
= let temp-alist be lr-make-temp-name-alist (strip-cars (s-temps (s)),
strip-cars (s-params (s))),
dataseg-table be lr-data-seg-table (s-progs (s),
s-params (),
fheap-size)
in
let return-pc be tag(’pc,
cons (s-pname (),
lr-p-pc-1 (Ir-compile-body (t,
s-body (s-prog (s)),
temp-alist,
cdr (dataseg-table)),
5-pos ())))
in
s->1rl (s,
p-state (nil,
Ir-initial-cstk (s-params (s),

temp-alist,
cdr (dataseg-table),
return-pc),

nil,

nil,

22

car (dataseg-table),
maz-ctrl,
max-temp,
word-size,
nil),
cdr (dataseg-table)) endlet endlet

EVENT: Disable s->1r.

DEFINITION:
Ir-params (frame, p)
= firstn (length (formal-vars (p-current-program (p))), bindings (frame))

EVENT: Disable Ir-params.

DEFINITION:
Ir-temps (frame, p)
= restn (length (formal-vars (p-current-program (p))), bindings (frame))

EvVENT: Disable Ir-temps.

DEFINITION:

Ir-set-expr (s1, s2, pos)

= p-state (tag (’pc, cons (area-name (p-pc (s2)), pos)),
p-ctrl-stk (s1),
p-temp-stk (s1),
p-prog-segment (s2),
p-data-segment (s1)
p-max-ctrl-stk-size (s1),
p-max-temp-stk-size (s1),
p-word-size (s1),
p-psw (s1))

7

DEFINITION:

Ir-set-error (s, flag)

= p-state (p-pc(s),
p-ctrl-stk (s),
p-temp-stk (s),
p-prog-segment (s),
p-data-segment (s),
p-max-ctrl-stk-size (s),
p-max-temp-stk-size (s),
p-word-size (s),

flag)

23

DEFINITION:

Ir-set-pos (s, pos)

= p-state (tag (’pc, cons (area-name (p-pc (s)), pos)),
p-ctrl-stk (s),
p-temp-stk (s),
p-prog-segment (),
p-data-segment (s),
p-max-ctrl-stk-size (s),
p-max-temp-stk-size (s),
p-word-size (s),
p-psw (s))

DEFINITION:

Ir-set-tstk (s, temp-stk)

= p-state (p-pc(s),
p-ctrl-stk (s),
temp-stk,
p-prog-segment (),
p-data-segment (s),
p-max-ctrl-stk-size (s),
p-max-temp-stk-size (s),
p-word-size (s),
p-psw (s))

DEFINITION:
Ir-pop-tstk ()
= if p-psw(s) = ’run
then if listp (p-temp-stk (s)) then lr-set-tstk (s, pop (p-temp-stk (s)))
else Ir-set-error (s, ’1r-pop-tstk-empty-stack) endif
else s endif

DEFINITION:
Ir-push-tstk (s, value)
= if p-psw(s) = ’run
then if length (p-temp-stk (s)) < p-max-temp-stk-size (s)
then lr-set-tstk (s, push (value, p-temp-stk (s)))
else Ir-set-error (s, ’1r-push-tstk-full-stack) endif
else s endif

EVENT: Disable Ir-push-tstk.
DEFINITION:
Ir-if-ok (1)

= if p-max-temp-stk-size (I) £ (1 + length (p-temp-stk ({))) then [
else Ir-set-error (I, ’if-temp-stk-overflow) endif

24

EVENT: Disable Ir-if-ok.

DEFINITION:
Ir-set-temp (s, value, var-name)
= if p-psw(s) = ’run
then p-state (p-pc(s),
set-local-var-value (value, var-name, p-ctrl-stk (s)),
p-temp-stk (s),
p-prog-segment (s),
p-data-segment (s),
p-max-ctrl-stk-size (s),
p-max-temp-stk-size (s),
p-word-size (s),
p-psw (s))
else s endif

EVENT: Disable Ir-set-temp.

DEFINITION:
Ir-eval-temp-setp ()
= (local-var-value (caddr (Ir-expr (s)), p-ctrl-stk (s)) # LR-UNDEF-ADDR)

EVENT: Disable Ir-eval-temp-setp.

DEFINITION:

Ir-do-temp-fetch (s)

= if Ir-eval-temp-setp ()
then Ir-push-tstk (s, local-var-value (caddr (Ir-expr (s)), p-ctrl-stk (s)))
else Ir-set-error (s, *temp-fetch-not-set) endif

EVENT: Disable Ir-do-temp-fetch.

DEFINITION:

Ir-pop-cstk (s)

= if p-psw(s) = ’run

then p-state (p-pc (s),

pop (p-ctrl-stk (s)),
p-temp-stk (s),
p-prog-segment (),
p-data-segment (s),
p-max-ctrl-stk-size (s),
p-max-temp-stk-size (s),

25

p-word-size (s),

p-psw (s))
else s endif

EvENT: Disable Ir-pop-cstk.

DEFINITION:
Ir-type-contents-p (object, tag, contents)
= ((type (object) = tag) A (untag (object) = contents))

;3 The following functions are used for the Piton code and to compute the LR
;3 value for certain classes of functions (e.g. all shell accessors).

;3 NOTE: The ’clock’ functions get a Piton state. This is the state just
;; BEFORE the execution of the appropriate CALL instruction. Therefore

;; to look at the parameters, it is necessary to look at the temp stack.
;3 The clock function return the number of Piton instructions necessary to
;3 run the CALL and the code for the SUBR.

;; Recognizers

DEFINITION:

p-recognizer-code (name, tag)

= list (name,
nil,
nil,
> (fetch),
list (’push-constant, tag (’nat, tag)),
’ (eq),
> (test-bool-and-jump f false),
list (’ push-constant, LR-T-ADDR),
’(ret),
list (*dl, *false, ’nil, list (’ push-constant, LR-F-ADDR)),
> (ret))

DEFINITION: p-recognizer-clock (p-state, tag) = 7
;3 Accessor

DEFINITION:
p-accessor-code (name, tag, default, offset)
= list (name,

7 (%),

nil,

’ (push-local x),

26

> (fetch),

list (’push-constant, tag (’nat, tag)),
’ (eq),

> (test-bool-and-jump t argl),

list (’push-constant, default),
’(ret),

’(dl argl nil (push-local x)),
list (’push-constant, tag (’nat, offset)),
> (add-addr),

> (fetch),

’ (ret))

DEFINITION:

p-accessor-clock (p, tag)

= if fetch (top (p-temp-stk (p)), p-data-segment (p)) = tag (’nat, tag)
then 11
else 8 endif

;; Now comes the actual code and values

DEFINITION:
P-CAR-CODE = p—accessor—code(’car, LR-CONS-TAG, LR-0-ADDR, LR—CAR—OFFSET)

DEFINITION: p-car-clock (p) = p-accessor-clock (p, LR-CONS-TAG)

EVENT: Disable p-car-clock.

DEFINITION:
P-CDR-CODE = p-accessor-code (’ cdr, LR-CONS-TAG, LR-0-ADDR, LR-CDR-OFFSET)

DEFINITION: p-cdr-clock (p) = p-accessor-clock (p, LR-CONS-TAG)

EVENT: Disable p-cdr-clock.

DEFINITION:
P-CONS-CODE
= list (’cons,
’nil,
>((temp (nat 0))),
’ (push-global free-ptr),
list (’ push-constant, tag (’nat, LR-CDR-OFFSET)),
> (add-addr),
’ (deposit),

27

> (push-global free-ptr),

list (’push-constant, tag (’nat, LR-CAR-OFFSET)),
’ (add-addr),

’ (deposit),

> (push-global free-ptr),

> (push-global free-ptr),

list (’push-constant, tag (’nat, LR-REF-COUNT-OFFSET)),
’ (add-addr),

’(set-local temp),

> (fetch),

> (push-constant (nat 1)),

> (push-local temp),

> (deposit),

list (’push-constant, tag (’nat, LR-CONS-TAG)),

> (push-global free-ptr),

’ (deposit),

’ (pop-global free-ptr),

’ (ret))

DEFINITION: p-cons-clock (p) = 23

EVENT: Disable p-cons-clock.

DEFINITION:
P-FALSE-CODE
= list (’false,
nil,
nil,
list (’ push-constant, LR-F-ADDR),
> (ret))

DEFINITION: p-false-clock (p) = 3

EVENT: Disable p-false-clock.

;; FALSEP TAKES ONE IMPLICIT ARG ON STACK.

DEFINITION:
P-FALSEP-CODE
= list (*falsep,
’nil,
'nil,
list (’ push-constant, LR-F-ADDR)
> (eq),

28

> (test-bool-and-jump t true),

list (’ push-constant, LR-F-ADDR)

’(ret),

list (*dl, >true, ’nil, list (’push-constant, LR-T-ADDR)),
’ (ret))

DEFINITION: p-falsep-clock (p) = 6

EVENT: Disable p-falsep-clock.

;; Takes an implicit arg

DEFINITION:
P-LISTP-CODE = p-recognizer-code (’1istp, LR-CONS-TAG)

DEFINITION:
p-listp-clock (p) = p-recognizer-clock (p, LR-CONS-TAG)

EVENT: Disable p-listp-clock.

DEFINITION:
P-NLISTP-CODE
= list (’nlistp,
nil,
nil,
> (fetch),
list (’push-constant, tag (’nat, LR-CONS-TAG)),
’ (eq),
> (test-bool-and-jump f true),
list (’push-constant, LR-F-ADDR),
’(ret),
list (*dl, >true, *nil, list (’push-constant, LR-T-ADDR)),
’ (ret))

DEFINITION: p-nlistp-clock (p) = 7

EVENT: Disable p-nlistp-clock.

DEFINITION:
P-TRUE-CODE
= list (*true, ’nil, ’nil, list (’push-constant, LR-T-ADDR), ’ (ret))

DEFINITION: p-true-clock (p) = 3

29

EVENT: Disable p-true-clock.

; The old code for TRUEP is shown below. I used to ensure that there was
; only one occurence of TRUE in the data-segment [namely at address

(1r-t-addr)], however only TRUEP took advantage of this. LR-PROPER-HEAPP

; has been changed to not require only one occurrence, although only one

should appear. However this means we actually have to test the tag, a
small performance penalty for some simplicity and freedom in the spec.

DEFINITION:
P-TRUEP-CODE = p-recognizer-code (’truep, LR-TRUE-TAG)

; (defn P-TRUEP-CODE ()

>

(1ist ’truep 0 ’ 0O

(list ’PUSH-CONSTANT (lr-t-addr))

> (EQ)

> (TEST-BOOL-AND-JUMP T TRUE)

(list ’PUSH-CONSTANT (lr-f-addr))

> (RET)

(list ’DL ’TRUE ’() (list ’PUSH-CONSTANT (lr-t-addr)))
> (RET)))

DEFINITION:
p-truep-clock (p) = p-recognizer-clock (p, LR-FALSE-TAG)

; (defn P-TRUEP-CLOCK (p) 6)

EVENT: Disable p-truep-clock.

DEFINITION:
P-RUNTIME-SUPPORT-PROGRAMS

list (P-CAR-CODE,
P-CDR-CODE,
P-CONS-CODE,
P-FALSE-CODE,
P-FALSEP-CODE,
P-LISTP-CODE,
P-NLISTP-CODE,
P-TRUE-CODE,
P-TRUEP-CODE)

EvVENT: Disable p-runtime-support-programs.

30

DEFINITION:
Ir-convert-digit-to-ascii (digit) = (ASC1I-0 + digit)

DEFINITION:
Ir-convert-num-to-ascii (number, list)
= if number < 10 then cons (Ir-convert-digit-to-ascii (number), list)
else Ir-convert-num-to-ascii (number + 10,
cons (lr-convert-digit-to-ascii (number mod 10),
list)) endif

DEFINITION:
Ir-make-label (n)
= pack (cons (car (unpack (’1)),
cons (ASCII-DASH, append (lr-convert-num-to-ascii (n, nil), 0))))

EvVENT: Disable Ir-make-label.

DEFINITION:
label-instrs (instrs, n)
= if listp (instrs)
then cons (dl (Ir-make-label (n), nil, car (instrs)),
label-instrs (cdr (instrs), 1 + n))
else nil endif

DEFINITION:
comp-temp-test (expr, instrs, n)
= append (list (list (’push-local, caddr (expr)),
list (’push-constant, LR-UNDEF-ADDR),
’ (eq),
list (*test-bool-and-jump,
J f7
Ir-make-label (n + 6 + length (instrs)))),
append (instrs,
list (list (> set-local, caddr (expr)),
list (? jump,
Ir-make-label (n + 7 + length (instrs))),
list (?push-local, caddr (expr)))))

DEFINITION:
comp-if (test-instrs, then-instrs, else-instrs, n)
= append (test-instrs,
append (list (list (’ push-constant, LR-F-ADDR),
’ (eq),
list (’ test-bool-and-jump,

31

) t,
Ir-make-label (n
+ 4
+ length (test-instrs)
+ length (then-instrs)))),
append (then-instrs,
cons (list (? jump,
Ir-make-label (n
4
length (test-instrs)
length (then-instrs)
length (else-instrs))),

+ 4+ +

else-instrs))))

;; COMP-BODY-1 returns a list of Piton instructions to compile EXPR.
;; N is the number of Piton instructions previously generated, it is used
;; to generate unique labels.

DEFINITION:
comp-body-1 (flag, expr, n)
= if flag = ’list
then if listp (expr)
then append (comp-body-1 (t, car (expr), n),
comp-body-1(’1list,
cdr (expr),
n + lr-p-c-size (t, car (expr))))
else nil endif
elseif listp (expr)
then if car (expr) = ’if
then comp-if (comp-body-1 (t, cadr (ezpr), n),
comp-body-1 (t,
caddr (expr),
n + 3 + Ir-p-c-size (t, cadr (ezpr))),
comp-body-1 (t,

cadddr (expr),
n
+ 4

+ lr-p-c-size (t, cadr (expr))
+ lr-p-c-size (t, caddr (ezxpr))),
n)
elseif car (expr) = S-TEMP-FETCH
then list (list (> push-local, caddr (ezpr)))
elseif car (ezpr) = S-TEMP-EVAL
then append (comp-body-1 (t, cadr (expr), n),

32

list (list (’ set-1local, caddr (ezpr))))
elseif car (expr) = S-TEMP-TEST
then comp-temp-test (expr, comp-body-1 (t, cadr (expr), n + 4), n)
elseif car (ezpr) = ’quote
then list (list (* push-constant, cadr (ezpr)))
else append (comp-body-1 (*1list, cdr (expr), n),

if definedp (car (expr),

P—RUNTIME—SUPPORT—PROGRAMS)
then list (list (> call, car (expr)))
else list (list (’call,
user-fname (car (ezpr)))) endif) endif
else list (list (’push-local, ezpr)) endif

EVENT: Disable comp-body-1.

DEFINITION:
comp-body (body)
= label-instrs (append (comp-body-1 (t, body, 0), * ((ret))), 0)

EvENT: Disable comp-body.

DEFINITION:
comp-programs-1 (programs)
= if listp (programs)
then cons (Ir-make-program (name (car (programs)),
formal-vars (car (programs)),
temp-var-dcls (car (programs)),
comp-body (program-body (car (programs)))),
comp-programs-1 (cdr (programs)))
else nil endif

DEFINITION:
comp-programs (programs)
= cons (Ir-make-program (name (car (programs)),
formal-vars (car (programs)),
temp-var-dcls (car (programs)),
label-instrs (append (comp-body-1 (t,
program-body (car (programs)),
0),
list (list (’set-global,
area-name (LR-ANSWER-ADDR)),
) (zet))),
O))7

append (comp-programs-1 (cdr (programs)), P-RUNTIME-SUPPORT-PROGRAMS))

33

EVENT: Disable comp-programs.

DEFINITION:
Ir-proper-exprp (flag, expr, pnames, formals, temps, table)

if flag = ’1ist
then if listp (ezpr)
then lr-proper-exprp (t, car (expr), pnames, formals, temps, table)
A lr-proper-exprp (’list,
cdr (expr),
pnames,
formals,
temps,
table)
else expr = nil endif
elseif litatom (expr) then expr € formals
elseif expr ~ nil then f
elseif — plistp (ezpr) then f
elseif car (ezpr) = S-TEMP-FETCH
then (caddr (exzpr) € temps) A (length (expr) = 3)
elseif (car (expr) = S-TEMP-EVAL) V (car (expr) = S-TEMP-TEST)
then (caddr (expr) € temps)
A (length (expr) = 3)
A Ir-proper-exprp (t, cadr (expr), pnames, formals, temps, table)
elseif car (ezpr) = ’quote
then (type (cadr (ezpr)) = ’addr)
A (cadr (expr) € strip-cdrs (table))
A (length (cdr (expr)) = arity (car (ezpr)))
elseif subrp (car (expr))
then (length (cdr (expr)) = arity (car (expr)))
A ((car (expr) = ’if)
vV definedp (car (expr), P-RUNTIME-SUPPORT-PROGRAMS))
A (car (expr) & pnames)
A lr-proper-exprp (’list,
cdr (expr),
pnames,
formals,
temps,
table)
elseif body (car (expr))
then (length (cdr (expr)) = arity (car (ezpr)))
A (car (expr) € pnames)
A lr-proper-exprp (’list,
cdr (expr),

34

pnames,
formals,
temps,
table)
else f endif

DEFINITION:

all-undef-addrs (list)

= if listp (list)
then (car (list) = LR-UNDEF-ADDR) A all-undef-addrs (edr (list))
else t endif

DEFINITION:
Ir-programs-properp-1 (programs, program-names, table)
= if listp (programs)
then all-litatoms (formal-vars (car (programs)))
A all-litatoms (strip-cars (temp-var-dcls (car (programs))))
A all-undef-addrs (strip-cadrs (temp-var-dcls (car (programs))))
A lr-proper-exprp (t,
program-body (car (programs)),
program-names,
formal-vars (car (programs)),
strip-cars (temp-var-dcls (car (programs))),
table)
A lr-programs-properp-1 (cdr (programs), program-names, table)
else t endif

EvVENT: Disable Ir-programs-properp-1.

DEFINITION:
Ir-programs-properp (I, table)
= (definedp (area-name (p-pc (1)), p-prog-segment (1))
A (caar (p-prog-segment (1)) = ’main)
A all-user-fnamesp (cdr (strip-cars (p-prog-segment (1))))
A Ir-programs-properp-1 (p-prog-segment (1),
strip-logic-fnames (cdr (p-prog-segment (1))),
table))

EVENT: Disable Ir-programs-properp.

THEOREM: Ir-p-c-size-flag-not-list-not-0
(flag # ’1ist) — (lr-p-c-size (flag, expr) # 0)

THEOREM: difference-decreases

(z £y) A (y#£0) = (((z —y) <z)=t)

35

DEFINITION:

Ir->p (p)

= p-state (Ir-p-pc (p),
p-ctrl-stk (p),
p-temp-stk (p),
comp-programs (p-prog-segment (p)),
p-data-segment (p),
p-max-ctrl-stk-size (p),
p-max-temp-stk-size (p),
p-word-size (p),
p-psw (p))

EvENT: Disable Ir->p.

DEFINITION:

p-set-pc (p, pc)

= p-state (pc,
p-ctrl-stk (p),
p-temp-stk (p),
p-prog-segment (p),
p-data-segment (p),
p-max-ctrl-stk-size (p),
p-max-temp-stk-size (p),
p-word-size (p),
p-psw (p))

;5 It should be the case that (P-CURRENT-INSTRUCTION p) = (CALL subr)
;; therefore we need to run P one more step than the clock functions
;; below to do the CALL.

DEFINITION:
p-run-subr (subr, p)
= case on subr:
case = car
then p (p, p-car-clock (p))
case = cdr
then p (p, p-cdr-clock (p))
case = cons
then p (p, p-cons-clock (p))
case = false
then p (p, p-false-clock (p))
case = falsep
then p (p, p-falsep-clock (p))
case = listp

36

then p (p, p-listp-clock (p))
case = nlistp
then p (p, p-nlistp-clock (p))
case = true
then p (p, p-true-clock (p))
case = truep
then p (p, p-truep-clock (p))
otherwise p-halt (p, ’bad-subr) endcase

EVENT: Disable p-run-subr.

DEFINITION:
Ir-return-pc (1)
= add-addr (Ir-p-pc (1), Ir-p-c-size (*1ist, cdr (Ir-expr (1))))

EVENT: Disable Ir-return-pc.

DEFINITION:
Ir-apply-subr (I, new-1)
= let res be p-run-subr (car (Ir-expr (1)),
p-set-pc (Ir->p (new-1), lr-return-pc (1)))
in
p-state (p-pc (new-1),
p-ctrl-stk (res),
p-temp-stk (res),
p-prog-segment (new-1),
p-data-segment (res),
p-max-ctrl-stk-size (res),
p-max-temp-stk-size (res),
p-word-size (res),
p-psw (res)) endlet

EVENT: Disable lr-apply-subr.

DEFINITION:
Ir-funcall (1, new-1)
= let prog be definition (user-fname (car (Ir-expr (1))),
p-prog-segment (1)),
newest-l be p-set-pc (Ir->p (new-1), Ir-return-pc (1))
in
if p-call-okp (list (’ call, user-fname (car (Ir-expr (1)))),
newest-1)
then p-state (tag (’pc, cons (user-fname (car (Ir-expr (1))), nil)),

37

push (make-p-call-frame (formal-vars (prog),
p-temp-stk (new-1),
temp-var-dcls (prog),
addl-addr (p-pc (newest-l))),

p-ctrl-stk (new-1)),

popn (length (formal-vars (prog)), p-temp-stk (new-1)),

p-prog-segment (new-1),

p-data-segment (new-1),

p-max-ctrl-stk-size (new-1),

p-max-temp-stk-size (new-I),

p-word-size (new-1),

’run)

else p-halt (new-1, x-y-error-msg (’p, ’call)) endif endlet

EVENT: Disable Ir-funcall.

;; The following lemmas are needed to admit LR-EVAL

THEOREM: p-accessors-Ir-set-expr
(p-pc (Ir-set-expr (s1, s2, pos)) = tag (’pc, cons (area-name (p-pc (s2)), pos)))

> > > > >

>

A
A

(p-ctrl-stk (lr-set-expr (s1, s2, pos)) = p-ctrl-stk (s1))

p-temp-stk (lr-set-expr (s1, s2, pos)) = p-temp-stk (s1))
p-prog-segment (lr-set-expr (s1, s2, pos)) = p-prog-segment (s2))
p-data-segment (Ir-set-expr (s1, s2, pos)) = p-data-segment (s1))
p-max-ctrl-stk-size (Ir-set-expr (s1, s2, pos))

= p-max-ctrl-stk-size (s1))

(p-max-temp-stk-size (lr-set-expr (s1, s2, pos))

= p-max-temp-stk-size (s1))

(p-word-size (Ir-set-expr (s1, s2, pos)) = p-word-size (s1))

(p-psw (lr-set-expr (s1, s2, pos)) = p-psw (s1))

P

EVENT: Disable Ir-set-expr.

THEOREM: p-accessors-lr-set-tstk
(p-pc (Ir-set-tstk (s, ts)) = p-pc(s))

A
A
A
A
A
A
A
A

(p-ctrl-stk (lr-set-tstk (s, ts)) = p-ctrl-stk (s))

(p-temp-stk (Ir-set-tstk (s, ¢s)) = ts)

(p-prog-segment (Ir-set-tstk (s, ts)) = p-prog-segment (s))
(p-data-segment (Ir-set-tstk (s, ts)) = p-data-segment (s))
(p-max-ctrl-stk-size (Ir-set-tstk (s, ts)) = p-max-ctrl-stk-size (s))
(p-max-temp-stk-size (lr-set-tstk (s, ¢s)) = p-max-temp-stk-size (s))
(p-word-size (Ir-set-tstk (s, ts)) = p-word-size (s))
(p-psw (Ir-set-tstk (s, ts)) = p-psw (s))

38

EVENT: Disable Ir-set-tstk.

THEOREM: p-accessors-lr-set-error
(p-pc (Ir-set-error (s, flag)) = p-pc(s))
A (p-ctrl-stk (Ir-set-error (s, flag)) = p-ctrl-stk (s))

A (p-temp-stk (Ir-set-error (s, flag)) = p-temp-stk (s))

A (p-prog-segment (Ir-set-error (s, flag)) = p-prog-segment (s))

A (p-data-segment (Ir-set-error (s, flag)) = p-data-segment (s))

A (p-max-ctrl-stk-size (Ir-set-error (s, flag)) = p-max-ctrl-stk-size (s))

A (p-max-temp-stk-size (Ir-set-error (s, flag)) = p-max-temp-stk-size (s))
A (p-word-size (Ir-set-error (s, flag)) = p-word-size (s))

A (p-psw (Ir-set-error (s, flag)) = flag)

EVENT: Disable Ir-set-error.

THEOREM: p-accessors-lr-set-pos

(p-pc (Ir-set-pos (s, pos)) = tag (’pc, cons (area-name (p-pc (s)), pos)))
A (p-ctrl-stk (Ir-set-pos (s, pos)) = p-ctrl-stk (s))

A (p-temp-stk (Ir-set-pos (s, pos)) = p-temp-stk (s))

A (p-prog-segment (Ir-set-pos (s, pos)) = p-prog-segment (s))

A (p-data-segment (Ir-set-pos (s, pos)) = p-data-segment (s))

A (p-max-ctrl-stk-size (Ir-set-pos (s, pos)) = p-max-ctrl-stk-size (s))

A (p-max-temp-stk-size (Ir-set-pos (s, pos)) = p-max-temp-stk-size (s))
A (p-word-size (Ir-set-pos (s, pos)) = p-word-size (s))

A (p-psw (lr-set-pos (s, pos)) = p-psw (s))

EVENT: Disable Ir-set-pos.

THEOREM: p-accessors-Ir-pop-tstk
(p-pe (Ir-pop-tstk (s)) = p-pe (s))
A (p-ctrl-stk (Ir-pop-tstk (s)) = p-ctrl-stk (s))
A (p-prog-segment (Ir-pop-tstk (s)) = p-prog-segment (s))
A (p-data-segment (Ir-pop-tstk (s)) = p-data-segment (s))
A (p-max-ctrl-stk-size (Ir-pop-tstk (s)) = p-max-ctrl-stk-size (s))
A (p-max-temp-stk-size (lr-pop-tstk (s)) = p-max-temp-stk-size (s))
A (p-word-size (Ir-pop-tstk (s)) = p-word-size (s))
THEOREM: p-temp-stk-lr-pop-tstk
p-temp-stk (lr-pop-tstk (s))
= if listp (p-temp-stk (s)) A (p-psw(s) = ’run)
then pop (p-temp-stk (s))
else p-temp-stk (s) endif

EVENT: Disable Ir-pop-tstk.

39

THEOREM: area-name-tag
area-name (tag (tag, adp)) = adp-name (adp)

THEOREM: offset-tag
offset (tag (tag, adp)) = adp-offset (adp)

THEOREM: p-current-program-Ir-set-expr
p-current-program (Ir-set-expr (s1, s2, pos)) = p-current-program (s2)

THEOREM: p-current-program-Ir-set-pos
p-current-program (Ir-set-pos (s, pos)) = p-current-program (s)

THEOREM: lr-expr-lr-set-expr
Ir-expr (Ir-set-expr (s1, s2, dv (offset (p-pc (s2)), n))) = get (n, Ir-expr (s2))

THEOREM: Ir-expr-lr-set-pos-t
Ir-expr (Ir-set-pos (s, dv (offset (p-pc (s)), n))) = get (n, lr-expr (s))

THEOREM: Ir-expr-flag-list-car
listp (offset (p-pc (p))) — (car (Ir-expr-list (p)) = lr-expr (p))

THEOREM: number-cons-lr-expr-t-list

(listp (Ir-expr-list (p)) A listp (offset (p-pc (p))))
— (number-cons (Ir-expr (p)) < number-cons (Ir-expr-list (p)))

THEOREM: Ir-expr-Ir-set-expr-nx

(listp (offset (p-pc (p))) A listp (lr-expr-list (p)))

— (lr-expr-list (Ir-set-expr (p1, p, nx (offset (p-pc(p)))))
= cdr (Ir-expr-list (p)))

THEOREM: Ir-expr-list-lr-set-pos-dv-1

listp (Ir-expr (p))

— (lr-expr-list (Ir-set-pos (p, dv (offset (p-pc (p)), 1)))
= cdr (Ir-expr (p)))

;3 If FLAG is ’LIST then state contains a list of expressions,

;3 otherwise it is just one.

;; Returns a P-STATE. The result is left on the temp stack.

;3 If the error flag of the resulting state is ’HALT then we terminated
;; normally. If the flag is ’RUN we have not terminated yet.

;5 If the flag is anything else we got an error.

DEFINITION:

Ir-eval (flag, 1, ¢)

= if p-psw(l) # ’run then [
elseif flag = ’list

40

then if offset (p-pc (1)) ~ nil
then Ir-set-error (I, ’bad-1list-position)
elseif listp (lr-expr-list (1))
then lr-eval (’list,
Ir-set-expr (Ir-eval (t, I, ¢), I, nx (offset (p-pc (1)))),
c)
else | endif
elseif ¢ ~ 0 then Ir-set-error (I, ’out-of-time)
elseif litatom (Ir-expr (1))
then Ir-push-tstk (I, local-var-value (Ir-expr (1), p-ctrl-stk (1)))
elseif Ir-expr (I) ~ nil then lr-set-error (I, *bad-expression)
elseif car (Ir-expr (1)) = ’if
then let test be lr-if-ok (Ir-eval (t,
Ir-set-pos (I,
dv (offset (p-pe (1)), 1)),
)

in
if p-psw (test) = ’run
then if top (p-temp-stk (test)) # LR-F-ADDR
then lr-eval (t,
Ir-set-expr (lr-pop-tstk (test),
l7
dv (offset (p-pc (1)), 2)),
¢)
else Ir-eval (t,
Ir-set-expr (lr-pop-tstk (test),
la
dv (offset (p-pc (1)), 3)),
¢) endif
else test endif endlet
elseif car (Ir-expr (1)) = S-TEMP-EVAL
then let I be Ir-eval (t, Ir-set-pos (I, dv (offset (p-pc (1)), 1)), ¢)
in
Ir-set-temp (11, top (p-temp-stk (1)), caddr (Ir-expr (1))) endlet
elseif car (Ir-expr (/)) = S-TEMP-TEST
then let i1 be Ir-eval (t, Ir-set-pos (I, dv (offset (p-pc (1)), 1)), ¢)
in
if p-max-temp-stk-size (1)
£ (2 + length (p-temp-stk (1)))
then if Ir-eval-temp-setp (I) then lr-do-temp-fetch (1)
else Ir-set-temp (11,
top (p-temp-stk (11)),
caddr (Ir-expr (1))) endif
else Ir-set-error (1,

41

’1r-temp-setp-temp-stack-overflow) endif endlet
elseif car (Ir-expr (/)) = S-TEMP-FETCH then lr-do-temp-fetch (1)
elseif car (Ir-expr (1)) = ’quote
then Ir-push-tstk (I, cadr (lr-expr (1)))
elseif p-psw (Ir-eval (*1ist, Ir-set-pos (I, dv (offset (p-pc (1)), 1)), ¢))
’run
then Ir-eval (’1ist, lr-set-pos (I, dv (offset (p-pc (1)), 1)), ¢)
elseif subrp (car (lr-expr (1)))
then Ir-apply-subr (1,
Ir-eval (°1ist,
Ir-set-pos (I, dv (offset (p-pc (1)), 1)),
c))
elseif litatom (car (Ir-expr (1)))
then let fs be Ir-funcall (I,
Ir-eval (’1ist,
Ir-set-pos (I,
dv (offset (p-pe (1), 1)),
o)

in
Ir-set-expr (lr-pop-cstk (Ir-eval (t, fs, ¢ — 1)),
[
offset (p-pc (1))) endlet
else Ir-set-error (I, ’bad-instruction) endif

;3 Proper LR STATES

;3 Sometimes we only need to know that LR-PROPER-P-AREASP holds on
;; a data-segment instead of LR-PROPER-P-DATA-SEGMENTP

DEFINITION:

Ir-proper-p-areasp (data-seg)

= if data-seg ~ nil then data-seg = nil

else let area be car (data-seg)

in
litatom (car (area))
A listp (cdr (area))
A (= definedp (car (area), cdr (data-seg)))
A Ir-proper-p-areasp (cdr (data-seg)) endlet endif

;3 First we prove that LR-EVAL preserves PROPER-P-STATEP.

THEOREM: p-accessors-lr-funcall
(p-prog-segment (Ir-funcall (I, new-1)) = p-prog-segment (new-1))
A (p-data-segment (Ir-funcall (I, new-1)) = p-data-segment (new-1))

42

A

A

A

(p-max-ctrl-stk-size (Ir-funcall (I, new-1))

= p-max-ctrl-stk-size (new-1))

(p-max-temp-stk-size (Ir-funcall (I, new-1))

= p-max-temp-stk-size (new-1))

(p-word-size (Ir-funcall (I, new-1)) = p-word-size (new-1))

THEOREM: p-accessors-Ir-push-tstk
(p-pc (Ir-push-tstk (s, v)) = p-pc (s))

>>> > > >

AH

>>>>> > >

(p-ctrl-stk (lr-push-tstk (s, v)) = p-ctrl-stk (s))

(p-prog-segment (lr-push-tstk (s, v)) = p-prog-segment (s))
(p-data-segment (lr-push-tstk (s, v)) = p-data-segment (s))
(p-max-ctrl-stk-size (Ir-push-tstk (s, v)) = p-max-ctrl-stk-size (s))
(p-max-temp-stk-size (Ir-push-tstk (s, v)) = p-max-temp-stk-size (s))
(p-word-size (Ir-push-tstk (s, v)) = p-word-size (s))

HEOREM: p-accessors-1r-if-ok
p-p

pe (Ir-if-ok (1)) = p-pe (1)
(p-ctrl-stk (lr-if-ok (1)) = p-ctrl-stk (1))
(p-temp-stk (Ir-if-ok (1)) = p-temp-stk (1))
(p-prog-segment (lr-if-ok (1)) = p-prog-segment (1))
(p-data-segment (lr-if-ok (1)) = p-data-segment ({))
(p-max-ctrl-stk-size (Ir-if-ok (1)) = p-max-ctrl-stk-size (1))
(p-max-temp-stk-size (Ir-if-ok (1)) = p-max-temp-stk-size (1))
(p-word-size (Ir-if-ok (1)) = p-word-size (1))

THEOREM: p-accessors-lr-set-temp

(
A

’“H >>>>>> >

> > > >

p-pc (Ir-set-temp (s, v, n)) = p-pc(s))

(p-ctrl-stk (lr-set-temp (s, v, n))
= if p-psw(s) = ’run

then set-local-var-value (v, n, p-ctrl-stk (s))

else p-ctrl-stk (s) endif)
(p-temp-stk (Ir-set-temp (s, v, n)) = p-temp-stk (s))
(p-prog-segment (lr-set-temp (s v, n)) = p-prog-segment (s))
(p-data-segment (Ir-set-temp (s, v, n)) = p-data-segment (s))
(p-max-ctrl-stk-size (Ir-set-temp (s v, n)) = p-max-ctrl-stk-size (s))
(p-max-temp-stk-size (Ir-set-temp (s, v, n)) = p-max-temp-stk-size (s))
(p-word-size (lr-set-temp (s, v, n)) = p-word-size (s))
(p-psw (lr-set-temp (s, v, n)) = p-psw (s))

HEOREM: p-accessors-lr-do-temp-fetch
p-pc (Ir-do-temp-fetch (s)) = p-pc(s))

(p-ctrl-stk (lr-do-temp-fetch (s)) = p-ctrl-stk (s))

(p-prog-segment (Ir-do-temp-fetch (s)) = p-prog-segment (s))
(p-data-segment (Ir-do-temp-fetch (s)) = p-data-segment (s))
(p-max-ctrl-stk-size (Ir-do-temp-fetch (s)) = p-max-ctrl-stk-size (s))

43

A
A

(p-max-temp-stk-size (Ir-do-temp-fetch (s)) = p-max-temp-stk-size (s))
(p-word-size (Ir-do-temp-fetch (s)) = p-word-size (s))

THEOREM: p-accessors-lr-pop-cstk

(p
A

A
A
A
A
A
A
A

p-pc (Ir-pop-cstk (s)) = p-pc (s))
(p-ctrl-stk (lr-pop-cstk (s))
= if p-psw(s) = ’run then pop (p-ctrl-stk (s))

else p-ctrl-stk (s) endif)

(p-temp-stk (Ir-pop-cstk (s)) = p-temp-stk (s))
(p-prog-segment (lr-pop-cstk (s)) = p-prog-segment (s))
(p-data-segment (lr-pop-cstk (s)) = p-data-segment (s))
(p-max-ctrl-stk-size (Ir-pop-cstk (s)) = p-max-ctrl-stk-size (s))
(p-max-temp-stk-size (Ir-pop-cstk (s)) = p-max-temp-stk-size (s))
(p-word-size (lr-pop-cstk (s)) = p-word-size (s))
(p-psw (Ir-pop-cstk (s)) = p-psw (s))

THEOREM: Ir-eval-if-p-psw-1
(

(flag # ’1ist)

I >>>>>

(p-psw (Ir-eval (flag, I, ¢)) = ’run)
(car (Ir-expr (1)) = ’1f)
Ep psw (/) = ’run)

listp (1r expr (1))
(p-psw (Ir-eval (t, lr-set-pos (1, dv (offset (p-pc (1)), 1)), ¢)) = ’run)

EVENT: Disable Ir-eval-if-p-psw-1.

THEOREM: adp-offset-untag-add-addr
adp-offset (untag (add-addr (addr, n))) = (offset (addr) + n)

THEOREM: adp-offset-untag-sub-addr
adp-offset (untag (sub-addr (addr, n))) = (offset (addr) — n)

THEOREM: adp-name-untag-sub-addr
adp-name (untag (sub-addr (addr, n))) = adp-name (untag (addr))

THEOREM: adp-offset-cons
adp-offset (cons (area-name, offset)) = offset

THEOREM: p-accessors-lr->p

(p-

A

N
N
A

pc (Ir-->p (1)) = lr-p-pe (1))
(p-ctrl-stk (Ir->p (1)) = p-ctrl-stk (1))
(p-temp-stk (Ir->p (1)) = p-temp-stk (1))
(p-prog-segment (Ir->p (1)) = comp-programs (p-prog-segment (1)))
(p-data-segment (Ir->p (1)) = p-data-segment (1))

44

p-max-ctrl-stk-size (Ir->p (1)) = p-max-ctrl-stk-size (1))
p-max-temp-stk-size (Ir->p (1)) = p-max-temp-stk-size (1))
p-word-size (Ir->p (1)) = p-word-size (1))

p-psw (Ir->p (1)) = p-psw (1))

> > > >

THEOREM: type-lr-p-pc
type (Ir-p-pc (1)) = *pe

THEOREM: cddr-nil-lr-p-pc
cddr (Ir-p-pc (1)) = nil

THEOREM: listp-untag-lr-p-pc
listp (untag (Ir-p-pc (1))

THEOREM: numberp-cdr-Ir-p-pc
cdr (untag (Ir-p-pc (1))) € N

THEOREM: car-untag-lr-p-pc
car (untag (Ir-p-pc (p))) = car (untag (p-pc (p)))

THEOREM: area-name-Ir-p-pc
area-name (Ir-p-pc (p)) = area-name (p-pc (p))

THEOREM: definedp-comp-programs-1-definedp-orig
definedp (z, comp-programs-1 (programs)) = definedp (x, programs)

THEOREM: definedp-append
definedp (z, append (11, {2)) = (definedp (z, I1) V definedp (z, 12))

THEOREM: definedp-comp-programs-definedp-orig
definedp (z, programs) — definedp (z, comp-programs (programs))

THEOREM: p-accessors-p-halt

(p-pc (p-halt (p, psw)) = p-pc (p))

(p-ctrl-stk (p-halt (p, psw)) = p-ctrl-stk (p))

(p-temp-stk (p-halt (p, psw)) = p-temp-stk (p))

(p-prog-segment (p-halt (p, psw)) = p-prog-segment (p))
(p-data-segment (p-halt (p, psw)) = p-data-segment (p))
(p-max-ctrl-stk-size (p-halt (p, psw)) = p-max-ctrl-stk-size (p))
(p-max-temp-stk-size (p-halt (p, psw)) = p-max-temp-stk-size (p))
(p-word-size (p-halt (p, psw)) = p-word-size (p))

(p-psw (p-halt (p, psw)) = psw)

>>>>>> > >

EVENT: Disable p-halt.

45

THEOREM: p-accessors-p-set-pc

(p-pc (p-set-pc (p, pc)) = pc)

A (p-ctrl-stk (p-set-pc (p, pc)) = p-ctrl-stk (p))

A (p-temp-stk (p-set-pc (p, pc)) = p-temp-stk (p))

A (p-prog-segment (p-set-pc (p, pc)) = p-prog-segment (p))

A (p-data-segment (p-set-pc (p, pc)) = p-data-segment (p))

A (p-max-ctrl-stk-size (p-set-pc (p, pc)) = p-max-ctrl-stk-size (p))

A (p-max-temp-stk-size (p-set-pc (p, pc)) = p-max-temp-stk-size (p))
A (p-word-size (p-set-pc (p, pc)) = p-word-size (p))

A (p-psw (p-set-pc (p, pc)) = p-psw (p))

EVENT: Disable p-set-pc.

THEOREM: p-psw-not-run
(p-psw (p-state) # run) — (p (p-state, clock) = p-state)

THEOREM: p-psw-p-halt-x-y-error-msg
p (p-halt (p-state, x-y-error-msg (z, y)), n)
= p-halt (p-state, x-y-error-msg (z, y))

EVENT: Disable p-psw-p-halt-x-y-error-msg.

THEOREM: p-accessors-p-run-subr

(p-prog-segment (p-run-subr (subr, p)) = p-prog-segment (p))

A (p-max-ctrl-stk-size (p-run-subr (subr, p)) = p-max-ctrl-stk-size (p))

A (p-max-temp-stk-size (p-run-subr (subr, p)) = p-max-temp-stk-size (p))
A (p-word-size (p-run-subr (subr, p)) = p-word-size (p))

THEOREM: p-accessors-lr-apply-subr
(p-pc (Ir-apply-subr (i1, i2)) = p-pc (12))
A (p-prog-segment (Ir-apply-subr (11, 12)) = p-prog-segment (12))
A (p-max-ctrl-stk-size (Ir-apply-subr (11, 12))
= p-max-ctrl-stk-size (12))
A (p-max-temp-stk-size (Ir-apply-subr (11, 12))
= p-max-temp-stk-size (12))
A (p-word-size (Ir-apply-subr ({1, 12)) = p-word-size ({2))

THEOREM: p-prog-segment-lr-eval
p-prog-segment (lr-eval (flag, I, ¢)) = p-prog-segment (1)

THEOREM: p-max-ctrl-stk-size-lr-eval
p-max-ctrl-stk-size (Ir-eval (flag, [, ¢)) = p-max-ctrl-stk-size (1)

THEOREM: p-max-temp-stk-size-lr-eval
p-max-temp-stk-size (Ir-eval (flag, I, ¢)) = p-max-temp-stk-size (1)

46

THEOREM: p-word-size-Ir-eval
p-word-size (Ir-eval (flag, I, ¢)) = p-word-size (1)

THEOREM: area-name-p-pc-lr-eval
area-name (p-pc (Ir-eval (flag, 1, ¢))) = area-name (p-pc (1))

THEOREM: Ir-programs-properp-lr-eval
Ir-programs-properp (Ir-eval (flag, I, ¢), table)
= lr-programs-properp (I, table)

THEOREM: definedp-deposit
definedp (tag, deposit (anything, addr, data-seg)) = definedp (tag, data-seq)

THEOREM: deposit-a-list-cons-opener
deposit-a-list (cons (z, list), addr, data-seg)
= deposit (z, addr, deposit-a-list (list, add1-addr (addr), data-seg))

THEOREM: deposit-a-list-nil
deposit-a-list (nil, addr, data-seq) = data-seg

EVENT: Disable deposit-a-list.
THEOREM: assoc-put-assoc-3
assoc (namel , put-assoc (val, name2, alist))
= if namel = name2
then if definedp (namel, alist) then cons (namel, val)

else f endif
else assoc (namel, alist) endif

EVENT: Disable assoc-put-assoc-3.
THEOREM: adpp-lessp-offset-deposit

((offset < length (cdr (assoc (name, data-seg)))) A definedp (name, data-seg))
— (offset < length (cdr (assoc (name, deposit (anything, anywhere, data-seg)))))

THEOREM: adpp-deposit-anything-at-all
adpp (adp, data-seg) — adpp (adp, deposit (anything, addr2, data-seg))

EVENT: Disable adpp-lessp-offset-deposit.
EVENT: Disable adpp-deposit-anything-at-all.

THEOREM: adpp-untag-definedp-area-name
adpp (untag (addr), data-seg) — definedp (area-name (addr), data-seg)

47

EVENT: Disable adpp-untag-definedp-area-name.

THEOREM: adpp-cons-pack-definedp-area-name
adpp (cons (pack (2zzz), offset), data-seg) — definedp (pack (2zz), data-seg)

THEOREM: adpp-untag-numberp-offset
adpp (untag (addr), data-seg) — (offset (addr) € N)

EVENT: Disable adpp-untag-numberp-offset.

THEOREM: adpp-untag-listp
adpp (untag (addr), data-seg) — listp (untag (addr))

EVENT: Disable adpp-untag-listp.

THEOREM: adpp-add-addr-0
(adpp (untag (addr), data-seg)
A (cddr (addr) = nil)
A (type (addr) = ’addr)
A (n~0))
— (add-addr (addr, n) = addr)

EvVENT: Disable adpp-add-addr-0.

THEOREM: adpp-untag-lessp-offset
adpp (untag (addr), data-seq)
— (offset (addr) < length (cdr (assoc (area-name (addr), data-seg))))

EVENT: Disable adpp-untag-lessp-offset.

THEOREM: adpp-same-signature
same-signature (data-seg2, data-segl)
— (adpp (adp, data-seg2) = adpp (adp, data-segl))

EvVENT: Disable adpp.

THEOREM: p-objectp-similar-p-states

(p-objectp (object, p0)
A same-signature (p-data-segment (p0), p-data-segment (p1))
A (p-prog-segment (p0) = p-prog-segment (p1))
A (p-word-size (p0) = p-word-size (p1)))

— p-objectp (object, p1)

48

THEOREM: all-p-objectps-lr->p-similar-states

(all-p-objectps (Ist, p0)

A (p-word-size (p0) = p-word-size (p1))

A (p-prog-segment (p0) = p-prog-segment (p1))

A same-signature (p-data-segment (p0), p-data-segment (p1)))
— all-p-objectps (Ist, p1)

THEOREM: proper-p-data-segmentp-lr->p-similar-states
(proper-p-data-segmentp (data-seg, p0)

A (p-word-size (p0) = p-word-size (p1))

A (p-prog-segment (p0) = p-prog-segment (p1))

A same-signature (p-data-segment (p0), p-data-segment (p1)))
— proper-p-data-segmentp (data-seg, p1)

THEOREM: proper-p-temp-var-dclsp-Ir->p-similar-states
(proper-p-temp-var-dclsp (temp-var-dcls, p0)

A (p-word-size (p0) = p-word-size (p1))

A (p-prog-segment (p0) = p-prog-segment (p1))

A same-signature (p-data-segment (p0), p-data-segment (p1)))
— proper-p-temp-var-delsp (temp-var-dcls, p1)

THEOREM: proper-p-instructionp-similar-p-states
(proper-p-instructionp (ins, name, p0)
A same-signature (p-data-segment (p0), p-data-segment (p1))
A (p-prog-segment (p0) = p-prog-segment (p1))
A (p-word-size (p0) = p-word-size (p1)))
— proper-p-instructionp (ins, name, p1)

THEOREM: proper-labeled-p-instructionsp-lr->p-similar-states
(proper-labeled-p-instructionsp (Ist, name, p0)
A same-signature (p-data-segment (p0), p-data-segment (p1))
A (p-prog-segment (p0) = p-prog-segment (p1))
A (p-word-size (p0) = p-word-size (p1)))
— proper-labeled-p-instructionsp (Ist, name, p1)

THEOREM: proper-p-prog-segmentp-Ir->p-similar-states
(proper-p-prog-segmentp (programs, p0)
A same-signature (p-data-segment (p0), p-data-segment (p1))
A (p-prog-segment (p0) = p-prog-segment (p1))
A (p-word-size (p0) = p-word-size (p1)))
— proper-p-prog-segmentp (programs, pl1)

THEOREM: proper-p-temp-stkp-lr->p-similar-states

(proper-p-temp-stkp (temp-stk, p0)
A same-signature (p-data-segment (p0), p-data-segment (p1))

49

A (p-prog-segment (p0) = p-prog-segment (p1))
A (p-word-size (p0) = p-word-size (p1)))
— proper-p-temp-stkp (temp-stk, p1)

THEOREM: proper-p-alistp-lr->p-similar-states

(proper-p-alistp (bindings, p0)
A same-signature (p-data-segment (p0), p-data-segment (p1))
A (p-prog-segment (p0) = p-prog-segment (p1))
A (p-word-size (p0) = p-word-size (p1)))

— proper-p-alistp (bindings, p1)

THEOREM: proper-p-ctrl-stkp-Ir->p-similar-states
(proper-p-ctrl-stkp (ctri-stk, name, p0)
A same-signature (p-data-segment (p0), p-data-segment (p1))
A (p-prog-segment (p0) = p-prog-segment (p1))
A (p-word-size (p0) = p-word-size (p1)))
— proper-p-ctrl-stkp (ctri-stk, name, p1)

;; Now we prove what the result of running the SUBRPs. We

;; Start with a sample state (that the rewriter can match with

;; P-APPLY-SUBR-STATE) and run it. We are only interested in TEMP-STK and
;3 DATA-SEGMENT of the result. However the running of the Piton code can
;; be a bit tedious, so we try and prove both parts at once with the

;; following function P-GOOD-RESULTP. This also has the not ERRORP check
;; inside of it so that we should only have one instance of the Piton

;3 interpreter (P) in each theorem. This should hopefully reduce the time
;; (and pain) of proving these theorems.

DEFINITION:
p-good-resultp (p, data-seg, temp-stk, ctri-stk, pc)
= if p-psw(p) # ’run then t
else (p-data-segment (p) = data-seq)
A (p-temp-stk (p) = temp-stk)
A listp (ctri-stk)
A (p-ctrl-stk (p) = ctri-stk)
A (p-pc(p) = pc) endif

THEOREM: assoc-append-1

assoc (z, append (list1, list2))

= if definedp (z, list1) then assoc (z, listl)
else assoc (z, list2) endif

EVENT: Disable assoc-append-1.
THEOREM: Ir-programs-properp-1-all-user-fnamesp-not-user-fnamep

50

(all-user-fnamesp (strip-cars (programs)) A (- user-fnamep (z)))
— (= definedp (z, programs))

THEOREM: definitions-subrps-lr-programs-properp
Ir-programs-properp (I, table)
— ((assoc (’ car, comp-programs (p-prog-segment (1))) = P-CAR-CODE)
A (assoc (’cdr, comp-programs (p-prog-segment (1)))
= P-CDR-CODE)
A (assoc (’ cons, comp-programs (p-prog-segment (1)))
= P-CONS-CODE)
A (assoc (’false, comp-programs (p-prog-segment (1)))
= P-FALSE-CODE)
A (assoc (’falsep, comp-programs (p-prog-segment (1)))
= P-FALSEP-CODE)
A (assoc (’1listp, comp-programs (p-prog-segment (1)))
= P-LISTP-CODE)
A (assoc (’nlistp, comp-programs (p-prog-segment (1)))
= P-NLISTP-CODE)
A (assoc (’true, comp-programs (p-prog-segment (1)))
= P-TRUE-CODE)
A (assoc (’truep, comp-programs (p-prog-segment (1)))
= P-TRUEP-CODE))

EVENT: Disable Ir-programs-properp-1-all-user-fnamesp-not-user-fnamep.
EVENT: Disable definitions-subrps-Ir-programs-properp.

;; and now some openers for p-good-resultp

THEOREM: p-good-resultp-p-state-opener
p-good-resultp (p-state (pc,

ctrl-stk,

temp-stk,

prog-seg,

data-seq,

max-ctrl-stk-size,
maz-temp-stk-size,
word-size,

’run),
result-data-seg,
result-temp-stk,
result-ctri-stk,
result-pc)

= ((data-seg = result-data-seq)

o1

(temp-stk = result-temp-stk)
listp (result-ctri-stk)

(ctrl-stk = result-ctrl-stk)
(pc = result-pc))

> > > >

THEOREM: p-good-resultp-p-halt-errorp-opener

(psw # ’run)
— p-good-resultp (p-halt (p, psw), data-seg, temp-stk, ctri-stk, pc)

EVENT: Disable p-good-resultp.

THEOREM: all-p-objectps-bad-type

((get (offset, Ist) # list (type (get (offset, Ist)), untag (get (offset, Ist))))
A (offset € N)
A (offset < length (Ist)))

— (= all-p-objectps (Ist, p))

THEOREM: proper-p-data-segmentp-bad-type
((fetch (addr, data-seg)
list (type (fetch (addr, data-seg)), untag (fetch (addr, data-seg))))
A adpp (untag (addr), data-seg))
— (- proper-p-data-segmentp (data-seg, p))

THEOREM: p-current-program-p-state

p-current-program (p-state (pc,
ctrl-stk,
temp-stk,
prog-seg,
data-seq,
max-ctrl-stk-size,
maz-temp-stk-size,
word-size,
psw))

= assoc (area-name (pc), prog-seq)

THEOREM: p-current-instruction-opener
p-current-instruction (p-state (pc,
temp-stk,
ctrl-stk,
prog-segment,
data-segment,
mazx-ctrl-stk-size,
max-temp-stk-size,
word-size,

52

psw))
= unlabel (get (offset (pc),
program-body (assoc (area-name (pc), prog-segment))))

EVENT: Disable p-current-instruction-opener.

THEOREM: fetch-deposit
((offset (addrl) € N) A (offset (addr2) € N))
— (fetch (addrl, deposit (value, addr2, data-seg))
= if definedp (area-name (addr2), data-seg)
then if area-name (addr!) = area-name (addr2)
then if offset (addrl) = offset (addr2) then wvalue
else fetch (addr!, data-seg) endif
else fetch (addrl, data-seg) endif
else fetch (addr!, data-seg) endif)

;3 add-addr

THEOREM: area-name-add-addr
area-name (add-addr (addr, n)) = area-name (addr)

THEOREM: offset-add-addr
offset (add-addr (addr, n)) = (offset (addr) + n)

THEOREM: adp-name-untag-add-addr
adp-name (untag (add-addr (addr, n))) = area-name (addr)

THEOREM: add-addr-of-non-number
(n € N) — (add-addr (addr, n) = add-addr (addr, 0))

THEOREM: add-addr-add-addr
add-addr (add-addr (addr, n), m) = add-addr (addr, n + m)

THEOREM: listp-untag-add-addr
listp (untag (add-addr (addr, n)))

THEOREM: type-add-addr
type (add-addr (addr, n)) = type (addr)

THEOREM: cddr-add-addr
cddr (add-addr (addr, n)) = nil

THEOREM: area-name-lr-return-pc
area-name (Ir-return-pe (1)) = area-name (p-pc (1))

53

THEOREM: listp-untag-lr-return-pc
listp (untag (Ir-return-pc (1)))

THEOREM: type-lr-return-pc
type (Ir-return-pc (1)) = ’pc

THEOREM: cddr-lr-return-pc
cddr (Ir-return-pc (7)) = nil

THEOREM: numberp-offset-return-pc
offset (Ir-return-pc (7)) € N

THEOREM: numberp-cdr-untag-return-pc
cdr (untag (Ir-return-pc (1))) € N

THEOREM: car-untag-lr-return-pc
car (untag (lr-return-pc (1))) = car (untag (p-pc (1))

;; sub-addr

THEOREM: area-name-sub-addr
area-name (sub-addr (addr, n)) = area-name (addr)

THEOREM: cddr-sub-addr
cddr (sub-addr (addr, n)) = nil

THEOREM: type-sub-addr
type (sub-addr (addr, n)) = type (addr)

THEOREM: listp-untag-sub-addr
listp (untag (sub-addr (addr, n)))

THEOREM: offset-sub-addr
offset (sub-addr (addr, n)) = (offset (addr) — n)

;; LR-BOUNDARY-NODEP

THEOREM: Ir-boundary-nodep-sub-addr
Ir-boundary-nodep (addr)
— Ir-boundary-nodep (sub-addr (addr, identity (LR-NODE-SIZE)))

THEOREM: Ir-boundary-nodep-add-addr-Ir-node-size
Ir-boundary-nodep (addr)
— Ir-boundary-nodep (add-addr (addr, identity (LR-NODE-SIZE)))

EVENT: Disable Ir-boundary-nodep.

o4

;3 LR-NODEP

THEOREM: Ir-nodep-opener

Ir-nodep (addr, data-seq)

= ((type (addr) = ’addr)

(cddr (addr) = nil)

listp (addr)

adpp (untag (addr), data-seq)
Ir-boundary-nodep (addr)

(area-name (addr) = identity (LR-HEAP-NAME)))

> > > > >

EVENT: Disable Ir-nodep.

;5 LR-GOOD-POINTERP

THEOREM: Ir-good-pointerp-opener

Ir-good-pointerp (addr, data-seq)

= ((type (addr) = ’addr)

(cddr (addr) = nil)
listp (addr)

adpp (untag (addr), data-seg)
Ir-boundary-nodep (addr)
(area-name (addr) = identity (LR-HEAP-NAME))
(type (fetch (add-addr (addr, identity (LR-REF-COUNT-OFFSET)),
data-seg))
= ’nat))

> > > > > >

EVENT: Disable Ir-good-pointerp.

THEOREM: equal-plus-remainder-0-fact
(((offset! mod maz) = 0)

((offset2 mod mazx) = 0)

(n < maz)
(m < maz)
(offset1 € N)
(offset2 € N))

(((n + offsetl) = (m + offset2))

= ((fix(n) = fix(m)) A (offsetl = offset2)))

l>>>>>

THEOREM: Ir-boundary-offsetp-equal-plus-fact
(I-boundary-offsetp (offset1)

A lr-boundary-offsetp (offset2)

A (n < LR-NODE-SIZE)

A (m < LR-NODE-SIZE)

95

A (offsetl € N)
A (offset2 € N))
— (((n + offsetl) = (m + offset2))
= ((fix(n) = fix(m)) A (offsetl = offset2)))

THEOREM: good-posp-list-nx-t-simple
(good-posp (’list, pos, body)
A listp (pos)
A (car (last (pos)) < length (cur-expr (butlast (pos), body))))
— (good-posp (’1list, nx (pos), body) A good-pospl (pos, body))

THEOREM: Ir-programs-properp-1-Ir-proper-exprp
(Ir-programs-properp-1 (progs, program-names, table) A (prog € progs))
— lr-proper-exprp (t,

program-body (prog),

program-names,

formal-vars (prog),

strip-cars (temp-var-dcls (prog)),

table)

THEOREM: Ir-proper-exprp-list-lr-proper-get-t

Ir-proper-exprp (’1ist, expr, pnames, formals, temps, table)

— (lr-proper-exprp (t, get (n, expr), pnames, formals, temps, table)
= (n < length (ezpr)))

THEOREM: lr-proper-exprp-t-Ir-proper-get-t
((car (expr) # S-TEMP-FETCH)
(car (expr) # S-TEMP-EVAL)
(car (expr) # S-TEMP-TEST)
(car (expr) # ’quote)
(n #0)
Ir-proper-exprp (t, expr, pnames, formals, temps, table))
(Ir-proper-exprp (t, get (n, expr), pnames, formals, temps, table)
= (n < length (expr)))

l>>>>>

EVENT: Disable Ir-proper-exprp-list-lr-proper-get-t.

THEOREM: Ir-proper-exprp-lr-proper-exprp-cur-expr
(Ir-proper-exprp (t, body, pnames, formals, temps, table) N\ good-pospl (pos, body))
— Ir-proper-exprp (t, cur-expr (pos, body), pnames, formals, temps, table)

THEOREM: lr-programs-properp-lr-programs-properp-1

(Ir-programs-properp (I, table) A (prog-seg = p-prog-segment (1)))

— (lr-programs-properp-1 (p-prog-segment (1),
strip-logic-fnames (cdr (prog-seg)),

56

table)
A definedp (area-name (p-pc (1)), prog-seg))

THEOREM: lr-programs-properp-lr-proper-exprp-lr-expr
(Ir-programs-properp (I, table)
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1))))
— lr-proper-exprp (t,
Ir-expr (1),
strip-logic-fnames (cdr (p-prog-segment (1))),
formal-vars (p-current-program (1)),
strip-cars (temp-var-dcls (p-current-program (1)),
table)

THEOREM: Ir-proper-exprp-length-cur-expr
(Ir-proper-exprp (t, expr, pnames, formals, temps, table)
A listp (expr)

A (subrp (car (ezpr)) V body (car (expr)))
A (car (expr) # ’quote))
— (length (expr) = (1 + arity (car (expr))))

THEOREM: listp-comp-body-1

listp (comp-body-1 (flag, body, n))

= if flag = ’1list then listp (body)
else t endif

THEOREM: car-append
listp (z) — (car (append (z, y)) = car (z))

THEOREM: length-cdr-comp-if-comp-body
length (comp-if (comp-body-1 (t, test, ni),
comp-body-1 (t, then, n2),
comp-body-1 (t, else, n3),
n))
= (length (comp-body-1 (t, test, n1))
+ length (comp-body-1 (t, then, n2))
+ length (comp-body-1 (t, else, n3))
+ 4

THEOREM: lIr-p-c-size-list-0-opener
Ir-p-c-size-list (0, expr) = 0

THEOREM: Ir-p-c-size-list-add1-opener
((1 + n) < length (expr))
— (lr-p-c-size-list (1 + n, expr)
= (lr-p-c-size (t, cadr (expr)) + lr-p-c-size-list (n, cdr (ezpr))))

o7

THEOREM: length-comp-body-1-Ir-p-c-size
length (comp-body-1 (flag, body, n)) = lr-p-c-size (flag, body)

EVENT: Disable Ir-p-c-size-list-add1-opener.

THEOREM: length-label-instrs
length (label-instrs (instrs, n)) = length (instrs)

THEOREM: length-comp-body-Ir-p-c-size
length (comp-body (body)) = (1 + lr-p-c-size (t, body))

THEOREM: lr-p-c-size-flag-list
Ir-p-c-size (*1ist, cdr (ezpr)) = lr-p-c-size-list (length (ezpr) — 1, expr)

THEOREM: Ir-proper-exprp-car-if-cadr
(Ir-proper-exprp (t, body, pnames, formals, temps, table)
A listp (body)
A (car (body) = ’if))
— Ir-proper-exprp (t, cadr (body), pnames, formals, temps, table)

THEOREM: Ir-proper-exprp-car-if-caddr
(Ir-proper-exprp (t, body, pnames, formals, temps, table)
A listp (body)
A (car (body) = ’if))
— lr-proper-exprp (t, caddr (body), pnames, formals, temps, table)

THEOREM: Ir-proper-exprp-car-if-cadddr
(Ir-proper-exprp (t, body, pnames, formals, temps, table)
A listp (body)
A (car (body) = ’if))
— Ir-proper-exprp (t, cadddr (body), pnames, formals, temps, table)

THEOREM: good-posp-list-t-offset-program-body
(good-posp (’1ist, offset (p-pc (1)), program-body (p-current-program (1)))
A listp (Ir-expr-list (1))
A listp (offset (p-pc (1))))
— good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))

THEOREM: good-posp-list-nx-offset-program-body
(good-posp (’list, offset (p-pc (1)), program-body (p-current-program (1)))
A listp (offset (p-pc (1))
A listp (Ir-expr-list (1))
— good-posp (’list,
nx (offset (p-pe (1)),
program-body (p-current-program (1)))

98

THEOREM: name-formal-vars-temp-var-dcls-program-body-cons
(name (cons (name, rest)) = name)
A (formal-vars (cons (name, cons (formal-vars, rest))) = formal-vars)
A (temp-var-dcls (cons (name,
cons (formal-vars, cons (temp-var-dcls, program-body))))
= temp-var-dcls)
A (program-body (cons (name,
cons (formal-vars, cons (temp-var-dcls, program-body))))
= program-body)

THEOREM: program-body-assoc-comp-programs-1

definedp (name, programs)

— (program-body (assoc (name, comp-programs-1 (programs)))
= comp-body (program-body (assoc (name, programs))))

THEOREM: program-body-assoc-comp-programs
definedp (name, programs)
— (program-body (assoc (name, comp-programs (programs)))
= if name = name (car (programs))
then label-instrs (append (comp-body-1 (t,
program-body (car (programs)),
0),
list (identity (list (’set-global,
area-name (LR-ANSWER-ADDRY))),
> (ret))),
0)
else comp-body (program-body (assoc (name, cdr (programs)))) endif)

THEOREM: definedp-area-name-member-p-current-program
definedp (area-name (p-pc (1)), p-prog-segment (1))
— (p-current-program () € p-prog-segment (1))

DEFINITION:

induct-hint-6 (n, body)

= if n < length (body) then induct-hint-6 (1 + n, body)
else t endif

THEOREM: Ir-p-c-size-list-0

listp (body)

— ((Ir-p-c-size-list (n, body) = 0) = ((n ~ 0) V (cdr (body) ~ nil)))
EvVENT: Disable lr-p-c-size-list-0.

THEOREM: lessp-Ir-p-c-size-list-lessp-subl-length
(Ir-p-c-size-list (n, body) # 0)

99

— ((lr-p-c-size-list (n, body) — 1)
< Ir-p-c-size-list (length (body) — 1, body))

THEOREM: Ir-p-pc-1-body-0
Ir-p-pc-1 (0, pos) = 0

THEOREM: lessp-lr-p-pc-1-Ir-p-c-size-helper-1

(listp (body)

A (n#£0)

A (Ir-p-pc-1 (get (n, body), pos) < lr-p-c-size (t, get (n, body)))

A (Ir-p-pe-1 (get (n, body), pos) # 0))

— (((Ir-p-c-size-list (n — 1, body) + lr-p-pc-1 (get (n, body), pos)) — 1)

< lr-p-c-size-list (length (body) — 1, body))

THEOREM: lessp-Ir-p-pc-1-Ir-p-c-size
Ir-p-pe-1 (body, pos) < lr-p-c-size (t, body)

EVENT: Disable lessp-lr-p-pc-1-Ir-p-c-size-helper-1.

THEOREM: not-lessp-p-max-temp-stk-size-lr-push-tstk
(p-psw (lr-push-tstk (I, anything)) = >run)
— (p-max-temp-stk-size ({)

&£ length (p-temp-stk (Ir-push-tstk (I, anything))))

THEOREM: proper-p-temp-stkp-Ir->p-Ir-push-tstk
proper-p-temp-stkp (temp-stkp, lr->p (Ir-push-tstk (I, anything)))
= proper-p-temp-stkp (temp-stkp, Ir->p (1))

THEOREM: proper-p-alistp-p-objectp
(proper-p-alistp (bindings,) A definedp (name, bindings))
— p-objectp (cdr (assoc (name, bindings)), 1)

THEOREM: formal-vars-assoc-comp-programs-1

definedp (name, programs)

— (formal-vars (assoc (name, comp-programs-1 (programs)))
= formal-vars (assoc (name, programs)))

THEOREM: formal-vars-assoc-comp-programs

definedp (name, programs)

— (formal-vars (assoc (name, comp-programs (programs)))
= formal-vars (assoc (name, programs)))

THEOREM: temp-var-dcls-assoc-comp-programs-1

definedp (name, programs)

— (temp-var-dcls (assoc (name, comp-programs-1 (programs)))
= temp-var-dcls (assoc (name, programs)))

60

THEOREM: temp-var-dcls-assoc-comp-programs

definedp (name, programs)

— (temp-var-dcls (assoc (name, comp-programs (programs)))
= temp-var-dcls (assoc (name, programs)))

THEOREM: Ir-programs-properp-definedp-car-untag-p-pc
Ir-programs-properp (I, table)
— definedp (car (untag (p-pc (1))), p-prog-segment (1))

THEOREM: p-objectp-cdr-assoc-litatom-proper-p-alistp
(proper-p-alistp (bindings, Ip)
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A (strip-cars (bindings)
= append (formal-vars (assoc (car (untag (p-pc (1)),
comp-programs-1 (p-prog-segment (1)))),
strip-cars (temp-var-dcls (assoc (car (untag (p-pc (1)),
comp-programs-1 (p-prog-segment (1)))))))
A litatom (Ir-expr (1))
— p-objectp (cdr (assoc (Ir-expr (1), bindings)), lp)

THEOREM: proper-p-temp-stkp-Ir-push-tstk-assoc-bindings
(Ir-programs-properp (I, table)
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A proper-p-alistp (bindings (car (p-ctrl-stk (1))), Ir->p (1))
A litatom (Ir-expr (1))
A (strip-cars (bindings (car (p-ctrl-stk (1))))
= append (formal-vars (assoc (car (untag (p-pc (1))),
comp-programs-1 (p-prog-segment (1)))),
strip-cars (temp-var-dcls (assoc (car (untag (p-pc (1)),
comp-programs-1 (p-prog-segment (1))))))))
— (proper-p-temp-stkp (p-temp-stk (Ir-push-tstk (1,
cdr (assoc (Ir-expr (1),
bindings (car (p-ctrl-stk (1))))))),
Ie->p (1))
= proper-p-temp-stkp (p-temp-stk (1), Ir->p (1)))

THEOREM: lIr-p-pc-lr-push-tstk
Ir-p-pe (Ir-push-tstk (1, anything)) = lr-p-pc (1)

THEOREM: proper-p-statep-Ir->p-lr-push-tstk
(proper-p-statep (lr->p (1))
A lr-programs-properp (I, table)
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A (p-psw (Ir-push-tstk (1,

61

cdr (assoc (Ir-expr (1),
bindings (car (p-ctrl-stk (1)))))))
= ’run)
A litatom (Ir-expr (1))
— proper-p-statep (Ir->p (Ir-push-tstk (1,
cdr (assoc (Ir-expr (1),
bindings (car (p-ctrl-stk (1))))))))

THEOREM: good-pospl-cons-lessp-4-if-lr-proper-exprp
((car (cur-expr (pos, body)) = *if)
A good-pospl (pos, body)
A lr-proper-exprp (t, body, pnames, formals, temps, table))
— (good-pospl (dv (pos, 1), body)
A good-pospl (dv (pos, 2), body)
A good-pospl (dv (pos, 3), body))

THEOREM: good-posp-cons-lessp-4-if-Ir-programs-properp
((car (Ir-expr (1)) = ’if)
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table))
— (good-pospl (dv (offset (p-pc (1)), 1), program-body (p-current-program (1)))
A good-pospl (dv (offset (p-pc (1)), 2),
program-body (p-current-program (1)))
A good-pospl (dv (offset (p-pc (1)), 3),
program-body (p-current-program (1))))

THEOREM: proper-p-statep-lr->p-Ir-set-pos
(Ir-programs-properp (I, table) A proper-p-statep (Ir->p (1))
— proper-p-statep (Ir->p (Ir-set-pos (I, pos)))

THEOREM: lr-p-pc-lr-pop-tstk
Ir-p-pc (Ir-pop-tstk (1)) = lr-p-pe (1)

THEOREM: proper-p-statep-lr->p-Ir-pop-tstk
proper-p-statep (Ir->p (1)) — proper-p-statep (Ir->p (Ir-pop-tstk (1)))

THEOREM: good-posp-dv-1-temps-Ir-expr
(((car (Ir-expr (1)) = S-TEMP-EVAL) V (car (Ir-expr (1)) = S-TEMP-TEST))
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1))))
— good-pospl (dv (offset (p-pc (1)), 1), program-body (p-current-program (1)))

THEOREM: proper-p-alistp-put-assoc

(proper-p-alistp (bindings, I) A p-objectp (object, 1))
— proper-p-alistp (put-assoc (object, var-name, bindings), [)

62

THEOREM: listp-p-temp-stk-lr-push-tstk
(p-psw (Ir-push-tstk (I, object)) = ’run)
— listp (p-temp-stk (lr-push-tstk (I, object)))

THEOREM: Ir-p-pc-lr-set-temp
Ir-p-pe (Ir-set-temp (1, value, var-name)) = lr-p-pc (1)

THEOREM: proper-p-statep-lr-set-temp
(proper-p-statep (Ir-->p (1)) A listp (p-temp-stk (1)))
— proper-p-statep (Ir->p (Ir-set-temp (I, car (p-temp-stk (1)), var-name)))

THEOREM: p-objectp-cdr-assoc-bindings-proper-p-alistp
(proper-p-alistp (bindings, 1) A definedp (object, bindings))
— p-objectp (cdr (assoc (object, bindings)), 1)

THEOREM: definedp-caddr-lr-expr-bindings-ctrl-stk
(le-programs-properp-1 (progs, program-names, table)
A definedp (name, progs)
A ((car (cur-expr (pos, program-body (assoc (name, progs))))
= S-TEMP-FETCH)
V' (car (cur-expr (pos, program-body (assoc (name, progs))))
= S-TEMP-TEST))
A good-pospl (pos, program-body (assoc (name, progs)))
A (strip-cars (bindings)
= append (formal-vars (assoc (name, comp-programs (progs))),
strip-cars (temp-var-dcls (assoc (name,
comp-programs (progs)))))))
— definedp (caddr (cur-expr (pos, program-body (assoc (name, progs)))),
bindings)

THEOREM: proper-p-temp-stkp-p-temp-stk-Ir-do-temp-fetch
(proper-p-framep (top (p-ctrl-stk (11)), area-name (p-pc (1)), 12)
A Ir-programs-properp (11, table)
A ((car (Ir-expr (1)) = S-TEMP-FETCH)
V' (car (Ir-expr (1)) = S-TEMP-TEST))
good-pospl (offset (p-pc ({1)), program-body (p-current-program (11)))
same-signature (p-data-segment ({1), p-data-segment (12))
(p-prog-segment (Ir->p (11)) = p-prog-segment (12))
(p-word-size (11) = p-word-size (12)))
(proper-p-temp-stkp (p-temp-stk (Ir-do-temp-fetch (1)), 12)
= proper-p-temp-stkp (p-temp-stk (11), 12))

' >>>>

THEOREM: length-Ir-do-temp-fetch
(p-psw (Ir-do-temp-fetch (1)) = ’run)
— (p-max-temp-stk-size (1) £ length (p-temp-stk (Ir-do-temp-fetch (1))))

63

THEOREM: Ir-p-pc-lr-do-temp-fetch
Ir-p-pc (Ir-do-temp-fetch (1)) = lr-p-pc (1)

THEOREM: proper-p-statep-lr-do-temp-fetch
((p-psw (Ir-do-temp-fetch (1)) = ’run)
A lr-programs-properp (I, table)
A ((car (Ir-expr (1)) = S-TEMP-FETCH)
vV (car (Ir-expr (1)) = S-TEMP-TEST))
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A proper-p-statep (Ir->p (1)))
— proper-p-statep (Ir->p (Ir-do-temp-fetch (1)))

THEOREM: length-Ir-push-tstk
(p-psw (lr-push-tstk (I, object)) = ’run)
— (p-max-temp-stk-size ({)
£ length (p-temp-stk (Ir-push-tstk (I, object))))

THEOREM: listp-p-temp-stk-Ir-do-temp-fetch
(p-psw (Ir-do-temp-fetch (1)) = ’run)
— listp (p-temp-stk (lr-do-temp-fetch (1)))

THEOREM: proper-p-prog-segmentp-append
plistp (segment1)
— (proper-p-prog-segmentp (append (segment1, segment2), p)
= (proper-p-prog-segmentp (segment!, p)
A proper-p-prog-segmentp (segment2, p)))

THEOREM: Ir-programs-properp-expr-quote-type-addr
(Ir-programs-properp (I, table)
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A listp (Ir-expr (7))
A (car (Ir-expr (1)) = ’quote))
— (type (cadr (Ir-expr (1)) = ’addr)

THEOREM: proper-p-instructionp-push-constant-opener
proper-p-instructionp (list (> push-constant, object), name, p)
= proper-p-push-constant-instructionp (list (’ push-constant, object),
name,
p)

THEOREM: proper-labeled-p-instructionsp-find-labelp-non-litatom
(proper-labeled-p-instructionsp (body, name, p) A (— litatom (label)))
— (find-labelp (label, body) = f)

THEOREM: lessp-4-not-zerop-not-1-not-2-3

(nEO)A(n#1)A(n#2)A(n<4)) = (n=3)

64

THEOREM: lessp-4-not-zerop-not-1-not-2-3-get-car-pos

((car (pos) # 0)

A
A
A
—

EVENT: Disable lessp-4-not-zerop-not-1-not-2-3-get-car-pos.

THEOREM: lessp-index-lessp-lr-p-c-size-list
Ir-p-c-size-list (length (cdr (body)), body) £ lr-p-c-size-list (n, body)

THEOREM: lessp-plus-lr-p-c-size-lr-p-pc-1-helper
(listp (body)
#0)

Ir-p-c-size (t, get (n, body)) £ x)

(n — 1) < length (cdr (body)))

len = length (cdr (body))))
((Ir-p-c-size-list (len, body) + 1)

< (Ir-p-c-size-list (n — 1, body) + z))
- 9

A (n
A
A
A
-

THEOREM: lessp-plus-Ir-p-c-size-lr-p-pc-1
(good-pospl (pos, body) A lr-proper-exprp (t, body, pnames, formals, temps, table))
— (lr-p-c-size (t, body)

£ (Ir-p-pc-1 (body, pos) + lr-p-c-size (t, cur-expr (pos, body))))

DEFINITION:
induct-hint-7 (pos, expr, n)
= if pos ~ nil then t
elseif erpr ~ nil then t
elseif car (expr) = ’if
then let then-n be n + 3 + lr-p-c-size (t, cadr (expr))
in
case on car (pos):
case = 1
then induct-hint-7 (cdr (pos), cadr (expr), n)
case = 2
then induct-hint-7 (cdr (pos), caddr (expr), then-n)
otherwise induct-hint-7 (cdr (pos),

cadddr (expr),
1
+ then-n

+ lr-p-c-size (t, caddr (expr))) endcase endlet

65

elseif car (expr) = S-TEMP-FETCH then t
elseif car (ezpr) = S-TEMP-EVAL
then induct-hint-7 (cdr (pos), cadr (ezpr), n)
elseif car (expr) = S-TEMP-TEST
then induct-hint-7 (edr (pos), cadr (ezpr), n + 4)
elseif car (expr) = ’quote then t
else induct-hint-7 (cdr (pos),
get (car (pos), expr),
n + lr-p-c-size-list (car (pos) — 1, ezpr)) endif

THEOREM: Ir-p-c-size-s-temp-test-eval-cadr-not-lessp-fact

(listp (expr)

A ((car (ezpr) = S-TEMP-EVAL) V (car (ezpr) = S-TEMP-TEST)))
— (lr-p-c-size (t, cadr (ezpr)) < lr-p-c-size (t, expr))

THEOREM: length-comp-temp-test

(listp (body) A (car (body) = S-TEMP-TEST))

— (length (comp-temp-test (any-body, comp-body-1 (t, cadr (body), n), any-n))
= lr-p-c-size (t, body))

THEOREM: plistp-comp-temp-test
plistp (comp-temp-test (body, instrs, n))

THEOREM: length-comp-if-alt

(listp (body) A (car (body) = ’if))

— (length (comp-if (comp-body-1 (t, cadr (body), n1),
comp-body-1 (t, caddr (body), n2),
comp-body-1 (t, cadddr (body), n3),
any-n))

= lr-p-c-size (t, body))

THEOREM: plistp-comp-if
(plistp (else-instrs) A listp (else-instrs))
— plistp (comp-if (test-intrs, then-instrs, else-instrs, n))

THEOREM: plistp-comp-body-1

plistp (comp-body-1 (flag, body, n))
THEOREM: Ir-p-c-size-list-funcall-not-lessp-fact
(listp (expr)

A (car (expr) # S-TEMP-FETCH)

A (car (expr) # S-TEMP-EVAL)

A (car (expr) # S-TEMP-TEST)

A (car (expr) # quote)

A (car (expr) # *if))

— (lr-p-c-size-list (length (expr) — 1, expr) < lr-p-c-size (t, expr))

66

THEOREM: Ir-p-c-size-nlistp-body
(= listp (body)) — (Ir-p-c-size (t, body) = 1)

THEOREM: firstn-lr-p-c-size-restn-Ir-p-pc-1-comp-body-1-helper-1
(good-pospl (pos, cadr (body))
A (car (body) = ’if)
A listp (body)
A Ir-proper-exprp (t, body, pnames, formals, temps, table))
— (firstn (lr-p-c-size (t, cur-expr (pos, cadr (body))),
restn (Ir-p-pc-1 (cadr (body), pos),
comp-if (comp-body-1 (t, cadr (body), n),
then-instrs,
else-instrs,
n)))
= firstn (lr-p-c-size (t, cur-expr (pos, cadr (body))),
restn (Ir-p-pe-1 (cadr (body), pos),
comp-body-1 (t, cadr (body), n))))

THEOREM: firstn-restn-plus-comp-if-1

((7 = length (test))

listp (then)

(m < length (then))

(m € N)

listp (test)

(length (then) £ (k + m)))

(firstn (k, restn (3 + j + m, comp-if (test, then, else, n)))
= firstn (k, restn (m, then)))

I >>>>>

THEOREM: firstn-unlabel-instrs-comp-body-1-lr-p-pc-1-helper-2
(good-pospl (pos, caddr (body))

A (car (body) = ’if)

A listp (body)

A lr-proper-exprp (t, body, pnames, formals, temps, table))
— (Ir-p-c-size (t, caddr (body))

£ (lr-p-pe-1 (caddr (body), pos)
+ lr-p-c-size (t, cur-expr (pos, caddr (body)))))

THEOREM: firstn-restn-plus-comp-if-2
((j = length (test))
A (i = length (then))
listp (then)
(m < length (else))
(m € N)
listp (test)
listp (else)

> > > > >

67

A (length (else) £ (m + k)))
— (firstn (k, restn (j + ¢ + m + 4, comp-if (test, then, else, n)))
= firstn (k, restn (m, else)))

THEOREM: firstn-unlabel-instrs-comp-body-1-lr-p-pc-1-helper-3
(good-pospl (pos, cadddr (body))

A (car (body) = ’if)

A listp (body)

A lr-proper-exprp (t, body, pnames, formals, temps, table))
— (lr-p-c-size (t, cadddr (body))

£ (lr-p-pe-1 (cadddr (body), pos)
+ lr-p-c-size (t, cur-expr (pos, cadddr (body)))))

THEOREM: plus-constant-fact-helper-1
14+n+3+z+y)=Mm+4+3+7y)

THEOREM: firstn-lr-p-c-size-restn-Ir-p-pc-1-comp-body-1-helper-4
(good-pospl (pos, cadr (body))
A listp (body)
A (car (body) = S-TEMP-TEST)
A lr-proper-exprp (t, body, pnames, formals, temps, table))
— (firstn (Ir-p-c-size (t, cur-expr (pos, cadr (body))),
restn (Ir-p-pe-1 (cadr (body), pos) + 4,
comp-temp-test (body-1, comp-body-1 (t, cadr (body), n), m)))
= firstn (Ir-p-c-size (t, cur-expr (pos, cadr (body))),
restn (lr-p-pe-1 (cadr (body), pos),
comp-body-1 (t, cadr (body), n))))

THEOREM: firstn-lr-p-c-size-restn-Ir-p-pc-1-comp-body-1-helper-5
(44 z)=(z + 4)

THEOREM: good-pospl-Ir-proper-exprp-get-cadddr
(listp (pos)

listp (body)

(car (body) = ’if)

(car (pos) # 1)

(car (pos) # 2)

(car (pos) # 0)

(car (pos) € N)

Ir-proper-exprp (t, body, pnames, formals, temps, table)
((((car (pos) — 1) — 1) — 1) < length (cdddr (body))))
(get (car (pos), body) = cadddr (body))

l>>>>>>>>

THEOREM: Ir-proper-exprp-cadr-temps

(Ir-proper-exprp (t, expr, pnames, formals, temps, table)

A ((car (expr) = S-TEMP-EVAL) V (car (expr) = S-TEMP-TEST)))
— lr-proper-exprp (t, cadr (expr), pnames, formals, temps, table)

68

THEOREM: lessp-plus-Ir-p-c-size-lr-p-pc-1-temps

(good-pospl (pos, cadr (body))

A listp (body)

A ((car (body) = S-TEMP-EVAL) V (car (body) = S-TEMP-TEST))

A Ir-proper-exprp (t, body, pnames, formals, temps, table))

— (Ir-p-c-size (t, cadr (body))

£ (Ir-p-pe-1 (cadr (body), pos)
+ lr-p-c-size (t, cur-expr (pos, cadr (body)))))

THEOREM: firstn-lr-p-c-size-restn-Ir-p-pc-1-comp-body-1-helper-6
(listp (body)
(car (body) # ’if)
(car (body) 7é S-TEMP-FETCH)
(car (body) # S-TEMP-EVAL)
(car (body) # S-TEMP-TEST)
(car (body) # ’quote)
Ir-proper-exprp (t, body, pnames, formals, temps, table)
(n #0))
(Ir-p-c-size-list (length (body) — 1, body)
£ (Ir-p-c-size-list (n — 1, body) + lr-p-pc-1 (get (n, body), pos)))

l>>>>>>>

DEFINITION:
induct-hint-10 (n, I, z)
= if = listp({) then t
elseif n ~ 0 then t
elseif listp (cdr (1))
then induct-hint-10 (n — 1, cdr (1), = + lr-p-c-size (t, cadr (1))
else t endif

THEOREM: lr-p-c-size-list-car-opener
((n 2 0) A (n < length (body)))
— (Ir-p-c-size-list (n, body)
= (lr-p-c-size (t, cadr (body))
+ lr-p-c-size-list (n — 1, cdr (body))))

THEOREM: restn-comp-body-1-list-fact
((Ir-p-c-size (t, get (m, cdr (body))) £ j)

A (m < length (cdr (body)))

A (m eN)

A (n €N)

A eN))

— (restn (lr-p-c-size-list (m, body) + 7,

comp-body-1 (*1ist, cdr (body), n))
= restn (j,
comp-body-1(’1list,

69

restn (m, cdr (body)),
n + lr-p-c-size-list (m, body))))

EVENT: Disable lr-p-c-size-list-car-opener.

THEOREM: firstn-restn-small-enough-cdr-comp-body-1-list
(listp (body) A (lr-p-c-size (t, car (body)) £ (j + k)))
— (firstn (j, restn (k, comp-body-1 (’list, body, n)))

= firstn (j, restn (k, comp-body-1 (t, car (body), n))))

THEOREM: firstn-lr-p-c-size-restn-lr-p-pc-1-comp-body-1-helper-7
(listp (body)
(car (body) # ’if)
(car (body) 7é S-TEMP-FETCH)
(car (body) # S-TEMP-EVAL)
(car (body) # S-TEMP-TEST)
(car (body) # ’quote)
(n € N)
lr-proper-exprp (t, body, pnames, formals, temps, table)
(m 3 0)
(m < length (body))
good-pospl (pos, get (m, body)))
(firstn (Ir-p-c-size (t, cur-expr (pos, get (m, body))),
restn (Ir-p-c-size-list (m — 1, body)
+ lr-p-pe-1(get (m, body), pos),
comp-body-1 (*1ist, cdr (body), n)))
= firstn (Ir-p-c-size (t, cur-expr (pos, get (m, body))),
restn (Ir-p-pe-1 (get (m, body), pos),
comp-body-1 (t,
get (m, body),
n + lr-p-c-size-list (m — 1, body)))))

l>>>>>>>>> >

THEOREM: firstn-lr-p-c-size-restn-Ir-p-pc-1-comp-body-1-helper-8
(listp (body)
(car (body) # ’if)
(car (body) ;A S-TEMP-FETCH)
(car (body) # S-TEMP-EVAL)
(car (body) # S-TEMP-TEST)
(car (body) # ’quote)
Ir-proper-exprp (t, body, pnames, formals, temps, table)
(n 2 0)
(n < length (body))
good-pospl (pos, get (n, body)))
((Ir-p-c-size-list (length (body) — 1, body)

l>>>>>>>>>

70

— (lr-p-c-size-list (n — 1, body) + Ir-p-pc-1 (get (n, body), pos)))
&£ Ir-p-c-size (t, cur-expr (pos, get (n, body))))

THEOREM: firstn-lr-p-c-size-restn-Ir-p-pc-1-comp-body-1
(good-pospl (pos, body)
A Ir-proper-exprp (t, body, pnames, formals, temps, table)
A (neN))
— (firstn (lr-p-c-size (t, cur-expr (pos, body)),
restn (Ir-p-pe-1 (body, pos), comp-body-1 (t, body, n)))
= comp-body-1 (t, cur-expr (pos, body), n + lr-p-pc-1 (body, pos)))

EVENT: Disable firstn-lr-p-c-size-restn-lr-p-pc-1-comp-body-1-helper-5.

THEOREM: not-lessp-Ir-p-c-size-flag-t-1
Ir-p-c-size (t, bodyl) £ 1

THEOREM: not-lessp-x-x
(r<z)=f

THEOREM: get-plus
get (z + y, list) = get (y, restn (z, list))

EVENT: Disable get-plus.

THEOREM: get-firstn-different-lists
((k < n) A (firstn (n, list]) = firstn (n, list2)))
— (get (k, listl) = get (k, list2))

THEOREM: unlabel-list-label
unlabel (list (°d1, lab, comment, instr)) = instr

THEOREM: legal-labelp-label-make-label
legal-labelp (list (’d1, Ir-make-label (n), comment, instr))

THEOREM: Ir-make-label-not-numberp
(n € N) — (Ir-make-label (n) = Ir-make-label (0))

DEFINITION:

induct-hint-9 (m, instrs, n)

= if listp (instrs) then induct-hint-9 (m — 1, cdr (instrs), 1 + n)
else t endif

THEOREM: get-label-instrs
(m < length (instrs))
— (get (m, label-instrs (instrs, n))
= list (*dl, lr-make-label (n + m), nil, get (m, instrs)))

71

EVENT: Disable Ir-make-label-not-numberp.

THEOREM: get-append

get (n, append (z, y))

= if n <length (z) then get(n, z)
else get (n — length (z), y) endif

EVENT: Disable get-append.

THEOREM: get-Ir-p-c-size-lessp-lr-p-c-size-comp-body-1
(good-pospl (pos, body)
A lr-proper-exprp (t, body, pnames, formals, temps, table)
A (n €N)
A (m < Ir-p-c-size (t, cur-expr (pos, body))))
— (get (Ir-p-pc-1 (body, pos) + m, comp-body-1 (t, body, n))
= get(m,
comp-body-1 (t,
cur-expr (pos, body),
n + lr-p-pe-1 (body, pos))))

THEOREM: get-lr-p-pc-1-comp-body-1-cur-expr-comp-body
(good-pospl (offset (p-pc (1)), program-body (prog))
A listp (Ir-expr (1))
A (car (Ir-expr (1)) = ’quote)
A lr-programs-properp (I, table)
A (prog = p-current-program (1)))
— (get (Ir-p-pec-1 (program-body (prog), offset (p-pc (1))),
comp-body (program-body (prog)))
= list (*d1,
Ir-make-label (Ir-p-pc-1 (program-body (prog),
offset (p-pc (1)))),
nil,
list (> push-constant, cadr (lr-expr (1)))))

THEOREM: get-Ir-p-pc-1-comp-body-1-quote
(good-pospl (offset (p-pc (1)), program-body (car (p-prog-segment (1))))
A listp (Ir-expr (1))
A (car (Ir-expr (1)) = ’quote)
A lr-programs-properp (I, table)
A (area-name (p-pc (1)) = caar (p-prog-segment (1))))
— (get (Ir-p-pc-1 (program-body (car (p-prog-segment (1)), offset (p-pc (1))),
comp-body-1 (t, program-body (car (p-prog-segment (1))), 0))
= list (’push-constant, cadr (lr-expr (1))))

72

THEOREM: proper-p-temp-stkp-p-temp-stk-lr-push-tstk-quote
(Ir-programs-properp (I, table)
proper-p-prog-segmentp (comp-programs (p-prog-segment (1)), Ir->p (1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
listp (Ir-expr (1))
(car (Ir-expr (1)) = ’quote)
proper-p-temp-stkp (p-temp-stk (1), l->p (1)))
proper-p-temp-stkp (p-temp-stk (lr-push-tstk (I, cadr (Ir-expr (1)))),
Ie->p (1))

L>>>>>

THEOREM: proper-p-statep-lr-push-tstk-quote
(proper-p-statep (Ir->p (1))
listp (lr-expr (1))
(car (Ir-expr (1)) = ’quote)
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
(p-psw (lr-push-tstk (I, cadr (Ir-expr ({)))) = ’run))
proper-p-statep (lr->p (Ir-push-tstk (I, cadr (Ir-expr (1)))))

l>>>>>

THEOREM: good-posp-dv-1-funcall-lr-expr
(listp (Ir-expr (1))
(car (Ir-expr (1)) # ’if)
(car (Ir-expr (1)) # S-TEMP-EVAL)
(car (Ir-expr (1)) # S-TEMP-TEST)
(car (Ir-expr (1)) # S-TEMP-FETCH)
(car (Ir-expr (1)) # ’quote)
good-pospl (offset (p-pc (1)), program-body (p-current-program (1))))
good-posp (’list,
dv (offset (p-pc (1)), 1),
program-body (p-current-program (1)))

l>>>>>>

THEOREM: plistp-pairlist
plistp (pairlist (z, y))

THEOREM: all-p-objectps-append
plistp (Ist1)
— (all-p-objectps (append (Ist1, Ist2), p)
= (all-p-objectps (Ist1, p) A all-p-objectps (Ist2, p)))

THEOREM: all-p-objectps-reverse
plistp (Ist) — (all-p-objectps (reverse (Ist), p) = all-p-objectps (Ist, p))

THEOREM: plistp-first-n
plistp (first-n (n, list))

73

THEOREM: proper-p-temp-stkp-all-p-objectps
proper-p-temp-stkp (temp-stk, p) — all-p-objectps (temp-stk, p)

THEOREM: all-p-objectps-first-n
((length (Ist) £ n) A all-p-objectps (Ist, p))
— all-p-objectps (first-n (n, Ist), p)

THEOREM: strip-cars-append
strip-cars (append (z, y)) = append (strip-cars (z), strip-cars (y))

EVENT: Disable strip-cars-append.

THEOREM: strip-cars-pairlist
strip-cars (pairlist (z, y)) = plist (z)

EVENT: Disable strip-cars-pairlist.

THEOREM: strip-cars-pair-temps-with-initial-values
strip-cars (pair-temps-with-initial-values (temp-var-decls))
= strip-cars (temp-var-decls)

THEOREM: length-popn
(length (list) £ n) — (length (popn (n, list)) = (length (list) — n))

THEOREM: proper-p-temp-stkp-popn
((length (temp-stk) £ n) A proper-p-temp-stkp (temp-stk, p))
— proper-p-temp-stkp (popn (n, temp-stk), p)

THEOREM: proper-p-prog-segmentp-length-program-body
(proper-p-prog-segmentp (prog-segment, p) A definedp (name, prog-segment))
— listp (program-body (assoc (name, prog-segment)))

THEOREM: ret-pc-make-p-call-frame
ret-pc (make-p-call-frame (f-vars, temp-stk, temp-var-dels, ret-pc)) = ret-pe

THEOREM: bindings-make-p-call-frame

bindings (make-p-call-frame (f-vars, temp-stk, temp-var-dels, ret-pc))

= append (pair-formal-vars-with-actuals (f-vars, temp-stk),
pair-temps-with-initial-values (temp-var-dcls))

THEOREM: cddr-nil-make-p-call-frame
cddr (make-p-call-frame (f-vars, temp-stk, temp-var-dcls, ret-pc)) = nil

THEOREM: listp-cdr-make-p-call-frame
listp (cdr (make-p-call-frame (f-vars, temp-stk, temp-var-dcls, ret-pc)))

74

THEOREM: length-pairlist
length (pairlist (z, y)) = length ()

THEOREM: length-pair-temps-with-initial-values
length (pair-temps-with-initial-values (temp-var-dels))
= length (temp-var-dcls)

THEOREM: not-proper-p-statep-not-listp-p-ctrl-stk
(= listp (p-ctrl-stk (1))) — (— proper-p-statep (Ir->p (1)))

THEOREM: proper-p-statep-bad-type-1
((fetch (car (p-temp-stk (7)), p-data-segment (1))
list (type (fetch (car (p-temp-stk (1)), p-data-segment (1))),
untag (fetch (car (p-temp-stk (1)), p-data-segment (1)))))
A adpp (untag (car (p-temp-stk (7)), p-data-segment (1)))

— (= proper-p-statep (Ir->p (1))

THEOREM: p-good-resultp-run-car
(proper-p-statep (Ir->p (1))

A (p-psw (l) = ’run)

A lr-programs-properp (I, table)

A (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= ?(call car)))
— p-good-resultp (p (p-set-pc (Ir->p (1), pc),
p-car-clock (p-set-pc (Ir->p (1), pc))),
p-data-segment (1),
if fetch (top (p-temp-stk (1)), p-data-segment (1))
= tag(’nat, LR-CONS-TAG)
then cons (fetch (add-addr (top (p-temp-stk (1)),
LR-CAR-OFFSET),
p-data-segment (1)),
cdr (p-temp-stk (1)))

else cons (LR-0-ADDR, cdr (p-temp-stk (7))) endif,
p-ctrl-stk (1),
add-addr (pc, 1))

THEOREM: p-good-resultp-run-cdr
(proper-p-statep (Ir->p (1))
A (p-psw (I) = ’run)
A lr-programs-properp (I, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))

75

= ’(call cdr)))
— p-good-resultp (p (p-set-pc (Ir->p (1), pc),
p-cdr-clock (p-set-pc (Ir->p (1), pc))),
p-data-segment (1),
if fetch (top (p-temp-stk (1)), p-data-segment (1))
= tag(’nat, LR-CONS-TAG)
then cons (fetch (add-addr (top (p-temp-stk (1)),
LR-CDR-OFFSET),
p-data-segment (1)),
cdr (p-temp-stk (1)))
else cons (LR-0-ADDR, cdr (p-temp-stk (7))) endif,
p-ctrl-stk (1),
add-addr (pc, 1))

THEOREM: p-good-resultp-run-listp
(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)
A Ir-programs-properp (1, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (It->p (1))))))
= ’(call listp)))
— p-good-resultp (p (p-set-pc (Ir->p (1), pc),
p-listp-clock (p-set-pc (Ir->p (1), pc))),
p-data-segment (1),
if fetch (car (p-temp-stk (1)), p-data-segment (1))
= tag(’nat, LR-CONS-TAG)
then cons (LR-T-ADDR, cdr (p-temp-stk (1)))
else cons (LR-F-ADDR, cdr (p-temp-stk (1)) endif,
p-ctrl-stk (1),
add-addr (pc, 1))

THEOREM: p-good-resultp-run-nlistp
(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)
A lr-programs-properp (I, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= ’(call nlistp)))
— p-good-resultp (p (p-set-pc (Ir->p (1), pc),
p-nlistp-clock (p-set-pc (I->p (1), pc))),
p-data-segment (1),
if fetch (car (p-temp-stk (1)), p-data-segment (1))

76

= tag(’nat, LR-CONS-TAG)
then cons (LR-F-ADDR, cdr (p-temp-stk (7)))
else cons (LR-T-ADDR, cdr (p-temp-stk ())) endif,
p-ctrl-stk (1),
add-addr (pe, 1))

THEOREM: p-good-resultp-run-truep
(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)
A lr-programs-properp (I, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= ’(call truep)))
— p-good-resultp (p (p-set-pc (Ir->p (1), pc),
p-truep-clock (p-set-pc (Ie->p (1), pc))),
p-data-segment (1),
if fetch (car (p-temp-stk (1)), p-data-segment (1))
= tag(’nat, LR-TRUE-TAG)
then cons (LR-T-ADDR, cdr (p-temp-stk (1)))
else cons (LR-F-ADDR, cdr (p-temp-stk (1))) endif,
p-ctrl-stk (1),
add-addr (pc, 1))

EVENT: Disable proper-p-statep-bad-type-1.

THEOREM: p-good-resultp-run-cons
(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)
A lr-programs-properp (I, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= ’(call coms)))
— p-good-resultp (p (p-set-pc (Ir->p (1), pc),
p-cons-clock (p-set-pc (Ir->p (1), pc))),
deposit (fetch (add-addr (fetch (LR-FP-ADDR,
p-data-segment (1)),
LR-REF-COUNT-OFFSET),
p-data-segment (1)),
LR-FP-ADDR,
deposit-a-list (list (tag (*nat, LR-CONS-TAG),
tag (’nat, 1),
topl (p-temp-stk (1)),

"

top (p-temp-stk (1)),
fetch (LR-FP-ADDR,
p-data-segment (1)),

p-data-segment (1))),

cons (fetch (LR-FP-ADDR, p-data-segment (1)),

cddr (p-temp-stk (1)),
p-ctrl-stk (1),
add-addr (pc, 1))

THEOREM: p-objectp-bad-type
(object # list (type (object), untag (object))) — (— p-objectp (object, p))

THEOREM: proper-p-statep-bad-type-2
((car (p-temp-stk (1))
list (type (car (p-temp-stk (1))), untag (car (p-temp-stk (1)))))
A listp (p-temp-stk (1))
— (- proper-p-statep (I-->p (1))

THEOREM: p-good-resultp-run-falsep
(proper-p-statep (lr->p (1))
A (p-psw(l) = ’run)
A Ir-programs-properp (1, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= ’(call falsep)))
— p-good-resultp (p (p-set-pc (Ir->p (1), pe),
p-falsep-clock (p-set-pc (Ir->p (1), pc))),
p-data-segment (1),
if car (p-temp-stk (/)) = LR-F-ADDR
then cons (LR-T-ADDR, cdr (p-temp-stk (1)))
else cons (LR-F-ADDR, cdr (p-temp-stk (1))) endif,
p-ctrl-stk (1),
add-addr (pc, 1))

EVENT: Disable proper-p-statep-bad-type-2.

THEOREM: p-good-resultp-run-false
(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)
A Ir-programs-properp (1, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),

p-prog-segment (Ir->p (1))))))

78

= (call false)))
— p-good-resultp (p (p-set-pc (Ir->p (1), pc),
p-false-clock (p-set-pc (Ir->p (1), pc))),
p-data-segment (1),
cons (LR-F-ADDR, p-temp-stk (1)),
p-ctrl-stk (1),
add-addr (pc, 1))

THEOREM: p-good-resultp-run-true
(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)
A lr-programs-properp (I, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= (call true)))
— p-good-resultp (p (p-set-pc (Ir->p (1), pc),
p-true-clock (p-set-pc (Ir->p (1), pc))),
p-data-segment (1),
cons (LR-T-ADDR, p-temp-stk (1)),
p-ctrl-stk (1),
add-addr (pc, 1))

THEOREM: p-temp-stk-p-ctrl-stk-p-data-segment-run-car
(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)
A (p-psw (p (p-set-pc (Ir->p (1), pc), p-car-clock (p-set-pc (Ir->p (1), pc))))
= ’run)
Ir-programs-properp (I, table)
(unlabel (get (offset (pc),
program-body (assoc (area-name (pc),

p-prog-segment (Ir->p (1))))))

> >

= (call car)))
— ((p-temp-stk (p (p-set-pc (Ir->p (1), pe),
p-car-clock (p-set-pc (Ir->p (1), pc))))
= if fetch (top (p-temp-stk (1)), p-data-segment (1))
= tag(’nat, LR-CONS-TAG)
then cons (fetch (add-addr (top (p-temp-stk (1)), LR-CAR-OFFSET),
p-data-segment (1)),
cdr (p-temp-stk (1)))
else cons (LR-0-ADDR, cdr (p-temp-stk (7))) endif)
A (p-ctrl-stk (p (p-set-pc (Ir->p (1), pc),
p-car-clock (p-set-pc (Ir->p (1), pc))))
= p-ctrl-stk (1))

79

A (p-data-segment (p (p-set-pc (Ir->p (1), pe),
p-car-clock (p-set-pc (I-->p (1), pc))))
= p-data-segment (1)))

THEOREM: p-temp-stk-p-ctrl-stk-p-data-segment-run-cdr
(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)
A (p-psw (p (p-set-pc (Ir->p (1), pc), p-cdr-clock (p-set-pe (Ir->p (1), pc))))
= ’run)
A lr-programs-properp (I, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= ’(call cdr)))
— ((p-temp-stk (p (p-set-pc (Ir->p (1), pc),
p-cdr-clock (p-set-pe (Ir->p (1), pc))))
= if fetch (top (p-temp-stk (1)), p-data-segment (1))
= tag(’nat, LR-CONS-TAG)
then cons (fetch (add-addr (top (p-temp-stk (1)), LR-CDR-OFFSET),
p-data-segment (1)),
cdr (p-temp-stk (1)))
else cons (LR-0-ADDR, cdr (p-temp-stk (7))) endif)
A (p-ctrl-stk (p (p-set-pc (Ir->p (1), pc),
p-cdr-clock (p-set-pc (Ir->p (1), pc))))
= p-ctrl-stk (1))
A (p-data-segment (p (p-set-pc (Ir->p (1), pc),
p-cdr-clock (p-set-pc (Ir->p (1), pc))))
= p-data-segment (1)))

THEOREM: p-temp-stk-p-ctrl-stk-p-data-segment-run-cons
let fp-addr be fetch (LR-FP-ADDR, p-data-segment (1))
in
(proper-p-statep (Ir->p (1))
A (p-psw (I) = ’run)
A (p-psw (p (p-set-pc (Ir->p (1), pc),
p-cons-clock (p-set-pc (Ir->p (1), pc))))
= ’run)
A Ir-programs-properp (1, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= ’(call coms)))
— ((p-temp-stk (p (p-set-pc (Ir->p (1), pc),
p-cons-clock (p-set-pe (Ir->p (1), pc))))

80

= couns (fetch (LR-FP-ADDR, p-data-segment (1)),
cddr (p-temp-stk (1))))
A (p-ctrl-stk (p (p-set-pc (Ir->p (1), pc),
p-cons-clock (p-set-pc (Ir->p (1), pc))))
= p-ctrl-stk (1))
A (p-data-segment (p (p-set-pc (Ir->p (1), pc),
p-cons-clock (p-set-pe (Ir->p (1), pc))))
= deposit (fetch (add-addr (fetch (LR-FP-ADDR,
p-data-segment (1)),
LR—REF-COUNT—OFFSET)7
p-data-segment (1)),
LR-FP-ADDR,
deposit-a-list (list (tag (’nat,
LR-CONS-TAG),
tag (’nat, 1),
topl (p-temp-stk (1)),
top (p-temp-stk (1)),
fetch (LR-FP-ADDR,
p-data-segment (1)),
p-data-segment (1))))) endlet

THEOREM: p-temp-stk-p-ctrl-stk-p-data-segment-run-false
(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)
A (p-psw (p (p-set-pc (Ir->p (1), pc), p-false-clock (p-set-pc (Ir->p (1), pe))))
= ’run)
lr-programs-properp (I, table)
(unlabel (get (offset (pc),
program-body (assoc (area-name (pc),

p-prog-segment (Ir->p (1))))))

> >

= ’(call false)))
— ((p-temp-stk (p (p-set-pc (Ir->p (1), pc),
p-false-clock (p-set-pc (I->p (1), pc))))
= couns (LR-F-ADDR, p-temp-stk (1)))
A (p-ctrl-stk (p (p-set-pc (Ir->p (1), pc),
p-false-clock (p-set-pc (Ir->p (1), pc))))

= p-ctrl-stk (1))

A (p-data-segment (p (p-set-pc (Ir->p (1), pe),
p-false-clock (p-set-pc (Ir->p (1), pc))))
= p-data-segment (1)))

THEOREM: p-temp-stk-p-ctrl-stk-p-data-segment-run-falsep

(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)

81

A (p-psw (p (p-set-pc (Ir->p (1), pc), p-falsep-clock (p-set-pc (Ir->p (1), pc))))
= ’run)
A lr-programs-properp (I, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= ’(call falsep)))
— ((p-temp-stk (p (p-set-pc (Ir->p (1), pe),
p-falsep-clock (p-set-pc (Ir->p (1), pc))))
= if car (p-temp-stk (I)) = LR-F-ADDR
then cons (LR-T-ADDR, cdr (p-temp-stk (1)))
else cons (LR-F-ADDR, cdr (p-temp-stk (7))) endif)
A (p-ctrl-stk (p (p-set-pc (Ir->p (1), pe),
p-falsep-clock (p-set-pc (Ir->p (1), pc))))
= p-ctrl-stk (1))
A (p-data-segment (p (p-set-pc (Ir->p (1), pe),
p-falsep-clock (p-set-pc (Ir->p (1), pc))))
= p-data-segment (1)))

THEOREM: p-temp-stk-p-ctrl-stk-p-data-segment-run-listp
(proper-p-statep (Ir->p (1))
A (p-psw (I) = ’run)
A (p-psw (p (p-set-pc (Ir->p (1), pe), p-listp-clock (p-set-pc (Ir->p (1), pc))))
= ’run)
A Ir-programs-properp (1, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= ’(call listp)))
— ((p-temp-stk (p (p-set-pc (Ir->p (1), pe),
p-listp-clock (p-set-pc (Ir->p (1), pc))))
= if fetch (car (p-temp-stk (1)), p-data-segment (1))
= tag(’nat, LR-CONS-TAG)
then cons (LR-T-ADDR, cdr (p-temp-stk (1)))
else cons (LR-F-ADDR, cdr (p-temp-stk (7))) endif)
A (p-ctrl-stk (p (p-set-pc (Ir->p (1), pc),
p-listp-clock (p-set-pc (Ir->p (1), pc))))
= p-ctrl-stk (1))
A (p-data-segment (p (p-set-pc (Ir->p (1), pc),
p-listp-clock (p-set-pc (Ir->p (1), pc))))
= p-data-segment (1)))

THEOREM: p-temp-stk-p-ctrl-stk-p-data-segment-run-nlistp
(proper-p-statep (Ir->p (1))

82

A (p-psw (l) = ’run)
A (p-psw (p (p-set-pc (Ir->p (1), pc), p-nlistp-clock (p-set-pc (I->p (1), pc))))
= ’run)
A lr-programs-properp (I, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= ’(call nlistp)))
— ((p-temp-stk (p (p-set-pc (Ir->p (1), pe),
p-nlistp-clock (p-set-pc (Ir->p (1), pc))))
= if fetch (car (p-temp-stk (1)), p-data-segment (1))
= tag(’nat, LR-CONS-TAG)
then cons (LR-F-ADDR, cdr (p-temp-stk (1))
else cons (LR-T-ADDR, cdr (p-temp-stk (7))) endif)
A (p-ctrl-stk (p (p-set-pc (Ir->p (1), pc),
p-nlistp-clock (p-set-pc (Ir->p (1), pe))))
= p-ctrl-stk (1))
A (p-data-segment (p (p-set-pc (Ir->p (1), pe),
p-nlistp-clock (p-set-pc (Ir->p (1), pc))))
= p-data-segment (1)))

THEOREM: p-temp-stk-p-ctrl-stk-p-data-segment-run-true

(proper-p-statep (Ir->p (1))

A (p-psw(l) = ’run)

A (p-psw (p (p-set-pc (Ir->p (1), pc), p-true-clock (p-set-pc (Ir->p (1), pe))))
= ’run)
lr-programs-properp (I, table)
(unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))

> >

= ’(call true)))
— ((p-temp-stk (p (p-set-pc (Ir->p (1), pc),
p-true-clock (p-set-pc (Ir->p (1), pc))))
= cons (LR-T-ADDR, p-temp-stk (1)))
A (p-ctrl-stk (p (p-set-pc (Ir->p (1), pc),
p-true-clock (p-set-pc (Ir->p (1), pc))))

= p-ctrl-stk (1))

A (p-data~segment (p (p-set-pc (I->p (1), pc),
p-true-clock (p-set-pc (Ir->p (1), pc))))
= p-data-segment (1)))

THEOREM: p-temp-stk-p-ctrl-stk-p-data-segment-run-truep

(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)

83

A (p-psw (p (p-set-pc (Ir->p (1), pc), p-truep-clock (p-set-pc (Ir->p (1), pc))))
= ’run)
A lr-programs-properp (I, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= (call truep)))
— ((p-temp-stk (p (p-set-pc (Ir->p (1), pe),
p-truep-clock (p-set-pc (Ir->p (1), pc))))
= if fetch (car (p-temp-stk (1)), p-data-segment (1))
= tag(’nat, LR-TRUE-TAG)
then cons (LR-T-ADDR, cdr (p-temp-stk (1)))
else cons (LR-F-ADDR, cdr (p-temp-stk (7))) endif)
A (p-ctrl-stk (p (p-set-pc (Ir->p (1), pc),
p-truep-clock (p-set-pc (Ir->p (1), pc))))
= p-ctrl-stk (1))
A (p-data-segment (p (p-set-pc (Ir->p (1), pc),
p-truep-clock (p-set-pc (Ir->p (1), pc))))
= p-data-segment (1)))

THEOREM: get-last-funcall-cur-expr
(listp (expr)
(car (expr) # ’if)
(car (expr) 7é S-TEMP-EVAL)
(car (expr) # S-TEMP-TEST)
(car (expr) # S-TEMP-FETCH)
(car (expr) # ’quote))
(get (Ir-p-c-size-list (length (expr) — 1, expr), comp-body-1 (t, expr, n))
= if definedp (car (ezpr), P-RUNTIME-SUPPORT-PROGRAMS)

then list (*call, car (expr))
else list (’ call, user-fname (car (ezpr))) endif)

I>s>>>>
(e)

THEOREM: not-listp-p-prog-segment-lr-expr
(— listp (p-prog-segment (1))) — (= listp (Ir-expr (1)))
THEOREM: get-offset-return-pc-program-body-assoc-comp-programs

(good-pospl (offset (p-pc (1)),
program-body (assoc (area-name (p-pc (1)), p-prog-segment (1))))

A Ir-programs-properp (1, table)

A (car (Ir-expr (1)) # ’if)

A (car (Ir-expr (1)) # S-TEMP-EVAL)
A (car (Ir-expr ({)) # S-TEMP-TEST)
A (car (Ir-expr ({)) # S-TEMP-FETCH)
A (car (Ir-expr (1)) # ’quote)

A listp (Ir-expr (1))

84

— (get (offset (Ir-return-pc (1)),
program-body (assoc (area-name (p-pc (1)),
comp-programs (p-prog-segment (1)))))

= list (°d1,
Ir-make-label (offset (Ir-return-pc (1))),
nil,
if definedp (car (Ir-expr (1)), P-RUNTIME-SUPPORT-PROGRAMS)
then list (*call, car (Ir-expr (1)))
else list (?call, user-fname (car (lr-expr (1)))) endif))

THEOREM: listp-p-temp-stk-proper-ctrl-stk-p-run-subr
(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (new-l, table)
Ir-programs-properp (I, table)
listp (lr-expr (1))
proper-p-statep (Ir->p (new-l))
(p-psw (new-l) = ’run)
(p-psw (p-run-subr (car (Ir-expr (1)),
p-set-pc (Ir->p (new-1), lr-return-pe (1))))

> > > > >

= ’run)
(p-prog-segment (1) = p-prog-segment (new-1)))
— (listp (p-temp-stk (p-run-subr (car (Ir-expr (1)),
p-set-pc (Ir->p (new-1), lr-return-pc (1)))))
A (p-ctrl-stk (p-run-subr (car (lr-expr (1)),
p-set-pc (Ir->p (new-1), lr-return-pc (1))))
= p-ctrl-stk (new-1)))

>

THEOREM: listp-p-temp-stk-proper-ctrl-stk-lr-apply-subr
(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)

Ir-programs-properp (new-1, table)

listp (lr-expr (1))

subrp (car (Ir-expr (1)))

(p-psw (Ir-apply-subr (I, new-1)) = ’run)

proper-p-statep (lr->p (new-1))

(p-psw (new-l) = ’run)

(p-prog-segment (1) = p-prog-segment (new-1)))

(listp (p-temp-stk (Ir-apply-subr (I, new-1)))

A (p-ctrl-stk (Ir-apply-subr (I, new-l)) = p-ctrl-stk (new-1)))

l>>s>>>>>>

THEOREM: cur-expr-nlistp-pos
(pos ~ nil) — (cur-expr (pos, body) = body)

THEOREM: proper-p-statep-p-run-subr
(proper-p-statep (p) A (p-psw (p-run-subr (subr, p)) = ’run))
— proper-p-statep (p-run-subr (subr, p))

85

THEOREM: same-signature-commutative
same-signature (z, y) = same-signature (y, z)

THEOREM: same-signature-p-run-subr
(proper-p-statep (p)
A (p-psw (p-run-subr (subr, p)) = ’run)
A (data-seg = p-data-segment (p)))
— same-signature (data-seg, p-data-segment (p-run-subr (subr, p)))

THEOREM: proper-p-framep-lr->p-similar-states
(proper-p-framep (frame, name, p0)
A same-signature (p-data-segment (p0), p-data-segment (p1))
A (p-prog-segment (p0) = p-prog-segment (p1))
A (p-word-size (p0) = p-word-size (p1)))
— proper-p-framep (frame, name, p1)

THEOREM: car-untag-p-pc-lr-eval
car (untag (p-pc (Ir-eval (flag, I, ¢)))) = car (untag (p-pc (1))

THEOREM: lessp-cdr-untag-lr-return-pc-lr-p-c-size
(good-pospl (offset (p-pc (1)),

program-body (assoc (car (untag (p-pc (1))), p-prog-segment (1))))
Ir-programs-properp (I, table)
(subrp (car (Ir-expr (1)) V litatom (car (lr-expr (1))))
(car (Ir-expr (1)) # ’if)
(car (Ir-expr (1)) # ’quote)
(name = area-name (p-pc (1))))
(cdr (untag (Ir-return-pc (1))
< length (program-body (assoc (name,

comp-programs (p-prog-segment (1))))))

L>>s>>>

THEOREM: proper-p-statep-lr-apply-subr-state
(proper-p-statep (lr->p (new-1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
listp (lr-expr (1))
subrp (car (Ir-expr (1)))
(car (Ir-expr (1)) # ’if)
(p-prog-segment (1) = p-prog-segment (new-1))
(area-name (p-pc (1)) = area-name (p-pc (new-1))))
proper-p-statep (p-set-pc (Ir->p (new-1), lr-return-pe (1)))

l>>s>>>>>

THEOREM: same-signature-Ir-apply-subr
(proper-p-statep (Ir->p (new-1))
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))

86

l>>>>>>>>

Ir-programs-properp (I, table)

listp (Ir-expr (1))

subrp (car (Ir-expr (1)))

(car (Ir-expr (1)) # ’if)

(p-prog-segment (1) = p-prog-segment (new-1))

(area-name (p-pc (1)) = area-name (p-pc (new-1)))

(p-psw (lr-apply-subr (I, new-l)) = ’run)

(data-seg = p-data-segment (new-1)))

same-signature (data-seg, p-data-segment (Ir-apply-subr (I, new-1)))

THEOREM: p-current-program-lr-apply-subr
((area-name (p-pc (new-l)) = area-name (p-pc (1)))

A
—

(p-prog-segment (new-l) = p-prog-segment (1)))
(p-current-program (Ir-apply-subr (I, new-l)) = p-current-program (1))

THEOREM: p-current-program-Ir-eval
p-current-program (Ir-eval (flag, [, ¢)) = p-current-program (1)

THEOREM: proper-p-framep-lr-apply-subr
(proper-p-statep (Ir->p (new-1))

l>>>>>>>>>

good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
listp (Ir-expr (1))
subrp (car (Ir-expr (1)))
(car (Ir-expr (1)) # ’if)
(p-prog-segment (1) = p-prog-segment (new-1))
(area-name (p-pc (1)) = area-name (p-pc (new-1)))
(p-psw (lr-apply-subr (I, new-1)) = ’run)
(name = area-name (p-pc (new-1))))
proper-p-framep (car (p-ctrl-stk (new-l)),

name,

Ir->p (Ir-apply-subr (I, new-1)))

THEOREM: proper-p-statep-lr->p-lessp-ctrl-stk-size
(proper-p-statep (Ir->p (1)) A (maz = p-max-ctrl-stk-size (1)))

—

((maz < p-ctrl-stk-size (p-ctrl-stk (1))) = f)

EvVENT: Disable proper-p-statep-1r->p-lessp-ctrl-stk-size.

THEOREM: proper-p-statep-Ir->p-numberp-max-ctrl-stk-size
proper-p-statep (Ir->p (1)) — (p-max-ctrl-stk-size (I) € N)

EVENT: Disable proper-p-statep-lr->p-numberp-max-ctrl-stk-size.

87

THEOREM: proper-p-statep-lr->p-numberp-max-temp-stk-size
proper-p-statep (Ir-->p (1)) — (p-max-temp-stk-size (I) € N)

EVENT: Disable proper-p-statep-lr->p-numberp-max-temp-stk-size.

THEOREM: proper-p-statep-lr->p-numberp-word-size
proper-p-statep (Ir->p ({)) — (p-word-size (1) € N)

EvENT: Disable proper-p-statep-lr->p-numberp-word-size.

THEOREM: proper-p-statep-lr->p-lessp-max-ctrl-stk-size
proper-p-statep (Ir->p (1))
— ((p-max-ctrl-stk-size () < exp (2, p-word-size (1))) = t)

EVENT: Disable proper-p-statep-Ir->p-lessp-max-ctrl-stk-size.

THEOREM: proper-p-statep-lr->p-lessp-max-temp-stk-size
proper-p-statep (Ir->p (1))
— ((p-max-temp-stk-size (1) < exp (2, p-word-size ({))) = t)

EVENT: Disable proper-p-statep-lr->p-lessp-max-temp-stk-size.

THEOREM: proper-p-statep-lr->p-equal-word-size-0
proper-p-statep (Ir-->p (1)) — (p-word-size (I) # 0)

EvENT: Disable proper-p-statep-lr->p-equal-word-size-0.

THEOREM: proper-p-ctrl-stkp-lr-apply-subr

(proper-p-statep (lr->p (new-1))

good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))

Ir-programs-properp (I, table)

listp (lr-expr (1))

subrp (car (Ir-expr (1)))

(car (Ir-expr (1)) # ’if)

(p-prog-segment (1) = p-prog-segment (new-1))

(area-name (p-pc (1)) = area-name (p-pc (new-1)))

(p-psw (lr-apply-subr (I, new-l)) = ’run))

proper-p-ctrl-stkp (cdr (p-ctrl-stk (new-1)),
area-name (ret-pc (car (p-ctrl-stk (new-1)))),
Ir->p (Ir-apply-subr (I, new-1)))

l>>>>>>>>

THEOREM: proper-p-prog-segmentp-lr-apply-subr
(proper-p-statep (Ir->p (new-1))

88

good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
listp (lr-expr (1))
subrp (car (Ir-expr (1)))
(car (Ir-expr (1)) # ’if)
(p-prog-segment (1) = p-prog-segment (new-1))
(area-name (p-pc (1)) = area-name (p-pc (new-1)))
(p-psw (lr-apply-subr (I, new-l)) = ’run)
(progs = p-prog-segment (new-1)))
proper-p-prog-segmentp (comp-programs (progs),

Ir->p (Ir-apply-subr (I, new-1)))

l>>>>>>>>>

THEOREM: proper-p-state-p-p-run-subr-opener-1
(proper-p-statep (p) A (p-psw (p-run-subr (subr, p)) = ’run))
— proper-p-temp-stkp (p-temp-stk (p-run-subr (subr, p)), p-run-subr (subr, p))

THEOREM: proper-p-temp-stkp-lr-apply-subr
(proper-p-statep (Ir->p (new-1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
listp (lr-expr (1))
subrp (car (Ir-expr (1)))
(car (Ir-expr (1)) # ’if)
(p-prog-segment (1) = p-prog-segment (new-1))
(area-name (p-pc (1)) = area-name (p-pc (new-1)))
(p-psw (lr-apply-subr (I, new-1)) = ’run))
proper-p-temp-stkp (p-temp-stk (Ir-apply-subr (I, new-1)),
Ir->p (Ir-apply-subr (1, new-1)))

l>>>>>>>>

THEOREM: proper-p-state-p-p-run-subr-opener-2
(proper-p-statep (p) A (p-psw (p-run-subr (subr, p)) = ’run))
— (p-max-temp-stk-size (p) £ length (p-temp-stk (p-run-subr (subr, p))))

THEOREM: not-lessp-length-p-temp-stk-lr-apply-subr
(proper-p-statep (Ir->p (new-1))

good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)

listp (lr-expr (1))

subrp (car (Ir-expr (1)))

(car (Ir-expr (1)) # ’if)

(p-prog-segment (1) = p-prog-segment (new-1))
(area-name (p-pc (1)) = area-name (p-pc (new-1)))

(p-psw (lr-apply-subr (I, new-l)) = ’run)
(p-max-temp-stk-size (1) = p-max-temp-stk-size (new-I)))
(p-max-temp-stk-size (1)

£ length (p-temp-stk (Ir-apply-subr (1, new-1))))

l>>>>>>>>>

89

THEOREM: proper-p-state-p-p-run-subr-opener-3

(proper-p-statep (p) A (p-psw (p-run-subr (subr, p)) = ’run))

— proper-p-data-segmentp (p-data-segment (p-run-subr (subr, p)),
p-run-subr (subr, p))

THEOREM: proper-p-data-segmentp-lr-apply-subr
(proper-p-statep (Ir->p (new-1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
listp (Ir-expr (1))
subrp (car (Ir-expr (1)))
(car (Ir-expr (1)) # ’if)
(p-prog-segment (1) = p-prog-segment (new-1))
(area-name (p-pc (1)) = area-name (p-pc (new-1)))
(p-psw (Ir-apply-subr (I, new-1)) = ’run))
proper-p-data-segmentp (p-data-segment (Ir-apply-subr (1, new-1)),
Ir->p (lr-apply-subr (I, new-1)))

l>>>>>>>>

THEOREM: Ir-programs-properp-lr-set-pos
Ir-programs-properp (lr-set-pos (1, pos), table)
= lr-programs-properp (I, table)

THEOREM: proper-p-statep-lr-apply-subr

(listp (lr-expr (1))

A subrp (car (Ir-expr (1))
(car (Ir-expr (1)) # ’if)
proper-p-statep (Ir->p (1))
proper-p-statep (Ir->p (Ir-eval (’ 1ist, Ir-set-pos (I, pos), c)))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
lr-programs-properp (I, table)
(p-psw (lr-eval (*1ist, lr-set-pos (I, pos), ¢)) = ’run)
(p-psw (Ir-apply-subr (I, lr-eval (*1ist, Ir-set-pos (I, pos), ¢)))
= ’run))
— proper-p-statep (Ir->p (Ir-apply-subr (1,

Ir-eval (’list,
Ir-set-pos (I, pos),

c))))

>>> > > > >

THEOREM: cdr-untag-lr-p-pc-lr-funcall
(p-psw (lr-funcall (I, new-1)) = ’run)
— (cdr (untag (Ir-p-pc (Ir-funcall (I, new-1)))) = 0)

THEOREM: listp-p-ctrl-stk-Ir-funcall
listp (p-ctrl-stk (new-1)) — listp (p-ctrl-stk (Ir-funcall (I, new-1)))

90

THEOREM: proper-p-framep-top-p-ctrl-stk-lr-funcall
(p-psw (Ir-funcall (I, new-l)) = ’>run)
— (listp (car (p-ctrl-stk (Ir-funcall (I, new-1))))
A listp (edr (car (p-ctrl-stk (Ir-funcall (I, new-1)))))
A (cddr (car (p-ctrl-stk (Ir-funcall (I, new-1)))) = nil)
A (ret-pc (car (p-ctrl-stk (Ir-funcall (1, new-1))))
= add-addr (Ir-return-pc ({), 1)))

THEOREM: car-untag-p-pc-Ir-funcall

(p-psw (Ir-funcall (I, new-l)) = ’>run)

— (car (untag (p-pc (Ir-funcall (I, new-1))))
= user-fname (car (Ir-expr ({))))

THEOREM: area-name-p-pc-lr-funcall
(p-psw (lr-funcall (I, new-1)) = ’run)
— (arearname (p-pc (Ir-funcall (I, new-l))) = user-fname (car (lr-expr (1))))

THEOREM: strip-cars-bindings-top-p-ctrl-stk-lr-funcall
(p-psw (lr-funcall (I, new-1)) = ’run)
— (strip-cars (bindings (car (p-ctrl-stk (lr-funcall ({, new-1))))
= append (formal-vars (assoc (user-fname (car (Ir-expr (1))),
p-prog-segment (1))),
strip-cars (temp-var-dcls (assoc (user-fname (car (Ir-expr (1)),
p-prog-segment (1))))))

THEOREM: formal-vars-assoc-comp-programs-lr-programs-properp
(definedp (name, cdr (p-prog-segment (1))) A lr-programs-properp (I, table))
— (formal-vars (assoc (name, comp-programs (p-prog-segment ({))))

= formal-vars (assoc (name, p-prog-segment (1))))

THEOREM: temp-var-dcls-assoc-comp-programs-lr-programs-properp
(definedp (name, cdr (p-prog-segment (1))) A lr-programs-properp (I, table))
— (temp-var-dcls (assoc (name, comp-programs (p-prog-segment (1))))

= temp-var-dcls (assoc (name, p-prog-segment (1))))

THEOREM: definedp-comp-programs-definedp-lr-programs-properp
(definedp (name, cdr (p-prog-segment (1))) A lr-programs-properp (I, table))
— definedp (name, comp-programs (p-prog-segment ()))

THEOREM: definedp-lr-funcall-prog-segment
(listp (lr-expr (1))
A (= subrp (car (Ir-expr (1))))
A (car (Ir-expr (1)) # ’quote)
A litatom (car (Ir-expr (1))
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))

91

A lr-programs-properp (I, table)
A (progs = cdr (p-prog-segment (1))))
— definedp (user-fname (car (Ir-expr (1)), progs)

THEOREM: pop-p-ctrl-stk-lr-funcall
(p-psw (Ir-funcall (I, new-1)) = ’run)
— (cdr (p-ctrl-stk (Ir-funcall (I, new-1))) = p-ctrl-stk (new-1))

THEOREM: proper-p-alistp-lr-funcall

(Ir-programs-properp (I, table)
A definedp (user-fname (car (lr-expr (1))), cdr (p-prog-segment (new-1)))
A proper-p-prog-segmentp (comp-programs (p-prog-segment (new-1)),

Ir->p (new-1))

proper-p-temp-stkp (p-temp-stk (new-1), lr->p (new-1))

(p-psw (lr-funcall (I, new-1)) = ’run)

(p-prog-segment (1) = p-prog-segment (new-1)))

proper-p-alistp (bindings (car (p-ctrl-stk (Ir-funcall (I, new-1)))),

lr->p (Ir-funcall (1, new-1)))

b >>>

THEOREM: proper-p-ctrl-stkp-Ir-funcall
(proper-p-ctrl-stkp (cdr (ctri-stk),
area-name (ret-pc (car (ctri-stk))),
Ir->p (new-1))
A proper-p-framep (top (ctri-stk), name, lr->p (new-1))
A listp (ctri-stk))
— proper-p-ctrl-stkp (ctri-stk, name, lr->p (Ir-funcall (1, new-1)))

THEOREM: not-lessp-p-max-ctrl-stk-size-Ir-funcall

(listp (Ir-expr (1))

(= subrp (car (Ir-expr (1))))

(car (Ir-expr (1)) # ’quote)

litatom (car (lr-expr (1)))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)

(p-psw (Ir-funcall (I, new-l)) = ’>run)
(p-max-ctrl-stk-size (I) = p-max-ctrl-stk-size (new-1))
(p-prog-segment (1) = p-prog-segment (new-1)))
(p-max-ctrl-stk-size (1)

&£ p-ctrl-stk-size (p-ctrl-stk (Ir-funcall (I, new-1))))

l>>>>>>>>

THEOREM: offset-p-pc-Ir-funcall
(p-psw (Ir-funcall (I, new-l)) = ’>run)
— (offset (p-pc (Ir-funcall (I, new-1))) = nil)

THEOREM: Ir-eval-t-lr-funcall-p-psw-run
(p-psw (Ir-eval (¢, lr-funcall (I, new-l), ¢)) = ’run)
— (p-psw (Ir-funcall (I, new-1)) = ’run)

92

THEOREM: proper-p-temp-stkp-Ir-funcall

(listp (Ir-expr (1))

(= subrp (car (Ir-expr (1))))

(car (Ir-expr (1)) # ’quote)

litatom (car (lr-expr (1))

good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))

lr-programs-properp (I, table)

(p-psw (lr-funcall (I, new-1)) = ’run)

proper-p-temp-stkp (p-temp-stk (new-1), lr->p (new-1))

(p-prog-segment (1) = p-prog-segment (new-1)))

proper-p-temp-stkp (p-temp-stk (Ir-funcall (I, new-I)),
lr->p (Ir-funcall (I, new-1)))

l>>>>>>>>

THEOREM: popn-nlistp
(= listp () — (- listp (popn (n, 2)))

THEOREM: length-popn-lessp-fact
length (list) < length (popn (n, list))

EVENT: Disable popn-nlistp.

THEOREM: not-lessp-p-max-temp-stk-size-lr-funcall
((p-max-temp-stk-size (1) £ length (p-temp-stk (new-1)))

A (p-max-temp-stk-size (I) = p-max-temp-stk-size (new-I)))

— (p-max-temp-stk-size () £ length (p-temp-stk (Ir-funcall (I, new-1))))

THEOREM: listp-label-instrs
listp (label-instrs (list, n)) = listp (list)

THEOREM: listp-comp-body
listp (comp-body (body))

THEOREM: lessp-offset-lr-return-pc-lr-p-c-size-good-posp

(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)

(subrp (car (Ir-expr (1))) V litatom (car (Ir-expr (1))))

(car (Ir-expr (1)) # ’if)

(car (Ir-expr (1)) # ’quote))
((1 4 offset (Ir-return-pc (1)))

< length (program-body (assoc (area-name (p-pc (1)),

comp-programs (p-prog-segment (1))))))

>>>>

THEOREM: proper-p-statep-Ir-funcall
(proper-p-statep (lr->p (Ir-eval (*1ist, Ir-set-pos (I, pos), ¢)))
A listp (Ir-expr (7))

93

l>>s>>>>>>

(= subrp (car (Ir-expr (1))))
(car (Ir-expr (1)) # ’quote)
(car (Ir-expr (1)) # ’if)
litatom (car (lr-expr (1)))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
(p-psw (Ir-eval (’1ist, lr-set-pos (I, pos), ¢)) = ’run)
(p-psw (lr-funcall (I, Ir-eval (*1ist, Ir-set-pos (I, pos), ¢))) = ’run))
proper-p-statep (Ir->p (lr-funcall (I,
Ir-eval (*list, Ir-set-pos (I, pos), ¢))))

THEOREM: proper-p-statep-lr-set-expr-lr-pop-cstk
let (2 be Ir-eval (t, Ir-funcall (I, new-1), ¢ — 1)

in

(definedp (area-name (p-pc (1)), p-prog-segment (1))

N
N
A\

l>>s>>>>>

(cdr (p-ctrl-stk (12)) = p-ctrl-stk (new-l))
(cdr (p-ctrl-stk (new-l)) = cdr (p-ctrl-stk (1))
(strip-cars (bindings (car (p-ctrl-stk (new-1))))
= strip-cars (bindings (car (p-ctrl-stk (1)))))
proper-p-statep (Ir->p (12))
proper-p-statep (Ir->p (new-1))
(p-psw (I2) = ’run)
same-signature (p-data-segment (new-1), p-data-segment (12))
(p-prog-segment (new-1) = p-prog-segment (1))
(area-name (p-pc (new-1)) = area-name (p-pc (1)))
(pos = offset (p-pe (1))))
proper-p-statep (lr->p (Ir-set-expr (lr-pop-cstk (12), 1, pos))) endlet

THEOREM: p-psw-lr-eval-flag-list-flag-t
((p-psw (Ir-eval (’list, lr-set-expr (lr-eval (t, I, ¢), I, pos), ¢)) = ’run)

N
N

—

listp (offset (p-pc (1)))
listp (Ir-expr-list (1)))
(p-psw (Ir-eval (t, [, ¢)) = ’run)

THEOREM: Ir-programs-properp-lr-set-expr
Ir-programs-properp (Ir-set-expr ({1, 12, pos), table)

Ir-programs-properp (12, table)

THEOREM: Ir-programs-properp-lr-pop-tstk
Ir-programs-properp (Ir-pop-tstk (1), table) = lr-programs-properp (I, table)

THEOREM: Ir-programs-properp-lr-funcall
(listp (Ir-expr (1))

A\
A\

(= subrp (car (Ir-expr (1))))
(car (Ir-expr (1)) # ’quote)

94

I >>>

litatom (car (Ir-expr (1)))

good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))

Ir-programs-properp (I, table))

Ir-programs-properp (Ir-funcall (I, Ir-eval (’ 1ist, lr-set-pos (I, pos), c)),
table)

THEOREM: proper-p-statep-lr->p-lr-set-expr
(lr-programs-properp (12, table)

>

> > > >

L>>>>

Ir-programs-properp (11, table)
proper-p-statep (Ir->p (12))
proper-p-statep (Ir->p (11))
(cdr (p-ctrl-stk (I1)) = cdr (p-ctrl-stk (12)))
(strip-cars (bindings (car (p-ctrl-stk (11))))

= strip-cars (bindings (car (p-ctrl-stk (12)))))
(p-prog-segment (11) = p-prog-segment (12))
(p-word-size (11) = p-word-size (12))
(p-max-ctrl-stk-size (I1) = p-max-ctrl-stk-size (12))
(p-max-temp-stk-size ({1) = p-max-temp-stk-size (12)))
proper-p-statep (Ir->p (lr-set-expr (11, (2, pos)))

THEOREM: Ir-programs-properp-lr-if-ok
Ir-programs-properp (Ir-if-ok (1), table) = lr-programs-properp (I, table)

THEOREM: proper-p-statep-lr-if-ok
proper-p-statep (lr->p (lr-if-ok (7))) = proper-p-statep (Ir->p (1))

THEOREM: lr-eval-preserves-proper-p-statep-Ir->p
(proper-p-statep (Ir->p (1))

A
N
A

—

good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
(p-psw (Ir-eval (flag, [, ¢)) = ’run))
(proper-p-statep (Ir->p (Ir-eval (flag, 1, ¢)))
A (strip-cars (bindings (car (p-ctrl-stk (Ir-eval (flag, I, ¢)))))

= strip-cars (bindings (car (p-ctrl-stk (1)))))
A (cdr (p-ctrl-stk (Ir-eval (flag, I, ¢))) = cdr (p-ctrl-stk (1)))
A ((flag = *1ist) V listp (p-temp-stk (Ir-eval (flag, I, ¢))))
A same-signature (p-data-segment (1),

p-data-segment (Ir-eval (flag, I, ¢))))

THEOREM: Ir-params-Ir-eval
Ir-params (frame, Ir-eval (flag, I, ¢)) = lr-params (frame, 1)

THEOREM: Ir-temps-Ir-eval
Ir-temps (frame, lr-eval (flag, 1, ¢)) = lr-temps (frame, 1)

95

;3 Later LR-FREE-LIST-NODES will filter out those nodes that are
;; part of for example pack’s or user-defined types that are larger than one
;; node (i.e. have more than two accessors).

DEFINITION:
Ir-free-list-nodes (addr, data-seg)
= if offset (addr) < LR-NODE-SIZE then nil
else let sub-addr be sub-addr (addr, LR-NODE-SIZE)
in
if type (fetch (add-addr (sub-addr, LR-REF-COUNT-OFFSET),
data-seq))
= ’addr
then cons (sub-addr,
Ir-free-list-nodes (sub-addr, data-seg))
else Ir-free-list-nodes (sub-addr, data-seg) endif endlet endif

THEOREM: length-delete-member
(addr € node-list)
— (length (delete (addr, node-list)) = (length (node-list) — 1))

;; Returns smallest address such that the address is too large to be
;; a pointer to a node in DATA-SEG.

DEFINITION:
Ir-max-node (data-seq)
= tag(’addr,
cons (LR-HEAP-NAME, length (value (LR-HEAP-NAME, data-seg)) — 1))

DEFINITION:
Ir-check-free-nodes (addr, node-list, data-seg, maz-addr)
= if addr € node-list
then Ir-check-free-nodes (fetch (add-addr (addr, LR-REF-COUNT-OFFSET),
data-seq),
delete (addr, node-list),
data-seg,
max-addr)
else addr = maz-addr endif

DEFINITION:

Ir-proper-free-listp (data-seg)

= (adpp (untag (LR-FP-ADDR), data-seg)

A lr-check-free-nodes (Ir-fetch-fp (data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),

data-seq,
Ir-max-node (data-seg)))

96

EVENT: Disable Ir-proper-free-listp.

DEFINITION:
Ir-check-f-addrp (addr, data-seg) = (addr = LR-F-ADDR)

EVENT: Disable Ir-check-f-addrp.

DEFINITION:
Ir-check-undef-addrp (addr, data-seg) = (addr = LR-UNDEF-ADDR)

EVENT: Disable Ir-check-undef-addrp.

DEFINITION:
lr-check-numberp-addrp (addr, data-seg)
= ((type (fetch (add-addr (addr, LR-UNBOX-NAT-OFFSET), data-seg)) = ’nat)
A lr-good-pointerp (fetch (add-addr (addr, 3), data-seg), data-seg)
A (untag (fetch (add-addr (addr, LR-UNBOX-NAT-OFFSET), data-seg)) € N))

EVENT: Disable Ir-check-numberp-addrp.

DEFINITION:
Ir-check-listp-addrp (addr, data-seq)
= (lr-good-pointerp (fetch (add-addr (addr, LR-CAR-OFFSET), data-seg),
data-seq)
A Ir-good-pointerp (fetch (add-addr (addr, LR-CDR-OFFSET), data-seg),
data-seg))

EVENT: Disable Ir-check-listp-addrp.

DEFINITION:
Ir-proper-heapp-nodep (addr, data-seq)
= if = Ir-nodep (addr, data-seg) then f
elseif type (fetch (add-addr (addr, LR-REF-COUNT-OFFSET), data-seg))
= ’addr
then offset (addr) £ (LR-NODE-SIZE + offset (LR-F-ADDR))
elseif type (fetch (add-addr (addr, LR-REF-COUNT-OFFSET), data-seg))
’nat then f
elseif type (fetch (addr, data-seg)) # ’nat then f
elseif untag (fetch (addr, data-seg)) = LR-UNDEFINED-TAG
then Ir-check-undef-addrp (addr, data-seq)
elseif untag (fetch (addr, data-seg)) = LR-FALSE-TAG
then lr-check-f-addrp (addr, data-seg)

97

elseif offset (addr) < offset (LR-T-ADDR) then f

elseif untag (fetch (addr, data-seg)) = LR-TRUE-TAG then t
elseif untag (fetch (addr, data-seg)) = LR-ADD1-TAG

then lr-check-numberp-addrp (addr, data-seg)

elseif untag (fetch (addr, data-seg)) = LR-CONS-TAG

then Ir-check-listp-addrp (addr, data-seg)

else f endif

EVENT: Disable lr-proper-heapp-nodep.

DEFINITION:
Ir-proper-heapp2 (addr, data-seg)
= if offset (addr) < LR-NODE-SIZE then t
else let sub-addr be sub-addr (addr, LR-NODE-SIZE)
in
Ir-proper-heapp-nodep (sub-addr, data-seq)
A lr-proper-heapp2 (sub-addr, data-seg) endlet endif

DEFINITION:
Ir-valp (value, addr, data-seq)
= if Ir-good-pointerp (addr, data-seqg)
then let tag be untag (fetch (addr, data-seg))
in
if listp (value)
then (tag = LR-CONS-TAG)
A lr-valp (car (value),
fetch (add-addr (addr, LR-CAR-OFFSET),
data-seq),
data-seq)
A r-valp (cdr (value),
fetch (add-addr (addr, LR-CDR-OFFSET),
data-seg),
data-seq)
elseif truep (value) then tag = LR-TRUE-TAG
elseif falsep (value) then tag = LR-FALSE-TAG
elseif value € N
then (tag = LR-ADD1-TAG)
A (value = untag (fetch (add-addr (addr,
LR-UNBOX-NAT-OFFSET),
data-seq)))
else f endif endlet
else f endif

DEFINITION:

98

Ir-proper-heappl (addr, data-seqg)

= (lr-proper-heapp2 (addr, data-seq)
A lr-valp (t, LR-T-ADDR, data-seq)
A Ir-valp (0, LR-0-ADDR, data-seg))

EVENT: Disable Ir-proper-heappl.

;; This is the minimum heap that allows all the predefineds to be defined.

DEFINITION:
Ir-minimum-heapp (data-seg)
= (adpp (untag (LR-UNDEF-ADDR), data-seq)
A adpp (untag (LR-F-ADDR), data-seqg)
adpp (untag (LR-T-ADDR), data-seq)
adpp (untag (LR-0-ADDR), data-seg)
adpp (untag (add-addr (LR-0-ADDR, LR-NODE-SIZE)), data-seg))

> > >

EvENT: Disable Ir-minimum-heapp.

;; This needs to be augmented to test that the word-size is big enough to
;; hold piton tags.

DEFINITION:
Ir-proper-heapp (data-seqg)
= (lr-minimum-heapp (data-seq)
A Ir-nodep (Ir-max-node (data-seg), data-seq)
A Ir-proper-free-listp (data-seg)
A lr-proper-heappl (Ir-max-node (data-seq), data-seg))

EVENT: Disable Ir-proper-heapp.

DEFINITION:
Ir-check-resultl (value, temp-stk, data-seg)
= if listp (value)
then lr-valp (car (value), top (temp-stk), data-seg)
A Ir-check-resultl (cdr (value), pop (temp-stk), data-seq)
else t endif

DEFINITION:
Ir-check-result (flag, value, temp-stk, data-seg, orig-temp-stk)
= ((orig-temp-stk = if flag = ’list
then restn (length (value), temp-stk)
else cdr (temp-stk) endif)
A if flag = ’list

99

then Ir-check-resultl (reverse (value), temp-stk, data-seq)
else Ir-valp (value, top (temp-stk), data-seq) endif
A lr-proper-heapp (data-seg))

EvVENT: Disable Ir-check-result.

DEFINITION:
Ir-s-similar-params (s-params, lr-params, data-seg)
= if listp (s-params)
then if listp (Ir-params)
then (caar (s-params) = caar (lr-params))
A Ir-valp (cdar (s-params), cdar (Ir-params), data-seg)
A Ir-s-similar-params (edr (s-params),
cdr (Ir-params),
data-seq)
else f endif
else Ir-params ~ nil endif

DEFINITION:
Ir-s-similar-temps (s-temps, Ir-temps, data-seq)
= if listp (s-temps)
then if listp (Ir-temps)
then if cdar (Ir-temps) = LR-UNDEF-ADDR then — cadar (s-temps)
else cadar (s-temps)

A lr-valp (caddar (s-temps),
cdar (Ir-temps),
data-seg) endif

A Ir-s-similar-temps (cdr (s-temps),
cdr (Ir-temps),
data-seq)

else f endif
else Ir-temps ~ nil endif

DEFINITION:
Ir-s-similar-const-table (table, data-seq)
= if listp (table)
then Ir-valp (caar (table), cdar (table), data-seg)
A Ir-s-similar-const-table (cdr (table), data-seg)
else t endif

DEFINITION:
Ir-s-similar-statesp (s-params, s-temps, 1, table)
= (lr-s-similar-params (s-params,
Ir-params (top (p-ctrl-stk (1)), 1),

100

p-data-segment (1))
A Ir-s-similar-temps (s-temps,
lr-temps (top (p-ctrl-stk (1)), 1),
p-data-segment (1))
A Ir-s-similar-const-table (table, p-data-segment (1)))

EVENT: Disable Ir-s-similar-statesp.

THEOREM: p-accessors-s->Irl

(p-pc (s->1rl (s, I, table)) = tag (’pc, cons (s-pname (s), s-pos (s))))
(p-ctrl-stk (s->1rl (s, I, table)) = p-ctrl-stk (1))

(p-temp-stk (s->1rl (s, I, table)) = p-temp-stk (1))
(p-prog-segment (s->1Irl (s, , table))

= Ir-compile-programs (s-progs (s), table))

(p-data-segment (s->1Irl (s, I, table)) = p-data-segment (1))
(p-max-ctrl-stk-size (s->1rl (s, I, table)) = p-max-ctrl-stk-size (1))
(p-max-temp-stk-size (s->1rl (s, I, table)) = p-max-temp-stk-size (1))
(

(

> > >

p-word-size (s->1rl (s, I, table)) = p-word-size (1))
p-psw (s->1rl (s, I, table)) = s-err-flag (s))

> > > > >

THEOREM: s-eval-err-flag-not-run-fact
(s-err-flag (s) # run) — (s-eval (flag, s, clock) = s)

;3 OFFSET

THEOREM: offset-tag-cons
offset (tag (tag, cons (area, offset))) = offset

;3 ADP-NAME

THEOREM: adp-name-cons
adp-name (cons (z, y)) = z

;3 OFFSET-SUB-ADDR -- see above

;; LR-PROPER-P-AREASP

THEOREM: definedp-litatom-Ir-proper-p-areas
((— litatom (name)) A Ir-proper-p-areasp (data-seg))
— (= definedp (name, data-seg))

EVENT: Disable definedp-litatom-lr-proper-p-areas.

101

THEOREM: member-lr-free-list-nodes-type-addr
(type (fetch (add-addr (addr, LR-REF-COUNT-OFFSET), data-seg)) # ’addr)
— (addr ¢ lr-free-list-nodes (maz-addr, data-seq))

EVENT: Disable member-lr-free-list-nodes-type-addr.

THEOREM: lessp-length-deposit
length (cdr (assoc (name, deposit (any, addr, data-seq))))
£ length (cdr (assoc (name, data-seg)))

;3 GET

THEOREM: definedp-listp-cdr-assoc-Ir-proper-p-areasp
Ir-proper-p-areasp (data-seg)
— (listp (cdr (assoc (area-name, data-seg)))

= definedp (area-name, data-seg))

EVENT: Disable definedp-listp-cdr-assoc-lr-proper-p-areasp.

;3 LR-MINIMUM-HEAPP

THEOREM: Ir-minimum-heapp-opener-adpp-lr-f-addr
Ir-minimum-heapp (data-seg) — adpp (identity (untag (LR-F-ADDR)), data-seg)

THEOREM: Ir-minimum-heapp-opener-adpp-lr-t-addr
Ir-minimum-heapp (data-seg) — adpp (identity (untag (LR-T-ADDR)), data-seq)

THEOREM: Ir-minimum-heapp-opener-adpp-lr-0-addr
Ir-minimum-heapp (data-seg) — adpp (identity (untag (LR-0-ADDR)), data-seg)

THEOREM: Ir-minimum-heapp-opener-adpp-lr-undef-addr
Ir-minimum-heapp (data-seg)
— adpp (identity (untag (LR-UNDEF-ADDR)), data-seq)

THEOREM: Ir-boundary-offsetp-subl-length-heap-name
Ir-boundary-nodep (Ir-max-node (data-seg))
— Ir-boundary-offsetp (length (cdr (assoc (identity (LR-HEAP-NAME), data-seg))) — 1)

THEOREM: lessp-Ir-boundary-offsetp-nodep-plus-node-size-fact-2
(Ir-boundary-offsetp (offset1)

A lr-boundary-offsetp (offset2)

A (n < LR-NODE-SIZE))

— (((n + offsetl) < offset2) = (offsetl < offset2))

THEOREM: Ir-boundary-offsetp-times-lr-node-size-anything
Ir-boundary-offsetp (identity (LR-NODE-SIZE) *)

102

THEOREM: Ir-boundary-offsetp-difference-not-equal-lessp-fact-2
(Ir-boundary-offsetp (z) A lr-boundary-offsetp (y) A (z € N) A (z < y))
— (((y — LR-NODE-SIZE) < z) = f)

THEOREM: Ir-minimum-heapp-opener-2
Ir-minimum-heapp (data-seg)
— (identity (LR-MINIMUM-HEAP-SIZE)
< length (cdr (assoc (identity (LR-HEAP-NAME), data-seg))))

EVENT: Disable Ir-minimum-heapp-opener-2.

THEOREM: Ir-minimum-heapp-opener-3
Ir-minimum-heapp (data-seg) — definedp (identity (LR-HEAP-NAME), data-seq)

EVENT: Disable Ir-minimum-heapp-opener-3.

;3 LR-PROPER-FREE-LISTP

DEFINITION:
Ir-node-listp (list, data-seg)
= if listp (list)
then Ir-nodep (car (list), data-seg)
A lIr-node-listp (cdr (list), data-seg)
else t endif

EVENT: Disable Ir-node-listp.

THEOREM: adpp-adpp-sub-addr
adpp (untag (addr), data-seg) — adpp (untag (sub-addr (addr, n)), data-seq)

THEOREM: Ir-node-listp-Ir-free-list-nodes
(Ir-boundary-nodep (addr)
A (area-name (addr) = LR-HEAP-NAME)
A adpp (untag (addr), data-seg2)
A (type(addr) = ’addr))
— lr-node-listp (Ir-free-list-nodes (addr, data-segl), data-seg2)

THEOREM: Ir-nodep-member-lr-node-listp
(Ir-node-listp (list, data-seg) A (node € list))

— ((type(node) = ’addr)

(cddr (node) = nil)

listp (node)

adpp (untag (node), data-seq)
Ir-boundary-nodep (node)

(area-name (node) = LR-HEAP-NAME))

> > > > >

103

EVENT: Disable Ir-nodep-member-Ir-node-listp.

THEOREM: Ir-max-node-Ir-nodep-opener-facts

(type (Ir-max-node (data-seg)) = ’addr)

A (cddr (Ir-max-node (data-seg)) = nil)

A (area-name (Ir-max-node (data-seg)) = LR-HEAP-NAME)

THEOREM: Ir-max-node-adpp-definedp-lr-heap-name

Ir-proper-p-areasp (data-seg)

— (adpp (untag (Ir-max-node (data-seg)), data-seq)
= definedp (LR-HEAP-NAME, data-seg))

THEOREM: offset-lr-max-node
offset (Ir-max-node (data-seg))
= (length (cdr (assoc (identity (LR-HEAP-NAME), data-seg))) — 1)

EVENT: Disable Ir-max-node.

THEOREM: Ir-proper-free-listp-opener-1
Ir-proper-free-listp (data-seqg)
— adpp (identity (untag (LR-FP-ADDR)), data-seg)

THEOREM: Ir-proper-free-listp-opener-2
(Ir-proper-free-listp (data-seg)
A adpp (untag (Ir-max-node (data-seg)), data-seq)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— ((type (fetch (identity (LR-FP-ADDR), data-seg)) = ’addr)
(cddr (fetch (identity (LR-FP-ADDR), data-seg)) = nil)
listp (fetch (identity (LR-FP-ADDR), data-seg))
adpp (untag (fetch (identity (LR-FP-ADDR), data-seg)), data-seq)
Ir-boundary-nodep (fetch (identity (LR-FP-ADDR), data-seg))
(area-name (fetch (identity (LR-FP-ADDR), data-seg))
= LR-HEAP-NAME))

> > > > >

THEOREM: Ir-proper-free-listp-opener-2-adpp-untag-numberp-offset
(Ir-proper-free-listp (data-seg)
A adpp (untag (Ir-max-node (data-seg)), data-seq)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— (offset (fetch (identity (LR-FP-ADDR), data-seg)) € N)

THEOREM: Ir-proper-free-listp-opener-2-adpp-untag-listp
(Ir-proper-free-listp (data-seg)
A adpp (untag (Ir-max-node (data-seg)), data-seq)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— listp (untag (fetch (identity (LR-FP-ADDR), data-seg)))

104

THEOREM: plus-times-fact-1
(n#£0) = (((n + (n* w)) <(d*n)) =((1+w)<d))

EVENT: Disable plus-times-fact-1.

THEOREM: lessp-difference-fact-1
(((x mod n) =0) A ((y mod n) =0) A (z < y) A (z € N))

—

(z <(y=n)) =(z#(y—mn))

THEOREM: lessp-difference-lr-boundary-offsetp-fact-1
((offset € N)

A
A
A\

—

Ir-boundary-offsetp (offset)

Ir-boundary-offsetp (y)

(offset < y))

((offset < (y — identity (LR-NODE-SIZE)))

= (offset # (y — identity (LR-NODE-SIZE))))

THEOREM: lessp-Ir-node-on-boundaryp-node-size
(Ir-boundary-nodep (addr) A (offset (addr) € IN))

—

((offset (addr) < identity (LR-NODE-SIZE)) = (offset (addr) = 0))

THEOREM: lessp-difference-node-size-sub-addr
((offset (addr) < offset (maz-addr))

l>>s>>>>>>>>

(area-name (addr) = area-name (maz-addr))
Ir-boundary-nodep (maz-addr)

(type (maz-addr) = ’addr)

(offset (maz-addr) € N)

(cddr (maz-addr) = nil)

Ir-boundary-nodep (addr)

(type (addr) = ’addr)

(offset (addr) € N)

(cddr (addr) = nil)

listp (untag (addr)))

((offset (addr) < (offset (maz-addr) — identity (LR-NODE-SIZE)))
= (sub-addr (maz-addr, identity (LR-NODE-SIZE)) # addr))

THEOREM: Ir-nodep-lr-proper-heapp-nodep
(Ir-proper-heapp2 (maz-addr, data-seq)

A
A
A

—

(offset (addr) < offset (maz-addr))
Ir-nodep (max-addr, data-seg)
Ir-nodep (addr, data-seg))
lr-proper-heapp-nodep (addr, data-seq)

EVENT: Disable lessp-difference-node-size-sub-addr.

105

THEOREM: adpp-area-name-offset-same

(listp (untag (addr?))

(offset (addr1) € N)

(cddr (addr1) = nil)

listp (untag (addr2))

(offset (addr2) € N)

(cddr (addr2) = nil)

(type (addrl) = type (addr2)))

((addr1 = addr2)

= ((offset (addr1) = offset (addr2))
A (area-name (addrl) = area-name (addr2))))

l>>>>>>

THEOREM: lr-proper-heapp-nodep-tag-cons

((untag (fetch (addr, data-seg)) = LR-CONS-TAG)
A (type (fetch (add-addr (addr, LR-REF-COUNT-OFFSET), data-seg)) = ’nat)
A lr-proper-heapp-nodep (addr, data-seq)
A ((offset = LR-CAR-OFFSET) V (offset = LR-CDR-OFFSET)))

— lr-good-pointerp (fetch (add-addr (addr, offset), data-seg), data-seq)

THEOREM: adpp-add-addr-fact-2
(adpp (untag (addrl), data-seq)
A adpp (untag (add-addr (addr?, n)), data-seg)
A adpp (untag (addr2), data-seg)
A (= adpp (untag (add-addr (addr2, n)), data-seg))
A (area-name (addr!) = area-name (addr2)))
— (offset (addr1) < offset (addr2))

THEOREM: fetch-lr-nodep-add-addr
((— adpp (untag (add-addr (addr, n)), data-seg)) A lr-nodep (addr, data-seq))
— (fetch (add-addr (addr, n), data-seg) = 0)

EVENT: Disable fetch-lr-nodep-add-addr.

THEOREM: untag-addr-addr-tag
untag (add-addr (tag (tag, adp), n)) = cons (car (adp), cdr (adp) + n)

THEOREM: Ir-good-pointerp-lessp-offset-max-heap-node
(adpp (untag (addr), data-seg)
A Ir-boundary-nodep (addr)
listp (addr)
(cddr (addr) = nil)
(type (addr) = ’addr)
(area-name (addr) = ’heap)
(type (fetch (add-addr (addr, LR-REF-COUNT-OFFSET), data-seg)) = ’nat)

> > > > >

106

A adpp (untag (Ir-max-node (data-seg)), data-seq)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— (offset (addr)
< (length (cdr (assoc (identity (LR-HEAP-NAME), data-seg))) — 1))

EvVENT: Disable Ir-good-pointerp-lessp-offset-max-heap-node.

THEOREM: Ir-proper-heapp-opener-1
Ir-proper-heapp (data-seqg)
— (lr-minimum-heapp (data-seg) A lr-proper-free-listp (data-seq))

THEOREM: Ir-proper-heapp-opener-3
((addr = Ir-max-node (data-seg)) A lr-proper-heapp (data-seg))
— lr-proper-heapp2 (addr, data-seq)

THEOREM: deposit-free-ptr-preserves-Ir-valp
(adpp (untag (LR-FP-ADDR), data-seq) A lr-valp (value, addr, data-seqg))
— Ir-valp (value, addr, deposit (anything, identity (LR-FP-ADDR), data-seg))

THEOREM: Ir-proper-p-areasp-deposit-anything-anywhere
Ir-proper-p-areasp (data-seg)

— lr-proper-p-areasp (deposit (anything, addr, data-seg))
THEOREM: Ir-node-listp-delete

Ir-node-listp (list, data-seg)

— lr-node-listp (delete (anything, list), data-seg)

EVENT: Disable Ir-node-listp-delete.

THEOREM: Ir-node-listp-deposit-anything-at-all

Ir-node-listp (addr, data-seq)

— Ir-node-listp (addr, deposit (anything, addr2, data-seg))
EVENT: Disable Ir-node-listp-deposit-anything-at-all.
THEOREM: cdr-assoc-member-strip-cdrs

definedp (name, list) — (cdr (assoc (name, list)) € strip-cdrs (list))
EVENT: Disable cdr-assoc-member-strip-cdrs.

THEOREM: Ir-set-error-lr->p
Ir->p (Ir-set-error (p, flag)) = lr-set-error (Ir->p (p), flag)

107

THEOREM: Ir-params-Ir-set-expr
((area-name (p-pc (1)) = area-name (p-pc (12)))
A (p-prog-segment (1) = p-prog-segment ({2)))
— (Ir-params (frame, lr-set-expr (I, 12, pos)) = lr-params (frame, 1))
THEOREM: Ir-temps-lr-set-expr
((area-name (p-pc (1)) = area-name (p-pc (12)))
A (p-prog-segment (1) = p-prog-segment (12)))
— (Ir-temps (frame, Ir-set-expr (I, 12, pos)) = lr-temps (frame, 1))

THEOREM: p-current-program-Ir-push-tstk
p-current-program (Ir-push-tstk (I, any)) = p-current-program (1)

THEOREM: p-current-program-Ir-set-temp
p-current-program (Ir-set-temp (I, value, var)) = p-current-program ({)

THEOREM: p-current-program-lr-pop-tstk
p-current-program (Ir-pop-tstk (I)) = p-current-program ({)

THEOREM: p-current-program-lr-do-temp-fetch
p-current-program (Ir-do-temp-fetch (1)) = p-current-program (1)

THEOREM: strip-cars-restn
strip-cars (restn (n, list)) = restn (n, strip-cars (list))

EVENT: Disable strip-cars-restn.

THEOREM: strip-cars-firstn
strip-cars (firstn (n, list)) = firstn (n, strip-cars (list))

EVENT: Disable strip-cars-firstn.

THEOREM: Ir-params-Ir-pop-tstk
Ir-params (frame, Ir-pop-tstk (1)) = Ir-params (frame, 1)

THEOREM: Ir-temps-Ir-pop-tstk
Ir-temps (frame, lr-pop-tstk (1)) = lr-temps (frame, 1)

THEOREM: Ir-minimum-heapp-same-signature
same-signature (data-segl, data-seg2)

— (Ir-minimum-heapp (data-seg2) = lr-minimum-heapp (data-seg!))

EVENT: Disable Ir-minimum-heapp-same-signature.

108

THEOREM: put-not-listp
((— listp (list1)) A (— listp (list2)))
— (put (val, n, list1) = put (val, n, list2))

THEOREM: put-zero
put (val, n, 0) = put (val, n, nil)

EVENT: Disable put-zero.

THEOREM: put-put
((offsetl € N) A (offset?2 € N))
— (put (vall, offsetl, put (val2, offset2, list))
= if offsetl = offset2 then put (vall, offsetl, list)
else put (val2, offset2, put (vall, offsetl, list)) endif)

THEOREM: proper-p-data-segmentp-implies-lr-proper-p-areasp
proper-p-data-segmentp (data-seg, p) — lr-proper-p-areasp (data-seg)

THEOREM: proper-p-statep-lr->p-implies-lr-proper-p-areasp
proper-p-statep (Ir->p (1)) — Ir-proper-p-areasp (p-data-segment (1))

EVENT: Disable proper-p-data-segmentp-implies-lr-proper-p-areasp.

THEOREM: Ir-proper-free-listp-type-fetch-free-ptr
(Ir-proper-free-listp (data-seg)
A adpp (untag (Ir-max-node (data-seg)), data-seq)
A Ir-boundary-nodep (lr-max-node (data-seg))
A lr-proper-p-areasp (data-seg))
— (type (fetch (add-addr (fetch (identity (LR-FP-ADDR), data-seg),
identity (LR-REF-COUNT-OFFSET)),
data-seq))

’nat)

THEOREM: put-assoc-put-assoc-1
put-assoc (vall, name, put-assoc (val2, name, alist))
= put-assoc (vall, name, alist)

THEOREM: put-assoc-put-assoc-2
put-assoc (vall, namel, put-assoc (val2, name2, alist))
= if namel = name2 then put-assoc (vall, namel, alist)
else put-assoc (val2, name2, put-assoc (vall, namel, alist)) endif

THEOREM: deposit-deposit
((offset (addr1) € N) A (offset (addr2) € N))

109

— (deposit (valuel, addr!, deposit (value2, addr2, data-seq))
= if (area-name (addr!) = area-name (addr2))
A (offset (addrl) = offset (addr2))
then deposit (valuel, addrl, data-seg)
else deposit (value2,
addr2,
deposit (valuel , addrl, data-seg)) endif)

THEOREM: deposit-ref-count-move-outward
(offset (addr) € N)
— (deposit (valuel,
addr,
deposit (value2,
add-addr (addr, identity (LR-REF-COUNT-OFFSET)),
data-seq))
= deposit (value2,
add-addr (addr, LR-REF-COUNT-OFFSET),
deposit (valuel, addr, data-seg)))

DEFINITION:
ihint-2 (flag, s, , table, c)
= if s-err-flag (s) # run then t
elseif flag = ’list
then if s-pos(s) ~ nil then t
elseif listp (s-expr-list (s))
then ihint-2 (t, s, I, table, c)
A ihint-2 (°1list,
s-set-expr (s-eval (t, s, ¢), s, nx (s-pos (s))),
Ir-eval (t, s->1rl (s, I, table), c),
table,
)
else t endif
elseif ¢ ~ 0 then t
elseif litatom (s-expr (s)) then t
elseif s-expr (s) ~ nil then t
elseif car (s-expr (s)) = ’if
then let lrtest be lr-if-ok (Ir-eval (t,
s->1rl (s-set-pos (s,
dv (s-pos (s),
1),
lv
table),
o).

stest be s-eval (t, s-set-pos (s, dv (s-pos(s), 1)), ¢)

110

in
if p-psw (Irtest) = >run
then if top (p-temp-stk (Irtest)) # LR-F-ADDR
then ihint-2 (t,
s-set-pos (s, dv (s-pos (s), 1)),

l’
table,
c)
A ihint-2 (t,
s-set-expr (stest,
8’

dv (s-pos (s), 2)),
Ir-pop-tstk (Irtest),
table,
¢)
else ihint-2 (t,
s-set-pos (s, dv (s-pos (s), 1)),

L
table,
c)
A ihint-2 (%,
s-set-expr (stest,
S

dv (s-pos (5), 3),
Ir-pop-tstk (lrtest),
table,
c) endif
else ihint-2 (t,
s-set-pos (s, dv (s-pos (s), 1)),
l7
table,
¢) endif endlet
elseif car (s-expr (s)) = S-TEMP-EVAL
then ihint-2 (t, s-set-pos (s, dv (s-pos (s), 1)), I, table, c)
elseif car (s-expr (s)) = S-TEMP-TEST
then if p-max-temp-stk-size (I) £ (2 + length (p-temp-stk (1)))
then if Ir-eval-temp-setp (s->1rl (s, I, table)) then t
else ihint-2 (t, s-set-pos (s, dv (s-pos (s), 1)), I, table, ¢) endif
else t endif
elseif car (s-expr (s)) = S-TEMP-FETCH then t
elseif car (s-expr(s)) = ’quote then t
elseif s-err-flag (s-eval (*1ist, s-set-pos (s, dv (s-pos (s), 1)), ¢))
’run
then ihint-2 (*1list, s-set-pos (s, dv (s-pos (s), 1)), I, table, ¢)

111

elseif subrp (car (s-expr (s)))
then ihint-2 (’list, s-set-pos (s, dv (s-pos (s), 1)), I, table, c)
elseif litatom (car (s-expr (s)))
then let s-arg-s be s-eval (’1list, s-set-pos (s, dv (s-pos (s), 1)), ¢),
lr-arg-s be lr-eval (’list,
s->Irl (s-set-pos (s, dv (s-pos (s), 1)),

lv
table),
¢)
in
ihint-2 (’1list, s-set-pos (s, dv (s-pos(s), 1)), I, table, ¢)
A ihint-2 (¢,

s-fun-call-state (s-arg-s, car (s-expr (s))),
Ir-funcall (s->1rl (s, I, table), lr-arg-s),
table,
¢ — 1) endlet

else t endif

DEFINITION:

induct-hint-4 (z, temp-stk)

= if listp (z) then induct-hint-4 (cdr (z), cdr (temp-stk))
else t endif

THEOREM: Ir-check-resultl-append

Ir-check-resultl (append (z, y), temp-stk, data-seq)
(Ir-check-resultl (z, temp-stk, data-seq)

A Ir-check-resultl (y, restn (length (z), temp-stk), data-seg))

THEOREM: Ir-proper-heapp-opener-4
Ir-proper-heapp (data-seg)
— (adpp (untag (Ir-max-node (data-seg)), data-seq)
A Ir-boundary-nodep (Ir-max-node (data-seg)))

THEOREM: length-strip-cars
length (strip-cars (temp-vars)) = length (temp-vars)

THEOREM: definedp-lr-compile-programs
definedp (name, lr-compile-programs (progs, const-table))
= definedp (name, progs)

THEOREM: Ir-valp-deposit-fetch-free-pointer-offset-helper-1

((type (fetch (add-addr (addr, identity (LR-REF-COUNT-OFFSET)), dala-seg))
= ’nat)

A Ir-good-pointerp (addr, data-seq)

A Ir-nodep (free-addr, data-seqg)

112

A (offset (addr) = offset (free-addr)))
— (type (fetch (add-addr (free-addr, identity (LR-REF-COUNT-OFFSET)),
data-seq))
= ’nat)

THEOREM: Ir-boundary-nodep-equal-plus-fact-zero
((type (addrl) = ’addr)

(offset (addr2) € N)

Ir-boundary-nodep (addr2)

(area-name (addr2) = area-name (addrl))
(m < LR-NODE-SIZE))

((offset (addrl) = (m + offset (addr2)))
= ((m ~0) A (addr! = addr2)))

A (cddr (addr1) = nil)
A listp (addrl)
A listp (untag (addri))
A (offset (addr1) € N)
A Ir-boundary-nodep (addr1)
A (type (addr2) = ’addr)
A (cddr (addr2) = nil)
A listp (addr2)
A listp (untag (addr2))
A
A
A
A
=

THEOREM: Ir-boundary-nodep-equal-plus-fact
((type (addrl) = ’addr)

(offset (addr2) € N)

Ir-boundary-nodep (addr2)

(n < LR-NODE-SIZE)

(m < LR-NODE-SIZE)

(area-name (addr!) = area-name (addr2)))
(((n + offset (addr1)) = (m + offset (addr2)))
= ((fix(n) = fix(m)) A (addr! = addr2)))

A (cddr (addrl) = nil)
A listp (addrl)
A listp (untag (addri))
A (offset (addr1) € N)
A lr-boundary-nodep (addr1)
A (type (addr2) = ’addr)
A (cddr (addr2) = nil)
A listp (addr2)
A listp (untag (addr2))
A
A
N
A
A
-

THEOREM: Ir-valp-deposit-fetch-free-pointer-offset
((type (fetch (add-addr (free-addr, LR-REF-COUNT-OFFSET), data-seg)) # ’nat)
A Ir-nodep (free-addr, data-seg)

113

A (n < LR-NODE-SIZE)
A Ir-valp (value, addr, data-seg))
— lr-valp (value, addr, deposit (anything, add-addr (free-addr, n), data-seg))

EVENT: Disable Ir-valp-deposit-fetch-free-pointer-offset.
EVENT: Disable Ir-valp-deposit-fetch-free-pointer-offset-helper-1.

THEOREM: Ir-valp-deposit-fetch-free-pointer

((type (fetch (add-addr (free-addr, LR-REF-COUNT-OFFSET), data-seg)) # ’nat)
A lr-nodep (free-addr, data-seq)
A lr-valp (value, addr, data-seg))

— Ir-valp (value, addr, deposit (anything, free-addr, data-seg))

EVENT: Disable Ir-valp-deposit-fetch-free-pointer.

THEOREM: not-equal-x-addl-add1-x
(z=01+(1+u2))=1f

THEOREM: not-equal-x-add1-x
(r=(0+2)=f1

THEOREM: p-run-subr-preserves-lr-valp
(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A Ir-programs-properp (I, table)
Ir-programs-properp (new-1, table)
listp (lr-expr (1))
proper-p-statep (Ir->p (new-I))
Ir-proper-free-listp (p-data-segment (new-[))
adpp (untag (Ir-max-node (p-data-segment (new-1))), p-data-segment (new-1))
Ir-boundary-nodep (Ir-max-node (p-data-segment (new-1)))
(p-psw (new-l) = ’run)
(p-psw (p-run-subr (car (lr-expr (1)),
p-set-pc (Ir->p (new-1), lr-return-pc (1))))

>>>>> > > >

= ’run)
lr-valp (value, addr, p-data-segment (new-1))
(p-prog-segment (1) = p-prog-segment (new-1)))
Ir-valp (value,
addr,
p-data-segment (p-run-subr (car (Ir-expr (1)),
p-set-pc (Ir->p (new-1),
lr-return-pc (1)))))

I >>

114

THEOREM: numberp-offset-sub-addr
offset (sub-addr (addr, n)) € N

THEOREM: Ir-free-list-nodes-deposit-non-ref-count
(Ir-nodep (addr, data-seq)
A lr-nodep (maz-addr, data-seq)
A (offset # LR-REF-COUNT-OFFSET)
A (offset € N)
A (offset < LR-NODE-SIZE))
— (Ir-free-list-nodes (maz-addr,
deposit (anything, add-addr (addr, offset), data-seq))
= lr-free-list-nodes (maz-addr, data-seg))

THEOREM: Ir-nodep-member-lr-node-listp-adpp-untag-listp
(Ir-node-listp (list, data-seg) A (node € list)) — listp (untag (node))

EVENT: Disable Ir-nodep-member-Ir-node-listp-adpp-untag-listp.

THEOREM: Ir-nodep-member-lr-node-listp-adpp-untag-numberp-offset
(Ir-node-listp (list, data-seg) A (node € list)) — (offset (node) € N)

THEOREM: Ir-nodep-member-lr-node-listp-lr-boundaryp-offsetp
(Ir-node-listp (list, data-seg) A (node € list))
— Ir-boundary-offsetp (offset (node))

THEOREM: Ir-check-free-nodes-deposit-non-ref-count

(Ir-nodep (addr2, data-seg)

Ir-nodep (maz-addr, data-seq)

(offset # LR-REF-COUNT-OFFSET)

(offset € N)

(offset < LR-NODE-SIZE)

Ir-node-listp (node-list, data-seg))

(Ir-check-free-nodes (addr1 ,
node-list,
deposit (anything, add-addr (addr2, offset), data-seg),
max-addr)

= Ir-check-free-nodes (addr!, node-list, data-seg, max-addr))

L>>>>>

EVENT: Disable Ir-nodep-member-Ir-node-listp-adpp-untag-numberp-offset.

THEOREM: adpp-deposit-other-area
(adp-name (adp) # area-name (addr))
— (adpp (adp, deposit (anything, addr, data-seq)) = adpp (adp, data-seg))

EVENT: Disable adpp-deposit-other-area.

115

THEOREM: length-deposit
length (cdr (assoc (name, deposit (anything, addr, data-seg))))
= if definedp (area-name (addr), data-seq)
then if area-name (addr) = name
then if offset (addr) < length (cdr (assoc (name, data-seg)))
then length (cdr (assoc (name, data-seg)))
else 1 + offset (addr) endif
else length (cdr (assoc (name, data-seg))) endif
else length (cdr (assoc (name, data-seg))) endif

THEOREM: same-signature-deposit

(adpp (untag (addr), segment2) A lr-proper-p-areasp (segment2))

— (same-signature (segment!, deposit (anything, addr, segment2))
= same-signature (segment!, segment2))

THEOREM: Ir-max-node-same-signature
same-signature (data-segl, data-seg2)
— (Ir-max-node (data-seg2) = lr-max-node (data-seg1))

EVENT: Disable Ir-max-node-same-signature.

THEOREM: Ir-max-node-deposit
(adpp (untag (addr), data-seg) A lr-proper-p-areasp (data-seg))
— (lr-max-node (deposit (anything, addr, data-seq))

= Ir-max-node (data-seg))

THEOREM: not-adpp-untag-node-not-definedp-lr-heap-name
(= definedp (area-name (addr), data-seg))
— (= adpp (untag (addr), data-seg))

THEOREM: sub-addr-area-name-offset-same
(listp (untag (addr1))
(offset (addr1) € N)
(cddr (addr1) = nil)
(type (addrl) = type (addr2)))
((addr! = sub-addr (addr2, n))
= ((offset (addr1) = (offset (addr2) — n))
A (area-name (addrl) = area-name (addr2))))

A
A
N
N

THEOREM: Ir-free-list-nodes-member-greater-offset
(offset (addr) £ offset (maz-addr))
— (addr ¢ Ir-free-list-nodes (maz-addr, data-seg))

THEOREM: Ir-free-list-nodes-deposit-Ir-ref-count-offset
((type (addr) = ’addr)

116

(cddr (addr) = nil)
adpp (untag (addr), data-seg)
Ir-boundary-nodep (addr)
(area-name (addr) = ’heap)
(type (maz-addr) = ’addr)
adpp (untag (maz-addr), data-seq)
Ir-boundary-nodep (maz-addr)
(area-name (maz-addr) = ’heap)
(type (ref-count) = ’nat)
(untag (ref-count) € N))
(Ir-free-list-nodes (maz-addr,
deposit (ref-count,
add-addr (addr,
identity (LR-REF-COUNT-OFFSET)),
data-seq))
= delete (addr, lr-free-list-nodes (maz-addr, data-seg)))

l>>>>>>>>>>

EVENT: Disable Ir-free-list-nodes-member-greater-offset.
EVENT: Disable not-adpp-untag-node-not-definedp-Ir-heap-name.

DEFINITION:
no-duplicatesp (list)
= if listp (list)
then if car (list) € cdr (list) then f
else no-duplicatesp (cdr (list)) endif
else t endif

THEOREM: not-member-occurences-0
(z € 2z) — (occurrences (z, z) = 0)

EVENT: Disable not-member-occurences-0.

THEOREM: no-duplicatesp-occurences-1
(no-duplicatesp (list) A (e € list)) — (occurrences (e, list) = 1)

THEOREM: no-duplicatesp-lr-free-list-nodes
no-duplicatesp (lr-free-list-nodes (addr, data-seg))

THEOREM: member-area-name-offset-same
((addr1 € node-list)

A (offset (addrl) € N)

A (cddr (addrl) = nil)

117

listp (untag (addrl))

listp (untag (addr2))

(offset (addr2) € N)

(cddr (addr2) = nil)

(type (addrl) = type (addr2))
(area-name (addr!) = area-name (addr2))
(offset (addr2) = offset (addrl)))

(addr2 € node-list)

l>>s>>>>>

THEOREM: Ir-check-free-nodes-delete-deposit
(Ir-check-free-nodes (addr2, node-list, data-seq, maz-addr)
(addrl & node-list)
Ir-nodep (addri, data-seg)
Ir-node-listp (node-list, data-seg)
(type (ref-count) = ’nat)
(untag (ref-count) € N))
Ir-check-free-nodes (addr2,
node-list,
deposit (ref-count,
add-addr (addri,
identity (LR-REF-COUNT-OFFSET)),
data-seq),
maz-addr)

l>>>>>

EVENT: Disable Ir-check-free-nodes-delete-deposit.
EVENT: Disable member-area-name-offset-same.

THEOREM: Ir-check-free-nodes-deposit-free-ptr
(adpp (identity (untag (LR-FP-ADDR)), data-seq)
A lr-node-listp (node-list, data-seg))

— (lr-check-free-nodes (addr,
node-list,
deposit (anything, identity (LR-FP-ADDR), data-seg),
max-addr)

= lr-check-free-nodes (addr, node-list, data-seg, maz-addr))

THEOREM: Ir-free-list-nodes-deposit-free-ptr
(Ir-nodep (maz-addr, data-seg) A adpp (identity (untag (LR-FP-ADDR)), data-seg))
— (Ir-free-list-nodes (maz-addr,
deposit (anything, identity (LR-FP-ADDR), data-seg))
= Ir-free-list-nodes (maz-addr, data-seg))

THEOREM: deposit-ref-count-move-inward-2

118

(Ir-nodep (addr, data-seq)
A (offset # LR-REF-COUNT-OFFSET)
A (offset #0)
A (offset < LR-NODE-SIZE))
— (deposit (any!,
add-addr (addr, identity (LR-REF-COUNT-OFFSET)),
deposit (any2, add-addr (addr, offset), data-seg))
= deposit (any?2,
add-addr (addr, offset),
deposit (anyl,
add-addr (addr, identity (LR-REF-COUNT-OFFSET)),
data-seq)))

EVENT: Disable deposit-ref-count-move-inward-2.

THEOREM: Ir-free-list-nodes-deposit-lr-nodep

(Ir-nodep (addr, data-seg) A lr-nodep (maz-addr, data-seg))

— (Ir-free-list-nodes (maz-addr, deposit (anything, addr, data-seg))
= Ir-free-list-nodes (maz-addr, data-seg))

THEOREM: Ir-check-free-nodes-deposit-Ir-nodep
(Ir-nodep (addr2, data-seg)
A Ir-nodep (maz-addr, data-seq)
A Ir-node-listp (node-list, data-seg))
— (lr-check-free-nodes (addr1 ,
node-list,
deposit (anything, addr2, data-seg),
maz-addr)
= Ir-check-free-nodes (addr!, node-list, data-seg, maz-addr))

THEOREM: same-signature-cons
same-signature (data-seg!, cons (z, data-seg2))
= if listp (data-segl)
then (signature (car (data-segl)) = signature (z))
A same-signature (cdr (data-seg!), data-seg2)
else f endif

THEOREM: same-signature-nil
(data-segl ~ nil)

— (same-signature (data-seg!, data-seg2) = (data-seg2 ~ nil))

THEOREM: listp-put-assoc
listp (put-assoc (val, name, alist)) = listp (alist)

119

THEOREM: not-same-signature-deposit-too-large-addr
(definedp (area-name (addr), data-seg2)
A lr-proper-p-areasp (data-seg2)
A (offset (addr) £ length (value (area-name (addr), data-segl))))
— (- same-signature (data-seg!, deposit (any, addr, data-seg2)))

EVENT: Disable same-signature-cons.
EVENT: Disable same-signature-nil.

THEOREM: adpp-deposit-a-list
adpp (adp, data-seg) — adpp (adp, deposit-a-list (list, addr2, data-seg))

THEOREM: Ir-proper-p-areasp-deposit-a-list
Ir-proper-p-areasp (data-seg)
— lr-proper-p-areasp (deposit-a-list (list, addr, data-seg))

THEOREM: definedp-deposit-a-list
definedp (tag, deposit-a-list (list, addr, data-seg)) = definedp (tag, data-seq)

THEOREM: subl-plus-not-zerop-fact-1

(#0) = (((y +2)-1) <y) =1

THEOREM: not-adpp-untag-add-addr-adpp-untag
adpp (untag (addr), data-seg)
— (adpp (untag (add-addr (addr, n)), data-seq)
= ((offset (addr) + n)
< length (cdr (assoc (area-name (addr), data-seg)))))

THEOREM: not-same-signature-deposit-a-list-too-large-addr
(definedp (area-name (addr), data-seg2)
A Ir-proper-p-areasp (data-seg2)
A (offset (addr) #£ length (value (area-name (addr), data-segl))))
— (same-signature (data-segl, deposit-a-list (list, addr, data-seg2))
= if listp (list) then f
else same-signature (data-seg!, data-seg2) endif)

THEOREM: same-signature-deposit-a-list
(adpp (untag (addr), data-seg2)
A lr-proper-p-areasp (data-seg2)
A same-signature (data-segl, data-seg2))
— (same-signature (data-seg!, deposit-a-list (list, addr, data-seg?2))
= ((offset (addr) + (length (list) — 1))
< length (cdr (assoc (area-name (addr), data-segl)))))

120

EVENT: Disable not-same-signature-deposit-too-large-addr.

EVENT: Disable not-same-signature-deposit-a-list-too-large-addr.

THEOREM: deposit-good-node-preserves-lr-proper-free-listp
(Ie-proper-free-listp (data-seq)

A

> > >

b >>>

Ir-proper-p-areasp (data-seq)
adpp (untag (Ir-max-node (data-seg)), data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg))
(offset (fetch (LR-FP-ADDR, data-seg))
< (((length (cdr (assoc (LR-HEAP-NAME, data-seg))) — 1) — 1) — 1))
(type (tag) = ’nat)
(type (ref-count) = ’nat)
(untag (ref-count) € N))
Ir-proper-free-listp (deposit (fetch (add-addr (fetch (identity (LR-FP-ADDR),
data-seg),
identity (LR-REF-COUNT-OFFSET)),
data-seq),
identity (LR-FP-ADDR),
deposit-a-list (list (tag, ref-count, z, y),
fetch (identity (LR-FP-ADDR),
data-seq),
data-seq)))

THEOREM: p-run-subr-preserves-Ir-proper-free-listp
(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))

A

>>>>>> > >

I >>

Ir-programs-properp (I, table)
lr-programs-properp (new-1, table)
listp (lr-expr (1))
proper-p-statep (Ir->p (new-I))
Ir-proper-free-listp (p-data-segment (new-1))
adpp (untag (Ir-max-node (p-data-segment (new-1))), p-data-segment (new-1))
Ir-boundary-nodep (Ir-max-node (p-data-segment (new-1)))
(p-psw (new-l) = ’run)
(p-psw (p-run-subr (car (Ir-expr (1)),
p-set-pc (Ir->p (new-1), lr-return-pc (1))))
= ’run)
(p-prog-segment (1) = p-prog-segment (new-1))
(area-name (p-pc (1)) = area-name (p-pc (new-1))))
lr-proper-free-listp (p-data-segment (p-run-subr (car (lr-expr (1)),
p-set-pc (Ir->p (new-1),
Ir-return-pc (1)))))

EVENT: Disable same-signature-deposit.

121

THEOREM: Ir-apply-subr-preserves-lr-proper-free-listp

let new-l be lr-eval (’1list, lr-set-pos (I, pos), ¢)

in

(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A Ir-programs-properp (1, table)

listp (Ir-expr (1))

subrp (car (Ir-expr (1))

(car (Ir-expr (1)) # ’if)

proper-p-statep (Ir->p (new-1))

Ir-proper-free-listp (p-data-segment (new-1))

adpp (untag (Ir-max-node (p-data-segment (new-1))),

p-data-segment (new-1))

A Ir-boundary-nodep (Ir-max-node (p-data-segment (new-I)))

A (p-psw (new-l) = ’run)
A (p-psw (Ir-apply-subr (I, new-1)) = ’run))

N

TH

>>> > > >

Ir-proper-free-listp (p-data-segment (Ir-apply-subr (I, new-1))) endlet

EOREM: lIr-eval-preserves-proper-p-statep-lr->p-rewrite
(proper-p-statep (Ir->p (1))
A good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))
A Ir-programs-properp (1, table)
A (p-psw (Ir-eval (flag, I, ¢)) = ’run))
— proper-p-statep (Ir->p (Ir-eval (flag, I, ¢)))

THEOREM: Ir-eval-preserves-cdr-p-ctrl-stk

(proper-p-statep (Ir->p (1))
A good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))
A Ir-programs-properp (I, table)
A (p-psw (Ir-eval (flag, I, ¢)) = ’run))

— (cdr (p-ctrl-stk (Ir-eval (flag, I, ¢))) = cdr (p-ctrl-stk (1)))

THEOREM: lIr-eval-preserves-strip-cars-bindings-car-p-ctrl-stk
(proper-p-statep (Ir->p (1))
A good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A (p-psw (Ir-eval (flag, I, ¢)) = ’run))
— (strip-cars (bindings (car (p-ctrl-stk (lr-eval (flag, I, c)))))
= strip-cars (bindings (car (p-ctrl-stk (1)))))

THEOREM: Ir-eval-preserves-lr-max-node
(proper-p-statep (Ir->p (1))
A good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))
A Ir-programs-properp (1, table)
A (p-psw (Ir-eval (flag, I, ¢)) = ’run))
— (Ir-max-node (p-data-segment (Ir-eval (flag, I, ¢)))
= lr-max-node (p-data-segment (1)))

122

THEOREM: Ir-eval-preserves-adpp
(proper-p-statep (Ir->p (1))
A good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A (p-psw (Ir-eval (flag, I, ¢)) = ’run))
— (adpp (adp, p-data-segment (lr-eval (flag, I, ¢)))
= adpp (adp, p-data-segment (1)))

THEOREM: Ir-eval-preserves-length-assoc-data-segment
(proper-p-statep (Ir->p (1))
A good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))
A Ir-programs-properp (I, table)
A (p-psw (Ir-eval (flag, I, ¢)) = ’run))
— (length (cdr (assoc (name, p-data-segment (Ir-eval (flag, I, ¢)))))
= length (cdr (assoc (name, p-data-segment (1)))))

THEOREM: Ir-eval-preserves-proper-p-statep-lr->p-Ir-set-pos
(proper-p-statep (Ir->p (1))
A good-posp (flag, pos, program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A (p-psw (Ir-eval (flag, Ir-set-pos (I, pos), ¢)) = ’run))
— proper-p-statep (Ir->p (Ir-eval (flag, Ir-set-pos (I, pos), c)))

THEOREM: lIr-eval-preserves-strip-cars-bindings-car-p-ctrl-stk-Ir-set-pos
(proper-p-statep (Ir->p (1))
A good-pospl (pos, program-body (p-current-program (1)))
A lIr-programs-properp (1, table)
A (p-psw (Ir-eval (t, lr-set-pos (I, pos), ¢)) = ’run))
— (strip-cars (bindings (car (p-ctrl-stk (Ir-eval (t, lr-set-pos (1, pos), c)))))
= strip-cars (bindings (car (p-ctrl-stk (1)))))

THEOREM: Ir-eval-preserves-cdr-p-ctrl-stk-Ir-set-pos
(proper-p-statep (Ir->p (1))
A good-pospl (pos, program-body (p-current-program (1)))
A Ir-programs-properp (I, table)
A (p-psw (Ir-eval (t, lr-set-pos (I, pos), ¢)) = ’run))
— (cdr (p-ctrl-stk (Ir-eval (t, lr-set-pos (I, pos), ¢)))
= cdr (p-ctrl-stk (1))

THEOREM: Ir-eval-preserves-adpp-lr-set-pos
(proper-p-statep (Ir->p (1))
A good-posp (flag, pos, program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A (p-psw (Ir-eval (flag, Ir-set-pos (I, pos), ¢)) = ’run))
— (adpp (adp, p-data-segment (lr-eval (flag, lr-set-pos (I, pos), ¢)))
= adpp (adp, p-data-segment (1)))

123

THEOREM: Ir-eval-preserves-lr-max-node-Ir-set-pos
(proper-p-statep (Ir->p (1))
A good-posp (flag, pos, program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A (p-psw (Ir-eval (flag, Ir-set-pos (I, pos), ¢)) = ’run))
— (Ir-max-node (p-data-segment (lr-eval (flag, lr-set-pos (I, pos), ¢)))
= Ir-max-node (p-data-segment (1)))

THEOREM: Ir-eval-preserves-lr-proper-free-listp

(proper-p-statep (Ir->p (1))

A good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
(p-psw (Ir-eval (flag, I, ¢)) = ’run)
adpp (untag (Ir-max-node (p-data-segment (1))), p-data-segment (1))
Ir-boundary-nodep (Ir-max-node (p-data-segment (1)))
Ir-proper-free-listp (p-data-segment (1)))
— lr-proper-free-listp (p-data-segment (lr-eval (flag, I, ¢)))

> > > > >

THEOREM: Ir-apply-subr-preserves-Ir-valp

let new-lI be Ir-eval (*list, Ir-set-pos (I, pos), c)

in

(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table)

A listp (Ir-expr (1))

A subrp (car (Ir-expr (1))

A (car (Ir-expr (1)) # ’if)

A proper-p-statep (Ir->p (new-1))

A Ir-proper-free-listp (p-data-segment (new-1))

A adpp (untag (Ir-max-node (p-data-segment (new-[))),
p-data-segment (new-[))

A Ir-boundary-nodep (Ir-max-node (p-data-segment (new-I)))

A (p-psw (new-l) = ’run)

A (p-psw (Ir-apply-subr (I, new-1)) = ’run)

A lr-valp (value, addr, p-data-segment (new-1)))

— lr-valp (value, addr, p-data-segment (lr-apply-subr (I, new-1))) endlet

THEOREM: Ir-eval-preserves-lr-proper-free-listp-lr-set-pos
(proper-p-statep (Ir->p (1))

A good-posp (flag, pos, program-body (p-current-program (1)))

A lr-programs-properp (I, table)

A (p-psw (Ir-eval (flag, lr-set-pos (I, pos), ¢)) = ’>run)

A adpp (untag (Ir-max-node (p-data-segment (1))), p-data-segment (1))

A Ir-boundary-nodep (Ir-max-node (p-data-segment (1)))

A Ir-proper-free-listp (p-data-segment (1)))

— Ir-proper-free-listp (p-data-segment (Ir-eval (flag, lr-set-pos (1, pos), c)))

124

THEOREM: Ir-eval-preserves-lr-valp
(proper-p-statep (Ir->p (1))
good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
(p-psw (Ir-eval (flag, I, ¢)) = ’run)
Ir-proper-free-listp (p-data-segment (1))
adpp (untag (Ir-max-node (p-data-segment (1))), p-data-segment (1))
Ir-boundary-nodep (Ir-max-node (p-data-segment (1)))
Ir-valp (value, addr, p-data-segment (1)))
Ir-valp (value, addr, p-data-segment (Ir-eval (flag, I, ¢)))

l>>>>>>>

THEOREM: Ir-check-f-addrp-deposit-anything-anywhere
Ir-check-f-addrp (addr, deposit (anything, anywhere, data-seg))
= lr-check-f-addrp (addr, data-seg)

THEOREM: Ir-check-undef-addrp-deposit-anything-anywhere
Ir-check-undef-addrp (addr, deposit (anything, anywhere, data-seg))
= Ir-check-undef-addrp (addr, data-seg)

THEOREM: Ir-check-listp-addrp-deposit-free-ptr-0
Ir-check-listp-addrp (addr, deposit (any, identity (LR-FP-ADDR), data-seg))
= Ir-check-listp-addrp (addr, data-seq)

THEOREM: Ir-check-numberp-addrp-deposit-free-ptr-0
Ir-check-numberp-addrp (addr, deposit (any, identity (LR-FP-ADDR), data-seg))
= Ir-check-numberp-addrp (addr, data-seg)

THEOREM: lr-proper-heapp-nodep-deposit-free-ptr-0
Ir-proper-heapp-nodep (addr, deposit (any, identity (LR-FP-ADDR), data-seq))
= lr-proper-heapp-nodep (addr, data-seg)

THEOREM: Ir-proper-heapp2-deposit-free-ptr-0
Ir-proper-heapp2 (addr, deposit (any, identity (LR-FP-ADDR), data-seg))
= lr-proper-heapp2 (addr, data-seg)

THEOREM: Ir-boundary-offsetp-equal-plus-fact-zero
(Ir-boundary-offsetp (offset1)

Ir-boundary-offsetp (offset2)

(n < LR-NODE-SIZE)

(offsetl € N)

(offset2 € N))

(((n + offsetl) = offset?2)

= ((n =0) A (offsetl = offset2)))

THEOREM: fetch-add-addr-deposit-a-list-node

b>>>>

125

(adpp (untag (maz-addr), data-seg)
Ir-boundary-nodep (maz-addr)
adpp (untag (addr), data-seg)
Ir-boundary-nodep (addr)
(area-name (addr) = area-name (maz-addr))
(n < LR-NODE-SIZE))
(fetch (add-addr (max-addr, n),
deposit-a-list (list (20, x1, z2, x3), addr, data-seq))

= if offset (addr) = offset (maz-addr)

then get (n, list (20, z1, 22, 23))

else fetch (add-addr (maz-addr, n), data-seg) endif)

L>>>>>

THEOREM: fetch-deposit-a-list-node
(adpp (untag (maz-addr), data-seq)
A Ir-boundary-nodep (maz-addr)
A adpp (untag (addr), data-seg)
A Ir-boundary-nodep (addr)
A (area-name (addr) = area-name (maz-addr)))
— (fetch (maz-addr, deposit-a-list (list (20, 21, 22, z3), addr, data-seg))
= if offset (addr) = offset (maz-addr) then z0
else fetch (maz-addr, data-seg) endif)

EVENT: Disable Ir-boundary-offsetp-equal-plus-fact-zero.

THEOREM: Ir-check-f-addrp-deposit-a-list
Ir-check-f-addrp (addr, deposit-a-list (list, anywhere, data-seg))
= lr-check-f-addrp (addr, data-seg)

THEOREM: Ir-check-undef-addrp-deposit-a-list
Ir-check-undef-addrp (addr, deposit-a-list (list, anywhere, data-seg))
= Ir-check-undef-addrp (addr, data-seg)

THEOREM: Ir-check-numberp-addrp-deposit-a-list-cons
((offset (addr) # offset (maz-addr))

(type (maz-addr) = ’addr)

(cddr (maz-addr) = nil)

listp (maz-addr)

adpp (untag (max-addr), data-seq)
Ir-boundary-nodep (maz-addr)

(area-name (maz-addr) = LR-HEAP-NAME)
(type (addr) = ’addr)

(cddr (addr) = nil)

listp (addr)

adpp (untag (addr), data-seq)

>>>>>>>> > >

126

Ir-boundary-nodep (addr)
(area-name (addr) = LR-HEAP-NAME)
Ir-check-numberp-addrp (maz-addr, data-seq)
(type (tag) = *nat)
(untag (tag) € N))
Ir-check-numberp-addrp (maz-addr,
deposit-a-list (list (20, tag, ©2, z3),
addr,
data-seq))

l>>>>>

THEOREM: Ir-check-listp-addrp-deposit-a-list-cons
(Ir-good-pointerp (good-pointeri, data-seg)
Ir-good-pointerp (good-pointer2, data-seq)
adpp (untag (addr), data-seg)
Ir-boundary-nodep (addr)
adpp (untag (maz-addr), data-seg)
Ir-boundary-nodep (maz-addr)
(area-name (addr) = LR-HEAP-NAME)
(area-name (maz-addr) = LR-HEAP-NAME)
(type (tag) = *nat)
(untag (tag) € N)
(offset (addr) = offset (maz-addr)))
Ir-check-listp-addrp (maz-addr,
deposit-a-list (list (identity (tag (’nat,
LR-CONS-TAG)),

l>>>>>>>>>>

tag,
good-pointerl ,
good-pointer2),
addr,
data-seq))

THEOREM: lr-check-listp-addrp-deposit-a-list-other-place
(adpp (untag (addr), data-seq)
Ir-boundary-nodep (addr)
adpp (untag (max-addr), data-seq)
lr-boundary-nodep (maz-addr)
(area-name (addr) = LR-HEAP-NAME)
(area-name (maz-addr) = LR-HEAP-NAME)
Ir-check-listp-addrp (maz-addr, data-seg)
(offset (addr) # offset (max-addr))
(type (ref-count) = ’nat))
Ir-check-listp-addrp (maz-addr,
deposit-a-list (list (z0, ref-count, 22, z8),
addr,
data-seq))

l>>s>s>s>>>>

127

THEOREM: Ir-proper-heapp-nodep-deposit-a-list-cons
(Ir-nodep (maz-addr, data-seq)
Ir-nodep (addr, data-seg)
Ir-proper-heapp-nodep (maz-addr, data-seg)
(type (fetch (add-addr (addr, LR-REF-COUNT-OFFSET), data-seg)) # ’nat)
Ir-good-pointerp (good-pointer!, data-seg)
Ir-good-pointerp (good-pointer2, data-seq)
(type (tag) = ’nat)
(untag (tag) € N))
Ir-proper-heapp-nodep (maz-addr,
deposit-a-list (list (identity (tag (’nat,
LR-CONS-TAG)),

l>>s>>>>>

tag,
good-pointerl ,
good-pointer2),
addr,
data-seq))

THEOREM: Ir-proper-heapp2-deposit-a-list-cons
(Ir-nodep (maz-addr, data-seg)
Ir-nodep (addr, data-seq)
Ir-proper-heapp2 (maz-addr, data-seg)
(type (fetch (add-addr (addr, LR-REF-COUNT-OFFSET), data-seg)) # ’nat)
Ir-good-pointerp (good-pointer! , data-seg)
Ir-good-pointerp (good-pointer2, data-seg)
(type (tag) = ’nat)
(untag (tag) € N))
Ir-proper-heapp2 (maz-addr,
deposit-a-list (list (identity (tag (’nat, LR-CONS-TAG)),
tag,
good-pointerl ,
good-pointer2),
addr,
data-seg))

l>>s>>>>>

THEOREM: not-psw-run-lr-eval
(p-psw (1) # ’run) — (Ir-eval (flag, I, ¢) = 1)

THEOREM: program-body-assoc-Ir-compile-programs
program-body (assoc (name, Ir-compile-programs (progs, table)))
= lr-compile-body (t,
s-body (assoc (name, progs)),
Ir-make-temp-name-alist (s-temp-list (assoc (name, progs)),
s-formals (assoc (name, progs))),
table)

128

THEOREM: listp-Ir-compile-body
listp (Ir-compile-body (flag, body, temp-name-alist, table)) = listp (body)

THEOREM: car-Ir-compile-body
(flag # ’1ist)
— (car (Ir-compile-body (flag, body, temp-name-alist, table)) = car (body))

THEOREM: good-pospl-expand-list-temps

(((temp = S-TEMP-EVAL) V (temp = S-TEMP-TEST)) A listp (pos))
— (good-pospl (pos, list (temp, body, name))

((car (pos) = 1) A good-pospl (cdr (pos), body)))

THEOREM: length-Ir-compile-body-list
length (Ir-compile-body (*list, body, temp-name-alist, table))
= length (body)

THEOREM: get-Ir-compile-body-list
get (n, lr-compile-body (’1ist, body, temp-name-alist, table))
= lr-compile-body (t, get (n, body), temp-name-alist, table)

THEOREM: get-Ir-compile-body
(listp (body)

(car (body) # S-TEMP-FETCH)
(car (body) # S-TEMP-EVAL)
(car (body) # S-TEMP-TEST)
(car(body) # ’quote)
(
(

3

#0))

get (n, lr-compile-body (t, body, temp-name-alist, table))
= Ir-compile-body (t, get (n, body), temp-name-alist, table))

L>>>>>

THEOREM: length-Ir-compile-body-t
(listp (body)
A (car (body) # S-TEMP-FETCH)
A (car (body) # S-TEMP-EVAL)
A (car (body) # S-TEMP-TEST)
A (car (body) # >quote))
— (length (Ir-compile-body (t, body, temp-name-alist, table))
= length (body))

THEOREM: good-pospl-lr-compile-body
good-pospl (pos, Ir-compile-body (t, body, temp-name-alist, table))
= good-pospl (pos, body)

THEOREM: cur-expr-lr-compile-body-t
good-pospl (pos, body)
— (cur-expr (pos, lr-compile-body (t, body, temp-name-alist, table))
= lr-compile-body (t, cur-expr (pos, body), temp-name-alist, table))

129

THEOREM: Ir-check-resultl-singleton-list-opener
Ir-check-result] (list (z), temp-stk, data-seq)
= lr-valp (z, car (temp-stk), data-seg)

THEOREM: proper-p-temp-stkp-plistp-p-temp-stk
proper-p-temp-stkp (temp-stk, p) — plistp (temp-stk)

THEOREM: proper-p-statep-lr->p-plistp-p-temp-stk
proper-p-statep (Ir->p (1)) — plistp (p-temp-stk (1))

THEOREM: proper-p-statep-lr->p-not-0-p-temp-stk
proper-p-statep (Ir->p (1)) — (p-temp-stk (1) # 0)

THEOREM: plistp-lastcdr-nil
plistp (list) — (lastedr (list) = nil)

THEOREM: lIr-eval-preserves-lr-valp-Ir-set-expr
(proper-p-statep (Ir->p (1))
A proper-p-statep (Ir->p (Ir-set-expr (11, I, pos)))
good-posp (flag, pos, program-body (p-current-program (1)))
Ir-programs-properp (I, table)
(p-psw (lr-eval (flag, lr-set-expr (11, I, pos), ¢)) = ’run)
Ir-proper-free-listp (p-data-segment (1))
Ir-proper-free-listp (p-data-segment (11))
adpp (untag (Ir-max-node (p-data-segment (1))), p-data-segment (1))
Ir-boundary-nodep (Ir-max-node (p-data-segment (1)))
adpp (untag (Ir-max-node (p-data-segment (11))), p-data-segment (1))
Ir-boundary-nodep (Ir-max-node (p-data-segment (11)))
Ir-valp (value, addr, p-data-segment (1))
(length (cdr (assoc (LR-HEAP-NAME, p-data-segment ({1))))
= length (cdr (assoc (LR-HEAP-NAME, p-data-segment (1))))))
— lr-valp (value,
addr,
p-data-segment (Ir-eval (flag, lr-set-expr (11, I, pos), c)))

>>>>>>>>> > >

THEOREM: lIr-eval-preserves-proper-p-statep-lr->p-Ir-set-expr
(proper-p-statep (Ir->p (1))
A good-posp (flag, pos, program-body (p-current-program (1)))
Ir-programs-properp (I, table)
(p-psw (lr-eval (flag, lr-set-expr (11, I, pos), ¢)) = ’run)
Ir-programs-properp (11, table)
proper-p-statep (Ir->p (11))
(cdr (p-ctrl-stk (11)) = cdr (p-ctrl-stk (1)))
(strip-cars (bindings (car (p-ctrl-stk (11))))
= strip-cars (bindings (car (p-ctrl-stk (1)))))

>>>> > >

130

(p-prog-segment (1) = p-prog-segment (1))

(p-word-size (11) = p-word-size (1))

(p-max-ctrl-stk-size ({1) = p-max-ctrl-stk-size (1))
(p-max-temp-stk-size (11) = p-max-temp-stk-size (1)))

— proper-p-statep (Ir->p (Ir-eval (flag, Ir-set-expr (11, 1, pos), ¢)))

> > > >

THEOREM: Ir-check-result-flag-list-cons-value
let [2 be lIr-eval (’list, lr-set-expr (Ir-eval (t, I, ¢), I, nx (pos)), ¢)
in
(good-posp (’list, pos, program-body (p-current-program (1)))
A Ir-programs-properp (I, table)
proper-p-statep (Ir->p (1))
listp (lr-expr-list (1))
listp (offset (p-pc (1))
Ir-proper-heapp (p-data-segment (1))
Ir-check-result (t,
valuel ,
p-temp-stk (lr-eval (t, I, ¢)),
p-data-segment (Ir-eval (t, , ¢)),
p-temp-stk (1))
A Ir-check-result (*1ist,
value2,
p-temp-stk (12),
p-data-segment (12),
p-temp-stk (lr-eval (t, I, ¢)))
(p-psw (I2) = ’run)
(pos = offset (p-pc (1))
(temp-stk = p-temp-stk (1)))
Ir-check-result (’list,
cons (valuel, value2),
p-temp-stk (12),
p-data-segment (12),
temp-stk) endlet

> > > > >

>>>

THEOREM: Ir-check-result-nil
Ir-proper-heapp (data-seq)
— lr-check-result (*1ist, nil, temp-stk, data-seg, temp-stk)

THEOREM: litatom-Ir-compile-body
litatom (Ir-compile-body (t, body, temp-name-alist, table)) = litatom (body)

THEOREM: Ir-params-Ir-push-tstk
Ir-params (frame, lr-push-tstk (I, anything)) = lr-params (frame, 1)

THEOREM: Ir-temps-lr-push-tstk
Ir-temps (frame, Ir-push-tstk (1, anything)) = lr-temps (frame, 1)

131

THEOREM: program-body-p-current-program-s->Irl
program-body (p-current-program (s->1rl (s, I, table)))
= lr-compile-body (t,
sbody (s-prog (5)),
Ir-make-temp-name-alist (s-temp-list (s-prog (s)),
s-formals (s-prog (s))),
table)

THEOREM: name-car-lr-compile-programs-progs
name (car (Ir-compile-programs (s-progs (s), table))) = caar (s-progs (s))

THEOREM: car-car-lr-compile-programs-progs
caar (lr-compile-programs (s-progs (s), table)) = caar (s-progs (s))

THEOREM: s-good-statep-program-body-car-lr-compile-programs
s-good-statep (s, ¢)
— (program-body (car (lr-compile-programs (s-progs (s), table)))
= Ir-compile-body (t,
s-body (car (s-progs (s))),
Ir-make-temp-name-alist (s-temp-list (car (s-progs (s))),
s-formals (car (s-progs (s)))),

table))

THEOREM: good-posp-lr-compile-body
good-posp (flag, pos, Ir-compile-body (t, body, temp-name-alist, table))
= good-posp (flag, pos, body)

THEOREM: strip-cars-Ir-compile-programs
strip-cars (Ir-compile-programs (progs, table)) = strip-cars (progs)

THEOREM: listp-lr-expr-list-s->Irl
good-posp (’1ist, s-pos(s), s-body (s-prog (s)))
— (listp (Ir-expr-list (s->1rl (s, I, table))) = listp (s-expr-list (s)))

THEOREM: formal-vars-lr-compile-programs
formal-vars (assoc (name, lr-compile-programs (progs, table)))
= s-formals (assoc (name, progs))

THEOREM: formal-vars-p-current-program-s->Irl
formal-vars (p-current-program (s->1rl (s, I, table))) = s-formals (s-prog (s))

THEOREM: temp-var-dcls-lr-compile-programs
definedp (name, progs)
— (temp-var-dcls (assoc (name, Ir-compile-programs (progs, table)))
= lr-make-temp-var-dcls (Ir-make-temp-name-alist (s-temp-list (assoc (name,
progs)),
s-formals (assoc (name,

progs)))))

132

THEOREM: temp-var-dcls-assoc-p-current-program-s->Irl
definedp (s-pname (s), s-progs (s))
— (temp-var-dcls (p-current-program (s->1rl (s, I, table)))
= Ilr-make-temp-var-dcls (Ir-make-temp-name-alist (s-temp-list (s-prog (s)),
s-formals (s-prog (s)))))

THEOREM: Ir-set-expr-s->Irl-s-set-expr
s->1rl (s-set-expr (s-eval (t, s, ¢), s, nx (s-pos (s))),
Ir-eval (t, s->1rl (s, I, table), ¢),
table)
= lr-set-error (Ir-set-expr (Ir-eval (t, s->1Irl (s, I, table), c),
s->Irl (s, 1, table),
e (5-p0s (5))),
s-err-flag (s-eval (t, s, ¢)))

THEOREM: p-current-program-Ir-set-error
p-current-program (Ir-set-error (I, err-flag)) = p-current-program (1)

THEOREM: Ir-set-error-lr-set-error
Ir-set-error (lr-set-error (I, err-flagl), err-flag2)
= Ir-set-error (I, err-flag2)

THEOREM: proper-p-statep-lr-set-error
proper-p-statep (Ir-set-error (I, err-flag)) = proper-p-statep (1)

THEOREM: Ir-params-lr-set-error
Ir-params (frame, lr-set-error (I, err-flag)) = Ir-params (frame, 1)

THEOREM: Ir-temps-Ir-set-error
Ir-temps (frame, Ir-set-error (I, err-flag)) = lr-temps (frame, 1)

THEOREM: Ir-s-similar-statesp-lr-set-error
Ir-s-similar-statesp (params, temps, lr-set-error (1, err-flag), table)
= lr-s-similar-statesp (params, temps, 1, table)

THEOREM: Ir-s-similar-statesp-lr-set-expr
((area-name (p-pc (11)) = area-name (p-pc (12)))
A (p-prog-segment (/1) = p-prog-segment (12)))
— (lr-s-similar-statesp (params, temps, lr-set-expr (11, 12, pos), table)
= lr-s-similar-statesp (params, temps, U1, table))

THEOREM: Ir-eval-zerop-clock

((c ~0) A (flag # *1list) A (p-psw (I) = ’run))
— (Ir-eval (flag, I, ¢) = Ir-set-error (I, ’out-of-time))

133

THEOREM: litatom-lr-expr-s->Irl
(good-pospl (s-pos (s), s-body (s-prog (s))) A litatom (s-expr (s)))
— (Ir-expr (s->Irl (s, I, table)) = s-expr (s))

THEOREM: Ir-eval-litatom-opener
(good-pospl (s-pos (s), s-body (s-prog (s)))
(flag # *1ist)
(c 2 0)
litatom (s-expr (s))
(s-err-flag (s) = ’run))
(Ir-eval (flag, s->Irl (s, I, table), ¢)
= Ir-push-tstk (s->Irl (s, I, table),
local-var-value (s-expr (s), p-ctrl-stk (1))))

>>>>

THEOREM: Ir-s-similar-statesp-Ir-push-tstk-litatom
Ir-s-similar-statesp (s-params, s-temps, lr-push-tstk (1, value), table)
= lr-s-similar-statesp (s-params, s-temps, I, table)

THEOREM: Ir-s-similar-params-assoc-definedp
(Ir-s-similar-params (s-params, lr-params, data-seq)
A definedp (name, Ir-params))
— lr-valp (cdr (assoc (name, s-params)), cdr (assoc (name, lr-params)), data-seq)

THEOREM: proper-p-statep-Ir->p-strip-cars-bindings-ctrl-stk
(proper-p-statep (Ir->p (1))
A definedp (area-name (p-pc (1)), p-prog-segment (1)))
— (strip-cars (bindings (car (p-ctrl-stk (1))))
= append (formal-vars (assoc (area-name (p-pc (1)), p-prog-segment (1))),
strip-cars (temp-var-dcls (assoc (area-name (p-pc (1)),
p-prog-segment (1)))))

DEFINITION:
induct-hint-11 (v, y)
= if listp (v)
then if listp (y) then induct-hint-11 (cdr (v), cdr (y))
else t endif
else t endif

THEOREM: equal-append-same-length-fact

(length (v) = length (y))

— ((append (strip-cars (v), w) = append (y, 2))
= ((strip-cars (v) = plist (y)) A (w = 2)))

THEOREM: definedp-strip-cars-append-member-x
(strip-cars (z) = append (y, 2))
— ((e € y) = definedp (e, firstn (length (y), z)))

134

THEOREM: proper-p-statep-lr->p-member-formals-definedp-bindings
(proper-p-statep (Ir->p (s->1rl (s, I, table)))
A definedp (s-pname (s), s-progs (s))
A (z € s-formals (assoc (s-pname (s), s-progs (s)))))
— definedp (z,
firstn (length (s-formals (assoc (s-pname (s), s-progs (s)))),
bindings (car (p-ctrl-stk (1)))))

THEOREM: Ir-valp-addr-0
= Ir-valp (addr, 0, data-seg)

THEOREM: Ir-valp-cdr-assoc-firstn-cdr-assoc
Ir-valp (addr, cdr (assoc (name, firstn (n, list))), data-seg)
— Ir-valp (addr, cdr (assoc (name, list)), data-seq)

THEOREM: Ir-s-similar-statesp-lr-s-similar-params-opener
(Ir-s-similar-statesp (s-params, s-temps, I, table)

A (frame = car (p-ctrl-stk (1)))

A (data-seg = p-data-segment (1)))

— lr-s-similar-params (s-params, Ir-params (frame, 1), data-seg)

THEOREM: Ir-s-similar-statesp-lr-s-similar-temps-opener
(Ir-s-similar-statesp (s-params, s-temps, 1, table)

A (frame = car (p-ctrl-stk (1))

A (data-seg = p-data-segment (1)))

— Ir-s-similar-temps (s-temps, lr-temps (frame, 1), data-seg)

THEOREM: strip-cars-Ir-make-temp-var-dcls
strip-cars (Ir-make-temp-var-dcls (temp-alist)) = strip-cdrs (temp-alist)

THEOREM: Ir-check-result-Ir-push-tstk
let value be cdr (assoc (s-expr (s), bindings (car (p-ctrl-stk (1)))))
in
(good-pospl (s-pos (s), s-body (s-prog (s)))
A definedp (s-pname (s), s-progs (s))

A (s-err-flag (s) = ’run)
A litatom (s-expr (s))
A proper-p-statep (Ir->p (s->1rl (s, I, table)))
A Ir-proper-heapp (p-data-segment (1))
A Ir-programs-properp (s->Irl (s, I, table), table)
A (p-psw (lr-push-tstk (s->1Irl (s, I, table), value)) = ’run)
A Ir-s-similar-statesp (s-params (s),
s-temps (s),
s->Irl (s, I, table),
table))

135

— Ir-check-result (t,
cdr (assoc (s-expr (), s-params (s))),
p-temp-stk (lr-push-tstk (s->1rl (s, I, table),
value)),
p-data-segment (1),
p-temp-stk (1)) endlet

THEOREM: s->Irl-s-set-pos-Ir-set-pos
s->Irl (s-set-pos (s, pos), I, table) = Ir-set-pos (s->Irl (s, I, table), pos)

THEOREM: Ir-params-lr-set-pos
Ir-params (frame, Ir-set-pos (I, pos)) = lr-params (frame, 1)

THEOREM: Ir-temps-Ir-set-pos
Ir-temps (frame, lr-set-pos (I, pos)) = lr-temps (frame, 1)

THEOREM: Ir-s-similar-statesp-Ir-s-set-pos
Ir-s-similar-statesp (s-params, s-temps, Ir-set-pos (I, pos), table)
= Ir-s-similar-statesp (s-params, s-temps, 1, table)

THEOREM: Ir-set-expr-s->Irl-s-set-expr-lr-pop-tstk
s->Irl (s-set-expr (s-eval (t, s-set-pos (s, pos), ¢), s, dv (s-pos (s), n)),
Ir-pop-tstk (Ir-if-ok (Ir-eval (t, lr-set-pos (s->1rl (s, 1, table), pos), ¢))),
table)
= Ir-set-error (Ir-set-expr (lr-pop-tstk (lr-if-ok (lr-eval (t,
Ir-set-pos (s->1r1 (s,
L,
table),
pOS),
c))),
s->Irl (s, 1, table),
dv (5-pos (5),),
s-err-flag (s-eval (t, s-set-pos (s, pos), ¢)))

THEOREM: Ir-s-similar-statesp-lr-pop-tstk
Ir-s-similar-statesp (s-params, s-temps, lr-pop-tstk (1), table)
= Ir-s-similar-statesp (s-params, s-temps, 1, table)

THEOREM: listp-lr-expr-s->Irl

good-pospl (s-pos (s), s-body (s-prog (s)))
— (listp (Ir-expr (s->1Irl (s, I, table))) = listp (s-expr (s)))

THEOREM: litatom-Ir-expr-s->Irl-s-expr

good-pospl (s-pos (s), s-body (s-prog (s)))
— (litatom (Ir-expr (s->1Ir1 (s, I, table))) = litatom (s-expr (s)))

136

THEOREM: car-Ir-expr-s->Irl

good-pospl (s-pos (s), s-body (s-prog (s)))
— (car (Ir-expr (s->Irl (s, I, table))) = car (s-expr (s)))

THEOREM: equal-p-psw-lr-eval-run-lr-eval-lr-set-error
(p-psw (I) = ’run)
— (lr-eval (flag, lr-set-error (I, *run), ¢) = lr-eval (flag, I, ¢))

THEOREM: Ir-proper-heapp-lr-good-pointerp-Ir-proper-heapp-nodep
(Ir-good-pointerp (addr, data-seg)
A lr-proper-p-areasp (data-seq)
A lr-proper-heapp (data-seg))
— Ir-proper-heapp-nodep (addr, data-seg)

THEOREM: Ir-check-result-f-not-lr-f-addr
((car (temp-stk) # LR-F-ADDR)
A Ir-proper-p-areasp (data-seg)
A listp (temp-stk))
— (lr-check-result (t, f, temp-stk, data-seg, orig-temp-stk) = f)

THEOREM: Ir-check-result-t-chain
((flag # *1ist)
A Ir-check-result (t, ans, temp-stk2, data-seg2, cdr (temp-stk1))
A lr-check-result (t, anything, temp-stkl, data-segl, temp-stk0))
— lr-check-result (flag, ans, temp-stk2, data-seg2, temp-stk0)

THEOREM: Ir-check-result-not-f-lr-f-addr
((car (temp-stk) = LR-F-ADDR)
A listp (temp-stk)
A Ir-proper-p-areasp (data-seqg)
A (ans # 1))
— (lr-check-result (t, ans, temp-stk, data-seg, orig-temp-stk) = f)

THEOREM: Ir-eval-leaves-listp-p-temp-stk
(proper-p-statep (lr->p (1))
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A (flag # ’1ist)
A lr-programs-properp (I, table)
A (p-psw (Ir-eval (flag, I, ¢)) = ’run))
— listp (p-temp-stk (Ir-eval (flag, I, ¢)))

THEOREM: Ir-eval-s->Irl-if-opener-1
let Ir-test be lr-if-ok (Ir-eval (t,
Ir-set-pos (s->1rl (s, I, table),
dv (s-pos (s), 1)),

137

| 2)

(good-pospl (s-pos (s), s-body (s-prog (s)))
listp (s-expr (s))
(car (s-expr (s)) = ’if)
(flag # *1ist)
(p-psw (Ir-test) = >run)
(top (p-temp-stk (Ir-test)) # LR-F-ADDR))
(Ir-eval (flag, s->1rl (s, I, table), c)
= lIr-eval (¢,
Ir-set-expr (lr-pop-tstk (Ir-test),
s->Irl (s, 1, table),
dv (s-pos (s), 2)),
¢)) endlet

l>>>>>

THEOREM: Ir-eval-s->Irl-if-opener-2
let Ir-test be lr-if-ok (lr-eval (t,
Ir-set-pos (s->Irl (s, I, table),
dv (s-pos (s), 1)),
. c))
in

(good-pospl (s-pos (s), s-body (s-prog (s)))
listp (s-expr (s))
(car (s-expr (s)) = ’if)
(flag # "1ist)
(p-psw (Ir-test) = ’run)
(top (p-temp-stk (Ir-test)) = LR-F-ADDR))
(Ir-eval (flag, s->Irl (s, I, table), ¢)
= lr-eval(t,
Ir-set-expr (Ir-pop-tstk (Ir-test),
s->Irl (s, I, table),
dv (s-pos (s), 3)),
¢)) endlet

L>>>>>

THEOREM: Ir-eval-s->Irl-if-opener-3
(good-pospl (s-pos (s), s-body (s-prog (s)))
A (flag # ’1ist)

listp (s-expr (s))

(car (s-expr (s)) = ’if)

(c #0)

s-good-statep (s, ¢)

(p-psw (lr-if-ok (Ir-eval (t,
Ir-set-pos (s->Irl (s, I, table), dv (s-pos (s), 1)),
o))

> > > > >

138

£ run)
— (Ir-eval (flag, s->1Irl (s, I, table),)
= lr-if-ok (Ir-eval (t,
Ir-set-pos (s->1rl (s, 1, table), dv (s-pos (s), 1)),

c)))

THEOREM: Ir-eval-s->Irl-temp-eval-opener

(good-pospl (s-pos (s), s-body (s-prog (s)))

(car (s-expr (8)) = S-TEMP-EVAL)

(flag # *1ist)

(¢ #0)

listp (s-expr (s))

s-good-statep (s, ¢))

(Ir-eval (flag, s->1Irl (s, I, table), c)

= Ir-set-temp (Ir-eval (t,
Ir-set-pos (s->1rl (s, I, table),

dv (s-pos (5), 1),

C),

top (p-temp-stk (lr-eval (t,
Ir-set-pos (s->1r1 (s,
L,
table),

dv (s-pos (s), 1)),

I >>>>>

c)));
caddr (Ir-expr (s->1r1 (s, I, table)))))

THEOREM: Ir-eval-s->Irl-temp-test-opener
(good-pospl (s-pos (s), s-body (s-prog (s)))
(car (s-expr (s)) = S-TEMP-TEST)
(flag # *1ist)
(¢ #0)
listp (s-expr (s))
s-good-statep (s, ¢))
(Ir-eval (flag, s->1rl (s, I, table), ¢)
= if p-max-temp-stk-size (I) £ (2 + length (p-temp-stk ()))
then if Ir-eval-temp-setp (s->Irl (s, I, table))
then Ir-do-temp-fetch (s->1rl (s, I, table))
else Ir-set-temp (lr-eval (t,
Ir-set-pos (s->1Irl (s,
l7
table),
dv (s-pos (s), 1)),

I >>>>>

OF

top (p-temp-stk (Ir-eval (t,

139

Ir-set-pos (s->1rl (s,

l,
table),

dv (s-pos (s),

1)),
),
caddr (Ir-expr (s->1Irl (s, I, table)))) endif
else Ir-set-error (s->1rl (s, I, table),
’1lr-temp-setp-temp-stack-overflow) endif)

THEOREM: Ir-eval-s->Irl-temp-fetch-opener
(good-pospl (s-pos (s), s-body (s-prog (s)))

(car (s-expr (s)) = S-TEMP-FETCH)

(flag # >1ist)

(c #0)

listp (s-expr (s))

s-good-statep (s, ¢))

(Ir-eval (flag, s->1rl (s, I, table), c)

= lr-do-temp-fetch (s->1Irl (s, I, table)))

L>s>>>>

THEOREM: Ir-eval-s->Irl-quote-opener
(good-pospl (s-pos (s), s-body (s-prog (s)))
(car (s-expr (s)) = ’quote)
(flag # >1ist)
(c #£0)
listp (s-expr (s))
s-good-statep (s, ¢))
(Ir-eval (flag, s->1rl (s, I, table), c)
= Ir-push-tstk (s->1rl (s, I, table),
cadr (Ir-expr (s->1Irl (s, I, table)))))

l>>>>>

THEOREM: Ir-params-lr-set-temp
Ir-params (frame, Ir-set-temp (I, value, var-name)) = lr-params (frame, [)

THEOREM: Ir-temps-Ir-set-temp
Ir-temps (frame, lr-set-temp (I, value, var-name)) = Ir-temps (frame, 1)

THEOREM: firstn-put-assoc
firstn (n, put-assoc (val, name, alist)) = put-assoc (val, name, firstn (n, alist))

THEOREM: strip-cars-nil-fact
(nil = strip-cars (y)) = (- listp (v))

DEFINITION:
induct-hint-13 (e, z, y)

140

= if listp (z)
then if listp (y)
then if e = caar(z) then t
else induct-hint-13 (e, cdr (z), cdr (y)) endif
else t endif
else t endif

THEOREM: strip-cars-equal-definedp-equal
(strip-cars (z) = strip-cars (y)) — (definedp (e,) = definedp (e, y))

THEOREM: Ir-eval-preserves-definedp-firstn-bindings-car-p-ctrl-stk
(proper-p-statep (Ir->p (1))
A good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A (p-psw (Ir-eval (flag, I, ¢)) = ’run))
— (definedp (z, firstn (n, bindings (car (p-ctrl-stk (Ir-eval (flag, I, ¢))))))
= definedp (z, firstn (n, bindings (car (p-ctrl-stk (1))))))

DEFINITION:

disjointp (list1, list2)

= if listp (list1)
then (car (list1) & list2) A disjointp (cdr (list1), list2)
else t endif

THEOREM: member-disjointp-non-member-1
(disjointp (z, y) A (e € z)) — (e & y)

THEOREM: Ir-eval-preserves-definedp-fn-bindings-car-ctrl-stk-set-pos
(proper-p-statep (Ir->p (1))
A good-pospl (pos, program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A (p-psw (Ir-eval (t, Ir-set-pos (I, pos), ¢)) = ’run))
— (definedp (z,
firstn (n,
bindings (car (p-ctrl-stk (Ir-eval (t,
Ir-set-pos (1, pos),
o))
= definedp (z, firstn (n, bindings (car (p-ctrl-stk (1))))))

THEOREM: lr-params-p-frame-not-definedp-put-assoc-anything
(proper-p-statep (Ir->p (1))
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A good-pospl (pos, program-body (p-current-program (1)))
A Ir-programs-properp (1, table)
A disjointp (formal-vars (p-current-program (1)),

141

strip-cars (temp-var-dcls (p-current-program (1))))
A listp (Ir-expr (7))
A ((car (Ir-expr (1)) = S-TEMP-EVAL)
vV (car (Ir-expr (1)) = S-TEMP-TEST))
(p-psw (Ir-eval (t, Ir-set-pos (I, pos), ¢)) = ’run))
(Ir-params (p-frame (put-assoc (anything,
caddr (Ir-expr (1)),
bindings (car (p-ctrl-stk (lr-eval (t,
Ir-set-pos (I,

POs),
o)),

b >

ret-pc),
)

= lr-params (car (p-ctrl-stk (lr-eval (t, lr-set-pos (I, pos), ¢))), 1))

DEFINITION:
induct-hint-14 (s-temps, Ir-temps, temp-alist)
= if listp (s-temps)
then if listp (Ir-temps)
then if listp (temp-alist)
then if cdar (Ir-temps) = LR-UNDEF-ADDR
then induct-hint-14 (cdr (s-temps),
cdr (Ir-temps),
cdr (temp-alist))
else induct-hint-14 (cdr (s-temps),
cdr (Ir-temps),
cdr (temp-alist)) endif
else t endif
else t endif
else t endif

THEOREM: put-assoc-opener-1
((name # caar (alist)) A listp (alist))
— (put-assoc (val, name, alist)
= cous (car (alist), put-assoc (val, name, cdr (alist))))

THEOREM: put-assoc-opener-2

(listp (alist3)

A (caar (alist3) ¢ strip-cars (cdr (alist3)))
definedp (s-expr, alistl)
(strip-cars (alist!) = strip-cars (alist2))
(strip-cdrs (alist2) = strip-cars (cdr (alist3))))
(put-assoc (val, cdr (assoc (s-expr, alist2)), alist3)

= cons (car (alists),

put-assoc (val, cdr (assoc (s-expr, alist2)), cdr (alistd))))

A\
A\
A
—

142

THEOREM: not-Ir-valp-Ir-undef-addr
(Ir-proper-heapp (data-seg) A lr-proper-p-areasp (data-seg))
— (= lr-valp (value, identity (LR-UNDEF-ADDR), data-seg))

THEOREM: Ir-s-similar-temps-put-assoc-put-assoc-helper-1

(listp (s-temps)

listp (Ir-temps)

Ir-s-similar-temps (s-temps, Ir-temps, data-seq)

Ir-valp (value, addr, data-seq)

Ir-proper-heapp (data-seg)

Ir-proper-p-areasp (data-seg)

(namel = caar (s-temps))

(name2 = caar (Ir-temps)))

Ir-s-similar-temps (put-assoc (list (t, value), namel, s-temps),
put-assoc (addr, name2, lr-temps),
data-seq)

l>>s>>>>>

THEOREM: Ir-s-similar-temps-put-assoc-put-assoc-helper
(lr-s-similar-temps (s-temps, Ir-temps, data-seg)
Ir-valp (value, addr, data-seg)
Ir-proper-heapp (data-seg)
Ir-proper-p-areasp (data-seg)
(strip-cars (temp-alist) = strip-cars (s-temps))
(strip-cdrs (temp-alist) = strip-cars (lr-temps))
no-duplicatesp (strip-cars (Ir-temps))
definedp (s-expr, s-temps))
Ir-s-similar-temps (put-assoc (list (t, value), s-expr, s-temps),
put-assoc (addr,
cdr (assoc (s-expr, temp-alist)),
Ir-temps),

l>>>>>>>

data-seg)

THEOREM: disjointp-cons-arg2
(disjointp (list1, list2) A (z & list1))
— disjointp (list!, cons (z, list2))

THEOREM: disjointp-nlistp-arg2
(list2 ~ nil) — disjointp (list!, list2)

THEOREM: disjointp-lr-make-temp-name-alist-1
disjointp (formals,
strip-cdrs (Ir-make-temp-name-alist-1 (initial,
num-list,
temp-list,

formals)))

143

THEOREM: Ir-s-similar-statesp-s-change-temp-helper-2
let lr-eval be lr-eval (t, lr-set-pos (s->Irl (s, I, table), pos), c)
in
(proper-p-statep (Ir->p (s->1rl (s, I, table)))
A good-pospl (s-pos (s), s-body (s-prog (s)))
good-pospl (pos, s-body (s-prog (s)))
Ir-s-similar-statesp (s-params, s-temps (s-eval), Ir-eval, table)
Ir-programs-properp (s->1Irl (s, I, table), table)
s-good-statep (s, c)
listp (s-expr (s))
((car (s-expr (s)) = S-TEMP-EVAL)
V' (car (s-expr (s)) = S-TEMP-TEST))
(p-psw (Ilr-eval) = ’run)
(Ir-expr = caddr (lr-expr (s->1rl (s, I, table)))))
(Ir-s-similar-statesp (s-params,
s-temps (s-change-temp (s-eval,
s-expr,
value)),
Ir-set-temp (Ir-eval, addr, lr-expr),
table)
= Ir-s-similar-temps (put-assoc (list (t, value),
s-expr,
s-temps (s-eval)),
Ir-temps (p-frame (put-assoc (addr,
Ir-expr,
bindings (car (p-ctrl-stk (Ir-eval)))),
ret-pc (car (p-ctrl-stk (Ir-eval)))),
s->1Irl (s, I, table)),
p-data-segment (Ir-eval))) endlet

> > > > > >

I >>

THEOREM: good-pospl-dv-1-temps-lr-expr
(((car (s-expr (s)) = S-TEMP-EVAL) V (car (s-expr (s)) = S-TEMP-TEST))
A listp (s-expr (s))
A good-pospl (s-pos (s), s-body (assoc (s-pname (s), s-progs (s)))))
— good-pospl (dv (s-pos (s), 1), s-body (assoc (s-pname (s), s-progs(s))))
THEOREM: put-assoc-restn
(= definedp (name, firstn (n, alist)))
— (put-assoc (val, name, restn (n, alist))
= restn (n, put-assoc (val, name, alist)))
THEOREM: disjointp-plist-arg-2
disjointp (z, plist (y)) = disjointp (z, y)
THEOREM: not-disjointp-member-argl-cons-arg?2
(v € y) — (— disjointp (y, cons (v, 2)))

144

THEOREM: member-disjointp-cons-arg2
(v € y) — (disjointp (y, cons (v, z)) = disjointp (y, 2))

THEOREM: disjointp-commutative
disjointp (z, y) = disjointp (y, x)

THEOREM: disjointp-lr-make-temp-name-alist-2
disjointp (strip-cdrs (Ir-make-temp-name-alist-1 (initial,
num-list,
temp-list,
formals)),
formals)

THEOREM: proper-p-statep-lr->p-s->Irl-strip-cars-bindings-ctrl-stk
(proper-p-statep (lr->p (s->Irl (s, I, table)))
A definedp (s-pname (s), s-progs (s)))
— (strip-cars (bindings (car (p-ctrl-stk (1))))
= append (s-formals (assoc (s-pname (s), s-progs (s))),
strip-cdrs (Ir-make-temp-name-alist (s-temp-list (assoc (s-pname (s),
s-progs (s))),
s-formals (assoc (s-pname (s),

s-progs (s)))))))

THEOREM: Ir-programs-properp-Ir->p-s->Irl-definedp-s-pname
(= definedp (s-pname (s), s-progs (s)))
— (= Ir-programs-properp (s->Irl (s, I, table), table))

THEOREM: Ir-temps-p-frame-put-assoc
(proper-p-statep (Ir->p (s->1rl (s, I, table)))
A lr-programs-properp (s->1Irl (s, I, table), table)
definedp (s-pname (s), s-progs (s))
listp (s-expr (s))
((car (s-expr (s)) = S-TEMP-EVAL)
V' (car (s-expr (s)) = S-TEMP-TEST))
good-pospl (s-pos (s), s-body (s-prog (s)))
(p-psw (Ir-eval (t, 12, ¢)) = ’run)
(Ir-expr = caddr (Ir-expr (s->1rl (s, I, table))))
(12 = lr-set-pos (s->Irl (s, I, table), dv (s-pos (s), 1))))
(Ir-temps (p-frame (put-assoc (val,
lr-expr,
bindings (car (p-ctrl-stk (Ir-eval (t, 2, ¢))))),

> > >

b>>>>

ret-pc),
s->1Irl (s, I, table))
= put-assoc (val,
caddr (Ir-expr (s->1Ir1 (s, I, table))),

145

Ir-temps (car (p-ctrl-stk (Ir-eval (t, 12, ¢))),
s->Irl (s, I, table))))

THEOREM: strip-cars-Ir-temps-strip-cars-temp-var-dcls
(s-good-statep (s, ¢)
A proper-p-statep (le->p (s->1rl (s, I, table)))
A (frame = top (p-ctrl-stk (s->Irl (s, I, table)))))
— (strip-cars (Ir-temps (frame, s->Irl (s, I, table)))
= strip-cdrs (Ir-make-temp-name-alist (s-temp-list (assoc (s-pname (),
s-progs (s))),
s-formals (assoc (s-pname (s),

s-progs (s))))))

EvVENT: Disable proper-p-statep-lr->p-s->Irl-strip-cars-bindings-ctrl-stk.

THEOREM: Ir-s-similar-statesp-s-change-temp-helper-1
(good-pospl (s-pos (), s-body (s-prog (s)))
A listp (s-expr (s))
A ((car (s-expr (s)) = S-TEMP-EVAL)
vV (car (s-expr (s)) = S-TEMP-TEST)
V' (car (s-expr (s)) = S-TEMP-FETCH)))
— (caddr (Ir-expr (s->1rl (s, I, table)))
= cdr (assoc (cadr (s-expr (s)),
Ir-make-temp-name-alist (s-temp-list (s-prog (s)),
s-formals (s-prog (s))))))

THEOREM: Ir-s-similar-statesp-s->Irl-lr-similar-temps
Ir-s-similar-statesp (s-params, s-temps, I, table)
— lr-s-similar-temps (s-temps,
Ir-temps (top (p-ctrl-stk (1)), 1),
p-data-segment (1))

THEOREM: count-codelist1-cons
count-codelist1 (cons (z, y)) = (x 4+ (10 x count-codelist1 (y)))

THEOREM: equal-append-initial
(append (z, y) = append (z, 2)) = (y = 2)

THEOREM: plist-listp-x-append-x-not-0
plistp (z) — ((append (z, 0) = 0) = (z = nil))

THEOREM: equal-append-final-0
(append (y, 0) = append (z, 0)) = (plist (y) = plist (2))

146

THEOREM: count-codelist1-append-non-listp

(= listp (2))
— (count-codelist1 (append (num-list, z)) = count-codelist1 (num-list))

THEOREM: not-equal-make-symbol-car-gensym
(count-codelist1 (num-list!) < count-codelistl (num-list2))
— (make-symbol (initial, num-list1)

car (gensym (initial, num-list2, atom-list)))

THEOREM: count-codelist1-cdr-gensym
(count-codelist1 (num-list1) < count-codelistl (num-list2))
— (count-codelist1 (num-list1)
< count-codelistl (cdr (gensym (initial, num-list2, atom-list))))

THEOREM: not-member-make-symbol-Ir-make-temp-name-alist-1-incr
(count-codelist1 (num-list1) < count-codelistl (num-list2))
— ((make-symbol (initial, num-list1)
€ strip-cdrs (Ir-make-temp-name-alist-1 (initial,
num-list2,
temp-list,
formals)))
= f

THEOREM: not-member-car-gensym-Ir-make-temp-name-alist-1-cdr
(car (gensym (initial, num-list, atoms))
€ strip-cdrs (Ir-make-temp-name-alist-1 (initial,
cdr (gensym (initial,
num-list,
atoms)),
temp-list,
formals)))
= f

THEOREM: no-duplicatesp-strip-cdrs-lr-make-temp-name-alist-1

no-duplicatesp (strip-cdrs (Ir-make-temp-name-alist-1 (initial,
num-list,
temp-list,
formals)))

THEOREM: no-duplicatesp-strip-cdrs-lr-make-temp-name-alist
no-duplicatesp (strip-cdrs (Ir-make-temp-name-alist (temp-list, formals)))

THEOREM: definedp-s-temps-s-eval

(s-err-flag (s-eval (flag, s, ¢)) = ’run)
— (definedp (z, s-temps (s-eval (flag, s, ¢))) = definedp (z, s-temps (s)))

147

THEOREM: strip-cars-lr-make-temp-name-alist-1
strip-cars (Ir-make-temp-name-alist-1 (initial, num-list, temp-list, formals))
= plist (temp-list)

THEOREM: strip-cars-Ir-make-temp-name-alist
strip-cars (lr-make-temp-name-alist (temp-list, formals)) = plist (temp-list)

THEOREM: Ir-eval-preserves-strip-cars-Ir-temps-car-p-ctrl-stk
(proper-p-statep (Ir->p (1))
A good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A (p-psw (Ir-eval (flag, I, ¢)) = ’run))
— (strip-cars (Ir-temps (car (p-ctrl-stk (Ir-eval (flag, I, c))), 12))
= strip-cars (Ir-temps (car (p-ctrl-stk (1)), 12)))

THEOREM: Ir-s-similar-statesp-s-change-temp
let s-I be s->Irl (s, I, table),

Ir-eval be lIr-eval (t, Ir-set-pos (s->1Irl (s, I, table), pos), ¢)
in

(proper-p-statep (Ir->p (s->1rl (s, I, table)))

A lr-s-similar-statesp (s-params, s-temps (s-eval), lr-eval, table)
good-pospl (s-pos (), s-body (s-prog (s)))
Ir-programs-properp (s->Irl (s, I, table), table)
s-good-statep (s, ¢)
listp (p-temp-stk (Ir-eval))

Ir-check-result (t,
s-ans (s-eval),
p-temp-stk (Ir-eval),
p-data-segment (Ir-eval),
orig-temp-stk)

listp (s-expr (s))

((car (s-expr (8)) = S-TEMP-EVAL)

V' (car (s-expr (s)) = S-TEMP-TEST))

(p-psw (Ir-eval) = ’run)

(s-err-flag (s-eval) = ’run)

(s-eval = s-eval (t, s-set-pos (s, pos), ¢))
(

(

1

> > > > >

> >

value = caddr (Ir-expr (s-1)))
pos = dv (s-pos (s), 1)))
-s-similar-statesp (s-params,
s-temps (s-change-temp (s-eval,
cadr (s-expr (s)),
s-ans (s-eval))),

L>>>>>

Ir-set-temp (Ilr-eval,
car (p-temp-stk (Ir-eval)),
value),

148

table) endlet

EVENT: Disable Ir-s-similar-statesp-s-change-temp-helper-2.

THEOREM: Ir-temps-lr-do-temp-fetch
Ir-temps (frame, Ir-do-temp-fetch (1)) = lr-temps (frame, 1)

THEOREM: Ir-params-Ir-do-temp-fetch
Ir-params (frame, Ir-do-temp-fetch (1)) = lr-params (frame, 1)

THEOREM: Ir-s-simlar-statesp-lr-do-temp-fetch
Ir-s-similar-statesp (s-params, s-temps, Ir-do-temp-fetch (1), table)
= lr-s-similar-statesp (s-params, s-temps, [, table)

THEOREM: not-member-no-duplicates-cdr-assoc-helper
(no-duplicatesp (list)

A (strip-cdrs (alist) = list)

A (name & list)

A definedp (s-expr, alist))

— (cdr (assoc (s-expr, alist)) # name)

THEOREM: not-member-no-duplicates-cdr-assoc
(no-duplicatesp (list)

A (strip-cdrs (alist1) = list)

A (name & list)

A definedp (s-expr, alist2)

A (strip-cars (alist2) = strip-cars (alist1)))
— (cdr (assoc (s-expr, alistl)) # name)
HEOREM: not-equal-lr-s-eval-temp-setp-not-lr-s-similar-temps
(Ir-expr = cdr (assoc (s-expr, temp-alist)))
A lr-proper-heapp (data-seg)
A Ir-proper-p-areasp (data-seqg)

A Ir-s-similar-temps (s-temps, Ir-temps, data-seg)
A (strip-cars (temp-alist) = strip-cars (s-temps))
A
A
A
-

T
(

(strip-cdrs (temp-alist) = strip-cars (lr-temps))
no-duplicatesp (strip-cars (Ir-temps))

definedp (s-expr, s-temps))

((cdr (assoc (Ir-expr, lr-temps)) # LR-UNDEF-ADDR)
— cadr (assoc (s-expr, s-temps)))

THEOREM: definedp-strip-cars-append-member-x-2

(strip-cars (z) = append (y, 2))
— ((e € z) = definedp (e, restn (length (1),)))

149

THEOREM: not-iff-Ir-s-temp-setp-not-lr-s-similar-statesp-helper
((z € strip-cdrs (Ir-make-temp-name-alist (s-temp-list (assoc (s-pname (s),
s-progs (s))),
s-formals (assoc (s-pname (s),
s-progs (s))))))
A proper-p-statep (Ir->p (s->1rl (s, I, table)))
A definedp (s-pname (s), s-progs (s)))
— (cdr (assoc (z, lr-temps (car (p-ctrl-stk (1)), s->1Irl (s, {1, table))))
= cdr (assoc (z, bindings (car (p-ctrl-stk (1))))))

THEOREM: Ir-programs-properp-member-Ir-expr-temps
(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A Ir-programs-properp (1, table)
A ((car (Ir-expr (1)) = S-TEMP-FETCH)
V' (car (Ir-expr ({)) = S-TEMP-EVAL)
vV (car (lr-expr (I)) = S-TEMP-TEST)))
— (caddr (Ir-expr (1))
€ strip-cars (temp-var-dcls (p-current-program (1))))

THEOREM: not-iff-Ir-s-temp-setp-not-lr-s-similar-statesp
(proper-p-statep (Ir->p (s->1rl (s, I, table)))

A Ir-proper-heapp (p-data-segment (1))
good-pospl (s-pos (), s-body (s-prog (s)))
Ir-programs-properp (s->1Irl (s, I, table), table)
listp (s-expr (s))
((car (s-expr (s)) = S-TEMP-TEST)

vV (car (s-expr (s)) = S-TEMP-FETCH))
(= (Ir-eval-temp-setp (s->Irl (s, I, table))

— s-temp-setp (cadr (s-expr (s)), s-temps (s))))

A s-good-statep (s, c))
— (= Ir-s-similar-statesp (s-params, s-temps (s), s->Irl (s, I, table), table))

> > > >

>

THEOREM: Ir-valp-Ir-s-eval-lr-s-similar-temps
((Ir-expr = cdr (assoc (s-expr, temp-alist)))
Ir-proper-heapp (data-seqg)
Ir-proper-p-areasp (data-seg)
Ir-s-similar-temps (s-temps, Ir-temps, data-seq)
(strip-cars (temp-alist) = strip-cars (s-temps))
(strip-cdrs (temp-alist) = strip-cars (Ir-temps))
no-duplicatesp (strip-cars (Ir-temps))
definedp (s-ezpr, s-temps)
(cdr (assoc (Ir-expr, lr-temps)) # LR-UNDEF-ADDR))
Ir-valp (caddr (assoc (s-expr, s-temps)),
cdr (assoc (Ir-expr, lr-temps)),
data-seq)

l>>>>>>>>

150

THEOREM: member-cdr-assoc-strip-cdrs-definedp
definedp (z, alist) — (cdr (assoc (z, alist)) € strip-cdrs (alist))

THEOREM: definedp-pairlist
definedp (z, pairlist (temp-list, anything)) = (x € temp-list)

THEOREM: definedp-lr-make-temp-name-alist-1
definedp (z, Ir-make-temp-name-alist-1 (initial, num-list, temp-list, formals))
= (z € temp-list)

THEOREM: definedp-lr-make-temp-name-alist
definedp (z, Ir-make-temp-name-alist (temp-list, formals))
= (z € temp-list)

THEOREM: p-temp-stk-Ir-do-temp-fetch-p-psw-run
(p-psw (Ir-do-temp-fetch (1)) = ’run)
— (p-temp-stk (Ir-do-temp-fetch (1))
= push (local-var-value (caddr (Ir-expr (1)), p-ctrl-stk (7)),
p-temp-stk (1)))

THEOREM: Ir-check-result-Ir-do-temp-fetch
(proper-p-statep (Ir->p (s->1Irl (s, I, table)))
A good-pospl (s-pos (s), s-body (s-prog (s)))
s-good-statep (s, ¢)
(c #0)
listp (s-expr (s))
((car (s-expr (s)) = S-TEMP-TEST)
vV (car (s-expr (s)) = S-TEMP-FETCH))
Ir-proper-heapp (p-data-segment (1))
Ir-s-similar-statesp (s-params (s), s-temps (s), s->Irl (s, I, table), table)
Ir-eval-temp-setp (s->1rl (s, I, table))
(value = caddr (Ir-expr (s->1rl (s, I, table)))))
Ir-check-result (t,
caddr (assoc (cadr (s-expr (s)), s-temps (s))),
cons (cdr (assoc (value, bindings (car (p-ctrl-stk (1))))),
p-temp-stk (1)),
p-data-segment (1),
p-temp-stk (1))

> > > >

>>>>

THEOREM: Ir-do-temp-fetch-run-Ir-eval-temp-setp
(p-psw (Ir-do-temp-fetch (1)) = ’run) — Ir-eval-temp-setp (1)

THEOREM: Ir-s-similar-const-table-lr-valp-assoc
(definedp (value, table) A Ir-s-similar-const-table (table, data-seg))
— Ir-valp (value, cdr (assoc (value, table)), data-seq)

151

THEOREM: Ir-proper-exprp-list-quote-opener

(flag # 1ist)

— (lr-proper-exprp (flag,
list (*quote, addr),
program-names,
formals,
temps,
table)

= ((type(addr) = ’addr) A (addr € strip-cdrs (fable))))

THEOREM: Ir-check-result-lr-push-tstk-quote

(good-pospl (s-pos (), s-body (s-prog (s)))

A listp (s-expr (s))
(car (s-expr (s)) = ’quote)
Ir-programs-properp (s->Irl (s, I, table), table)
Ir-s-similar-statesp (s-params (s), s-temps (s), s->1Irl (s, I, table), table)
s-good-statep (s, ¢)
Ir-proper-heapp (p-data-segment (1))
(p-psw (Ir-push-tstk (s->1Irl (s, I, table),

cadr (Ir-expr (s->1rl (s, I, table)))))

>>> > > >

= ’run))
— lr-check-result (t,
cadr (s-expr (s)),
p-temp-stk (lr-push-tstk (s->1rl (s, I, table),
cadr (Ir-expr (s->1rl (s, I, table))))),
p-data-segment (1),
p-temp-stk (1))

THEOREM: Ir-eval-subrp-user-funcall-opener
let Ir-eval-list be lr-eval (*list,
Ir-set-pos (s->1Irl (s, I, table), dv (s-pos (s), 1)),

¢)

=

A~ e
—

flag # ’1list)

(c #0)

listp (s-expr (s))
(car (s-expr (s)) # *i)

(car (s-expr (s)) 7é S-TEMP-EVAL)

(car (s-expr (s)) # S-TEMP-TEST)

(car (s-expr (s)) # S-TEMP-FETCH)

(car (s-expr (s)) # ’quote)

good-pospl (s-pos (), s-body (s-prog (s)))
s-good-statep (s, ¢))

(Ir-eval (flag, s->1rl (s, I, table), c)

l>>>>>>>>>

152

= if p-psw (Ir-eval-list) # ’run then lr-eval-list
elseif subrp (car (s-expr (s)))
then lr-apply-subr (s->1Irl (s, I, table), lr-eval-list)
elseif litatom (car (s-expr (s)))
then Ir-set-expr (Ir-pop-cstk (Ir-eval (t,
Ir-funcall (s->1Ir1 (s,
l7
table),
lr-eval-list),
¢ = 1))7
s->1rl (s, I, table),
s-pos (s))
else Ir-set-error (s->Irl (s, I, table),
’bad-instruction) endif) endlet

THEOREM: length-cdr-lIr-expr-funcall
(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A listp (lr-expr (1))
A (subrp (car (Ir-expr (1))) V litatom (car (Ir-expr (1)))))
— (length (cdr (Ir-expr (1)) = arity (car (Ir-expr (1))))

DEFINITION:
induct-hint-8 (n, value, temp-stk)
= if n~0 thent
else induct-hint-8 (n — 1, cdr (value), cdr (temp-stk)) endif

THEOREM: Ir-check-resultl-lr-valp-get-n-lessp-length
(Ir-check-resultl (values, temp-stk, data-seg) A (n < length (values)))
— Ir-valp (get (n, values), get (n, temp-stk), data-seg)

THEOREM: Ir-valp-Ir-good-pointerp
Ir-valp (value, addr, data-seg) — lr-good-pointerp (addr, data-seg)

THEOREM: Ir-check-resultl-lr-good-pointerp-get-n-lessp-car
(Ir-check-resultl (values, temp-stk, data-seg) A (length (values) £ 1))
— ((type (car (temp-stk)) = ’addr)
(cddr (car (temp-stk)) = nil)
listp (car (temp-stk))
adpp (untag (car (temp-stk)), data-seq)
Ir-boundary-nodep (car (temp-stk))
(area-name (car (temp-stk)) = identity (LR-HEAP-NAME))
(type (fetch (add-addr (car (temp-stk),
identity (LR-REF-COUNT-OFFSET)),
data-seg))
= ’nat))

>>>> > >

153

THEOREM: Ir-check-resultl-lr-good-pointerp-get-n-lessp-cadr
(Ir-check-resultl (values, temp-stk, data-seg) A (length (values) £ 2))
— ((type (cadr (temp-stk)) = ’addr)

(cddr (cadr (temp-stk)) = nil)
listp (cadr (temp-stk))

adpp (untag (cadr (temp-stk)), data-seg)
Ir-boundary-nodep (cadr (temp-stk))
(area-name (cadr (temp-stk)) = identity (LR-HEAP-NAME))
(type (fetch (add-addr (cadr (temp-stk),
identity (LR-REF-COUNT-OFFSET)),
data-seg))
= ’nat))

> > > > > >

THEOREM: p-run-subr-preserves-lr-proper-heapp2
(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table)
Ir-programs-properp (new-1, table)
listp (Ir-expr (1))
proper-p-statep (Ir->p (new-1))
Ir-proper-free-listp (p-data-segment (new-[))
adpp (untag (Ir-max-node (p-data-segment (new-1))), p-data-segment (new-1))
Ir-boundary-nodep (Ir-max-node (p-data-segment (new-1)))
(p-psw (new-l) = ’run)
(p-psw (p-run-subr (car (Ir-expr (1)),
p-set-pc (Ir->p (new-1), lr-return-pc (1))))

>>>>> > > >

= ’run)
Ir-proper-heapp2 (addr, p-data-segment (new-1))
Ir-nodep (addr, p-data-segment (new-1))
(p-prog-segment (1) = p-prog-segment (new-1))
Ir-check-result (’1list,
value,
p-temp-stk (new-1),
p-data-segment (new-1),
p-temp-stk (1))
(length (value) = length (cdr (lr-expr (1)))))
Ir-proper-heapp?2 (addr,
p-data-segment (p-run-subr (car (Ir-expr (1)),
p-set-pc (I->p (new-1),
Ir-return-pc (1)))))

> > > >

b >

THEOREM: Ir-apply-subr-preserves-Ir-proper-heapp2

let new-l be lr-eval (*1list, lr-set-pos (I, pos), ¢)

in

(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))

154

good-posp (’1list, pos, program-body (p-current-program (1)))
Ir-programs-properp (I, table)
listp (lr-expr (1))
subrp (car (Ir-expr (1)))
(car (Ir-expr (1)) # ’if)
proper-p-statep (lr->p (1))
Ir-proper-free-listp (p-data-segment (1))
Ir-proper-heapp2 (addr, p-data-segment (new-1))
adpp (untag (Ir-max-node (p-data-segment (1))), p-data-segment (1))
Ir-boundary-nodep (Ir-max-node (p-data-segment (1)))
Ir-nodep (addr, p-data-segment (1))
Ir-check-result (’list,
value,
p-temp-stk (new-1),
p-data-segment (new-1),
p-temp-stk (1))
(length (value) = length (cdr (Ir-expr (1))))
(p-psw (new-l) = ’run)
(p-psw (lr-apply-subr (I, new-l)) = ’run))
Ir-proper-heapp2 (addr, p-data-segment (lr-apply-subr (I, new-1))) endlet

>>>>>>>>>> > >

b >>>

DEFINITION:
induct-hint-15 (s, ¢)
= if listp (s-pos (s))
then if listp (s-expr-list (s))
then induct-hint-15 (s-set-expr (s-eval (t, s, ¢), s, nx (s-pos (s))), ¢)
else t endif
else t endif

THEOREM: length-s-eval-list
(listp (s-pos (s)) A (s-err-flag (s-eval (*1list, s, ¢)) = ’run))
— (length (s-ans (s-eval (’1ist, s, ¢))) = length (s-expr-list (s)))

THEOREM: plistp-Ir-compile-body
listp (body) — plistp (lr-compile-body (flag, body, temp-alist, const-alist))

THEOREM: plistp-lr-expr-s->Irl

(good-pospl (s-pos (s), s-body (s-prog (s))) A listp (s-expr (s)))
— plistp (Ir-expr (s->1rl (s, I, table)))

THEOREM: length-cdr-Ir-expr-funcall-s->Irl
(good-pospl (s-pos (), s-body (s-prog (s)))
A Ir-programs-properp (s->Irl (s, I, table), table)
A listp (s-expr (s))
A (car (s-expr (s)) # ’quote)

155

A (subrp (car (s-expr (s))) V litatom (car (s-expr (s)))))
— (length (cdr (Ir-expr (s->1rl (s, I, table)))) = length (cdr (s-expr (s))))

THEOREM: adpp-same-signature-lr-apply-subr
same-signature (p-data-segment (new-1), p-data-segment (lr-apply-subr (I, new-I1)))
— (adpp (adp, p-data-segment (lr-apply-subr (I, new-l)))

= adpp (adp, p-data-segment (new-1)))

THEOREM: lr-apply-subr-preserves-Ir-proper-heapp
let new-l be Ir-eval (’1list, lr-set-pos (s->1rl (s, I, table), pos), c)
in
(good-pospl (s-pos (s), s-body (s-prog (s)))
A definedp (s-pname (s), s-progs (s))
Ir-programs-properp (s->1Irl (s, I, table), table)
listp (s-expr (s))
(car (s-expr (s)) # S-TEMP-EVAL)
(car (s-expr (s)) # S-TEMP-TEST)
(car (s-expr (s)) # S-TEMP-FETCH)
(car (s-expr (s)) # ’quote)
subrp (car (s-expr (s)))
(car (s-expr (s)) # ’if)
proper-p-statep (Ir->p (s->1Irl (s, I, table)))
Ir-check-result (’1list,
s-ans (s-eval (’1ist, s-set-pos (s, pos), c)),
p-temp-stk (new-1),
p-data-segment (new-1),
p-temp-stk (1))
(p-psw (new-l) = ’run)
(p-psw (Ir-apply-subr (s->Irl (s, I, table), new-1)) = ’run)
Ir-proper-heapp (p-data-segment (new-1))
Ir-proper-heapp (p-data-segment (1))
(s-err-flag (s-eval (’1ist, s-set-pos (s, pos), ¢)) = ’run)
(pos = dv (s-pos (s), 1)))
lr-proper-heapp (p-data-segment (lr-apply-subr (s->1rl (s, I, table),
new-1))) endlet

A~ N S

>>>>>>>> > >

l>>>>>>

THEOREM: Ir-s-similar-params-lr-apply-subr

let new-l be lr-eval (’1list, lr-set-pos (, pos), c)

in

(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table)

listp (lr-expr (1))

subrp (car (Ir-expr (1)))

(car (Ir-expr (1)) # ’if)

proper-p-statep (Ir->p (new-1))

> > > >

156

Ir-proper-heapp (p-data-segment (new-1))
(p-psw (new-l) = ’run)
(p-psw (lr-apply-subr (I, new-l)) = ’run)
Ir-s-similar-params (s-params, lr-params, p-data-segment (new-1)))
Ir-s-similar-params (s-params,
lr-params,
p-data-segment (Ir-apply-subr (I, new-1))) endlet

>>>>

THEOREM: Ir-params-lr-apply-subr

((area-name (p-pc (new-1)) = area-name (p-pc (1)))
A (p-prog-segment (new-1) = p-prog-segment (1)
— (lr-params (frame, Ir-apply-subr (I, new-1)) =

)

r-params (frame, 1))

—_ N —

THEOREM: Ir-temps-lr-apply-subr
((area-name (p-pc (new-l)) = area-name (p-pc (1)))
A (p-prog-segment (new-l) = p-prog-segment (1)))
— (Ir-temps (frame, Ir-apply-subr (I, new-1)) = lr-temps (frame, 1))

THEOREM: lIr-s-similar-temps-lr-apply-subr
let new-l be lIr-eval (’1list, Ir-set-pos (I, pos), c)
in
(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
lr-programs-properp (I, table)
listp (lr-expr (1))
subrp (car (Ir-expr (1)))
(car (Ir-expr (1)) # ’if)
proper-p-statep (Ir->p (new-I))
lr-proper-heapp (p-data-segment (new-1))
(p-psw (new-l) = ’run)
(p-psw (lr-apply-subr (I, new-1)) = ’run)
Ir-s-similar-temps (s-temps, Ir-temps, p-data-segment (new-1)))
Ir-s-similar-temps (s-temps,
Ir-temps,
p-data-segment (lr-apply-subr (I, new-1))) endlet

l>>>>>>>>>

THEOREM: lIr-s-similar-const-table-lr-apply-subr
let new-l be lr-eval (’1list, lr-set-pos (I, pos), c)
in
(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A Ir-programs-properp (I, tablel)
listp (Ir-expr (1))
subrp (car (Ir-expr (1)))
(car (Ir-expr (1)) # ’if)
proper-p-statep (Ir->p (new-l))
Ir-proper-heapp (p-data-segment (new-1))

> > > > >

157

A (p-psw (new-l) = ’run)
A (p-psw (Ir-apply-subr (I, new-1)) = ’run)
A Ir-s-similar-const-table (table2, p-data-segment (new-1)))
— Ir-s-similar-const-table (table2,
p-data-segment (Ir-apply-subr (I, new-1))) endlet

THEOREM: lIr-s-similar-statesp-lr-apply-subr
let new-l be lr-eval (’list, lr-set-pos (I, pos), ¢)
in
(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
listp (lr-expr (1))
subrp (car (Ir-expr (1)))
(car (Ir-expr (1)) # ’if)
proper-p-statep (Ir->p (new-1))
Ir-proper-heapp (p-data-segment (new-1))
(p-psw (new-l) = ’run)
(p-psw (Ir-apply-subr (I, new-1)) = ’run)
lr-s-similar-statesp (s-params, s-temps, new-1, table))
lr-s-similar-statesp (s-params,
s-temps,
Ir-apply-subr (1, new-I),
table) endlet

l>>>>>>>>>

THEOREM: proper-p-statep-lr->p-Ir-eval-list-helper
let cur-expr be cur-expr (offset (p-pc (1)),
program-body (p-current-program (1)))

in

((length (cur-expr) < 1)

A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A listp (cur-expr)

A (car (cur-expr) # ’if)

A (car (cur-expr) # ’quote)

A (litatom (car (cur-ezpr)) V subrp (car (cur-ezpr)))

A proper-p-statep (lr->p (1))

A Ir-programs-properp (1, table)

A (p-psw (Ir-eval (’1list, lr-set-pos (I, pos), ¢)) = ’run)

A (pos = dv (offset (p-p (1)), 1)))

— proper-p-statep (Ir->p (lr-eval (*1ist, lr-set-pos (I, pos), ¢))) endlet

THEOREM: proper-p-statep-lr->p-lr-eval-list
(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A listp (Ir-expr (1))
A (car (Ir-expr (1)) # ’if)
A (car (Ir-expr (1)) # ’quote)

158

(subrp (car (Ir-expr (1))) V litatom (car (Ir-expr (1))))
proper-p-statep (Ir->p (1))

Ir-programs-properp (I, table)

(p-psw (lr-eval (*1ist, lr-set-pos (I, pos), ¢)) = ’run)

(pos = dv (offset (p-pc (1)), 1)))

proper-p-statep (Ir->p (Ir-eval (*1ist, Ir-set-pos (I, pos), c)))

l>>>>>

EvENT: Disable proper-p-statep-lr->p-Ir-eval-list-helper.

THEOREM: not-listp-p-temp-stk-not-lr-check-result1
Ir-check-resultl (value, temp-stk, data-seg)
— (length (temp-stk) £ length (value))

THEOREM: restn-addl-opener-alt

restn (1 + n, list)

= if listp (list) then restn (n, cdr (list))
else list endif

THEOREM: cdr-p-temp-stk-p-run-subr
let new-l be lr-eval (*1list, lr-set-pos (I, pos), ¢)
in
(listp (Ir-expr (1))
(car (Ir-expr (1)) # ’if)
A subrp (car (Ir-expr (1))
A (p-temp-stk (1)
= restn (length (cdr (Ir-expr (1))), p-temp-stk (new-1)))
A Ir-check-resultl (value,
p-temp-stk (new-1),
p-data-segment (new-1))
(length (value) = length (cdr (Ir-expr (1))))
proper-p-statep (Ir->p (1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
(p-psw (p-run-subr (car (Ir-expr (1)),
p-set-pc (Ir->p (new-1), lr-return-pe (1))))

>

> > > > >

= ’run)
(p-psw (new-l) = ’run)
(pos = dv (offset (p-pc (1)), 1)))
(cdr (p-temp-stk (p-run-subr (car (lr-expr (1)),
p-set-pc (Ir->p (new-1),
lr-return-pc (1)))))

b >>

= p-temp-stk ({)) endlet

EVENT: Disable restn-add1-opener-alt.

159

THEOREM: cdr-p-temp-stk-Ir-apply-subr
let new-l be lr-eval (’1list, lr-set-pos (I, pos), ¢)
in
(listp (Ir-expr (1))
(car (Ir-expr (1)) # ’if)
A subrp (car (Ir-expr (1))
A (p-temp-stk (1)
= restn (length (cdr (Ir-expr (1))), p-temp-stk (new-1)))
A Ir-check-resultl (value,
p-temp-stk (new-1),
p-data-segment (new-1))
(length (value) = length (cdr (Ir-expr (1))))
proper-p-statep (Ir->p (1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
(p-psw (new-l) = ’run)
(p-psw (Ir-apply-subr (I, new-1)) = ’run)
(pos = dv (offset (p-pc (1)), 1)))
(cdr (p-temp-stk (Ir-apply-subr (I, new-1))) = p-temp-stk (1)) endlet

>

l>>s>>>>>

THEOREM: Ir-check-resultl-reverse-length-1-opener
(length (values) = 1)
— (lr-check-resultl (reverse (values), temp-stk, data-seg)
= (Ir-valp (car (values), car (temp-stk), data-seq)
A Ir-good-pointerp (car (temp-stk), data-seg)))

THEOREM: lr-check-result1l-reverse-length-2-opener
(length (values) = 2)
— (Ir-check-resultl (reverse (values), temp-stk, data-seg)
= (lr-valp (cadr (values), car (temp-stk), data-seq)
A lr-good-pointerp (cadr (temp-stk), data-seq)
A Ir-valp (car (values), cadr (temp-stk), data-seq)
A Ir-good-pointerp (car (temp-stk), data-seg)))

THEOREM: Ir-valp-fetch-tag-cons-lr-valp-car-cdr
(Ir-valp (value, addr, data-seg)
A (fetch (addr, data-seq) = tag(’nat, LR-CONS-TAG)))
— (lr-valp (car (value),
fetch (add-addr (addr, identity (LR-CAR-OFFSET)), data-seg),
data-seqg)
A lr-valp (cdr (value),
fetch (add-addr (addr, identity (LR-CDR-OFFSET)), data-seq),
data-seq))

THEOREM: Ir-good-pointerp-type-tag-nat

160

(Ir-proper-heapp (data-seg) A lr-good-pointerp (addr, data-seg))
— (type (fetch (addr, data-seg)) = ’nat)

THEOREM: Ir-proper-heapp-lr-valp-f-helper
(Ir-proper-heapp-nodep (LR-F-ADDR, data-seg)

A lr-proper-heapp-nodep (addr, data-seq)

A 1Ir-nodep (addr, data-seg)

A lr-minimum-heapp (data-seg)

A lr-proper-p-areasp (data-seg))

— (Ir-valp (f, addr, data-seg) = (addr = LR-F-ADDR))

THEOREM: Ir-proper-heapp-lr-valp-f
(Ir-proper-heapp (data-seg) A lr-proper-p-areasp (data-seg))
— (lr-valp (f, addr, data-seg) = (addr = LR-F-ADDR))

THEOREM: Ir-valp-equal-value-fact
(Ie-valp (valuel , addr, data-seg) A lr-valp (value2, addr, data-seg))
— (valuel = value2)

THEOREM: Ir-proper-heapp-lr-valp-0
Ir-proper-heapp (data-seqg)
— (Ir-valp (value, identity (LR-0-ADDR), data-seg) = (value = 0))

THEOREM: Ir-proper-heapp-lr-valp-lr-f-addr
(Ir-proper-heapp (data-seg) A Ir-proper-p-areasp (data-seg))
— (lr-valp (value, identity (LR-F-ADDR), data-seg) = (value = f))

THEOREM: Ir-proper-heapp-lr-valp-Ir-t-addr
Ir-proper-heapp (data-seg)
— (Ir-valp (value, identity (LR-T-ADDR), data-seg) = (value = t))

THEOREM: Ir-valp-fetch-tag-not-cons-lr-valp-car-cdr-0
(proper-p-statep (lr->p (1))
A Ir-proper-heapp (p-data-segment (1))
A (fetch (car (p-temp-stk (7)), p-data-segment (1))
tag(’nat, LR-CONS-TAG))
A ((car (value) # 0) V (cdr (value) # 0)))
— (= Ir-valp (value, car (p-temp-stk (1)), p-data-segment (1)))

THEOREM: Ir-valp-not-tag-cons-not-listp
((— listp (value)) A (fetch (addr, data-seg) = tag (’nat, LR-CONS-TAG)))
— (= Ir-valp (value, addr, data-seq))

THEOREM: Ir-valp-fetch-tag-not-cons-lr-valp-listp

(proper-p-statep (Ir->p (1))
A lr-proper-heapp (p-data-segment (1))

161

A

A

—

(fetch (car (p-temp-stk (7)), p-data-segment (1))
tag(’nat, LR-CONS-TAG))
listp (value))
(= Ir-valp (value, car (p-temp-stk (1)), p-data-segment (1)))

THEOREM: Ir-valp-cons
Ir-valp (cons (z, y), addr, data-seq)

if Ir-good-pointerp (addr, data-seg)
then (untag (fetch (addr, data-seg)) = LR-CONS-TAG)

A r-valp (z,
fetch (add-addr (addr, LR-CAR-OFFSET), data-seq),
data-seq)

A lr-valp (y,
fetch (add-addr (addr, LR-CDR-OFFSET), data-seq),
data-seq)

else f endif

THEOREM: lIr-valp-deposit-a-list-cons
(Ir-proper-free-listp (data-seg)

l>>>>>>>

lr-proper-p-areasp (data-seqg)

Ir-nodep (Ir-max-node (data-seg), data-seq)

Ir-minimum-heapp (data-seg)

Ir-boundary-nodep (Ir-max-node (data-seg))

Ir-valp (value, addr, data-seg)

lr-proper-p-areasp (data-seqg)

(fp-addr = fetch (identity (LR-FP-ADDR), data-seg)))

Ir-valp (value, addr, deposit-a-list (list (20, x1, z2, x3), fp-addr, data-seg))

THEOREM: lIr-valp-car-p-temp-stk-p-run-subr-cons-helper
(Ir-proper-heapp (data-seq)

L>>>>

Ir-valp (car, car-addr, data-seq)
Ir-valp (cdr, cdr-addr, data-seg)
Ir-proper-p-areasp (data-seqg)
(type (ref-count) = ’nat))
lr-valp (cons (car, cdr),
fetch (identity (LR-FP-ADDR), data-seg),
deposit-a-list (list (identity (tag (’nat, LR-CONS-TAG)),
ref-count,
car-addr,
cdr-addr),
fetch (identity (LR-FP-ADDR), data-seg),
data-seg))

EVENT: Disable Ir-valp-cons.

162

THEOREM: Ir-valp-not-tag-true-not-listp
((= truep (value)) A (fetch (addr, data-seg) = tag (’nat, LR-TRUE-TAG)))
— (= Ir-valp (value, addr, data-seq))

THEOREM: Ir-valp-fetch-tag-not-true-Ir-valp-listp
(proper-p-statep (Ir->p (1))
A Ir-proper-heapp (p-data-segment (1))
A (fetch (car (p-temp-stk (1)), p-data-segment (1))
tag(’nat, LR-TRUE-TAG)))
— (= Ir-valp (t, car (p-temp-stk (7)), p-data-segment (1)))

THEOREM: Ir-valp-car-p-temp-stk-p-run-subr
(Ir-proper-heapp (p-data-segment (1))
A Ir-check-resultl (reverse (values), p-temp-stk (7), p-data-segment (1))
(length (values) = arity (subr))
proper-p-statep (Ir->p (1))
Ir-programs-properp (I, table)
(p-psw (p-run-subr (subr, p-set-pc (Ir->p (1), pc))) = ’run)
(p-psw (I) = *run)
(area-name (pc) = area-name (p-pc (1)))
(unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))

> > > > > > >

= list (*call, subr)))
— lr-valp (apply-subr (subr, values),
car (p-temp-stk (p-run-subr (subr, p-set-pc (Ir->p (1), pc)))),
p-data-segment (p-run-subr (subr, p-set-pc (Ir->p (1), pc))))

THEOREM: Ir-programs-properp-not-definedp-subrp-runtime-support
(subrp (car (s-expr (s)))
A listp (s-expr (s))
A (car (s-expr (s)) # ’if)
A (= definedp (car (s-expr (s)), P-RUNTIME-SUPPORT-PROGRAMS))
A good-pospl (s-pos (s), s-body (s-prog (s))))

— (= Ir-programs-properp (s->1rl (s, I, table), table))

THEOREM: Ir-valp-apply-subr-Ir-apply-subr

let new-I be Ir-eval (*1ist, lr-set-pos (s->Irl (s, I, table), pos), c)
in

(listp (s-expr (s))

A (car (s-expr (s)) # *if)

A (car (s-expr (s)) # ’quote)

A (car (s-expr (s)) # S-TEMP-EVAL)
A (car (s-expr (s)) # S-TEMP-TEST)
A (car (s-expr (s)) # S-TEMP-FETCH)

163

A subrp (car (s-expr (s)))
Ir-proper-heapp (p-data-segment (new-1))
Ir-check-result1 (reverse (values),
p-temp-stk (new-1),
p-data-segment (new-1))
(length (values) = length (cdr (Ir-expr (s->1rl (s, 1, table)))))
proper-p-statep (Ir->p (s->1Irl (s, I, table)))
good-pospl (s-pos (), s-body (s-prog (s)))
Ir-programs-properp (s->1Irl (s, I, table), table)
s-good-statep (s, c)
(p-psw (new-l) = ’run)
(p-psw (lr-apply-subr (s->1Irl (s, I, table), new-1)) = ’run)
(pos = dv (s-pos (s), 1))
Ir-valp (apply-subr (car (s-expr (s)), values),
car (p-temp-stk (Ir-apply-subr (s->Irl (s, I, table), new-1))),
p-data-segment (lr-apply-subr (s->1rl (s, [, table), new-1))) endlet

> >

l>>s>>>>>>

EVENT: Disable Ir-programs-properp-not-definedp-subrp-runtime-support.

THEOREM: Ir-check-result-Ir-apply-subr
let new-l be Ir-eval (’list,
Ir-set-pos (s->1rl (s, I, table), dv (s-pos (s), 1)),
c),
pos be dv (s-pos(s), 1)
in
(listp (s- expr (s))
A (car (s-expr (s)) #
(car (s-expr (s)) # ’quote)
(car (s-expr (s)) # S-TEMP-EVAL)
(car (s-expr (s)) # S-TEMP-TEST)
(car (s-expr (s)) # S-TEMP-FETCH)
subrp (car (s-expr (s)))
Ir-check-result (*list,
s-ans (s-eval (’1list, s-set-pos (s, pos), ¢)),
p-temp-stk (new-1),
p-data-segment (new-1),
p-temp-stk (1))
proper-p-statep (Ir->p (s->1Irl (s, I, table)))
Ir-proper-heapp (p-data-segment (1))
good-pospl (s-pos (s), s-body (s-prog (s)))
Ir-programs-properp (s->Irl (s, I, table), table)
s-good-statep (s, c)
(p-psw (new-l) = ’run)
(p-psw (lr-apply-subr (s->1rl (s, I, table), new-1)) = ’run)

)

> > > > > >

>>> > > > >

164

A (s-err-flag (s-eval (’1ist, s-set-pos (s, dv (s-pos (s), 1)), ¢))
= ’run))
— lr-check-result (t,
apply-subr (car (s-expr (s)),
s-ans (s-eval (’list,
s-set-pos (s, pos),
c))),
p-temp-stk (lr-apply-subr (s->1Irl (s, I, table),
new-1)),
p-data-segment (Ir-apply-subr (s->Irl (s, I, table),
new-1)),
p-temp-stk (1)) endlet

THEOREM: s->Irl-Ir-funcall-s-fun-call-state

(listp (s-expr (s))

(— subrp (car (s-expr (s))))

(car (s-expr (s)) # ’quote)

(car (s-expr (s)) # ’if)

litatom (car (s-expr (s)))

good-pospl (s-pos (s), s-body (s-prog (s)))

(p-psw (Ir-funcall (s->1rl (s, I, table), lr-eval)) = ’run)

(s-progs (s-eval) = s-progs (s))

(p-prog-segment (lr-eval) = p-prog-segment (s->Irl (s, I, table))))

(s->Ir1 (s-fun-call-state (s-eval, car (s-expr (s))),
Ir-funcall (s->1rl (s, I, table), Ir-eval),
table)

= Ir-funcall (s->1rl (s, I, table), Ir-eval))

S
S

l>>>>>>>>

THEOREM: Ir-params-Ir-funcall
((p-psw (Ir-funcall ({1, i2)) = ’run)
A (p-prog-segment (1) = p-prog-segment (12)))
— (Ir-params (car (p-ctrl-stk (Ir-funcall (11, 12))), Ir-funcall (11, 12))
= pair-formal-vars-with-actuals (formal-vars (assoc (user-fname (car (lr-expr (11))),
p-prog-segment (11))),
p-temp-stk (12)))

THEOREM: Ir-temps-Ir-funcall
((p-psw (Ir-funcall ({1, i2)) = >run)
A (p-prog-segment (1) = p-prog-segment (12)))
— (Ir-temps (car (p-ctrl-stk (Ir-funcall (11, [2))), lr-funcall (i1, i2))
= pair-temps-with-initial-values (temp-var-dcls (assoc (user-fname (car (Ir-expr (I1))),
p-prog-segment (i1)))))

THEOREM: listp-pairlist
listp (pairlist (z, y)) = listp (z)

165

THEOREM: car-reverse-last
car (reverse (list)) = car (last (list))

THEOREM: get-subl-length-car-last
(listp (list) A (n = (length (list) — 1)))
— (get (n, list) = car (last (list)))

THEOREM: car-last-first-n-add1-get
car (last (first-n (1 4+ n, list))) = get (n, list)

THEOREM: length-butlast
length (butlast (z)) = (length (z) — 1)

DEFINITION:
induct-hint-1 (z, y, 2)
= if listp (z)
then if listp (y)
then if listp (2)
then induct-hint-1 (cdr (z), butlast (y), butlast (z))
else t endif
else t endif
else t endif

THEOREM: Ir-check-resultl-append-2

(length (values) = length (temp-stk1))

— (lr-check-resultl (values, append (temp-stk1, temp-stk2), data-seq)
= lr-check-resultl (values, temp-stk1, data-seq))

THEOREM: Ir-check-result1-butlast
(Ir-check-resultl (values, temp-stk, data-seq)
A (length (temp-stk) = length (values))
A listp (temp-stk)
A listp (values))
— lr-check-result1 (butlast (values), butlast (temp-stk), data-seq)

THEOREM: reverse-butlast
listp (z) — (reverse (butlast (z)) = cdr (reverse (z)))

THEOREM: Ir-s-similar-params-lr-valp-get
((n < length (s-params))
A (strip-cars (s-params) = strip-cars (Ir-params))
A lr-s-similar-params (s-params, Ir-params, data-seg))
— lr-valp (cdr (get (n, s-params)), cdr (get (n, Ir-params)), data-seq)

166

THEOREM: Ir-s-similar-params-Ir-funcall-helper-1

(Ir-s-similar-params (pairlist (cdr (formals), cdr (reverse (values))),
pairlist (cdr (formals), cdr (reverse (temp-stk))),
data-seq)

listp (formals)

listp (values)

listp (temp-stk)

Ir-check-resultl (values, temp-stk, data-seq)

((1 4 length (cdr (formals))) = length (temp-stk))

(length (temp-stk) = length (values)))

Ir-valp (car (last (values)), car (last (temp-stk)), data-seg)

l>>>>>>

THEOREM: Ir-s-similar-params-lr-funcall
(Ir-check-resultl (values, temp-stk, data-seg)
A (length (temp-stk) = length (values))
A (length (temp-stk) = length (formals)))
— lr-s-similar-params (pairlist (formals, reverse (values)),
pairlist (formals, reverse (temp-stk)),
data-seq)

THEOREM: append-first-n-restn
(length (I) £ i) — (append (first-n (¢, 1), restn (¢, 1)) = 1)

THEOREM: Ir-check-result1-first-n-temp-stk
(length (p-temp-stk (1)) £ length (values))
— (lr-check-resultl (values, p-temp-stk (1), data-seg)
= Ir-check-resultl (values,
first-n (length (values), p-temp-stk (1)),
data-seq))

THEOREM: Ir-push-tstk-length

(p-psw (lr-push-tstk (I, object)) = ’run)

— (length (p-temp-stk (Ir-push-tstk (I, object)))
= (1 + length (p-temp-stk (1))))

THEOREM: length-add1-add1-cddr-fact
(length (z) = (1 + (1 + length (y)))) — (length (cddr (z)) = length (y))

THEOREM: length-p-temp-stk-p-run-subr-helper-1
(length (p-temp-stk (Ir-eval (? 1ist, lr-set-pos (I, pos), c)))
= (14 (1 + length (p-temp-stk (1)))))
— (length (cddr (p-temp-stk (Ir-eval (’1ist, lr-set-pos (I, pos), c))))
= length (p-temp-stk (1)))

THEOREM: length-p-temp-stk-p-run-subr

167

let new-l be lr-eval (’list, lr-set-pos (I, pos), ¢)

in

(listp (Ir-expr (1))

A
A
A

> > > >

b >>

(car (Ir-expr (1)) # ’if)
subrp (car (Ir-expr (1)))
(length (p-temp-stk (new-1))
= (length (p-temp-stk (1)) + arity (car (Ir-expr (1)))))
proper-p-statep (Ir->p (1))
good-pospl1 (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
(p-psw (p-run-subr (car (Ir-expr (1)),
p-set-pc (I->p (new-1), lr-return-pc (1))))
= ’run)
(p-psw (new-l) = ’run)
(pos = dv (offset (p-pe (1)), 1))
(length (p-temp-stk (p-run-subr (car (lr-expr (1)),
p-set-pc (Ie->p (new-1),
lr-return-pc (1)))))
= (1 + length (p-temp-stk (1)))) endlet

THEOREM: length-p-temp-stk-lr-apply-subr
let new-l be lr-eval (’list, lr-set-pos (I, pos), c)

in

(listp (Ir-expr (1))

A
A
A

I>s>>>>>

(car (Ir-expr (1)) # ’if)
subrp (car (Ir-expr (1)))

(length (p-temp-stk (new-1))

= (length (p-temp-stk (1)) + arity (car (Ir-expr (1)))))
proper-p-statep (Ir->p (1))
good-pospl1 (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)

(p-psw (new-l) = ’run)

(p-psw (lr-apply-subr (I, new-1)) = ’run)

(pos = dv (offset (p-pe (1)), 1)))

(length (p-temp-stk (Ir-apply-subr (I, new-1)))

= (1 4+ length (p-temp-stk ({)))) endlet

DEFINITION:
Ir-proper-formalsp (programs)

if listp (programs)
then ((logic-fname (name (car (programs))) = ’quote)
vV (length (formal-vars (car (programs)))
= arity (logic-fname (name (car (programs))))))
A lr-proper-formalsp (cdr (programs))
else t endif

168

THEOREM: length-formal-vars-lr-proper-formalsp-arity
(definedp (name, programs)
A (logic-fname (name) # ’quote)
A lr-proper-formalsp (programs))
— (length (formal-vars (assoc (name, programs)))
= arity (logic-fname (name)))

THEOREM: arity-formals-not-quote
(formals (name) A (name # ’>quote))
— (arity (name) = length (formals (name)))

THEOREM: Ir-proper-formalsp-lr-compile-programs
s-programs-okp (programs)
— lr-proper-formalsp (Ir-compile-programs (programs, table))

EVENT: Disable arity-formals-not-quote.
EVENT: Disable Ir-proper-formalsp.

THEOREM: Ir-programs-properp-funcall-not-caar-prog-seg
(listp (Ir-expr (1))
car (lr-expr (1)) # ’if)
car (Ir-expr (1)) # ’quote)
(= subrp (car (Ir-expr (1))))
litatom (car (lr-expr (1)))
listp (p-prog-segment (1))
(user-fname (car (Ir-expr (1))) = caar (p-prog-segment (1)))
good-pospl1 (offset (p-pc (1)), program-body (p-current-program (1))))
(= Ir-programs-properp (I, table))

S~ o~

l>>>>>>>

THEOREM: length-p-temp-stk-lr-funcall
(listp (Ir-expr (1))
(car (Ir-expr (1)) # ’if)
(car (Ir-expr (1)) # ’quote)
(p-psw (new-l) = ’run)
(— subrp (car (Ir-expr (1))))
litatom (car (lr-expr (1)))
(length (p-temp-stk (Ir-eval (t, Ir-funcall (I, new-1), ¢ — 1)))
= (1 + length (p-temp-stk (Ir-funcall (I, new-1)))))
(length (p-temp-stk (new-1))
= (length (p-temp-stk ({)) + arity (car (lr-expr (1)))))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
A lr-proper-formalsp (cdr (p-prog-segment (1)))

> >>>> > >

> >

169

A (p-psw (Ir-funcall (I, new-1)) = ’run))
— (length (p-temp-stk (Ir-funcall (I, new-1))) = length (p-temp-stk (1)))

THEOREM: length-p-temp-stk-lr-eval
(proper-p-statep (Ir->p (1))
A good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A lr-proper-formalsp (cdr (p-prog-segment (1)))
A (p-psw (Ir-eval (flag, I, ¢)) = ’run))
— (length (p-temp-stk (Ir-eval (flag, I, ¢)))
= if flag = ’1list
then length (Ir-expr-list (1)) + length (p-temp-stk (1))
else 1 + length (p-temp-stk (1)) endif)

THEOREM: length-p-temp-stk-Ir-eval-flag-list
(proper-p-statep (Ir->p (s->1rl (s, I, table)))
A good-posp (’list, pos, s-body (s-prog(s)))
s-good-statep (s, ¢)
Ir-programs-properp (s->Irl (s, I, table), table)
(p-psw (lr-eval (’ 1ist, lr-set-pos (s->1rl (s, I, table), pos), ¢))
= ’rumn))
— (length (p-temp-stk (Ir-eval (* List,
Ir-set-pos (s->1Irl (s, 1, table), pos),
o))
= (length (s-expr-list (s-set-pos (s, pos)))
+ length (p-temp-stk (1))))

> > >

THEOREM: reverse-reverse-alt
reverse (reverse (1)) = plist (1)

THEOREM: pairlist-plist-1
pairlist (z, plist (y)) = pairlist (z, y)

THEOREM: s-good-statep-length-cdr-s-expr-funcall
(s-good-statep (s, ¢)

good-pospl (s-pos (), s-body (s-prog (s)))

listp (s-expr (s))

(car (s-expr (s)) # ’quote)

(car (s-expr (s)) # ’if)

(litatom (car (s-expr (s))) V subrp (car (s-expr (s)))))
(length (cdr (s-expr (s))) = arity (car (s-expr (s))))

L>>>>>

THEOREM: Ir-s-similar-temps-make-temps-pair-temps
Ir-s-similar-temps (make-temps-entries (temp-list),
pair-temps-with-initial-values (Ir-make-temp-var-dcls (Ir-make-temp-name-alist-1 (initial,

170

data-seqg)

THEOREM: Ir-s-similar-temps-lr-funcall
Ir-s-similar-temps (make-temps-entries (s-temp-list (assoc (name, progs))),
pair-temps-with-initial-values (temp-var-dcls (assoc (name,

data-seq)

THEOREM: lIr-eval-preserves-lr-s-similar-const-table

(proper-p-statep (Ir->p (1))
good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))

I >>>>>

Ir-programs-properp (I, tablel)

(p-psw (Ir-eval (flag, I, ¢)) = ’run)
Ir-proper-heapp (p-data-segment (1))
Ir-s-similar-const-table (table2, p-data-segment (1)))

num-list.
temp-list
formals)

Ir-compile-programs (progs,
table)))),

Ir-s-similar-const-table (table2, p-data-segment (lr-eval (flag, I, ¢)))

THEOREM: Ir-s-similar-statesp-lr-funcall
let pos be dv (s-pos(s), 1)

in

(listp (s-expr (s))

>

>>>>>>>> > >

>

(= subrp (car (s-expr (s))))
(car (s-expr (s)) # ’quote)
(car (s-expr (s)) # ’if)
litatom (car (s-expr (s)))
good-pospl (s-pos (s), s-body (s-prog (s)))
proper-p-statep (Ir->p (s->1rl (s, 1, table)))
Ir-programs-properp (s->1Irl (s, I, table), table)
s-good-statep (s, ¢)
(p-psw (lr-funcall (s->1r1 (s, I, table), lr-eval)) = ’run)
(p-psw (Ilr-eval) = ’run)
Ir-check-result (’list,

values,

p-temp-stk (Ir-eval),

p-data-segment (Ir-eval),

p-temp-stk (1))
lr-proper-heapp (p-data-segment (1))
(s-err-flag (s-eval (> list, s-set-pos (s, pos), ¢)) = ’run)
(formals = s-formals (assoc (user-fname (car (s-expr (s))),

s-progs (s))))

S
S

(Ir-eval = Ir-eval (*1ist,

171

Ir-set-pos (s->1rl (s, I, table), pos),
o)
A (values = s-ans (s-eval (’1ist, s-set-pos (s, pos), ¢)))
A Ir-s-similar-statesp (s-params (s),
s-temps (s),
s->Irl (s, 1, table),
table))
— lr-s-similar-statesp (pairlist (formals, values),
make-temps-entries (s-temp-list (assoc (user-fname (car (s-expr (s))),
s-progs (s)))),
Ir-funcall (s->1r1 (s, I, table), lr-eval),
table) endlet

THEOREM: Ir-params-lIr-set-expr-Ir-pop-cstk
((area-name (p-pc (1)) = area-name (p-pc (new-1)))
A (p-prog-segment (1) = p-prog-segment (new-1)))
— (lr-params (frame,
Ir-set-expr (lr-pop-cstk (lr-eval (t, lr-funcall (I, new-1), c)),
la
pos))
= lr-params (frame, 1))

THEOREM: Ir-temps-lr-set-expr-Ir-pop-cstk
((area-name (p-pc (1)) = area-name (p-pc (new-1)))
A (p-prog-segment (I) = p-prog-segment (new-1)))
— (lr-temps (frame,
Ir-set-expr (Ir-pop-cstk (Ir-eval (t, Ir-funcall (I, new-1), ¢)),
l7
pos))
= lr-temps (frame, 1))

THEOREM: Ir-eval-preserves-lr-s-similar-params
(proper-p-statep (Ir->p (1))
good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
(p-psw (Ir-eval (flag, I, ¢)) = ’run)
Ir-proper-heapp (p-data-segment (1))
lr-s-similar-params (s-params, Ir-params, p-data-segment (1)))
Ir-s-similar-params (s-params,
Ir-params,
p-data-segment (Ir-eval (flag, [, ¢)))

ls>s>>>

THEOREM: Ir-eval-preserves-lr-s-similar-temps

(proper-p-statep (Ir->p (1))
A good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))

172

Ir-programs-properp (I, table)

(p-psw (Ir-eval (flag, I, ¢)) = ’run)

Ir-proper-heapp (p-data-segment (1))

Ir-s-similar-temps (s-temps, Ir-temps, p-data-segment (1)))
Ir-s-similar-temps (s-temps, Ir-temps, p-data-segment (Ir-eval (flag, I, ¢)))

b>>>>

THEOREM: lIr-s-similar-statesp-lr-set-expr-lr-pop-cstk
let funcall be lr-funcall (s->Irl (s, I, table),
Ir-eval (’1list,
Ir-set-pos (s->1rl (s, I, table), pos),
).
Ir-eval be lr-eval (*1list, lr-set-pos (s->1Irl (s, I, table), pos), c¢)
in
(Ir-s-similar-statesp (s-params (), s-temps (s-eval), Ir-eval, table)
listp (s-expr (s))
(— subrp (car (s-expr (s))))
(car (s-expr (s)) # ’quote)
(car (s-expr (s)) # ’if)
litatom (car (s-expr (s)))
proper-p-statep (Ir->p (s->1rl (s, I, table)))
good-pospl (s-pos (s), s-body (s-prog (s)))
Ir-programs-properp (s->1Irl (s, I, table), table)
Ir-proper-heapp (p-data-segment (lr-eval))
(pos = dv (s-pos(s), 1))
(p-psw (Ir-eval (t, funcall, ¢ — 1)) = ’run)
(p-psw (lr-eval) = ’run))
Ir-s-similar-statesp (s-params (),
s-temps (s-eval),
Ir-set-expr (Ir-pop-cstk (Ir-eval (t,
funcall,
¢ — 1))7
s->Irl (s, 1, table),
S-pos (S))a
table) endlet

l>>>s>s>s>>>>>> >

THEOREM: popn-restn
(length (list) £ n) — (popn (n, list) = restn (n, list))

THEOREM: Ir-check-result-Ir-funcall
let new-l be lIr-eval (’list,
Ir-set-pos (s->1rl (s, 1, table), dv (s-pos (s), 1)),
),
pos be dv (s-pos(s), 1),
s-eval be s-eval (*1list, s-set-pos (s, dv (s-pos (s), 1)), ¢)
in

173

(listp (s-expr (s))
A (car (s-expr (s)) # ’if)

(car (s-expr (s)) # ’quote)
(— subrp (car (s-expr (s))))
litatom (car (s-expr (s)))
Ir-check-result (*1ist,

s-ans (s-eval),

p-temp-stk (new-1),

p-data-segment (new-1),

p-temp-stk (1))
proper-p-statep (lr->p (s->1rl (s, 1, table)))
good-pospl (s-pos (s), s-body (s-prog (s)))
lr-programs-properp (s->1rl (s, I, table), table)
s-good-statep (s, ¢)
(p-psw (new-l) = ’run)
(p-psw (Ir-funcall (s->1r1 (s, I, table), new-1)) = ’run)
(s-err-flag (s-eval) = ’run)
Ir-check-result (t,

s-ans (s-eval (t,

s-fun-call-state (s-eval,
car (s-expr (s))),
¢ = 1))7

p-temp-stk (Ir-eval (t,
Ir-funcall (s->1Ir1 (s,
L,
table),
new-l),

> > > >

>>>>>> > >

¢ — 1))7
p-data-segment (Ir-eval (t,
Ir-funcall (s->1Ir1 (s,
L,
table),
new-l),
¢ = 1)))
p-temp-stk (lr-funcall (s->1rl (s, I, table), new-1))))
— lr-check-result (t,
s-ans (s-eval (t,
s-fun-call-state (s-eval,
car (s-expr (s))),
¢ — 1))7

p-temp-stk (lr-eval (t,
Ir-funcall (s->1Irl (s, {, table),
new-l),
¢ = 1)))

174

p-data-segment (Ir-eval (t,
Ir-funcall (s->1Ir1 (s,
L
table),
new-1),
¢ — 1))a

p-temp-stk (1)) endlet

EVENT: Disable popn-restn.

THEOREM: Ir-eval-s->Irl-flag-list-opener-1
(good-posp (’1ist, s-pos (s), s-body (s-prog(s)))
A listp (s-expr-list (s))
A listp (s-pos (s))
A (s-err-flag (s) = ’run))
— (Ir-eval (’1ist, s->Irl (s, I, table),)
= lr-eval (’1list,
Ir-set-expr (Ir-eval (t, s->1rl (s, I, table), c),
s->Irl (s, I, table),
nx (s-pos (s))),

c))

THEOREM: Ir-eval-s->Irl-flag-list-opener-2
(good-posp (’1ist, s-pos (s), s-body (s-prog (s)))
A (= listp (s-expr-list (s)))
A listp (s-pos (s))
A (s-err-flag (s) = ’run))
— (Ir-eval (’list, s->Irl (s, I, table), ¢) = s->Irl (s, I, table))

THEOREM: lr-check-result-lr-proper-heapp
Ir-check-result (flag, value, temp-stk, data-seg, orig-temp-stk)
— Ir-proper-heapp (data-seq)

THEOREM: lr-programs-properp-lr-set-error
Ir-programs-properp (Ir-set-error (I, error), table)
= Ir-programs-properp (I, table)

THEOREM: p-psw-lr-pop-tstk-lr-eval-flag-t
(proper-p-statep (Ir->p (1))
A good-pospl (pos, program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A (p-psw (lr-if-ok (Ir-eval (t, lr-set-pos (I, pos), ¢))) = ’run))
— (p-psw (Ir-pop-tstk (Ir-if-ok (Ir-eval (t, Ir-set-pos (I, pos), ¢))))
= ’run)

175

THEOREM: Ir-eval-leaves-listp-p-temp-stk-lr-set-pos
(proper-p-statep (Ir->p (1))
A good-pospl (pos, program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A (p-psw (Ir-eval (t, Ir-set-pos (I, pos), ¢)) = ’run))
— listp (p-temp-stk (lr-eval (t, lr-set-pos (I, pos), ¢)))

THEOREM: p-psw-run-Ir-if-ok-p-psw-run
(p-psw (Ir-if-ok (1)) = ’run) — (p-psw (l) = ’run)

THEOREM: Ir-s-similar-statesp-lr-if-ok
Ir-s-similar-statesp (s-params, s-temps, lr-if-ok (1), table)
= Ir-s-similar-statesp (s-params, s-temps, I, table)

THEOREM: Ir-eval-s-eval-equivalence
(proper-p-statep (Ir->p (s->1Irl (s, I, table)))
Ir-proper-heapp (p-data-segment (1))
good-posp (flag, s-pos (), s-body (s-prog (s)))
Ir-programs-properp (s->1Irl (s, I, table), table)
Ir-s-similar-statesp (s-params (s), s-temps (s), s->Irl (s, I, table), table)
s-good-statep (s, ¢)
(p-psw (Ir-eval (flag, s->1rl (s, I, table), ¢)) = ’run))
(Ir-s-similar-statesp (s-params (s),
s-temps (s-eval (flag, s, ¢)),
Ir-eval (flag, s->Irl (s, I, table), c),
table)
A lr-check-result (if flag = *1list then ’list
else t endif,
s-ans (s-eval (flag, s, ¢)),
p-temp-stk (Ir-eval (flag, s->1Irl (s, I, table), c)),
p-data-segment (Ir-eval (flag,
s->Irl (s, 1, table),

c)),

l>>>>>>

p-temp-stk (1))

l
A (s-err-flag (s-eval (flag, s, ¢)) = ’run))

EVENT: Disable p-psw-run-lr-if-ok-p-psw-run.

; was lr-evalb.events

;; The following define functions for each SUBR that tell how many

176

;3 resources are used. In the computations of the maximum control

;; stack size we break out the parts needed for formals and

;; temporaries and building a new control-stack frame. For example in
;; CONS we have (plus 2 0 1 ...), the 2 is for building a new frame,
;; the O is for the formals (CONS leaves its args on the temp stack)
;; and 1 for temporaries.

DEFINITION:
s-apply-car-r (s) = list (1,2 4+ 14+ 0 4+ 0, 0, 0)

DEFINITION:
s-apply-cdr-r (s) = list (1,2 + 1+ 0+ 0,0, 0)

;; CONS takes two implicit args

DEFINITION:
s-apply-cons-r (s) = list (2,2 +0+ 1+ 0,0, 1)

DEFINITION:
s-apply-false-r (s) = list (1,2 + 0+ 0 + 0, 0, 0)

;; FALSEP takes one implicit arg on stack.

DEFINITION:
s-apply-falsep-r (s) = list (1,2 + 0+ 0 + 0, 0, 0)

;; LISTP takes an implicit arg

DEFINITION:
s-apply-listp-r (s) = list (1,2 + 0+ 0 + 0, 0, 0)

;; NLISTP takes an implicit arg

DEFINITION:
s-apply-nlistp-r (s) = list (1, 2+ 0+ 0 + 0, 0, 0)

DEFINITION:
s-apply-true-r (s) = list (1,2 + 0+ 0 4+ 0, 0, 0)

DEFINITION:
s-apply-truep-r (s) = list (1,2 + 0+ 0 4+ 0, 0, 0)

DEFINITION:
s-apply-subr-r (subr, s)
= case on subr:

case = car

then s-apply-car-r (s)

177

case = cdr

then s-apply-cdr-r (s)
case = cons

then s-apply-cons-r (s)
case = false

then s-apply-false-r (s)
case = falsep

then s-apply-falsep-r (s)
case = listp

then s-apply-listp-r (s)
case = nlistp

then s-apply-nlistp-r (s)
case = true

then s-apply-true-r (s)
case = truep

then s-apply-truep-r (s)
otherwise list (0, 0, 0, 0) endcase

DEFINITION:

max-r (list], list2)

= list (max (car (list1), car (list2)),
max (cadr (list1), cadr (list2)),
max (caddr (list!), caddr (list2)),
cadddr (list1) 4+ cadddr (list2))

EvVENT: Disable max-r.

DEFINITION:
s-add-temp-r (list, n)
= list (n + car (list), cadr (list), caddr (list), cadddr (list))

;3 S-EVAL-R is somewhat similar to S-EVAL. It returns a list of four

;; numbers representing. the maximum temp stack size, maximum ctrl stack

;3 size, maximum word size and number of free heap nodes respectively needed
;; to execute the compilation of the S-STATE s in Piton without getting an
;3 error.

DEFINITION:
s-eval-r (flag, s, ¢)
= if s-err-flag (s) # ’run then list (0, 0, 0, 0)
elseif flag = ’list
then if s-pos (s) ~ nil then list (0, 0, 0, 0)
elseif listp (s-expr-list (s))
then max-r (s-eval-r (t, s, ¢),

178

s-add-temp-r (s-eval-r (*1list,
s-set-expr (s-eval (t, s, ¢),
57
e (5-pos (5)),
¢),
1)
else list (0, 0, 0, 0) endif
elseif ¢ ~ 0 then list (0, 0, 0, 0)
elseif litatom (s-expr (s)) then list (1, 0, 0, 0)
elseif s-expr (s) ~ nil then list (0, 0, 0, 0)
elseif car (s-expr (s)) = ’if
then let test be s-eval (t, s-set-pos (s, dv (s-pos (s), 1)), ¢)
in
if s-err-flag (test) = >run
then if s-ans (test)
then max-r (s-add-temp-r (s-eval-r (t,

s-set-pos (s,
dv (s-pos (s),
1)),
c),
1),
s-eval-r (t,
s-set-expr (test,
87
dv (s-pos (s), 2)),
c))

else max-r (s-add-temp-r (s-eval-r (t,
s-set-pos (s,
dv (s-pos (s),
1)),
OF
1),
s-eval-r (t,
s-set-expr (test,
8’
dv (s-pos (s), 3)),
¢)) endif
else s-eval-r (t, s-set-pos (s, dv (s-pos (s), 1)), ¢) endif endlet
elseif car (s-expr (s)) = S-TEMP-EVAL
then s-eval-r (t, s-set-pos (s, dv (s-pos(s), 1)), ¢)
elseif car (s-expr (s)) = S-TEMP-TEST
then if s-temp-setp (cadr (s-expr (s)), s-temps (s)) then list (2, 0, 0, 0)
else max-r (list (2, 0, 0, 0),
s-eval-r (t, s-set-pos (s, dv (s-pos (s), 1)), ¢)) endif

179

elseif car (s-expr (s)) = S-TEMP-FETCH then list (1, 0, 0, 0)
elseif car (s-expr (s)) = ’quote then list (1, 0, 0, 0)
elseif s-err-flag (s-eval (*1ist, s-set-pos (s, dv (s-pos(s), 1)), ¢))
’run
then s-eval-r (’1list, s-set-pos (s, dv (s-pos (s), 1)), ¢)
elseif subrp (car (s-expr (s)))
then max-r (s-eval-r (’1ist, s-set-pos (s, dv (s-pos(s), 1)), ¢),
s-add-temp-r (s-apply-subr-r (car (s-expr (s)),
s-eval (*list,
s-set-pos (s,
dv (s-pos (s),
1))7
C))7
arity (car (s-expr (s)))))

elseif litatom (car (s-expr (s)))
then let arg-s be s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), ¢)

in

let fstate be s-fun-call-state (arg-s, car (s-expr (s)))
in

let arg-r be s-eval-r (t, fstate, ¢ — 1)

in

max-r (s-eval-r (’list,
s-set-pos (s, dv (s-pos (s), 1)),
C),
list (car (arg-r),
2
+ length (s-params (fstate))
+ length (s-temps (fstate))
+ cadr (arg-r),
caddr (arg-r),
cadddr (arg-r))) endlet endlet endlet
else list (0, 0, 0, 0) endif

DEFINITION: s-eval-temp-r (flag, s, ¢) = car (s-eval-r (flag, s, ¢))

DEFINITION: s-eval-ctrl-r (flag, s, ¢) = cadr (s-eval-r (flag, s, c))

DEFINITION: s-eval-ws-1 (flag, s, ¢) = caddr (s-eval-r (flag, s, c))

DEFINITION:
s-eval-heap-r (flag, s, ¢) = cadddr (s-eval-r (flag, s, ¢))

DEFINITION:
S-MAX-SUBR-REQS

max (log (2, LR-CONS-TAG),

180

max (log (2, LR-TRUE-TAG),
max (log (2, LR-CDR-OFFSET), log (2, LR-CAR-OFFSET))))

EVENT: Disable s-max-subr-reqs.

THEOREM: numberp-car-cadr-caddr-cadddr-s-apply-subr-r
(car (s-apply-subr-r (subr, s)) € N)

A (cadr (s-apply-subr-r (subr, s)) € N)

A (caddr (s-apply-subr-r (subr, s)) € N)

A (cadddr (s-apply-subr-r (subr, s)) € N)

EVENT: Disable s-apply-subr-r.

THEOREM: numberp-max-r

(car (max-r (list1, list2)) € N)

A (cadr (max-r (list!, list2)) € N)

A (caddr (max-r (list1, list2)) € N)
A (cadddr (max-r (list!, list2)) € N)

THEOREM: numberp-s-eval-temp-ctrl-ws-heap-r
(s-eval-temp-t (flag, s, ¢) € N)

A (s-eval-ctrl-r (flag, s, ¢) € N)

A (s-eval-ws-r (flag, s, ¢) € N)

A (s-eval-heap-r (flag, s, ¢) € N)

EVENT: Disable s-eval-temp-r.
EvENT: Disable s-eval-ctrl-r.
EVENT: Disable s-eval-ws-r.
EVENT: Disable s-eval-heap-r.

DEFINITION:
Ir-count-free-nodes (addr, node-list, data-seg)
= if addr € node-list
then 1 + lr-count-free-nodes (fetch (add-addr (addr, LR-REF-COUNT-OFFSET),
data-seg),
delete (addr, node-list),
data-seq)
else 0 endif

181

DEFINITION:
Ir-check-resourcesp (flag, s, I, ¢)
= ((p-max-temp-stk-size ({)
#£ (length (p-temp-stk ({)) + s-eval-temp-r (flag, s, ¢)))
A (p-max-ctrl-stk-size (1)
£ (p-ctrl-stk-size (p-ctrl-stk (1))
+ s-eval-ctrl-r (flag, s, ¢)))
A (p-word-size (I) &£ s-eval-ws-r (flag, s, c))
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, p-data-segment (1)),
Ir-free-list-nodes (Ir-max-node (p-data-segment (1)),
p-data-segment (1)),
p-data-segment (1))
£ s-eval-heap-r (flag, s, ¢)))

EVENT: Disable Ir-check-resourcesp.

THEOREM: not-lessp-max-r-car
(car (max-r (list1, list2)) & car (list1))
A (car (max-r (list1, list2)) & car (list2))

THEOREM: not-lessp-max-r-cadr
(cadr (max-r (list1, list2)) £ cadr (list1))
A (cadr (max-r (list!, list2)) £ cadr (list2))

THEOREM: not-lessp-max-r-caddr
(caddr (max-r (list1, list2)) & caddr (list1))
A (caddr (max-r (list1, list2)) &£ caddr (list2))

THEOREM: not-lessp-max-r-cadddr
(cadddr (max-r (list1, list2)) £ cadddr (list1))
A (cadddr (max-r (list!, list2)) £ cadddr (list2))

THEOREM: Ir-check-resourcesp-listp-s-expr-list
((s-err-flag (s) = ’run)

listp (s-pos (s))

listp (s-expr-list (s))

good-posp (’1ist, s-pos (s), s-body (s-prog (s)))
Ir-check-resourcesp (’1list, s, I, ¢))
Ir-check-resourcesp (t, s, I, ¢)

>>>>

THEOREM: Ir-eval-preserves-lr-proper-heapp
(proper-p-statep (Ir->p (s->1rl (s, I, table)))
A Ir-proper-heapp (p-data-segment (1))
A good-posp (flag, s-pos (s), s-body (s-prog (s)))
A Ir-programs-properp (s->1rl (s, I, table), table)

182

A Ir-s-similar-statesp (s-params (), s-temps (s), s->Irl (s, I, table), table)
A s-good-statep (s, ¢)
A (p-psw (lr-eval (flag, s->1rl (s, I, table), ¢)) = ’run))
— lr-proper-heapp (p-data-segment (lr-eval (flag, s->1rl (s, 1, table), c)))
TH

EOREM: Ir-eval-preserves-lr-s-similar-statesp
(proper-p-statep (Ir->p (s->1rl (s, I, table)))
A lr-proper-heapp (p-data-segment (1))
A good-posp (flag, s-pos (s), s-body (s-prog (s)))
A lr-programs-properp (s->1Irl (s, I, table), table)
A Ir-s-similar-statesp (s-params (), s-temps (s), s->Irl (s, I, table), table)
A s-good-statep (s, ¢)
A (p-psw (lr-eval (flag, s->1rl (s, I, table), ¢)) = ’run))
— lr-s-similar-statesp (s-params (),
s-temps (s-eval (flag, s, c)),
Ir-eval (flag, s->1rl (s, I, table), ¢),
table)

THEOREM: s-eval-flag-run-flag-t-subsetp-s-collect-all-temps
(s-good-statep (s, ¢)
good-pospl (s-pos (s), s-body (s-prog (s)))
s-all-temps-setp (flag, s-expr (s), temp-alist-to-set (s-temps (s)))
s-all-progs-temps-setp (s-progs (s))
(s-err-flag (s-eval (flag, s, ¢)) = ’run)
s-check-temps-setp (s-temps (s))
(flag # *1ist))
subsetp (s-collect-all-temps (flag, s-expr (s)),
temp-alist-to-set (s-temps (s-eval (flag, s, c))))

Is>>>>>

THEOREM: s-eval-flag-run-flag-t-s-check-temps-setp
(s-good-statep (s, ¢)

good-pospl (s-pos (s), s-body (s-prog (s)))

A s-all-temps-setp (flag, s-expr (s), temp-alist-to-set (s-temps (s)))
A s-all-progs-temps-setp (s-progs (s))

A (s-err-flag (s-eval (flag, s, ¢)) = ’run)
A
A
N

>

s-check-temps-setp (s-temps (s))
(flag # *1ist))
s-check-temps-setp (s-temps (s-eval (flag, s, ¢)))

THEOREM: lIr-eval-preserves-length-bindings-car-p-ctrl-stk
(proper-p-statep (Ir->p (1))
A good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A (p-psw (Ir-eval (flag, I, ¢)) = ’run))
— (length (bindings (car (p-ctrl-stk (Ir-eval (flag, I, ¢)))))
= length (bindings (car (p-ctrl-stk (1)))))

183

THEOREM: Ir-eval-s->Irl-preserves-p-ctrl-stk-size
(proper-p-statep (Ir->p (1))
A good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A (p-psw (Ir-eval (flag, I, ¢)) = ’run))
— (p-ctrl-stk-size (p-ctrl-stk (lr-eval (flag, I, ¢)))
= p-ctrl-stk-size (p-ctrl-stk (1)))

THEOREM: length-p-temp-stk-Ir-eval-flag-not-list
(proper-p-statep (lr->p (s->Irl (s, I, table)))

good-posp (flag, s-pos (s), s-body (s-prog (s)))
s-good-statep (s, c)

Ir-programs-properp (s->1Irl (s, I, table), table)

(p-psw (Ir-eval (flag, s->1rl (s, I, table), ¢)) = ’run)
(flag # *1ist))

(length (p-temp-stk (Ir-eval (flag, s->Irl (s, I, table), c)))
= (1 + length (p-temp-stk (1))))

L>>s>>>

THEOREM: Ir-eval-preserves-lr-proper-heapp-lr-set-pos
(proper-p-statep (Ir->p (s->1rl (s, I, table)))
Ir-proper-heapp (p-data-segment (1))
good-posp (flag, pos, s-body (s-prog (s)))
Ir-programs-properp (s->Irl (s, I, table), table)
Ir-s-similar-statesp (s-params (s), s-temps (s), s->Irl (s, I, table), table)
s-good-statep (s, c)
(p-psw (Ir-eval (flag, Ir-set-pos (s->1rl (s, I, table), pos), ¢)) = ’run))
Ir-proper-heapp (p-data-segment (Ir-eval (flag,
lr-set-pos (s->1rl (s, 1, table),

pos),
c)))

THEOREM: Ir-eval-preserves-Ir-s-similar-statesp-lr-set-pos
(proper-p-statep (Ir->p (s->1rl (s, I, table)))
Ir-proper-heapp (p-data-segment (1))
good-posp (flag, pos, s-body (s-prog (s)))
Ir-programs-properp (s->Irl (s, I, table), table)
Ir-s-similar-statesp (s-params (s), s-temps (s), s->1rl (s, I, table), table)
s-good-statep (s, ¢)
(p-psw (Ir-eval (flag, Ir-set-pos (s->1rl (s, I, table), pos), ¢)) = ’run))
Ir-s-similar-statesp (s-params (s),
s-temps (s-eval (flag, s-set-pos (s, pos), c)),
Ir-eval (flag, lr-set-pos (s->1rl (s, I, table), pos), c),
table)

l>s>s>>>>

ls>>>>>

THEOREM: lr-eval-s-eval-flag-t-s-ans-f-Ir-set-pos

184

(proper-p-statep (Ir->p (s->1rl (s, I, table)))

Ir-proper-heapp (p-data-segment (1))

good-pospl (pos, s-body (s-prog (s)))

Ir-programs-properp (s->1Irl (s, I, table), table)

Ir-s-similar-statesp (s-params (s), s-temps (s), s->Irl (s, I, table), table)
s-good-statep (s, ¢)

(p-psw (lr-eval (t, lr-set-pos (s->1rl (s, I, table), pos), ¢)) = ’run)

(— s-ans (s-eval (t, s-set-pos (s, pos), ¢))))

(car (p-temp-stk (lr-eval (t, lr-set-pos (s->1Irl (s, I, table), pos), c)))

= LR-F-ADDR)

l>>>>>>>

THEOREM: Ir-eval-s-eval-flag-t-s-ans-non-f-Ir-set-pos

(proper-p-statep (Ir->p (s->1Irl (s, I, table)))

Ir-proper-heapp (p-data-segment (1))

good-pospl (pos, s-body (s-prog (s)))

Ir-programs-properp (s->Irl (s, I, table), table)

Ir-s-similar-statesp (s-params (s), s-temps (s), s->Irl (s, I, table), table)
s-good-statep (s, ¢)

(p-psw (Ir-eval (t, lr-set-pos (s->1rl (s, I, table), pos), ¢)) = ’run)
s-ans (s-eval (t, s-set-pos (s, pos), ¢)))

(car (p-temp-stk (Ir-eval (t, lr-set-pos (s->1rl (s, I, table), pos), ¢)))
identity (LR-F-ADDR))

l>>>>>>>

THEOREM: subsetp-not-member-both
((addr & set2) A subsetp (setl, set2)) — (addr & setl)

THEOREM: Ir-count-free-nodes-deposit-free-ptr
(adpp (’ (free-ptr . 0), data-seg) A lr-node-listp (node-list, data-seg))
— (lr-count-free-nodes (addr,
node-list,
deposit (anything, identity (LR-FP-ADDR), data-seg))
= Ir-count-free-nodes (addr, node-list, data-seg))

THEOREM: Ir-count-free-nodes-deposit-non-ref-count
(Ir-nodep (addr2, data-seg)
A (offset # LR-REF-COUNT-OFFSET)
A (offset € N)
A (offset < LR-NODE-SIZE)
A Ir-node-listp (node-list, data-seg))
— (lr-count-free-nodes (addr1,
node-list,
deposit (anything, add-addr (addr2, offset), data-seg))
= Ir-count-free-nodes (addri1, node-list, data-seg))

THEOREM: Ir-count-free-nodes-deposit-lr-nodep

185

(Ir-nodep (addr2, data-seg) A lr-node-listp (node-list, data-seg))
— (lr-count-free-nodes (addr1, node-list, deposit (anything, addr2, data-seg))
= lr-count-free-nodes (addri1, node-list, data-seg))

THEOREM: Ir-count-free-nodes-delete-deposit
((addrl & node-list)
Ir-nodep (addr!, data-seg)
Ir-node-listp (node-list, data-seg)
(type (ref-count) = ’nat)
(untag (ref-count) € N))
(Ir-count-free-nodes (addr2,
node-list,
deposit (ref-count,
add-addr (addr1,
identity (LR-REF-COUNT-OFFSET)),
data-seg))
= Ir-count-free-nodes (addr2, node-list, data-seg))

' >>>>

THEOREM: lr-count-free-nodes-max-addr-lr-free-list-nodes
Ir-count-free-nodes (maz-addr,
Ir-free-list-nodes (maz-addr, data-segl),
data-seg2)
= 0

THEOREM: Ir-count-lr-free-list-nodes-p-run-cons
let dds be deposit-a-list (list (identity (tag (’nat, 5)),
ref-count,
anyl,
any?2),
fetch (identity (LR-FP-ADDR), data-seg),
data-seq)
in
(Ir-proper-heapp (data-seg)
A (maz-addr = Ir-max-node (data-seg))
A (type (ref-count) = ’nat)
A (untag (ref-count) € N)
A (fetch (identity (LR-FP-ADDR), data-seg) # maz-addr))
— ((1 4 lr-count-free-nodes (fetch (add-addr (fetch (identity (LR-FP-ADDR),
data-seg),
identity (LR-REF-COUNT-OFFSET)),
data-seq),
Ir-free-list-nodes (max-addr, dds),
dds))
= Ir-count-free-nodes (fetch (identity (LR-FP-ADDR),
data-seg),

186

Ir-free-list-nodes (maz-addr,
data-seg),
data-seq)) endlet

THEOREM: not-p-max-node-fetch-fp-addr-not-errorp-p-run-cons
((p-psw (p (p-set-pc (Ir->p (new-I), pc), p-cons-clock (p-set-pc (Ir->p (new-1), pc))))
= ’run)
proper-p-statep (Ir->p (new-1))
proper-p-statep (p-set-pc (Ir->p (new-1), pc))
(maz-node = lr-max-node (p-data-segment (new-1)))
(p-psw (new-l) = ’run)
Ir-programs-properp (new-I, table)
Ir-proper-heapp (p-data-segment (new-1))
(unlabel (get (offset (pc),
program-body (assoc (area-name (pc),

p-prog-segment (Ir->p (new-1))))))

>>>> > > >

= ’(call cons)))
— (fetch (identity (LR-FP-ADDR), p-data-segment (new-1)) # max-node)

THEOREM: get-comp-body-lr-compile-programs

(good-pospl (s-pos (s), s-body (s-prog (s)))

Ir-programs-properp (s->1Irl (s, I, table), table)

(car (s-expr (s)) # ’if)

(car (s-expr (s)) # S-TEMP-EVAL)

(car (s-expr (s)) # S-TEMP-TEST)

(car (s-expr (s)) # S-TEMP-FETCH)

(car (s-expr (s)) # ’quote)

listp (s-expr (s)))

(get (offset (Ir-return-pc (s->1Irl (s, I, table))),
program-body (assoc (s-pname (s),

l>>>>>>>

comp-programs (lr-compile-programs (s-progs (s),
table))))
= list(*d1,
Ir-make-label (offset (Ir-return-pc (s->1rl (s, I, table)))),
nil,

if definedp (car (s-expr (s)), P-RUNTIME-SUPPORT-PROGRAMS)
then list (’call, car (s-expr (s)))
else list (? call, user-fname (car (s-expr (s)))) endif))

THEOREM: Ir-count-lr-free-list-nodes-p-run-subr
let p be p-set-pc (Ir->p (lr-eval (’1ist,
Ir-set-pos (s->1Irl (s, I, table), pos),
C))7
Ir-return-pe (s->1Irl (s, I, table))),
new-l be lIr-eval (’list, Ir-set-pos (s->1Irl (s, I, table), pos), ¢)

187

in
(listp (s-expr (s))
A (car (s-expr (s)) # ’if)

subrp (car (s-expr (s)))
proper-p-statep (Ir->p (s->1Irl (s, I, table)))
good-pospl (s-pos (), s-body (s-prog (s)))
Ir-programs-properp (s->1Irl (s, I, table), table)
s-good-statep (s, ¢)
(p-psw (p-run-subr (car (s-expr (s)), p)) = ’run)
(p-psw (new-l) = ’run)
(pos = dv (s-pos (s), 1))
Ir-proper-heapp (p-data-segment (1))
Ir-s-similar-statesp (s-params (s),

s-temps (s),

s->1Irl (s, I, table),

table))
— (Ir-count-free-nodes (fetch (identity (LR-FP-ADDR),

p-data-segment (new-1)),
Ir-free-list-nodes (Ir-max-node (p-data-segment (1)),
p-data-segment (new-I)),
p-data-segment (new-1))
= (Ir-count-free-nodes (fetch (identity (LR-FP-ADDR),
p-data-segment (p-run-subr (car (s-expr (s)),
p))),
Ir-free-list-nodes (Ir-max-node (p-data-segment (1)),
p-data-segment (p-run-subr (car (s-expr (s)),

p)));

>>>>>>>> > >

p-data-segment (p-run-subr (car (s-expr (s)),
p)))
+ cadddr (s-apply-subr-r (car (s-expr (s)),
s-eval (’list,
s-set-pos (s, pos),
¢))))) endlet

THEOREM: Ir-count-lr-free-list-nodes-Ir-apply-subr
let new-lI be lIr-eval (’list, lr-set-pos (s->1rl (s, I, table), pos), c)
in
(listp (s-expr (s))
A (car (s-expr (s)) # ’if)
subrp (car (s-expr (s)))
proper-p-statep (Ir->p (s->1Irl (s, I, table)))
good-pospl (s-pos (s), s-body (s-prog (s)))
lr-programs-properp (s->Irl (s, I, table), table)
(p-psw (new-l) = ’run)

> > > > >

188

> > > >

> > > >

(p-psw (Ir-apply-subr (s->1rl (s, I, table), new-1)) = ’run)
s-good-statep (s, ¢)
Ir-proper-heapp (p-data-segment (1))
Ir-s-similar-statesp (s-params (s),
s-temps (s),
s->Irl (s, I, table),
table)
(pos = dv (s-pos (s), 1))
(maz-addr = lr-max-node (p-data-segment (1)))
(s-eval-size = s-eval-heap-r (’1list, s-set-pos (s, pos), ¢))
((Ir-count-free-nodes (fetch (LR-FP-ADDR, p-data-segment (new-1)),
lr-free-list-nodes (maz-addr,
p-data-segment (new-1)),
p-data-segment (new-1))
+ s-eval-size)
= Ir-count-free-nodes (fetch (LR-FP-ADDR,
p-data-segment (1)),
Ir-free-list-nodes (maz-addr,
p-data-segment (1)),
p-data-segment (1))))
((s-eval-size
+ cadddr (s-apply-subr-r (car (s-expr (s)),
s-eval (’1list,
s-set-pos (s, pos),
)
+ Ir-count-free-nodes (fetch (identity (LR-FP-ADDR),
p-data-segment (lr-apply-subr (s->1r1 (s,
l7
table),
new-1))),
Ir-free-list-nodes (maz-addr,
p-data-segment (Ir-apply-subr (s->1r1 (s,

l7
table),
new-1))),
p-data-segment (lr-apply-subr (s->Ir1 (s,
l7
table),
new-1))))

= lr-count-free-nodes (fetch (identity (LR-FP-ADDR),
p-data-segment (1)),
Ir-free-list-nodes (maz-addr,
p-data-segment (1)),
p-data-segment (1))) endlet

189

THEOREM: Ir-eval-s-eval-equivalence-lr-check-result-flag-list
let Ir-eval be lr-eval (’list,
Ir-set-pos (s->Irl (s, I, table), dv (s-pos (s), 1)),

c)
in

(proper-p-statep (Ir->p (s->1rl (s, I, table)))

A lr-proper-heapp (p-data-segment (1))
good-pospl (s-pos (s), s-body (s-prog (s)))
Ir-programs-properp (s->1Irl (s, I, table), table)
Ir-s-similar-statesp (s-params (s),

s-temps (s),
s->1Irl (s, I, table),
table)
s-good-statep (s, c)
(p-psw (lr-eval) = ’run)
listp (s-expr (s))
(car (s-expr (s
car (s-expr (s

(s)
(car ((s)
(car (s-expr (s)
(ca ((s)
((s)

> > >

) # 7if)
) # S-TEMP-EVAL)
) # S-TEMP-TEST)
) # S-TEMP-FETCH)
) # ’quote))
t(’list,
s-ans (s-eval (’1list,
s-set-pos (s, dv (s-pos (s), 1)),
C))v
p-temp-stk (Ir-eval),
p-data-segment (lr-eval),
p-temp-stk (1)) endlet

car (s-expr (s
car (s-expr
Ir-check-result

l>>>>>>>>

THEOREM: cadddr-max-r
cadddr (max-r (list1, list2)) = (cadddr (list!) + cadddr (list2))

THEOREM: Ir-eval-s-eval-heap-r-lr-count-Ir-free-list-nodes
(proper-p-statep (Ir->p (s->Irl (s, I, table)))
Ir-proper-heapp (p-data-segment (1))
good-posp (flag, s-pos (s), s-body (s-prog (s)))
Ir-programs-properp (s->1Irl (s, I, table), table)
Ir-s-similar-statesp (s-params (s), s-temps (s), s->Irl (s, I, table), table)
s-good-statep (s, ¢)
(p-psw (Ir-eval (flag, s->Irl (s, I, table), ¢)) = ’run)
(s-err-flag (s-eval (flag, s, ¢)) = ’run))
((Ir-count-free-nodes (fetch (LR-FP-ADDR,
p-data-segment (Ir-eval (flag,
s->Irl (s, I, table),

l>>s>>>>>

190

¢)));

Ir-free-list-nodes (Ir-max-node (p-data-segment (1)),
p-data-segment (lr-eval (flag,
s->Irl (s,
la
table),
c))),
p-data-segment (Ir-eval (flag, s->1rl (s, 1, table), c)))
+ s-eval-heap-r (flag, s, ¢))
= Ir-count-free-nodes (fetch (LR-FP-ADDR, p-data-segment (1)),
Ir-free-list-nodes (Ir-max-node (p-data-segment (1)),
p-data-segment (1)),
p-data-segment (1)))

THEOREM: Ir-check-resourcesp-list-set-expr-nx
(listp (s-pos (s))
listp (s-expr-list (s))
good-posp (’1ist, s-pos (s), s-body (s-prog (s)))
proper-p-statep (Ir->p (s->Irl (s, I, table)))
Ir-proper-heapp (p-data-segment (1))
Ir-programs-properp (s->1Irl (s, I, table), table)
Ir-s-similar-statesp (s-params (s), s-temps (s), s->Irl (s, I, table), table)
s-good-statep (s, c)
(p-psw (Ir-eval (t, s->Irl (s, I, table), ¢)) = ’run)
(s-err-flag (s-eval (t, s, ¢)) = ’run)
Ir-check-resourcesp (’1list, s, I, ¢))
lr-check-resourcesp (’list,
s-set-expr (s-eval (t, s, ¢), s, nx (s-pos(s))),
Ir-eval (t, s->Irl (s, I, table), c),

¢)

THEOREM: Ir-check-resourcesp-lr-push-tstk-flag-run
(Ir-check-resourcesp (flag, s, I, ¢)
(flag # ’1ist)
litatom (s-expr (s))
(c #0)
(s-err-flag (s) = ’run))
(p-psw (Ir-push-tstk (s->Irl (s, I, table),
cdr (assoc (s-expr (), bindings (car (p-ctrl-stk (1)))))))

l>>s>>>>>>> >

b>>>>

= ’run)

THEOREM: Ir-check-resourcesp-s-set-pos-if-cadr
(lr-check-resourcesp (flag, s, I, ¢)

A s-good-statep (s, ¢)

A (flag # ’1ist)

191

A (c#£0)

A listp (s-expr (s))

A (car (s-expr (s)) = ’if))

— lr-check-resourcesp (t, s-set-pos (s, dv (s-pos(s), 1)), , ¢)

THEOREM: s-eval-subsetp-s-collect-temp-alist-s-set-pos-if
(listp (s-expr (s))
(car (s-expr (s)) = ’if)
s-good-statep (s, ¢)
good-pospl (dv (s-pos (s), 1), s-body (s-prog (s)))
s-check-temps-setp (s-temps (s))
s-all-temps-setp (t, cadr (s-expr (s)), temp-alist-to-set (s-temps (s)))
s-all-progs-temps-setp (s-progs (s))
(s-err-flag (s-eval (t, s-set-pos (s, dv (s-pos (s), 1)), ¢)) = ’run))
subsetp (s-collect-all-temps (t, cadr (s-expr (s))),
temp-alist-to-set (s-temps (s-eval (t,
s-set-pos (s, dv (s-pos (s), 1)),

c))))

THEOREM: length-p-temp-stk-Ir-pop-tstk-lr-eval-flag-t
(proper-p-statep (Ir->p (s->1rl (s, 1, table)))
A good-pospl (pos, s-body (s-prog (s)))

Ir-programs-properp (s->Irl (s, I, table), table)

s-good-statep (s, ¢)

(p-psw (lr-if-ok (Ir-eval (t, lr-set-pos (s->1rl (s, I, table), pos), c)))

= ’rum))

— (length (p-temp-stk (Ir-pop-tstk (Ir-if-ok (Ir-eval (t,

Ir-set-pos (s->1r1 (s,

la
table),

l>>>>>>>

> > >

pos),

c)))))
= length (p-temp-stk (1)))

THEOREM: Ir-eval-s->Irl-preserves-p-ctrl-stk-size-Ir-set-pos
(proper-p-statep (Ir->p (1))
A good-posp (flag, pos, program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A (p-psw (Ir-eval (flag, Ir-set-pos (I, pos), ¢)) = ’run))
— (p-ctrl-stk-size (p-ctrl-stk (Ir-eval (flag, lr-set-pos (I, pos), ¢)))
= p-ctrl-stk-size (p-ctrl-stk (1)))

THEOREM: Ir-check-resourcesp-lr-pop-tstk-Ir-eval-1

let lr-eval be lr-if-ok (Ir-eval (t, Ir-set-pos (s->1rl (s, I, table), pos), c))
in

192

—~
—
o

#0)

listp (s-expr (s))
(car (s-expr (s)) = ’if)
proper-p-statep (lr->p (s->1rl (s, 1, table)))
good-pospl (s-pos (), s-body (s-prog (s)))
Ir-proper-heapp (p-data-segment (1))
Ir-programs-properp (s->Irl (s, I, table), table)
Ir-s-similar-statesp (s-params (s),

s-temps (s),

s->Irl (s, I, table),

table)
s-good-statep (s, ¢)
(p-psw (Ir-eval) = ’run)
(pos = dv (s-pos (s), 1))
(s-err-flag (s-eval (t, s-set-pos (s, pos), ¢)) = ’run)
s-ans (s-eval (t, s-set-pos (s, dv (s-pos (s), 1)), ¢))
Ir-check-resourcesp (flag, s, I, ¢)
(flag £ *1ist))
lr-check-resourcesp (t,

s-set-expr (s-eval (t, s-set-pos (s, pos), ¢),

S,
dv (s-pos (s), 2)),
Ir-pop-tstk (Ir-eval),
c¢) endlet

>>>> > > >

l>>s>>>>>

THEOREM: Ir-check-resourcesp-lr-pop-tstk-Ir-eval-2
let lr-eval be lr-if-ok (Ir-eval (t, Ir-set-pos (s->1rl (s, I, table), pos), c))
in

((c %#0)

A listp (s-expr (s))
A (car (s-expr (s)) = ’if)
A proper-p-statep (Ir->p (s->Irl (s, I, table)))
A good-pospl (s-pos (s), s-body (s-prog (s)))
A lr-proper-heapp (p-data-segment (1))
A lr-programs-properp (s->1Irl (s, I, table), table)
A Ir-s-similar-statesp (s-params (s),
s-temps (s),
s->1Irl (s, 1, table),
table)
A s-good-statep (s,)
A (p-psw (lr-eval) = ’run)
A (pos = dv (s-pos(s), 1))
A (s-err-flag (s-eval (t, s-set-pos (s, pos), ¢)) = ’run)
A (- s-ans (s-eval (t, s-set-pos (s, dv (s-pos (s), 1) ¢)))

193

A Ir-check-resourcesp (flag, s, I, ¢)
A (flag £ "ist))
— lr-check-resourcesp (t,
s-set-expr (s-eval (t, s-set-pos (s, pos), ¢),
S,
dv (s-pos (s), 3)),
lr-pop-tstk (Ir-eval),
¢) endlet

THEOREM: Ir-check-resourcesp-s-temp-eval

((c % 0)

listp (s-expr (s))

(car (s-expr (s)) = S-TEMP-EVAL)
good-pospl (s-pos (), s-body (s-prog (s)))
(pos = dv (s-pos (s), 1))
Ir-check-resourcesp (flag, s, I, c)

(flag # *1ist))

Ir-check-resourcesp (t, s-set-pos (s, pos), I, ¢)

l>>>>>>

THEOREM: Ir-check-resourcesp-s-temp-test
((c #0)
A listp (s-expr (s))
A (car (s-expr (s)) = S-TEMP-TEST)
A (= s-temp-setp (cadr (s-expr (s)), s-temps (s)))
A good-pospl (s-pos (s), s-body (s-prog (s)))
A (pos = dv (s-pos(s), 1))
A Ir-check-resourcesp (flag, s, I, ¢)
A (flag # *1ist))
N

Ir-check-resourcesp (t, s-set-pos (s, pos), I, ¢)

THEOREM: Ir-do-temp-fetch-Ir-check-resourcesp-temp-test
(Ir-check-resourcesp (flag, s, I, c)

proper-p-statep (lr->p (s->1rl (s, 1, table)))

Ir-proper-heapp (p-data-segment (1))

good-pospl (s-pos (s), s-body (s-prog (s)))

Ir-programs-properp (s->1Irl (s, I, table), table)

listp (s-expr (s))

((car (s-expr (s)) = S-TEMP-TEST)

vV (car (s-expr (s)) = S-TEMP-FETCH))

s-good-statep (s, ¢)

Ir-s-similar-statesp (s-params (s), s-temps (s), s->1rl (s, I, table), table)
(c #0)

s-temp-setp (cadr (s-expr (s)), s-temps (s))

(flag # >1ist))

(p-psw (Ir-do-temp-fetch (s->1rl (s, I, table))) = ’run)

>

> > > > >

l>>>>>

194

THEOREM: Ir-push-tstk-lr-check-resourcesp-quote
(Ir-check-resourcesp (flag, s, I, ¢)
good-pospl (s-pos (s), s-body (s-prog (s)))
listp (s-expr (s))
(car (s-expr (s)) = ’quote)
s-good-statep (s, ¢)
(c #0)
(flag £ *1ist)
(p-psw (Ir-push-tstk (s->Irl (s, I, table),
cadr (lr-expr (s->Irl (s, I, table)))))

l>>>>>>

= ’run)

THEOREM: Ir-check-resourcesp-funcall
((c #0)

listp (s-expr (s))
s-expr (s
s-expr (s

if)

(ca (s)) #
(ca (s)) 7é S-TEMP-EVAL)
(c s-expr (8)) # S-TEMP-TEST)
(car (s-expr (s)) # S-TEMP-FETCH)
(car (s-expr (s)) # ’quote)

(s-err-flag (s-eval (’ 1ist, s-set-pos (s, dv (s-pos(s), 1)), ¢)) = ’run)
proper-p-statep (Ir->p (s->1Irl (s, I, table)))

Ir-proper-heapp (p-data-segment (1))

good-pospl (s-pos (s), s-body (s-prog (s)))

Ir-programs-properp (s->1Irl (s, I, table), table)

s-good-statep (s, ¢)

Ir-check-resourcesp (flag, s, I, c)

(flag # ’1ist))

Ir-check-resourcesp (’1list, s-set-pos (s, dv (s-pos (s), 1)), I, ¢)

NN N N

I>>>>>>>>>>>>> >

THEOREM: numberp-s-eval-temp-ctrl-ws-heap-r-opened
(car (s-eval-r (flag, s, ¢)) € N)

A (cadr (s-eval-r (flag, s, ¢)) € N)

A (caddr (s-eval-r (flag, s, ¢)) € N)

A (cadddr (s-eval-r (flag, s, c¢)) € N)

THEOREM: lessp-1-not-zerop-exp

((m #0) A (1<) = (1 < exp(n, m))
T

(

HEOREM: lessp-1-not-zerop-log
1 <c)A(n€N)) — ((log(c,n) < 1) = (n < 1))

DEFINITION:

induct-hint-18 (¢, n, m)
= ifc <2 thent

195

elseif n ~ 0 then t
elseif m ~ 0 then t
else induct-hint-18 (¢, n + ¢, m — 1) endif

THEOREM: times-quotient-lessp-fact-1
((c 20) A (n €N) A (meN))
— ((n<(cxm))=((n+c)<m))

THEOREM: exp-log-lessp-fact-1
(1<e)A(neN)A(meN))
— ((n <exp(c, m)) = (log(c, n) < (1+ m)))

EVENT: Disable times-quotient-lessp-fact-1.

THEOREM: adpp-untag-add-addr-offset-car
(Ir-good-pointerp (addr, data-seq)
A Ir-proper-p-areasp (data-seg)
A (untag (fetch (addr, data-seg)) = LR-CONS-TAG)
A lr-proper-heapp (data-seg))
— adpp (untag (add-addr (addr, identity (LR-CAR-OFFSET))), data-seq)

THEOREM: adpp-untag-add-addr-offset-cdr
(Ir-good-pointerp (addr, data-seg)
A lr-proper-p-areasp (data-seq)
A (untag (fetch (addr, data-seg)) = LR-CONS-TAG)
A lr-proper-heapp (data-seg))
— adpp (untag (add-addr (addr, identity (LR-CDR-OFFSET))), data-seq)

THEOREM: exp-log-2-lessp-add1-fact-1
(1+n) <exp(2, m)) = (log(2, 1+ n) < (1+ m))

;3 The P-TEST-BOOL-AND-JUMP cause a lot of case splits after being opened
;; and the result rewritten with P-OBJECTP-TYPE, so we prove two simple
;; lemmas and disable it, this should hopefully speed up the proof.

THEOREM: p-test-bool-and-jump-okp-t-cons-bool-t
p-test-bool-and-jump-okp (list (ins-name, ’t, label),
p-state (pc,
ctrl-stk,
cons (’ (bool t), temp-stk),
prog-seg,
data-seq,
mazx-ctrl,
max-temp,
word-size,
psw))

196

THEOREM: p-test-bool-and-jump-okp-f-cons-bool-t
p-test-bool-and-jump-okp (list (ins-name, *£, label),
p-state (pc,

ctrl-stk,

cons (’ (bool t), temp-stk),

prog-seg,

data-seg,

maz-ctrl,

max-temp,

word-size,

psw))
— t

THEOREM: p-test-bool-and-jump-okp-t-cons-bool-f
p-test-bool-and-jump-okp (list (ins-name, ’t, label),
p-state (pe,

ctrl-stk,

cons (? (bool £f), temp-stk),

prog-seg,

data-seg,

maz-ctrl,

max-temp,

word-size,

psw))
=

THEOREM: p-test-bool-and-jump-okp-f-cons-bool-f
p-test-bool-and-jump-okp (list (ins-name, *£, label),
p-state (pc,

ctrl-stk,

cons (? (bool £), temp-stk),

prog-seg,

data-seq,

maz-ctrl,

max-temp,

word-size,

psw))
-

EVENT: Disable p-test-bool-and-jump-okp.

THEOREM: p-psw-run-run-car-lr-check-resourcesp
(Ir-check-result (*1ist,
s-ans (new-s),

197

> > > >

b >>

p-temp-stk (new-1),
p-data-segment (new-1),
orig-temp-stk)
proper-p-statep (Ir->p (new-l))
(p-psw (new-l) = ’run)
Ir-programs-properp (new-I, table)
(unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (new-1))))))
= ’(call car))
(p-max-temp-stk-size (new-1)
£ (length (p-temp-stk (new-1))
+ car (s-apply-subr-r (’ car, new-s))))
(p-max-ctrl-stk-size (new-1)
£ (p-ctrl-stk-size (p-ctrl-stk (new-1))
+ cadr (s-apply-subr-r (’ car, new-s))))
(p-word-size (new-1)
£ max (S-MAX-SUBR-REQS, caddr (s-apply-subr-r (’ car, new-s))))
(Ir-count-free-nodes (fetch (LR-FP-ADDR, p-data-segment (new-1)),
Ir-free-list-nodes (Ir-max-node (p-data-segment (new-[)),
p-data-segment (new-1)),
p-data-segment (new-1))
£ cadddr (s-apply-subr-r (’ car, new-s)))
(length (p-temp-stk (new-1)) «£ arity (’car))
(length (s-ans (new-s)) = arity (’car)))
(p-psw (p (p-set-pc (Ir->p (new-1), pe),
p-car-clock (p-set-pc (Ir->p (new-1), pc))))
= ’run)

THEOREM: p-psw-run-run-cdr-lr-check-resourcesp
(Ir-check-result (*1ist,

> > > >

s-ans (new-s),
p-temp-stk (new-1),
p-data-segment (new-1),
orig-temp-stk)
proper-p-statep (Ir->p (new-1))
(p-psw (new-l) = ’run)
Ir-programs-properp (new-1, table)
(unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (new-1))))))
= (call cdr))
(p-max-temp-stk-size (new-1)
£ (length (p-temp-stk (new-I))

198

+ car (s-apply-subr-r (’ cdr, new-s))))
A (p-max-ctrl-stk-size (new-1)
£ (p-ctrl-stk-size (p-ctrl-stk (new-1))
+ cadr (s-apply-subr-r (’ cdr, new-s))))
A (p-word-size (new-1)
£ max (S-MAX-SUBR-REQS, caddr (s-apply-subr-r (’ cdr, new-s))))
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, p-data-segment (new-1)),
Ir-free-list-nodes (Ir-max-node (p-data-segment (new-1)),
p-data-segment (new-l)),
p-data-segment (new-1))
£ cadddr (s-apply-subr-r (’ cdr, new-s)))
(length (p-temp-stk (new-1)) «£ arity (’cdr))
(length (s-ans (new-s)) = arity (’cdr)))
(p-psw (p (p-set-pe (Ir->p (new-1), pc),
p-cdr-clock (p-set-pc (Ir->p (new-1), pc))))
= ’run)

> >

THEOREM: lessp-plus-remainder-0-fact
(((offset! mod maz) = 0)
A ((offset2 mod maz) = 0)
A (n < maz)
A (offsetl € N)
A (offset?2 € N))
— (((n + offsetl) < offset2) = (offsetl < offset2))
THEOREM: Ir-boundary-nodep-lessp-plus-fact
(Ir-boundary-nodep (addr1)
Ir-boundary-nodep (addr2)
(n < LR-NODE-SIZE)
(offset (addr1) € N)
(offset (addr2) € N))
(((n + offset (addr1)) < offset (addr2))
= (offset (addrl) < offset (addr2)))

>>>>

THEOREM: adpp-untag-add-addr-lr-nodep-not-max-addr
(adpp (untag (addr), data-seg)

Ir-boundary-nodep (addr)

(area-name (addr) = ’heap)

definedp (LR-HEAP-NAME, data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg))

(offset (addr) < offset (Ir-max-node (data-seg)))

(n < LR-NODE-SIZE))

adpp (untag (add-addr (addr, n)), data-seqg)

l>>>>>>

THEOREM: adpp-untag-add-addr-offset-on-free-listp

199

(Ir-proper-p-areasp (data-seq)
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),
data-seq)
£ 1)
A lr-proper-heapp (data-seg)
A (n < LR-NODE-SIZE))
— adpp (untag (add-addr (fetch (identity (LR-FP-ADDR), data-seg), n)), data-seq)

THEOREM: p-psw-run-run-cons-lr-check-resourcesp
(Ir-check-result (’ List,
s-ans (new-s),
p-temp-stk (new-1),
p-data-segment (new-1),
orig-temp-stk)
proper-p-statep (Ir->p (new-1))
(p-psw (new-l) = ’run)
Ir-programs-properp (new-I, table)
(unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (new-1))))))

> > > >

= ’(call cons))
A (p-max-temp-stk-size (new-1)
£ (length (p-temp-stk (new-1))
+ car (s-apply-subr-r (’ cons, new-s))))
A (p-max-ctrl-stk-size (new-1)
£ (p-ctrl-stk-size (p-ctrl-stk (new-1))
+ cadr (s-apply-subr-r (’ cons, new-s))))
A (p-word-size (new-1)
£ max (S-MAX-SUBR-REQS, caddr (s-apply-subr-r (’ cons, new-s))))
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, p-data-segment (new-1)),
Ir-free-list-nodes (Ir-max-node (p-data-segment (new-1)),
p-data-segment (new-1)),
p-data-segment (new-1))
£ cadddr (s-apply-subr-r (’ cons, new-s)))
(length (p-temp-stk (new-1)) £ arity (’cons))
(length (s-ans (new-s)) = arity (’ cons)))
(p-psw (p (p-set-pc (Ir->p (new-1), pe),
p-cons-clock (p-set-pc (Ir->p (new-1), pc))))
= ’run)

I >>

THEOREM: p-psw-run-run-false-lr-check-resourcesp
(Ir-check-result (*1ist,

200

> > > >

b >>

s-ans (new-s),
p-temp-stk (new-1),
p-data-segment (new-1),
orig-temp-stk)
proper-p-statep (Ir->p (new-1))
(p-psw (new-l) = ’run)
Ir-programs-properp (new-1, table)
(unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (new-1))))))
= ’(call false))
(p-max-temp-stk-size (new-1)
£ (length (p-temp-stk (new-I))
+ car (s-apply-subr-r (’false, new-s))))
(p-max-ctrl-stk-size (new-1)
£ (p-ctrl-stk-size (p-ctrl-stk (new-1))
+ cadr (s-apply-subr-r (*false, new-s))))
(p-word-size (new-1)
£ max (S-MAX-SUBR-REQS, caddr (s-apply-subr-r (*false, new-s))))
(Ir-count-free-nodes (fetch (LR-FP-ADDR, p-data-segment (new-1)),
Ir-free-list-nodes (Ir-max-node (p-data-segment (new-1)),
p-data-segment (new-1)),
p-data-segment (new-1))
&£ cadddr (s-apply-subr-r (’false, new-s)))
(length (p-temp-stk (new-1)) £ arity (*false))
(length (s-ans (new-s)) = arity (*false)))
(p-psw (p (p-set-pc (Ir->p (new-1), pc),
p-false-clock (p-set-pc (Ir->p (new-1), pc))))
= ’run)

THEOREM: p-psw-run-run-falsep-Ir-check-resourcesp
(Ir-check-result (’1list,

> > > >

s-ans (new-s),
p-temp-stk (new-1),
p-data-segment (new-[),
orig-temp-stk)
proper-p-statep (Ir->p (new-1))
(p-psw (new-l) = ’run)
Ir-programs-properp (new-1, table)
(unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (new-1))))))
= ’(call falsep))
(p-max-temp-stk-size (new-1)

201

£ (length (p-temp-stk (new-1))
+ car (s-apply-subr-r (’ falsep, new-s))))
A (p-max-ctrl-stk-size (new-1)
£ (p-ctrl-stk-size (p-ctrl-stk (new-1))
+ cadr (s-apply-subr-r (*falsep, new-s))))
A (p-word-size (new-1)
£ max (S-MAX-SUBR-REQS, caddr (s-apply-subr-r (’ falsep, new-s))))
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, p-data-segment (new-1)),
Ir-free-list-nodes (Ir-max-node (p-data-segment (new-1)),
p-data-segment (new-1)),
p-data-segment (new-1))
£ cadddr (s-apply-subr-r (* falsep, new-s)))
(length (p-temp-stk (new-1)) &£ arity (’falsep))
(length (s-ans (new-s)) = arity (’falsep)))
(p-psw (p (p-set-pc (Ir->p (new-1), pe),
p-falsep-clock (p-set-pc (Ir->p (new-1), pc))))
= ’run)

> >

THEOREM: p-psw-run-run-listp-lr-check-resourcesp
(Ir-check-result (’list,
s-ans (new-s),
p-temp-stk (new-1),
p-data-segment (new-1),
orig-temp-stk)
proper-p-statep (Ir->p (new-1))
(p-psw (new-l) = ’run)
Ir-programs-properp (new-1, table)
(unlabel (get (offset (pc),
program-body (assoc (area-name (pc),

p-prog-segment (Ir->p (new-1))))))

> > > >

= (call listp))
A (p-max-temp-stk-size (new-1)
£ (length (p-temp-stk (new-1))
+ car (s-apply-subr-r (’listp, new-s))))
A (p-max-ctrl-stk-size (new-1)
£ (p-ctrl-stk-size (p-ctrl-stk (new-1))
+ cadr (s-apply-subr-r (*1istp, new-s))))
A (p-word-size (new-1)
£ max (S-MAX-SUBR-REQS, caddr (s-apply-subr-r (’1listp, new-s))))
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, p-data-segment (new-1)),
Ir-free-list-nodes (Ir-max-node (p-data-segment (new-1)),
p-data-segment (new-1)),
p-data-segment (new-1))
£ cadddr (s-apply-subr-r (’ listp, new-s)))

202

A (length (p-temp-stk (new-1)) £ arity (*1istp))
A (length (s-ans (new-s)) = arity (’1istp)))
— (p-psw (p (p-set-pc (Ir->p (new-1), pc),
p-listp-clock (p-set-pc (Ir->p (new-1), pc))))
= ’run)

THEOREM: p-psw-run-run-nlistp-lr-check-resourcesp
(Ir-check-result (’list,
s-ans (new-s),
p-temp-stk (new-1),
p-data-segment (new-1),
orig-temp-stk)
proper-p-statep (Ir->p (new-I))
(p-psw (new-l) = ’run)
Ir-programs-properp (new-I, table)
(unlabel (get (offset (pc),
program-body (assoc (area-name (pc),

p-prog-segment (Ir->p (new-1))))))

> > > >

= ’(call nlistp))
A (p-max-temp-stk-size (new-1)
£ (length (p-temp-stk (new-1))
+ car (s-apply-subr-r (’nlistp, new-s))))
A (p-max-ctrl-stk-size (new-1)
£ (p-ctrl-stk-size (p-ctrl-stk (new-1))
+ cadr (s-apply-subr-r (*nlistp, new-s))))
A (p-word-size (new-1)
£ max (S-MAX-SUBR-REQS, caddr (s-apply-subr-r (’nlistp, new-s))))
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, p-data-segment (new-1)),
Ir-free-list-nodes (Ir-max-node (p-data-segment (new-1)),
p-data-segment (new-1)),
p-data-segment (new-1))
£ cadddr (s-apply-subr-r (’nlistp, new-s)))
(length (p-temp-stk (new-1)) &£ arity (’nlistp))
(length (s-ans (new-s)) = arity (’nlistp)))
(p-psw (p (p-set-pc (Ir->p (new-1), pe),
p-nlistp-clock (p-set-pc (Ir->p (new-1), pc))))
= ’run)

> >

THEOREM: p-psw-run-run-true-lr-check-resourcesp
(Ir-check-result (’list,
s-ans (new-s),
p-temp-stk (new-1),
p-data-segment (new-1),
orig-temp-stk)

203

> > > >

> >

proper-p-statep (Ir->p (new-1))

(p-psw (new-l) = ’run)
Ir-programs-properp (new-1, table)

(unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (new-1))))))

= (call true))

(p-max-temp-stk-size (new-1)

£ (length (p-temp-stk (new-1))

+ car (s-apply-subr-r (’ true, new-s))))
(p-max-ctrl-stk-size (new-1)
£ (p-ctrl-stk-size (p-ctrl-stk (new-1))
+ cadr (s-apply-subr-r (’ true, new-s))))

(p-word-size (new-1)

£ max (S-MAX-SUBR-REQS, caddr (s-apply-subr-r (’true, new-s))))
(Ir-count-free-nodes (fetch (LR-FP-ADDR, p-data-segment (new-1)),

Ir-free-list-nodes (Ir-max-node (p-data-segment (new-1)),
p-data-segment (new-1)),
p-data-segment (new-1))

&£ cadddr (s-apply-subr-r (’true, new-s)))
(length (p-temp-stk (new-1)) &£ arity (> true))
(length (s-ans (new-s)) = arity (’true)))
(p-psw (p (p-set-pc (Ir->p (new-1), pc),

p-true-clock (p-set-pc (Ir->p (new-1), pc))))
= ’run)

THEOREM: p-psw-run-run-truep-Ir-check-resourcesp
(Ir-check-result (*1ist,

> > > >

s-ans (new-s),
p-temp-stk (new-1),
p-data-segment (new-1),
orig-temp-stk)
proper-p-statep (Ir->p (new-1))
(p-psw (new-l) = ’run)
Ir-programs-properp (new-I, table)
(unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (new-1))))))
= ’(call truep))
(p-max-temp-stk-size (new-I)
£ (length (p-temp-stk (new-1))
+ car (s-apply-subr-r (’truep, new-s))))
(p-max-ctrl-stk-size (new-1)
£ (p-ctrl-stk-size (p-ctrl-stk (new-1))

204

+ cadr (s-apply-subr-r (* truep, new-s))))
A (p-word-size (new-1)
£ max (S-MAX-SUBR-REQS, caddr (s-apply-subr-r (’truep, new-s))))
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, p-data-segment (new-1)),
Ir-free-list-nodes (Ir-max-node (p-data-segment (new-1)),
p-data-segment (new-1)),
p-data-segment (new-1))
£ cadddr (s-apply-subr-r (’ truep, new-s)))
(length (p-temp-stk (new-1)) #£ arity (> truep))
(length (s-ans (new-s)) = arity (> truep)))
(p-psw (p (p-set-pc (Ir->p (new-1), pe),
p-truep-clock (p-set-pc (Ir->p (new-1), pc))))
= ’run)

> >

THEOREM: length-last
listp (1) — (length (last (1)) = 1)

THEOREM: equal-plus-lessp-fact
(+2)=y) = ((y <(n+2)) = (2 <n))

THEOREM: not-lessp-Ir-count-free-nodes-Ir-eval-list-Ir-set-pos
let new-I be Ir-eval (*1ist, lr-set-pos (s->Irl (s, I, table), pos), c)
in
(proper-p-statep (Ir->p (s->1rl (s, I, table)))
A lr-proper-heapp (p-data-segment (1))

good-pospl (s-pos (s), s-body (s-prog (s)))
Ir-programs-properp (s->Irl (s, I, table), table)
Ir-s-similar-statesp (s-params (),

s-temps (),

s->1Irl (s, I, table),

table)
s-good-statep (s, ¢)
(p-psw (new-l) = ’run)
(s-err-flag (s-eval (’1ist, s-set-pos (s, pos), ¢)) = ’run)
listp (s-expr (s))

if)

(car (s-expr (s)) #

(car (s-expr (s)) ;é S-TEMP-EVAL)
(car (s-expr (s)) # S-TEMP-TEST)
(car (s-expr (s)) # S-TEMP-FETCH)
Ecar (s-expr (s)) # ’quote)

(
(

> > >

pos = dv (s-pos (s), 1))
maz-addr = lr-max-node (p-data-segment (1))))
(Ir-count-free-nodes (fetch (identity (LR-FP-ADDR),
p-data-segment (new-l)),
lr-free-list-nodes (maz-addr,

l>>s>>s>>>>>>>

205

p-data-segment (new-1)),
p-data-segment (new-1))
< n)
= (lr-count-free-nodes (fetch (identity (LR-FP-ADDR),
p-data-segment (1)),
Ir-free-list-nodes (maz-addr,
p-data-segment (1)),
p-data-segment (1))
< (s-eval-heap-r (’1list,
s-set-pos (s, dv (s-pos (s), 1)),
¢)
+ n))) endlet

EVENT: Disable equal-plus-lessp-fact.

THEOREM: Ir-programs-properp-definedp-subrp-runtime-support
((— definedp (car (Ir-expr (1)), P-RUNTIME-SUPPORT-PROGRAMS))
A (car (Ir-expr (1)) # ’if)
A subrp (car (Ir-expr (1))
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1))))
— (= lr-programs-properp (I, table))

THEOREM: p-psw-run-p-run-subr-lr-check-resourcesp
let new-l be lr-eval (*1list, lr-set-pos (s->Irl (s, I, table), pos), c),
new-s be s-eval (’list, s-set-pos (s, pos), ¢),
pc be lr-return-pc (s->1rl (s, I, table)),
r be s-apply-subr-r (car (s-expr (s)), s-eval (*1ist, s-set-pos (s, pos), c))
in
(proper-p-statep (Ir->p (s->1Irl (s, I, table)))
A (c#£0)
listp (s-expr (s))
(car (s-expr (s)) # ’if)
(car (s-expr (s)) # ’quote)
(s-err-flag (new-s) = ’run)
subrp (car (s-expr (s)))
(p-psw (new-l) = ’run)
Ir-proper-heapp (p-data-segment (1))
good-pospl (s-pos (), s-body (s-prog (s)))
Ir-programs-properp (s->Irl (s, I, table), table)
Ir-s-similar-statesp (s-params (s),
s-temps (s),
s->Irl (s, I, table),
table)
A s-good-statep (s, ¢)

>>>>>>>> > >

206

A
—

(p-max-temp-stk-size (1)
£ (length (p-temp-stk (1))
+ arity (car (s-expr (s)))
+ocar(n)
(p-max-ctrl-stk-size (1)
&£ (p-ctrl-stk-size (p-ctrl-stk (1)) + cadr (r)))
(p-word-size (I) £ max (S-MAX-SUBR-REQS, caddr (r)))
(Ir-count-free-nodes (fetch (LR-FP-ADDR, p-data-segment (1)),
Ir-free-list-nodes (Ir-max-node (p-data-segment (1)),
p-data-segment (1)),
p-data-segment (1))
£ (cadddr (r)
+ s-eval-heap-r (’1list, s-set-pos (s, pos), c)))
(pos = dv (s-pos (s), 1)
(p-psw (p-run-subr (car (s-expr (s)), p-set-pc (Ir->p (new-I), pc)))
= ’run) endlet

EVENT: Disable Ir-programs-properp-definedp-subrp-runtime-support.

THEOREM: not-lessp-help-fact

((z £y) Az £ 2)) = ((z <max(y, 2)) =)

THEOREM: p-psw-run-lr-apply-subr-Ir-check-resourcesp

((c #0)

> > > > > >

l>>>>>>>>>

listp (s-expr (s))
(car (s-expr (s)) # ’if)
(car (s-expr (s)) # ’quote)
(s-err-flag (s-eval (?1ist, s-set-pos (s, dv (s-pos(s), 1)), ¢)) = ’run)
subrp (car (s-expr (s)))
(p-psw (lr-eval (’1ist,
Ir-set-pos (s->1rl (s, I, table), dv (s-pos (s), 1)),

c))
= ’run)
proper-p-statep (Ir->p (s->1rl (s, I, table)))
Ir-proper-heapp (p-data-segment (1))
good-pospl (s-pos (s), s-body (s-prog (s)))
Ir-programs-properp (s->Irl (s, I, table), table)
Ir-s-similar-statesp (s-params (s), s-temps (s), s->Irl (s, I, table), table)
s-good-statep (s, ¢)
Ir-check-resourcesp (flag, s, I, ¢)
(p-word-size (1) ¢ S-MAX-SUBR-REQS)
(flag # *1ist))
(p-psw (Ir-apply-subr (s->1rl (s, I, table),

Ir-eval (’1list,

207

Ir-set-pos (s->1rl (s, [, table),
dv (s-pos (s), 1)),
c)))

= ’run)

THEOREM: strip-logic-fnames-Ir-compile-programs
strip-logic-fnames (lr-compile-programs (programs, const-table))
= strip-logic-fnames (programs)

THEOREM: strip-logic-fnames-cdr-lr-compile-programs
strip-logic-fnames (cdr (Ir-compile-programs (programs, const-table)))
= strip-logic-fnames (cdr (programs))

THEOREM: Ir-programs-properp-s->Irl-definedp-cdr-s-progs
(lr-programs-properp (s->Irl (s, I, table), table)

listp (s-expr (s))

(car (s-expr (s)) # ’if)

(car (s-expr (s)) # ’quote)

(— subrp (car (s-expr (s))))

litatom (car (s-expr (s)))

good-pospl (s-pos (s), s-body (s-prog (s)))

s-programs-okp (cdr (s-progs (s))))

definedp (user-fname (car (s-expr (s))), cdr (s-progs (s)))

l>>s>>>>>

THEOREM: s-programs-okp-formals-not-f
(s-programs-okp (progs) A (prog € progs)) — (s-formals (prog) # f)

THEOREM: not-lessp-plus-arity-length-formals
(listp (s-expr ())

(car (s-expr (s)) # ’if)

(car (s-expr (s)) # ’quote)

(— subrp (car (s-expr (s))))

litatom (car (s-expr (s)))

good-pospl (s-pos (s), s-body (s-prog (s)))

s-good-statep (s, ¢))

(((arity (car (s-expr (s))) + z) < length (formals (car (s-expr (s)))))
~ 9

l>>s>>>>

THEOREM: length-lr-make-temp-var-dcls
length (Ir-make-temp-var-dcls (temp-alist)) = length (temp-alist)

THEOREM: length-Ir-make-temp-name-alist-1

length (Ir-make-temp-name-alist-1 (initial, num-list, temp-list, formals))
= length (temp-list)

208

THEOREM: length-Ir-make-temp-name-alist
length (Ir-make-temp-name-alist (temp-list, formals)) = length (temp-list)

THEOREM: p-ctrl-stk-size-0
(p-ctrl-stk-size (ctri-stk) = 0) = (= listp (ctri-stk))

THEOREM: length-make-temps-entries
length (make-temps-entries (list)) = length (list)

THEOREM: s-eval-ctrl-r-funcall-opener
let arg-s be s-eval (*1list, s-set-pos (s, dv (s-pos(s), 1)), ¢)

in

((c #0)

l>>>>>>>>>

s-good-statep (s, ¢)
listp (s-expr (s))
(car (s-expr (s)) # ’if)
(car (s-expr (s)) # ’quote)
(= subrp (car (s-expr (s))))
litatom (car (s-expr (s)))
(flag £ *1ist)
good-pospl (s-pos (s), s-body (s-prog (s)))
(s-err-flag (arg-s) = ’run))
(s-eval-ctrl-r (flag, s,)
= max (s-eval-ctrl-r (’list,
s-set-pos (s, dv (s-pos (s), 1)),
),
1+ (1 + (length (formals (car (s-expr (s))))
+ length (s-temp-list (assoc (user-fname (car (s-expr (s))),
s-progs (s))))
+ s-eval-ctrl-r (t,
s-fun-call-state (arg-s,
car (s-expr (s))),
¢ —1))))) endlet

THEOREM: s-good-statep-formals-assoc-cdr-s-progs
(s-good-statep (s, ¢)

l>>>>>>>

listp (s-expr (s))

(car (s-expr (s)) # ’if)

(car (s-expr (s)) # ’quote)

(— subrp (car (s-expr (s))))

good-pospl (s-pos (s), s-body (s-prog (s)))

litatom (car (s-expr (s)))

(progs = cdr (s-progs (s))))

(s-formals (assoc (user-fname (car (s-expr (s))), progs))
= formals (car (s-expr (s))))

209

THEOREM: not-lessp-p-ctrl-stk-size-make-p-call-frame
let s-prog be assoc (user-fname (car (s-expr (s))), cdr (s-progs (s))),
Ir-eval be Ir-eval (’list,

Ir-set-pos (s->Irl (s, I, table), dv (s-pos (s), 1)),
)

in

(listp (s-expr (s))

A (car (s-expr (s)) # ’if)

A (car (s-expr (s)) # ’quote)
A (= subrp (car (s-expr (s))))
A litatom (car (s-expr (s)))
A good-pospl (s-pos (s), s-body (s-prog (s)))
A s-good-statep (s,)
A (c#0)
A proper-p-statep (Ir->p (s->1rl (s, I, table)))
A Ir-programs-properp (s->1rl (s, I, table), table)
A (length (temp-list) = length (s-temp-list (s-prog)))
A (p-psw (lr-eval) = ’run)
A (s-err-flag (s-eval (’1ist, s-set-pos (s, dv (s-pos (s), 1)), ¢))
= ’run)
A (p-max-ctrl-stk-size (1)
&£ (p-ctrl-stk-size (p-ctrl-stk (1))
+ s-eval-ctrl-r (flag, s, c)))
A (flag # 1ist))
— (p-max-ctrl-stk-size (1)

#£ p-ctrl-stk-size (cons (make-p-call-frame (formals (car (s-expr (s))),
temp-stk,
temp-list,
pe),

p-ctrl-stk (ir-eval)))) endlet

THEOREM: definedp-0
definedp (z, 0) = f

THEOREM: not-definedp-user-fname-p-runtime-support-programs
— definedp (user-fname (name), P~-RUNTIME-SUPPORT-PROGRAMS)

THEOREM: COMpP-pPrograms-assoc-Cons-opener
(user-fname (name) # progl-name)
— (assoc (user-fname (name),
comp-programs (cons (cons (progl-name, progl), progs)))
= assoc (user-fname (name), comp-programs-1 (progs)))

THEOREM: Ir-check-resourcesp-Ir-funcall-p-psw-run

((c #0)

210

listp (s-expr (s))
(car (s-expr (s)) # ’if)
(car (s-expr (s)) # ’quote)
(— subrp (car (s-expr (s))))
litatom (car (s-expr (s)))
good-pospl (s-pos (), s-body (s-prog (s)))
Ir-programs-properp (s->Irl (s, I, table), table)
(p-psw (Ir-eval (’ 1ist, lr-set-pos (s->1rl (s, I, table), pos), ¢))
= ’run)
(s-err-flag (s-eval (’1ist, s-set-pos (s, pos), ¢)) = ’run)
(pos = dv (s-pos (s), 1))
proper-p-statep (Ir->p (s->1Irl (s, I, table)))
s-good-statep (s, ¢)
Ir-proper-heapp (p-data-segment (1))
Ir-check-resourcesp (flag, s, I, ¢)
(flag # >1ist))
(p-psw (Ir-funcall (s->1r1 (s, I, table),
Ir-eval (*1ist, Ir-set-pos (s->1Irl (s, I, table), pos), c)))

>>>>> > > >

l>>s>>>>>

= ’run)

THEOREM: lessp-max-arg2
max (z, y) £ y

THEOREM: not-lessp-plus-arity-length-formals-alt
(listp (s-expr (s))

(car (s-expr (s)) # ’if)

(car (s-expr (s)) # ’quote)

(= subrp (car (s-expr (s))))

litatom (car (s-expr (s)))

good-pospl (s-pos (s), s-body (s-prog (s)))

s-good-statep (s, ¢))

(((z + arity (car (s-expr (s)))) < length (formals (car (s-expr (s)))))
= 9

l>>>>>>

THEOREM: listp-Ir-compile-programs
listp (Ir-compile-programs (progs, table)) = listp (progs)

THEOREM: caar-lr-compile-programs
listp (progs) — (caar (Ir-compile-programs (progs, table)) = caar (progs))

THEOREM: length-p-temp-stk-lr-eval-Ir-funcall
let lr-eval be lr-eval (’1list, Ir-set-pos (s->1Irl (s, I, table), pos), c)
in
(listp (s-expr (s))
A (= subrp (car (s-expr (s))))

211

(car (s-expr (s)) # ’quote)

(car (s-expr (s)) # ’if)

litatom (car (s-expr (s)))

proper-p-statep (Ir->p (s->1Irl (s, I, table)))

good-pospl (s-pos (), s-body (s-prog (s)))
s-good-statep (s, ¢)

Ir-programs-properp (s->Irl (s, I, table), table)

(p-psw (Ilr-eval) = ’run)

(p-psw (Ir-funcall (s->1rl (s, I, table), lr-eval)) = >run)
(s-err-flag (s-eval (’ list, s-set-pos (s, pos), ¢)) = ’run)
(pos = dv (s-pos (s), 1)))

(length (p-temp-stk (Ir-funcall (s->1Irl (s, I, table), lr-eval)))
= length (p-temp-stk (1))) endlet

l>>>>>>>>>> >

THEOREM: p-ctrl-stk-size-p-ctrl-stk-Ir-funcall
(p-psw (lr-funcall (I, new-1)) = ’run)
— (p-ctrl-stk-size (p-ctrl-stk (Ir-funcall (I, new-l)))
= (2
+ length (formal-vars (assoc (user-fname (car (Ir-expr (1))),
p-prog-segment (1))))
+ length (temp-var-dcls (assoc (user-fname (car (lr-expr (1))),
p-prog-segment (1))))

+ p-ctrl-stk-size (p-ctrl-stk (new-1))))

THEOREM: Ir-programs-properp-s->Irl-definedp-s-progs
(Ir-programs-properp (s->1rl (s, 1, table), table)
A listp (s-expr (s))
(car (s-expr (s)) # ’if)
(car (s-expr (s)) # ’quote)
(— subrp (car (s-expr (s))))
litatom (car (s-expr (s)))
good-pospl (s-pos (), s-body (s-prog (s)))
s-programs-okp (cdr (s-progs (s))))
— definedp (user-fname (car (s-expr (s))), s-progs (s))

>>> > > >

THEOREM: s-eval-ctrl-heap-temp-ws-s-fun-call-state-opener
let s-eval be s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), ¢)
in

((c #0)

listp (s-expr (s))

(car (s-expr (s)) # ’if)

(car (s-expr (s)) # ’quote)

(— subrp (car (s-expr (s))))

litatom (car (s-expr (s)))

s-good-statep (s, ¢)

>>>> > >

212

A (s-err-flag (s-eval) = ’run)
A (flag # 1ist))
— ((s-eval-ctrl-r (flag, s, c)
= max (s-eval-ctrl-r (’list,
s-set-pos (s, dv (s-pos (s), 1)),
¢,
2

+ length (s-formals (assoc (user-fname (car (s-expr (s))),
s-progs (s))))
+ length (s-temp-list (assoc (user-fname (car (s-expr (s))),
s-progs (s))))

+ s-eval-ctrl-r (t,

s-fun-call-state (s-eval,

car (s-expr (s))),
¢ - 1))

A (s-eval-heap-t (flag, s, ¢)
= (s-eval-heap-r (’list,
s-set-pos (s, dv (s-pos (s), 1)),
)
+ s-eval-heap-r (t,
s-fun-call-state (s-eval,
car (s-expr (s))),
¢ - 1))

A (s-eval-temp-r (flag, s, c)
= max (s-eval-temp-r (’list,
s-set-pos (s, dv (s-pos (s), 1)),
¢),
s-eval-temp-r (t,
s-fun-call-state (s-eval,
car (s-expr (s))),
¢ - 1)

A (s-eval-ws-r (flag, s, c)
= max (s-eval-ws-r (’list,
s-set-pos (s, dv (s-pos (s), 1)),
),
s-eval-ws-r (t,
s-fun-call-state (s-eval,
car (s-expr (s))),
¢ —1)))) endlet

THEOREM: Ir-check-resourcesp-lr-funcall-s-fun-call-state

((c#0)
A listp (s-expr (s))

A (car (s-expr (s)) # ’if)

213

$)) # S-TEMP-EVAL)

car (s-expr (s))
$)) # S-TEMP-TEST)
;)

(car (
(car (s-expr
(car (s-expr (s)) # S-TEMP-FETCH)
(car (s-expr (s)) # ’quote)
(= subrp (car (s-expr (s))))
good-pospl (s-pos (), s-body (s-prog (s)))
litatom (car (s-expr (s)))
Ir-programs-properp (s->1Irl (s, I, table), table)
(p-psw (Ir-eval (’ 1ist, lr-set-pos (s->1rl (s, I, table), pos), ¢))
= ’run)
(s-err-flag (s-eval (’1ist, s-set-pos (s, pos), ¢)) = ’run)
(pos = dv (s-pos (s), 1))
proper-p-statep (Ir->p (s->1Irl (s, I, table)))
s-good-statep (s, ¢)
Ir-proper-heapp (p-data-segment (1))
Ir-check-resourcesp (flag, s, I, ¢)
(flag # 11st)
Ir-s-similar-statesp (s-params (s), s-temps (), s->1rl (s, 1, table), table))
lr-check-resourcesp (t,
s-fun-call-state (s-eval (*list,
s-set-pos (s, pos),
C)a
car (s-expr (s))),
Ir-funcall (s->1Ir1 (s, 1, table),
Ir-eval (’1ist,
Ir-set-pos (s->1Irl (s, I, table),
pOS),
c));

A~ N S

>>>>>>> > >

l>>>>>>>>

c—1)

EVENT: Disable s-eval-ctrl-heap-temp-ws-s-fun-call-state-opener.

THEOREM: s-eval-flag-run-car-s-apply-subr-r-not-zero
(listp (s-expr (s))
(car (s-expr (s)) # ’if)
(car (s-expr (s)) # ’quote)
(s-err-flag (s-eval (*1ist, s-set-pos (s, dv (s-pos(s), 1)), ¢)) = ’run)
subrp (car (s-expr (s)))
(p-psw (Ir-apply-subr (s->1rl (s, I, table), new-1)) = ’run)
good-pospl (s-pos (s), s-body (s-prog (s)))
s-good-statep (s, ¢))
(car (s-apply-subr-r (car (s-expr (s)),
s-eval (’list, s-set-pos (s, dv (s-pos(s), 1)), ¢)))

l>s>>>>>>

£ 1)

214

THEOREM: length-p-temp-stk-Ir-eval-Ir-set-pos-flag-t

(proper-p-statep (Ir->p (s->1rl (s, I, table)))

good-pospl (pos, s-body (s-prog (s)))

Ir-programs-properp (s->1Irl (s, I, table), table)

s-good-statep (s, ¢)

(p-psw (Ir-eval (t, lr-set-pos (s->1rl (s, I, table), pos), ¢)) = ’run))
(length (p-temp-stk (Ir-eval (t, lr-set-pos (s->1Irl (s, I, table), pos), c)))
= (1 + length (p-temp-stk (1))))

L>>>>

THEOREM: s-eval-flag-run-s-eval-temp-r-not-zero
((p-psw (Ir-eval (flag, s->1rl (s, I, table), ¢)) = ’run)
A (s-err-flag (s-eval (flag, s, ¢)) = ’run)

A good-posp (flag, s-pos (s), s-body (s-prog (s)))
A s-good-statep (s, ¢)

A (flag # >list))

— (s-eval-temp-r (flag, s, ¢) £ 1)

THEOREM: p-psw-run-p-psw-Ir-if-ok-not-run-check-resourcesp

((flag # 1ist)

A (c#£0)
A listp (s-expr (s))
A (car (s-expr (s)) = ’if)
A s-good-statep (s, ¢)
A Ir-programs-properp (s->1rl (s, I, table), table)
A proper-p-statep (Ie->p (s->1rl (s, {, table)))
A (s-err-flag (s-eval (t, s-set-pos (s, dv (s-pos (s), 1)), ¢)) = ’run)
A (p-psw (Ir-if-ok (Ir-eval (t,
Ir-set-pos (s->1Irl (s, I, table), dv (s-pos (s), 1)),
c)))
’run)
A (p-psw (Ir-eval (t, Ir-set-pos (s->1rl (s, I, table), dv (s-pos (s), 1)), ¢))
= ’run)

A good-pospl (s-pos (s), s-body (s-prog (s))))
— (= Ir-check-resourcesp (flag, s, I, ¢))

THEOREM: not-Ir-check-resourcesp-temp-test-bad-max-temp-stk-size
((flag # *1ist)

(c #0)

(c € N)

listp (s-expr (s))

(car (s-expr (s)) = S-TEMP-TEST)

(p-max-temp-stk-size (I) < (2 + length (p-temp-stk (7))))
s-good-statep (s, ¢))

(= lr-check-resourcesp (flag, s, I, ¢))

l>s>s>>>>

215

THEOREM: lr-eval-s-eval-flag-run
(proper-p-statep (Ir->p (s->1rl (s, I, table)))
A lr-proper-heapp (p-data-segment (1))

A good-posp (flag, s-pos (s), s-body (s-prog (s)))

A lr-programs-properp (s->1Irl (s, I, table), table)

A Ir-s-similar-statesp (s-params (s), s-temps (s), s->Irl (s, I, table), table)

A s-good-statep (s,)

A s-all-temps-setp (flag,
if flag = ’1ist then s-expr-list (s)
else s-expr (s) endif,
temp-alist-to-set (s-temps (s)))

A s-all-progs-temps-setp (s-progs (s))

A s-check-temps-setp (s-temps (s))

A (s-err-flag (s-eval (flag, s, ¢)) = >run)

A Ir-check-resourcesp (flag, s, I, ¢)

A (p-word-size (I) £ S-MAX-SUBR-REQS))

— (p-psw (Ir-eval (flag, s->1Irl (s, I, table), ¢)) = ’run)

THEOREM: plistp-Ir-compile-body-1
plistp (prog) — plistp (Ir-compile-body (flag, prog, temp-alist, table))

DEFINITION:
l-restrict-subrps (flag, expr)
= if flag = ’list
then if listp (expr)
then l-restrict-subrps (t, car (expr))
A l-restrict-subrps (’list, cdr (expr))
else t endif
elseif listp (expr)
then if car (ezpr) = ’quote then t
elseif car (ezpr) = ’if
then l-restrict-subrps (’ list, cdr (expr))
elseif subrp (car (expr))
then definedp (car (expr), P-RUNTIME-SUPPORT-PROGRAMS)
A l-restrict-subrps (’1list, cdr (expr))
elseif body (car (expr)) then l-restrict-subrps (’list, cdr (ezpr))
else t endif
else t endif

DEFINITION:
l-restrict-subrps-progs (pnames)
= if listp (pnames)
then l-restrict-subrps (t, body (car (pnames)))
A l-restrict-subrps-progs (cdr (pnames))
else t endif

216

DEFINITION:
s-restrict-subrps (flag, expr)
= if flag = ’list
then if listp (expr)
then s-restrict-subrps (t, car (expr))
A s-restrict-subrps (’1list, cdr (ezpr))
else t endif
elseif listp (expr)
then if car (ezpr) = ’quote then t
elseif (car (expr) = S-TEMP-FETCH)
V' (car (expr) = S-TEMP-EVAL)
V (car (expr) = S-TEMP-TEST)
then s-restrict-subrps (t, cadr (ezpr))
elseif car (expr) = ’if
then s-restrict-subrps (’1list, cdr (expr))
elseif subrp (car (expr))
then definedp (car (expr), P-RUNTIME-SUPPORT-PROGRAMS)
A s-restrict-subrps (’1ist, cdr (ezpr))
elseif body (car (expr)) then s-restrict-subrps (’list, cdr (ezpr))
else t endif
else t endif

DEFINITION:
s-restrict-subrps-progs (progs)
= if listp (progs)
then s-restrict-subrps (t, s-body (car (progs)))
A s-restrict-subrps-progs (cdr (progs))
else t endif

THEOREM: s-proper-exprp-plist-temp-list
s-proper-exprp (flag, expr, program-names, formals, plist (temp-list))
= s-proper-exprp (flag, expr, program-names, formals, temp-list)

THEOREM: not-listp-s-progs-not-s-good-statep
(— listp (s-progs (s))) — (— s-good-statep (s, ¢))

THEOREM: length-Ir-init-heap-contents
length (Ir-init-heap-contents (addr, size)) = (1 + (size * LR-NODE-SIZE))

THEOREM: fetch-cons
fetch (list (z, cons (namel, n)), cons (cons (name2, contents), rest-data-seq))
= if namel = name2 then get (n, contents)

else fetch (list (z, cons (namel, n)), rest-data-seg) endif

THEOREM: Ir-s-similar-const-table-cons

217

Ir-s-similar-const-table (cons (cons (object, addr), table), data-seg)
= (lr-valp (object, addr, data-seq)
A Ir-s-similar-const-table (table, data-seg))

THEOREM: lr-s-similar-const-table-nil
Ir-s-similar-const-table (nil, data-seg)

THEOREM: Ir-init-heap-contents-add1-opener
Ir-init-heap-contents (addr, 1 + size)
= append (Ir-new-node (tag (’nat, LR-INIT-TAG),
add-addr (addr, LR-NODE-SIZE),
tag (*nat, 0),
tag (*nat, 0)),
Ir-init-heap-contents (add-addr (addr, LR-NODE-SIZE), size))

THEOREM: deposit-cons
deposit (object,
list (z, cons (namel, n)),
cons (cons (name2, contents), rest-data-seg))
= if namel = name?2
then cons (cons (namel, put (object, n, contents)), rest-data-seq)
else cons (cons (name2, contents),
deposit (object, list (z, cons (namel, n)), rest-data-seq)) endif

THEOREM: adpp-cons-pack-opener
(n € N)
— (adpp (cons (pack (zzz), n), cons (cons (pack (yyy), contents), rest))
= if zzz = yyy then n < length (contents)
else adpp (cons (pack (zzz), n), rest) endif)

THEOREM: fetch-deposit-a-list
((offset (addr1) € N) A (offset (addr2) € IN) A listp (list))
— (fetch (addr1, deposit-a-list (list, addr2, data-seg))
= if definedp (area-name (addr2), data-seq)
then if area-name (addr!) = area-name (addr2)
then if (offset (addr1) &£ offset (addr2))
A (offset (addrl)
< (offset (addr2) + length (list)))
then get (offset (addrl) — offset (addr2), list)
else fetch (addr1, data-seg) endif
else fetch (addrl, data-seg) endif
else fetch (addri, data-seg) endif)

THEOREM: Ir-valp-0-Ir-0-addr-opener
Ir-valp (0, identity (LR-0-ADDR), data-seq)

218

= (adpp (identity (untag (LR-0-ADDR)), data-seqg)
A (type (fetch (identity (add-addr (LR-0-ADDR, LR-REF-COUNT-OFFSET)),
data-seg))
= ’nat)
A (untag (fetch (identity (LR-0-ADDR), data-seg)) = LR-ADD1-TAG)
A (untag (fetch (identity (add-addr (LR-0-ADDR, LR-UNBOX-NAT-OFFSET)),

data-seq))
= 0))
EVENT: Disable Ir-valp-0-1r-0-addr-opener.

THEOREM: Ir-valp-t-Ir-t-addr-opener
Ir-valp (t, identity (LR-T-ADDR), data-seq)
= (adpp (identity (untag (LR-T-ADDR)), data-seg)
A (type (fetch (identity (add-addr (LR-T-ADDR, LR-REF-COUNT-OFFSET)),
data-seg))
= ’nat)
A (untag (fetch (identity (LR-T-ADDR), data-seg)) = LR-TRUE-TAG))

EVENT: Disable Ir-valp-t-Ir-t-addr-opener.

THEOREM: Ir-valp-f-Ir-f-addr-opener
Ir-valp (f, identity (LR-F-ADDR), data-seq)
= (adpp (identity (untag (LR-F-ADDR)), data-seg)
A (type (fetch (identity (add-addr (LR-F-ADDR, LR-REF-COUNT-OFFSET)),
data-seg))
= ’nat)
A (untag (fetch (identity (LR-F-ADDR), data-seg)) = LR-FALSE-TAG))

EVENT: Disable Ir-valp-f-lr-f-addr-opener.

THEOREM: definedp-table-definedp-cdr-lr-compile-quote
definedp (z, table)
— definedp (z, cdr (Ir-compile-quote (flag, object, data-seg, table)))

THEOREM: definedp-car-Ir-compile-quote
definedp (z, car (lr-compile-quote (flag, object, data-seg, table)))
= definedp (z, data-seq)

THEOREM: Ir-proper-p-areasp-car-Ir-compile-quote

Ir-proper-p-areasp (data-seq)
— lr-proper-p-areasp (car (lr-compile-quote (flag, object, data-seg, table)))

219

THEOREM: length-deposit-a-list
listp (list)
— (length (cdr (assoc (name, deposit-a-list (list, addr, data-seg))))
= if definedp (area-name (addr), data-seq)
then if area-name (addr) = name
then if length (cdr (assoc (name, data-seq)))
< (offset (addr) + length (list))
then offset (addr) + length (list)
else length (cdr (assoc (name, data-seg))) endif
else length (cdr (assoc (name, data-seg))) endif
else length (cdr (assoc (name, data-seg))) endif)

THEOREM: adpp-lr-compile-quote
adpp (addr, data-seg)
— adpp (addr, car (Ir-compile-quote (flag, object, data-seg, table)))

THEOREM: adpp-untag-definedp-area-name-free-ptr
adpp (untag (LR-FP-ADDR), data-seq)
— definedp (identity (area-name (LR-FP-ADDR)), data-seg)

THEOREM: Ir-max-node-deposit-a-list
(adpp (untag (addr), data-seg)
A listp (list)
A ((offset (addr) + length (list))
< length (cdr (assoc (area-name (addr), data-seg)))))
— (Ir-max-node (deposit-a-list (list, addr, data-seg))
= Ir-max-node (data-seq))

DEFINITION:
all-p-objects-lookup (list, table, p)
= if listp (list)
then p-objectp (cdr (assoc (car (list), table)), p)
A all-p-objects-lookup (cdr (list), table, p)
else t endif

THEOREM: proper-p-alistp-all-litatoms-all-p-objectps-lookup
(all-litatoms (strip-cars (params))

A all-p-objects-lookup (strip-cdrs (params), table, p))

— proper-p-alistp (pair-formals-with-addresses (params, table), p)

THEOREM: definedp-table-definedp-cdr-lr-data-seg-table-body
definedp (object, table)
— definedp (object, cdr (Ir-data-seg-table-body (flag, expr, data-seg, table)))

THEOREM: definedp-table-definedp-cdr-lr-data-seg-table-list
definedp (object, table)
— definedp (object, cdr (Ir-data-seg-table-list (progs, data-seg, table)))

220

THEOREM: definedp-table-definedp-cdr-lr-init-data-seg-table
definedp (object, table)
— definedp (object, cdr (Ir-init-data-seg-table (params, data-seg, table)))

THEOREM: definedp-table-definedp-car-lr-data-seg-table-body
definedp (name, data-seq)
— definedp (name, car (Ir-data-seg-table-body (flag, expr, data-seg, table)))

THEOREM: definedp-table-definedp-car-lr-data-seg-table-list
definedp (name, data-seq)
— definedp (name, car (Ir-data-seg-table-list (progs, data-seg, table)))

THEOREM: equal-lengths-same-signature-car-Ir-compile-quote
same-signature (data-seg, car (Ir-compile-quote (flag, object, data-seg, table)))
— (length (cdr (assoc (name,
car (Ir-compile-quote (flag, object, data-seg, table)))))
= length (cdr (assoc (name, data-seg))))

THEOREM: adpp-same-signature-car-lr-compile-quote
same-signature (data-seg, car (Ir-compile-quote (flag, object, data-seg, table)))
— (adpp (adp, car (Ir-compile-quote (flag, object, data-seg, table)))

= adpp (adp, data-seg))

THEOREM: same-signature-car-lr-compile-quote-helper
let pair be Ir-compile-quote (’1ist,
list (car (object), cdr (object)),
data-seg,
table)
in
(Ir-proper-free-listp (car (pair))
A same-signature (data-seg, car (pair))
Ir-proper-p-areasp (data-seq)
definedp (LR-HEAP-NAME, data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg))
((length (cdr (assoc (LR-HEAP-NAME, data-seg))) — 1)
&£ (offset (fetch (LR-FP-ADDR, car (pair))) + length (list))))
— same-signature (data-seg,
deposit-a-list (list,
fetch (identity (LR-FP-ADDR),
car (pair)),
car (pair))) endlet

> > > >

THEOREM: same-signature-car-lr-compile-quote-generalized
(Ir-proper-free-listp (data-seg)
A Ir-proper-p-areasp (data-seqg)

221

A definedp (LR-HEAP-NAME, data-seg)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— (same-signature (data-seg,
car (Ir-compile-quote (flag, object, data-seg, table)))
A Ir-proper-free-listp (car (Ir-compile-quote (flag,
object,
data-seg,

table))))

EVENT: Disable equal-lengths-same-signature-car-lr-compile-quote.
EVENT: Disable adpp-same-signature-car-Ir-compile-quote.

THEOREM: Ir-proper-free-listp-car-Ir-compile-quote
(Ir-proper-free-listp (data-seg)
A lr-proper-p-areasp (data-seq)
A definedp (LR-HEAP-NAME, data-seq)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— Ir-proper-free-listp (car (Ir-compile-quote (flag, object, data-seg, table)))

THEOREM: p-objectp-car-lr-compile-quote
(p-objectp (object!,
p-state (pe,
ctrl-stk,
temp-stk,
prog-seg,
data-seq,
maz-ctrl,
mazx-temp,
word-size,
psw))
Ir-proper-free-listp (data-seq)
Ir-proper-p-areasp (data-seg)
definedp (LR-HEAP-NAME, data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg)))
p-objectp (object!,
p-state (pc,
ctrl-stk,
temp-stk,
prog-seg,
car (Ir-compile-quote (flag, object2, data-seg, table)),
mazx-ctrl,
maz-temp,

I >>>>

222

word-size,
psw))

THEOREM: Ir-proper-p-areasp-car-Ir-data-seg-table-body

Ir-proper-p-areasp (data-seq)

— lr-proper-p-areasp (car (Ir-data-seg-table-body (flag,
expr,
data-seq,
table)))

THEOREM: same-signature-car-lr-compile-quote
(Ir-proper-free-listp (data-seg)
A Ir-proper-p-areasp (data-seg)
A definedp (LR-HEAP-NAME, data-seq)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— same-signature (data-seg,
car (Ir-compile-quote (flag, object, data-seg, table)))

THEOREM: same-signature-car-Ir-data-seg-table-body
(Ir-proper-free-listp (data-seg)
A Ir-proper-p-areasp (data-seqg)
A definedp (LR-HEAP-NAME, data-seqg)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— (same-signature (data-sey,
car (Ir-data-seg-table-body (flag, expr, data-seq, table)))
A lr-proper-free-listp (car (Ir-data-seg-table-body (flag,
expr,
data-seg,

table))))

EVENT: Disable same-signature-car-lr-compile-quote.

THEOREM: Ir-max-node-car-lr-data-seg-table-body
(Ir-proper-free-listp (data-seg)
A Ir-proper-p-areasp (data-seqg)
A definedp (LR-HEAP-NAME, data-seqg)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— (Ir-max-node (car (Ir-data-seg-table-body (flag, body, data-seg, table)))
= lr-max-node (data-seg))

THEOREM: same-signature-car-Ir-data-seg-table-list-helper

let dst-body be lr-data-seg-table-body (t, s-body (prog), data-seg, table)
in

(same-signature (car (dst-body),

223

car (Ir-data-seg-table-list (progs,
car (dst-body),
cdr (dst-body))))
Ir-proper-free-listp (data-seqg)
Ir-proper-p-areasp (data-seg)
definedp (LR-HEAP-NAME, data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg)))
same-signature (data-seg,
car (Ir-data-seg-table-list (progs,
car (dst-body),
cdr (dst-body)))) endlet

I>>>>

THEOREM: same-signature-car-Ir-data-seg-table-list
(Ir-proper-free-listp (data-seg)
Ir-proper-p-areasp (data-seg)
definedp (LR-HEAP-NAME, data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg)))
same-signature (data-seg,
car (Ir-data-seg-table-list (progs, data-seg, table)))

b >>>

EVENT: Disable same-signature-car-Ir-data-seg-table-list-helper.

THEOREM: length-car-lr-compile-quote
(Ir-proper-free-listp (data-seg)
A lr-proper-p-areasp (data-seq)
A definedp (LR-HEAP-NAME, data-seq)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— (length (cdr (assoc (name,
car (Ir-compile-quote (flag, object, data-seg, table)))))
= length (cdr (assoc (name, data-seg))))

THEOREM: Ir-max-node-car-Ir-compile-quote
(Ir-proper-free-listp (data-seg)
A lr-proper-p-areasp (data-seq)
A definedp (LR-HEAP-NAME, data-seg)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— (Ir-max-node (car (Ir-compile-quote (flag, object, data-seg, table)))
= lr-max-node (data-seq))

THEOREM: Ir-proper-free-listp-car-lr-init-data-seg-table
(Ir-proper-free-listp (data-seg)
A lr-proper-p-areasp (data-seg)
A definedp (LR-HEAP-NAME, data-seqg)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— lr-proper-free-listp (car (Ir-init-data-seg-table (params, data-seg, table)))

224

THEOREM: adpp-untag-lr-fp-addr-lr-init-data-seg
adpp (identity (untag (LR-FP-ADDR)), lr-init-data-seg (heap-size))

THEOREM: Ir-max-node-lr-init-data-seg
(heap-size £ 2)
— (lr-max-node (Ir-init-data-seg (heap-size))
= tag(’addr,
cons (identity (LR-HEAP-NAME),
identity (LR-NODE-SIZE) * heap-size)))

THEOREM: fetch-lr-fp-addr-lr-init-data-seg
fetch (identity (LR-FP-ADDR), Ir-init-data-seg (heap-size))
= identity (add-addr (LR-F-ADDR, LR-NODE-SIZE))

THEOREM: Ir-boundary-nodep-not-lessp-fact-helper
((z < (y * 2)) A ((z mod y) = 0) A (z € N))
— (z<yx(z-1)=(z#y=(z-1))

THEOREM: lessp-times-difference-fact
((z £ 0) A (z #£0) A ((z mod y) = 0))
- (((z—y) <(yx(z—-1)) =(z <(y*2))

THEOREM: lessp-times-difference-node-on-boundaryp-fact
((heap-size # 0) A (offset (addr) # 0) A Ir-boundary-nodep (addr))
— ((((((offset (addr) — 1) — 1) = 1) — 1)

< (identity (LR-NODE-SIZE) * (heap-size — 1)))

= (offset (addr) < (identity (LR-NODE-SIZE) * heap-size)))

THEOREM: Ir-boundary-nodep-lessp-lr-node-size-0
Ir-boundary-nodep (addr)
— ((((offset (addr) — 1) = 1) = f)

A ((((offset (addr) — 1) = 1) = 1) =f))

THEOREM: Ir-boundary-nodep-lessp-lr-node-size-1
((offset (addr) € N) A Ir-boundary-nodep (addr) A (n < LR-NODE-SIZE))
— ((n < offset (addr)) = (offset (addr) # 0))

THEOREM: Ir-boundary-nodep-lessp-Ir-node-size-2
Ir-boundary-nodep (addr) — ((offset (addr) = 1) = f)

DEFINITION:
induct-hint-17 (addri, size, addr2)
= if size ~ 0 then t
elseif offset (addr2) ~ 0 then t
else induct-hint-17 (add-addr (addr!, LR-NODE-SIZE),
size — 1,
sub-addr (addr2, LR-NODE-SIZE)) endif

225

THEOREM: get-cdr-lr-init-heap-contents
((offset (addr2) < (LR-NODE-SIZE #* heap-size))
A Ir-boundary-nodep (addr2)
A (offset (addr2) € N)
A (offset (addrl) € N))
— (get (offset (addr2), cdr (Ir-init-heap-contents (addri, heap-size)))
= add-addr (add-addr (addr1, offset (addr2)), LR-NODE-SIZE))

EvENT: Disable Ir-boundary-nodep-lessp-lr-node-size-0.
EvVENT: Disable Ir-boundary-nodep-lessp-lr-node-size-1.
EVENT: Disable Ir-boundary-nodep-lessp-lr-node-size-2.

THEOREM: length-cdr-assoc-lr-heap-name-lr-init-data-seg

(heap-size £ 2)

— (length (cdr (assoc (identity (LR-HEAP-NAME), Ir-init-data-seg (heap-size))))
= (1 + (heap-size * identity (LR-NODE-SIZE))))

THEOREM: fetch-add-addr-ref-count-offset-lr-init-data-seg-help-1
((offset (addr) = 0)

A (type (addr) = ’addr)

A (arear-name (addr) = *heap))

— (add-addr (addr, 4) = ’(addr (heap . 4)))

THEOREM: equal-add-addr-fact
(type (addrl) = type (addr2))
— ((add-addr (addr1, n1) = add-addr (addr2, n2))
= ((area-name (addr!) = area-name (addr2))
A ((offset (addrl) + n1) = (offset (addr2) + n2))))

DEFINITION:
Ir-all-nodes (min-offset, maz-addr)
= if offset (maz-addr) ~ 0 then nil
elseif min-offset £ offset (maz-addr) then nil
else cons (sub-addr (maz-addr, LR-NODE-SIZE),
Ir-all-nodes (min-offset,
sub-addr (maz-addr, LR-NODE-SIZE))) endif

DEFINITION:

induct-hint-19 (addr, maz-addr)

= if offset (addr) < offset (maz-addr)
then induct-hint-19 (add-addr (addr, LR-NODE-SIZE), maz-addr)
else t endif

226

THEOREM: lessp-times-plus-fact
(n#0) = (((n*v) <(n+(nxw))=(v<(1+uw))

THEOREM: lessp-subl-lessp-fact
(zeN)A(yeN) A (z#0) A (z #y))
= (((z =1) <y)=(z <y))

THEOREM: remainder-difference-not-equal-lessp-fact
(((x mod n) = 0)
((y mod n) = 0)

l>>>>>

EVENT: Disable lessp-subl-lessp-fact.

THEOREM: Ir-boundaryp-nodep-difference-node-size
Ir-boundary-offsetp (offset)
— Ir-boundary-offsetp (offset — LR-NODE-SIZE)

THEOREM: Ir-boundary-offsetp-difference-not-equal-lessp-fact-1
(Ir-boundary-offsetp (z)

Ir-boundary-offsetp (y)

(z # (y — LR-NODE-SIZE))

(y £ LR-NODE-SIZE)
(r €N)

éy €N))

(z < (y — LR-NODE-SIZE)) = (z < y))

I >>>>>

EOREM: member-Ir-all-nodes-helper

offset (maz-addr) # 0)

(offset (addr) € N)

(cddr (addr) = nil)

listp (addr)

listp (untag (addr))

Ir-boundary-nodep (addr)

Ir-boundary-nodep (maz-addr)

(area-name (addr) = area-name (maz-addr))
(type (addr) = type (maz-addr))

(addr # sub-addr (maz-addr, LR-NODE-SIZE)))
((offset (addr) < ((((offset (maz-addr) —1) —1) — 1) — 1))
= (offset (addr) < offset (max-addr)))

—~H
o =T

I>>>>>>>>>

227

THEOREM: member-Ir-all-nodes

((type (addr) = ’addr)

(cddr (addr) = nil)

listp (addr)

Ir-boundary-nodep (addr)

(area-name (addr) = LR-HEAP-NAME)
listp (untag (addr))

(offset (addr) € N)

(type (maz-addr) = ’addr)

(cddr (maz-addr) = nil)

listp (maz-addr)

Ir-boundary-nodep (maz-addr)

(area-name (maz-addr) = LR-HEAP-NAME)
listp (untag (maz-addr))
Ir-boundary-offsetp (min-offset)

(offset (addr) £ min-offset))

((addr € Ir-all-nodes (min-offset, maz-addr))
= (offset (addr) < offset (maz-addr)))

I>>>>>>>>>>>>> >

EVENT: Disable member-Ir-all-nodes-helper.

THEOREM: Ir-all-nodes-nil
(Ir-all-nodes (min-offset, maz-addr) = nil)
= ((offset (maz-addr) ~ 0) V (min-offset &£ offset (maz-addr)))

THEOREM: delete-append

delete (e, append (z, y))

= if e € ¢ then append (delete (e, z), y)
else append (z, delete (e, y)) endif

THEOREM: lessp-difference-node-size-sub-addr-2
((offset < offset (addr))
A Ir-boundary-nodep (addr)
A (offset (addr) € N)
A Ir-boundary-offsetp (offset))
— (((offset (addr) — identity (LR-NODE-SIZE)) < offset) = f)

THEOREM: not-member-Ir-all-nodes-too-small-addr
(Ir-boundary-nodep (addr)

A Ir-boundary-nodep (maz-addr)

A lr-boundary-offsetp (min-offset)

A (offset (addr) < min-offset)

A (min-offset € N))

— (addr ¢ Ir-all-nodes (min-offset, max-addr))

228

THEOREM: plist-delete
plist (delete (e, x)) = delete (e, plist (z))

THEOREM: Ir-check-free-nodes-plist-node-list
Ir-check-free-nodes (addr, plist (node-list), data-seg, maz-addr)
= Ir-check-free-nodes (addr, node-list, data-seg, maz-addr)

THEOREM: Ir-all-nodes-offset-same-max
Ir-all-nodes (offset (addr), addr) = nil

THEOREM: Ir-all-nodes-offset-max-addr-opener-helper
((offset (addr) # 0)

Ir-boundary-nodep (addr)

(offset € N)

Ir-boundary-offsetp (offset)

(offset < offset (addr)))

((offset < ((((offset (addr) — 1) — 1) — 1) — 1))

= (offset # ((((offset (addr) — 1) — 1) — 1) — 1)))

THEOREM: Ir-all-nodes-lessp-max-addr-opener
((type (maz-addr) = >addr)
listp (maz-addr)
(cddr (maz-addr) = nil)
listp (untag (maz-addr))
(offset (maz-addr) € N)
Ir-boundary-nodep (maz-addr)
(area-name (max-addr) = LR-HEAP-NAME)
(min-offset < offset (maz-addr))
(min-offset € N)
lr-boundary-offsetp (min-offset))
(Ir-all-nodes (min-offset, maz-addr)
= append (Ir-all-nodes (min-offset + identity (LR-NODE-SIZE),
maz-addr),
list (tag (’addr,
cons (identity (LR-HEAP-NAME), min-offset)))))

b>>>>

l>s>>>>>>>>

THEOREM: fetch-init-init-data-seg-generalized
((offset (addr) € N)

(type (addr) = ’addr)
(cddr (addr) = nil)
listp (addr)

listp (untag (addr))

Ir-boundary-nodep (addr)
(area-name (addr) = LR-HEAP-NAME)
(offset (addr) < (identity (LR-NODE-SIZE) * heap-size))

>>> > > > >

229

A (cdr (assoc (LR-HEAP-NAME, data-seg))
= Ir-init-heap-contents (identity (tag (> addr,
cons (LR-HEAP-NAME, 0))),
heap-size)))
— (fetch (add-addr (addr, identity (LR-REF-COUNT-OFFSET)), data-seq)
= add-addr (addr, 4))

THEOREM: lessp-difference-node-size-sub-addr-3
((offset (addr) < (LR-NODE-SIZE * heap-size))
A Ir-boundary-nodep (addr)
A (offset (addr) € N))
— (((((((identity (LR-NODE-SIZE) #* heap-size) — 1) — 1) — 1) — 1)
< offset (addr))
= f)

THEOREM: Ir-boundary-nodep-tag-cons-times-lr-node-size
Ir-boundary-nodep (tag (x, cons (name, identity (LR-NODE-SIZE) * heap-size)))

THEOREM: tag-type-name-offset-equal-same
((type (addr) = 1)

A (cddr (addr) = nil)

A listp (untag (addr))

A (offset (addr) € N)

A (arear-name (addr) = name))

— (tag(z, cons (name, offset (addr))) = addr)

THEOREM: Ir-check-free-nodes-Ir-free-list-nodes-init-data-seg
let init-data-seg be list (cons (area-name (LR-FP-ADDR), anyl),
cons (area-name (LR-ANSWER-ADDR), any2),
cons (LR-HEAP-NAME,
Ir-init-heap-contents (tag (’ addr,
cons (LR-HEAP-NAME,

0)),

heap-size)))

=

N e
—

offset (maz-addr) ¢ offset (addr))

(type (addr) = ’addr)
(cddr (addr) = nil)
listp (addr)

listp (untag (addr))

(offset (addr) € N)

Ir-boundary-nodep (addr)

(area-name (addr) = LR-HEAP-NAME)
(max-addr = Ir-max-node (init-data-seq)))
lr-check-free-nodes (addr,

l>s>s>>>>>>

230

Ir-all-nodes (offset (addr), maz-addr),
list (cons (identity (area-name (LR-FP-ADDR)),
any1),
cons (identity (area-name (LR-ANSWER-ADDR)),
any?),
cons (identity (LR-HEAP-NAME),
Ir-init-heap-contents (identity (tag (’addr,
cons (LR-HEAP-NAME,
0))).
heap-size))),
maz-addr) endlet

EVENT: Disable fetch-init-init-data-seg-generalized.

THEOREM: Ir-free-list-nodes-deposit-a-list-lr-nodep
((type (addr) = ’addr)
(cddr (addr) = nil)
listp (addr)
adpp (untag (addr), data-seg)
Ir-boundary-nodep (addr)
(area-name (addr) = LR-HEAP-NAME)
(type (maz-addr) = ’addr)
(cddr (maz-addr) = nil)
listp (maz-addr)
adpp (untag (max-addr), data-seq)
Ir-boundary-nodep (maz-addr)
(area-name (maz-addr) = LR-HEAP-NAME))
(Ir-free-list-nodes (maz-addr,
deposit-a-list (list (a, b, ¢, d), addr, data-seg))
= lr-free-list-nodes (maz-addr,
deposit (b,
add-addr (addr,
identity (LR-REF-COUNT-OFFSET)),
data-seg)))

l>>>>>>>>>> >

THEOREM: Ir-check-free-nodes-deposit-a-list-Ir-nodep
((type (addr) = ’addr)

(cddr (addr) = nil)

listp (addr)

adpp (untag (addr), data-seq)
Ir-boundary-nodep (addr)

(area-name (addr) = LR-HEAP-NAME)

(type (maz-addr) = ’addr)

(cddr (maz-addr) = nil)

>>> > > > >

231

listp (maz-addr)
adpp (untag (max-addr), data-seq)
Ir-boundary-nodep (maz-addr)
(area-name (maz-addr) = LR-HEAP-NAME)
Ir-node-listp (node-list, data-seg))
(Ir-check-free-nodes (addri ,
node-list,
deposit-a-list (list (a, b, ¢, d), addr, data-seg),
max-addr)
= Ir-check-free-nodes (addri,
node-list,
deposit (b,
add-addr (addr,
identity (LR-REF-COUNT-OFFSET)),
data-seg),
maz-addr))

L>>>>>

THEOREM: Ir-all-nodes-not-lessp-min-offset-max-addr
(min-offset £ offset (maz-addr))
— (lr-all-nodes (min-offset, maz-addr) = nil)

THEOREM: fetch-init-init-data-seg-sub-addr
(((identity (LR-NODE-SIZE) * heap-size) £ offset (addr))
(offset (addr) € N)
(cddr (addr) = nil)
listp (addr)
listp (untag (addr))
(type (addr) = ’addr)
Ir-boundary-nodep (addr)
(area-name (addr) = LR-HEAP-NAME)
((offset (addr) — identity (LR-NODE-SIZE))
< (LR-NODE-SIZE * heap-size))
(offset (addr) # 0)
(cdr (assoc (LR-HEAP-NAME, data-seg))
= lr-init-heap-contents (tag (> addr, cons (LR-HEAP-NAME, 0)),
heap-size)))
— (fetch (add-addr (sub-addr (addr, identity (LR-NODE-SIZE)),
identity (LR-REF-COUNT-OFFSET)),
data-seq)
= addr)

>>>>>> > >

> >

THEOREM: Ir-free-list-nodes-Ir-init-heap-contents-generalized
(Ir-boundary-nodep (maz-addr)

A (area-name (max-addr) = LR-HEAP-NAME)

A (type (maz-addr) = ’addr)

232

(cddr (maz-addr) = nil)
listp (maz-addr)
listp (untag (maz-addr))
((LR-NODE-SIZE * heap-size) £ offset (maz-addr))
(cdr (assoc (LR-HEAP-NAME, data-seq))
= Ir-init-heap-contents (identity (tag (> addr,
cons (LR-HEAP-NAME, 0))),
heap-size)))
— (lr-free-list-nodes (maz-addr, data-seg) = Ir-all-nodes (0, max-addr))

> > > > >

THEOREM: Ir-free-list-nodes-Ir-init-heap-contents
(Ir-boundary-nodep (maz-addr)
(area-name (max-addr) = LR-HEAP-NAME)
(type (maz-addr) = ’addr)
(cddr (maz-addr) = nil)
listp (maz-addr)
listp (untag (maz-addr))
((LR-NODE-SIZE * heap-size) £ offset (maz-addr)))
(Ir-free-list-nodes (maz-addr,
list (cons (identity (area-name (LR-FP-ADDR)), anyl),
cons (identity (area-name (LR-ANSWER-ADDR)),
any?2),
cons (identity (LR-HEAP-NAME),
Ir-init-heap-contents (identity (tag (’addr,
cons (LR-HEAP-NAME,

0))),

I>s>>>>>

heap-size))))
= lIr-all-nodes (0, maz-addr))

THEOREM: Ir-node-listp-Ir-all-nodes
(Ir-boundary-nodep (addr)
A (area-name (addr) = LR-HEAP-NAME)
A adpp (untag (addr), data-seg)
A (type (addr) = ’addr))
— lr-node-listp (Ir-all-nodes (min-offset, addr), data-seqg)

THEOREM: plistp-Ir-all-nodes
plistp (Ir-all-nodes (min-offset, max-addr))

THEOREM: Ir-free-list-nodes-Ir-init-data-seg
(heap-size £ 2)
— (lr-free-list-nodes (tag (’ addr,
cons (identity (LR-HEAP-NAME),
identity (LR-NODE-SIZE) * heap-size)),
Ir-init-data-seg (heap-size))

233

= Ir-all-nodes (identity (offset (add-addr (LR-F-ADDR, LR-NODE-SIZE))),
tag (’addr,
cons (identity (LR-HEAP-NAME),
identity (LR-NODE-SIZE) * heap-size))))

THEOREM: Ir-proper-free-listp-lr-init-data-seg-helper
(heap-size £ 2)
— Ir-check-free-nodes (identity (add-addr (LR-F-ADDR, LR-NODE-SIZE)),
Ir-all-nodes (identity (offset (add-addr (LR-F-ADDR,
LR-NODE-SIZE))),
tag (’addr,
cons (identity (LR-HEAP-NAME),
identity (LR-NODE-SIZE)
* heap-size))),
Ir-init-data-seg (heap-size),
tag (> addr,
cons (identity (LR-HEAP-NAME),
identity (LR-NODE-SIZE) * heap-size)))

THEOREM: Ir-proper-free-listp-lr-init-data-seg
(heap-size £ 2) — lIr-proper-free-listp (Ir-init-data-seg (heap-size))

THEOREM: definedp-lr-heap-name-Ir-init-data-seg
definedp (identity (LR-HEAP-NAME), Ir-init-data-seg (heap-size))

THEOREM: lr-proper-p-areasp-lr-heap-name-lr-init-data-seg
Ir-proper-p-areasp (Ir-init-data-seg (heap-size))

THEOREM: lr-proper-p-areasp-car-lr-init-data-seg-table
Ir-proper-p-areasp (data-seg)
— lr-proper-p-areasp (car (lr-init-data-seg-table (params, data-seg, table)))

THEOREM: lr-proper-p-areasp-car-lr-data-seg-table-list
Ir-proper-p-areasp (data-seg)
— lr-proper-p-areasp (car (Ir-data-seg-table-list (progs, data-seg, table)))

THEOREM: definedp-table-definedp-car-lr-init-data-seg-table
definedp (name, car (Ir-init-data-seg-table (params, data-seg, table)))
= definedp (name, data-seg)

THEOREM: all-p-objects-lookup-cons-table
(all-p-objects-lookup (list, table, p) A p-objectp (y, p))
— all-p-objects-lookup (list, cons (cons (z, y), table), p)

234

THEOREM: p-objectp-opener-alt-Ir-proper-free-listp
(Ir-proper-free-listp (p-data-segment (p))
A adpp (untag (Ir-max-node (data-seg)), data-seg)
A lr-boundary-nodep (Ir-max-node (data-seg))
A (data-seg = p-data-segment (p)))
— p-objectp (fetch (identity (LR-FP-ADDR), data-seg), p)

THEOREM: p-objectp-lookup-deposit-a-list
p-objectp (object,
p-state (pe,

ctri-stk,

temp-stk,

prog-seg,

data-seg,

maz-ctrl-stk-size,

maz-temp-stk-size,

word-size,

psw))

— p-objectp (object,
p-state (pe,

ctrl-stk,
temp-stk,
prog-seg,
deposit-a-list (stuff, addr, data-seg),
max-ctrl-stk-size,
maz-temp-stk-size,
word-size,
psw))

THEOREM: all-p-objects-lookup-deposit-a-list
all-p-objects-lookup (list,
table,
p-state (pe,
ctrl-stk,
temp-stk,
prog-seg,
data-seg,
max-ctrl-stk-size,
maz-temp-stk-size,
word-size,
psw))
— all-p-objects-lookup (list,
table,
p-state (pc,

235

ctrl-stk,

temp-stk,

prog-seg,

deposit-a-list (stuff, addr, data-seg),
max-ctrl-stk-size,
maz-temp-stk-size,

word-size,

psw))

THEOREM: p-objectp-lookup-deposit
p-objectp (object,
p-state (pe,
ctrl-stk,
temp-stk,
prog-seg,
data-seqg,
maz-ctrl-stk-size,
maz-temp-stk-size,
word-size,
psw))
— p-objectp (object,
p-state (pc,
ctrl-stk,
temp-stk,
prog-seg,
deposit (anything, addr, data-seg),
mazx-ctrl-stk-size,
maz-temp-stk-size,
word-size,
psw))

THEOREM: all-p-objects-lookup-deposit
all-p-objects-lookup (list,

table,

p-state (pe,
ctri-stk,
temp-stk,
prog-seg,
data-seq,

maz-ctrl-stk-size,
maz-temp-stk-size,
word-size,
psw))

— all-p-objects-lookup (list,

236

table,
p-state (pc,
ctrl-stk,
temp-stk,
prog-seg,
deposit (anything, addr, data-seg),
maz-ctrl-stk-size,
maz-temp-stk-size,
word-size,
psw))

THEOREM: definedp-name-p-objectp-tag-0-lr-proper-p-areasp

Ir-proper-p-areasp (data-seg)

— (p-objectp (list (*addr, cons (name, 0)),

p-state (pe,
ctrl-stk,
temp-stk,
prog-seg,
data-seq,
max-ctrl-stk-size,
maz-temp-stk-size,
word-size,
psw))
= definedp (name, data-seg))

THEOREM: all-p-objects-lookup-lr-compile-quote
(all-p-objects-lookup (list,

table,

p-state (pe,
ctrl-stk,
temp-stk,
prog-seg,
data-seq,

mazx-ctri-stk-size,
maz-temp-stk-size,
word-size,
psw))
Ir-proper-free-listp (data-seq)
Ir-proper-p-areasp (data-seg)
definedp (LR-HEAP-NAME, data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg)))
all-p-objects-lookup (list,
cdr (Ir-compile-quote (flag, object, data-seg, table)),
p-state (pe,

L>>>>

237

ctrl-stk,

temp-stk,

prog-seg,

car (Ir-compile-quote (flag,
object,
data-seg,
table)),

maz-ctrl-stk-size,
maz-temp-stk-size,
word-size,

psw))

THEOREM: all-p-objects-lookup-lr-data-seg-table-body
(all-p-objects-lookup (list,

I>>>>

table,

p-state (pc,
ctrl-stk,
temp-stk,
prog-seg,
data-seg,

maz-ctrl-stk-size,
maz-temp-stk-size,
word-size,
psw))
Ir-proper-free-listp (data-seq)
lr-proper-p-areasp (data-seg)
definedp (LR-HEAP-NAME, data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg)))
all-p-objects-lookup (list,
cdr (Ir-data-seg-table-body (flag,

body,
data-seq,
table)),
p-state (pe,
ctrl-stk,
temp-stk,
prog-seg,
car (Ir-data-seg-table-body (flag,
body,
data-seq,
table)),

maz-ctrl-stk-size,
maz-temp-stk-size,
word-size,

238

psw))

THEOREM: all-p-objects-lookup-Ir-data-seg-table-list
(all-p-objects-lookup (list,

table,

p-state (pc,
ctrl-stk,
temp-stk,
prog-seg,
data-seg,

max-ctrl-stk-size,
maz-temp-stk-size,
word-size,
psw))
Ir-proper-free-listp (data-seq)
Ir-proper-p-areasp (data-seg)
definedp (LR-HEAP-NAME, data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg)))
all-p-objects-lookup (list,
cdr (Ir-data-seg-table-list (progs, data-seg, table)),

b>>>>

p-state (pc,
ctrl-stk,
temp-stk,
prog-seg,
car (Ir-data-seg-table-list (progs,
data-seg,
table)),

mazx-ctrl-stk-size,
mazx-temp-stk-size,
word-size,

psw))

THEOREM: p-objectp-lookup-Ir-init-data-seg-table
(p-objectp (object,
p-state (pc,
ctrl-stk,
temp-stk,
prog-seg,
data-seq,
maz-ctrl-stk-size,
maz-temp-stk-size,
word-size,
psw))
A Ir-proper-free-listp (data-seg)

239

Ir-proper-p-areasp (data-seg)
definedp (LR-HEAP-NAME, data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg)))
p-objectp (object,
p-state (pe,
ctrl-stk,
temp-stk,
prog-seg,
car (Ir-init-data-seg-table (params, data-seg, table)),
max-ctrl-stk-size,
maz-temp-stk-size,
word-size,
psw))

I >>>

THEOREM: assoc-definedp-table-lr-compile-quote

definedp (object, table)

— (assoc (objectl, cdr (Ir-compile-quote (flag, object2, data-seg, table)))
= assoc (objectl, table))

THEOREM: assoc-definedp-table-lr-init-data-seg-table

definedp (object, table)

— (assoc (object, cdr (Ir-init-data-seg-table (params, data-seg, table)))
= assoc (object, table))

THEOREM: definedp-table-lr-compile-quote-self

(flag # *1ist)
— definedp (object, cdr (Ir-compile-quote (flag, object, data-seg, table)))

THEOREM: Ir-s-similar-const-table-lr-good-pointerp-opener
(Ir-s-similar-const-table (table, data-seg) A definedp (object, table))
— ((type (cdr (assoc (object, table))) = ’addr)

(cddr (cdr (assoc (object, table))) = nil)
listp (cdr (assoc (object, table)))

adpp (untag (cdr (assoc (object, table))), data-seq)
Ir-boundary-nodep (cdr (assoc (object, table)))
(area-name (cdr (assoc (object, table)))

= identity (LR-HEAP-NAME))

(type (fetch (add-addr (cdr (assoc (object, table)),

identity (LR-REF-COUNT-OFFSET)),
data-seq))
= ’nat))

> > > > >

>

THEOREM: Ir-s-similar-const-table-deposit-lr-fp-addr
(adpp (untag (LR-FP-ADDR), data-seg)
A Ir-s-similar-const-table (table, data-seg))

240

— lr-s-similar-const-table (table,
deposit (anything,
identity (LR-FP-ADDR),
data-seq))

THEOREM: adpp-fetch-lr-fp-addr-car-lr-compile-quote
(Ir-proper-free-listp (data-seg)
A Ir-proper-p-areasp (data-seq)
A definedp (LR-HEAP-NAME, data-seq)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— adpp (untag (fetch (identity (LR-FP-ADDR),
car (Ir-compile-quote (flag, object, data-seg, table)))),
data-seq)

DEFINITION:
Ir-good-pointerp-tablep (table, data-seq)
= if listp (table)
then Ir-good-pointerp (cdar (table), data-seg)
A Ir-good-pointerp-tablep (cdr (table), data-seg)
else t endif

THEOREM: Ir-good-pointerp-tablep-definedp-table
(Ir-good-pointerp-tablep (table, data-seg) A definedp (object, table))
— lr-good-pointerp (cdr (assoc (object, table)), data-seq)

THEOREM: Ir-proper-free-listp-opener-2-area-name-alt
(Ir-proper-free-listp (data-seg)
A adpp (untag (Ir-max-node (data-seg)), data-seq)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— (car (untag (fetch (identity (LR-FP-ADDR), data-seg))) = LR-HEAP-NAME)

THEOREM: Ir-good-pointerp-tablep-deposit-free-ptr
Ir-good-pointerp-tablep (table,

deposit (anything, identity (LR-FP-ADDR), data-seg))
= Ir-good-pointerp-tablep (table, data-seg)

THEOREM: addl-lr-boundary-nodep
(Ir-boundary-nodep (addr1) A Ir-boundary-nodep (addr2))
— ((offset (addr1) = (1 + offset (addr2))) = f)

THEOREM: Ir-boundary-offsetp-plus
lr-boundary-offsetp (n)
— (lr-boundary-offsetp (m + n) = lr-boundary-offsetp (m))

THEOREM: addl-addl-lr-boundary-nodep
(Ir-boundary-nodep (addr1) A lr-boundary-nodep (addr2))
— ((offset (addr1) = (1 + (1 + offset (addr2)))) = f)

241

THEOREM: Ir-good-pointerp-tablep-deposit-a-list

(Ir-good-pointerp-tablep (table, data-seq)

(offset (addr) € N)

Ir-boundary-nodep (addr)

(type (ref-count) = ’nat)

(untag (ref-count) € N)

(area-name (addr) = LR-HEAP-NAME)

(type (tag) = ’nat))

Ir-good-pointerp-tablep (table,

deposit-a-list (list (tag, ref-count, z, y),

addr,
data-seq))

l>>>>>>

THEOREM: Ir-good-pointerp-table-cons

((type (addr) = ’addr)

(cddr (addr) = nil)

listp (addr)

adpp (untag (addr), data-seg)

Ir-boundary-nodep (addr)

(area-name (addr) = LR-HEAP-NAME))

(Ir-good-pointerp-tablep (cons (cons (object, addr), table), data-seq)

= ((type (fetch (add-addr (addr, identity (LR-REF-COUNT-OFFSET)),
data-seg))

L>>>>>

= ’nat)
A Ir-good-pointerp-tablep (table, data-seq)))

THEOREM: Ir-proper-free-listp-length-subl-not-lessp

(Ir-proper-free-listp (data-seg)

A lr-proper-p-areasp (data-seq)

A definedp (LR-HEAP-NAME, data-seq)

A Ir-boundary-nodep (Ir-max-node (data-seg)))

— ((length (cdr (assoc (identity (LR-HEAP-NAME), data-seg))) — 1)

&£ offset (fetch (identity (LR-FP-ADDR),
car (Ir-compile-quote (flag, object, data-seg, table)))))

THEOREM: Ir-minimum-heapp-Ir-compile-quote
(Ir-proper-free-listp (data-seg)
A lr-proper-p-areasp (data-seq)
A definedp (LR-HEAP-NAME, data-seg)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— (Ir-minimum-heapp (car (Ir-compile-quote (flag, object, data-seg, table)))
= lr-minimum-heapp (data-seg))

DEFINITION:
s-heap-reqs (flag, object, data-seg, table)

242

= if flag = ’list
then if listp (object)
then let pair be lr-compile-quote (t,
car (object),
data-seq,
table)
in
s-heap-reqs (t, car (object), data-seg, table)
+ s-heap-regs (’list,
cdr (object),
car (pair),
cdr (pair)) endlet
else 0 endif
elseif definedp (object, table) then 0
elseif listp (object)
then 1 + s-heap-reqgs (’list,
list (car (object), cdr (object)),
data-seqg,
table)
elseif object € N then 1
elseif truep (object) then 1
else 0 endif

EVENT: Disable s-heap-regs.

DEFINITION:
s-heap-reqs-body (flag, expr, data-seg, table)
= if flag = ’list
then if listp (expr)
then let dst! be Ir-data-seg-table-body (t,
car (expr),
data-seq,
table)
in
s-heap-regs-body (t, car (expr), data-seg, table)
+ s-heap-regs-body (’list,
cdr (expr),
car (dst1),
cdr (dst1)) endlet
else 0 endif
elseif listp (expr)
then if (car (ezpr) = S-TEMP-FETCH)
V' (car (expr) = S-TEMP-EVAL)
V' (car (expr) = S-TEMP-TEST)

243

then s-heap-reqs-body (t, cadr (expr), data-seg, table)

elseif car (expr) = ’quote

then s-heap-reqs (t, cadr (ezpr), data-seg, table)

else s-heap-regs-body (’1list, cdr (expr), data-seg, table) endif
else 0 endif

DEFINITION:
s-heap-reqs-list (progs, data-seg, table)
= if listp (progs)
then s-heap-regs-body (t, s-body (car (progs)), data-seg, table)
+ s-heap-reqs-list (cdr (progs),
car (Ir-data-seg-table-body (t,
s-body (car (progs)),
data-seg,
table)),
cdr (Ir-data-seg-table-body (t,
s-body (car (progs)),
data-seq,
table)))

else 0 endif

DEFINITION:
s-init-heap-reqs (params, data-seg, table)
= if listp (params)
then s-heap-regs (t, cdar (params), data-seg, table)
+ s-init-heap-reqs (cdr (params),
car (Ir-compile-quote (t,
cdar (params),
data-seq,
table)),
cdr (Ir-compile-quote (t,
cdar (params),
data-seg,
table)))
else 0 endif

DEFINITION:
s-total-heap-reqgs (progs, params, heap-size)
= let init-ds-tablel be lr-compile-quote (’*1list,
list (t, 0),
Ir-init-data-seg (heap-size),
list (cons (f, LR-F-ADDR)))
in
let init-ds-table2 be Ir-init-data-seg-table (params,
car (init-ds-tablel),

244

cdr (init-ds-tablel))
in

+ s-heap-regs (’list,
list (t, 0),
Ir-init-data-seg (heap-size),
list (cons (f, LR-F-ADDR)))
+ s-init-heap-reqs (params,
car (init-ds-tablel),
cdr (init-ds-tablel))
+ s-heap-reqs-list (progs,
car (init-ds-table2),
cdr (init-ds-table2)) endlet endlet

DEFINITION:
s-ws-regs (flag, object, data-seg, table)
= if flag = ’1list
then if listp (object)
then let pair be lr-compile-quote (t,
car (object),
data-seg,
table)
in
max (s-ws-reqs (t, car (object), data-seg, table),
s-ws-reqs (’list,
cdr (object),
car (pair),
cdr (pair))) endlet
else 0 endif
elseif definedp (object, table) then 0
elseif listp (object)
then max (log (2, LR-CONS-TAG),
s-ws-regs (’list,
list (car (object), cdr (object)),
data-seq,
table))
elseif object € N then max (log (2, LR-ADD1-TAG), log (2, object))
elseif truep (object) then log (2, LR-TRUE-TAG)
elseif falsep (object) then log (2, LR-FALSE-TAG)
else 0 endif

EVENT: Disable s-ws-regs.
DEFINITION:

245

s-ws-reqs-body (flag, expr, data-seg, table)
= if flag = ’list
then if listp (expr)
then let dst! be Ir-data-seg-table-body (t,
car (expr),
data-seg,
table)
in
max (s-ws-regs-body (t, car (expr), data-seg, table),
s-ws-regs-body (’1list,
cdr (expr),
car (dst1),
cdr (dst1))) endlet
else 0 endif
elseif listp (expr)
then if (car (expr) = S-TEMP-FETCH)
V' (car (expr) = S-TEMP-EVAL)
V (car (expr) = S-TEMP-TEST)
then s-ws-reqs-body (t, cadr (expr), data-seg, table)
elseif car (ezpr) = ’quote
then s-ws-regs (t, cadr (expr), data-seg, table)
else s-ws-reqs-body (’1ist, cdr (expr), data-seg, table) endif
else 0 endif

DEFINITION:
s-ws-reqs-list (progs, data-seg, table)
= if listp (progs)
then max (s-ws-regs-body (t, s-body (car (progs)), data-seg, table),
s-ws-reqs-list (cdr (progs),
car (Ir-data-seg-table-body (t,
s-body (car (progs)),
data-seg,
table)),
cdr (Ir-data-seg-table-body (t,
s-body (car (progs)),
data-seg,

table))))

else 0 endif

DEFINITION:
s-init-ws-reqs (params, data-seg, table)
= if listp (params)
then max (s-ws-regs (t, cdar (params), data-seg, table),
s-init-ws-reqs (cdr (params),

246

car (lr-compile-quote (t,
cdar (params),
data-seq,
table)),

cdr (Ir-compile-quote (t,
cdar (params),
data-seg,

table))))

else 0 endif

DEFINITION:
s-total-ws-reqs (progs, params, heap-size)
= let init-ds-tablel be Ir-compile-quote (’list,
list (t, 0),
Ir-init-data-seg (heap-size),
list (cons (f, LR-F-ADDR)))
in
let init-ds-table2 be lr-init-data-seg-table (params,
car (init-ds-tablel),
cdr (ingt-ds-tablel))
in
max (s-ws-regs (’list,
list (f, t, 0),
Ir-init-data-seg (heap-size),
nil),
max (s-init-ws-regs (params,
car (init-ds-tablel),
cdr (init-ds-tablel)),
max (s-ws-reqgs-list (progs,
car (init-ds-table2),
cdr (init-ds-table2)),
S-MAX-SUBR-REQS))) endlet endlet

DEFINITION:
s-restricted-objectp (flag, object)
= if flag = ’list
then if listp (object)
then s-restricted-objectp (t, car (object))
A s-restricted-objectp (?1list, cdr (object))
else t endif
elseif object =t then t
elseif object = f then t
elseif listp (object)
then s-restricted-objectp (’list, list (car (object), cdr (object)))

247

elseif object € N then t
else f endif

DEFINITION:
s-data-seg-body-restrictedp (flag, expr)
= if flag = ’list
then if listp (expr)
then s-data-seg-body-restrictedp (t, car (expr))
A s-data-seg-body-restrictedp (’list, cdr (expr))
else t endif
elseif listp (expr)
then if (car (expr) = S-TEMP-FETCH)
V' (car (expr) = S-TEMP-EVAL)
vV (car (expr) = S-TEMP-TEST)
then s-data-seg-body-restrictedp (t, cadr (expr))
elseif car (ezpr) = ’quote
then s-restricted-objectp (t, cadr (expr))
else s-data-seg-body-restrictedp (’1ist, cdr (expr)) endif
else t endif

DEFINITION:
s-data-seg-list-restrictedp (progs)
= if listp (progs)
then s-data-seg-body-restrictedp (t, s-body (car (progs)))
A s-data-seg-list-restrictedp (cdr (progs))
else t endif

DEFINITION:
s-init-data-seg-restrictedp (params)
= if listp (params)
then s-restricted-objectp (t, cdar (params))
A s-init-data-seg-restrictedp (cdr (params))
else t endif

DEFINITION:

s-restrictedp (progs, params)

= (s-init-data-seg-restrictedp (params)
A s-data-seg-list-restrictedp (progs))

THEOREM: Ir-minimum-heapp-not-equal-length-1
Ir-minimum-heapp (data-seg)

— (length (cdr (assoc (identity (LR-HEAP-NAME), data-seg))) # 1)

THEOREM: Ir-count-free-nodes-at-most
length (node-list) £ lr-count-free-nodes (addr, node-list, data-seg)

248

THEOREM: Ir-proper-free-listp-lr-count-free-nodes-max-addr
(Ir-proper-free-listp (data-seg)
A definedp (LR-HEAP-NAME, data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg))
Ir-proper-p-areasp (data-seg)
(length (cdr (assoc (LR-HEAP-NAME, data-seg)))
= (1 + offset (fetch (LR-FP-ADDR, data-seg))))
(maz-addr = lr-max-node (data-seg)))
(Ir-count-free-nodes (fetch (identity (LR-FP-ADDR), data-seg),
Ir-free-list-nodes (maz-addr, data-seg),
data-seq)

> > >

L >

= 0

EVENT: Disable Ir-count-free-nodes-at-most.

THEOREM: Ir-count-free-nodes-deposit-a-list-lr-nodep
((type (addrl) = ’addr)

A (cddr (addrl) = nil)
A listp (addrl)
A adpp (untag (addrl), data-seg)
A Ir-boundary-nodep (addr1)
A (area-name (addrl) = LR-HEAP-NAME)
A (type (ref-count) = ’nat)
A (untag (ref-count) € N)
A Ir-boundary-nodep (Ir-max-node (data-seg))
A adpp (untag (Ir-max-node (data-seg)), data-seg)
A lr-node-listp (node-list, data-seq)
A (addrl & node-list))
— (Ir-count-free-nodes (addr2,
node-list,
deposit-a-list (list (z, ref-count, y, z),
addrl,
data-seg))

= Ir-count-free-nodes (addr2, delete (addr1, node-list), data-seg))

THEOREM: Ir-proper-free-listp-member-free-addr-Ir-free-list-nodes
(adpp (untag (Ir-max-node (data-seg)), data-seq)
A Ir-boundary-nodep (Ir-max-node (data-seg))
A (maz-addr = Ir-max-node (data-seg))
A (offset (fetch (LR-FP-ADDR, data-seg))
< (length (cdr (assoc (LR-HEAP-NAME, data-seg))) — 1))
A lr-proper-free-listp (data-seg))
— (fetch (identity (LR-FP-ADDR), data-seg)
€ Ir-free-list-nodes (maz-addr, data-seg))

249

THEOREM: Ir-count-free-nodes-Ir-compile-quote-s-heap-reqgs-helpl
(adpp (untag (Ir-max-node (data-seg)), data-seq)
A Ir-boundary-nodep (Ir-max-node (data-seg))
A (offset (fetch (LR-FP-ADDR, data-seg))
< (length (cdr (assoc (LR-HEAP-NAME, data-seg))) — 1))
lr-proper-free-listp (data-seq)
Ir-proper-p-areasp (data-seg)
(maz-addr = lIr-max-node (data-seg)))
(Ir-count-free-nodes (fetch (identity (LR-FP-ADDR), data-seg),
Ir-free-list-nodes (maz-addr, data-seg),
data-seq)
= (1 + lr-count-free-nodes (fetch (add-addr (fetch (identity (LR-FP-ADDR),
data-seq),
identity (LR-REF-COUNT-OFFSET)),

b>>>

data-seg),
delete (fetch (identity (LR-FP-ADDR),
data-seq),
Ir-free-list-nodes (maz-addr,
data-seg)),
data-seq)))

THEOREM: Ir-proper-free-listp-lr-count-free-nodes-max-addr-alt
(Ir-proper-free-listp (data-seg)
A definedp (LR-HEAP-NAME, data-seqg)

A Ir-boundary-nodep (Ir-max-node (data-seg))
A lr-proper-p-areasp (data-seq)
A (offset (fetch (LR-FP-ADDR, data-seg))
£ (length (cdr (assoc (LR-HEAP-NAME, data-seg))) — 1))
A (maz-addr = Ir-max-node (data-seg)))
— (Ir-count-free-nodes (fetch (identity (LR-FP-ADDR), data-seg),

Ir-free-list-nodes (maz-addr, data-seg),
data-seg)

THEOREM: s-heap-regs-object-t
((flag # *1ist) A (— definedp (t, table)))
— (s-heap-reqs (flag, t, data-seg, table) = 1)

THEOREM: lessp-Ir-boundary-offsetp-nodep-plus-node-size-fact-1
(Ir-boundary-offsetp (offset) A Ir-boundary-nodep (addr))
— ((offset < (identity (LR-NODE-SIZE) + offset (addr)))

= (offset (addr) &£ offset))

THEOREM: Ir-count-free-nodes-Ir-compile-quote-s-heap-reqs
(Ir-proper-free-listp (data-seg)

250

Ir-proper-p-areasp (data-seg)
definedp (LR-HEAP-NAME, data-seq)
Ir-minimum-heapp (data-seg)
Ir-boundary-nodep (Ir-max-node (data-seg))
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),

> > > > >

data-seq)
£ s-heap-regs (flag, object, data-seg, table)))
— ((Ir-count-free-nodes (fetch (LR-FP-ADDR,
car (Ir-compile-quote (flag,
object,
data-seg,
table))),
Ir-free-list-nodes (Ir-max-node (data-seg),
car (lr-compile-quote (flag,
object,
data-seg,
table))),
car (Ir-compile-quote (flag, object, data-seg, table)))
+ s-heap-regs (flag, object, data-seg, table))
= Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),
data-seq))

THEOREM: Ir-compile-quote-lr-good-pointerp-tablep-help-1

let ccar be lr-compile-quote (t, object, data-seg, table)

in

(le-proper-free-listp (data-seq)

A lr-proper-p-areasp (data-seg)
definedp (LR-HEAP-NAME, data-seg)
Ir-boundary-nodep (Ir-max-node (data-seg))
Ir-minimum-heapp (data-seg)
(Ir-count-free-nodes (fetch (identity (LR-FP-ADDR), data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),

> > > >

data-seq)
£ (s-heap-reqgs (t, object, data-seg, table) + x)))
— (Ir-count-free-nodes (fetch (identity (LR-FP-ADDR), car (ccar)),
Ir-free-list-nodes (Ir-max-node (data-seg),
car (ccar)),

car (ccar))
£ z) endlet

251

THEOREM: s-heap-reqs-flag-list-nil-opener
s-heap-reqs (’1ist, nil, data-seg, table) = 0

THEOREM: Ir-compile-quote-flag-list-nil-opener
Ir-compile-quote (’ 1ist, nil, data-seg, table) = cons (data-seg, table)

THEOREM: s-heap-reqs-flag-list-cons-opener
s-heap-reqs (’1list, cons(z, y), data-seg, table)
= (s-heap-reqs (t, z, data-seg, table)
+ s-heap-regs (’list,
Y,
car (Ir-compile-quote (t, =, data-seg, table)),
cdr (Ir-compile-quote (t, z, data-seg, table))))

THEOREM: Ir-compile-quote-flag-list-cons-opener
Ir-compile-quote (’ 1ist, cons (z, y), data-seg, table)
= lr-compile-quote (’list,
Y,
car (lr-compile-quote (t, z, data-seg, table)),
cdr (Ir-compile-quote (t, z, data-seg, table)))

THEOREM: Ir-compile-quote-lr-good-pointerp-tablep-help-2
(Ir-proper-free-listp (data-seq)
A lr-proper-p-areasp (data-seq)
definedp (LR-HEAP-NAME, data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg))
Ir-minimum-heapp (data-seg)
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),

A
A
A
A\

data-seq)
0)
A (Ir-count-free-nodes (fetch (add-addr (fetch (LR-FP-ADDR, data-seg),
LR-REF-COUNT-OFFSET),
data-seg),
delete (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg)),
data-seq)
£ s-heap-reqgs (’list,
list (car (object), cdr (object)),
data-seq,
table))
A listp (object))
— ((length (cdr (assoc (identity (LR-HEAP-NAME), data-seg))) — 1)

252

&£ (offset (fetch (identity (LR-FP-ADDR),
car (lr-compile-quote (’list,
list (car (object),
cdr (object)),
data-seq,
table))))
+ identity (LR-NODE-SIZE)))

EVENT: Disable s-heap-reqs-flag-list-cons-opener.
EVENT: Disable Ir-compile-quote-flag-list-cons-opener.

THEOREM: lr-compile-quote-lr-good-pointerp-tablep-help-3
(Ir-proper-free-listp (data-seg)
A lr-proper-p-areasp (data-seq)
definedp (LR-HEAP-NAME, data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg))
Ir-minimum-heapp (data-seq)
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),

> > > >

data-seq)
% 1))
— ((length (cdr (assoc (identity (LR-HEAP-NAME), data-seg))) — 1)
&£ (offset (fetch (identity (LR-FP-ADDR), data-seg))
+ identity (LR-NODE-SIZE)))

THEOREM: Ir-compile-quote-lr-good-pointerp-tablep
(Ir-proper-free-listp (data-seg)

A lr-proper-p-areasp (data-seq)
definedp (LR-HEAP-NAME, data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg))
Ir-minimum-heapp (data-seq)
Ir-good-pointerp-tablep (table, data-seq)
s-restricted-objectp (flag, object)
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),

Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),

> > > > > >

data-seq)
£ s-heap-regs (flag, object, data-seg, table))
definedp (f, table))
Ir-good-pointerp-tablep (cdr (lr-compile-quote (flag,
object,

L >

253

data-seg,
table)),
car (lr-compile-quote (flag,
object,
data-seq,
table)))

THEOREM: Ir-nodep-car-lr-compile-quote
Ir-nodep (addr, data-seg)
— lr-nodep (addr, car (Ir-compile-quote (flag, object, data-seg, table)))

THEOREM: Ir-proper-free-listp-opener-2-lr-nodep
(Ir-proper-free-listp (data-seg)
A adpp (untag (Ir-max-node (data-seg)), data-seq)
A Ir-boundary-nodep (Ir-max-node (data-seg))
A (addr = fetch (identity (LR-FP-ADDR), data-seg)))
— lr-nodep (addr, data-seg)

THEOREM: Ir-nodep-deposit-a-list
Ir-nodep (addri, data-seg)
— Ir-nodep (addr!, deposit-a-list (list, addr2, data-seg))

DEFINITION:
induct-hint-16 (object, list, data-seg, table)
= if list ~ nil then t
elseif object = car (list) then t
else induct-hint-16 (object,
cdr (list),
car (Ir-compile-quote (t,
car (list),
data-seq,
table)),
cdr (Ir-compile-quote (t,
car (list),
data-seq,
table))) endif

THEOREM: definedp-object-cdr-Ir-compile-quote-list
(object € list)
— definedp (object, cdr (Ir-compile-quote (’1ist, list, data-seg, table)))

THEOREM: Ir-good-pointerp-cdr-assoc-car-lr-compile-quote-list
(Ir-proper-free-listp (data-seg)

A lr-proper-p-areasp (data-seg)

A definedp (LR-HEAP-NAME, data-seqg)

254

Ir-boundary-nodep (Ir-max-node (data-seg))
Ir-minimum-heapp (data-seg)
Ir-good-pointerp-tablep (table, data-seq)
s-restricted-objectp (*1ist, object-list)
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),

> > > > >

data-seq)
£ 0)
A ((Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),
data-seg) — 1)
£ s-heap-reqs (’list, object-list, data-seg, table))
definedp (f, table)
(object € object-list))
Ir-good-pointerp (cdr (assoc (object,
cdr (Ir-compile-quote (* 1ist,
object-list,
data-seq,
table)))).

> >

car (Ir-compile-quote (’list,
object-list,
data-seq,
table)))

THEOREM: Ir-good-pointerp-deposit-non-ref-not-good-pointerp
(Ir-boundary-nodep (addr)

adpp (untag (addr), data-seg)

(area-name (addr) = ’heap)

(type (addr) = ’addr)

(cddr (addr) = nil)

listp (addr)

(n < LR-NODE-SIZE)

(n # LR-REF-COUNT-OFFSET)

definedp (LR-HEAP-NAME, data-seq)

Ir-good-pointerp (good-pointer, data-seq)

(type (fetch (add-addr (addr, LR-REF-COUNT-OFFSET), data-seg)) # ’nat))
Ir-good-pointerp (good-pointer, deposit (z, add-addr (addr, n), data-seg))

l>>s>>>>>>>>

THEOREM: Ir-good-pointerp-deposit-ref-count-not-good-pointerp
(Ir-boundary-nodep (addr)

A adpp (untag (addr), data-seq)

A (area-name (addr) = ’*heap)

255

l>>s>>>>>

(type (addr) = ’addr)
(cddr (addr) = nil)
listp (addr)
(type (z) = ’nat)
definedp (LR-HEAP-NAME, data-seq)
Ir-good-pointerp (good-pointer, data-seq)
(type (fetch (add-addr (addr, LR-REF-COUNT-OFFSET), data-seg)) # ’nat))
lr-good-pointerp (good-pointer,
deposit (z,
add-addr (addr, identity (LR-REF-COUNT-OFFSET)),
data-seg))

THEOREM: Ir-good-pointerp-deposit-non-add-addr-not-good-pointerp
(Ir-boundary-nodep (addr)

l>>s>>>>>>

TH
((

A
A
A
A
A
A
A

l>>>>>>>

adpp (untag (addr), data-seg)

(area-name (addr) = ’heap)

(type (addr) = ’addr)

(cddr (addr) = nil)

listp (addr)

definedp (LR-HEAP-NAME, data-seq)

Ir-good-pointerp (good-pointer, data-seg)

(type (fetch (add-addr (addr, LR-REF-COUNT-OFFSET), data-seg)) # ’nat))
Ir-good-pointerp (good-pointer, deposit (x, addr, data-seq))

EOREM: Ir-check-numberp-addrp-deposit-a-list-cons-same-addr
type (addr) = ’addr)

(cddr (addr) = nil)
listp (addr)
adpp (untag (addr), data-seg)
Ir-boundary-nodep (addr)
(area-name (addr) = ’heap)
(offset (addr) £ (LR-NODE-SIZE + offset (LR-F-ADDR)))
(type (fetch (add-addr (addr, LR-REF-COUNT-OFFSET), data-seg))
= ’addr)
Ir-good-pointerp (good-pointer, data-seg)
definedp (’heap, data-seq)
Ir-proper-p-areasp (data-seg)
(type (ref-count) = ’nat)
(untag (ref-count) € N)
(type (tagged-number) = ’nat)
(untag (tagged-number) € N))
lr-check-numberp-addrp (addr,
deposit-a-list (list (identity (tag (’nat,
LR-ADD1-TAG)),

256

ref-count,
tagged-number,
good-pointer),
addr,
data-seg))

THEOREM: Ir-proper-heapp-nodep-deposit-a-list-numberp
(Ir-nodep (maz-addr, data-seq)

I>>>>>>>>> >

Ir-nodep (addr, data-seg)
Ir-proper-heapp-nodep (maz-addr, data-seg)
(type (fetch (add-addr (addr, LR-REF-COUNT-OFFSET), data-seg)) # ’nat)
Ir-good-pointerp (good-pointer, data-seq)
adpp (untag (Ir-max-node (data-seg)), data-seg)
Ir-proper-p-areasp (data-seg)
(type (ref-count) = ’nat)
(untag (ref-count) € N)
(type (tagged-number) = ’nat)
(untag (tagged-number) € N))
Ir-proper-heapp-nodep (maz-addr,
deposit-a-list (list (identity (tag (’nat,
LR-ADD1-TAG)),
ref-count,
tagged-number,
good-pointer),
addr,
data-seq))

THEOREM: Ir-proper-heapp2-deposit-a-list-numberp
(Ir-nodep (maz-addr, data-seg)

l>>>>>>>>>>

Ir-nodep (addr, data-seg)

lr-proper-heapp2 (maz-addr, data-seq)

(type (fetch (add-addr (addr, LR-REF-COUNT-OFFSET), data-seg)) # ’nat)

Ir-good-pointerp (good-pointer, data-seg)

adpp (untag (Ir-max-node (data-seg)), data-seq)

Ir-proper-p-areasp (data-seg)

(type (tag) = ’nat)

(untag (tag) € N)

(type (tagged-number) = ’nat)

(untag (tagged-number) € N))

Ir-proper-heapp2 (maz-addr,

deposit-a-list (list (identity (tag (’nat, LR-ADD1-TAG)),

tag,
tagged-number,
good-pointer),

257

addr,
data-seq))

THEOREM: Ir-good-pointerp-lr-undef-addr
(Ir-minimum-heapp (data-seq)

N
N
A

—

Ir-proper-p-areasp (data-seg)

Ir-proper-heapp?2 (Ir-max-node (data-seg), data-seq)
Ir-nodep (Ir-max-node (data-seg), data-seg))
lr-good-pointerp (identity (LR-UNDEF-ADDR), data-seq)

THEOREM: Ir-proper-heapp-nodep-deposit-a-list-truep
(Ir-nodep (maz-addr, data-seq)

l>>>>>>>>>

Ir-nodep (addr, data-seq)
Ir-proper-heapp-nodep (maz-addr, data-seq)
(type (fetch (add-addr (addr, LR-REF-COUNT-OFFSET), data-seg)) # ’nat)
Ir-good-pointerp (good-pointer! , data-seq)
Ir-good-pointerp (good-pointer2, data-seq)
adpp (untag (Ir-max-node (data-seg)), data-seq)
Ir-proper-p-areasp (data-seg)
(type (ref-count) = ’nat)
(untag (ref-count) € N))
lr-proper-heapp-nodep (maz-addr,
deposit-a-list (list (identity (tag (’nat,
LR-TRUE-TAG)),
ref-count,
good-pointerl ,
good-pointer2),
addr,
data-seq))

THEOREM: Ir-proper-heapp2-deposit-a-list-truep
(Ir-nodep (maz-addr, data-seg)

l>>>>>>>>>

Ir-nodep (addr, data-seg)

Ir-proper-heapp2 (maz-addr, data-seg)

(type (fetch (add-addr (addr, LR-REF-COUNT-OFFSET), data-seg)) # ’nat)

Ir-good-pointerp (good-pointer!, data-seq)

Ir-good-pointerp (good-pointer2, data-seg)

adpp (untag (Ir-max-node (data-seg)), data-seq)

Ir-proper-p-areasp (data-seg)

(type (tag) = ’nat)

(untag (tag) € N))

Ir-proper-heapp2 (maz-addr,

deposit-a-list (list (identity (tag (’nat, LR-TRUE-TAG)),

tag,
good-pointerl ,

258

good-pointer2),
addr,
data-seq))

THEOREM: Ir-compile-quote-preserves-Ir-proper-heapp2
(Ir-proper-free-listp (data-seg)

A Ir-proper-p-areasp (data-seg)
Ir-nodep (Ir-max-node (data-seg), data-seg)
definedp (LR-HEAP-NAME, data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg))
Ir-good-pointerp-tablep (table, data-seg)
s-restricted-objectp (flag, object)
Ir-minimum-heapp (data-seg)
Ir-proper-heapp?2 (Ir-max-node (data-seg), data-seg)
definedp (f, table)
(lr-count-free-nodes (fetch (LR-FP-ADDR, data-seg),

Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),

>>>>>>> > >

data-seq)
£ s-heap-regs (flag, object, data-seg, table)))
— lr-proper-heapp?2 (Ir-max-node (data-seg),
car (Ir-compile-quote (flag, object, data-seg, table)))

THEOREM: plistp-pair-formals-with-addresses
plistp (pair-formals-with-addresses (formals, table))

THEOREM: strip-cars-pair-formals-with-addresses
strip-cars (pair-formals-with-addresses (formals, table))
= strip-cars (formals)

THEOREM: strip-cars-lr-make-initial-temps
strip-cars (lr-make-initial-temps (temp-vars)) = plist (temp-vars)

THEOREM: Ir-s-similar-const-table-implies-lr-good-pointerp-tablep
Ir-s-similar-const-table (table, data-seq)
— Ir-good-pointerp-tablep (table, data-seq)

THEOREM: Ir-s-similar-const-table-deposit-cons
(Ir-proper-heapp (data-seg)
A Ir-s-similar-const-table (table, data-seg)
A lIr-proper-p-areasp (data-seg))
— Ir-s-similar-const-table (table,
deposit-a-list (list (z0, z1, 22, z3),
fetch (identity (LR-FP-ADDR),
data-seg),
data-seg))

259

THEOREM: Ir-valp-deposit-a-list-cons-cons
(listp (object)
Ir-proper-p-areasp (data-seg)
Ir-proper-heapp (data-seg)
Ir-s-similar-const-table (table, data-seq)
(type (ref-count) = ’nat)
(untag (ref-count) € N)
definedp (car (object), table)
definedp (cdr (object), table)
definedp (LR-HEAP-NAME, data-seg)
(addr = fetch (identity (LR-FP-ADDR), data-seq)))
Ir-valp (object,
addr,
deposit-a-list (list (identity (tag (’nat, LR-CONS-TAG)),
ref-count,
cdr (assoc (car (object), table)),
cdr (assoc (cdr (object), table))),
addr,
data-seq))

l>>>>>>>>>

THEOREM: Ir-valp-deposit-a-list-cons-numberp
((object € N)
Ir-proper-p-areasp (data-seg)
Ir-proper-heapp (data-seqg)
(type (ref-count) = ’nat)
(untag (ref-count) € N)
definedp (LR-HEAP-NAME, data-seg)
(addr = fetch (identity (LR-FP-ADDR), data-seq)))
Ir-valp (object,
addr,
deposit-a-list (list (identity (tag (’nat, LR-ADD1-TAG)),
ref-count,
tag (’nat, object),
identity (LR-UNDEF-ADDR)),
addr,
data-seg))

I>s>>>>>

THEOREM: Ir-compile-quote-preserves-lr-valp
(Ir-proper-p-areasp (data-seg)

A Ir-good-pointerp-tablep (table, data-seg)
s-restricted-objectp (flag, object)
lr-minimum-heapp (data-seqg)

Ir-nodep (Ir-max-node (data-seg), data-seg)
Ir-proper-free-listp (data-seq)

> > > >

260

A Ir-proper-heapp2 (Ir-max-node (data-seq), data-seqg)
A definedp (f, table)
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),
data-seq)
£ s-heap-regs (flag, object, data-seg, table))
A lr-valp (value, addr, data-seg))
— lr-valp (value, addr, car (Ir-compile-quote (flag, object, data-seg, table)))

THEOREM: Ir-compile-quote-preserves-Ir-proper-heapp
(Ir-proper-p-areasp (data-seg)
A Ir-good-pointerp-tablep (table, data-seg)
A lr-proper-heapp (data-seg)
A s-restricted-objectp (flag, object)
A definedp (f, table)
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),
data-seq)
&£ s-heap-regs (flag, object, data-seg, table)))
— lr-proper-heapp (car (Ir-compile-quote (flag, object, data-seg, table)))

THEOREM: Ir-valp-deposit-a-list-cons-truep
(Ir-proper-p-areasp (data-seg)
Ir-proper-heapp (data-seg)
(type (ref-count) = ’nat)
(untag (ref-count) € N)
definedp (LR-HEAP-NAME, data-seq)
(addr = fetch (identity (LR-FP-ADDR), data-seq)))
Ir-valp (t,
addr,
deposit-a-list (list (identity (tag (’nat, LR-TRUE-TAG)),
ref-count,
identity (LR-UNDEF-ADDR),
identity (LR-UNDEF-ADDR)),
addr,
data-seq))

L>>>>>

THEOREM: lIr-s-similar-const-table-lr-compile-quote
(Ir-proper-p-areasp (data-seq)
A lr-proper-heapp (data-seg)
A Ir-s-similar-const-table (table, data-seg)
A s-restricted-objectp (flag, object)
A definedp (£, table)

261

A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),
data-seq)
£ s-heap-regs (flag, object, data-seg, table)))

— lr-g-similar-const-table (cdr (Ir-compile-quote (flag,
object,
data-seg,
table)),

car (Ir-compile-quote (flag,
object,
data-seg,
table)))

THEOREM: p-objectp-cdr-assoc-car-lr-compile-quote
(Ir-proper-p-areasp (data-seq)
A lr-proper-heapp (data-seg)
Ir-s-similar-const-table (table, data-seq)
s-restricted-objectp (flag, object)
(word-size £ s-ws-reqs (flag, object, data-seg, table))
definedp (f, table)
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),

> > > > >

data-seq)
£ s-heap-regs (flag, object, data-seq, table))
(flag # *1ist))
p-objectp (cdr (assoc (object,
cdr (Ir-compile-quote (flag, object, data-seg, table)))),
p-state (pc,
ctrl-stk,
temp-stk,
prog-seg,
car (Ir-compile-quote (flag, object, data-seg, table)),
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

L >

THEOREM: Ir-count-free-nodes-s-init-heap-reqs
let ccar be lIr-compile-quote (t, object, data-seq, table)
in
(lr-proper-p-areasp (data-seq)
A Ir-proper-heapp (data-seg)

262

A Ir-s-similar-const-table (table, data-seq)
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),
data-seg)
£ (s-heap-reqs (t, object, data-seg, table)
+ s-init-heap-reqs (params, car (ccar), cdr (ccar)))))
— (lr-count-free-nodes (fetch (identity (LR-FP-ADDR), car (ccar)),
Ir-free-list-nodes (Ir-max-node (data-seg),
car (ccar)),
car (ccar))
&£ s-init-heap-reqs (params, car (ccar), cdr (ccar))) endlet

THEOREM: all-p-objects-lookup-strip-cdrs-lr-init-data-seg-table
(Ir-proper-p-areasp (data-seq)
A lr-proper-heapp (data-seg)
Ir-s-similar-const-table (table, data-seg)
definedp (f, table)
definedp (t, table)
s-init-data-seg-restrictedp (params)
(word-size ¢ s-init-ws-reqs (params, data-seg, table))
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),

> > > > > >

data-seq)
&£ s-init-heap-reqs (params, data-seg, table)))
— all-p-objects-lookup (strip-cdrs (params),
cdr (Ir-init-data-seg-table (params, data-seg, table)),

p-state (pe,
ctrl-stk,
temp-stk,
prog-seg,
car (lr-init-data-seg-table (params,
data-seq,
table)),

maz-ctrl-stk-size,
maz-temp-stk-size,
word-size,

psw))

THEOREM: Ir-minimum-heapp-Ir-init-data-seg
(heap-size £ 4) — lr-minimum-heapp (lr-init-data-seg (heap-size))

THEOREM: adpp-cons-heap-name-node-size-lr-init-data-seg
(heap-size £ 2)

263

— adpp (cons (identity (LR-HEAP-NAME), identity (LR-NODE-SIZE)
x heap-size),
Ir-init-data-seg (heap-size))

THEOREM: Ir-check-f-addrp-lr-undef-addr-Ir-init-data-seg
((offset (addr) = identity (offset (LR-UNDEF-ADDR)))
(type (addr) = ’addr)

(cddr (addr) = nil)

listp (addr)

(area-name (addr) = LR-HEAP-NAME)

adpp (untag (addr), data-seq))

Ir-check-undef-addrp (addr, data-seg)

L>>>>>

EOREM: fetch-offset-1r-t-addr-ref-count-offset-compile-quote-t
type (addr) = ’addr)
(cddr (addr) = nil)
listp (addr)
(area-name (addr) = LR-HEAP-NAME)
adpp (untag (addr), data-seq)
Ir-boundary-nodep (addr)
(— definedp (t, table))
Ir-proper-free-listp (data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg))
(offset (fetch (LR-FP-ADDR, data-seg)) < LR-MINIMUM-HEAP-SIZE)
Ir-proper-p-areasp (data-seg)
((length (cdr (assoc (LR-HEAP-NAME, data-seg))) — 1)
(offset (addr) + LR-NODE-SIZE)))
— (fetch (add-addr (addr, identity (LR-REF-COUNT-OFFSET)),
car (Ir-compile-quote (t, t, data-seg, table)))
= if offset (addr) = offset (fetch (LR-FP-ADDR, data-seg))
then identity (tag (’nat, 1))
else fetch (add-addr (addr, identity (LR-REF-COUNT-OFFSET)),
data-seg) endif)

T
(

>>>>>>>>>>>7 T

THEOREM: definedp-cdr-Ir-compile-quote-t
definedp (z, cdr (Ir-compile-quote (t, t, data-seg, table)))
= ((z =t) V definedp (z, table))

THEOREM: fetch-lr-fp-addr-compile-quote-t

((— definedp (t, table))
lr-proper-free-listp (data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg))
adpp (untag (Ir-max-node (data-seg)), data-seq)

((length (value (LR-HEAP-NAME, data-seg)) — 1)

&£ (offset (fetch (LR-FP-ADDR, data-seq)) + LR-NODE-SIZE))

> > > >

264

A Ir-proper-p-areasp (data-seg))
— (fetch (identity (LR-FP-ADDR), car (lr-compile-quote (t, t, data-seg, table)))
= fetch (add-addr (fetch (identity (LR-FP-ADDR), data-seg),
identity (LR-REF-COUNT-OFFSET)),
data-seg))

THEOREM: numberp-lessp-4-not-3-not-2-not-1-must-be-0

((ceN)A(c#3)AN(c£2)N(c£1) A (c<4))

— (c=0)

EVENT: Disable fetch-offset-lr-t-addr-ref-count-offset-compile-quote-t.

THEOREM: lessp-minimum-heap-size-not-0-f-t-must-be-undef-alt-1-help
(Ir-boundary-offsetp (offset)

(offset € N)

(offset # offset (LR-UNDEF-ADDR))

(offset # offset (LR-F-ADDR))

(offset # offset (LR-T-ADDR))

(offset # offset (LR-0-ADDR)))

(offset £ LR-MINIMUM-HEAP-SIZE)

I >>>>>

EOREM: lessp-minimum-heap-size-not-0-f-t-must-be-undef-alt-1
offset (addr) < LR-MINIMUM-HEAP-SIZE)
(type (addr) = ’>addr)
(cddr (addr) = nil)
listp (addr)
(area-name (addr) = ’heap)
adpp (untag (addr), Ir-init-data-seg (heap-size))
Ir-boundary-nodep (addr)
(offset (addr) # offset (LR-0-ADDR))
(offset (addr) # offset (LR-T-ADDR))
(offset (addr) # offset (LR-F-ADDR)))
(fetch (addr, lr-init-data-seg (heap-size))
= identity (tag (’nat, LR-UNDEFINED-TAG)))

~ 3
o =T

l>>>>>>>>>

THEOREM: lessp-Ir-boundary-offsetp-3
(Ir-boundary-offsetp (offset) A (offset € N))

— ((offset < 3) = (offset = 0))

THEOREM: numberp-lessp-2-not-1-must-be-0
((ceN)A(c£1) A (c<?2)—(c=0)

THEOREM: not-lessp-difference-Ir-boundary-offsetp-fact
((offset € N) A (offset < (LR-NODE-SIZE + offset (LR-F-ADDR))))
— (lr-boundary-offsetp (offset)

265

= ((offset = identity (offset (LR-F-ADDR)))
V' (offset = identity (offset (LR-UNDEF-ADDR)))))

THEOREM: fetch-ref-count-lr-init-data-seg-free-list
(((LR-NODE-SIZE * heap-size) £ (offset (addr) + LR-NODE-SIZE))
(type (addr) = ’addr)
(cddr (addr) = nil)
listp (addr)
(area-name (addr) = LR-HEAP-NAME)
listp (untag (addr))
Ir-boundary-nodep (addr)
(heap-size £ 2))
(fetch (add-addr (addr, identity (LR-REF-COUNT-OFFSET)),
Ir-init-data-seg (heap-size))
= if offset (LR-F-ADDR) < offset (addr)
then add-addr (addr, identity (LR-NODE-SIZE))
else identity (tag (’nat, 1)) endif)

l>>>>>>>

THEOREM: lessp-offset-lr-init-data-seg-adpp-untag-lessp-offset
(adpp (untag (addr), lr-init-data-seg (heap-size))
Ir-boundary-offsetp (offset)

Ir-boundary-offsetp (offset (addr))

(offset < offset (addr))

(area-name (addr) = LR-HEAP-NAME)

(heap-size £ 2))

((offset < (identity (LR-NODE-SIZE) * heap-size)) = t)

l>>>>>

THEOREM: lr-count-free-nodes-Ir-all-nodes
(Ir-boundary-nodep (addr)
(area-name (addr) = LR-HEAP-NAME)
listp (untag (addr))
(offset (addr) € N)
(type (addr) = ’addr)
(cddr (addr) = nil)
listp (addr)
Ir-boundary-nodep (maz-addr)
(area-name (maz-addr) = LR-HEAP-NAME)
adpp (untag (maz-addr), lr-init-data-seg (heap-size))
(type (maz-addr) = ’addr)
(cddr (maz-addr) = nil)
listp (maz-addr)
(offset (LR-F-ADDR) < offset (addr))
(heap-size £ 2))
(Ir-count-free-nodes (addr,
Ir-all-nodes (offset (addr), maz-addr),

I>>>>>>>>>>>>> >

266

Ir-init-data-seg (heap-size))
= length (Ir-all-nodes (offset (addr), maz-addr)))

THEOREM: same-signature-car-lr-init-data-seg-table-help-1
let comp-obj be Ir-compile-quote (t, object, data-seg, table)
in
(same-signature (car (comp-0bj),
car (Ir-init-data-seg-table (params,
car (comp-obj),
cdr (comp-0bj))))
Ir-proper-free-listp (data-seg)
Ir-proper-p-areasp (data-seg)
definedp (LR-HEAP-NAME, data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg)))
same-signature (data-seg,
car (Ir-init-data-seg-table (params,
car (comp-obyj),
cdr (comp-o0bj)))) endlet

>>>>

THEOREM: same-signature-car-lr-init-data-seg-table
(Ir-proper-free-listp (data-seg)
A Ir-proper-p-areasp (data-seg)
A definedp (LR-HEAP-NAME, data-seg)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— same-signature (data-seg,
car (Ir-init-data-seg-table (params, data-seg, table)))

THEOREM: Ir-max-node-car-lr-init-data-seg-table
(Ir-proper-free-listp (data-seg)
A lr-proper-p-areasp (data-seg)
A definedp (LR-HEAP-NAME, data-seg)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— (Ir-max-node (car (Ir-init-data-seg-table (params, data-seg, table)))
= lr-max-node (data-seq))

THEOREM: s-heap-regs-object-0
((flag # >1ist) A (— definedp (0, table)))
— (s-heap-reqs (flag, 0, data-seg, table) = 1)

THEOREM: Ir-free-list-nodes-deposit-0
((type (maz-addr) = ’>addr)

(cddr (maz-addr) = nil)

listp (maz-addr)

adpp (untag (maz-addr), data-seq)

Ir-boundary-nodep (maz-addr)

> > > >

267

>>> > > > >

(area-name (maz-addr) = LR-HEAP-NAME)
(= definedp (0, table))
Ir-proper-free-listp (data-seq)
adpp (untag (Ir-max-node (data-seg)), data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg))
Ir-proper-p-areasp (data-seg)
((length (cdr (assoc (LR-HEAP-NAME, data-seg))) — 1)
&£ (offset (fetch (LR-FP-ADDR, data-seg)) + LR-NODE-SIZE)))
(Ir-free-list-nodes (maz-addr,
car (Ir-compile-quote (t, 0, data-seg, table)))
= Ir-free-list-nodes (max-addr,
deposit (identity (tag (’nat, 1)),
add-addr (fetch (identity (LR-FP-ADDR),
data-seq),
identity (LR-REF-COUNT-OFFSET)),
data-seg)))

THEOREM: Ir-free-list-nodes-deposit-t
((type (maz-addr) = ’addr)

>>>>>>>>> > >

(cddr (maz-addr) = nil)
listp (maz-addr)
adpp (untag (max-addr), data-seq)
Ir-boundary-nodep (maz-addr)
(area-name (maz-addr) = LR-HEAP-NAME)
(— definedp (t, table))
Ir-proper-free-listp (data-seq)
adpp (untag (Ir-max-node (data-seg)), data-seg)
Ir-boundary-nodep (Ir-max-node (data-seg))
Ir-proper-p-areasp (data-seg)
((length (cdr (assoc (LR-HEAP-NAME, data-seg))) — 1)
&£ (offset (fetch (LR-FP-ADDR, data-seg)) + LR-NODE-SIZE)))
(Ir-free-list-nodes (maz-addr,
car (Ir-compile-quote (t, t, data-seg, table)))
= lr-free-list-nodes (maz-addr,
deposit (identity (tag (’nat, 1)),
add-addr (fetch (identity (LR-FP-ADDR),
data-seq),
identity (LR-REF-COUNT-OFFSET)),
data-seq)))

THEOREM: fetch-lr-fp-addr-compile-quote-0
((— definedp (0, table))

A

((length (cdr (assoc (LR-HEAP-NAME, data-seg))) — 1)
#£ (offset (fetch (LR-FP-ADDR, data-seg)) + LR-NODE-SIZE))

268

A definedp (area-name (LR-FP-ADDR), data-seg))
— (fetch (identity (LR-FP-ADDR),
car (Ir-compile-quote (t, 0, data-seg, table)))
= fetch (add-addr (fetch (identity (LR-FP-ADDR), data-seg),
identity (LR-REF-COUNT-OFFSET)),
data-seg))

THEOREM: fetch-add-addr-ref-count-f-addr-Ir-init-data-seg
(heap-size £ 2)
— (fetch (identity (add-addr (LR-F-ADDR, LR-REF-COUNT-OFFSET)),
Ir-init-data-seg (heap-size))
= identity (tag (’nat, 1)))

THEOREM: Ir-good-pointerp-tablep-f-lr-f-addr-lr-init-data-seg

(heap-size £ 4)

— Ir-good-pointerp-tablep (list (cons (f, identity (LR-F-ADDR))),
Ir-init-data-seg (heap-size))

THEOREM: Ir-proper-heapp-nodep-lr-undef-addr-lr-init-data-seg

(heap-size £ 2)

— lr-proper-heapp-nodep (identity (LR-UNDEF-ADDR),
Ir-init-data-seg (heap-size))

DEFINITION:

induct-hint-2 (offset)

= if offset < offset (add-addr (LR-F-ADDR, LR-NODE-SIZE)) then t
else induct-hint-2 (offset — LR-NODE-SIZE) endif

THEOREM: Ir-boundary-offsetp-difference-Ir-node-size
Ir-boundary-offsetp (offset)
— Ir-boundary-offsetp (offset — identity (LR-NODE-SIZE))

THEOREM: fetch-lr-f-addr-lr-init-data-seg

(heap-size £ 2)

— (fetch (identity (LR-F-ADDR), Ir-init-data-seg (heap-size))
= identity (tag (’nat, LR-FALSE-TAG)))

THEOREM: Ir-proper-heapp-nodep-Ir-init-data-seg-helper
((offset & offset (LR-F-ADDR))
A (heap-size £ 2)
A (offset € N)
A Ir-boundary-nodep (tag (> addr, cons (LR-HEAP-NAME, offset)))
A ((LR-NODE-SIZE * heap-size) £ (offset + LR-NODE-SIZE)))
— lr-proper-heapp-nodep (tag (’addr, cons (identity (LR-HEAP-NAME), offset)),
Ir-init-data-seg (heap-size))

269

THEOREM: Ir-proper-heapp2-lr-init-data-seg-helper

((heap-size £ 2)

A (offset < length (cdr (assoc (LR-HEAP-NAME,

Ir-init-data-seg (heap-size)))))

A (offset € N)

A Ir-boundary-nodep (tag (> addr, cons (LR-HEAP-NAME, offset))))
— lr-proper-heapp2 (tag (?addr, cons (LR-HEAP-NAME, offset)),

Ir-init-data-seg (heap-size))

THEOREM: Ir-proper-heapp2-Ir-init-data-seg
(heap-size £ 2)
— lr-proper-heapp?2 (tag (’addr,
cons (identity (LR-HEAP-NAME),
identity (LR-NODE-SIZE) * heap-size)),
Ir-init-data-seg (heap-size))

THEOREM: fetch-add-addr-ref-count-lr-t-addr-lr-init-data-seg
(heap-size £ 4)
— (fetch (identity (add-addr (LR-T-ADDR, LR-REF-COUNT-OFFSET)),
Ir-init-data-seg (heap-size))
= identity (add-addr (LR-T-ADDR, LR-NODE-SIZE)))

THEOREM: fetch-t-addr-compile-quote-list-init-data-seg
((heap-size £ 4) N (— definedp (t, table)))
— (fetch (identity (LR-T-ADDR),
car (Ir-compile-quote (’1ist,
list (t, 0),
Ir-init-data-seg (heap-size),
table)))
= identity (tag (’nat, LR-TRUE-TAG)))

THEOREM: fetch-ref-count-t-addr-compile-quote-list-init-data-seg
((heap-size £ 4) A (— definedp (t, table)))
— (fetch (identity (add-addr (LR-T-ADDR, LR-REF-COUNT-OFFSET)),
car (Ir-compile-quote (’1list,
list (t, 0),
Ir-init-data-seg (heap-size),
table)))
= identity (tag (’nat, 1)))

THEOREM: fetch-add-addr-ref-count-Ir-0-addr-Ir-init-data-seg
(heap-size £ 4)
— (fetch (identity (add-addr (LR-0-ADDR, LR-REF-COUNT-OFFSET)),
Ir-init-data-seg (heap-size))
= identity (add-addr (LR-0-ADDR, LR-NODE-SIZE)))

270

THEOREM: fetch-0-addr-compile-quote-list-init-data-seg
((heap-size £ 4) N (- definedp (t, table)) A (— definedp (0, table)))
— (fetch (identity (LR-0-ADDR),
car (Ir-compile-quote (’1list,
list (t, 0),
Ir-init-data-seg (heap-size),
table)))
= identity (tag (’nat, LR-ADD1-TAG)))

THEOREM: fetch-ref-count-0-addr-compile-quote-list-init-data-seg
((heap-size £ 4) A (- definedp (t, table)) A (— definedp (0, table)))
— (fetch (identity (add-addr (LR-0-ADDR, LR-REF-COUNT-OFFSET)),
car (lr-compile-quote (’list,

list (t, 0),

Ir-init-data-seg (heap-size),

table)))

= identity (tag (’nat, 1)))

THEOREM: fetch-unbox-nat-0-addr-compile-quote-list-init-data-seg
((heap-size £ 4) N (- definedp (t, table)) A (— definedp (0, table)))
— (fetch (identity (add-addr (LR-0-ADDR, LR-UNBOX-NAT-OFFSET)),

car (Ir-compile-quote (’1ist,
list (t, 0),
Ir-init-data-seg (heap-size),
table)))
= identity (tag (’nat, 0)))

THEOREM: Ir-proper-heapp-lr-compile-quote-ft-lr-init-data-seg
(heap-size £ 4)
— lr-proper-heapp (car (Ir-compile-quote (’1ist,
list (t, 0),
Ir-init-data-seg (heap-size),
list (cons (f, identity (LR-F-ADDR))))))

THEOREM: cdr-compile-quote-list-t0-lr-init-data-seg-cons-table
((— definedp (0, table)) A (= definedp (t, table)) A (heap-size £ 4))
— (cdr (Ir-compile-quote (’1ist,

list (t, 0),

Ir-init-data-seg (heap-size),

table))

= cons (cons (0, identity (LR-0-ADDR)),
cons (cons (t, identity (LR-T-ADDR)), table)))

THEOREM: fetch-f-addr-compile-quote-list-init-data-seg
((heap-size £ 4) A (= definedp (t, table)) A (— definedp (0, table)))

271

— (fetch (identity (LR-F-ADDR),
car (Ir-compile-quote (’1list,
list (t, 0),
Ir-init-data-seg (heap-size),
table)))
= identity (tag (’nat, LR-FALSE-TAG)))

THEOREM: fetch-ref-count-f-addr-compile-quote-list-init-data-seg
((heap-size £ 4) A (- definedp (t, table)) A (— definedp (0, table)))
— (fetch (identity (add-addr (LR-F-ADDR, LR-REF-COUNT-OFFSET)),
car (Ir-compile-quote (’1list,

list (t, 0),

Ir-init-data-seg (heap-size),

table)))

= identity (tag (’nat, 1)))

THEOREM: Ir-s-similar-const-table-compile-quote-t0O-init-data-seg
(heap-size £ 4)
— Ir-s-similar-const-table (cdr (Ir-compile-quote (’1ist,
list (t, 0),
Ir-init-data-seg (heap-size),
list (cons (f,
identity (LR-F-ADDR))))),
car (Ir-compile-quote (’1ist,
list (t, 0),
Ir-init-data-seg (heap-size),
list (cons (f,
identity (LR-F-ADDR))))))

EVENT: Disable cdr-compile-quote-list-t0-lr-init-data-seg-cons-table.

THEOREM: fetch-fp-addr-compile-quote-list-t0-Ir-init-data-seg-cons-table

((— definedp (0, table)) A (- definedp (t, table)) A (heap-size &£ 4))

— (fetch (identity (LR-FP-ADDR),

car (Ir-compile-quote (’1ist,
list (t, 0),
Ir-init-data-seg (heap-size),
table)))
= identity (add-addr (LR-0-ADDR, LR-NODE-SIZE)))

THEOREM: Ir-free-list-nodes-Ir-compile-quote-t0
((— definedp (t, table)) A (— definedp (0, table)) A (heap-size &£ 4))
— (Ir-free-list-nodes (tag (’ addr,

cons (identity (LR-HEAP-NAME),

272

identity (LR-NODE-SIZE) * heap-size)),
car (Ir-compile-quote (’1list,
list (t, 0),
Ir-init-data-seg (heap-size),
table)))
= Ir-all-nodes (identity (LR-NODE-SIZE + offset (LR-0-ADDR)),
tag (> addr,
cons (identity (LR-HEAP-NAME),
identity (LR-NODE-SIZE) * heap-size))))

THEOREM: listp-Ir-all-nodes
listp (Ir-all-nodes (min-offset, maz-addr))

= ((offset (maz-addr) # 0) A (min-offset < offset (maz-addr)))

THEOREM: length-Ir-all-nodes
(Ir-boundary-offsetp (offset) A (offset € N) A Ir-boundary-nodep (addr))
— (length (Ir-all-nodes (offset, addr))

= ((offset (addr) — offset) + identity (LR-NODE-SIZE)))

THEOREM: Ir-count-free-nodes-append-lr-all-nodes-fact
(((LR-NODE-SIZE * heap-size) ¢ LR-MINIMUM-HEAP-SIZE)
A (= definedp (t, table))
A (- definedp (0, table)))
— (Ir-count-free-nodes (identity (add-addr (LR-0-ADDR, LR-NODE-SIZE)),
Ir-all-nodes (identity (LR-MINIMUM-HEAP-SIZE),
tag (’addr,
cons (identity (LR-HEAP-NAME),
identity (LR-NODE-SIZE)
% heap-size))),
car (Ir-compile-quote (’list,
list (, 0),
Ir-init-data-seg (heap-size),
table)))

= (heap-size — LR-NODE-SIZE))

THEOREM: proper-p-alistp-pair-formal-with-addresses

(all-litatoms (strip-cars (params))

s-init-data-seg-restrictedp (params)

(heap-size £ s-total-heap-reqs (s-progs (s), params, heap-size))

(word-size & s-total-ws-regs (s-progs (s), params, heap-size)))

proper-p-alistp (pair-formals-with-addresses (params,

cdr (Ir-data-seg-table (s-progs (s),

params,
heap-size))),

>>>

Ir->p (s->Irl (s,

273

p-state (pe,
ctri-stk,
temp-stk,
prog-seg,
car (Ir-data-seg-table (s-progs (s),
params,
heap-size)),
maz-ctrl-stk-size,
maz-temp-stk-size,
word-size,
psw))
cdr (Ir-data-seg-table (s-progs (s),
params,
heap-size)))))

THEOREM: proper-p-alistp-lr-make-initial-temps
(Ir-proper-heapp (data-seg)
A all-litatoms (temp-vars)
A Ir-proper-p-areasp (data-seg))
— proper-p-alistp (Ir-make-initial-temps (temp-vars),
Ir->p (s->1rl (s,
p-state (pe,
ctrl-stk,
temp-stk,
prog-seg,
data-seg,
maz-ctrl,
mazx-temp,
word-size,
pSﬂ)),
table)))

THEOREM: Ir-minimum-heapp-Ir-data-seg-table-body
(le-proper-free-listp (data-seq)
A lr-proper-p-areasp (data-seg)
A definedp (LR-HEAP-NAME, data-seg)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— (Ir-minimum-heapp (car (Ir-data-seg-table-body (flag, body, data-seg, table)))
= lr-minimum-heapp (data-seg))

THEOREM: Ir-count-free-nodes-Ir-compile-quote-s-heap-regs-flag-t
(le-proper-free-listp (data-seq)
A lr-proper-p-areasp (data-seg)
A definedp (LR-HEAP-NAME, data-seg)
A Ir-minimum-heapp (data-seg)

274

A Ir-boundary-nodep (Ir-max-node (data-seg))
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),
data-seq)
&£ s-heap-regs (t, object, data-seg, table)))
— ((s-heap-reqs (t, object, data-seg, table)
+ Ir-count-free-nodes (fetch (identity (LR-FP-ADDR),
car (Ir-compile-quote (t,
object,
data-seq,
table))),
Ir-free-list-nodes (Ir-max-node (data-seg),
car (lr-compile-quote (t,

object,
data-seq,
table))),
car (Ir-compile-quote (t,
object,
data-seq,
table))))

= Ir-count-free-nodes (fetch (identity (LR-FP-ADDR), data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),
data-seq))

THEOREM: Ir-count-free-nodes-lr-data-seg-table-body-s-heap-reqs
(Ir-proper-free-listp (data-seg)
A lr-proper-p-areasp (data-seg)
A definedp (LR-HEAP-NAME, data-seqg)
A Ir-minimum-heapp (data-seg)
A Ir-boundary-nodep (Ir-max-node (data-seg))
A (lr-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),
data-seq)
£ s-heap-regs-body (flag, body, data-seg, table)))
— ((Ir-count-free-nodes (fetch (LR-FP-ADDR,
car (Ir-data-seg-table-body (flag,
body,
data-seq,
table))),
Ir-free-list-nodes (Ir-max-node (data-seg),
car (Ir-data-seg-table-body (flag,

275

body,

data-seg,
table))),
car (Ir-data-seg-table-body (flag,
body,
data-seg,
table)))

+ s-heap-regs-body (flag, body, data-seg, table))
= lr-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),
data-seq))

THEOREM: Ir-data-seg-table-body-lr-good-pointerp-tablep-helpl
let data-seg-tab be Ir-data-seg-table-body (t, car (body), data-seg, table)
in
(listp (body)
A lr-proper-free-listp (data-seqg)
Ir-proper-p-areasp (data-seg)
definedp (LR-HEAP-NAME, data-seq)
Ir-minimum-heapp (data-seg)
Ir-boundary-nodep (Ir-max-node (data-seg))
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),

> > > > >

data-seq)
£ (s-heap-regs-body (t, car (body), data-seg, table)
+ s-heap-regs-body (’1list,
cdr (body),
car (data-seg-tab),
cdr (data-seg-tab)))))
— (lr-count-free-nodes (fetch (identity (LR-FP-ADDR),
car (data-seg-tab)),
Ir-free-list-nodes (Ir-max-node (data-seg),
car (data-seg-tab)),
car (data-seg-tab))
&£ s-heap-regs-body (’list,
cdr (body),
car (data-seg-tab),
cdr (data-seg-tab))) endlet

THEOREM: Ir-data-seg-table-body-lr-good-pointerp-tablep

(Ir-proper-free-listp (data-seg)
A lr-proper-p-areasp (data-seg)

276

definedp (LR-HEAP-NAME, data-seq)

Ir-boundary-nodep (Ir-max-node (data-seg))

Ir-minimum-heapp (data-seg)

Ir-good-pointerp-tablep (table, data-seg)

s-data-seg-body-restrictedp (flag, body)

definedp (f, table)

(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),

data-seg),

>>>> > > >

data-seq)
&£ s-heap-reqs-body (flag, body, data-seg, table)))

— lr-good-pointerp-tablep (cdr (Ir-data-seg-table-body (flag,
body,
data-seq,
table)),

car (Ir-data-seg-table-body (flag,
body,
data-seq,
table)))

THEOREM: Ir-data-seg-table-list-lr-good-pointerp-tablep-helper-1
let dst-body be lr-data-seg-table-body (t,
s-body (car (progs)),
data-seq,
table)
in
(listp (progs)
A lr-proper-free-listp (data-seq)
Ir-proper-p-areasp (data-seg)
definedp (LR-HEAP-NAME, data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg))
Ir-minimum-heapp (data-seq)
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),

> > > > >

data-seq)
£ (s-heap-regs-body (t, s-body (car (progs)), data-seq, table)
+ s-heap-reqgs-list (cdr (progs),
car (dst-body),
cdr (dst-body)))))
— (Ir-count-free-nodes (fetch (identity (LR-FP-ADDR), car (dst-body)),
Ir-free-list-nodes (Ir-max-node (data-seg),
car (dst-body)),
car (dst-body))

277

&£ s-heap-reqs-list (cdr (progs),
car (dst-body),
cdr (dst-body))) endlet

THEOREM: Ir-init-data-seg-table-Ir-good-pointerp-tablep
(Ir-proper-free-listp (data-seg)

A Ir-proper-p-areasp (data-seg)
definedp (LR-HEAP-NAME, data-seq)
Ir-boundary-nodep (Ir-max-node (data-seg))
Ir-minimum-heapp (data-seg)
Ir-good-pointerp-tablep (table, data-seg)
s-init-data-seg-restrictedp (params)
definedp (f, table)
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),

Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),

>>>> > > >

data-seq)
&£ s-init-heap-reqs (params, data-seg, table)))

— lr-good-pointerp-tablep (cdr (lr-init-data-seg-table (params,
data-seq,
table)),

car (Ir-init-data-seg-table (params,
data-seq,
table)))

THEOREM: Ir-proper-heapp-car-lr-data-seg-table-body
(Ir-proper-heapp (data-seq)
A lr-proper-p-areasp (data-seq)
A lr-good-pointerp-tablep (table, data-seq)
A s-data-seg-body-restrictedp (flag, body)
A definedp (f, table)
A (lr-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),
data-seq)
&£ s-heap-regs-body (flag, body, data-seg, table)))
— lr-proper-heapp (car (Ir-data-seg-table-body (flag, body, data-seq, table)))

THEOREM: Ir-proper-heapp-car-lr-data-seg-table-list
(Ir-proper-heapp (data-seq)
A lr-proper-p-areasp (data-seq)
A lr-good-pointerp-tablep (table, data-seg)
A s-data-seg-list-restrictedp (progs)
A definedp (f, table)
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),

278

Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),
data-seq)
£ s-heap-reqs-list (progs, data-seg, table)))
— Ir-proper-heapp (car (Ir-data-seg-table-list (progs, data-seg, table)))

THEOREM: Ir-proper-heapp-car-Ir-init-data-seg-table
(Ir-proper-heapp (data-seq)
A Ir-proper-p-areasp (data-seg)
A Ir-good-pointerp-tablep (table, data-seq)
A s-init-data-seg-restrictedp (params)
A definedp (f, table)
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),
data-seq)
£ s-init-heap-reqs (params, data-seg, table)))
— lr-proper-heapp (car (Ir-init-data-seg-table (params, data-seg, table)))

THEOREM: Ir-count-free-nodes-lIr-init-data-seg-table-s-init-heap-reqgs
(Ir-proper-free-listp (data-seq)
A Ir-proper-p-areasp (data-seqg)
definedp (LR-HEAP-NAME, data-seq)
Ir-minimum-heapp (data-seg)
Ir-boundary-nodep (Ir-max-node (data-seg))
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),

> > > >

data-seq)
£ s-init-heap-reqs (params, data-seg, table)))
— ((lr-count-free-nodes (fetch (LR-FP-ADDR,
car (Ir-init-data-seg-table (params,
data-seq,
table))),
Ir-free-list-nodes (Ir-max-node (data-seg),
car (lr-init-data-seg-table (params,

data-seq,
table))),
car (Ir-init-data-seg-table (params,
data-seg,
table)))

+ s-init-heap-reqs (params, data-seg, table))
= lr-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),

279

data-seg),
data-seg))

THEOREM: Ir-proper-heapp-car-Ir-data-seg-table-helper-1
let data-seg-table be lr-compile-quote (’1ist,
list (¢, 0),
Ir-init-data-seg (heap-size),
list (cons (f, identity (LR-F-ADDR))))
in
((heap-size £ (2
+ 2
+ s-init-heap-regs (params,
car (data-seg-table),
cdr (data-seg-table))
+ o)
A (maz-addr = Ir-max-node (car (data-seg-table))))
— (Ir-count-free-nodes (fetch (identity (LR-FP-ADDR),
car (lr-init-data-seg-table (params,
car (data-seg-table),
cdr (data-seg-table)))),
Ir-free-list-nodes (maz-addr,
car (lr-init-data-seg-table (params,
car (data-seg-table),
cdr (data-seg-table)))),
car (lr-init-data-seg-table (params,
car (data-seg-table),
cdr (data-seg-table))))
£ 1) endlet

THEOREM: Ir-proper-heapp-car-Ir-data-seg-table
((heap-size £ s-total-heap-regs (progs, params, heap-size))
A s-restrictedp (progs, params))
— Ir-proper-heapp (car (Ir-data-seg-table (progs, params, heap-size)))

THEOREM: litatom-car-gensym
litatom (car (gensym (initial, num-list, atom-list)))

THEOREM: all-litatoms-strip-cdrs-lr-make-temp-name-alist-1

all-litatoms (strip-cdrs (Ir-make-temp-name-alist-1 (initial,
num-list,
temp-list,

formals)))

THEOREM: all-litatoms-strip-cdrs-lr-make-temp-name-alist
all-litatoms (strip-cdrs (Ir-make-temp-name-alist (temp-list, formals)))

280

THEOREM: Ir-proper-p-areasp-car-Ir-data-seg-table
Ir-proper-p-areasp (car (Ir-data-seg-table (progs, params, heap-size)))

THEOREM: plist-strip-cdrs
plist (strip-cdrs (z)) = strip-cdrs ()

THEOREM: Ir-make-temp-name-alist-1-plist-arg-1
Ir-make-temp-name-alist-1 (initial, num-list, plist (temp-list), formals)
= Ir-make-temp-name-alist-1 (initial, num-list, temp-list, formals)

THEOREM: Ir-make-temp-name-alist-plist-arg-1
Ir-make-temp-name-alist (plist (temp-list), formals)
= Ir-make-temp-name-alist (temp-list, formals)

THEOREM: length-Ir-make-initial-temps
length (Ir-make-initial-temps (temp-vars)) = length (temp-vars)

THEOREM: length-strip-cdrs
length (strip-cdrs (alist)) = length (alist)

THEOREM: length-pair-formals-with-addresses
length (pair-formals-with-addresses (formals, alist)) = length (formals)

THEOREM: s-good-statep-length-s-temp-list
s-good-statep (s, ¢)
— (length (s-temp-list (s-prog (s))) = length (s-temps (s)))

THEOREM: plistp-comp-programs-1
plistp (comp-programs-1 (progs))

THEOREM: proper-p-instructionp-ret
proper-p-instructionp (’ (ret), name, p)

THEOREM: proper-p-instructionp-eq
proper-p-instructionp (’ (eq), name, p)

THEOREM: proper-p-instructionp-fetch
proper-p-instructionp (’ (fetch), name, p)

THEOREM: proper-p-instructionp-deposit
proper-p-instructionp (’ (deposit), name, p)

THEOREM: proper-p-instructionp-add-addr
proper-p-instructionp (’ (add-addr), name, p)

THEOREM: proper-p-instructionp-pop-global-free-ptr
Ir-proper-heapp (p-data-segment (1))
— proper-p-instructionp (’ (pop-global free-ptr), name, Ir->p (1))

281

THEOREM: proper-p-instructionp-push-global-free-ptr
Ir-proper-heapp (p-data-segment (1))
— proper-p-instructionp (’ (push-global free-ptr), name, lr->p (1))

THEOREM: proper-p-instructionp-push-local-temp-car
Ir-programs-properp (I, table)
— proper-p-instructionp (’ (push-local x), ’car, lr->p (1))

THEOREM: proper-p-instructionp-push-local-temp-cdr
Ir-programs-properp (I, table)
— proper-p-instructionp (’ (push-local x), ’cdr, Ir->p (1))

THEOREM: proper-p-instructionp-push-local-temp-cons
Ir-programs-properp (I, table)
— proper-p-instructionp (’ (push-local temp), ’cons, lr->p (1))

THEOREM: proper-p-instructionp-set-local-temp-cons
Ir-programs-properp (I, table)
— proper-p-instructionp (’ (set-local temp), ’cons, lr->p (1))

THEOREM: proper-labeled-p-instructionsp-append
plistp (instrs1)
— (proper-labeled-p-instructionsp (append (instrs1, instrs2), name, p)
= (proper-labeled-p-instructionsp (instrs1, name, p)
A proper-labeled-p-instructionsp (instrs2, name, p)))

THEOREM: lessp-number-cons-cur-expr-dv-1-listp

listp (cur-expr (pos, body))

— (number-cons (cur-expr (dv (pos, 1), body))
< number-cons (cur-expr (pos, body)))

THEOREM: lessp-number-cons-cur-expr-dv-2-listp

listp (cur-expr (pos, body))

— (number-cons (cur-expr (dv (pos, 2), body))
< number-cons (cur-expr (pos, body)))

THEOREM: lessp-number-cons-cur-expr-dv-3-listp

listp (cur-expr (pos, body))

— (number-cons (cur-expr (dv (pos, 3), body))
< number-cons (cur-expr (pos, body)))

THEOREM: lessp-number-cons-restn-cdr
(listp (pos)
A (car (last (pos)) < length (cur-expr (butlast (pos), body)))
A listp (cur-expr (butlast (pos), body)))
— (number-cons (restn (car (last (pos)), cdr (cur-expr (butlast (pos), body))))
< number-cons (restn (car (last (pos)), cur-expr (butlast (pos), body))))

282

THEOREM: proper-p-instructionp-test-bool-and-jump-label
proper-p-instructionp (list (’ test-bool-and-jump, z, lab), name, p)
= find-labelp (lab, program-body (assoc (name, p-prog-segment (p))))

THEOREM: proper-p-instructionp-jump-label
proper-p-instructionp (list (* jump, lab), name, p)
= find-labelp (lab, program-body (assoc (name, p-prog-segment (p))))

THEOREM: plist-Ir-convert-num-to-ascii
plistp (Ir-convert-num-to-ascii (number, list)) = plistp (list)

THEOREM: zerop-lr-convert-num-to-ascii
(number ~ 0)
— (Ir-convert-num-to-ascii (number, list) = cons (ASCII-0, list))

THEOREM: Ir-convert-digit-to-ascii-equal
(Ir-convert-digit-to-ascii (m) = Ir-convert-digit-to-ascii (n))
= (fix(m) = fix(n))

THEOREM: zerop-lr-convert-digit-to-ascii
(number ~ 0) — (Ir-convert-digit-to-ascii (number) = ASCII-0)

THEOREM: equal-ascii-0-lr-convert-digit-to-ascii
(Ir-convert-digit-to-ascii (number) = identity (Asci1-0)) = (number ~ 0)

THEOREM: length-Ir-convert-num-to-ascii
length (Ir-convert-num-to-ascii (number, list)) £ (1 + length (list))

DEFINITION:
induct-hint-22 (n, m, list)
= if n < 10 then t
elseif m < 10 then t
else induct-hint-22 (n + 10,
m + 10,
cons (lr-convert-digit-to-ascii (n mod 10),
list)) endif

THEOREM: Ir-convert-num-to-ascii-equal-argl
(Ir-convert-num-to-ascii (z, list!) = lr-convert-num-to-ascii (z, list2))
= (list] = list2)

DEFINITION:
induct-hint-23 (n, m, list1, list2)
= ifn <10 then t

elseif m < 10 then t

else induct-hint-23 (n + 10,

283

m + 10,

cons (Ir-convert-digit-to-ascii (n mod 10),
list1),

cons (lr-convert-digit-to-ascii (m mod 10),
list2)) endif

THEOREM: Ir-convert-num-to-ascii-equal-arg2-lengths-helper-1
(length (list1) = length (list2))
— (lr-convert-num-to-ascii (number, cons (z, list1)) # cons (y, list2))

THEOREM: Ir-convert-num-to-ascii-equal-arg2-lengths
((length (list1) = length (list2)) A (list] # list2))
— (lr-convert-num-to-ascii (z, list1)

Ir-convert-num-to-ascii (y, list2))

THEOREM: Ir-convert-num-to-ascii-equal-arg2-helper-1
(z #y)
— (lr-convert-num-to-ascii (w, cons (z, list))

Ir-convert-num-to-ascii (z, cons (y, list)))

THEOREM: Ir-convert-num-to-ascii-equal-arg?2
(lr-convert-num-to-ascii (m, list) = lr-convert-num-to-ascii (n, list))

= (fix(m) = fix(n))

THEOREM: Ir-make-label-equal
(Ir-make-label (m) = Ir-make-label (n)) = (fix (m) = fix (n))

THEOREM: find-labelp-Ir-make-label-label-instrs
find-labelp (Ir-make-label (m), label-instrs (instrs, n))
= ((m £ n) A (m < (n + length (instrs))))

THEOREM: find-labelp-lr-make-label-comp-body
(n < length (comp-body (body)))
— find-labelp (lr-make-label (n), comp-body (body))

THEOREM: label-instrs-append
(n € N)
— (label-instrs (append (instrs1, instrs2), n)
= append (label-instrs (instrs1, n),
label-instrs (instrs2, n + length (instrs1))))

THEOREM: proper-p-temp-var-dclsp-all-litatoms-all-undef-addrs
(all-litatoms (strip-cars (temp-var-dcls))

all-undef-addrs (strip-cadrs (temp-var-dels))
Ir-proper-heapp (p-data-segment (p))

Ir-proper-p-areasp (p-data-segment (p)))

proper-p-temp-var-delsp (temp-var-dcls, p)

b >>>

284

THEOREM: plistp-label-instrs
plistp (label-instrs (instrs, n))

DEFINITION:
not-labelledp-instrs (instrs)
= if listp (instrs)
then (- labelledp (car (instrs)))
A not-labelledp-instrs (cdr (instrs))
else t endif

THEOREM: label-instrs-proper-labeled-p-instructionsp
(proper-labeled-p-instructionsp (instrs, name, p)

A not-labelledp-instrs (instrs))

— proper-labeled-p-instructionsp (label-instrs (instrs, n), name, p)

THEOREM: not-labelledp-instrs-append
not-labelledp-instrs (append (instrs1, instrs2))
= (not-labelledp-instrs (instrs1) A not-labelledp-instrs (instrs2))

THEOREM: not-labelledp-instrs-comp-body-1
not-labelledp-instrs (comp-body-1 (flag, body, n))

THEOREM: comp-body-1-list-not-listp
(= listp (body)) — (comp-body-1 (’1list, body, n) = nil)

THEOREM: proper-labeled-p-instructionsp-nil
proper-labeled-p-instructionsp (nil, name, p)

THEOREM: proper-labeled-p-instructionsp-comp-body-1-helper-1
(proper-labeled-p-instructionsp (comp-body-1 (t, test-body, nl),
name,
p-state (pe,
ctrl-stk,
temp-stk,
comp-programs (prog-seg),
data-seq,
max-ctrl,
max-temp,
word-size,
psw))
A proper-labeled-p-instructionsp (comp-body-1 (t, then-body, n2),
name,
p-state (pe,
ctrl-stk,
temp-stk,

285

comp-programs (prog-seq),
data-seg,
maz-ctrl,
max-temp,
word-size,
psw))
A proper-labeled-p-instructionsp (else-instrs,
name,
p-state (pc,
ctrl-stk,
temp-stk,
comp-programs (prog-segq),
data-seg,
maz-ctrl,
max-temp,
word-size,
psw))

Ir-proper-heapp (data-seqg)

Ir-proper-p-areasp (data-seg)

definedp (name, prog-seq)

(n

+ Ir-p-c-size (t, test-body)
+ lr-p-c-size (t, then-body)
+ length (else-instrs)
+ 4)-1)
< lr-p-c-size (t, program-body (assoc (name, prog-seg)))))

— proper-labeled-p-instructionsp (comp-if (comp-body-1 (t, test-body, nl),
comp-body-1 (t, then-body, n2),
else-instrs,

)

> > > >

name,
p-state (pe,

ctrl-stk,

temp-stk,

comp-programs (prog-seq),

data-seq,

mazx-ctrl,

mazx-temp,

word-size,

psw))

THEOREM: proper-labeled-p-instructionsp-comp-body-1-helper-2
(listp (body)
A ((car (body) = S-TEMP-FETCH) V (car (body) = S-TEMP-TEST))

286

A lIr-proper-exprp (t,
body,
program-names,
formal-vars (assoc (name, prog-seg)),
strip-cars (temp-var-dcls (assoc (name, prog-seg))),
table)
A definedp (name, prog-seg))
— proper-labeled-p-instructionsp (list (list (> push-local, caddr (body))),
name,
p-state (pc,
ctrl-stk,
temp-stk,
comp-programs (prog-seq),
data-seq,
maz-ctrl,
mazx-temp,
word-size,
psw))

THEOREM: proper-labeled-p-instructionsp-comp-body-1-helper-3
(listp (body)
A ((car (body) = S-TEMP-EVAL) V (car (body) = S-TEMP-TEST))
A lr-proper-exprp (t,
body,
program-names,
formal-vars (assoc (name, prog-seq)),
strip-cars (temp-var-dcls (assoc (name, prog-seg))),
table)
A definedp (name, prog-seg))
— proper-labeled-p-instructionsp (list (list (> set-1local, caddr (body))),
name,
p-state (pe,
ctrl-stk,
temp-stk,
comp-programs (prog-seq),
data-seg,
maz-ctrl,
max-temp,
word-size,
psw))

THEOREM: proper-labeled-p-instructionsp-comp-body-1-helper-4
(listp (body)
A (car (body) = S-TEMP-TEST)

287

A proper-labeled-p-instructionsp (comp-body-1 (t, cadr (body), n + 4),
name,
p-state (pc,
ctrl-stk,
temp-stk,
comp-programs (prog-seg),
data-seg,
maz-ctrl,
max-temp,
word-size,
psw))
A lr-proper-exprp (t,
body,
program-names,
formal-vars (assoc (name, prog-seg)),
strip-cars (temp-var-dcls (assoc (name, prog-seg))),
table)
A lr-proper-heapp (data-seg)
lr-proper-p-areasp (data-seqg)
A (lr-p-c-size (t, program-body (assoc (name, prog-seg)))
£ (n + lr-p-c-size (t, cadr (body)) + 7))
definedp (name, prog-seg))
proper-labeled-p-instructionsp (comp-temp-test (body,
comp-body-1 (t,
cadr (body),
n + 4),

>

b >

n),
name,
p-state (pe,
ctrl-stk,
temp-stk,
comp-programs (prog-seg),
data-seg,
mazx-ctrl,
max-temp,
word-size,

psw))

DEFINITION:
assoc-cdr (z, [)
= if listp ()
then if z = cdar (I) then car (I)
else assoc-cdr (z, cdr (1)) endif
else f endif

288

THEOREM: Ir-s-similar-const-table-lr-valp-member-strip-cdrs
((addr € strip-cdrs (table)) A Ir-s-similar-const-table (table, data-seg))
— lr-valp (car (assoc-cdr (addr, table)), addr, data-seg)

THEOREM: Ir-s-similar-const-table-type-addr-member-strip-cdrs
((addr € strip-cdrs (table)) A Ir-s-similar-const-table (table, data-seg))
— ((type (addr) = ’addr)
(cddr (addr) = nil)
listp (addr)
adpp (untag (addr), data-seq)
Ir-boundary-nodep (addr)
(area-name (addr) = identity (LR-HEAP-NAME))
(type (fetch (add-addr (addr, identity (LR-REF-COUNT-OFFSET)),
data-seq))
= ’nat))

> > > > > >

THEOREM: proper-labeled-p-instructionsp-comp-body-1-helper-5
(listp (body)

A (car (body) = ’quote)
A lr-proper-heapp (data-seg)
A lr-proper-p-areasp (data-seg)
A Ir-proper-exprp (t,
body,
strip-logic-fnames (cdr (prog-seg)),
formal-vars (assoc (name, prog-seq)),
strip-cars (temp-var-dcls (assoc (name, prog-seg))),
table)
A Ir-s-similar-const-table (table, data-seg)
A definedp (name, prog-seg))
— proper-labeled-p-instructionsp (list (list (’ push-constant,
cadr (body))),
name,
p-state (pe,
ctrl-stk,
temp-stk,
comp-programs (prog-seg),
data-seq,
maz-ctrl,
max-temp,
word-size,
psw))

EVENT: Disable Ir-s-similar-const-table-type-addr-member-strip-cdrs.

THEOREM: Ir-proper-exprp-flag-list-cdr-funcall

289

(listp (body)

(car (body) # *if)

(car (body) # S-TEMP-FETCH)

(car (body) # S-TEMP-EVAL)

(car (body) # S-TEMP-TEST)

(car (body) # ’quote)

Ir-proper-exprp (t, body, program-names, formals, temps, table))
lr-proper-exprp (°’ List, cdr (body), program-names, formals, temps, table)

L>>>>>>

THEOREM: proper-labeled-p-instructionsp-comp-body-1-helper-6-1
(listp (body)

A (car (body) # ’if)
A (car (body) # S-TEMP-FETCH)
A (car (body) # S-TEMP-EVAL)
A (car (body) # S-TEMP-TEST)
A (car (body) # ’quote)
A lr-proper-exprp (t,
body,
strip-logic-fnames (cdr (prog-seg)),
formals,
temps,
table)
A definedp (car (body), P-RUNTIME-SUPPORT-PROGRAMS))
— proper-labeled-p-instructionsp (list (list (> call, car (body))),
name,
p-state (pe,
ctrl-stk,
temp-stk,
comp-programs (prog-seq),
data-seq,
max-ctrl,
mazx-temp,
word-size,
psw))
THEOREM: proper-labeled-p-instructionsp-comp-body-1-helper-6-2
(listp (body)
A (car (body) # ’if)
A (car (body) # S-TEMP-FETCH)
A (car (body) # S-TEMP-EVAL)
A (car (body) # S-TEMP-TEST)
A (car (body) # ’quote)
A lr-proper-exprp (t,

body,

290

strip-logic-fnames (cdr (prog-seq)),

formals,

temps,

table)
(= definedp (car (body), P-RUNTIME-SUPPORT-PROGRAMS))
all-user-fnamesp (cdr (strip-cars (prog-seg)))
definedp (name, prog-seg))
proper-labeled-p-instructionsp (list (list (* call,

user-fname (car (body)))),

b>>>

name,
p-state (pe,

ctrl-stk,

temp-stk,

comp-programs (prog-seg),

data-seq,

max-ctrl,

mazx-temp,

word-size,

psw))

THEOREM: proper-labeled-p-instructionsp-comp-body-1-helper-7
((— listp (body))
A Ir-proper-exprp (t,
body,
program-names,
formal-vars (assoc (name, prog-seq)),
temps,
table)
A definedp (name, prog-seg))
— proper-labeled-p-instructionsp (list (list (? push-local, body)),
name,
p-state (pe,
ctrl-stk,
temp-stk,
comp-programs (prog-seq),
data-seg,
maz-ctrl,
mazx-temp,
word-size,
psw))

THEOREM: not-definedp-not-listp
(= listp (alist)) — (— definedp (name, alist))

THEOREM: proper-labeled-p-instructionsp-comp-body-1

291

(Ir-proper-heapp (data-seq)
A lr-proper-p-areasp (data-seq)
A all-user-fnamesp (cdr (strip-cars (prog-seg)))
A lr-proper-exprp (if flag = *1list then ’list
else t endif,
body,
strip-logic-fnames (cdr (prog-seq)),
formal-vars (assoc (name, prog-seg)),
strip-cars (temp-var-dcls (assoc (name, prog-seg))),
table)
A Ir-s-similar-const-table (table, data-seg)
A ((n + lr-p-c-size (if flag = *1ist then ’list
else t endif,
body))
< (1 4 lr-p-c-size (t, program-body (assoc (name, prog-seg)))))
definedp (name, prog-seg))
proper-labeled-p-instructionsp (comp-body-1 (flag, body, n),
name,
p-state (pc,
ctrl-stk,
temp-stk,
comp-programs (prog-seq),
data-seg,
maz-ctrl,
mazx-temp,
word-size,
psw))

I >

THEOREM: all-undef-addrs-strip-cadrs-Ir-make-temp-var-dcls
all-undef-addrs (strip-cadrs (Ir-make-temp-var-dcls (temp-alist)))

THEOREM: proper-p-programp-p-car-code
(Ir-programs-properp (I, table)

(p-word-size (1) € N)

(p-word-size (1) ¢ S-MAX-SUBR-REQS)
Ir-proper-heapp (p-data-segment (1))
Ir-proper-p-areasp (p-data-segment (1)))
proper-p-programp (P-CAR-CODE, Ir->p (1))

>>>>

HEOREM: proper-p-programp-p-cdr-code
Ir-programs-properp (I, table)

A (p-word-size (1) € N)

(p-word-size (1) £ S-MAX-SUBR-REQS)
Ir-proper-heapp (p-data-segment (1))
Ir-proper-p-areasp (p-data-segment (1)))

— 5

> > >

292

— proper-p-programp (P-CDR-CODE, lr->p (1))

THEOREM: proper-p-programp-p-cons-code
(Ir-programs-properp (1, table)

A (p-word-size (I) € N)

A (p-word-size (I) £ S-MAX-SUBR-REQS)

A lr-proper-heapp (p-data-segment (1))

A lr-proper-p-areasp (p-data-segment (1)))

— proper-p-programp (P-CONS-CODE, Ir->p (1))

THEOREM: proper-p-programp-p-false-code
(Ir-programs-properp (I, table)

A (p-word-size (I) € N)

A (p-word-size (1) £ log (2, LR-FALSE-TAG))

A Ir-proper-heapp (p-data-segment (1))

A lr-proper-p-areasp (p-data-segment (1)))

— proper-p-programp (P-FALSE-CODE, Ir->p (1))

THEOREM: proper-p-programp-p-falsep-code
(Ir-programs-properp (I, table)

A (p-word-size (I) € N)

A (p-word-size (1) £ log (2, LR-FALSE-TAG))

A lIr-proper-heapp (p-data-segment (1))

A lr-proper-p-areasp (p-data-segment (1)))

— proper-p-programp (P-FALSEP-CODE, Ir->p (1))

THEOREM: proper-p-programp-p-listp-code
(le-programs-properp (I, table)

A (p-word-size (1) € N)

A (p-word-size (I) £ S-MAX-SUBR-REQS)

A Ir-proper-heapp (p-data-segment (1))

A Ir-proper-p-areasp (p-data-segment (1)))

— proper-p-programp (P-LISTP-CODE, lr->p (1))

THEOREM: proper-p-programp-p-nlistp-code
(Ir-programs-properp (1, table)

A (p-word-size (1) € N)

A (p-word-size (I) £ S-MAX-SUBR-REQS)

A lr-proper-heapp (p-data-segment (1))

A Ir-proper-p-areasp (p-data-segment (1)))

— proper-p-programp (P-NLISTP-CODE, Ir->p (1))

THEOREM: proper-p-programp-p-true-code

(Ir-programs-properp (1, table)
A (p-word-size (I) € N)

293

A (p-word-size (I) ¢ log (2, LR-TRUE-TAG))
A lr-proper-heapp (p-data-segment (1))
A lr-proper-p-areasp (p-data-segment (1)))
— proper-p-programp (P-TRUE-CODE, lr->p (1))

THEOREM: proper-p-programp-p-truep-code
(Ir-programs-properp (1, table)

A (p-word-size (I) € N)

A (p-word-size (1) &£ log (2, LR-TRUE-TAG))

A lr-proper-heapp (p-data-segment (1))

A lr-proper-p-areasp (p-data-segment (1)))

— proper-p-programp (P-TRUEP-CODE, lr->p (1))

THEOREM: Ir-s-similar-const-table-lr-data-seg-table-body

(Ir-proper-p-areasp (data-seq)

A Ir-proper-heapp (data-seg)

A Ir-s-similar-const-table (table, data-seq)

A s-data-seg-body-restrictedp (flag, body)

A definedp (f, table)

A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),

data-seq),
data-seq)
£ s-heap-regs-body (flag, body, data-seg, table)))

— lr-s-similar-const-table (cdr (lr-data-seg-table-body (flag,
body,
data-seg,
table)),

car (Ir-data-seg-table-body (flag,
body,
data-seq,
table)))

THEOREM: Ir-s-similar-const-table-lr-data-seg-table-list
(le-proper-p-areasp (data-seq)
A lr-proper-heapp (data-seg)
A lr-s-similar-const-table (table, data-seg)
A s-data-seg-list-restrictedp (progs)
A definedp (f, table)
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
lr-free-list-nodes (Ir-max-node (data-seg),
data-seg),
data-seq)
£ s-heap-regs-list (progs, data-seg, table)))
— Ir-s-similar-const-table (cdr (Ir-data-seg-table-list (progs,

294

data-seg,
table)),
car (Ir-data-seg-table-list (progs,
data-seq,
table)))

THEOREM: Ir-s-similar-const-table-lr-init-data-seg-table
(Ir-proper-p-areasp (data-seq)
A lr-proper-heapp (data-seg)
Ir-s-similar-const-table (table, data-seg)
s-init-data-seg-restrictedp (params)
definedp (f, table)
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),

> > > >

data-seq)
&£ s-init-heap-regs (params, data-seg, table)))

— Ir-s-similar-const-table (cdr (Ir-init-data-seg-table (params,
data-seg,
table)),

car (Ir-init-data-seg-table (params,
data-seq,
table)))

THEOREM: Ir-s-similar-const-table-cdr-car-Ir-data-seg-table
((heap-size £ s-total-heap-reqs (progs, params, heap-size))
A s-restrictedp (progs, params))
— lr-s-similar-const-table (cdr (Ir-data-seg-table (progs, params, heap-size)),
car (Ir-data-seg-table (progs, params, heap-size)))

DEFINITION:
induct-hint-3 (flag, pos, prog)
= if flag = ’list
then if pos ~ nil then t
elseif listp (restn (car (last (pos)),
cur-expr (butlast (pos), s-body (prog))))
then induct-hint-3 (t, pos, prog)
A induct-hint-3 (*1ist, nx (pos), prog)
else t endif
elseif listp (cur-expr (pos, s-body (prog)))
then if car (cur-expr (pos, s-body (prog))) = ’if
then induct-hint-3 (t, dv (pos, 1), prog)
A induct-hint-3 (t, dv (pos, 2), prog)
A induct-hint-3 (t, dv (pos, 3), prog)
elseif car (cur-expr (pos, s-body (prog))) = S-TEMP-FETCH then t

295

elseif (car (cur-expr (pos, s-body (prog))) = S-TEMP-EVAL)
V' (car (cur-expr (pos, s-body (prog))) = S-TEMP-TEST)
then induct-hint-3 (t, dv (pos, 1), prog)
elseif car (cur-expr (pos, s-body (prog))) = ’quote then t
else induct-hint-3 (*1ist, dv (pos, 1), prog) endif
else t endif

THEOREM: lr-proper-exprp-p-lr-compile-programs-helper-1
listp (pos)
— (lr-compile-body (t,
get (car (last (pos)), cur-expr (butlast (pos), body)),
temp-alist,
table)
= Ir-compile-body (t, cur-expr (pos, body), temp-alist, table))

THEOREM: good-pospl-cons-lessp-4-if-s-proper-exprp
((car (cur-expr (pos, body)) = ’if)
A good-pospl (pos, body)
A s-proper-exprp (t, body, program-names, formals, temp-list))
— (good-pospl (dv (pos, 1), body)
A good-pospl (dv (pos, 2), body)
A good-pospl (dv (pos, 3), body))

THEOREM: Ir-proper-exprp-flag-list-cons
lr-proper-exprp (’ 1ist, cons (car, cdr), program-names, formals, temps, table)
= (lr-proper-exprp (’list, cdr, program-names, formals, temps, table)

A lIr-proper-exprp (t, car, program-names, formals, temps, table))

THEOREM: Ir-proper-exprp-flag-list-nil
Ir-proper-exprp (’ 1ist, nil, program-names, formals, temps, table)

THEOREM: length-3-cdr-cddr-not-nil
((length (z) = 3) A plistp (z))
— ((cdddr (z) = nil) A (cddr (z) # nil) A (edr (z) # nil))

THEOREM: Ir-proper-exprp-flag-not-list-cons-if-helper

(flag # *1ist)

— (Ir-proper-exprp (flag,
list (’if, test, then, else),
program-names,
formals,
temp-alist,
table)

= ((’if € program-names)
A lr-proper-exprp (t,

296

test,
program-names,
formals,
temp-alist,
table)

A Ir-proper-exprp (t,
then,
program-names,
formals,
temp-alist,
table)

A lr-proper-exprp (t,
else,
program-names,
formals,
temp-alist,

table)))

THEOREM: Ir-proper-exprp-flag-not-list-cons-if
((flag # >1ist)
A listp (cur-expr (pos, body))
A (car (cur-expr (pos, body)) = ’if)
A good-pospl (pos, body)
A lr-proper-exprp (t,
Ir-compile-body (t,
cur-expr (dv (pos, 3), body),
temp-alist,
table),
program-names,
formals,
strip-cdrs (temp-alist),
table)
A Ir-proper-exprp (t,
Ir-compile-body (t,
cur-expr (dv (pos, 2), body),
temp-alist,
table),
program-names,
formals,
strip-cdrs (temp-alist),
table)
A Ir-proper-exprp (t,
Ir-compile-body (t,
cur-expr (dv (pos, 1), body),

297

temp-alist,
table),
program-names,
formals,
strip-cdrs (temp-alist),
table)
A s-proper-exprp (t, body, program-names, formals, strip-cars (temp-alist)))
— lr-proper-exprp (flag,
cons (’1if,
Ir-compile-body (’1ist,
cdr (cur-expr (pos, body)),

temp-alist,
table)),
program-names,
formals,
strip-cdrs (temp-alist),
table)

THEOREM: lr-proper-exprp-flag-not-list-cons-temp-fetch
((flag # *1ist)
good-pospl (pos, body)
listp (cur-expr (pos, body))
(car (cur-expr (pos, body)) = S-TEMP-FETCH)
s-proper-exprp (t, body, program-names, formals, strip-cars (temp-alist)))
Ir-proper-exprp (flag,
list (identity (S-TEMP-FETCH),
z?
cdr (assoc (cadr (cur-expr (pos, body)), temp-alist))),
program-names,
formals,
strip-cdrs (temp-alist),
table)

b>>>>

THEOREM: good-pospl-dv-1-temp-eval-test
(good-pospl (pos, body)
A ((car (cur-expr (pos, body)) = S-TEMP-EVAL)
vV (car (cur-expr (pos, body)) = S-TEMP-TEST))
A listp (cur-expr (pos, body)))
— good-pospl (dv (pos, 1), body)

THEOREM: length-last-fact
(length (z) = 1) — (last () = z)

THEOREM: Ir-proper-exprp-flag-not-list-cons-temp-eval

((flag # 1ist)

298

listp (cur-expr (pos, body))
good-pospl (pos, body)
(car (cur-expr (pos, body)) = S-TEMP-EVAL)
Ir-proper-exprp (t,
Ir-compile-body (t,
cur-expr (dv (pos, 1), body),
temp-alist,
table),
program-names,
formals,
strip-cdrs (temp-alist),
table)
A s-proper-exprp (t, body, program-names, formals, strip-cars (temp-alist)))
— lr-proper-exprp (flag,
list (identity (S-TEMP-EVAL),
Ir-compile-body (t,
cadr (cur-expr (pos, body)),
temp-alist,
table),
cdr (assoc (cadr (cur-expr (pos, body)), temp-alist))),
program-names,
formals,
strip-cdrs (temp-alist),
table)

> > > >

THEOREM: Ir-proper-exprp-flag-not-list-cons-temp-test
((flag # *1ist)
A listp (cur-expr (pos, body))
good-pospl (pos, body)
(car (cur-expr (pos, body)) = S-TEMP-TEST)
Ir-proper-exprp (t,
Ir-compile-body (t,
cur-expr (dv (pos, 1), body),
temp-alist,
table),
program-names,
formals,
strip-cdrs (temp-alist),
table)
A s-proper-exprp (t, body, program-names, formals, strip-cars (temp-alist)))
— Ir-proper-exprp (flag,
list (identity (S-TEMP-TEST),
lr-compile-body (t,
cadr (cur-expr (pos, body)),

> > >

299

temp-alist,
table),
cdr (assoc (cadr (cur-expr (pos, body)), temp-alist))),
program-names,
formals,
strip-cdrs (temp-alist),
table)

DEFINITION:
Ir-data-seg-table-body-n (n, body, data-seg, table)
= if n ~ 0 then cons (data-seg, table)
else Ir-data-seg-table-body-n (n — 1,
cdr (body),
car (Ir-data-seg-table-body (t,
car (body),
data-seg,
table)),
cdr (Ir-data-seg-table-body (t,
car (body),
data-seq,
table))) endif

DEFINITION:
induct-hint-20 (pos, body, data-seg, table)
= if pos ~ nil then t
elseif body ~ nil then f
elseif car (body) = S-TEMP-FETCH then f
elseif (car (body) = S-TEMP-EVAL) V (car (body) = S-TEMP-TEST)
then induct-hint-20 (cdr (pos), cadr (body), data-seg, table)
elseif car (body) = ’quote then f
else induct-hint-20 (cdr (pos),
get (car (pos), body),
car (Ir-data-seg-table-body-n (car (pos) — 1,
cdr (body),
data-seg,
table)),
cdr (Ir-data-seg-table-body-n (car (pos) — 1,
cdr (body),
data-seq,
table))) endif

THEOREM: Ir-data-seg-body-list-n

Ir-data-seg-table-body (’list, body, data-seg, table)
= Ir-data-seg-table-body-n (length (body), body, data-seg, table)

300

THEOREM: definedp-table-definedp-cdr-lr-data-seg-table-body-n
definedp (object, table)
— definedp (object, cdr (Ir-data-seg-table-body-n (n, body, data-seg, table)))

THEOREM: definedp-lr-data-seg-body-list-n-not-lessp
(definedp (z, cdr (Ir-data-seg-table-body-n (n, body, data-seg, table)))
A (m £ n))
— definedp (z, cdr (Ir-data-seg-table-body-n (m, body, data-seg, table)))

THEOREM: Ir-data-seg-table-body-addl-opener
(n < length (body))
— (Ir-data-seg-table-body-n (1 + n, body, data-seg, table)
= Ir-data-seg-table-body (t,
get (n, body),
car (Ir-data-seg-table-body-n (n,
body,
data-seg,
table)),
cdr (Ir-data-seg-table-body-n (n,
body,
data-seq,
table))))

THEOREM: Ir-data-seg-table-body-flag-t-flag-t
(definedp (object,
cdr (Ir-data-seg-table-body (t,
get (n, body),
car (lr-data-seg-table-body-n (n,
body,
data-seg,
table)),
cdr (Ir-data-seg-table-body-n (7,
body,
data-seg,
table)))))
A (n €N)
A (n < length (body)))
— definedp (object,
cdr (Ir-data-seg-table-body (’1ist, body, data-seg, table)))

THEOREM: definedp-cadr-cur-expr-quote-lr-data-seg-table-body
(listp (cur-expr (pos, body))
A (car (cur-expr (pos, body)) = ’quote)
A good-pospl (pos, body))
— definedp (cadr (cur-expr (pos, body)),
cdr (Ir-data-seg-table-body (t, body, data-seq, table)))

301

THEOREM: definedp-cadr-cur-expr-quote-Ir-data-seg-table-list
(listp (cur-expr (pos, s-body (prog)))
A (car (cur-expr (pos, s-body (prog))) = ’quote)
A (prog € progs)
A good-pospl (pos, s-body (prog)))
— definedp (cadr (cur-expr (pos, s-body (prog))),
cdr (Ir-data-seg-table-list (progs, data-seg, table)))

THEOREM: definedp-cadr-cur-expr-quote-lr-data-seg-table
(listp (cur-expr (pos, s-body (prog)))
A (car (cur-expr (pos, s-body (prog))) = ’quote)
A (prog € progs)
A good-pospl (pos, s-body (prog)))
— definedp (cadr (cur-expr (pos, s-body (prog))),
cdr (Ir-data-seg-table (progs, params, heap-size)))

THEOREM: Ir-proper-exprp-p-lr-compile-programs-helper-2
(listp (cur-expr (pos, s-body (prog)))
(car (cur-expr (pos, s-body (prog))) = ’quote)
(prog € progs)
good-pospl (pos, s-body (prog))
(heap-size & s-total-heap-reqs (progs, params, heap-size))
s-restrictedp (progs, params))
(type (cdr (assoc (cadr (cur-expr (pos, s-body (prog))),
cdr (Ir-data-seg-table (progs, params, heap-size)))))

L>>>>>

= ’addr)

THEOREM: good-posp-dv-1-funcall-opened
(listp (cur-expr (pos, s-body (prog)))
car (cur-expr (pos, s-body (prog
car (cur-expr (pos, s-body (prog

())) # ’if)
()
(car (cur—expr (pos, s-body (prog)))
()
()

7é S-TEMP-EVAL)
S-TEMP-TEST)
S-TEMP-FETCH)
#

’quote)

car (cur-expr (pos, s-body (prog
car (cur-expr (pos, s-body (prog
)

good-pospl (pos, s-body (prog)))
good-posp (’1list, dv (pos, 1), s-body (prog))

l>>>>>>

THEOREM: s-restrict-subrps-list-lr-proper-get-t
(s-restrict-subrps (’list, cdr (expr))

A listp (expr)

A (n#0)

A (n < length (ezpr)))

— s-restrict-subrps (t, get (n, expr))

THEOREM: s-restrict-subrps-t-lr-proper-get-t

302

—~
—
o

ar (body) # S-TEMP-FETCH)

(car (body) # S-TEMP-EVAL)

(car (body) # S-TEMP-TEST)

(car (body) # ’quote)

listp (body)

s-proper-exprp (t, body, program-names, formals, temp-list)
(n #0)

(n < length (body))

s-restrict-subrps (t, body))

s-restrict-subrps (t, get (n, body))

l>>>>>>>>

EVENT: Disable s-restrict-subrps-list-Ir-proper-get-t.

THEOREM: s-restrict-subrps-s-restrict-subrps-cur-expr
(s-restrict-subrps (t, body)
A s-proper-exprp (t, body, program-names, formals, temp-list)
A good-pospl (pos, body))
— s-restrict-subrps (t, cur-expr (pos, body))

THEOREM: Ir-proper-exprp-flag-not-list-cons-funcall
((flag # *11s)
listp (cur-expr (pos, s-body (prog)))
good-pospl (pos, s-body (prog))
(car (cur-expr (pos, s-body (prog)))
(car (cur-expr (pos, s-body (prog)))
(car (cur-expr (pos, s-body (prog)))
(car (cur-expr (pos, s-body (prog)))
(car (cur-expr (pos, s-body (prog)))
lr-proper-exprp (’ list,
Ir-compile-body (’1list,
cdr (cur-expr (pos, s-body (prog))),

i)

S-TEMP-FETCH)
S-TEMP-EVAL)
S-TEMP-TEST)

’quote)

>>>>>> > >

temp-alist,
table),
program-names,
formals,
temps,
table)

A s-restrict-subrps (t, s-body (prog))
A s-proper-exprp (t, s-body (prog), program-names, formals, temp-list))
— lr-proper-exprp (flag,
cons (car (cur-expr (pos, s-body (prog))),
Ir-compile-body (’1list,
cdr (cur-expr (pos, s-body (prog))),
temp-alist,

303

table)),
program-names,
formals,
temps,
table)

THEOREM: Ir-proper-exprp-flag-not-list-not-listp
((flag # >1list)
A (= listp (cur-expr (pos, body)))
A good-pospl (pos, body)
A s-proper-exprp (t, body, program-names, formals, temp-list))
— lr-proper-exprp (flag,
cur-expr (pos, body),
program-names,
formals,
temps,
table)

THEOREM: Ir-proper-exprp-p-lr-compile-programs
(s-restrict-subrps (t, s-body (prog))
A (prog € progs)
A subsetp (progs, all-progs)
A s-proper-exprp (t,
s-body (prog),
program-names,
formals,
strip-cars (temp-alist))
good-posp (flag, pos, s-body (prog))
(heap-size £ s-total-heap-reqs (all-progs, params, heap-size))
s-restrictedp (all-progs, params))
Ir-proper-exprp (flag,
Ir-compile-body (flag,
if flag = ’1list
then restn (car (last (pos)),
cur-expr (butlast (pos),
s-body (prog)))
else cur-expr (pos, s-body (prog)) endif,
temp-alist,
cdr (Ir-data-seg-table (all-progs,
params,
heap-size))),

>>>

program-names,
formals,

strip-cdrs (temp-alist),

cdr (Ir-data-seg-table (all-progs, params, heap-size)))

304

EVENT: Disable lr-proper-exprp-p-Ir-compile-programs-helper-1.

THEOREM: all-litatoms-s-formals-member-s-programs-properp
((prog € progs) A s-programs-properp (progs, program-names))

—

all-litatoms (s-formals (prog))

THEOREM: s-restrict-subrps-s-body-member-s-restrict-subrps-progs
(s-restrict-subrps-progs (progs) A (prog € progs))

—

s-restrict-subrps (t, s-body (prog))

THEOREM: Ir-proper-exprp-p-lr-compile-programs-flag-t
(s-restrict-subrps-progs (all-progs)

>

A\
A\
A
A

!

(prog € all-progs)
s-programs-properp (all-progs, program-names)
(heap-size £ s-total-heap-reqgs (all-progs, params, heap-size))
s-restrictedp (all-progs, params)
(temp-alist = Ir-make-temp-name-alist (s-temp-list (prog),
s-formals (prog))))
lr-proper-exprp (t,
Ir-compile-body (t,
s-body (prog),
temp-alist,
cdr (Ir-data-seg-table (all-progs,
params,
heap-size))),
program-names,
s-formals (prog),
strip-cdrs (temp-alist),
cdr (Ir-data-seg-table (all-progs, params, heap-size)))

THEOREM: Ir-programs-properp-1-lr-compile-programs
(s-programs-properp (all-progs, program-names)

L>>>>>

s-programs-okp (progs)
s-restrict-subrps-progs (all-progs)
subsetp (progs, all-progs)
(heap-size £ s-total-heap-reqgs (all-progs, params, heap-size))
s-restrictedp (all-progs, params))
Ir-programs-properp-1 (Ir-compile-programs (progs,
cdr (Ir-data-seg-table (all-progs,
params,
heap-size))),
program-names,
cdr (Ir-data-seg-table (all-progs,
params,
heap-size)))

305

EVENT: Disable all-litatoms-s-formals-member-s-programs-properp.
THEOREM: subsetp-cdr
subsetp (cdr (z), z)

THEOREM: Ir-programs-properp-s->lr-opened
(s-good-statep (s, ¢)

A s-restrict-subrps-progs (s-progs (s))

A (heap-size £ s-total-heap-reqs (s-progs (s), s-params (s), heap-size))

A s-restrictedp (s-progs (s), s-params (s))

A litatom (name (car (s-progs (s)))))

— lr-programs-properp (s->Irl (s,
p-state (pc,

ctrl-stk,
temp-stk,
anything,
data-seq,
mazx-ctri,
maz-temp,
word-size,
nil),

cdr (Ir-data-seg-table (s-progs (s),
s-params (s),
heap-size))),

cdr (Ir-data-seg-table (s-progs (s),
s-params (),
heap-size)))

THEOREM: fall-off-proofp-append-cons-ret
fall-off-proofp (append (instrs, list (list (>d1, label, comment, ’ (ret)))))

THEOREM: proper-labeled-p-instructionsp-label-ret

litatom (label)

— proper-labeled-p-instructionsp (list (list (>d1, label, comment, * (ret))),
name,
p)

THEOREM: member-definedp-car
(z € y) — definedp (car (z), y)

THEOREM: all-litatoms-s-formals-member-Ir-programs-properp
((prog € prog-seg) A (— all-litatoms (formal-vars (prog))))
— (= Ir-programs-properp-1 (prog-seg, program-names, table))

306

THEOREM: properp-p-temp-var-dclps-member-lr-programs-properp
((prog € progs)

A lr-proper-heapp (data-seg)
A lr-proper-p-areasp (data-seg)
A Ir-programs-properp-1 (progs, strip-logic-fnames (cdr (prog-seg)), table))
— proper-p-temp-var-dclsp (temp-var-dcls (prog),
p-state (pc,
ctrl-stk,
temp-stk,
comp-programs (prog-seg),
data-seq,

maz-ctrl-stk-size,
maz-temp-stk-size,
word-size,

psw))

THEOREM: member-f-definedp-0
(f € alist) — definedp (0, alist)

THEOREM: member-no-duplicatesp-assoc-equal
((z € alist) A no-duplicatesp (strip-cars (alist)) A good-alistp (alist))
— (assoc (car (z), alist) =)

EVENT: Disable member-f-definedp-0.

THEOREM: lr-proper-exprp-program-body-not-listp

(= listp (prog))
— (= Ir-proper-exprp (t, program-body (prog), pnames, formals, temps, table))

THEOREM: good-alistp-lr-programs-properp
(= good-alistp (prog-seg))
— (= Ir-programs-properp-1 (prog-seg, program-names, table))

EVENT: Disable Ir-proper-exprp-program-body-not-listp.

THEOREM: proper-p-prog-segmentp-comp-programs-1-helper
(Ir-proper-heapp (data-seg)
A Ir-proper-p-areasp (data-seqg)
A lr-programs-properp-1 (prog-seg,
strip-logic-fnames (cdr (prog-seg)),
table)
A all-user-fnamesp (cdr (strip-cars (prog-seg)))
Ir-s-similar-const-table (table, data-seq)

A (prog € prog-seg)

>

307

A no-duplicatesp (strip-cars (prog-seg)))
— proper-labeled-p-instructionsp (comp-body-1 (t, program-body (prog), 0),

car (prog),

p-state (pc,
ctrl-stk,
temp-stk,
comp-programs (prog-seq),
data-seq,
maz-ctrl,
mazx-temp,
word-size,
psw))

THEOREM: proper-p-prog-segmentp-comp-programs-1
(Ir-proper-heapp (data-seg)
A lr-proper-p-areasp (data-seq)
A lr-programs-properp-1 (prog-seg,
strip-logic-fnames (cdr (prog-seg)),
table)

all-user-fnamesp (cdr (strip-cars (prog-seg)))

Ir-s-similar-const-table (table, data-seg)

no-duplicatesp (strip-cars (prog-seg))

subsetp (progs, prog-seq)

all-litatoms (strip-cars (progs)))

proper-p-prog-segmentp (comp-programs-1 (progs),

p-state (pe,

ctrl-stk,
temp-stk,
comp-programs (prog-seq),
data-seq,
maz-ctrl-stk-size,
maz-temp-stk-size,
word-size,
psw))

I >>>>>

EVENT: Disable all-litatoms-s-formals-member-lr-programs-properp.

THEOREM: proper-p-instructionp-set-global
adpp (cons (name, 0), p-data-segment (1))
— proper-p-instructionp (list (> set-global, name), z, lr->p (1))

THEOREM: proper-p-programp-append-car-prog-segment

(Ir-programs-properp-1 (prog-seg, strip-logic-fnames (cdr (prog-seg)), table)
A definedp (area-name (p-pc (1)), p-prog-segment (1))

308

Ir-proper-heapp (p-data-segment (1))

Ir-proper-p-areasp (p-data-segment (1))

Ir-s-similar-const-table (table, p-data-segment (1))

adpp (untag (LR-ANSWER-ADDR), p-data-segment (1))

(prog-seg = p-prog-segment (1))

all-litatoms (strip-cars (prog-seg))

all-user-fnamesp (strip-cars (cdr (p-prog-segment (1)))))

proper-p-programp (cons (name (car (prog-seg)),

cons (formal-vars (car (prog-seg)),
cons (temp-var-dcls (car (prog-seg)),
append (label-instrs (comp-body-1 (t,

program-body (car (prog-seg)),
0),

l>>s>>>>>

0),
list (list (°d1,
Ir-make-label (n1),
comentl,
list (’set-global,
identity (area-name (LR-ANSWER-ADDR)))),
list (’d1,
Ir-make-label (n2),
comment2,
’(ret))))))),
Ir->p (1))

THEOREM: all-litatoms-all-user-fnamesp-plistp
(all-user-fnamesp (list) A plistp (list)) — all-litatoms (list)

THEOREM: plistp-strip-cars
plistp (strip-cars (z))

THEOREM: Ir-programs-properp-all-user-fnamesp-strip-cars-cdr
Ir-programs-properp (I, table)
— all-user-fnamesp (strip-cars (cdr (p-prog-segment (1))))

THEOREM: Ir-programs-properp-caar-main
Ir-programs-properp (I, table) — (caar (p-prog-segment (1)) = ’main)

THEOREM: proper-p-prog-segmentp-p-runtime-support-programs
(Ir-programs-properp (I, table)

(p-word-size (1) € N)

(p-word-size (1) ¢ S-MAX-SUBR-REQS)

Ir-proper-heapp (p-data-segment (1))

Ir-proper-p-areasp (p-data-segment (1)))

proper-p-prog-segmentp (P-RUNTIME-SUPPORT-PROGRAMS, Ir->p (1))

b>>>>

309

THEOREM: proper-p-prog-segmentp-comp-programs
(Ir-proper-heapp (p-data-segment (1))

Ir-proper-p-areasp (p-data-segment (1))

(progs = p-prog-segment (1))

Ir-programs-properp (I, table)

Ir-s-similar-const-table (table, p-data-segment (1))
no-duplicatesp (strip-cars (p-prog-segment (1)))
(p-word-size (1) € N)

(p-word-size (1) £ S-MAX-SUBR-REQS)

adpp (untag (LR-ANSWER-ADDR), p-data-segment (1)))

proper-p-prog-segmentp (comp-programs (progs), lr->p (1))

l>>>>>>>>

EVENT: Disable Ir-programs-properp-caar-main.

THEOREM: no-duplicatesp-remove-duplicates
no-duplicatesp (remove-duplicates (z))

THEOREM: all-p-objectps-put
(all-p-objectps (Ist, p) A p-objectp (value, p) A (offset < length (Ist)))
— all-p-objectps (put (value, offset, Ist), p)

THEOREM: proper-p-data-segmentp-deposit-helper
(proper-p-data-segmentp (data-seg, p)
A (offset (addr) < length (cdr (assoc (area-name (addr), data-seg))))
A p-objectp (value, p))
— proper-p-data-segmentp (deposit (value, addr, data-seg), p)

THEOREM: proper-p-data-segmentp-deposit
(proper-p-data-segmentp (data-seg, p)

A adpp (untag (addr), data-seq)

A p-objectp (value, p))

— proper-p-data-segmentp (deposit (value, addr, data-seg), p)

THEOREM: all-p-objectps-get
(all-p-objectps (Ist, p)

A (offset < length (Ist))

A all-p-objectps (Ist, p))

— p-objectp (get (offset, lst), p)

THEOREM: proper-p-data-segmentp-fetch

(proper-p-data-segmentp (data-seg, p)
A (offset (addr) < length (cdr (assoc (area-name (addr), data-seg))))
A definedp (area-name (addr), data-seg))

— p-objectp (fetch (addr, data-seg), p)

310

THEOREM: Ir-s-similar-const-table-p-objectp-definedp
(Ir-s-similar-const-table (table, data-seg)

A

> > >

l>>>

Ir-proper-heapp (data-seqg)
Ir-proper-p-areasp (data-seg)
definedp (f, table)
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),
data-seq)
£ s-heap-regs (flag, object2, data-seg, table))
definedp (object1, cdr (Ir-compile-quote (flag, object2, data-seg, table)))
same-signature (p-data-segment (p), data-seg)
s-restricted-objectp (flag, object?2))
p-objectp (cdr (assoc (object1,
cdr (Ir-compile-quote (flag, object2, data-seg, table)))),
p)

THEOREM: lessp-x-subl-facts
<(y=D-1))=((z<y Alz<(y—1))

THEOREM: proper-p-data-segmentp-deposit-a-list-cons
((area-name (addr) = LR-HEAP-NAME)

l>>>>>>>

adpp (untag (addr), data-seq)

((offset (addr) + 3) < length (cdr (assoc (LR-HEAP-NAME, data-seg))))
p-objectp (a, p)

p-objectp (b, p)

p-objectp (¢, p)

p-objectp (d, p)

proper-p-data-segmentp (data-seg, p))

proper-p-data-segmentp (deposit-a-list (list (a, b, ¢, d), addr, data-seg), p)

THEOREM: proper-p-data-segmentp-deposit-a-list-cons-cons
let ds-tab be lr-compile-quote (’1ist, list (z, y), data-seg, table),

in

count-nodes be lIr-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seqg),
data-seqg)

(Ir-proper-p-areasp (data-seg)

A

> > >

>

Ir-proper-heapp (data-seqg)

Ir-s-similar-const-table (table, data-seq)

definedp (f, table)

((count-nodes — 1)

£ s-heap-regs (’list, list (z, y), data-seg, table))
(count-nodes # 0)

311

>

I >>>>

proper-p-data-segmentp (car (ds-tab), p)
((length (cdr (assoc (LR-HEAP-NAME, data-seg))) — 1)

£ (offset (fetch (LR-FP-ADDR, car (ds-tab)))

+ LR-NODE-SIZE))
(p-word-size (p) € N)
(p-word-size (p) £ S-MAX-SUBR-REQS)
same-signature (p-data-segment (p), data-seg)
s-restricted-objectp (’list, list (z, y)))
proper-p-data-segmentp (deposit-a-list (list (identity (tag (’nat,
LR-CONS-TAG)),
identity (tag (’nat,

1)),
cdr (assoc (z,
cdr (ds-tab))),
cdr (assoc (y,
cdr (ds-tab)))),
fetch (identity (LR-FP-ADDR),
car (ds-tab)),
car (ds-tab)),
p) endlet

THEOREM: proper-p-data-segmentp-deposit-a-list-cons-numberp
(Ir-proper-p-areasp (data-seq)

A

> > > >

b>>>

Ir-proper-heapp (data-seq)
(p-word-size (p) £ log (2, number))
(number € N)
proper-p-data-segmentp (data-seg, p)
((length (cdr (assoc (LR-HEAP-NAME, data-seg))) — 1)
&£ (offset (fetch (LR-FP-ADDR, data-seg)) + LR-NODE-SIZE))
(p-word-size (p) € N)
(p-word-size (p) £ S-MAX-SUBR-REQS)
same-signature (p-data-segment (p), data-seg))
proper-p-data-segmentp (deposit-a-list (list (identity (tag (’nat,
LR-ADD1-TAG)),
identity (tag (’nat, 1)),
tag (’nat, number),
identity (LR-UNDEF-ADDR)),
fetch (identity (LR-FP-ADDR),
data-seq),
data-seg),

)

THEOREM: proper-p-data-segmentp-deposit-a-list-cons-truep
(Ir-proper-p-areasp (data-seg)

312

A lr-proper-heapp (data-seg)

A proper-p-data-segmentp (data-seg, p)
A ((length (cdr (assoc (LR-HEAP-NAME, data-seg))) — 1)
&£ (offset (fetch (LR-FP-ADDR, data-seg)) + LR-NODE-SIZE))
A (p-word-size (p) € N)
A (p-word-size (p) £ log (2, LR-TRUE-TAG))
A same-signature (p-data-segment (p), data-seg))
— proper-p-data-segmentp (deposit-a-list (list (identity (tag (’nat,

LR-TRUE-TAG)),

identity (tag (*nat, 1)),
identity (LR-UNDEF-ADDR),
identity (LR-UNDEF-ADDR)),

fetch (identity (LR-FP-ADDR),

data-seq),
data-seg),
p)

EVENT: Disable proper-p-data-segmentp-deposit-a-list-cons.

THEOREM: s-ws-reqs-flag-not-list-t
((flag # ’1ist) A (- definedp (¢, table)))
— (s-ws-regs (flag, t, data-seg, table) = identity (log (2, LR-TRUE-TAG)))

THEOREM: Ir-compile-quote-preserves-proper-p-data-segmentp
(Ir-s-similar-const-table (table, data-seq)
A s-restricted-objectp (flag, object)
Ir-proper-heapp (data-seg)
Ir-proper-p-areasp (data-seg)
definedp (f, table)
(p-word-size (p) € N)
(p-word-size (p) ¢ s-ws-reqs (flag, object, data-seg, table))
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),

> > > > > >

data-seq)
&£ s-heap-regs (flag, object, data-seg, table))

proper-p-data-segmentp (data-seg, p)

same-signature (p-data-segment (p), data-seg))

proper-p-data-segmentp (car (Ir-compile-quote (flag,
object,
data-seg,
table)),

> >

313

THEOREM: Ir-data-seg-table-body-preserves-proper-p-data-segmentp
(Ir-s-similar-const-table (table, data-seg)
A s-data-seg-body-restrictedp (flag, body)

A lr-proper-heapp (data-seg)

A Ir-proper-p-areasp (data-seg)

A proper-p-data-segmentp (data-seg, p)

A definedp (f, table)

A (p-word-size (p) € N)

A (p-word-size (p) £ s-ws-regs-body (flag, body, data-seg, table))

A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),

data-seq),
data-seq)
£ s-heap-regs-body (flag, body, data-seg, table))

A same-signature (p-data-segment (p), data-seg))

— proper-p-data-segmentp (car (Ir-data-seg-table-body (flag,
body,
data-seq,
table)),

)

THEOREM: Ir-data-seg-table-list-preserves-proper-p-data-segmentp
(Ir-s-similar-const-table (table, data-seg)
A s-data-seg-list-restrictedp (progs)

A Ir-proper-heapp (data-seg)
A lr-proper-p-areasp (data-seq)
A proper-p-data-segmentp (data-seg, p)
A definedp (f, table)
A (p-word-size (p) € N)
A (p-word-size (p) £ s-ws-reqs-list (progs, data-seg, table))
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),
data-seq)
£ s-heap-regs-list (progs, data-seg, table))
A same-signature (p-data-segment (p), data-seg))
— proper-p-data-segmentp (car (Ir-data-seg-table-list (progs,
data-seq,
table)),

)

THEOREM: Ir-init-data-seg-table-preserves-proper-p-data-segmentp
(Ir-s-similar-const-table (table, data-seg)
A s-init-data-seg-restrictedp (params)

314

>>>> > > >

b >

Ir-proper-heapp (data-seqg)
Ir-proper-p-areasp (data-seg)
proper-p-data-segmentp (data-seg, p)
definedp (f, table)
(p-word-size (p) € N)
(p-word-size (p) £ s-init-ws-reqs (params, data-seg, table))
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (lr-max-node (data-seg),
data-seq),
data-seq)
£ s-init-heap-reqs (params, data-seg, table))
same-signature (p-data-segment (p), data-seg))
proper-p-data-segmentp (car (lr-init-data-seg-table (params,
data-seq,
table)),

)

THEOREM: all-p-objectps-lr-init-heap-contents-helper-helper
(heap-size # 0)

—

((identity (LR-NODE-SIZE)

+ =z

+ (identity (LR-NODE-SIZE) * (heap-size — 1)))
= (z + (identity (LR-NODE-SIZE) * heap-size)))

THEOREM: all-p-objectps-lr-init-heap-contents-helper
((p-word-size (p) € N)

>>>>>>>>> > > >

—

(p-word-size (p) £ S-MAX-SUBR-REQS)
(heap-size £ 4)

Ir-proper-p-areasp (p-data-segment (p))

Ir-minimum-heapp (p-data-segment (p))

(type (addr) = ’addr)

(cddr (addr) = nil)

listp (addr)

(offset (addr) € N)

Ir-boundary-nodep (addr)

(area-name (addr) = LR-HEAP-NAME)

definedp (LR-HEAP-NAME, p-data-segment (p))
(((LR-NODE-SIZE * heap-size) + offset (addr))
< length (cdr (assoc (LR-HEAP-NAME, p-data-segment (p))))))

all-p-objectps (Ir-init-heap-contents (addr, heap-size), p)

EVENT: Disable all-p-objectps-lr-init-heap-contents-helper-helper.

THEOREM: all-p-objectps-Ir-init-heap-contents

315

((p-word-size (p) € N)

(p-word-size (p) £ S-MAX-SUBR-REQS)

(heap-size £ 4)

same-signature (p-data-segment (p), Ir-init-data-seg (heap-size)))
all-p-objectps (Ir-init-heap-contents (identity (tag (> addr,

A

A

A lr-proper-p-areasp (p-data-segment (p))
AN
-

p)

cons (LR-HEAP-NAME,

0))),

heap-size),

THEOREM: proper-p-data-segmentp-Ir-init-data-seg-helper

((p-word-size (p) € N)

(heap-size £ 4)

L>>>>

p)

(p-word-size (p) £ S-MAX-SUBR-REQS)

lr-proper-p-areasp (p-data-segment (p))
same-signature (p-data-segment (p), lr-init-data-seg (heap-size)))
proper-p-data-segmentp (deposit-a-list (list (tag (’nat, LR-FALSE-TAG),

tag (’nat, 1),
LR-UNDEF-ADDR,
LR-UNDEF-ADDR),
LR-F-ADDR,
deposit-a-list (list (tag (’nat,
LR-UNDEFINED-TAG),
tag (’nat,
1),
LR-UNDEF-ADDR,
LR-UNDEF-ADDR),
LR-UNDEF-ADDR,
list (list (area-name (LR-FP-ADDR),
add-addr (LR-F-ADDR,
LR-NODE-SIZE)),
list (area-name (LR-ANSWER-ADDR),
tag (’nat,
O))7
cons (LR-HEAP-NAME,
Ir-init-heap-contents (tag (’ addr,
cons (LR-HEAP
0)),
heap-size))))).

THEOREM: proper-p-data-segmentp-lr-init-data-seg

((p-word-size (p) € N)

316

A (p-word-size (p) £ S-MAX-SUBR-REQS)

A (heap-size &£ 4)

A lr-proper-p-areasp (p-data-segment (p))

A same-signature (p-data-segment (p), lr-init-data-seg (heap-size)))
— proper-p-data-segmentp (Ir-init-data-seg (heap-size), p)

THEOREM: proper-p-data-segmentp-lr-init-data-seg-compile-t0
((p-word-size (p) € N)
A (p-word-size (p) £ S-MAX-SUBR-REQS)
A (heap-size £ 4)
A lr-proper-p-areasp (p-data-segment (p))
A same-signature (p-data-segment (p), lr-init-data-seg (heap-size)))
— proper-p-data-segmentp (car (Ir-compile-quote (’1list,
list (t, 0),
Ir-init-data-seg (heap-size),
list (cons (f, addr)))),
p)

THEOREM: same-signature-car-Ir-data-seg-table-list-reducer
(Ir-proper-free-listp (data-seg2)

A lr-proper-p-areasp (data-seg2)

A definedp (LR-HEAP-NAME, data-seg2)

A Ir-boundary-nodep (Ir-max-node (data-seg2)))

— (same-signature (data-seg!,

car (Ir-data-seg-table-list (progs, data-seg2, table)))
— same-signature (data-segl, data-seg2))

THEOREM: same-signature-car-lr-init-data-seg-table-reducer

(Ir-proper-free-listp (data-seg2)

A lr-proper-p-areasp (data-seg2)
A definedp (LR-HEAP-NAME, data-seg2)

A Ir-boundary-nodep (Ir-max-node (data-seg2)))
— (same-signature (data-seg1,
car (Ir-init-data-seg-table (params, data-seg2, table)))
— same-signature (data-segl, data-seg2))

THEOREM: same-signature-car-lr-compile-quote-reducer
(Ir-proper-free-listp (data-seg2)

A lr-proper-p-areasp (data-seg2)

A definedp (LR-HEAP-NAME, data-seg2)

A Ir-boundary-nodep (Ir-max-node (data-seg2)))
— (same-signature (data-seg!,

car (Ir-compile-quote (flag, object, data-seg2, table)))
— same-signature (data-seg!, data-seg2))

317

THEOREM: proper-p-data-segmentp-lr-data-seg-table
((p-word-size (p) € N)
(p-word-size (p) £ S-MAX-SUBR-REQS)
Ir-proper-p-areasp (p-data-segment (p))
s-restrictedp (progs, params)
(heap-size £ s-total-heap-reqs (progs, params, heap-size))
(p-word-size (p) £ s-total-ws-reqs (progs, params, heap-size))
same-signature (p-data-segment (p),
car (Ir-data-seg-table (progs, params, heap-size))))

— proper-p-data-segmentp (car (Ir-data-seg-table (progs, params, heap-size)),

p)

> > > > > >

THEOREM: adpp-untag-answer-addr-car-Ir-data-seg-table
adpp (identity (untag (LR-ANSWER-ADDR)),
car (Ir-data-seg-table (progs, params, heap-size)))

THEOREM: program-body-assoc-cdr-lr-compile-programs
(name # caar (progs))
— (program-body (assoc (name, cdr (lr-compile-programs (progs, table))))
= lr-compile-body (t,
s-body (assoc (name, cdr (progs))),
Ir-make-temp-name-alist (s-temp-list (assoc (name,
cdr (progs))),
s-formals (assoc (name,
cdr (progs)))),
table))

THEOREM: s-total-ws-reqs-not-lessp-s-max-subr-reqs
(word-size £ s-total-ws-reqs (progs, params, heap-size))
— (word-size £ S-MAX-SUBR-REQS)

THEOREM: proper-p-statep-lr->p-s->Ir
(s-good-statep (s, ¢)
A all-litatoms (strip-cars (s-params (s))
(maz-ctrl £ (2 + length (s-params (s)) + length (s-temps (s))))
(word-size € N)
(maz-temp < exp (2, word-size))
(max-ctrl < exp (2, word-size))
(maz-temp € N)
(maz-ctrl € N)
(heap-size £ s-total-heap-reqgs (s-progs (s), s-params (s), heap-size))
s-restrict-subrps-progs (s-progs (s))
litatom (name (car (s-progs (s))))
no-duplicatesp (strip-cars (s-progs (s)))
(strip-cars (s-params (s)) = s-formals (s-prog (s)))

>>>>>>>>> > >

318

A s-restrictedp (s-progs (s), s-params (s))
A (word-size &£ s-total-ws-reqs (s-progs (s), s-params (s), heap-size)))
— proper-p-statep (Ir->p (s->1r (s, heap-size, maa-ctrl, maz-temp, word-size)))

THEOREM: Ir-programs-properp-s->Ir
(s-good-statep (s, ¢)
s-restrict-subrps-progs (s-progs (s))
s-restrictedp (s-progs (s), s-params (s))
(heap-size £ s-total-heap-reqs (s-progs (s), s-params (s), heap-size))
litatom (name (car (s-progs (s)))))
lr-programs-properp (s->Ir (s, heap-size, maz-ctrl, maz-temp, word-size),
cdr (Ir-data-seg-table (s-progs (s),
s-params (),
heap-size)))

>>>>

DEFINITION:
Ir-total-heap-reqs (expr, alist, program-names, heap-size, c)
= (s-total-heap-reqs (s-progs (logic->s (expr, alist, program-names)),
alist,
heap-size)
+ s-eval-heap-r (t, logic->s (expr, alist, program-names), c))

DEFINITION:

Ir-max-ctrl-regs (expr, alist, program-names, c)

- (2
+ length (s-params (logic->s (expr, alist, program-names)))
+ length (s-temps (logic->s (expr, alist, program-names)))
+ s-eval-ctrl-r (t, logic->s (expr, alist, program-names), c))

DEFINITION:
Ir-max-temp-reqs (expr, alist, program-names, c)
= s-eval-temp-r (t, logic->s (expr, alist, program-names), c)

DEFINITION:
Ir-max-word-size-reqs (expr, alist, program-names, heap-size, c¢)
= max (s-total-ws-reqs (s-progs (logic->s (expr, alist, program-names)),
s-params (logic->s (expr, alist, program-names)),
heap-size),
s-eval-ws-r (t, logic->s (expr, alist, program-names), c))

THEOREM: Ir-eval-s-eval-equivalence-s->Ir
let s-ir be s->Ir (s, heap-size, maz-ctrl, maz-temp, word-size)
in
(proper-p-statep (I->p (s-Ir))
A Ir-programs-properp (s-Ir,

319

cdr (Ir-data-seg-table (s-progs (s),
s-params (s),
heap-size)))
A lIr-s-similar-statesp (s-params (s),
s-temps (s),
s-Ir,
cdr (Ir-data-seg-table (s-progs (s),
s-params (),
heap-size)))
A s-restrictedp (s-progs (s), s-params (s))

A (heap-size £ s-total-heap-reqs (s-progs (s),
s-params (),
heap-size))

A s-good-statep (s,)

A (p-psw (lr-eval (t, s-Ir, ¢)) = ’run)

A (s-pname (s) = name (car (s-progs (s))))

A (s-pos(s) = nil))

— Ir-valp (s-ans (s-eval (t, s, ¢)),

car (p-temp-stk (Ir-eval (t, s-lIr, ¢))),
p-data-segment (Ir-eval (t, s-lr, ¢))) endlet

THEOREM: same-signature-car-lr-data-seg-table
(heap-size £ s-total-heap-reqs (progs, params, heap-size))
— same-signature (Ir-init-data-seg (heap-size),
car (Ir-data-seg-table (progs, params, heap-size)))

THEOREM: Ir-max-node-car-Ir-data-seg-table
(heap-size £ s-total-heap-regs (progs, params, heap-size))
— (Ir-max-node (car (Ir-data-seg-table (progs, params, heap-size)))
= tag(’addr,
cons (identity (LR-HEAP-NAME),
identity (LR-NODE-SIZE) * heap-size)))

THEOREM: Ir-count-free-nodes-Ir-data-seg-table-list-s-heap-reqs-help
(le-proper-free-listp (data-seq)
A lr-proper-p-areasp (data-seg)
A definedp (LR-HEAP-NAME, data-seqg)
A Ir-minimum-heapp (data-seg)
A lr-boundary-nodep (Ir-max-node (data-seg))
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),
data-seq)
£ s-heap-regs-body (t, body, data-seg, table)))
— ((s-heap-regs-body (t, body, data-seg, table)

320

+ Ir-count-free-nodes (fetch (identity (LR-FP-ADDR),
car (Ir-data-seg-table-body (t,
body,
data-seq,
table))),
Ir-free-list-nodes (Ir-max-node (data-seg),
car (Ir-data-seg-table-body (t,
body,
data-seq,
table))),
car (lr-data-seg-table-body (t,
body,
data-seq,
table))))
= Ir-count-free-nodes (fetch (identity (LR-FP-ADDR), data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),
data-seq))

THEOREM: Ir-count-free-nodes-Ir-data-seg-table-list-s-heap-reqs
(Ir-proper-free-listp (data-seg)
A Ir-proper-p-areasp (data-seg)
definedp (LR-HEAP-NAME, data-seq)
Ir-minimum-heapp (data-seg)
Ir-boundary-nodep (Ir-max-node (data-seg))
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),

> > > >

data-seq)
£ s-heap-reqs-list (progs, data-seg, table)))
— ((lr-count-free-nodes (fetch (LR-FP-ADDR,
car (Ir-data-seg-table-list (progs,
data-seq,
table))),
Ir-free-list-nodes (Ir-max-node (data-seg),
car (lr-data-seg-table-list (progs,
data-seq,
table))),
car (Ir-data-seg-table-list (progs, data-seg, table)))
+ s-heap-reqs-list (progs, data-seg, table))
= lr-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),
data-seq))

321

THEOREM: Ir-max-node-car-Ir-data-seg-table-list
(Ir-proper-free-listp (data-seg)
A lr-proper-p-areasp (data-seq)
A definedp (LR-HEAP-NAME, data-seg)
A Ir-boundary-nodep (Ir-max-node (data-seg)))
— (Ir-max-node (car (Ir-data-seg-table-list (progs, data-seg, table)))
= lr-max-node (data-seq))

THEOREM: Ir-count-free-nodes-Ir-data-seg-table-list-s-heap-reqs-1
(Ir-proper-heapp (data-seq)
A lr-proper-p-areasp (data-seq)
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),
data-seq)
&£ s-heap-reqs-list (progs, data-seg, table))
A (maz-addr = Ir-max-node (car (Ir-data-seg-table-list (progs,
data-seq,

tablc)))))
— (Ir-count-free-nodes (fetch (identity (LR-FP-ADDR),
car (Ir-data-seg-table-list (progs,
data-seq,
table))),
Ir-free-list-nodes (maz-addr,
car (Ir-data-seg-table-list (progs,
data-seg,
table))),
car (Ir-data-seg-table-list (progs, data-seg, table)))
= (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),
data-seq)
— s-heap-reqgs-list (progs, data-seg, table)))

THEOREM: Ir-count-free-nodes-Ir-init-data-seg-table-s-heap-reqs-1
(Ir-proper-heapp (data-seq)

A lr-proper-p-areasp (data-seq)

A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),

data-seg),
data-seq)
£ s-init-heap-reqs (params, data-seg, table))
A (maz-addr = Ir-max-node (car (Ir-init-data-seg-table (params,
data-seq,

322

table)))))

— (Ir-count-free-nodes (fetch (identity (LR-FP-ADDR),
car (lr-init-data-seg-table (params,
data-seq,
table))),
Ir-free-list-nodes (maz-addr,
car (Ir-init-data-seg-table (params,
data-seq,
table))),
car (Ir-init-data-seg-table (params, data-seg, table)))
= (lr-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
lr-free-list-nodes (Ir-max-node (data-seg),
data-seq),
data-seq)
— s-init-heap-reqs (params, data-seg, table)))

THEOREM: not-lessp-lr-count-free-nodes-lr-data-seg-table-heap-r
((heap-size £ (s-total-heap-regs (progs, params, heap-size) + x))
A s-restrictedp (progs, params))

— (Ir-count-free-nodes (fetch (identity (LR-FP-ADDR),

car (Ir-data-seg-table (progs,
params,
heap-size))),

Ir-free-list-nodes (Ir-max-node (car (lr-data-seg-table (progs,
params,
heap-size))),

car (Ir-data-seg-table (progs,
params,
heap-size))),
car (Ir-data-seg-table (progs, params, heap-size)))

£)

THEOREM: Ir-eval-s-eval-flag-run-s->Ir
let s-ir be s->Ir (s, heap-size, maz-ctrl, maz-temp, word-size)
in
(proper-p-statep (Ir->p (s-ir))
A lr-programs-properp (s-Ir,
cdr (Ir-data-seg-table (s-progs (s),
s-params (s),
heap-size)))
A Ir-s-similar-statesp (s-params (s),
s-temps (s),
s-1r,
cdr (Ir-data-seg-table (s-progs (s),

323

s-params (),
heap-size)))

A s-restrictedp (s-progs (s), s-params (s))

s-good-statep (s, c)

s-all-temps-setp (t,

s-body (car (s-progs (s))),
temp-alist-to-set (s-temps (s)))

s-all-progs-temps-setp (s-progs (s))

s-check-temps-setp (s-temps (s))

(s-err-flag (s-eval (t, s, ¢)) = ’run)

(heap-size £ (s-total-heap-reqs (s-progs (s),
s-params (s),
heap-size)

+ s-eval-heap-r (t, s, ¢)))

(maz-ctrl £ (p-ctrl-stk-size (p-ctrl-stk (s-Ir))

+ s-eval-ctrl-r (t, s, ¢)))

(maz-temp £ s-eval-temp-r (t, s, ¢))

(word-size &£ s-eval-ws-r (t, s, c))

(word-size £ S-MAX-SUBR- REQS)

(s-pname (s) = name (car (s-progs (s))))

(s

(p

> >

> > > >

>

-pos (s) = nil))
p-psw (Ir-eval (t, s-Ir, ¢)) = ’run) endlet

L>>>>>

THEOREM: all-undef-addr-strip-cdrs-lr-make-initial-temps
all-undef-addrs (strip-cdrs (Ir-make-initial-temps (z)))

THEOREM: Ir-s-similar-temps-make-temps-entries-initial-temps
(all-undef-addrs (strip-cdrs (Ir-temps))

A (length (s-temps) = length (Ir-temps)))

— lr-s-similar-temps (make-temps-entries (s-temps), lr-temps, data-seq)

DEFINITION:
object-addrs (object-list, table)
= if listp (object-list)
then cons (cdr (assoc (car (object-list), table)),
object-addrs (cdr (object-list), table))
else nil endif

THEOREM: lIr-valp-lr-compile-quote
(Ir-proper-p-areasp (data-seg)
A Ir-s-similar-const-table (table, data-seg)
A s-restricted-objectp (flag, object)
A lr-proper-heapp (data-seg)
A definedp (f, table)
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),

324

Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),
data-seq)
£ s-heap-regs (flag, object, data-seg, table)))
— if flag = ’list
then Ir-check-resultl (object,
object-addrs (object,
cdr (Ir-compile-quote (flag,
object,
data-seq,
table))),
car (Ir-compile-quote (flag, object, data-seg, table)))
else Ir-valp (object,
cdr (assoc (object,
cdr (Ir-compile-quote (flag,
object,
data-seqg,
table)))),
car (Ir-compile-quote (flag, object, data-seg, table))) endif

THEOREM: Ir-init-data-seg-table-preserves-lr-valp
(Ir-proper-p-areasp (data-seq)
A Ir-good-pointerp-tablep (table, data-seq)
s-init-data-seg-restrictedp (params)
Ir-proper-heapp (data-seqg)
definedp (f, table)
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seq),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),

> > > >

data-seq)
£ s-init-heap-reqs (params, data-seg, table))
A Ir-valp (value, addr, data-seg))
— lr-valp (value, addr, car (Ir-init-data-seg-table (params, data-seg, table)))

THEOREM: Ir-valp-Ir-compile-quote-flag-t
(Ir-proper-p-areasp (data-seq)
A Ir-s-similar-const-table (table, data-seg)
s-restricted-objectp (t, object)
Ir-proper-heapp (data-seqg)
definedp (f, table)
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),

> > > >

data-seq)

325

&£ s-heap-regs (t, object, data-seg, table)))
— lr-valp (object,
cdr (assoc (object,
cdr (Ir-compile-quote (t, object, data-seg, table)))),
car (Ir-compile-quote (t, object, data-seg, table)))

THEOREM: Ir-s-similar-params-pair-formals-Ir-init-data-seg
(Ir-proper-p-areasp (data-seq)
A Ir-s-similar-const-table (table, data-seq)
s-init-data-seg-restrictedp (params)
Ir-proper-heapp (data-seqg)
definedp (f, table)
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),

> > > >

data-seq)
#£ s-init-heap-reqs (params, data-seg, table)))
— lr-s-similar-params (params,
pair-formals-with-addresses (params,
cdr (Ir-init-data-seg-table (params,

data-seq,
table))),

car (Ir-init-data-seg-table (params, data-seg, table)))

THEOREM: Ir-data-seg-table-body-preserves-lr-valp
(Ir-proper-p-areasp (data-seg)
A Ir-good-pointerp-tablep (table, data-seq)

A s-data-seg-body-restrictedp (flag, body)

A lr-proper-heapp (data-seg)

A definedp (f, table)

A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),

data-seg),
data-seq)
&£ s-heap-reqgs-body (flag, body, data-seg, table))
A Ir-valp (value, addr, data-seg))
— lr-valp (value,

addr,
car (Ir-data-seg-table-body (flag, body, data-seg, table)))

THEOREM: Ir-data-seg-table-list-preserves-lr-valp
(Ir-proper-p-areasp (data-seg)
A Ir-good-pointerp-tablep (table, data-seg)
A s-data-seg-list-restrictedp (progs)
A lr-proper-heapp (data-seg)

326

A definedp (f, table)
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),
data-seq)
&£ s-heap-regs-list (progs, data-seg, table))
A lr-valp (value, addr, data-seg))
— lr-valp (value, addr, car (Ir-data-seg-table-list (progs, data-seg, table)))

THEOREM: Ir-data-seg-table-list-preserves-lr-s-similar-params
(Ir-proper-p-areasp (data-seg)
A Ir-good-pointerp-tablep (table, data-seg)

A s-data-seg-list-restrictedp (progs)
A lr-proper-heapp (data-seg)
A definedp (f, table)
A (Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seq),
data-seq)
£ s-heap-reqs-list (progs, data-seg, table))
A lr-s-similar-params (s-params, Ir-params, data-seg))
— lr-s-similar-params (s-params,
Ir-params,
car (Ir-data-seg-table-list (progs, data-seg, table)))
DEFINITION:

all-definedp (list, alist)

= if listp (list)
then definedp (car (list), alist) A all-definedp (cdr (list), alist)
else t endif

THEOREM: assoc-definedp-table-lr-data-seg-table-body

definedp (object, table)

— (assoc (object, cdr (Ir-data-seg-table-body (flag, expr, data-seg, table)))
= assoc (object, table))

THEOREM: assoc-definedp-table-lr-data-seg-table-list

definedp (object, table)

— (assoc (object, cdr (Ir-data-seg-table-list (progs, data-seg, table)))
= assoc (object, table))

THEOREM: pair-formals-with-addresses-Ir-data-seg-table-list
all-definedp (strip-cdrs (params), table)
— (pair-formals-with-addresses (params,
cdr (Ir-data-seg-table-list (progs,

327

data-seg,
table)))
= pair-formals-with-addresses (params, table))

THEOREM: all-definedp-strip-cdrs-lr-init-data-seg-table
(Ir-s-similar-const-table (table, data-seg)
A lr-proper-p-areasp (data-seq)
Ir-proper-heapp (data-seg)
definedp (f, table)
s-init-data-seg-restrictedp (params)
(Ir-count-free-nodes (fetch (LR-FP-ADDR, data-seg),
Ir-free-list-nodes (Ir-max-node (data-seg),
data-seg),

> > > >

data-seq)
£ s-init-heap-reqs (params, data-seg, table)))
— all-definedp (strip-cdrs (params),
cdr (Ir-init-data-seg-table (params, data-seg, table)))

THEOREM: Ir-s-similar-params-pair-formals-with-addresses
((heap-size £ s-total-heap-regs (progs, params, heap-size))
A s-restrictedp (progs, params))
— lr-s-similar-params (params,
pair-formals-with-addresses (params,
cdr (Ir-data-seg-table (progs,
params,
heap-size))),
car (Ir-data-seg-table (progs, params, heap-size)))

THEOREM: Ir-s-similar-statesp-s->Ir-lr-data-seg-table
((heap-size £ s-total-heap-reqs (s-progs (s), s-params (s), heap-size))
A s-restrictedp (s-progs (s), s-params (s))
A (strip-cars (s-params (s)) = s-formals (car (s-progs (s))))
A (s-pname (s) = name (car (s-progs (s))))
A (s-temps (s) = make-temps-entries (s-temp-list (car (s-progs (s))))))
— Ir-s-similar-statesp (s-params (s),
s-temps (s),
s->1r (s, heap-size, maxz-ctrl, max-temp, word-size),
cdr (Ir-data-seg-table (s-progs (s),
s-params (s),
heap-size)))

THEOREM: p-ctrl-stk-size-p-ctrl-stk-s->Ir
p-ctrl-stk-size (p-ctrl-stk (s->1Ir (s, heap-size, maz-ctrl, maz-temp, word-size)))
= (2 + length (s-params (s)) + length (s-temps (s)))

328

THEOREM: s->Ir-ok
let s-ir be s->Ir (s, heap-size, maz-ctrl, maz-temp, word-size)
in
(s-good-statep (s, ¢)
A s-all-temps-setp (t,
s-body (car (s-progs (s))),
temp-alist-to-set (s-temps (s)))
A s-all-progs-temps-setp (s-progs (s))
A (s-temps (s)
= make-temps-entries (s-temp-list (car (s-progs (s)))))

A s-check-temps-setp (s-temps (s))

A s-restrictedp (s-progs (s), s-params (s))

A (heap-size £ (s-total-heap-reqs (s-progs (s),
s-params (),
heap-size)

+ s-eval-heap-r (t, s, ¢)))

A s-restrict-subrps-progs (s-progs (s))

A (maz-ctrl £ (2

+ length (s-params (s))
+ length (s-temps (s))
+ s-eval-ctrl-r (¢, s, ¢)))

(maz-ctrl € N)

(maz-ctrl < exp (2, word-size))

(maz-temp € N)

(maz-temp £ s-eval-temp-t (t, s, ¢))

(maz-temp < exp (2, word-size))

(word-size £ max (s-total-ws-reqs (s-progs (s),
s-params (),
heap-size),

s-eval-ws-r (t, s, ¢)))

(word-size € N)

litatom (name (car (s-progs (s))))

(s-pname (s) = name (car (s-progs (s))))

(s-pos (s) = nil)

all-litatoms (strip-cars (s-params (s)))

no-duplicatesp (strip-cars (s-progs (s)))

(strip-cars (s-params (s)) = s-formals (car (s-progs (s))))

(s-err-flag (s-eval (t, s, ¢)) = ’run))

Ir-valp (s-ans (s-eval (t, s, ¢)),

car (p-temp-stk (Ir-eval (t, s-lIr, c))),
p-data-segment (Ir-eval (t, s-Ir, ¢))) endlet

>>> > > >

l>>>>>>>>

THEOREM: s-good-state-logic->s
(I-proper-programsp (prog-names)

329

A l-proper-exprp (t, expr, prog-names, strip-cars (alist))
A all-litatoms (strip-cars (alist)))
— s-good-statep (logic->s (expr, alist, prog-names), c)

THEOREM: s-body-car-s-progs-logic->s
s-body (car (s-progs (logic->s (expr, alist, pnames)))) = expr

THEOREM: l-proper-programsp-s-progs-logic->s
(I-proper-programsp (pnames) A l-proper-exprp (t, expr, pnames, formals))
— s-all-progs-temps-setp (s-progs (logic->s (expr, alist, pnames)))

THEOREM: s-temps-logic->s
s-temps (logic->s (expr, alist, pnames)) = nil

THEOREM: s-temp-list-car-s-progs-logic->s
s-temp-list (car (s-progs (logic->s (expr, alist, pnames)))) = nil

THEOREM: s-params-logic->s
s-params (logic->s (expr, alist, pnames)) = alist

DEFINITION:
l-data-seg-body-restrictedp (flag, expr)
= if flag = ’1list
then if listp (ezpr)
then l-data-seg-body-restrictedp (t, car (expr))
A l-data-seg-body-restrictedp (’list, cdr (expr))
else t endif
elseif listp (expr)
then if car (ezpr) = ’quote
then s-restricted-objectp (t, cadr (expr))
else l-data-seg-body-restrictedp (’1list, cdr (ezpr)) endif
else t endif

DEFINITION:
l-data-seg-list-restrictedp (fun-names)
= if listp (fun-names)
then l-data-seg-body-restrictedp (t, body (car (fun-names)))
A l-data-seg-list-restrictedp (cdr (fun-names))
else t endif

DEFINITION:
l-restrictedp (fun-names, alist)
= (s-init-data-seg-restrictedp (alist)
A l-data-seg-list-restrictedp (fun-names))

330

THEOREM: l-data-seg-body-restrictedp-s-data-seg-body-restrictedp
l-data-seg-body-restrictedp (flag, body)
— s-data-seg-body-restrictedp (flag, body)

THEOREM: l-data-seg-body-restrictedp-delete-all
l-data-seg-list-restrictedp (pnames)
— l-data-seg-list-restrictedp (delete-all (name, pnames))

THEOREM: l-data-seg-list-restrictedp-s-data-seg-list-restrictedp
(I-data-seg-list-restrictedp (pnames) A l-data-seg-body-restrictedp (t, expr))
— s-data-seg-list-restrictedp (s-progs (logic->s (expr, alist, pnames)))

THEOREM: l-restrict-subrps-s-restrict-subrps
(I-restrict-subrps (flag, expr)

A l-proper-exprp (flag, expr, program-names, formals))
— s-restrict-subrps (flag, expr)

THEOREM: l-restrict-subrps-progs-delete-all
l-restrict-subrps-progs (pnames)
— lrestrict-subrps-progs (delete-all (name, pnames))

THEOREM: l-restrict-subrps-progs-s-restrict-subrps-progs
(I-restrict-subrps-progs (pnames)

A l-proper-programsp-1 (pnames, program-names))

— s-restrict-subrps-progs (s-construct-programs (remove-duplicates (pnames)))

THEOREM: l-restrict-subrps-progs-s-restrict-subrps-progs-logic->s
(l-restrict-subrps-progs (pnames)

A l-restrict-subrps (t, expr)

A l-proper-exprp (t, expr, program-names, formals)

A l-proper-programsp (pnames))

— s-restrict-subrps-progs (s-progs (logic->s (expr, alist, pnames)))

THEOREM: name-car-s-progs-logic->s
name (car (s-progs (logic->s (expr, alist, pnames)))) = ’main

THEOREM: s-pname-logic->s
s-pname (logic->s (expr, alist, pnames)) = ’main

THEOREM: s-pos-logic->s
s-pos (logic->s (expr, alist, pnames)) = nil

THEOREM: definedp-user-fname-s-construct-programs

(litatom (name) A all-litatoms-not-plist (pnames))

— (definedp (user-fname (name), s-construct-programs (pnames))
= (name € pnames))

331

THEOREM: no-duplicatesp-strip-cars-s-construct-programs

all-litatoms-not-plist (pnames)

— (no-duplicatesp (strip-cars (s-construct-programs (pnames)))
= no-duplicatesp (pnames))

THEOREM: all-user-fnamesp-strip-cars-s-construct-programs
all-litatoms-not-plist (pnames)
— all-user-fnamesp (strip-cars (s-construct-programs (pnames)))

THEOREM: no-duplicatesp-strip-cars-s-progs-logic->s
all-litatoms-not-plist (pnames)
— no-duplicatesp (strip-cars (s-progs (logic->s (expr, alist, pnames))))

THEOREM: s-formals-car-s-progs-logic->s
s-formals (car (s-progs (logic->s (expr, alist, pnames)))) = strip-cars (alist)

THEOREM: s-expr-logic->s
s-expr (logic->s (expr, alist, pnames)) = expr

THEOREM: all-litatoms-not-plist-lr-proper-programsp
l-proper-programsp (prog-names) — all-litatoms-not-plist (prog-names)

THEOREM: logic->Ir-ok-really
(I-proper-exprp (t, expr, pnames, strip-cars (alist))
l-proper-programsp (pnames)
all-litatoms (strip-cars (alist))
l-data-seg-body-restrictedp (t, expr)
l-restrictedp (pnames, alist)
v&ec$ (t, expr, alist)
(cdr (v&ec$ (t, expr, alist)) < ¢)
l-restrict-subrps (t, ezpr)
l-restrict-subrps-progs (pnames)
(heap-size £ lr-total-heap-reqs (expr, alist, pnames, heap-size, c))
(maz-ctrl £ lr-max-ctrl-reqs (expr, alist, pnames, c))
(maz-ctrl < exp (2, word-size))
(maz-ctrl € N)
(maz-temp £ lr-max-temp-reqs (expr, alist, pnames, c))
(maz-temp < exp (2, word-size))
(maz-temp € N)
(word-size ¢ lr-max-word-size-reqs (expr, alist, pnames, heap-size, ¢))
(word-size € N))
Ir-valp (car (v&c$ (t, expr, alist)),

car (p-temp-stk (Ir-eval (t,

s->1r (logic->s (expr, alist, pnames),
heap-size,

I>>>>>>>>>>>>>>>> >

332

maz-ctrl,
max-temp,
word-size),

o)),

p-data-segment (Ir-eval (t,

s->Ir (logic->s (expr, alist, pnames),
heap-size,
maz-ctrl,
mazx-temp,
word-size),

DEFINITION:
logic->p (expr, alist, pnames, heap-size, max-ctrl, maz-temp, word-size)
= Ir->p (s->Ir (logic->s (expr, alist, pnames),

heap-size,

maz-ctrl,

mazx-temp,

word-size))

DEFINITION:
p-run-subr-clock (I, new-I)
= case on car (lr-expr (1)):
case = car
then p-car-clock (p-set-pc (Ir->p (new-1), lr-return-pe (1)))
case = cdr
then p-cdr-clock (p-set-pc (Ir->p (new-1), lr-return-pe (1))
case = cons
then p-cons-clock (p-set-pc (Ir->p (new-1), lr-return-pc (1)))
case = false
then p-false-clock (p-set-pc (Ir->p (new-1), lr-return-pc (1)))
case = falsep
then p-falsep-clock (p-set-pc (Ir->p (new-1), Ir-return-pc (1)))
case = listp
then p-listp-clock (p-set-pc (Ir->p (new-1), lr-return-pc (1))
case = nlistp
then p-nlistp-clock (p-set-pc (lr->p (new-1), Ir-return-pc (1)))
case = true
then p-true-clock (p-set-pc (Ir->p (new-1), Ir-return-pe (1))
case = truep

333

then p-truep-clock (p-set-pc (Ir->p (new-1), lr-return-pc (1)))
otherwise 0 endcase

EVENT: Disable p-run-subr-clock.

DEFINITION:
p-clockl (flag, 1, ¢)
= if p-psw(l) # ’run then 0
elseif flag = ’1list
then if offset (p-pc (1)) ~ nil then 0
elseif listp (lr-expr-list (1))
then p-clockl (t, [, ¢)
+ p-clockl (’1list,
Ir-set-expr (Ir-eval (t, I, ¢),
l7
nx (offset (p-pc (1)))),
c)
else 0 endif
elseif ¢ ~ 0 then 0
elseif litatom (Ir-expr ({)) then 1
elseif Ir-expr (/) ~ nil then 0
elseif car (Ir-expr (1)) = ’if
then let test be lr-if-ok (Ir-eval (t,
Ir-set-pos (I,
dv (offset (p-pe (1)), 1)),
)

in
if p-psw (fest) = ’run
then if top (p-temp-stk (test)) # LR-F-ADDR
then p-clockl (t,
Ir-set-pos (I, dv (offset (p-pc (1)), 1)),

¢)
+ 3
+ p-clockl (t,
Ir-set-expr (lr-pop-tstk (test),
ZV
dv (offset (p-pc (1)),
2))7
c)
+ 1
else p-clockl (t,
Ir-set-pos (I,
dv (offset (p-pc (1)), 1)),
c)

334

+ 3
+ p-clockl (t,
Ir-set-expr (Ir-pop-tstk (test),
L,
dv (offset (p-pc (1)),
3))7
c) endif
else p-clockl (t,
Ir-set-pos (I, dv (offset (p-pc (1)), 1)),
¢) endif endlet
elseif car (Ir-expr (1)) = S-TEMP-EVAL
then p-clockl (t, Ir-set-pos (I, dv (offset (p-pc (1)), 1)), ¢) + 1
elseif car (Ir-expr (/)) = S-TEMP-TEST
then if Ir-eval-temp-setp (/) then 5
else 4
+ p-clockl (t,
Ir-set-pos (1, dv (offset (p-pc (1)), 1)),

)
+ 2 endif
elseif car (Ir-expr (1)) = S-TEMP-FETCH then 1
elseif car (Ir-expr (1)) = *quote then 1
elseif p-psw (Ir-eval (’1ist, lr-set-pos (I, dv (offset (p-pc (1)), 1)), ¢))
’run
then p-clockl (’list, lr-set-pos (I, dv (offset (p-pc (1)), 1)), ¢)
elseif subrp (car (lr-expr (1)))
then p-clockl (*1list, Ir-set-pos (I, dv (offset (p-pc (1)), 1)), ¢)
+ p-run-subr-clock (1,
Ir-eval (*1list,
Ir-set-pos (I,
dv (offset (p-pe (1), 1)),
)
elseif litatom (car (Ir-expr (1)))
then let fs be Ir-funcall (I,
Ir-eval (*1list,
Ir-set-pos (I,
dv (offset (p-pe (1), 1)),

. c))

in

p-clockl (’1ist, Ir-set-pos (I, dv (offset (p-pc (1)), 1)), ¢)
+ 1

+ p-clockl (t, fs, ¢ — 1)

+ 1 endlet

else 0 endif

335

DEFINITION:
Ir-good-pointerps (list, data-seq)
= if listp (list)
then Ir-good-pointerp (car (list), data-seg)
A Ir-good-pointerps (cdr (list), data-seg)
else t endif

DEFINITION:
Ir-proper-ctrl-stkp (ctri-stk, data-seg)
= if ctrl-stk ~ nil then ctri-stk = nil
else Ir-good-pointerps (strip-cdrs (bindings (top (ctri-stk))),
data-seq)
A lr-proper-ctrl-stkp (pop (ctri-stk), data-seg) endif

DEFINITION:
lr-p-proper-statep (temp-stk, ctri-stk, data-seg, table)
= (Ir-proper-ctrl-stkp (ctri-stk, data-seq)

A Ir-good-pointerps (temp-stk, data-seg)

A lr-proper-heapp (data-seg)

A lr-good-pointerp-tablep (table, data-seg))

EVENT: Disable lr-p-proper-statep.

THEOREM: definedp-cdr-assoc-lr-good-pointerps
((addr € list) A lr-good-pointerps (list, data-seg))
— Ir-good-pointerp (addr, data-seg)

THEOREM: lr-p-proper-statep-lr-push-tstk-cdr-assoc-lr-expr
(litatom (Ir-expr (1))
A proper-p-statep (Ir->p (1))
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A lr-p-proper-statep (p-temp-stk (1),
p-ctrl-stk (),
p-data-segment (1),
table)
(p-psw (lr-push-tstk (1,
cdr (assoc (Ir-expr (1),
bindings (car (p-ctrl-stk (1)))))))

>

= ’rum))
— Ir-p-proper-statep (p-temp-stk (Ir-push-tstk (1,
cdr (assoc (Ir-expr (1),
bindings (car (p-ctrl-stk (1))))))),
p-ctrl-stk (1),

336

p-data-segment (1),
table)

THEOREM: lr-p-proper-statep-cdr-temp-stk
Ir-p-proper-statep (temp-stk, ctrl-stk, data-seg, table)
— Ir-p-proper-statep (cdr (temp-stk), ctri-stk, data-seg, table)

THEOREM: Ir-good-pointerps-put-assoc
(Ir-good-pointerp (addr, data-seg)
A lr-good-pointerps (strip-cdrs (bindings), data-seg))
— Ir-good-pointerps (strip-cdrs (put-assoc (addr, expr, bindings)), data-seg)

THEOREM: lr-p-proper-statep-cons-p-frame-put-assoc
(Ir-p-proper-statep (temp-stk, ctrl-stk, data-seg, table)
A listp (temp-stk)
A listp (ctri-stk)
A (cdr-ctrl-stk = cdr (ctri-stk)))
— lr-p-proper-statep (temp-stk,
cons (p-frame (put-assoc (car (temp-stk),
expr,
bindings (car (ctri-stk))),
ret-pc),
cdr-ctrl-stk),
data-seg,
table)

THEOREM: Ir-eval-leaves-listp-p-ctrl-stk-lr->p-lr-set-pos

(proper-p-statep (lr->p (1))

good-posp (flag, pos, program-body (p-current-program (1)))

good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)

(p-psw (lr-eval (flag, lr-set-pos (I, pos), ¢)) = ’run))

listp (p-ctrl-stk (Ir-eval (flag, lr-set-pos (I, pos), c)))

b>>>>

THEOREM: Ir-p-proper-statep-cdr-assoc-caddr-lr-expr-bindings
(proper-p-statep (lr->p (1))

A lr-p-proper-statep (temp-stk, p-ctrl-stk (1), data-seg, table)

A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))

A lr-programs-properp (I, table)

A listp (Ir-expr (1))

A ((car (Ir-expr (I)) = S-TEMP-TEST)

vV (car (Ir-expr (1)) = S-TEMP-FETCH)))
Ir-p-proper-statep (cons (cdr (assoc (caddr (Ir-expr (1)),

bindings (car (p-ctrl-stk (1))))),
temp-stk),

!

337

p-ctrl-stk (1),
data-seg,
table)

THEOREM: member-strip-cdrs-lr-good-pointerp-tablep
((object € strip-cdrs (table)) A Ir-good-pointerp-tablep (table, data-seg))
— lr-good-pointerp (object, data-seq)

THEOREM: lr-p-proper-statep-p-temps-stk-lr-push-tstk-quote
(listp (Ir-expr (1))
(car (Ir-expr (1)) = ’quote)
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
(p-psw (lr-push-tstk (I, cadr (Ir-expr ({)))) = ’run)
Ir-p-proper-statep (p-temp-stk (), ctri-stk, data-seg, table))
Ir-p-proper-statep (p-temp-stk (Ir-push-tstk (I, cadr (Ir-expr (1)))),
ctrl-stk,
data-seg,
table)

I >>>>>

THEOREM: p-run-subr-preserves-lr-good-pointerp-tablep
(listp (Ir-expr (1))

A (car (Ir-expr (1)) # ’if)
(car (Ir-expr (1)) # ’quote)
(p-psw (new-l) = ’run)
subrp (car (Ir-expr (1))
Ir-good-pointerp-tablep (table2, p-data-segment (new-1))
proper-p-statep (Ir->p (1))
good-posp1 (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, tablel)
Ir-programs-properp (new-I, tablel)
(p-psw (p-run-subr (car (Ir-expr (1)),

p-set-pc (Ir->p (new-1), lIr-return-pe (1))))

>>>>>>> > >

= ’run)

Ir-proper-heapp (p-data-segment (new-1))

proper-p-statep (Ir->p (new-1))

(p-prog-segment (new-1) = p-prog-segment (1)))

Ir-good-pointerp-tablep (table2,

p-data-segment (p-run-subr (car (Ir-expr (1)),
p-set-pc (Ir->p (new-1),
Ir-return-pc (1)))))

b>>>

THEOREM: Ir-good-pointerps-deposit-free-ptr
Ir-good-pointerps (list, deposit (anything, identity (LR-FP-ADDR), data-seg))
= Ir-good-pointerps (list, data-seg)

338

THEOREM: Ir-proper-ctrl-stkp-deposit-free-ptr
Ir-proper-ctrl-stkp (ctri-stk, deposit (anything, identity (LR-FP-ADDR), data-seg))
= lr-proper-ctrl-stkp (ctri-stk, data-seq)

THEOREM: Ir-good-pointerp-deposit-a-list-node
(Ir-good-pointerp (addrl, data-seg)
(type (addr2) = ’addr)
(cddr (addr2) = nil)
listp (addr2)
adpp (untag (addr2), data-seq)
Ir-boundary-nodep (addr2)
(area-name (addr2) = ’heap)
(type (ref-count) = ’nat))
Ir-good-pointerp (addr1,
deposit-a-list (list (z, ref-count, y, z), addr2, data-seg))

l>>s>>>>>

THEOREM: Ir-good-pointerps-deposit-a-list-node
(Ir-good-pointerps (list, data-seq)
(type (addr) = ’addr)
(cddr (addr) = nil)
listp (addr)
adpp (untag (addr), data-seg)
Ir-boundary-nodep (addr)
(area-name (addr) = ’heap)
(type (ref-count) = ’nat))
Ir-good-pointerps (list,
deposit-a-list (list (z, ref-count, y, z), addr, data-seg))

I>>>>>>>

THEOREM: Ir-proper-ctrl-stkp-deposit-a-list-node
(Ir-proper-ctrl-stkp (list, data-seg)
(type (addr) = ’addr)
(cddr (addr) = nil)
listp (addr)
adpp (untag (addr), data-seg)
Ir-boundary-nodep (addr)
(area-name (addr) = ’heap)
(type (ref-count) = ’nat))
lr-proper-ctrl-stkp (list,
deposit-a-list (list (z, ref-count, y, z),
addr,
data-seq))

l>>>>>>>

THEOREM: p-run-subr-preserves-lr-proper-ctrl-stkp
(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table)

339

listp (Ir-expr (1))
subrp (car (Ir-expr (1)))
(car (Ir-expr (1)) # ?if)
(car (Ir-expr (1)) # ’quote)
proper-p-statep (Ir->p (1))
Ir-proper-heapp (p-data-segment (Ir-eval (’1ist, lr-set-pos (I, pos), c)))
Ir-proper-ctrl-stkp (p-ctrl-stk (Ir-eval (’ 1ist, Ir-set-pos (I, pos), ¢)),
p-data-segment (Ir-eval (’ list,
Ir-set-pos (I, pos),
c)))
A (p-psw (Ir-eval (’list, lr-set-pos (I, pos), ¢)) = ’run)
A (p-psw (p-run-subr (car (Ir-expr (1)),
p-set-pc (I->p (Ir-eval (? List, lr-set-pos (I, pos), ¢)),
Ir-return-pc (1))))

>>>> > > >

= ’run)
(pos = dv (offset (p-pc (1)), 1)))
Ir-proper-ctrl-stkp (p-ctrl-stk (Ir-eval (*1ist, lr-set-pos (I, pos), ¢)),
p-data-segment (p-run-subr (car (Ir-expr (1)),
p-set-pc (I->p (Ir-eval (*1list,
Ir-set-pos (I,
pos),

c));

Ir-return-pc (1)))))

b >

THEOREM: Ir-good-pointerps-cons-1r-f-addr-lr-proper-heapp
(Ir-good-pointerps (list, data-seq)

A lr-proper-heapp (data-seg)

A lr-proper-p-areasp (data-seg))

— lr-good-pointerps (cons (identity (LR-F-ADDR), list), data-seq)

THEOREM: Ir-good-pointerps-cons-Ir-t-addr-Ir-proper-heapp
(Ir-good-pointerps (list, data-seq)
A lr-proper-heapp (data-seg)
A Ir-proper-p-areasp (data-seg))
— Ir-good-pointerps (cons (identity (LR-T-ADDR), list), data-seq)

THEOREM: Ir-good-pointerps-cons-1r-0-addr-lr-proper-heapp
(Ir-good-pointerps (list, data-seq)

A Ir-proper-heapp (data-seg)

A lr-proper-p-areasp (data-seg))

— Ir-good-pointerps (cons (identity (LR-0-ADDR), list), data-seg)

THEOREM: Ir-good-pointerps-cdr
Ir-good-pointerps (list, data-seg) — lr-good-pointerps (cdr (list), data-seq)

340

THEOREM: Ir-good-pointerps-cons-fetch-car-temp-stk-cdr-car
(Ir-good-pointerps (temp-stk, data-seq)
A lr-proper-heapp (data-seg)
A lr-proper-p-areasp (data-seg)
A (length (temp-stk) £ 1)
A (fetch (car (temp-stk), data-seg) = tag (’nat, LR-CONS-TAG)))
— lr-good-pointerps (cons (fetch (add-addr (car (temp-stk),
identity (LR-CAR-OFFSET)),
data-seg),
cdr (temp-stk)),
data-seq)

THEOREM: Ir-good-pointerps-cons-fetch-car-temp-stk-cdr-cdr
(Ir-good-pointerps (temp-stk, data-seq)
A lr-proper-heapp (data-seg)
A lr-proper-p-areasp (data-seq)
A (length (temp-stk) £ 1)
A (fetch (car (temp-stk), data-seg) = tag (’nat, LR-CONS-TAG)))
— lr-good-pointerps (cons (fetch (add-addr (car (temp-stk),
identity (LR-CDR-OFFSET)),
data-seg),
cdr (temp-stk)),
data-seq)

THEOREM: Ir-good-pointerps-cons-fetch-fp-addr-deposit-a-list-cons
(Ir-proper-heapp (data-seg)
A Ir-good-pointerps (temp-stk, data-seq)
A (fp-addr = fetch (identity (LR-FP-ADDR), data-seg))
A (type (ref-count) = ’nat))
— Ir-good-pointerps (cons (fetch (identity (LR-FP-ADDR), data-seg), temp-stk),
deposit-a-list (list (z, ref-count, y, z),
fp-addr,
data-seq))

THEOREM: p-run-subr-preserves-lr-good-pointerps
let lr-eval be lr-eval (’list, lr-set-pos (I, pos), ¢)
in

(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table)

listp (Ir-expr (1))

subrp (car (Ir-expr (1)))

(car (Ir-expr (1)) # ’if)

(car (Ir-expr (1)) # ’quote)

proper-p-statep (lr->p (1))

Ir-proper-heapp (p-data-segment (Ir-eval))

>>> > > >

341

>

I >>

Ir-good-pointerps (p-temp-stk (Ir-eval), p-data-segment (Ir-eval))
(p-psw (Ilr-eval) = ’run)
(p-psw (p-run-subr (car (lr-expr (1)),
p-set-pc (Ir->p (Ir-eval), lr-return-pe (1))))
= ’run)
(length (p-temp-stk (Ir-eval)) £ arity (car (lr-expr (1))))
(pos = dv (offset (p-pc (1)), 1)))
Ir-good-pointerps (p-temp-stk (p-run-subr (car (lr-expr (1)),
p-set-pc (Ir->p (Ir-eval),
Ir-return-pc (1)))),
p-data-segment (p-run-subr (car (Ir-expr (1)),
p-set-pc (le->p (Ir-eval),
Ir-return-pc (1))))) endlet

THEOREM: p-run-subr-preserves-Ir-proper-heapp2-alt
(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))

A

>>>>>> > >

L>s>s>>>

lr-programs-properp (I, table)
Ir-programs-properp (new-1, table)
listp (lr-expr (1))
proper-p-statep (Ir->p (new-1))
lr-proper-free-listp (p-data-segment (new-1))
adpp (untag (Ir-max-node (p-data-segment (new-1))), p-data-segment (new-1))
Ir-boundary-nodep (Ir-max-node (p-data-segment (new-1)))
(p-psw (new-l) = ’run)
(p-psw (p-run-subr (car (Ir-expr (1)),
p-set-pc (Ir->p (new-1), lIr-return-pc (1))))
= ’run)
Ir-good-pointerps (p-temp-stk (new-1), p-data-segment (new-1))
(length (p-temp-stk (new-1)) £ arity (car (Ir-expr (1))))
Ir-proper-heapp2 (addr, p-data-segment (new-1))
Ir-nodep (addr, p-data-segment (new-1))
(p-prog-segment (1) = p-prog-segment (new-1)))
lr-proper-heapp2 (addr,
p-data-segment (p-run-subr (car (Ir-expr (1)),
p-set-pc (Ir->p (new-1),
Ir-return-pc (1)))))

THEOREM: p-run-subr-preserves-lr-proper-heapp
(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))

A

> > > >

lr-programs-properp (I, table)
lr-programs-properp (new-1, table)
listp (lr-expr (1))

(car (Ir-expr (1)) # ’if)

subrp (car (Ir-expr (1)))

342

> >

l>>>>>

proper-p-statep (Ir->p (new-1))
(p-psw (new-l) = ’run)
(p-psw (p-run-subr (car (Ir-expr (1)),
p-set-pc (Ir->p (new-1), lr-return-pc (1))))
= ’run)
(p-prog-segment (1) = p-prog-segment (new-1))
(area-name (p-pc (1)) = area-name (p-pc (new-1)))
Ir-proper-heapp (p-data-segment (new-1))
Ir-good-pointerps (p-temp-stk (new-l), p-data-segment (new-1))
(length (p-temp-stk (new-1)) £ arity (car (Ir-expr (1)))))
Ir-proper-heapp (p-data-segment (p-run-subr (car (Ir-expr (1)),
p-set-pc (Ie->p (new-1),
Ir-return-pc (1)))))

THEOREM: Ir-apply-subr-preserves-lr-p-proper-statep
let lr-eval be lr-eval (’list, lr-set-pos (I, pos), ¢)

in

(listp (Ir-expr (1))

A

>>>> > > >

l>>>>>>

£ if)
’quote)
S-TEMP-EVAL)
car (lr-expr # S-TEMP-TEST)
car (Ir-expr (1)) # S-TEMP-FETCH)
(p-psw (Ir-eval (’list, lr-set-pos (I, pos), ¢)) = ’run)
subrp (car (Ir-expr (1)))
Ir-p-proper-statep (p-temp-stk (Ir-eval),
p-ctrl-stk (Ir-eval),
p-data-segment (Ir-eval),
table)
proper-p-statep (Ir->p (1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
(p-psw (lr-apply-subr (I, lr-eval)) = ’run)
Ir-proper-formalsp (cdr (p-prog-segment (1)))
(pos = dv (offset (p-pc (1)), 1)))
lr-p-proper-statep (p-temp-stk (Ir-apply-subr (I, Ir-eval)),
p-ctrl-stk (Ir-eval),
p-data-segment (lr-apply-subr (1, ir-eval)),
table) endlet

car (Ir-expr (
car (Ir-expr (
(
(

(1))
(1))
(car (Ir-expr (1))
(1))
(1))

THEOREM: strip-cdrs-append
strip-cdrs (append (z, y)) = append (strip-cdrs (), strip-cdrs (y))

THEOREM: strip-cdrs-pairlist
(length (z) £ length (y))

343

— (strip-cdrs (pairlist (z, y)) = first-n (length (), y))

THEOREM: Ir-good-pointerps-append
Ir-good-pointerps (append (z, y), data-seq)
= (lr-good-pointerps (z, data-seg) A lr-good-pointerps (y, data-seg))

THEOREM: Ir-good-pointerps-reverse
Ir-good-pointerps (reverse (z), data-seg) = Ir-good-pointerps (z, data-seg)

THEOREM: Ir-good-pointerps-first-n
(Ir-good-pointerps (list, data-seg) A (length (list) £ n))
— lr-good-pointerps (first-n (n, list), data-seg)

DEFINITION:

all-numberps (list)

= if listp (list) then (car (list) € N) A all-numberps (cdr (list))
else t endif

THEOREM: all-numberps-strip-cadrs-numberp-cdr-assoc
all-numberps (strip-cadrs (list)) — (cadr (assoc (z, list)) € N)

THEOREM: all-numberps-strip-cadrs-subr-arity-alist
all-numberps (strip-cadrs (SUBR-ARITY-ALIST))

THEOREM: numberp-arity
arity (z) € N

THEOREM: strip-cdrs-pair-temps-with-initial-values
strip-cdrs (pair-temps-with-initial-values (temp-var-dcls))
= strip-cadrs (temp-var-dcls)

THEOREM: Ir-good-pointerps-all-undef-addrs
(Ir-proper-heapp (data-seg)
A Ir-proper-p-areasp (data-seqg)
A all-undef-addrs (list))
— lr-good-pointerps (list, data-seg)

THEOREM: all-undef-addrs-strip-cadrs-temp-vars-programs-properp-1
(Ir-programs-properp-1 (programs, program-names, table)

A definedp (name, programs))

— all-undef-addrs (strip-cadrs (temp-var-dcls (assoc (name, programs))))

THEOREM: all-undef-addrs-strip-cadrs-temp-vars-programs-properp
(Ir-programs-properp (I, table) A definedp (name, cdr (p-prog-segment (1))))
— all-undef-addrs (strip-cadrs (temp-var-dcls (assoc (name,

cdr (p-prog-segment (1))))))

344

THEOREM: Ir-good-pointerps-popn
(Ir-good-pointerps (list, data-seg) A (length (list) £ n))
— lr-good-pointerps (popn (n, list), data-seg)

THEOREM: Ir-p-proper-statep-lr-funcall
((p-psw (Ir-eval (¢, lr-funcall (I, new-l), ¢ — 1)) = ’run)
listp (Ir-expr (1))
(car (Ir-expr (1)) # ’if)
(car (Ir-expr (1)) # ’quote)
litatom (car (lr-expr (1)))
(= subrp (car (Ir-expr (1))))
proper-p-statep (Ir->p (new-1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-p-proper-statep (p-temp-stk (1),
p-ctrl-stk (),
p-data-segment (1),
table)
A lr-p-proper-statep (p-temp-stk (new-1),
p-ctrl-stk (new-1),
p-data-segment (new-1),
table)
(length (p-temp-stk (new-1)) £ arity (car (Ir-expr (1))))
Ir-proper-formalsp (cdr (p-prog-segment (1)))
Ir-programs-properp (I, table))
lr-p-proper-statep (p-temp-stk (Ir-funcall (I, new-l)),
p-ctrl-stk (Ir-funcall (I, new-1)),
p-data-segment (new-1),
table)

>>>>> > > >

l>>>

THEOREM: length-p-temp-stk-Ir-eval-flag-list-alt
(proper-p-statep (Ir->p (1))
A listp (Ir-expr (1))
(car (Ir-expr (1)) # ’if)
(car (Ir-expr (1)) # ’quote)
(= subrp (car (Ir-expr (1))))
litatom (car (lr-expr (1)))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
Ir-proper-formalsp (cdr (p-prog-segment (1)))
(p-psw (Ir-eval (’1ist, lr-set-pos (I, dv (offset (p-pc (1)), 1)), ¢))
= ’rumn))
— (length (p-temp-stk (Ir-eval (’ List,
Ir-set-pos (I, dv (offset (p-pc (1)), 1)),
c)))
= (arity (car (Ir-expr (1))) + length (p-temp-stk (1))))

>>>>>> > >

345

THEOREM: Ir-p-proper-statep-cdr-lr-ctrl-stk
(listp (Ir-expr (1))
A (car (Ir-expr (1)) # ’if)

(= subrp (car (Ir-expr (1))))

(car (Ir-expr (1)) # ’quote)

litatom (car (Ir-expr (1)))

Ir-p-proper-statep (temp-stk,

p-ctrl-stk (Ir-eval (t,
Ir-funcall (I,
Ir-eval (’1ist,
Ir-set-pos (I,
pos),

o).

> > > >

¢ = 1))a

data-segment,

table)
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
lr-programs-properp (I, table)
proper-p-statep (Ir->p (1))
(p-psw (Ir-eval (¢,

Ir-funcall (I, lr-eval (°’ 1ist, lr-set-pos (I, pos), ¢)),

c—1))

> > > >

= ’run)

(p-psw (lr-eval (*1ist, lr-set-pos (I, pos), ¢)) = ’run)

(pos = dv (offset (p-pe (1)), 1)))

lr-p-proper-statep (temp-stk,

cdr (p-ctrl-stk (Ir-eval (t,
Ir-funcall (1,
Ir-eval (’1ist,
Ir-set-pos (I,
pos),

C))7

> >

¢c—1))),

data-segment,

table)

THEOREM: Ir-eval-preserves-lr-p-proper-statep
(proper-p-statep (Ir->p (1))

A good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))

A (p-psw (Ir-eval (flag, I, ¢)) = ’run)

A lr-p-proper-statep (p-temp-stk (1),
p-ctrl-stk (1),
p-data-segment (1),
table)

346

A lr-programs-properp (I, table)

A Ir-proper-formalsp (cdr (p-prog-segment (1))))

— lr-p-proper-statep (p-temp-stk (Ir-eval (flag, I, ¢)),
p-ctrl-stk (lr-eval (flag, 1, ¢)),
p-data-segment (Ir-eval (flag, I, ¢)),
table)

THEOREM: p-plus
p(p, cl + c2) =p(p(p, cl), c2)

THEOREM: p-set-pc-lr->p-lr-set-expr
(p-prog-segment (11) = p-prog-segment (12))
— (Ir->p (Ir-set-expr (11, 12, pos))
= p-set-pc (Ir->p (I1), Ir-p-pc (Ir-set-expr (11, 12, pos))))

EvVENT: Disable p-set-pc-lr->p-lr-set-expr.

THEOREM: member-assoc-area-name-cdr-lr-programs-properp

((assoc (area-name (p-pc (1)), cdr (p-prog-segment (1))) ¢ p-prog-segment (1))
A (area-name (p-pc (1)) # caar (p-prog-segment (1))))

— (= Ir-programs-properp (I, table))

EVENT: Disable member-assoc-area-name-cdr-Ir-programs-properp.

THEOREM: not-listp-prog-segment-not-lr-programs-properp
(= listp (p-prog-segment (1))) — (— Ir-programs-properp (I, table))

EVENT: Disable not-listp-prog-segment-not-lr-programs-properp.

THEOREM: unlabel-get-lr-p-pc-program-body-assoc-comp-programs
(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (1, table))
— (get (Ir-p-pc-1 (program-body (p-current-program (1)), offset (p-pc (1))),
program-body (assoc (area-name (p-pc (1)),
comp-programs (p-prog-segment (1)))))
= list(*d1,
Ir-make-label (offset (Ir-p-pc (1)),
nil,
car (comp-body-1 (t, Ir-expr (1), offset (Ir-p-pc (1))))))

THEOREM: car-comp-body-1-litatom
litatom (body)
— (car (comp-body-1 (t, body, n)) = list (’push-local, body))

347

THEOREM: Ir-p-pc-1-append-helper-1
(listp (body) A (car (body) = *if) A (n % 0))
— (lr-p-pc-1 (body, cons (n, pos))
= if n =1 then lr-p-pc-1 (cadr (body), pos)
elseif n = 2
then 3
+ lr-p-c-size (t, cadr (body))
+ lr-p-pc-1 (caddr (body), pos)
else Ir-p-c-size (t, cadr (body))
+ lr-p-c-size (t, caddr (body))
+ Ir-p-pc-1 (cadddr (body), pos)
+ 4 endif)

THEOREM: Ir-p-pc-1-append-helper-2
(listp (body) A (car (body) = S-TEMP-EVAL))
— (Ir-p-pc-1 (body, cons (1, pos)) = Ir-p-pc-1 (cadr (body), pos))

THEOREM: Ir-p-pc-1-append-helper-3
(listp (body) A (car (body) = S-TEMP-TEST))
— (Ir-p-pc-1 (body, cons (1, pos)) = (Ir-p-pc-1 (cadr (body), pos) + 4))

THEOREM: Ir-p-pc-1-append-helper-4
(listp (body)

(car (body) # S-TEMP-FETCH)

(car (body) # S-TEMP-EVAL)

(car (body) # S-TEMP-TEST)

(car (body) # quote)

(car (body) # ’if)

(n % 0))

(Ir-p-pe-1 (body, cons (n, pos))

= (lr-p-c-size-list (n — 1, body) + lr-p-pc-1 (get (n, body), pos)))

l>>>>>>

THEOREM: Ir-p-pc-1-append
(good-pospl (pos1, body)
A lr-proper-exprp (t, body, pnames, formals, temps, table))
— (lr-p-pc-1 (body, append (pos!, pos2))
= (lr-p-pc-1 (body, pos?) + lr-p-pc-1 (cur-expr (posi, body), pos2)))

THEOREM: append-butlast-list-car-last
listp () — (append (butlast (), list (car (last (z)))) = plist (z))

THEOREM: listp-plist-car
listp (z) — (car (plist (z)) = car (z))

THEOREM: Ir-p-pc-1-plist
Ir-p-pe-1 (body, plist (pos)) = lr-p-pe-1 (body, pos)

348

THEOREM: Ir-p-pc-1-listp-offset

(listp (pos)

A good-pospl (butlast (pos), body)

A lr-proper-exprp (t, body, pnames, formals, temps, table))
— (lr-p-pc-1 (body, pos)

= (lr-p-pc-1 (body, butlast (pos))
+ lr-p-pc-1 (cur-expr (butlast (pos), body),
list (car (last (pos))))))

THEOREM: Ir-p-pc-1-nil
Ir-p-pc-1 (body, nil) = 0

THEOREM: Ir-p-pc-1-nx-helper
(listp (expr)
car (expr) # S-TEMP-FETCH)
car (expr) # S-TEMP-EVAL)
car (expr) # S-TEMP-TEST)
car (expr) # ’quote)
n % 0)
n < length (ezpr)))
lr-p-pe-1 (expr, list (n))
= if car(expr) = ’if
then case on n:

I>s>>>>>

(
(
(
(
(
(
(

case = 1
then 0
case = 2

then 3 + Ir-p-c-size (t, cadr (expr))
otherwise Ir-p-c-size (t, cadr (expr))
+ lr-p-c-size (t, caddr (expr))
+ 4 endcase
else Ir-p-c-size-list (n — 1, expr) endif)

THEOREM: Ir-p-pc-1-nx
(Ir-programs-properp (1, table)
A good-posp (’list, offset (p-pc (1)), program-body (p-current-program (1)))
A listp (offset (p-pc (1))
A listp (Ir-expr-list (1))
A (car (cur-expr (butlast (offset (p-pc (1)),
program-body (p-current-program (1))))
—
— (Ir-p-pc-1 (program-body (p-current-program (1)), nx (offset (p-pc (1))))
= (Ir-p-pc-1 (program-body (p-current-program (1)), offset (p-pc (1)))
+ lr-p-c-size (t, Ir-expr (1))))

EVENT: Disable lr-p-pc-1-listp-offset.

349

THEOREM: Ir-p-pc-1-dv-1-car-lr-expr-if
((car (Ir-expr (1)) = ’if)
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A (body = program-body (p-current-program (1))))
— (Ir-p-pc-1 (body, dv (offset (p-pc (1)), 1))
= lr-p-pc-1 (body, offset (p-pc(1))))

THEOREM: lr-p-pc-1-dv-2-car-lr-expr-if
(listp (Ir-expr (1))
A (car (Ir-expr (1)) = ’if)
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (1, table))
— (Ir-p-pc-1 (program-body (p-current-program (1)), dv (offset (p-pc (1)), 2))
- (3
+ Ir-p-c-size (t, cadr (Ir-expr (1))
+ lr-p-pc-1 (program-body (p-current-program (1)),
offset (p-pe (1))

THEOREM: Ir-p-pc-1-dv-3-car-lr-expr-if
(listp (Ir-expr (1))
A (car (Ir-expr (1)) = ’if)
A good-pospl (offset (p-pe (1)), program-body (p-current-program (1)))
A lIr-programs-properp (I, table))
— (Ir-p-pc-1 (program-body (p-current-program (1)), dv (offset (p-pc (1)), 3))
= (lr-p-c-size (t, cadr (Ir-expr (1)))
+ 3
+ lr-p-c-size (t, caddr (Ir-expr (1)))
+ 1
+ lr-p-pe-1 (program-body (p-current-program (1)),
offset (p-pc (1)))))

THEOREM: Ir-p-c-size-not-1-car-if
(listp (expr) A (car (expr) = ’if)) — (Ir-p-c-size (t, expr) # 1)

THEOREM: Ir-p-c-size-ge-plus-2-size-cadr-car-if
(listp (expr) A (car (expr) = ’if))
— ((1 + (1 4 Ir-p-c-size (t, cadr (ezpr)))) < lr-p-c-size (t, expr))
THEOREM: get-comp-if-helper-helper
(ng@+y+3)An#(@+y+3)
— (get(n — (z 4+ 3 + y), cons (w, 13))

= get(n — (z +y + 4),13))

THEOREM: get-comp-if-helper

350

get(n append (11, append (list (z, y, z), append (12, cons (w, 13)))))
= if n <length (I1) then get(n, I1)
elseif n < (length (11) + 3)
then get (n — length ({1), list (z, y, 2))
elseif n < (length (11) + length(l,?) +3)
then get (n — (length (11) + 3), I2)
elseif n = (length (17) + length (I2) + 3) then w
else get (n — (length (11) + length (12) + 4), I3) endif

THEOREM: get-comp-if
get (n, comp-if (test-instrs, then-instrs, else-instrs, m))
= if n < length (test-instrs) then get (n, test-instrs)
elseif n < (length (test-instrs) + 3)
then get (n — length (test-instrs),
list (identity (list (’ push-constant, LR-F-ADDR)),
’ (eq),
list (’ test-bool-and-jump,
L,
Ir-make-label (m
+ 4
+ length (test-instrs)
+ length (then-instrs)))))
elseif n < (length (test-instrs) + length (then-instrs) + 3)
then get (n — (length (test-instrs) + 3), then-instrs)
elseif n = (length (test-instrs) + length (then-instrs) + 3)
then list (’ jump,
Ir-make-label (m
+ 4
+ length (test-instrs)
+ length (then-instrs)
+ length (else-instrs)))
else get (n — (length (test-instrs)
+ length (then-instrs)
v oa),
else-instrs) endif

DEFINITION:

p-final-pc (flag, 1, n)

= if flag = ’list
then add-addr (Ir-p-pc (1), n 4 lr-p-c-size (’1ist, lr-expr-list (1)))
else add-addr (Ir-p-pc (1), n + lr-p-c-size (flag, lr-expr (1))) endif

EVENT: Disable p-final-pc.

THEOREM: proper-p-statep-p-set-pc

351

(proper-p-statep (p) A (area-name (p-pc (p)) = area-name (pc)))
— (proper-p-statep (p-set-pc (p, pc)) = p-objectp-type (’pc, pc, p))

THEOREM: proper-p-statep-p-set-pc-equal-p-set-pc
(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A Ir-programs-properp (I, table)
A (p(r->p (1), p-clockl (¢, I, ¢))
= p-set-pc (I->p (Ir-eval (t, I, ¢)),
tag (*pe,
cons (area-name (p-pc (1)),
Ir-p-pe-1 (program-body (p-current-program (1)),
offset (p-pc (1))
+ lr-p-c-size (t, lr-expr (1))))))
A proper-p-statep (I->p (Ir-eval (t, I, ¢))))
— proper-p-statep (p (Ir->p (1), p-clockl (t, I, ¢)))

THEOREM: Ir-eval-p-pc-equivalence-helper-1
p (Ir->p (11), p-clockl (flag?, 12, c1) + p-clockl (flag2, 13, ¢2))
= p(pr->p (1), p-clockl (flag?, 12, c1)), p-clockl (flag2, 13, c2))

THEOREM: Ir-eval-p-pc-equivalence-helper-1-5
(listp (offset (p-pc (1))) A listp (Ir-expr-list (1)))
— (p-final-pc (’list,
lr-set-expr (Ir-eval (t, I, ¢), I, nx (offset (p-pc (1)))),
0)
— tag(pe,
cons (area-name (p-pc (1)),
Ir-p-pe-1 (program-body (p-current-program (1)),
s (offset (p-pe (1))
+ lr-p-c-size-list (length (lr-expr-list (1)) — 1,
Ir-expr-list (1)))))

THEOREM: lIr-eval-p-pc-equivalence-helper-2

(p-psw (1) = *run)

A listp (offset (p-pc (1))

A (= listp (Ir-expr-list (1))))
= (p-set-pc (Ir->p (1),

tag (’ p¢,
cons (area-name (p-pc (1)),
Ir-p-pc-1 (program-body (p-current-program (1)),
offset (p-pe (1))))))
= p(r>p(), 0)

THEOREM: lIr-eval-p-pc-equivalence-helper-3
((p-psw (1) = ’run)

352

(flag # *1ist)
litatom (lr-expr (1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
(length (p-temp-stk ({)) < p-max-temp-stk-size (1)))
(p-set-pc (Ir->p (Ir-set-tstk (1,
cons (cdr (assoc (Ir-expr (1),
bindings (car (p-ctrl-stk (1))))),
p-temp-stk (1)))),

L>>>>>

p-final-pc (flag, I, 0))
= p (h“—>p (l), 1))

THEOREM: Ir->p-lIr-set-pos-dv-1-car-lr-expr-if
((car (Ir-expr (1)) = *if)
A istp (Ir-expr (1))
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (1, table))
— (Ir->p (Ir-set-pos (I, dv (offset (p-pc (1)), 1))) = lr->p (1))

THEOREM: lr-p-proper-statep-listp-p-temp-stk-type-car-addr
(Ir-p-proper-statep (temp-stk, ctri-stk, data-seg, table) A listp (temp-stk))
— (type (car (temp-stk)) = ’addr)

THEOREM: proper-p-statep-lessp-length-p-temp-stk-max-temp-stk-size

proper-p-statep (Ir->p (1))
— (p-max-temp-stk-size ({) £ length (p-temp-stk (1)))

THEOREM: length-p-temp-stk-lr-eval-Ir-set-pos
(proper-p-statep (Ir->p (1))

A good-pospl (pos, program-body (p-current-program (1)))

A lr-programs-properp (I, table)

A Ir-proper-formalsp (cdr (p-prog-segment (1)))

A (p-psw (Ir-eval (t, Ir-set-pos (I, pos), ¢)) = ’run))

— (length (p-temp-stk (Ir-eval (t, lr-set-pos (I, pos), ¢)))

= (1 + length (p-temp-stk (7))))

THEOREM: not-lessp-length-proper-p-statep-lr-eval-lr-set-pos
(good-pospl (pos, program-body (p-current-program (1)))
Ir-programs-properp (I, table)

proper-p-statep (Ir->p (1))

(length (p-temp-stk (1)) £ (p-max-temp-stk-size (1) — 1))
Ir-proper-formalsp (cdr (p-prog-segment (1))))

(p-psw (Ir-if-ok (Ir-eval (t, lr-set-pos (I, pos), ¢))) # ’run)

b>>>>

THEOREM: Ir-pop-tstk-lr-if-ok
(p-psw (Ir-if-ok (1)) = ’run)
— (lr-pop-tstk (Ir-if-ok (1)) = lr-pop-tstk (1))

353

THEOREM: add-addr-p-final-pc
(add-addr (p-final-pc (flag, I, n), 1 + m)
= add-addr (p-final-pc (flag, I, 1 + n), m))
A (add-addr (p-final-pc (flag, I, n), 0) = p-final-pc (flag, [, n))

THEOREM: lessp-3-Ir-p-c-size-car-if
(listp (expr) A (car (expr) = ’if)) — (3 < Ir-p-c-size (t, expr))

THEOREM: comp-body-1-car-expr-if
((car (expr) = *if) A listp (expr))
— (comp-body-1 (t, expr, n)
= comp-if (comp-body-1 (t, cadr (expr), n),
comp-body-1 (t,
caddr (ezpr),
n 4+ 3 + lr-p-c-size (t, cadr (expr))),
comp-body-1 (t,
cadddr (expr),
n
+ 4
+ Ir-p-c-size (t, cadr (expr))
+ lr-p-c-size (t, caddr (expr))),

n))

THEOREM: get-Ir-p-c-size-lessp-restn-lr-p-pc-1-comp-body-1
(good-pospl (pos, program-body (p-current-program (1)))

A lr-programs-properp (I, table)
A listp (Ir-expr (1))
A (car (Ir-expr (1)) = ’if)
A (m < 3)
A (name = area-name (p-pc (1)))
A (pos = offset (p-pe (1))
— (unlabel (get (offset (p-final-pc (t, Ir-set-pos (I, dv (pos, 1)), m)),
program-body (assoc (name, comp-programs (p-prog-segment (1))))))
= get(m,
list (list (’ push-constant, LR-F-ADDR),
’ (eq),
list (*test-bool-and-jump,
t,
Ir-make-label (Ir-p-pe-1 (program-body (p-current-program (1)),

pos)
+ 4
+ lr-p-c-size (t,
cadr (Ir-expr (1))
+ Ir-p-c-size (t,
caddr (Ir-expr (1))))))))

354

THEOREM: area-name-p-final-pc
area-name (p-final-pc (flag, I, n)) = area-name (p-pc (1))

THEOREM: Ir-eval-p-pc-equivalence-helper-4-helper-1
let test be lr-eval (t, lr-set-pos (I, dv (offset (p-pc (1)), 1)), ¢)
in
(p-psw (1) = *run)
(c £ 0)
listp (Ir-expr (1))
(car (Ir-expr (1)) = ’if)
(p-psw (lr-if-ok (test)) = ’run)
(car (p-temp-stk (test)) # LR-F-ADDR)
proper-p-statep (Ir->p (1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
Ir-p-proper-statep (p-temp-stk (1),

p-ctrl-stk (1),

p-data-segment (1),

table)
A Ir-proper-formalsp (cdr (p-prog-segment (1)))
A (p-psw (Ir-eval (t,

Ir-set-expr (Ir-pop-tstk (test),

2
dv (offset (p-pe (1)), 2),

>>>>>>> > >

c))
= ’run))
— (p (p-set-pc (Ir->p (test),
p-final-pc (t,
Ir-set-pos ({, dv (offset (p-pc (1)), 1)),
O))7
3)
= p-set-pc (I->p (Ir-pop-tstk (test)),
tag (*pc,
cons (area-name (p-pc (1)),
3
+ Ir-p-c-size (t,
cadr (Ir-expr (1))
+ lr-p-pc-1 (program-body (p-c
offset, (p-pe (1)))))

urrent-program (l)),
) endlet

THEOREM: lessp-plus-lr-p-c-size-cadr-caddr-3-car-if

(listp (expr) A (car (expr) = ’if))

— ((lr-p-c-size (t, cadr (expr)) + lr-p-c-size (t, caddr (expr)))
< (((lr-p-c-size (t, expr) — 1) — 1) — 1))

355

THEOREM: get-plus-Ir-p-c-size-cadr-caddr-4-comp-body-cur-expr
((sizel = length (test)) A (size2 = length (then)))
— (get (3 + sizel + size2, comp-if (test, then, else, n))
= list (’ jump,
Ir-make-label (4
+ n
+ length (test)
+ length (then)
+ length (else))))

THEOREM: cur-expr-addl-opener
cur-expr (cons (1 + n, pos), body) = cur-expr (pos, get (n, cdr (body)))

THEOREM: lr-p-pc-1-car-expr-if-2
(listp (expr) A (car (expr) = ’if))
— (Ir-p-pe-1 (expr, > (2)) = (3 + Ir-p-c-size (t, cadr (expr))))

THEOREM: get-plus-Ir-p-pc-1-Ir-pc-size-cadr-assoc-comp-body-if-4
(good-pospl (offset (p-pc (1)), program-body (p-current-program (11)))
Ir-programs-properp (11, table)
listp (Ir-expr (11))
(car (Ir-expr (11)) = ’if)
(pos = dv (offset (p-pc (11)), 2))
(area-name (p-pc (12)) = area-name (p-pc (11)))
(p-prog-segment (12) = p-prog-segment (11)))
(get (offset (p-final-pc (t, lr-set-expr (12, 11, pos), 0)),
program-body (assoc (area-name (p-pc (1)),
comp-programs (p-prog-segment (11)))))

l>>>>>>

= list (°d1,
Ir-make-label (offset (p-final-pc (t,
Ir-set-expr (12, 11, pos),
0))),
nil,
list (* jump,
Ir-make-label (4
+ Ir-p-pc-1 (program-body (p-current-program (11)),
offset (p-pc (11)))
+ lr-p-c-size (t,
cadr (Ir-expr (11)))
+ Ir-p-c-size (t,
caddr (Ir-expr (11)))
+ lr-p-c-size (¢,
cadddr (lr-expr (11)))))))

THEOREM: find-label-Ir-make-label-label-instrs

356

(m £ n) A(m eN) A (m < (n+ length (instrs))))

—

(find-label (Ir-make-label (m), label-instrs (instrs, n)) = (m — n))

THEOREM: find-label-past-else-Ir-expr-car-if
(listp (Ir-expr (1))

l>>>>>>

(car (Ir-expr (1)) = ’if)
(expr = lr-expr (1))
(body = program-body (p-current-program (1)))
(pos = offset (p-pc (1))
Ir-programs-properp (I, table)
good-pospl (pos, body))
(find-label (Ir-make-label (1 + (1 4+ (1 + (1 + (lr-p-c-size (t,
cadr (expr))
+ Ir-p-c-size (t,
caddr (expr))
+ lr-p-c-size (¢,
cadddr (expr))
+ lr-p-pc-1 (body,
p0s)))))),
program-body (assoc (area-name (p-pc (1)),
comp-programs (p-prog-segment (1)))))
= (14 1+ 1+ (1+ (Ir-p-c-size (t, cadr (expr))
+ lr-p-c-size (t, caddr (expr))
+ lr-p-c-size (t, cadddr (ezpr))
+ Ir-p-pc-1 (body, pos)))))))

THEOREM: Ir-eval-p-pc-equivalence-helper-4-helper-2
let test be lr-eval (t, lr-set-pos ({, dv (offset (p-pc (1)), 1)), ¢)

in

let then be lr-set-expr (Ir-pop-tstk (test), I, dv (offset (p-pc (1)), 2))

in

((p-psw (I) = >run)

>>>>>>> > >

> >

(flag # ’1ist)

(c #0)

(c eN)

listp (Ir-expr (1))

(car (Ir-expr (1)) = ’if)

(p-psw (lr-if-ok (test)) = ’run)

(car (p-temp-stk (test)) # LR-F-ADDR)

proper-p-statep (Ir->p (1))

good-pospl (offset (p-pc (1)),
program-body (p-current-program (1)))

lr-programs-properp (I, table)

Ir-p-proper-statep (p-temp-stk (1),

357

p-ctrl-stk (1),
p-data-segment (1),
table)
A lr-proper-formalsp (cdr (p-prog-segment (1)))
A (p-psw (Ir-eval (t, then, ¢)) = ’run))
— (p (p-set-pc (Ir->p (Ir-eval (t, then, c)),
p-final-pc (t, then, 0)),
1)
= p-set-pc (Ir->p (Ir-eval (t, then, c)),
p-final-pc (flag, I, 0))) endlet endlet

THEOREM: Ir-eval-p-pc-equivalence-helper-4
let test be lr-eval (t, Ir-set-pos (I, pos), ¢),
cadr-size be lr-p-c-size (t, cadr (Ir-expr (1)),
Ir-p-pc-1 be lr-p-pc-1 (program-body (p-current-program (1)),
offset (p-pc (1)),
then be lr-set-expr (Ir-pop-tstk (lr-eval (t, lr-set-pos (I, pos), c)),
l?
dv (offset (p-pc (1)), 2))
i
(p-psw (1) = *run)
(flag # "1ist)
(c #0)
(c eN)
listp (Ir-expr (1))
(car (Ir-expr (1)) = ’if)
(p-psw (lr-if-ok (test)) = >run)
(car (p-temp-stk (test)) # LR-F-ADDR)
(p (Ir->p (1), p-clockl (t, lr-set-pos (I, pos), ¢))
= p-set-pc (Ir->p (Ir-eval (t, Ir-set-pos (I, pos), c)),
p-final-pe (¢, Ir-set-pos (I, pos), 0)))
A (p (p-set-pc (Ir->p (Ir-pop-tstk (test)),
tag (’pc,
cons (area-name (p-pc (1)),
3 + cadr-size + lr-p-pc-1))),
p-clockl (t, then, c))
= p-set-pc (I->p (Ir-eval (t, then, c)),
p-final-pc (t, then, 0)))
proper-p-statep (Ir->p (1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
lr-p-proper-statep (p-temp-stk (1),
p-ctrl-stk (1),
p-data-segment (1),

>>>>>>>>:5:'

> > > >

358

table)

Ir-proper-formalsp (cdr (p-prog-segment (1)))
(p-psw (lr-eval (t, then, ¢)) = ’run)
(pos = dv (offset (p-pc (1)), 1)))
(p (Ir->p (1),

p-clockl (t, lr-set-pos (1, pos), ¢)

+ 3

+ p-clockl (t, then, ¢)

+ 1)
= p-set-pc (Ir->p (Ir-eval (t, then, ¢)),

p-final-pc (flag, 1, 0))) endlet

b >>>

THEOREM: lessp-plus-lr-p-pc-1-Ir-p-c-size-3-1-Ir-expr-car-if
((car (Ir-expr (1)) = ’if)
A listp (Ir-expr (1))
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (1, table))
— ((lr-p-c-size (t, cadr (Ir-expr (1)))
+ 3
+ Ir-p-c-size (t, caddr (Ir-expr (1)))
+ 1
+ lr-p-pc-1 (program-body (p-current-program (1)), offset (p-pc (1))))
< length (program-body (assoc (area-name (p-pc (1)),
comp-programs (p-prog-segment (1))))))

THEOREM: find-label-else-start-lr-expr-car-if

(listp (lr-expr (1))

(car (Ir-expr (1)) = ’if)

(expr = lr-expr (1))

(body = program-body (p-current-program (1)))

(pos = offset (p-pc (1))

Ir-programs-properp (I, table)

good-pospl (pos, body))

(find-label (Ir-make-label (1 + (1 4+ (1 + (1 + (Ir-p-c-size (t,

cadr (expr))
+ lr-p-c-size (t,
caddr (ezpr))

+ lr-p-pc-1 (body,

p05)))))),
program-body (assoc (area-name (p-pc (1)),
comp-programs (p-prog-segment (1)))))
= (1+ (14 (14 (14 (Ir-p-c-size (t, cadr (ezpr))
+ lr-p-c-size (t, caddr (ezxpr))
+ Ir-p-pc-1 (body, pos)))))))

l>>s>>>>

359

THEOREM: Ir-eval-p-pc-equivalence-helper-5-helper-1
let test be lr-eval (t, lr-set-pos (I, dv (offset (p-pc (1)), 1)), ¢)

in

((p-psw (1) = *run)

>>>>>>> > >

b >

(c £0)
listp (Ir-expr (1))
(car (Ir-expr (1)) = ’if)
(p-psw (lr-if-ok (test)) = ’run)
(car (p-temp-stk (test)) = LR-F-ADDR)
proper-p-statep (Ir->p (1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
Ir-p-proper-statep (p-temp-stk (1),
p-ctrl-stk (1),
p-data-segment (1),
table)
Ir-proper-formalsp (cdr (p-prog-segment (1))))
(p (p-set-pc (Ir->p (test),
p-final-pc (¢,
Ir-set-pos ({, dv (offset (p-pc (1)), 1)),
o))a
3)

= p-set-pc (I->p (Ir-pop-tstk (test)),
tag (’pc,
cons (area-name (p-pc (1)),
Ir-p-c-size (t, cadr (Ir-expr (1))
+ 3
+ lr-p-c-size (¢,
caddr (Ir-expr (1))
+ 1
+ Ir-p-pc-1 (program-body (p-current-program (1)),
offset (p-pc(1))))))) endlet

THEOREM: Ir-eval-p-pc-equivalence-helper-5-helper-2
let test be lr-eval (t, Ir-set-pos (I, dv (offset (p-pc (1)), 1)), ¢)

in

let else be Ir-set-expr (Ir-pop-tstk (test), I, dv (offset (p-pc (1)), 3))

in

((flag # *1ist)

> > >

>

listp (lr-expr (1))
(car (Ir-expr (1)) = ’if)
good-pospl (offset (p-pc (1)),
program-body (p-current-program (1)))
Ir-programs-properp (I, table))

360

— (p-final-pc (flag, I, 0) = p-final-pc (t, else, 0)) endlet endlet

THEOREM: Ir-eval-p-pc-equivalence-helper-5
let test be lr-eval (t, Ir-set-pos (I, pos), ¢),
cadr-size be lr-p-c-size (t, cadr (Ir-expr (1)),
caddr-size be lIr-p-c-size (t, caddr (Ir-expr (1))),
Ir-p-pc-1 be lr-p-pc-1 (program-body (p-current-program (1)),
offset (p-pc (1)),
else be lr-set-expr (Ir-pop-tstk (Ir-eval (t, lr-set-pos (I, pos), ¢)),
la
dv (offset (p-pc (1)), 3))
i
((p-psw (1) = ’run)
(flag # *1ist)
(c #0)
(c € N)
listp (lr-expr (1))
(car (Ir-expr (1)) = *if)
(p-psw (Ir-if-ok (test)) = ’run)
(car (p-temp-stk (test)) = LR-F-ADDR)
(p (p-set-pc (Ir->p (Ir-pop-tstk (test)),
tag (*pc,
cons (area-name (p-pc (1)),
cadr-size
+ 3
+ caddr-size
+ 1
+ Ir-p-pe-1))),
p-clockl (t, else, ¢))
= p-set-pc (Ir->p (Ir-eval (t, else, c)),
p-final-pc (t, else, 0)))
A (p (Ir->p (1), p-clockl (t, Ir-set-pos (I, pos), c))
= p-set-pc (Ir->p (test),
p-final-pc (t, lr-set-pos (I, pos), 0)))
proper-p-statep (Ir->p (1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
Ir-p-proper-statep (p-temp-stk (1),
p-ctrl-stk (1),
p-data-segment (1),
table)
A Ir-proper-formalsp (cdr (p-prog-segment (1)))
(p-psw (Ir-eval (t, else, ¢)) = ’run)
A (pos = dv (offset (p-pc (1)), 1)))

>>>>>>>>2 5

> > > >

>

361

— (p(r->p(0),
p-clockl (t, lr-set-pos (1, pos), c)
+ 3
+ p-clockl (t, else, ¢))
= p-set-pc (Ir->p (Ir-eval (t, else, ¢)),
p-final-pc (flag, I, 0))) endlet

THEOREM: Ir-p-pc-1-dv-1-car-lr-expr-temp-eval
((car (Ir-expr (1)) = S-TEMP-EVAL)
A listp (Ir-expr (1))
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A (body = program-body (p-current-program (1))))
— (lr-p-pc-1 (body, dv (offset (p-pc (1)), 1))
= lr-p-pc-1 (body, offset (p-pc(1))))

THEOREM: comp-body-1-car-expr-temp-eval
(listp (expr) A (car (expr) = S-TEMP-EVAL))
— (comp-body-1 (t, expr, n)
= append (comp-body-1 (t, cadr (expr), n),
list (list (’ set-local, caddr (expr)))))

THEOREM: Ir-eval-p-pc-equivalence-helper-5-get-1r-p-c-size

(listp (Ir-expr (1))

(car (Ir-expr (1)) = S-TEMP-EVAL)

good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))

lr-programs-properp (I, table)

(body = program-body (p-current-program (1)))

(progs = p-prog-segment (1)))

(unlabel (get (Ir-p-pc-1 (body, offset (p-pc (1))
+ lr-p-c-size (t, cadr (Ir-expr (1))),
program-body (assoc (area-name (p-pc (1)),

comp-programs (progs)))))
= list (?set-local, caddr (Ir-expr (1))))

L>>s>>>

THEOREM: Ir->p-Ir-set-pos-dv-1-car-lr-expr-temp-eval

(listp (lr-expr (1))
A (car (Ir-expr (1)) = S-TEMP-EVAL)
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (1, table))

— (Ir->p (Ir-set-pos (I, dv (offset (p-pc (1)), 1))) = lr->p (1))

THEOREM: Ir-eval-p-pc-equivalence-helper-6-helper

let lr-eval be lIr-eval (t, Ir-set-pos (I, dv (offset (p-pc (1)), 1)), ¢)
in

362

—~
—

l>>>>>>>>>

p-psw (1) = ’run)

(flag # ’1ist)
(c # 0)
(c eN)
listp (Ir-expr (1))
(car (Ir-expr (I)) = S-TEMP-EVAL)
proper-p-statep (Ir->p (1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
(p-psw (Ilr-eval) = ’run))
(p (p-set-pc (Ir->p (Ir-eval),
p-final-pc (¢,
lr-set-pos (I, dv (offset (p-pc (1)), 1)),
0)),
1)
= p-set-pc (Ir->p (Ir-set-temp (Ir-eval,
car (p-temp-stk (Ir-eval)),
caddr (Ir-expr (1)))),
p-final-pc (flag, 1, 0))) endlet

THEOREM: Ir-eval-p-pc-equivalence-helper-6
((p-psw (1) = ’run)

> > > > > >

l>>>>>

(flag # *1ist)
(c #0)
(c €N)
listp (Ir-expr (1))
(car (Ir-expr (1)) = S-TEMP-EVAL)
(p (Ir->p (1), p-clockl (t, Ir-set-pos (I, pos), c))
= p-set-pc (Ir->p (Ir-eval (t, Ir-set-pos (I, pos), c)),
p-final-pe (t, Ir-set-pos (I, pos), 0)))
proper-p-statep (Ir->p (1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
(p-psw (lr-eval (t, lr-set-pos (I, pos), ¢)) = ’run)
(pos = dv (offset (p-pc (1)), 1)))
(p-set-pc (Ir->p (Ir-set-temp (Ir-eval (t, Ir-set-pos (I, pos), c),
car (p-temp-stk (Ir-eval (t,
Ir-set-pos (I, pos),
o)),
caddr (Ir-expr (1)))),
p-final-pc (flag, [, 0))
= p(Ir->p (1), p-clockl (t, Ir-set-pos (I, pos), ¢) + 1))

THEOREM: get-comp-temp-test

363

(listp (expr) A (car (expr) = S-TEMP-TEST))
— (get (m, comp-body-1 (t, expr, n))
= ifm<4
then get (m,
list (list (’push-local, caddr (expr)),
list (’ push-constant,
identity (LR-UNDEF-ADDR)),

’(eq),
list (> test-bool-and-jump,
of,
Ir-make-label (n
+ 6
+ lr-p-c-size (t,

cadr (eapr)))))
elseif m < (Ir-p-c-size (t, cadr (expr)) + 4)
then get (m — 4, comp-body-1 (t, cadr (ezpr), n + 4))
else get (m — (Ir-p-c-size (t, cadr (ezpr)) + 4),
list (list (’set-local, caddr (expr)),

list (* jump,
Ir-make-label (n
+ 7
+ lr-p-c-size (¢,

cadr (ezpr))),
list (*push-local, caddr (ezpr)))) endif)

THEOREM: lr-p-c-size-temp-test-opener
(listp (expr) A (car (expr) = S-TEMP-TEST))
— (lr-p-c-size (t, expr) = (lr-p-c-size (t, cadr (expr)) + 7))

THEOREM: get-+-1r-p-pc-1-lessp-3-temp-test-assoc-comp-programs

(listp (lr-expr (1))

(car (Ir-expr (1)) = S-TEMP-TEST)

good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))

Ir-programs-properp (I, table)

(n < 4)

(progs = p-prog-segment (1))

(body = program-body (p-current-program (1)))

(pos = offset (p-pe (1))

(unlabel (get (Ir-p-pc-1 (body, pos) + n,

program-body (assoc (area-name (p-pc (1)),

comp-programs (progs)))))

l>>s>>>>>

= get(n,
list (list (> push-local, caddr (Ir-expr (1))),

identity (list (’ push-constant, LR-UNDEF-ADDR)),

364

’ (eq),
list (*test-bool-and-jump,
7f,
Ir-make-label (Ir-p-pc-1 (body, pos)
+ 6
+ lr-p-c-size (¢,

cadr (Ir-expr (1))))))))

THEOREM: car-comp-body-lr-expr-3-temp-test
(listp (expr) A (car (expr) = S-TEMP-TEST))
— (car (comp-body-1 (t, expr, n)) = list (’push-local, caddr (expr)))

THEOREM: get-+-Ir-p-pc-1-n-2-size-temp-test-assoc-comp-programs
(listp (Ir-expr (1))
(car (Ir-expr (1)) = S-TEMP-TEST)
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
(n £ 4)
(6 ¢ n)
(progs = p-prog-segment (1))
(body = program-body (p-current-program (1)))
(pos = offset (p-pc (1))))
(unlabel (get (Ir-p-pc-1 (body, pos)
+ n
+ Ir-p-c-size (t, cadr (Ir-expr (1)),
program-body (assoc (area-name (p-pc (1)),
comp-programs (progs)))))

l>>>>>>>>

= get(n — 4,
list (list (?set-local, caddr (Ir-expr (1)),
list (? jump,
Ir-make-label (Ir-p-pc-1 (body, pos)

+ 7
+ lr-p-c-size (t,
cadr (Ir-expr (1))))),
list (’push-local, caddr (Ir-expr (1))))))

EVENT: Disable get-comp-temp-test.
EVENT: Disable Ir-p-c-size-temp-test-opener.

THEOREM: definedp-caddr-lr-expr-bindings-ctrl-stk-rewrite
(Ir-programs-properp (1, table)
A ((car (Ir-expr (1)) = S-TEMP-FETCH)
vV (car (Ir-expr (1)) = S-TEMP-TEST))

365

A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A proper-p-statep (I->p (1)))
— definedp (caddr (Ir-expr (1)), bindings (car (p-ctrl-stk (1))))

THEOREM: member-lr-good-pointerps-type-addr-untag-whole
((addr € list)

A (type (addr) = ’addr)

A (untag (addr) = rest)

A (addr # list (?addr, rest)))

— (= Ir-good-pointerps (list, data-seg))

THEOREM: find-label-temp-test-end-Ir-expr-car-temp-test
(listp (Ir-expr (1))
(car (Ir-expr (1)) = S-TEMP-TEST)
(body = program-body (p-current-program (1)))
(pos = offset (p-pc (1))
(expr = Ir-expr (1))
Ir-programs-properp (I, table)
good-pospl (pos, body)
(7 £ n))
(find-label (Ir-make-label (Ir-p-pc-1 (body, pos)

+ n

+ lr-p-c-size (t, cadr (expr))),

program-body (assoc (area-name (p-pc (1)),
comp-programs (p-prog-segment (1)))))

= (lr-p-pc-1 (body, pos) + n + lr-p-c-size (t, cadr (ezpr))))

l>>>>>>>

THEOREM: Ir-p-proper-statep-Ir-good-pointerps-strip-cdrs-binding
(Ir-p-proper-statep (p-temp-stk (1), p-ctrl-stk (1), p-data-segment (1), table)
A proper-p-statep (Ir->p (1))
— lr-good-pointerps (strip-cdrs (bindings (car (p-ctrl-stk (1)))),
p-data-segment (1))

THEOREM: Ir-eval-p-pc-equivalence-helper-7
((flag # ’1ist)
listp (lr-expr (1))
(car (Ir-expr (1)) = S-TEMP-TEST)
(p-max-temp-stk-size (1) £ (2 + length (p-temp-stk (1))))
proper-p-statep (Ir->p (1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
Ir-p-proper-statep (p-temp-stk (),
p-ctrl-stk (1),
p-data-segment (1),
table)

>>> > > > >

366

A (p-psw (lr-do-temp-fetch (1)) = ’run))
— (p-set-pc (Ir->p (Ir-do-temp-fetch (1)), p-final-pc (flag, I, 0))
= p(r->p(l), 5))

THEOREM: Ir-p-pc-dv-1-s-temp-test
(listp (Ir-expr (1))
A (car (Ir-expr ({)) = S-TEMP-TEST)
A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A Ir-programs-properp (1, table))
— (lr-p-pc-1 (program-body (p-current-program (1)), dv (offset (p-pc (1)), 1))
= (lr-p-pc-1 (program-body (p-current-program (1)), offset (p-pc (1)))
T+ a)

THEOREM: Ir-eval-p-pc-equivalence-helper-8-helper-1

(p-psw () = *run)

listp (lr-expr (1))

(car (Ir-expr (1)) = S-TEMP-TEST)

(p-max-temp-stk-size (I) £ (2 + length (p-temp-stk (1))))
(local-var-value (caddr (Ir-expr (1)), p-ctrl-stk (I)) = LR-UNDEF-ADDR)
proper-p-statep (Ir->p (1))

good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table))

(Ir->p (lr-set-pos (I, dv (offset (p-pc (1)), 1))) = p (Ir->p (1), 4))

l>>>>>>>

THEOREM: lIr-eval-p-pc-equivalence-helper-8-helper-2-helper
(4 + lr-p-c-size (t, expr) + 1) = (5 + lr-p-c-size (t, expr))

THEOREM: lIr-eval-p-pc-equivalence-helper-8-helper-2
let lr-eval be lr-eval (t, Ir-set-pos (I, dv (offset (p-pc (1)), 1)), ¢)
in
((flag # >1list)
listp (lr-expr (1))
(car (Ir-expr (1)) = S-TEMP-TEST)
(p-max-temp-stk-size (1) # 0)
(p-max-temp-stk-size (1) € N)
(p-max-temp-stk-size (1) # 1)
(((p-max-temp-stk-size (I) — 1) — 1) £ length (p-temp-stk (1)))
proper-p-statep (Ir->p (1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
lr-programs-properp (I, table)
(p-psw (Ir-eval) = ’run))
(p-set-pc (Ir->p (Ir-set-temp (Ir-eval,

car (p-temp-stk (Ir-eval)),

caddr (Ir-expr (1)))),

p-final-pc (flag, 1, 0))

I>s>>>>>>>> >

367

= p(p-set-pc (Ir->p (Ir-eval),

p-final-pc (¢,
Ir-set-pos (I,
dv (offset (p-pc (1)), 1)),
0)),
2)) endlet

EVENT: Disable Ir-eval-p-pc-equivalence-helper-8-helper-2-helper.

THEOREM: Ir-eval-p-pc-equivalence-helper-8
(p-psw (1) = *run)
(flag # ’1ist)
listp (lr-expr (1))
(car (Ir-expr (1)) = S-TEMP-TEST)
(p-max-temp-stk-size (1) £ (2 + length (p-temp-stk (1))))
(= Ir-eval-temp-setp (1))
(p (Ir->p (Ir-set-pos (1, pos)), p-clockl (t, lr-set-pos (I, pos), ¢))
= p-set-pc (Ir->p (Ir-eval (t, Ir-set-pos (I, pos), c)),
p-final-pe (t, Ir-set-pos (I, pos), 0)))
proper-p-statep (Ir->p (1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
Ir-p-proper-statep (p-temp-stk (1),
p-ctrl-stk (),
p-data-segment (1),
table)
(p-psw (Ir-eval (t, lr-set-pos (I, pos), ¢)) = >run)
(pos = dv (offset (p-pe (1)), 1)))
(p-set-pc (Ir->p (Ir-set-temp (Ir-eval (t, Ir-set-pos (I, pos), c),
car (p-temp-stk (Ir-eval (t,
Ir-set-pos (1, pos),

¢)));

> > > > > > > > > >

I >>

caddr (Ir-expr (1)))),
p-final-pc (flag, I, 0))
= p(Ir->p(l), 4 + p-clockl (¢, lr-set-pos (I, pos), ¢) + 2))

THEOREM: comp-body-1-car-expr-temp-fetch
(listp (expr) A (car (expr) = S-TEMP-FETCH))
— (comp-body-1 (t, expr, n) = list (list (’push-local, caddr (expr))))

THEOREM: get-Ir-p-pc-1-comp-body-1-temp-fetch

(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A listp (Ir-expr (1))
A (car (Ir-expr (1)) = S-TEMP-FETCH)

368

A lr-programs-properp (I, table)
A (prog = assoc (area-name (p-pc (1)), p-prog-segment (1))))
— (get (Ir-p-pc-1 (program-body (prog), offset (p-pc (1))),
comp-body-1 (t, program-body (prog), 0))
= list (’push-local, caddr (Ir-expr (1))))

THEOREM: Ir-eval-p-pc-equivalence-helper-9

(p-psw (1) = *run)

(flag # ’1ist)

listp (lr-expr (1))

(car (Ir-expr (1)) = S-TEMP-FETCH)

good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)

(p-psw (lr-do-temp-fetch (1)) = ’run))

(p-set-pc (Ir->p (Ir-do-temp-fetch (1)), p-final-pc (flag, 1, 0))

= p(r->p(), 1))

THEOREM: Ir-eval-p-pc-equivalence-helper-10
(p-psw (1) = *run)
(flag # ’1ist)
listp (lr-expr (1))
(car (Ir-expr (1)) = ’quote)
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
lr-programs-properp (I, table)
(length (p-temp-stk (1)) < p-max-temp-stk-size (1)))
(p-set-pc (Ir->p (Ir-set-tstk (I, cons (cadr (Ir-expr (1)), p-temp-stk (1)))),
p-final-pc (flag, [, 0))
= p(e>p(D), 1)

THEOREM: lr-expr-cur-expr-if-same

I>s>>>>>

I>s>>>>>

car (cur-expr (offset (p-pc (1)), program-body (p-current-program (1)))) = ’if)

= (car (Ir-expr (1)) = ’if)

THEOREM: Ir-p-pc-lr-set-pos-dv-1-car-Ir-expr-funcall
(listp (lr-expr (1))

(car (Ir-expr (1)) # ’if)

(car (Ir-expr (1)) ;é S-TEMP-EVAL)
(car (lr-expr (1)) # S-TEMP-TEST)
(car (Ir-expr (1)) # S-TEMP-FETCH)

(car (Ir-expr (1)) # ’quote)

good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table))

(Ir-p-pe (Ir-set-pos (1, dv (offset (p-pc (1)), 1))) = Ir-p-pc (1))

l>>>>>>>7%8

THEOREM: Ir->p-Ir-set-pos-dv-1-car-lr-expr-funcall

369

(listp (Ir-expr (1))

(car (Ir-expr (1)) # ’if)

(car (Ir-expr (1)) # S-TEMP-EVAL)

(car (Ir-expr (1)) # S-TEMP-TEST)

(car (Ir-expr (1)) # S-TEMP-FETCH)

(car (Ir-expr (1)) # ’quote)

good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table))

(Ir->p (Ir-set-pos (I, dv (offset (p-pc (1)), 1))) = lr->p (1))

l>>s>>>>>

THEOREM: p-set-pc-lr->p-equal-p-fact

(p-set-pc (Ir->p (p-state (pcl,
ctrl-stk,
temp-stk,
prog-seg,
data-seg,
maz-ctrl,
max-temp,
word-size,
psw)),

)

(p) = pc2)

(p-ctrl-stk (p) = ctri-stk)

(p-temp-stk (p) = temp-stk)

(p-data-segment (p) = data-seq)

(p-prog-segment (p) = comp-programs (prog-seg))
(p

(p

(p-

(

bS]
)
\S

6
o

-max-ctrl-stk-size (p) = maz-ctrl)
-max-temp-stk-size (p) = maz-temp)
word-size (p) = word-size)
p-psw (p) = psw))

>>>>>>>>98

EVENT: Disable p-set-pc-lr->p-equal-p-fact.

THEOREM: Ir->p-p-run-subr-p-run-subr-clock
(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
listp (Ir-expr (1))
(car (Ir-expr (1)) # ’if)
subrp (car (Ir-expr (1))))
(p-run-subr (car (Ir-expr (1)),
p-set-pc (I-->p (new-1),
add-addr (Ir-p-pc (1),
Ir-p-c-size-list (arity (car (lr-expr (1)),

I>>>>

370

Ir-expr (1)))))
= p(p-set-pc (Ir->p (new-1),
add-addr (Ir-p-pc (1),
lr-p-c-size-list (arity (car (Ir-expr (1)),
Ir-expr (1)))),
p-run-subr-clock (I, new-I)))

THEOREM: p-pc-run-car
(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)
A (p-psw (p (p-set-pc (Ir->p (1), pc), p-car-clock (p-set-pc (Ir->p (1), pc))))
= ’run)
A Ir-programs-properp (1, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= ’(call car)))
— (p-pc (p (p-set-pc (Ir->p (1), pc), p-car-clock (p-set-pc (Ir->p (1), pc))))
= add-addr (pc, 1))

THEOREM: p-pc-run-cdr
(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)
A (p-psw (p (p-set-pc (Ir->p (1), pc), p-cdr-clock (p-set-pe (Ir->p (1), pe))))
= ’run)
A lr-programs-properp (I, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= ’(call cdr)))
— (p-pe (p (p-set-pe (Ir->p (1), pe), p-cdr-clock (p-set-pe (Ir->p (1), pc))))
= add-addr (pc, 1))

THEOREM: p-pc-run-cons
(proper-p-statep (lr->p (1))
A (p-psw(l) = ’run)
A (p-psw (p (p-set-pc (Ir->p (1), pe), p-cons-clock (p-set-pe (Ir->p (1), pe))))
= ’run)
A lr-programs-properp (I, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= ’(call cons)))
— (p-pc (p (p-set-pc (Ir->p (1), pc), p-cons-clock (p-set-pe (Ir->p (1), pc))))
= add-addr (pc, 1))

371

THEOREM: p-pc-run-false
(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)
A (p-psw (p (p-set-pc (Ir->p (1), pc), p-false-clock (p-set-pc (Ir->p (1), pc))))
= ’run)
A Ir-programs-properp (1, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= (call false)))
— (p-pc (p (p-set-pc (Ir->p (1), pc), p-false-clock (p-set-pc (Ir->p (1), pc))))
= add-addr (pc, 1))

THEOREM: p-pc-run-falsep
(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)
A (p-psw (p (p-set-pc (Ir->p (1), pc), p-falsep-clock (p-set-pc (Ir->p (1), pc))))
= ’run)
A lr-programs-properp (I, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= ’(call falsep)))
— (p-pc(p (p-set-pc (Ir->p (1), pc), p-falsep-clock (p-set-pc (Ir->p (1), pc))))
= add-addr (pc, 1))

THEOREM: p-pc-run-listp
(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)
A (p-psw (p (p-set-pc (Ir->p (1), pc), p-listp-clock (p-set-pe (Ir->p (1), pe))))
= ’run)
A lr-programs-properp (I, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= (call listp)))
— (p-pe (p (p-set-pc (Ir->p (1), pe), p-listp-clock (p-set-pe (Ir->p (1), pc))))
= add-addr (pc, 1))

THEOREM: p-pc-run-nlistp
(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)
A (p-psw (p (p-set-pc (Ir->p (1), pc), p-nlistp-clock (p-set-pc (Ir->p (1), pc))))
= ’run)
A lr-programs-properp (I, table)

372

A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= ’(call nlistp)))
— (p-pc (p (p-set-pc (Ir->p (1), pc), p-nlistp-clock (p-set-pe (Ir->p (1), pc))))
= add-addr (pe, 1))

THEOREM: p-pc-run-true
(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)
A (p-psw (p (p-set-pc (Ir->p (1), pc), p-true-clock (p-set-pc (Ir->p (1), pc))))
= ’run)
A Ir-programs-properp (1, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= ’(call true)))
— (p-pc (p (p-set-pc (Ir->p (1), pc), p-true-clock (p-set-pc (Ir->p (1), pe))))
= add-addr (pe, 1))

THEOREM: p-pc-run-truep
(proper-p-statep (Ir->p (1))
A (p-psw (l) = ’run)
A (p-psw (p (p-set-pc (Ir->p (1), pc), p-truep-clock (p-set-pc (Ir->p (1), pc))))
= ’run)
A Ir-programs-properp (1, table)
A (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),
p-prog-segment (Ir->p (1))))))
= ’(call truep)))
— (p-pc (p (p-set-pc (Ir->p (1), pc), p-truep-clock (p-set-pc (Ir->p (1), pc))))
= add-addr (pc, 1))

THEOREM: p-run-subr-p-pc-add-addr-lr-p-pc-lr-p-c-size
let pos be dv (offset (p-pc (1)), 1)

in

(good-pospl (offset (p-pe (1)), program-body (p-current-program (1)))
A lIr-programs-properp (I, table)

listp (Ir-expr (1))

subrp (car (Ir-expr (1)))

(car (Ir-expr (1)) # *if)

(car (Ir-expr (1)) # ’quote)

proper-p-statep (lr->p (1))

(p-psw (Ir-eval (’1ist, lr-set-pos (I, pos), ¢)) = ’run)

(p-psw (p-run-subr (car (Ir-expr (1)),

>>> > > > >

373

p-set-pc (I-->p (Ir-eval (* 1ist,
Ir-set-pos (I, pos),
).
Ir-return-pc (1))))
= ’run))
— (p-pc (p-run-subr (car (Ir-expr (1)),
p-set-pc (Ir->p (Ir-eval (*1ist,
Ir-set-pos (1, pos),
).
Ir-return-pc (1))))
= add-addr (Ir-return-pc ({), 1)) endlet

THEOREM: lIr-eval-p-pc-equivalence-helper-11
((p-psw (1) = *run)

(flag # ’1ist)

(c #0)

(c eN)

listp (Ir-expr (1))

(car (Ir-expr
car (Ir-expr
car (Ir-expr
car (lr-expr S-TEMP-FETCH)

(
(ca
(ca
(car (Ir-expr (1)) # ’quote)
(p
(p

'if)
S-TEMP-EVAL)
S-TEMP-TEST)

NN S

+
o
o
4

ubrp (car (Ir-expr (1)))
p-psw (Ir-eval (’1ist, Ir-set-pos (I, pos), ¢)) = ’run)
(Ie->p (1), p-clockl (’1ist, lr-set-pos (I, pos), c))
= p-set-pc (Ir->p (Ir-eval (’ List, lr-set-pos (I, pos), c)),
p-final-pc (’1list, lr-set-pos (, pos), 0)))
proper-p-statep (Ir->p (1))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
lr-programs-properp (I, table)
(p-psw (lr-apply-subr (I, lIr-eval (*1ist, lr-set-pos (I, pos), ¢)))
= ’run)
(pos = dv (offset (p-pc (1)), 1)))
(p-set-pc (Ir->p (Ir-apply-subr (1, Ir-eval (?1ist, lr-set-pos (I, pos), c))),
p-final-pc (flag, 1, 0))
= Pb (h‘—>p (l)7
p-clockl (’1list, lr-set-pos (I, pos), ¢)
+ p-run-subr-clock (1,
Ir-eval (> list, Ir-set-pos (I, pos), ¢))))

>>>>>>>>>> > >

> > > >

b >

THEOREM: p-set-pc-twice
p-set-pc (p-set-pc (p, pcl), pc2) = p-set-pc (p, pc2)

THEOREM: lIr-eval-p-pc-equivalence-helper-12-helper-1

374

(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
listp (lr-expr (1))
(car (Ir-expr (1)) # ’if)
(car (Ir-expr (1)) # ’quote)
(= subrp (car (Ir-expr (1))))
litatom (car (lr-expr (1)))
(p-psw (lr-eval (t, Ir-funcall (I, new-1), ¢ — 1)) = ’run)
(p-psw (new-l) = ’run)
(p-prog-segment (1) = p-prog-segment (new-1)))
(p (p-set-pc (Ir->p (new-1),
add-addr (Ir-p-pc (1),
lr-p-c-size-list (arity (car (Ir-expr (1)),
tr-expr (1)))),

l>>>>>>>>>

1)

= Ir->p (Ir-funcall (I, new-)))

THEOREM: Ir-expr-funcall
((p-psw (Ir-funcall (I, new-1)) = ’run)
A (p-prog-segment (1) = p-prog-segment (new-1)))
— (lr-expr (Ir-funcall (1, new-l))
= program-body (assoc (user-fname (car (Ir-expr (1))),
p-prog-segment (1))))

THEOREM: unlabel-car-last-comp-body
unlabel (car (last (comp-body (body)))) = ’ (ret)

THEOREM: unlabel-get-last-funcall-body-assoc-comp-programs
(listp (Ir-expr (1))
(= subrp (car (Ir-expr (1))))
(car (Ir-expr (1)) # ’quote)
litatom (car (lr-expr (1)))
good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)
(prog-seg = p-prog-segment (1)))
(unlabel (get (Ir-p-c-size (t,
program-body (assoc (user-fname (car (Ir-expr (1)),
prog-seg)),
program-body (assoc (user-fname (car (Ir-expr (1)),
comp-programs (prog-seg)))))

l>>>>>>

= (ret))
THEOREM: Ir-eval-preserves-cdr-p-ctrl-stk-Ir-funcall

(listp (Ir-expr (1))
A (= subrp (car (Ir-expr (1))))

375

(car (Ir-expr (1)) # ’if)

(car (Ir-expr (1)) # ’quote)

litatom (car (lr-expr (1)))

proper-p-statep (Ir->p (1))

good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)

(p-psw (Ir-eval (t, Ir-funcall (I, new-1), ¢ — 1)) = ’run)

(p-psw (new-l) = ’run)

(new-l = Ir-eval (’1ist, Ir-set-pos (I, dv (offset (p-pc (1)), 1)), ¢)))
(cdr (p-ctrl-stk (Ir-eval (t, Ir-funcall (I, new-l), ¢ — 1)))

= p-ctrl-stk (new-l))

l>>>>>>>>>

THEOREM: Ir-eval-preserves-ret-pc-car-p-ctrl-stk
(proper-p-statep (Ir->p (1))
A good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))
A lr-programs-properp (I, table)
A (p-psw (Ir-eval (flag, I, ¢)) = ’run))
— (ret-pc (car (p-ctrl-stk (Ir-eval (flag, I, ¢))))
= ret-pc (car (p-ctrl-stk (1))))

THEOREM: Ir-eval-preserves-ret-pc-car-p-ctrl-stk-lr-funcall

(listp (Ir-expr (1))

(— subrp (car (lr- expr())))

(car (Ir-expr (1)) # *if)

(car (lr-expr (1)) # quote)

litatom (car (lr-expr (1)))

proper-p-statep (Ir->p (1))

good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
Ir-programs-properp (I, table)

(p-psw (lr-eval (t, lr-funcall (I, new-l), ¢ — 1)) = ’run)

(p-psw (new-l) = ’run)

(new-l = Ir-eval (’1list, lr-set-pos (I, dv (offset (p-pc (1)), 1)), ¢)))
(ret-pc (car (p-ctrl-stk (Ir-eval (t, lr-funcall (1, new-l), ¢ — 1))))

= add-addr (Ir-return-pc (1), 1))

ls>s>>>>>>>>

THEOREM: Ir-eval-p-pc-equivalence-helper-12-helper-2

let new-l be lr-eval (’1ist, lr-set-pos (, dv (offset (p-pc (1)), 1)), ¢)
in

(good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))
A Ir-programs-properp (I, table)

listp (lr-expr (1))

(car (Ir-expr (1)) # ’if)

(car (Ir-expr (1)) # ’quote)

(= subrp (car (Ir-expr (1))))

proper-p-statep (Ir->p (1))

> > > > >

376

litatom (car (Ir-expr (1)))
Ir-proper-formalsp (cdr (p-prog-segment (1)))
(p-psw (lr-eval (t, lIr-funcall (I, new-1), ¢ — 1)) = ’run)
(p-psw (new-l) = ’run))
(p (p-set-pc (Ir->p (Ir-eval (¢, lr-funcall (I, new-l), ¢ — 1)),
add-addr (Ir-p-pc (Ir-funcall (1, new-1)),
Ir-p-c-size (t,
Ir-expr (lr-funcall (1, new-1))))),

b>>>>

1)
= p-set-pc (Ir->p (Ir-pop-cstk (Ir-eval (t,
Ir-funcall (I, new-1),
¢ — 1)))a
add-addr (Ir-p-pc (1),
Ir-p-c-size-list (arity (car (Ir-expr (1)),
Ir-expr (1))
+ 1))) endlet

THEOREM: Ir-eval-p-pc-equivalence-helper-12

let fs be Ir-funcall (I, Ir-eval (*1ist, Ir-set-pos (I, pos), c))
in

(p-psw (1) = *run)

(flag # *1ist)

(c £0)

(c eN)

listp (Ir-expr (1))

(car (lr-expr
car (Ir-expr

(1)) # i)
(car ((1)) # S-TEMP-EVAL)
(car (Ir-expr (1)) # S-TEMP-TEST)
(car (Ir-expr (1)) # S-TEMP-FETCH)
(()

(

(p

—_— — — —

car (Ir-expr (1)) # ’quote)
= subrp (car (Ir-expr (1))))
litatom (car (Ir-expr (1)))
(p-psw (lr-eval (’1list, lr-set-pos (I, pos), ¢)) = ’run)
(Ir->p (fs), p-clockl (t, fs, ¢ — 1))
= p-set-pc (Ir->p (Ir-eval (t, fs, ¢ — 1)),
p-final-pc (t, fs, 0)))
(p (Ir->p (1), p-clockl (’Llist, Ir-set-pos (I, pos), c))
= p-set-pc (I-->p (Ir-eval (*1ist, Ir-set-pos (I, pos), ¢)),
p-final-pc (’list, lr-set-pos (I, pos), 0)))
proper-p-statep (Ir->p (1))

>>>>>>>>>>>> >

>

Ir-programs-properp (I, table)
Ir-proper-formalsp (cdr (p-prog-segment (1)))
(p-psw (Ir-eval (t, fs, ¢ — 1)) = ’run)

> > > > >

377

good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))

A (pos = dv (offset (p-pc (1)), 1)))
— (p-set-pc (Ir->p (Ir-pop-cstk (Ir-eval (t, fs, ¢ — 1))),
p—ﬁnal—pc (ﬂaga l7 0))
= P (11"->p (l)v

p-clockl (’1ist, Ir-set-pos (I, pos), ¢)
+ 1
+ p-clockl (t, fs, ¢ — 1)
+ 1)) endlet

THEOREM: Ir-eval-p-pc-equivalence
(proper-p-statep (Ir->p (1))
A good-posp (flag, offset (p-pc (1)), program-body (p-current-program (1)))
A ((flag # "1ist)
vV (car (cur-expr (butlast (offset (p-pc (1)),
program-body (p-current-program (1))))
£ i)
A lr-programs-properp (I, table)
A lr-p-proper-statep (p-temp-stk (1),
p-ctrl-stk (),
p-data-segment (1),
table)
A Ir-proper-formalsp (cdr (p-prog-segment (1)))
A (p-psw (Ir-eval (flag, I, ¢)) = ’run))
— (p(t->p (1), p-clockl (flag, L, c))
= p-set-pc (Ir->p (Ir-eval (flag, I, ¢)), p-final-pc (flag, I, 0)))

EVENT: Disable Ir-expr-cur-expr-if-same.

DEFINITION:

logic->p-clock (expr,
alist,
program-names,
heap-size,

maz-temp-stk-size,

maz-ctrl-stk-size,

word-size)

= (p-clockl (t,

s->Ir (logic->s (expr, alist, program-names),
heap-size,
maz-temp-stk-size,
mazx-ctrl-stk-size,
word-size),

cdr (v&c$ (t, expr, alist)) + 1)

+ 2

378

DEFINITION:
total-heap-reqs (expr, alist, program-names, heap-size)
= Ir-total-heap-reqs (expr,

alist,

program-names,

heap-size,

cdr (v&c$ (t, expr, alist)) + 1)

DEFINITION:
max-ctrl-reqs (expr, alist, program-names)
= lr-max-ctrl-regs (expr,
alist,
program-names,
cdr (v&c$ (t, expr, alist)) + 1)

DEFINITION:
max-temp-reqs (expr, alist, program-names)
= Ir-max-temp-reqs (expr,
alist,
program-names,
cdr (v&c$ (t, expr, alist)) + 1)

DEFINITION:
max-word-size-reqs (expr, alist, program-names, heap-size)
= lr-max-word-size-reqgs (expr,

alist,

program-names,

heap-size,

cdr (v&c$ (t, expr, alist)) + 1)

THEOREM: s-formals-s-prog-logic->s
s-formals (s-prog (logic->s (expr, alist, pnames))) = strip-cars (alist)

THEOREM: deposit-answer-addr-preserves-lr-valp
(adpp (untag (LR-ANSWER-ADDR), data-seg) A lr-valp (value, addr, data-seg))
— lr-valp (value,

addr,

deposit (anything, identity (LR-ANSWER-ADDR), data-seg))

THEOREM: p-last-2-instrs-main-program
(adpp (untag (LR-ANSWER-ADDR), p-data-segment (1))
A (p-psw (I) = ’run)
A listp (p-temp-stk (1))
A Ir-valp (value, car (p-temp-stk (1)), p-data-segment (1)))
— lr-valp (value,

379

fetch (identity (LR-ANSWER-ADDR),
p-data-segment (p (p-set-pc (I->p (1),
tag (*pc,
cons (name (car (p-prog-segment (1))),
Ir-p-c-size (t,
program-body (car (p-prog-segment (1))))
2))),
p-data-segment (p (p-set-pc (Ir->p (1),
tag (’pc,
cons (name (car (p-prog-segment (1))),
lr-p-c-size (t,
program-body (car (p-prog-segment (1))))))),

2)))

THEOREM: lr-programs-properp-s->Ir-logic->s
(I-proper-exprp (t, expr, pnames, strip-cars (alist))
A l-proper-programsp (pnames)

all-litatoms (strip-cars (alist))

l-data-seg-body-restrictedp (t, expr)

l-restrict-subrps-progs (pnames)

l-restrict-subrps (t, ezpr)

l-restrictedp (pnames, alist)

(heap-size £ s-total-heap-regs (s-progs (logic->s (expr, alist, pnames)),
alist,
heap-size)))

— Ir-programs-properp (s->Ir (logic->s (expr, alist, pnames),

> > > > > >

heap-size,
maz-ctrl,
max-temp,
word-size),
cdr (Ir-data-seg-table (s-progs (logic->s (expr,
alist,
pnames)),

alist,
heap-size)))

THEOREM: logic->p-ok-really-helper-1
(proper-p-statep (Ir->p (1))

A good-pospl (offset (p-pc (1)), program-body (p-current-program (1)))

A Ir-programs-properp (I, table)

A lr-p-proper-statep (p-temp-stk (1),
p-ctrl-stk (1),
p-data-segment (1),
table)

380

Ir-proper-formalsp (cdr (p-prog-segment (1)))
(p-psw (Ir-eval (t, [, ¢)) = ’run)
adpp (untag (LR-ANSWER-ADDR), p-data-segment (1))
(area-name (p-pc (1)) = name (car (p-prog-segment (1))))
(offset (p-pc (1)) = nil)
Ir-valp (value,

car (p-temp-stk (Ir-eval (t, I, ¢))),

p-data-segment (Ir-eval (t, I, ¢))))
— lr-valp (value,
fetch (LR-ANSWER-ADDR,

p-data-segment (p (p (Ir->p (1), p-clockl (t, I, ¢)), 2))),

p-data-segment (p (p (Ir->p (1), p-clockl (t, I, ¢)), 2)))

> > > > > >

THEOREM: name-car-p-prog-segment-s->Ir
name (car (p-prog-segment (s->1Ir (s, heap-size, maz-ctrl, maz-temp, word-size))))
= name (car (s-progs (s)))

THEOREM: p-pc-s->Ir
p-pc (s->1Ir (s, heap-size, maz-temp, maz-ctrl, word-size))
= tag(’pc, cons (s-pname (s), s-pos(s)))

THEOREM: adpp-untag-lr-answer-addr-s->1Ir
adpp (identity (untag (LR-ANSWER-ADDR)),
p-data-segment (s->1r (s, heap-size, max-ctrl, maz-temp, word-size)))

THEOREM: lIr-s-similar-statesp-s->Ir-logic->s-Ir-data-seg-table
((heap-size £ s-total-heap-reqs (s-progs (logic->s (expr, alist, pnames)),
alist,
heap-size))
A lrestrictedp (pnames, alist)
A l-data-seg-body-restrictedp (t, expr))
— lr-s-similar-statesp (alist,

nil,
s->1r (logic->s (expr, alist, pnames),
heap-size,
maz-ctrl,
max-temp,
word-size),
cdr (Ir-data-seg-table (s-progs (logic->s (expr,
alist,
pnames)),

alist,
heap-size)))

THEOREM: s-eval-flag-run-v&c$-not-f-flag-t

381

(v&c$ (t, expr, alist)

A (cdr (vé&ec$ (8, expr, alist)) < c)

A l-proper-programsp (pnames)

A l-proper-exprp (t, expr, pnames, strip-cars (alist))

A all-litatoms (strip-cars (alist)))

— (s-err-flag (s-eval (t, logic->s (expr, alist, pnames), ¢)) = ’run)

THEOREM: Ir-proper-formalsp-cdr-p-prog-segment-s->Ir-logic->s

(I-proper-programsp (pnames)

A l-proper-exprp (t, expr, pnames, strip-cars (alist))
A all-litatoms (strip-cars (alist)))

— lr-proper-formalsp (cdr (p-prog-segment (s->1r (logic->s (expr,
alist,
pnames),

heap-size,
maz-ctrl,
max-temp,
word-size))))

THEOREM: Ir-s-similar-params-Ir-good-pointerps-strip-cdrs
Ir-s-similar-params (s-params, lr-params, data-seq)
— Ir-good-pointerps (strip-cdrs (Ir-params), data-seg)

THEOREM: Ir-p-proper-statep-s->1Ir
((heap-size £ s-total-heap-reqs (s-progs (s), s-params (s), heap-size))
A s-restrictedp (s-progs (s), s-params (s))
A (params = s-params (s)))
— Ir-p-proper-statep (p-temp-stk (s->1r (s,
heap-size,
max-ctrl,
max-temp,
word-size)),
p-ctrl-stk (s->1r (s,
heap-size,
mazx-ctrl,
max-temp,
word-size)),
p-data-segment (s->1r (s,
heap-size,
mazx-ctrl,
max-temp,
word-size)),
cdr (Ir-data-seg-table (s-progs (s), params, heap-size)))

THEOREM: proper-p-statep-Ir->p-s->Ir-logic->s

382

(I-proper-exprp (t, expr, pnames, strip-cars (alist))

A l-proper-programsp (pnames)

all-litatoms (strip-cars (alist))

l-data-seg-body-restrictedp (t, expr)

l-restrictedp (pnames, alist)

l-restrict-subrps (t, ezpr)

l-restrict-subrps-progs (pnames)

(heap-size £ (s-total-heap-regs (s-progs (logic->s (expr, alist, pnames)),
alist,
heap-size)

+ s-eval-heap-r (t, logic->s (expr, alist, pnames), c)))

(max-ctrl £ lr-max-ctrl-reqs (expr, alist, pnames, c))

(maz-ctrl < exp (2, word-size))

(maz-ctrl € N)

(maz-temp £ lr-max-temp-reqs (expr, alist, pnames, c))

(

(

(

(

> > > > > >

maz-temp < exp (2, word-size))

word-size ¢ lr-max-word-size-reqs (expr, alist, pnames, heap-size, ¢))
word-size € N))
proper-p-statep (Ir->p (s->1r (logic->s (expr, alist, pnames),
heap-size,
maz-ctrl,
max-temp,
word-size)))

l>>>>>>>>

THEOREM: logic->p-ok-really

(I-proper-exprp (t, expr, pnames, strip-cars (alist))
l-proper-programsp (pnames)

all-litatoms (strip-cars (alist))

l-data-seg-body-restrictedp (t, expr)

l-restrictedp (pnames, alist)

v&c$ (t, expr, alist)

l-restrict-subrps (t, expr)

l-restrict-subrps-progs (pnames)

(heap-size £ total-heap-reqs (expr, alist, pnames, heap-size))
mazx-ctrl £ max-ctrl-regs (expr, alist, pnames))

maz-ctrl < exp (2, word-size))

max-ctrl € N)

mazx-temp < max-temp-reqs (expr, alist, pnames))
maz-temp < exp (2, word-size))

maz-temp € N)

word-size £ max-word-size-reqs (expr, alist, pnames, heap-size))
word-size € N))

lr-valp (car (v&c$ (t, expr, alist)),

(
(
(
(
(
(
(
(

I>>>>>>>>>>>>>>> >

383

fetch (LR-ANSWER-ADDR,

p-data-segment (p (logic->p (expr,

alist,
pnames,
heap-size,
mazx-ctrl,
max-temp,
word-size),

logic->p-clock (expr,

p-data-segment (p (logic->p (expr,

384

alist,

alist,
pnames,
heap-size,
maz-ctrl,
max-temp,
word-size)))),

pnames,
heap-size,
maz-ctrl,
maz-temp,
word-size),
logic->p-clock (ezpr,

alist,
pnames,
heap-size,
maz-ctrl,

mazx-temp,
word-size))))

Index

add-addr, 6, 7, 10, 11, 14, 15, 37,
44, 48, 53-55, 75-81, 91,
96-99, 102, 106, 109, 110,
112-115, 117-121, 126, 128,
153, 154, 160, 162, 181, 185,
186, 196, 199, 200, 218, 219,
225, 226, 230-232, 234, 240,
242, 250, 252, 255-258, 264—
266, 268-273, 289, 316, 341,
351, 354, 371-377
add-addr-add-addr, 53
add-addr-of-non-number, 53
add-addr-p-final-pc, 354
addl-addl1-Ir-boundary-nodep, 241
addl-addr, 14, 38, 47
add1-lr-boundary-nodep, 241
adp-name, 40, 44, 53, 101, 115
adp-name-cons, 101
adp-name-untag-add-addr, 53
adp-name-untag-sub-addr, 44
adp-offset, 40, 44
adp-offset-cons, 44
adp-offset-untag-add-addr, 44
adp-offset-untag-sub-addr, 44
adpp, 7, 47, 48, 52, 55, 75, 96, 99,
102-104, 106, 107, 109, 112,
114-118, 120-127, 130, 153—
156, 185, 196, 199, 200, 218—
221, 225, 231-233, 235, 240
242,249, 250, 254258, 264—
268, 289, 308-311, 318, 339,
342, 379, 381
adpp-add-addr-0, 48
adpp-add-addr-fact-2, 106
adpp-adpp-sub-addr, 103
adpp-area-name-offset-same, 106
adpp-cons-heap-name-node-size-1
r-init-data-seg, 263
adpp-cons-pack-definedp-area-na
me, 48
adpp-cons-pack-opener, 218

385

adpp-deposit-a-list, 120
adpp-deposit-anything-at-all, 47
adpp-deposit-other-area, 115
adpp-fetch-lr-fp-addr-car-Ir-co
mpile-quote, 241
adpp-lessp-offset-deposit, 47
adpp-lr-compile-quote, 220
adpp-same-signature, 48
adpp-same-signature-car-lr-compi
le-quote, 221
adpp-same-signature-Ir-apply-su
br, 156
adpp-untag-add-addr-lr-nodep-not
-max-addr, 199
adpp-untag-add-addr-offset-car, 196
adpp-untag-add-addr-offset-cdr, 196
adpp-untag-add-addr-offset-on-f
ree-listp, 200
adpp-untag-answer-addr-car-lr-d
ata-seg-table, 318
adpp-untag-definedp-area-name, 47
adpp-untag-definedp-area-name-f
ree-ptr, 220
adpp-untag-lessp-offset, 48
adpp-untag-listp, 48
adpp-untag-Ir-answer-addr-s->
Ir, 381
adpp-untag-Ir-fp-addr-Ir-init-d
ata-seg, 225
adpp-untag-numberp-offset, 48
all-definedp, 327, 328
all-definedp-strip-cdrs-lr-init
-data-seg-table, 328
all-litatoms, 35, 220, 273, 274, 280,
284, 305, 306, 308, 309, 318,
329, 330, 332, 380, 382, 383
all-litatoms-all-user-fnamesp-p
listp, 309
all-litatoms-not-plist, 331, 332
all-litatoms-not-plist-lr-prope
r-programsp, 332

all-litatoms-s-formals-member-1
r-programs-properp, 306
all-litatoms-s-formals-member-s
-programs-properp, 305
all-litatoms-strip-cdrs-lr-make
-temp-name-alist, 280
-temp-name-alist-1, 280
all-numberps, 344
all-numberps-strip-cadrs-numberp
-cdr-assoc, 344
all-numberps-strip-cadrs-subr-a
rity-alist, 344
all-p-objectps, 49, 52, 73, 74, 310,
315, 316
all-p-objectps-append, 73
all-p-objectps-bad-type, 52
all-p-objectps-first-n, 74
all-p-objectps-get, 310
all-p-objectps-lr->p-similar-
states, 49
all-p-objectps-Ir-init-heap-conte
nts, 316
nts-helper, 315
nts-helper-helper, 315
all-p-objectps-put, 310
all-p-objectps-reverse, 73
all-p-objects-lookup, 220, 234-239,
263
all-p-objects-lookup-cons-table, 234
all-p-objects-lookup-deposit, 236
all-p-objects-lookup-deposit-a-
list, 235
all-p-objects-lookup-Ir-compile
-quote, 237
all-p-objects-lookup-Ir-data-se
g-table-body, 238
g-table-list, 239
all-p-objects-lookup-strip-cdrs
-lr-init-data-seg-table, 263
all-undef-addr-strip-cdrs-Ir-ma
ke-initial-temps, 324
all-undef-addrs, 35, 284, 292, 324,
344
all-undef-addrs-strip-cadrs-Ir-

386

make-temp-var-dcls, 292
all-undef-addrs-strip-cadrs-temp
-vars-programs-properp, 344
-vars-programs-properp-1, 344
all-user-fnamesp, 35, 51, 291, 292,
307-309, 332
all-user-fnamesp-strip-cars-s-c
onstruct-programs, 332
append-butlast-list-car-last, 348
append-first-n-restn, 167
area-name, 7, 8, 15, 21, 23, 24, 33,
35, 38-40, 45, 47, 48, 52—
55, 57, 59, 63, 72, 75-94,
103-106, 108, 110, 113, 115—
118, 120, 121, 126, 127, 133,
134, 153, 154, 157, 163, 172,
187, 198-204, 218, 220, 226—
233, 240, 242, 249, 255, 256,
264-266, 268, 269, 289, 308—
311, 315, 316, 339, 343, 347,
352, 354-362, 364-366, 369,
371-373, 381
area-name-add-addr, 53
area-name-lr-p-pc, 45
area-name-lr-return-pc, 53
area-name-p-final-pc, 355
area-name-p-pc-lr-eval, 47
area-name-p-pc-lr-funcall, 91
area-name-sub-addr, 54
area-name-tag, 40
arity, 34, 57, 153, 163, 168-170, 180,
198-205, 207, 208, 211, 342—
345, 370, 371, 375, 377
arity-formals-not-quote, 169
ascii-0, 12, 31, 283
ascii-1, 12
ascii-9, 12
ascii-dash, 12, 31
assoc-append-1, 50
assoc-cdr, 288, 289
assoc-definedp-table-Ir-compile
-quote, 240
assoc-definedp-table-Ir-data-se
g-table-body, 327

g-table-list, 327
assoc-definedp-table-Ir-init-dat

a-seg-table, 240
assoc-put-assoc-3, 47
axiom-53, 1

bindings, 23, 61, 62, 74, 91, 92, 94,
95, 122, 123, 130, 134, 135,
141, 142, 144, 145, 150, 151,
183, 191, 336, 337, 353, 366

bindings-make-p-call-frame, 74

butlast, 7, 56, 166, 282, 295, 296,
304, 348, 349, 378

caar-lr-compile-programs, 211
cadddr-max-r, 190
car-append, 57
car-car-Ir-compile-programs-pro
gs, 132
car-comp-body-1-litatom, 347
car-comp-body-Ir-expr-3-temp-te
st, 365
car-last-first-n-add1-get, 166
car-Ir-compile-body, 129
car-lr-expr-s->Irl, 137
car-reverse-last, 166
car-untag-lr-p-pc, 45
car-untag-lr-return-pc, 54
car-untag-p-pc-lr-eval, 86
car-untag-p-pc-lr-funcall, 91
cddr-add-addr, 53
cddr-lr-return-pc, 54
cddr-nil-Ir-p-pc, 45
cddr-nil-make-p-call-frame, 74
cddr-sub-addr, 54
cdr-assoc-member-strip-cdrs, 107
cdr-compile-quote-list-t0-1r-init
-data-seg-cons-table, 271
cdr-p-temp-stk-Ir-apply-subr, 160
cdr-p-temp-stk-p-run-subr, 159
cdr-untag-lr-p-pc-Ir-funcall, 90
change-elements, 1
comp-body, 33, 58, 59, 72, 93, 284,
375

387

comp-body-1, 32, 33, 57-59, 6672,
84, 285, 286, 288, 292, 308,
309, 347, 354, 362, 364, 365,
368, 369
comp-body-1-car-expr-if, 354
comp-body-1-car-expr-temp-eval, 362
comp-body-1-car-expr-temp-fetch, 368
comp-body-1-list-not-listp, 285
comp-if, 31, 32, 57, 6668, 286, 351,
354, 356
comp-programs, 33, 36, 44, 45, 51,
59-61, 63, 73, 85, 86, 89,
91-93, 187, 210, 285-292,
307, 308, 310, 347, 354, 356,
357, 359, 362, 364-366, 370,
375
comp-programs-1, 33, 45, 59-61, 210,
281, 308
comp-programs-assoc-cons-opener, 210
comp-temp-test, 31, 33, 66, 68, 288
count-codelist, 13
count-codelist-make-symbol, 13
count-codelist1, 12, 13, 146, 147
count-codelist1-append-non-listp, 147
count-codelist1-cdr-gensym, 147
count-codelist1-cons, 146
count-list, 15, 16
cur-expr, 7, 56, 62, 63, 65, 67-72,
85, 129, 158, 282, 295-304,
348, 349, 356, 369, 378
cur-expr-addl-opener, 356
cur-expr-Ir-compile-body-t, 129
cur-expr-nlistp-pos, 85

definedp, 16, 33-35, 42, 45, 47, 48,
50, 51, 53, 57, 59-61, 63,
74, 84, 85, 91, 92, 94, 101—
104, 107, 112, 116, 120, 132—
135, 141-145, 147, 149-151,
156, 163, 169, 187, 199, 206,
208, 210, 212, 216224, 234,
237243, 245, 249-256, 259—
264, 267279, 286-292, 294,
295, 301, 302, 306-308, 310,

311, 313-315, 317, 320-322,
324-328, 331, 344, 366
definedp-0, 210
definedp-append, 45
definedp-area-name-member-p-cur
rent-program, 59
definedp-caddr-Ir-expr-bindings
-ctrl-stk, 63
-ctrl-stk-rewrite, 365
definedp-cadr-cur-expr-quote-Ir
-data-seg-table, 302
-data-seg-table-body, 301
-data-seg-table-list, 302
definedp-car-Ir-compile-quote, 219
definedp-cdr-assoc-Ir-good-pointe
rps, 336
definedp-cdr-Ir-compile-quote-t, 264
definedp-comp-programs-1-define
dp-orig, 45
definedp-comp-programs-definedp
-lr-programs-properp, 91
-orig, 45
definedp-deposit, 47
definedp-deposit-a-list, 120
definedp-listp-cdr-assoc-Ir-prope
r-p-areasp, 102
definedp-litatom-Ir-proper-p-are
as, 101
definedp-Ir-compile-programs, 112
definedp-Ir-data-seg-body-list-
n-not-lessp, 301
definedp-Ir-funcall-prog-segment, 91
definedp-Ir-heap-name-Ir-init-d
ata-seg, 234
definedp-Ir-make-temp-name-alist, 151
-1, 151
definedp-name-p-objectp-tag-0-1
r-proper-p-areasp, 237
definedp-object-cdr-lr-compile-q
uote-list, 254
definedp-pairlist, 151
definedp-s-temps-s-eval, 147
definedp-strip-cars-append-membe
r-x, 134

388

r-x-2, 149
definedp-table-definedp-car-Ir-
data-seg-table-body, 221
data-seg-table-list, 221
definedp-table-definedp-car-lr-i
nit-data-seg-table, 234
definedp-table-definedp-cdr-Ir-
compile-quote, 219
data-seg-table-body, 220
data-seg-table-body-n, 301
data-seg-table-list, 220
definedp-table-definedp-cdr-Ir-i
nit-data-seg-table, 221
definedp-table-lr-compile-quote
-self, 240
definedp-user-fname-s-construct
-programs, 331
definition, 37
definitions-subrps-lr-programs-p
roperp, 51
delete, 96, 107, 117, 181, 228, 229,
249, 250, 252
delete-all, 331
delete-append, 228
deposit, 14, 15, 47, 53, 78, 81, 102,
107, 110, 114-121, 125, 185,
186, 218, 231, 232, 236, 237
241, 255, 256, 268, 310, 338,
339, 379
deposit-a-list, 14, 15, 47, 78, 81, 120,
121, 126-128, 162, 186, 218,
220, 221, 231, 232, 235, 236,
242, 249, 254, 257-261, 311
313, 316, 339, 341
deposit-a-list-cons-opener, 47
deposit-a-list-nil, 47
deposit-answer-addr-preserves-1
r-valp, 379
deposit-cons, 218
deposit-deposit, 109
deposit-free-ptr-preserves-lr-v
alp, 107
deposit-good-node-preserves-lr-p
roper-free-listp, 121

deposit-ref-count-move-inward-2, 119

deposit-ref-count-move-outward, 110

difference-decreases, 35

disjointp, 141-145

disjointp-commutative, 145

disjointp-cons-arg2, 143

disjointp-lr-make-temp-name-ali

st-1, 143
st-2, 145

disjointp-nlistp-arg2, 143

disjointp-plist-arg-2, 144

dl, 31

dv, 40-42, 44, 62, 73, 110-112, 136—
140, 144, 145, 148, 152, 156,
158-160, 164, 165, 168, 171,
173,179, 180, 188-190, 192—
195, 205-215, 282, 295-299,
302, 334, 335, 340, 342, 343,
345, 346, 350, 353-363, 367
370, 373, 374, 376, 378

equal-add-addr-fact, 226
equal-append-final-0, 146
equal-append-initial, 146
equal-append-same-length-fact, 134
equal-ascii-0O-lr-convert-digit-t
o-ascii, 283
equal-cddr-p-frame-nil, 3
equal-lengths-same-signature-ca
r-lr-compile-quote, 221
equal-p-psw-Ir-eval-run-lr-eval
-Ir-set-error, 137
equal-plus-lessp-fact, 205
equal-plus-remainder-0-fact, 55
exp, 88, 195, 196, 318, 329, 332, 383
exp-log-2-lessp-add1-fact-1, 196
exp-log-lessp-fact-1, 196

fall-off-proofp, 306

fall-off-proofp-append-cons-ret, 306

fetch, 6, 7, 10, 11, 15, 17, 27, 52, 53,
55, 75-84, 96-98, 102, 104,
106, 109, 112-114, 121, 126,
128, 153, 154, 160-163, 181,

389

182, 186-189, 191, 196, 198—
207, 217-219, 221, 225, 230,
232, 235, 240-242, 249266,
268-272, 275-280, 289, 294,
295, 310-315, 320328, 341,
380, 381, 384
fetch-0-addr-compile-quote-list

-init-data-seg, 271
fetch-add-addr-deposit-a-list-n

ode, 126
fetch-add-addr-ref-count-f-addr

-lr-init-data-seg, 269
fetch-add-addr-ref-count-1r-0-a

ddr-lr-init-data-seg, 270
fetch-add-addr-ref-count-Ir-t-a

ddr-Ir-init-data-seg, 270
fetch-add-addr-ref-count-offset

-lr-init-data-seg-help-1, 226
fetch-cons, 217
fetch-deposit, 53
fetch-deposit-a-list, 218
fetch-deposit-a-list-node, 126
fetch-f-addr-compile-quote-list

-init-data-seg, 271
fetch-fp-addr-compile-quote-list

-t0-Ir-init-data-seg-cons-table, 272
fetch-init-init-data-seg-genera

lized, 229
fetch-init-init-data-seg-sub-ad

dr, 232
fetch-1r-f-addr-Ir-init-data-se

g, 269
fetch-Ir-fp-addr-compile-quote-

0, 268
fetch-1r-fp-addr-compile-quote-t, 264
fetch-lr-fp-addr-Ir-init-data-se

g, 225
fetch-Ir-nodep-add-addr, 106
fetch-offset-Ir-t-addr-ref-count

-offset-compile-quote-t, 264
fetch-ref-count-0-addr-compile-q

uote-list-init-data-seg, 271
fetch-ref-count-f-addr-compile-q

uote-list-init-data-seg, 272

fetch-ref-count-Ir-init-data-se
g-free-list, 266
fetch-ref-count-t-addr-compile-q
uote-list-init-data-seg, 270
fetch-t-addr-compile-quote-list
-init-data-seg, 270
fetch-unbox-nat-0-addr-compile-q
uote-list-init-data-seg, 271
find-label, 357, 359, 366
find-label-else-start-Ir-expr-c
ar-if, 359
find-label-lr-make-label-label-i
nstrs, 357
find-label-past-else-lr-expr-ca
r-if, 357
find-label-temp-test-end-lr-exp
r-car-temp-test, 366
find-labelp, 64, 283, 284
find-labelp-lr-make-label-comp-
body, 284
find-labelp-lr-make-label-label
-instrs, 284
find-non-proper-instr, 8, 9
find-non-proper-programs, 8, 9
first-n, 73, 74, 166, 167, 344
firstn, 8, 9, 13, 23, 67, 68, 70, 71,
108, 134, 135, 140, 141, 144
firstn-Ir-p-c-size-restn-lr-p-p
c-1-comp-body-1, 71
c-1-comp-body-1-helper-1, 67
c-1-comp-body-1-helper-4, 68
c-1-comp-body-1-helper-5, 68
c-1-comp-body-1-helper-6, 69
c-1-comp-body-1-helper-7, 70
c-1-comp-body-1-helper-8, 70
firstn-put-assoc, 140
firstn-restn-plus-comp-if-1, 67
firstn-restn-plus-comp-if-2, 67
firstn-restn-small-enough-cdr-c
omp-body-1-list, 70
firstn-unlabel-instrs-comp-body
-1-lr-p-pc-1-helper-2, 67
-1-Ir-p-pc-1-helper-3, 68
fix-data-segment, 8, 9

fix-program-segment, 8
formal-vars, 9, 23, 33, 35, 38, 56,
57,59-61, 63, 91, 132, 134,
141, 165, 168, 169, 212, 287—
289, 291, 292, 306, 309
formal-vars-assoc-comp-programs, 60
-1, 60
-lr-programs-properp, 91
formal-vars-Ir-compile-programs, 132
formal-vars-p-current-program-s
->Irl, 132

gensym, 13, 14, 147, 280
gensym-is-new, 14
get, 2, 21, 40, 52, 53, 56, 60, 65,
66, 68-72, 75-85, 126, 129,
153, 163, 166, 187, 198, 200—
204, 217, 218, 226, 296, 300
303, 310, 347, 348, 350, 351,
354, 356, 362, 364, 365, 369,
371-373, 375
get-+-Ir-p-pc-1-lessp-3-temp-te
st-assoc-comp-programs, 364
get-+-lr-p-pc-1-n-2-size-temp-te
st-assoc-comp-programs, 365
get-append, 72
get-cdr-lr-init-heap-contents, 226
get-comp-body-Ir-compile-progra
ms, 187
get-comp-if, 351
get-comp-if-helper, 351
get-comp-if-helper-helper, 350
get-comp-temp-test, 364
get-firstn-different-lists, 71
get-label-instrs, 71
get-last-funcall-cur-expr, 84
get-Ir-compile-body, 129
get-Ir-compile-body-list, 129
get-Ir-p-c-size-lessp-lr-p-c-si
ze-comp-body-1, 72
get-lr-p-c-size-lessp-restn-1r-p
-pc-1-comp-body-1, 354
get-Ir-p-pc-1-comp-body-1-cur-e
xpr-comp-body, 72

get-lr-p-pc-1-comp-body-1-quote, 72
get-lr-p-pc-1-comp-body-1-temp-
fetch, 368
get-offset-return-pc-program-bo
dy-assoc-comp-programs, 84
get-plus, 71
get-plus-lr-p-c-size-cadr-caddr
-4-comp-body-cur-expr, 356
get-plus-lr-p-pc-1-Ir-pc-size-c
adr-assoc-comp-body-if-4, 356
get-subl-length-car-last, 166
good-alistp, 307
good-alistp-lr-programs-properp, 307
good-posp, 4, 56, 58, 73, 95, 122-
125, 130-132, 141, 148, 155,
170-172,175, 176, 182-184,
190-192, 215, 216, 302, 304,
337, 346, 349, 376, 378
good-posp-cons-lessp-4-if-lr-pr
ograms-properp, 62
good-posp-dv-1-funcall-lr-expr, 73
good-posp-dv-1-funcall-opened, 302
good-posp-dv-1-temps-Ir-expr, 62
good-posp-list-nx-offset-progra
m-body, 58
good-posp-list-nx-t-simple, 56
good-posp-list-t-offset-program
-body, 58
good-posp-lr-compile-body, 132
good-pospl, 5658, 61-65, 67-73, 84—
95, 114, 121-124, 129, 134-
141, 144-146, 148, 150-160,
163-165, 168-171, 173-176,
183, 185, 187, 188, 190, 192—
195, 205-212, 214, 215, 296—
299, 301-304, 336-339, 341—
343, 345-350, 352370, 373—
377, 380
good-pospl-cons-lessp-4-if-Ir-p
roper-exprp, 62
good-pospl-cons-lessp-4-if-s-pr
oper-exprp, 296
good-pospl-dv-1-temp-eval-test, 298
good-pospl-dv-1-temps-lr-expr, 144

good-pospl-expand-list-temps, 129

good-pospl-Ir-compile-body, 129

good-pospl-lr-proper-exprp-get-
cadddr, 68

ihint-2, 110-112
increment-num-list-count-code-li
stl, 13
increment-numlist, 12, 13
induct-hint-1, 166
induct-hint-10, 69
induct-hint-11, 134
induct-hint-13, 140, 141
induct-hint-14, 142
induct-hint-15, 155
induct-hint-16, 254
induct-hint-17, 225
induct-hint-18, 195, 196
induct-hint-19, 226
induct-hint-2, 269
induct-hint-20, 300
induct-hint-22, 283
induct-hint-23, 283, 284
induct-hint-3, 295, 296
induct-hint-4, 112
induct-hint-6, 59
induct-hint-7, 65, 66
induct-hint-8, 153
induct-hint-9, 71

l-data-seg-body-restrictedp, 330-332,
380, 381, 383
l-data-seg-body-restrictedp-delete
-all, 331
l-data-seg-body-restrictedp-s-d
ata-seg-body-restrictedp, 331
l-data-seg-list-restrictedp, 330, 331
l-data-seg-list-restrictedp-s-d
ata-seg-list-restrictedp, 331
l-eval, 4
l-proper-exprp, 330-332, 380, 382,
383
l-proper-programsp, 329-332, 380, 382,
383

l-proper-programsp-1, 331
l-proper-programsp-s-progs-logi
c->s, 330
l-restrict-subrps, 216, 331, 332, 380,
383
l-restrict-subrps-progs, 216, 331, 332,
380, 383
l-restrict-subrps-progs-delete-
all, 331
l-restrict-subrps-progs-s-restri
ct-subrps-progs, 331
ct-subrps-progs-logic->s, 331
l-restrict-subrps-s-restrict-su
brps, 331
l-restrictedp, 330, 332, 380, 381, 383
label-instrs, 31, 33, 58, 59, 71, 93,
284, 285, 309, 357
label-instrs-append, 284
label-instrs-proper-labeled-p-i
nstructionsp, 285
labelledp, 285
last, 7, 56, 166, 167, 205, 282, 295,
296, 298, 304, 348, 349, 375
lastedr, 130
legal-labelp, 8, 71
legal-labelp-label-make-label, 71
length, 8, 10, 13, 15, 21, 23, 24, 31,
32, 34, 38, 41, 47, 48, 52,
5660, 63-72, 74, 75, 84,
86, 89, 93, 96, 99, 102-104,
107, 111, 112, 116, 120, 121
123, 129, 130, 134, 135, 139,
149, 153-156, 158-160, 163,
164, 166-170, 173, 180, 182—
184, 192, 198-205, 207213,
215, 217, 218, 220, 221, 224,
226, 242, 248-250, 252, 253,
264, 267, 268, 270, 273, 281
284, 286, 296, 298, 300-303,
310-313, 315, 318, 319, 324,
328, 329, 341-345, 349, 351—
353, 356, 357, 359, 366-369
length-3-cdr-cddr-not-nil, 296
length-add1-add1-cddr-fact, 167

392

length-butlast, 166
length-car-Ir-compile-quote, 224
length-cdr-assoc-Ir-heap-name-1

r-init-data-seg, 226
length-cdr-comp-if-comp-body, 57
length-cdr-lr-expr-funcall, 153
length-cdr-1r-expr-funcall-s->

Irl, 155
length-comp-body-1-1r-p-c-size, 58
length-comp-body-Ir-p-c-size, 58
length-comp-if-alt, 66
length-comp-temp-test, 66
length-delete-member, 96
length-deposit, 116
length-deposit-a-list, 220
length-formal-vars-lr-proper-fo

rmalsp-arity, 169
length-label-instrs, 58
length-last, 205
length-last-fact, 298
length-Ir-all-nodes, 273
length-Ir-compile-body-list, 129
length-lr-compile-body-t, 129
length-lr-convert-num-to-ascii, 283
length-Ir-do-temp-fetch, 63
length-Ir-init-heap-contents, 217
length-lr-make-initial-temps, 281
length-lr-make-temp-name-alist, 209
length-lr-make-temp-name-alist-

1, 208
length-lr-make-temp-var-dcls, 208
length-Ir-push-tstk, 64
length-make-temps-entries, 209
length-p-temp-stk-lr-apply-subr, 168
length-p-temp-stk-lr-eval, 170
length-p-temp-stk-Ir-eval-flag-

list, 170

list-alt, 345

not-list, 184
length-p-temp-stk-Ir-eval-lr-fu

ncall, 211
length-p-temp-stk-lr-eval-lr-set

-pos, 353

-pos-flag-t, 215

length-p-temp-stk-Ir-funcall, 169
length-p-temp-stk-Ir-pop-tstk-1
r-eval-flag-t, 192
length-p-temp-stk-p-run-subr, 168
length-p-temp-stk-p-run-subr-he
Iper-1, 167
length-pair-formals-with-addres
ses, 281
length-pair-temps-with-initial-v
alues, 75
length-pairlist, 75
length-popn, 74
length-popn-lessp-fact, 93
length-s-eval-list, 155
length-strip-cars, 112
length-strip-cdrs, 281
lessp-1-not-zerop-exp, 195
lessp-1-not-zerop-log, 195
lessp-3-lr-p-c-size-car-if, 354
lessp-4-not-zerop-not-1-not-2-3, 64
-get-car-pos, 65
lessp-cdr-untag-lr-return-pe-Ir
-p-c-size, 86
lessp-count-list-cdr-count-list
-whole, 16
lessp-count-not-list-car-count-
list-whole, 16
lessp-difference-fact-1, 105
lessp-difference-lr-boundary-of
fsetp-fact-1, 105
lessp-difference-node-size-sub-
addr, 105
addr-2, 228
addr-3, 230
lessp-index-lessp-lr-p-c-size-li
st, 65
lessp-length-deposit, 102
lessp-Ir-boundary-offsetp-3, 265
lessp-Ir-boundary-offsetp-nodep
-plus-node-size-fact-1, 250
-plus-node-size-fact-2, 102
lessp-lr-node-on-boundaryp-node
-size, 105
lessp-lr-p-c-size-list-lessp-su

393

bl-length, 59
lessp-Ir-p-pc-1-lr-p-c-size, 60
lessp-Ir-p-pc-1-1r-p-c-size-helpe

r-1, 60
lessp-max-arg2, 211
lessp-minimum-heap-size-not-0-f

-t-must-be-undef-alt-1, 265

-t-must-be-undef-alt-1-help, 265
lessp-number-cons-cur-expr-dv-1

-listp, 282
lessp-number-cons-cur-expr-dv-2

-listp, 282
lessp-number-cons-cur-expr-dv-3

-listp, 282
lessp-number-cons-restn-cdr, 282
lessp-offset-Ir-init-data-seg-a

dpp-untag-lessp-offset, 266
lessp-offset-lr-return-pe-1r-p-

c-size-good-posp, 93
lessp-plus-lr-p-c-size-cadr-cad

dr-3-car-if, 355
lessp-plus-lr-p-c-size-lr-p-pc-

1-helper, 65

1-temps, 69

1, 65
lessp-plus-lr-p-pc-1-lr-p-c-size

-3-1-lr-expr-car-if, 359
lessp-plus-remainder-0-fact, 199
lessp-subl-lessp-fact, 227
lessp-times-difference-fact, 225
lessp-times-difference-node-on-

boundaryp-fact, 225
lessp-times-plus-fact, 227
lessp-x-subl-facts, 311
list-ascii-0, 12, 14
list-ascii-1, 12
listp-cdr-make-p-call-frame, 74
listp-cdr-p-frame, 3
listp-comp-body, 93
listp-comp-body-1, 57
listp-label-instrs, 93
listp-lr-all-nodes, 273
listp-lr-compile-body, 129
listp-lr-compile-programs, 211

listp-lr-expr-list-s->Irl, 132
listp-lr-expr-s->Irl, 136
listp-p-ctrl-stk-1r-funcall, 90
listp-p-temp-stk-Ir-do-temp-fet
ch, 64
listp-p-temp-stk-Ir-push-tstk, 63
listp-p-temp-stk-proper-ctrl-st
k-Ir-apply-subr, 85
k-p-run-subr, 85
listp-pairlist, 165
listp-plist-car, 348
listp-put-assoc, 119
listp-untag-add-addr, 53
listp-untag-lr-p-pc, 45
listp-untag-lr-return-pc, 54
listp-untag-sub-addr, 54
litatom-car-gensym, 280
litatom-lr-compile-body, 131
litatom-lr-expr-s->1Irl, 134
litatom-lr-expr-s->Irl-s-expr, 136
local-var-value, 25, 41, 134, 151, 367
log, 180, 181, 195, 196, 245, 293,
294, 312, 313
logic->Ir-ok-really, 332
logic->p, 333, 384
logic->p-clock, 378, 384
logic->p-ok-really, 383
logic->p-ok-really-helper-1, 380
logic->s, 319, 330-333, 378-383
logic-fname, 168, 169
Ir->p, 36, 37, 44, 45, 60-64, 73, 75—
90, 92-95, 107, 109, 114,
121-125, 130, 131, 134, 135,
137, 141, 144-146, 148, 150,
151, 154-161, 163, 164, 168,
170-176, 182185, 187, 188,
190-195, 198207, 210212,
214-216, 274, 281, 282, 292
294, 308-310, 319, 323, 333,
334, 336-338, 340-343, 345—
347, 352, 353, 355, 357-363,
366—378, 380, 381, 383
Ir->p-lr-set-pos-dv-1-car-Ir-e
xpr-funcall, 370

394

xpr-if, 353
xpr-temp-eval, 362
lr->p-p-run-subr-p-run-subr-c
lock, 370
Ir-0-addr, 6, 27, 75, 76, 79, 80, 99,
102, 161, 218, 219, 265, 270—
273, 340
Ir-abs, 10, 11
Ir-add-to-data-seg, 15, 17
Ir-add1-tag, 5, 9, 10, 17, 98, 219,
245, 256, 257, 260, 271, 312
Ir-all-nodes, 226, 228, 229, 231-234,
266, 267, 273
Ir-all-nodes-lessp-max-addr-ope
ner, 229
Ir-all-nodes-nil, 228
Ir-all-nodes-not-lessp-min-offset
-max-addr, 232
Ir-all-nodes-offset-max-addr-ope
ner-helper, 229
Ir-all-nodes-offset-same-max, 229
Ir-answer-addr, 6, 15, 33, 59, 230,
231, 233, 309, 310, 316, 318,
379-381, 384
Ir-apply-subr, 37, 42, 46, 85, 87—
90, 122, 124, 153, 155—158,
160, 164, 165, 168, 189, 208,
214, 343, 374
Ir-apply-subr-preserves-lr-p-pr
oper-statep, 343
Ir-apply-subr-preserves-lr-prope
r-free-listp, 122
r-heapp, 156
r-heapp2, 154
Ir-apply-subr-preserves-lr-valp, 124
Ir-boundary-nodep, 7, 54, 55, 102—
107, 109, 112-114, 117, 121,
122, 124-127, 130, 153-155,
162, 199, 221-233, 235, 237—
242, 249-256, 259, 264270,
273-279, 289, 315, 317, 320—
322, 339, 342
Ir-boundary-nodep-add-addr-Ir-n
ode-size, 54

Ir-boundary-nodep-equal-plus-fa
ct, 113
ct-zero, 113
Ir-boundary-nodep-lessp-Ir-node
-size-0, 225
-size-1, 225
-size-2, 225
Ir-boundary-nodep-lessp-plus-fa
ct, 199
Ir-boundary-nodep-not-lessp-fact
-helper, 225
Ir-boundary-nodep-sub-addr, 54
Ir-boundary-nodep-tag-cons-time
s-lr-node-size, 230
Ir-boundary-offsetp, 7, 55, 102, 103,
105, 115, 125, 227-229, 241,
250, 265, 266, 269, 273
Ir-boundary-offsetp-difference-
Ir-node-size, 269
not-equal-lessp-fact-1, 227
not-equal-lessp-fact-2, 103
Ir-boundary-offsetp-equal-plus-
fact, 55
fact-zero, 125
Ir-boundary-offsetp-plus, 241
Ir-boundary-offsetp-subl-length
-heap-name, 102
Ir-boundary-offsetp-times-Ir-no
de-size-anything, 102
Ir-boundaryp-nodep-difference-n
ode-size, 227
Ir-car-offset, 6, 10, 27, 28, 75, 79,
97, 98, 106, 160, 162, 181,
196, 341
Ir-cdr-offset, 6, 10, 27, 76, 80, 97,
98, 106, 160, 162, 181, 196,
341
Ir-check-f-addrp, 97, 125, 126
Ir-check-f-addrp-deposit-a-list, 126
Ir-check-f-addrp-deposit-anythi
ng-anywhere, 125
Ir-check-f-addrp-Ir-undef-addr-
Ir-init-data-seg, 264

395

Ir-check-free-nodes, 96, 115, 118, 119,
229, 231, 232, 234
Ir-check-free-nodes-delete-depo
sit, 118
Ir-check-free-nodes-deposit-a-li
st-lr-nodep, 231
Ir-check-free-nodes-deposit-free
-ptr, 118
Ir-check-free-nodes-deposit-lr-
nodep, 119
Ir-check-free-nodes-deposit-non
-ref-count, 115
Ir-check-free-nodes-Ir-free-list
-nodes-init-data-seg, 230
Ir-check-free-nodes-plist-node-
list, 229
Ir-check-listp-addrp, 97, 98, 125, 127
Ir-check-listp-addrp-deposit-a-
list-cons, 127
list-other-place, 127
Ir-check-listp-addrp-deposit-free
-ptr-0, 125
Ir-check-numberp-addrp, 97, 98, 125,
127, 257
Ir-check-numberp-addrp-deposit-
a-list-cons, 126
a-list-cons-same-addr, 256
free-ptr-0, 125
Ir-check-resourcesp, 182, 191-195, 207,
211, 214-216
Ir-check-resourcesp-funcall, 195
Ir-check-resourcesp-list-set-exp
r-nx, 191
Ir-check-resourcesp-listp-s-exp
r-list, 182
Ir-check-resourcesp-lr-funcall-
s-fun-call-state, 213
Ir-check-resourcesp-lr-funcall-p
-psw-run, 210
Ir-check-resourcesp-lr-pop-tstk
-lr-eval-1, 192
-Ir-eval-2, 193
Ir-check-resourcesp-lr-push-tst
k-flag-run, 191

Ir-check-resourcesp-s-set-pos-i
f-cadr, 191
Ir-check-resourcesp-s-temp-eval, 194
Ir-check-resourcesp-s-temp-test, 194
Ir-check-result, 99, 131, 136, 137, 148,
151, 152, 154-156, 164, 165,
171, 174-176, 190, 198, 200—
204
Ir-check-result-f-not-Ir-f-addr, 137
Ir-check-result-flag-list-cons-v
alue, 131
Ir-check-result-Ir-apply-subr, 164
Ir-check-result-lr-do-temp-fetc
h, 151
Ir-check-result-Ir-funcall, 173
Ir-check-result-lr-proper-heapp, 175
Ir-check-result-lr-push-tstk, 135
Ir-check-result-Ir-push-tstk-qu
ote, 152
Ir-check-result-nil, 131
Ir-check-result-not-f-Ir-f-addr, 137
Ir-check-result-t-chain, 137
Ir-check-resultl, 99, 100, 112, 130,
153, 154, 159, 160, 163, 164,
166, 167, 325
Ir-check-result1-append, 112
Ir-check-result1-append-2, 166
Ir-check-result1-butlast, 166
Ir-check-result1-first-n-temp-st
k, 167
Ir-check-result1-1r-good-pointe
rp-get-n-lessp-cadr, 154
rp-get-n-lessp-car, 153
Ir-check-result1-lr-valp-get-n-
lessp-length, 153
Ir-check-result1-reverse-length
-1-opener, 160
-2-opener, 160
Ir-check-result1-singleton-list
-opener, 130
Ir-check-undef-addrp, 97, 125, 126,
264
Ir-check-undef-addrp-deposit-a-
list, 126

396

Ir-check-undef-addrp-deposit-an
ything-anywhere, 125
lr-compile-body, 19, 20, 22, 128, 129,
131, 132, 155, 216, 296-300,
303-305, 318
Ir-compile-programs, 20, 22, 101, 112,
128, 132, 169, 171, 187, 208,
211, 305, 318
Ir-compile-quote, 16, 18, 219-224, 237,
238, 240-245, 247, 251-255,
259, 261, 262, 264, 265, 267—
273, 275, 280, 311, 313, 317,
325, 326
Ir-compile-quote-flag-list-cons
-opener, 252
Ir-compile-quote-flag-list-nil-
opener, 252
Ir-compile-quote-Ir-good-pointe
rp-tablep, 253
rp-tablep-help-1, 251
rp-tablep-help-2, 252
rp-tablep-help-3, 253
Ir-compile-quote-preserves-lr-p
roper-heapp, 261
roper-heapp2, 259
Ir-compile-quote-preserves-lr-v
alp, 260
Ir-compile-quote-preserves-prope
r-p-data-segmentp, 313
Ir-cons-tag, 5, 9, 10, 14, 27-29, 75—
77,79-83, 98, 106, 127, 128,
160-162, 180, 196, 245, 260,
312, 341
Ir-convert-digit-to-ascii, 31, 283, 284
Ir-convert-digit-to-ascii-equal, 283
Ir-convert-num-to-ascii, 31, 283, 284
Ir-convert-num-to-ascii-equal-a
rgl, 283
rg2, 284
rg2-helper-1, 284
rg2-lengths, 284
rg2-lengths-helper-1, 284
Ir-count-free-nodes, 181, 182, 185—
189, 191, 198-207, 248-253,

255, 259, 261-263, 267, 273,
275-280, 294, 295, 311, 313—
315, 320-323, 325-328
Ir-count-free-nodes-append-Ir-a
ll-nodes-fact, 273
Ir-count-free-nodes-at-most, 248
Ir-count-free-nodes-delete-depo
sit, 186
Ir-count-free-nodes-deposit-a-li
st-lr-nodep, 249
Ir-count-free-nodes-deposit-free
-ptr, 185
Ir-count-free-nodes-deposit-Ir-
nodep, 186
Ir-count-free-nodes-deposit-non
-ref-count, 185
Ir-count-free-nodes-Ir-all-node
s, 266
Ir-count-free-nodes-lr-compile-q
uote-s-heap-reqs, 250
uote-s-heap-reqs-flag-t, 274
uote-s-heap-reqs-help1, 250
Ir-count-free-nodes-lr-data-seg
-table-body-s-heap-reqs, 275
-table-list-s-heap-reqs, 321
-table-list-s-heap-reqs-1, 322
-table-list-s-heap-reqs-help, 320
Ir-count-free-nodes-Ir-init-dat
a-seg-table-s-heap-reqs-1, 322
a-seg-table-s-init-heap-reqs, 279
Ir-count-free-nodes-max-addr-Ir
-free-list-nodes, 186
Ir-count-free-nodes-s-init-heap
-reqs, 262
Ir-count-lr-free-list-nodes-1r-
apply-subr, 188
Ir-count-lr-free-list-nodes-p-r
un-cons, 186
un-subr, 187
Ir-data-seg-body-list-n, 300
Ir-data-seg-table, 18, 22, 273, 274,
280, 281, 295, 302, 304-306,
318-320, 323, 324, 328, 380
382

397

Ir-data-seg-table-body, 17, 18, 220,
221, 223, 238, 243, 244, 246,
274-278, 294, 300, 301, 314,
321, 326, 327

Ir-data-seg-table-body-add1-ope

ner, 301

Ir-data-seg-table-body-flag-t-f

lag-t, 301
Ir-data-seg-table-body-Ir-good-p
ointerp-tablep, 276
ointerp-tablep-help1, 276
Ir-data-seg-table-body-n, 300, 301
Ir-data-seg-table-body-preserve
s-lr-valp, 326
s-proper-p-data-segmentp, 314

Ir-data-seg-table-list, 18, 19, 220, 221,
224,234, 239, 279, 295, 302,
314, 317, 321, 322, 327, 328

Ir-data-seg-table-list-lr-good-p

ointerp-tablep-helper-1, 277

Ir-data-seg-table-list-preserve

s-Ir-s-similar-params, 327
s-Ir-valp, 326
s-proper-p-data-segmentp, 314

Ir-do-temp-fetch, 25, 41-44, 63, 64,
108, 139, 140, 149, 151, 194,
367, 369

Ir-do-temp-fetch-lr-check-resou

rcesp-temp-test, 194

Ir-do-temp-fetch-run-Ir-eval-te

mp-setp, 151

Ir-eval, 40-42, 44, 46, 47, 86, 87, 90,
92-95, 110, 112, 122-125,
128, 130, 131, 133, 134, 136—
142, 144-146, 148, 152-154,
156-160, 163, 164, 167-176,
183-185, 187, 188, 190-193,
205-208, 210, 211, 214-216,
320, 324, 329, 333-335, 337,
340, 341, 343, 345-347, 352,
353, 355, 357-363, 367, 368,
373-378, 381

Ir-eval-if-p-psw-1, 44

Ir-eval-leaves-listp-p-ctrl-stk

-lr->p-lr-set-pos, 337
Ir-eval-leaves-listp-p-temp-stk, 137

-lr-set-pos, 176
Ir-eval-litatom-opener, 134
Ir-eval-p-pc-equivalence, 378
Ir-eval-p-pc-equivalence-helper

-1, 352

-1-5, 352

-10, 369

-11, 374

-12, 377

-12-helper-1, 375

-12-helper-2, 376

-2, 352

-3, 352

-4, 358

-4-helper-1, 355

-4-helper-2, 357

-5, 361

-5-get-lr-p-c-size, 362

-5-helper-1, 360

-5-helper-2, 360

-6, 363

-6-helper, 362

-7, 366

-8, 368

-8-helper-1, 367

-8-helper-2, 367

-8-helper-2-helper, 367

-9, 369
Ir-eval-preserves-adpp, 123
Ir-eval-preserves-adpp-lr-set-p

os, 123
Ir-eval-preserves-cdr-p-ctrl-st

k, 122

k-Ir-funcall, 375

k-1r-set-pos, 123
Ir-eval-preserves-definedp-first

n-bindings-car-p-ctrl-stk, 141
Ir-eval-preserves-definedp-fn-bi

ndings-car-ctrl-stk-set-pos, 141
Ir-eval-preserves-length-assoc-

data-segment, 123
Ir-eval-preserves-length-bindin

398

gs-car-p-ctrl-stk, 183
Ir-eval-preserves-Ir-max-node, 122
Ir-eval-preserves-lr-max-node-1

r-set-pos, 124
Ir-eval-preserves-lr-p-proper-st

atep, 346
Ir-eval-preserves-Ir-proper-free

-listp, 124

-listp-Ir-set-pos, 124
Ir-eval-preserves-Ir-proper-heapp, 182

-lr-set-pos, 184
Ir-eval-preserves-lr-s-similar-

const-table, 171

statesp, 183

statesp-lr-set-pos, 184
Ir-eval-preserves-lr-s-similar-p

arams, 172
Ir-eval-preserves-lr-s-similar-te

mps, 172
Ir-eval-preserves-Ir-valp, 125
Ir-eval-preserves-lr-valp-lr-set

-expr, 130
Ir-eval-preserves-proper-p-statep

-lIr->p, 95

-lr->p-lr-set-expr, 130

-lr->p-lr-set-pos, 123

-Ir->p-rewrite, 122
Ir-eval-preserves-ret-pc-car-p-

ctrl-stk, 376

ctrl-stk-1r-funcall, 376
Ir-eval-preserves-strip-cars-bi

ndings-car-p-ctrl-stk, 122

ndings-car-p-ctrl-stk-lr-set-pos,

123
Ir-eval-preserves-strip-cars-1r

-temps-car-p-ctrl-stk, 148
Ir-eval-s->Ir1-flag-list-opene

r-1, 175

r-2, 175
Ir-eval-s->Irl-if-opener-1, 137
Ir-eval-s->Irl-if-opener-2, 138
Ir-eval-s->Irl-if-opener-3, 138
Ir-eval-s->Ir1-preserves-p-ct

rl-stk-size, 184

rl-stk-size-Ir-set-pos, 192
Ir-eval-s->Irl-quote-opener, 140
Ir-eval-s->Irl-temp-eval-opene

r, 139
Ir-eval-s->Irl-temp-fetch-ope

ner, 140
Ir-eval-s->Ir1-temp-test-opene

r, 139
Ir-eval-s-eval-equivalence, 176
Ir-eval-s-eval-equivalence-Ir-c

heck-result-flag-list, 190
Ir-eval-s-eval-equivalence-s->

Ir, 319
Ir-eval-s-eval-flag-run, 216
Ir-eval-s-eval-flag-run-s->1Ir, 323
Ir-eval-s-eval-flag-t-s-ans-f-1

r-set-pos, 185
Ir-eval-s-eval-flag-t-s-ans-non

-f-lr-set-pos, 185
Ir-eval-s-eval-heap-r-Ir-count-

Ir-free-list-nodes, 190
Ir-eval-subrp-user-funcall-opene

r, 152
Ir-eval-t-lr-funcall-p-psw-run, 92
Ir-eval-temp-setp, 25, 41, 111, 139,

150, 151, 335, 368
Ir-eval-zerop-clock, 133
Ir-expr, 7, 25, 37, 40-42, 44, 57, 61—
64, 72,73, 84-95, 114, 121,
122,124, 134, 136, 137, 139,
140, 142, 144-146, 148, 150—
160, 164, 165, 168, 169, 195,
206, 212, 333-338, 340-343,
345-347, 349-371, 373-377
Ir-expr-cur-expr-if-same, 369
lr-expr-flag-list-car, 40
Ir-expr-funcall, 375
Ir-expr-list, 7, 40, 41, 58, 94, 131,
132, 170, 334, 349, 351, 352
Ir-expr-list-Ir-set-pos-dv-1, 40
Ir-expr-Ir-set-expr, 40
Ir-expr-Ir-set-expr-nx, 40
Ir-expr-lr-set-pos-t, 40
Ir-f-addr, 6, 15, 18, 26, 28, 29, 31,

399

41, 76-79, 81-84, 97, 99,
102, 111, 137, 138, 161, 185,
219, 225, 234, 244, 245, 247,
256, 265, 266, 269, 271, 272,
280, 316, 334, 340, 351, 354,
355, 357, 358, 360, 361
Ir-false-tag, 5, 9, 10, 15, 30, 97, 98,
219, 245, 269, 272, 293, 316
lr-fetch-fp, 6, 8-10, 96
Ir-fix-data-segment, 9, 10
lr-fp-addr, 6, 15, 17, 77, 78, 80, 81,
96, 104, 107, 109, 118, 121,
125, 162, 182, 185-191, 198—
207, 220, 221, 225, 230, 231,
233, 235, 240-242, 249-255,
259-265, 268, 269, 272, 275-
280, 294, 295, 311-316, 320—
328, 338, 339, 341
Ir-free-list-nodes, 96, 102, 103, 115—
119, 182, 186-189, 191, 198—
207, 231, 233, 249-253, 255,
259, 261-263, 268, 273, 275—
280, 294, 295, 311, 313-315,
320-323, 325-328
Ir-free-list-nodes-deposit-0, 267
Ir-free-list-nodes-deposit-a-li
st-lr-nodep, 231
Ir-free-list-nodes-deposit-free
-ptr, 118
Ir-free-list-nodes-deposit-lr-n
odep, 119
Ir-free-list-nodes-deposit-lr-re
f-count-offset, 116
Ir-free-list-nodes-deposit-non-
ref-count, 115
Ir-free-list-nodes-deposit-t, 268
Ir-free-list-nodes-Ir-compile-q
uote-t0, 272
Ir-free-list-nodes-Ir-init-data
-seg, 233
Ir-free-list-nodes-Ir-init-heap
-contents, 233
-contents-generalized, 232
Ir-free-list-nodes-member-greate

r-offset, 116
Ir-funcall, 37, 42, 43, 90-95, 112,
153, 165, 169-175, 211, 212,
214, 335, 345, 346, 375-377
Ir-good-pointerp, 7, 55, 97, 98, 106,
112, 127, 128, 137, 153, 160
162, 196, 241, 255-258, 336—
339
Ir-good-pointerp-cdr-assoc-car-
Ir-compile-quote-list, 254
Ir-good-pointerp-deposit-a-list
-node, 339
Ir-good-pointerp-deposit-non-ad
d-addr-not-good-pointerp, 256
Ir-good-pointerp-deposit-non-re
f-not-good-pointerp, 255
Ir-good-pointerp-deposit-ref-co
unt-not-good-pointerp, 255
Ir-good-pointerp-lessp-offset-m
ax-heap-node, 106
Ir-good-pointerp-lr-undef-addr, 258
Ir-good-pointerp-opener, 55
Ir-good-pointerp-table-cons, 242
Ir-good-pointerp-tablep, 241, 242, 253~
255, 259-261, 269, 277-279,
325-327, 336, 338
Ir-good-pointerp-tablep-definedp
-table, 241
Ir-good-pointerp-tablep-deposit
-a-list, 242
-free-ptr, 241
Ir-good-pointerp-tablep-f-Ir-f-
addr-Ir-init-data-seg, 269
Ir-good-pointerp-type-tag-nat, 161
Ir-good-pointerps, 336-345, 366, 382
Ir-good-pointerps-all-undef-add
rs, 344
Ir-good-pointerps-append, 344
Ir-good-pointerps-cdr, 340
Ir-good-pointerps-cons-fetch-ca
r-temp-stk-cdr-car, 341
r-temp-stk-cdr-cdr, 341
Ir-good-pointerps-cons-fetch-fp
-addr-deposit-a-list-cons, 341

400

Ir-good-pointerps-cons-lr-0-add
r-lr-proper-heapp, 340
Ir-good-pointerps-cons-Ir-f-add
r-lr-proper-heapp, 340
Ir-good-pointerps-cons-lr-t-add
r-Ir-proper-heapp, 340
Ir-good-pointerps-deposit-a-list
-node, 339
Ir-good-pointerps-deposit-free-pt
r, 338
Ir-good-pointerps-first-n, 344
Ir-good-pointerps-popn, 345
Ir-good-pointerps-put-assoc, 337
Ir-good-pointerps-reverse, 344
Ir-heap-name, 6-10, 15, 55, 96, 102—
104, 107, 121, 126, 127, 130,
153, 154, 199, 221-226, 228
234, 237-242, 248-256, 259—
261, 264, 266-270, 272-279,
289, 311-313, 315317, 320—
322
Ir-if-ok, 24, 41, 43, 95, 110, 136, 138,
139, 175, 176, 192, 193, 215,
334, 353, 355, 357, 358, 360,
361
Ir-init-data-seg, 15, 18, 225, 226, 233,
234, 244, 245, 247, 263267,
269-273, 280, 316, 317, 320
Ir-init-data-seg-table, 18, 221, 224,
234, 240, 245, 247, 263, 267,
278-280, 295, 315, 317, 323,
325, 326, 328
Ir-init-data-seg-table-Ir-good-p
ointerp-tablep, 278
Ir-init-data-seg-table-preserve
s-lr-valp, 325
s-proper-p-data-segmentp, 314
Ir-init-heap-contents, 14, 15, 217, 218,
226, 230-233, 315, 316
Ir-init-heap-contents-add1-opene
r, 218
Ir-init-tag, 5, 14, 218
Ir-initial-cstk, 19, 22
Ir-make-initial-temps, 19, 259, 274,

281, 324
Ir-make-label, 31, 32, 71, 72, 85, 187,
284, 309, 347, 351, 354, 356,
357, 359, 364-366
Ir-make-label-equal, 284
Ir-make-label-not-numberp, 71
Ir-make-program, 11, 20, 33
Ir-make-temp-name-alist, 14, 20, 22,
128, 132, 133, 145-148, 150,
151, 209, 280, 281, 305, 318
Ir-make-temp-name-alist-1, 14, 143,
145,147, 148, 151, 171, 208,
280, 281
Ir-make-temp-name-alist-1-plist
-arg-1, 281
Ir-make-temp-name-alist-plist-a
rg-1, 281
Ir-make-temp-var-dcls, 20, 132, 133,
135, 171, 208, 292
Ir-max-ctrl-regs, 319, 332, 379, 383
Ir-max-node, 96, 99, 102, 104, 107,
109, 112, 114, 116, 121, 122,
124,125, 130, 154, 155, 162,
182, 186189, 191, 198-205,
207, 220-225, 230, 235, 237—
242, 249-255, 257-264, 267,
268, 274-280, 294, 295, 311,
313-315, 317, 320323, 325—
328, 342
Ir-max-node-adpp-definedp-Ir-he
ap-name, 104
Ir-max-node-car-lr-compile-quote, 224
Ir-max-node-car-lr-data-seg-tab
le, 320
le-body, 223
le-list, 322
Ir-max-node-car-Ir-init-data-se
g-table, 267
Ir-max-node-deposit, 116
Ir-max-node-deposit-a-list, 220
Ir-max-node-lr-init-data-seg, 225
Ir-max-node-lr-nodep-opener-fact
s, 104
Ir-max-node-same-signature, 116

401

Ir-max-temp-regs, 319, 332, 379, 383
Ir-max-word-size-reqs, 319, 332, 379,
383
Ir-minimum-heap-size, 6, 103, 264,
265, 273
Ir-minimum-heapp, 99, 102, 103, 107,
108, 161, 162, 242, 248, 251—
253, 255, 258-260, 263, 274—
279, 315, 320, 321
Ir-minimum-heapp-lr-compile-quote,
242
Ir-minimum-heapp-Ir-data-seg-ta
ble-body, 274
Ir-minimum-heapp-Ir-init-data-se
g, 263
Ir-minimum-heapp-not-equal-lengt
h-1, 248
Ir-minimum-heapp-opener-2, 103
Ir-minimum-heapp-opener-3, 103
Ir-minimum-heapp-opener-adpp-Ir
-0-addr, 102
faddr, 102
-t-addr, 102
-undef-addr, 102
Ir-minimum-heapp-same-signature, 108
Ir-minus-tag, 6
Ir-negative-guts-offset, 7, 11
Ir-new-cons, 14, 17
Ir-new-node, 6, 14, 15, 17, 218
Ir-node-listp, 103, 107, 115, 118, 119,
185, 186, 232, 233, 249
Ir-node-listp-delete, 107
Ir-node-listp-deposit-anything-
at-all, 107
Ir-node-listp-lr-all-nodes, 233
Ir-node-listp-Ir-free-list-node
s, 103
Ir-node-size, 6, 7, 9, 14, 15, 54, 55,
96-99, 102, 103, 105, 113—
115, 119, 125, 126, 185, 199,
200, 217, 218, 225-230, 232-
234, 250, 253, 255, 256, 264—
266, 268270, 272, 273, 312,
313, 315, 316, 320

Ir-nodep, 7, 55, 97, 99, 103, 105,
106, 112-115, 118, 119, 128,
154, 155, 161, 162, 185, 186,
254, 257-260, 342
Ir-nodep-car-Ir-compile-quote, 254
Ir-nodep-deposit-a-list, 254
Ir-nodep-Ir-proper-heapp-nodep, 105
Ir-nodep-member-lr-node-listp, 103
Ir-nodep-member-lr-node-listp-a
dpp-untag-listp, 115
dpp-untag-numberp-offset, 115
Ir-nodep-member-lr-node-listp-1
r-boundaryp-offsetp, 115
Ir-nodep-opener, 55
Ir-nodify, 9, 10
Ir-nodify-tag, 9
Ir-p-c-size, 20, 21, 32, 35, 37, 57, 58,
60, 65-72, 286, 288, 292,
348-352, 354-362, 364-367,
375, 377, 380
Ir-p-c-size-flag-list, 58
Ir-p-c-size-flag-not-list-not-0, 35
Ir-p-c-size-ge-plus-2-size-cadr
-car-if, 350
lr-p-c-size-list, 21, 57-60, 65, 66, 69—
71, 84, 348, 349, 352, 371,
375, 377
Ir-p-c-size-list-0, 59
Ir-p-c-size-list-0-opener, 57
lr-p-c-size-list-add1-opener, 57
lr-p-c-size-list-car-opener, 69
Ir-p-c-size-list-funcall-not-le
ssp-fact, 66
Ir-p-c-size-nlistp-body, 67
lr-p-c-size-not-1-car-if, 350
Ir-p-c-size-s-temp-test-eval-ca
dr-not-lessp-fact, 66
Ir-p-c-size-temp-test-opener, 364
Ir-p-pc, 21, 36, 37, 44, 45, 61-64,
90, 347, 351, 369-371, 375,
377
Ir-p-pc-1, 21, 22, 60, 65, 6772, 347—
350, 352, 354-362, 364367,
369

402

Ir-p-pc-1-append, 348
lr-p-pc-1-append-helper-1, 348
lr-p-pc-1-append-helper-2, 348
Ir-p-pc-1-append-helper-3, 348
Ir-p-pc-1-append-helper-4, 348
Ir-p-pc-1-body-0, 60
lr-p-pc-1-car-expr-if-2, 356
lr-p-pc-1-dv-1-car-lr-expr-if, 350
Ir-p-pc-1-dv-1-car-Ir-expr-temp
-eval, 362
Ir-p-pc-1-dv-2-car-lr-expr-if, 350
lr-p-pc-1-dv-3-car-lr-expr-if, 350
lr-p-pc-1-listp-offset, 349
lr-p-pc-1-nil, 349
Ir-p-pc-1-nx, 349
Ir-p-pc-1-nx-helper, 349
Ir-p-pc-1-plist, 348
Ir-p-pc-dv-1-s-temp-test, 367
lr-p-pc-lr-do-temp-fetch, 64
lr-p-pc-lr-pop-tstk, 62
Ir-p-pc-lr-push-tstk, 61
Ir-p-pc-lr-set-pos-dv-1-car-1r-e
xpr-funcall, 369
lr-p-pc-lr-set-temp, 63
lr-p-proper-statep, 336-338, 343, 345—
347, 353, 355, 358-361, 366,
368, 378, 380, 382
Ir-p-proper-statep-cdr-assoc-ca
ddr-lr-expr-bindings, 337
Ir-p-proper-statep-cdr-lr-ctrl-
stk, 346
Ir-p-proper-statep-cdr-temp-stk, 337
Ir-p-proper-statep-cons-p-frame
-put-assoc, 337
Ir-p-proper-statep-listp-p-temp
-stk-type-car-addr, 353
Ir-p-proper-statep-lr-funcall, 345
Ir-p-proper-statep-lr-good-pointe
rps-strip-cdrs-binding, 366
Ir-p-proper-statep-lr-push-tstk
-cdr-assoc-lr-expr, 336
Ir-p-proper-statep-p-temps-stk-
Ir-push-tstk-quote, 338
Ir-p-proper-statep-s->Ir, 382

Ir-pack-tag, 6, 9, 10
Ir-params, 23, 95, 100, 108, 131, 133,
135, 136, 140, 142, 149, 157,
165, 172
Ir-params-lr-apply-subr, 157
Ir-params-lr-do-temp-fetch, 149
Ir-params-lr-eval, 95
Ir-params-lr-funcall, 165
Ir-params-lr-pop-tstk, 108
Ir-params-lr-push-tstk, 131
Ir-params-Ir-set-error, 133
Ir-params-lr-set-expr, 108
Ir-params-Ir-set-expr-Ir-pop-cst
k, 172
Ir-params-Ir-set-pos, 136
Ir-params-Ir-set-temp, 140
Ir-params-p-frame-not-definedp-p
ut-assoc-anything, 141
Ir-pop-cstk, 25, 42, 44, 94, 153, 172,
173, 377, 378
Ir-pop-tstk, 24, 39, 41, 62, 94, 108,
111, 136, 138, 175, 192194,
334, 335, 353, 355, 357, 358,
360, 361
lr-pop-tstk-Ir-if-ok, 353
Ir-programs-properp, 35, 47, 51, 56,
57, 61-64, 72, 73, 75-95,
114, 121-125, 130, 131, 135,
137,141, 144, 145, 148, 150,
152-160, 163, 164, 168-176,
182-185, 187, 188, 190-195,
198, 200-208, 210-212, 214~
216, 282, 292-294, 306, 309,
310, 319, 320, 323, 336-339,
341-347, 349, 350, 352-378,
380
Ir-programs-properp-1, 35, 56, 57,
63, 305-308, 344
Ir-programs-properp-1-all-user-
fnamesp-not-user-fnamep, 51
Ir-programs-properp-1-lr-compile
-programs, 305
Ir-programs-properp-1-lr-proper
-exprp, 96

403

lr-programs-properp-all-user-fn
amesp-strip-cars-cdr, 309
lr-programs-properp-caar-main, 309
Ir-programs-properp-definedp-ca
r-untag-p-pc, 61
Ir-programs-properp-definedp-su
brp-runtime-support, 206
Ir-programs-properp-expr-quote-t
ype-addr, 64
Ir-programs-properp-funcall-not
-caar-prog-seg, 169
Ir-programs-properp-lr->p-s->
Ir1-definedp-s-pname, 145
lr-programs-properp-lr-eval, 47
lr-programs-properp-lr-funcall, 94
Ir-programs-properp-lr-if-ok, 95
Ir-programs-properp-Ir-pop-tstk, 94
lr-programs-properp-Ir-programs
-properp-1, 56
Ir-programs-properp-Ir-proper-e
xprp-lr-expr, 57
Ir-programs-properp-Ir-set-erro
r, 175
lr-programs-properp-lr-set-expr, 94
lr-programs-properp-lr-set-pos, 90
Ir-programs-properp-member-lr-e
xpr-temps, 150
Ir-programs-properp-not-definedp
-subrp-runtime-support, 163
lr-programs-properp-s->1Ir, 319
Ir-programs-properp-s->Ir-logi
c->s, 380
Ir-programs-properp-s->Ir-ope
ned, 306
Ir-programs-properp-s->Irl-de
finedp-cdr-s-progs, 208
finedp-s-progs, 212
Ir-proper-ctrl-stkp, 336, 339, 340
Ir-proper-ctrl-stkp-deposit-a-li
st-node, 339
Ir-proper-ctrl-stkp-deposit-free
-ptr, 339
Ir-proper-exprp, 34, 35, 56-58, 62,

65, 67-72, 152, 287-292, 296—
300, 303-305, 307, 348, 349
Ir-proper-exprp-cadr-temps, 68
Ir-proper-exprp-car-if-cadddr, 58
Ir-proper-exprp-car-if-caddr, 58
Ir-proper-exprp-car-if-cadr, 58
Ir-proper-exprp-flag-list-cdr-f
uncall, 290
Ir-proper-exprp-flag-list-cons, 296
Ir-proper-exprp-flag-list-nil, 296
Ir-proper-exprp-flag-not-list-c
ons-funcall, 303
ons-if, 297
ons-if-helper, 296
ons-temp-eval, 298
ons-temp-fetch, 298
ons-temp-test, 299
Ir-proper-exprp-flag-not-list-n
ot-listp, 304
Ir-proper-exprp-length-cur-expr, 57
Ir-proper-exprp-list-lr-proper-
get-t, 56
Ir-proper-exprp-list-quote-opene
r, 152
Ir-proper-exprp-lr-proper-exprp
-cur-expr, 56
Ir-proper-exprp-p-lr-compile-pr
ograms, 304
ograms-flag-t, 305
ograms-helper-1, 296
ograms-helper-2, 302
Ir-proper-exprp-program-body-not
-listp, 307
Ir-proper-exprp-t-lr-proper-get
-t, 56
Ir-proper-formalsp, 168-170, 343, 345,
347, 353, 355, 358-361, 377,
378, 381, 382
Ir-proper-formalsp-cdr-p-prog-se
gment-s->Ir-logic->s, 382
Ir-proper-formalsp-lr-compile-p
rograms, 169
Ir-proper-free-listp, 96, 99, 104, 107,
109, 114, 121, 122, 124, 125,

404

130, 154, 155, 162, 221-224,
234, 235, 237-239, 241, 242,
249-254, 259, 260, 264, 267,
268, 274-279, 317, 320-322,
342
Ir-proper-free-listp-car-Ir-compi
le-quote, 222
Ir-proper-free-listp-car-lr-init
-data-seg-table, 224
Ir-proper-free-listp-length-sub
1-not-lessp, 242
lr-proper-free-listp-Ir-count-f
ree-nodes-max-addr, 249
ree-nodes-max-addr-alt, 250
Ir-proper-free-listp-Ir-init-dat
a-seg, 234
a-seg-helper, 234
Ir-proper-free-listp-member-free
-addr-lr-free-list-nodes, 249
lr-proper-free-listp-opener-1, 104
Ir-proper-free-listp-opener-2, 104
Ir-proper-free-listp-opener-2-a
dpp-untag-listp, 104
dpp-untag-numberp-offset, 104
rea-name-alt, 241
Ir-proper-free-listp-opener-2-1
r-nodep, 254
Ir-proper-free-listp-type-fetch
-free-ptr, 109
Ir-proper-heapp, 99, 100, 107, 112,
131, 135, 137, 143, 149-152,
156-158, 161-164, 171-173,
175, 176, 182-191, 193-196,
200, 205-207, 211, 214, 216,
259-263, 271, 274, 278-282,
284, 286, 288, 289, 292-295,
307-315, 322, 324-328, 336,
338, 340, 341, 343, 344
Ir-proper-heapp-car-Ir-data-seg
-table, 280
-table-body, 278
-table-helper-1, 280
-table-list, 278
Ir-proper-heapp-car-lr-init-dat

a-seg-table, 279
Ir-proper-heapp-Ir-compile-quote
-ft-lr-init-data-seg, 271
Ir-proper-heapp-Ir-good-pointerp
-lr-proper-heapp-nodep, 137
Ir-proper-heapp-Ir-valp-0, 161
Ir-proper-heapp-Ir-valp-f, 161
Ir-proper-heapp-Ir-valp-f-helpe
r, 161
Ir-proper-heapp-Ir-valp-Ir-f-ad
dr, 161
Ir-proper-heapp-Ir-valp-Ir-t-ad
dr, 161
Ir-proper-heapp-nodep, 97, 98, 105,
106, 125, 128, 137, 161, 257,
258, 269
Ir-proper-heapp-nodep-deposit-a
-list-cons, 128
-list-numberp, 257
-list-truep, 258
Ir-proper-heapp-nodep-deposit-f
ree-ptr-0, 125
Ir-proper-heapp-nodep-lr-init-d
ata-seg-helper, 269
Ir-proper-heapp-nodep-lr-undef-
addr-Ir-init-data-seg, 269
Ir-proper-heapp-nodep-tag-cons, 106
Ir-proper-heapp-opener-1, 107
Ir-proper-heapp-opener-3, 107
Ir-proper-heapp-opener-4, 112
Ir-proper-heappl, 98, 99
Ir-proper-heapp2, 98, 99, 105, 107,
125, 128, 154, 155, 257-259,
261, 270, 342
Ir-proper-heapp2-deposit-a-list
-cons, 128
-numberp, 257
-truep, 258
Ir-proper-heapp2-deposit-free-pt
r-0, 125
Ir-proper-heapp2-Ir-init-data-se
g, 270
g-helper, 270

405

Ir-proper-p-areasp, 42, 101, 102, 104,
107, 109, 116, 120, 121, 137,
143, 149, 150, 161, 162, 196,
200, 219, 221-224, 234, 237-
242, 249-254, 256-265, 267,
268, 274-279, 281, 284, 286,
288, 289, 292-295, 307-318,
320-322, 324-328, 340, 341,
344
Ir-proper-p-areasp-car-Ir-compi
le-quote, 219
Ir-proper-p-areasp-car-lr-data-
seg-table, 281
seg-table-body, 223
seg-table-list, 234
Ir-proper-p-areasp-car-Ir-init-
data-seg-table, 234
Ir-proper-p-areasp-deposit-a-li
st, 120
Ir-proper-p-areasp-deposit-anyt
hing-anywhere, 107
Ir-proper-p-areasp-lr-heap-name
-lr-init-data-seg, 234
Ir-push-tstk, 24, 25, 41-43, 60-64,
73, 108, 131, 134-136, 140,
152,167, 191, 195, 336, 338
Ir-push-tstk-length, 167
Ir-push-tstk-lr-check-resourcesp
-quote, 195
Ir-ref-count-offset, 6, 7, 15, 28, 55,
77, 81, 96, 97, 102, 106,
109, 110, 112-115, 117-119,
121, 128, 153, 154, 181, 185,
186, 219, 230-232, 240, 242,
250, 252, 255—258, 264266,
268-272, 289
Ir-return-pc, 37, 53, 54, 85, 86, 91,
93, 114, 121, 154, 159, 168,
187, 206, 333, 334, 338, 340,
342, 343, 374, 376
Ir-s-similar-const-table, 100, 101, 151,
158, 171, 218, 240, 241, 259-
263, 272, 289, 292, 294, 295,
307-311, 313, 314, 324-326,

328
Ir-s-similar-const-table-cdr-ca
r-lr-data-seg-table, 295
Ir-s-similar-const-table-compile
-quote-t0-init-data-seg, 272
Ir-s-similar-const-table-cons, 218
Ir-s-similar-const-table-deposit
-cons, 259
-lr-fp-addr, 240
Ir-s-similar-const-table-implie
s-Ir-good-pointerp-tablep, 259
Ir-s-similar-const-table-lr-app
ly-subr, 157
Ir-s-similar-const-table-Ir-compi
le-quote, 261
Ir-s-similar-const-table-1r-dat
a-seg-table-body, 294
a-seg-table-list, 294
Ir-s-similar-const-table-lr-goo
d-pointerp-opener, 240
Ir-s-similar-const-table-1r-init
-data-seg-table, 295
Ir-s-similar-const-table-lr-valp
-assoc, 151
-member-strip-cdrs, 289
Ir-s-similar-const-table-nil, 218
Ir-s-similar-const-table-p-obje
ctp-definedp, 311
Ir-s-similar-const-table-type-a
ddr-member-strip-cdrs, 289
Ir-s-similar-params, 100, 101, 134,
135, 157, 166, 167, 172, 326—
328, 382
Ir-s-similar-params-assoc-define
dp, 134
Ir-s-similar-params-Ir-apply-su
br, 156
Ir-s-similar-params-Ir-funcall, 167
Ir-s-similar-params-Ir-funcall-
helper-1, 167
Ir-s-similar-params-Ir-good-poi
nterps-strip-cdrs, 382
Ir-s-similar-params-lr-valp-get, 166
Ir-s-similar-params-pair-formal

406

s-lr-init-data-seg, 326
s-with-addresses, 328
Ir-s-similar-statesp, 100, 133-136, 144,
146, 148-152, 158, 172, 173,
176, 183-185, 188-191, 193,
194, 205-207, 214, 216, 320,
324, 328, 381
Ir-s-similar-statesp-Ir-apply-s
ubr, 158
Ir-s-similar-statesp-Ir-funcall, 171
Ir-s-similar-statesp-lr-if-ok, 176
Ir-s-similar-statesp-Ir-pop-tst
k, 136
Ir-s-similar-statesp-lr-push-tst
k-litatom, 134
Ir-s-similar-statesp-lr-s-set-p
os, 136
Ir-s-similar-statesp-lr-s-simil
ar-params-opener, 135
ar-temps-opener, 135
Ir-s-similar-statesp-Ir-set-err
or, 133
Ir-s-similar-statesp-lr-set-exp
r, 133
r-lr-pop-cstk, 173
Ir-s-similar-statesp-s->Ir-lo
gic->s-Ir-data-seg-table, 381
Ir-s-similar-statesp-s->Ir-Ir
-data-seg-table, 328
lr-s-similar-statesp-s->1Irl-1
r-similar-temps, 146
Ir-s-similar-statesp-s-change-te
mp, 148
mp-helper-1, 146
mp-helper-2, 144
Ir-s-similar-temps, 100, 101, 135, 143,
144, 146, 149, 150, 157, 171,
173, 324
Ir-s-similar-temps-Ir-apply-sub
r, 157
Ir-s-similar-temps-Ir-funcall, 171
Ir-s-similar-temps-make-temps-e
ntries-initial-temps, 324
Ir-s-similar-temps-make-temps-p

air-temps, 170
Ir-s-similar-temps-put-assoc-put
-assoc-helper, 143
-assoc-helper-1, 143
Ir-s-simlar-statesp-Ir-do-temp-
fetch, 149
Ir-set-error, 23-25, 39, 41, 42, 107,
133, 136, 137, 140, 153, 175
Ir-set-error-Ir->p, 107
Ir-set-error-lr-set-error, 133
Ir-set-expr, 23, 38, 40-42, 94, 95,
108, 130, 131, 133, 136, 138,
153,172,173, 175, 334, 335,
347, 352, 355-358, 360, 361
Ir-set-expr-s->Irl-s-set-expr, 133
-lr-pop-tstk, 136
Ir-set-pos, 24, 39-42, 44, 62, 90, 93—
95, 122-124, 136-142, 144,
145, 148, 152, 154, 156-160,
163, 164, 167, 168, 170, 172,
173,175, 176, 184, 185, 187,
188, 190, 192, 193, 205208,
210, 211, 214, 215, 334, 335,
337, 340, 341, 343, 345, 346,
353-355, 357-363, 367370,
373, 374, 376-378
Ir-set-temp, 25, 41, 43, 63, 108, 139,
140, 144, 148, 363, 367, 368
Ir-set-tstk, 24, 38, 353, 369
Ir-t-addr, 6, 26, 29, 76-79, 82-84,
98, 99, 102, 161, 219, 265,
270, 271, 340
Ir-temps, 23, 95, 101, 108, 131, 133,
135, 136, 140, 144-146, 148—
150, 157, 165, 172
Ir-temps-lr-apply-subr, 157
Ir-temps-lr-do-temp-fetch, 149
Ir-temps-Ir-eval, 95
Ir-temps-lr-funcall, 165
Ir-temps-lr-pop-tstk, 108
Ir-temps-lr-push-tstk, 131
Ir-temps-lr-set-error, 133
Ir-temps-Ir-set-expr, 108
Ir-temps-lr-set-expr-lr-pop-cst

407

k, 172
lr-temps-lr-set-pos, 136
Ir-temps-lr-set-temp, 140
Ir-temps-p-frame-put-assoc, 145
Ir-total-heap-reqgs, 319, 332, 379
Ir-true-tag, 5, 9, 10, 17, 30, 77, 84,
98, 163, 181, 219, 245, 258,
261, 270, 294, 313
Ir-type-contents-p, 26
Ir-unbox-nat-offset, 7, 10, 97, 98, 219,
271
Ir-undef-addr, 6, 15, 17, 19, 20, 25,
31, 35, 97, 99, 100, 102,
142,143, 149, 150, 258, 260,
261, 264266, 269, 312, 313,
316, 364, 367
Ir-undefined-tag, 5, 15, 97, 265, 316
Ir-unpack-offset, 6, 10
Ir-valp, 98-100, 107, 114, 124, 125,
130, 134, 135, 143, 150, 151,
153, 160-164, 166, 167, 218,
219, 260, 261, 289, 320, 325—
327, 329, 333, 379-381, 384
lr-valp-0-lr-0-addr-opener, 218
Ir-valp-addr-0, 135
Ir-valp-apply-subr-lr-apply-sub
r, 163
Ir-valp-car-p-temp-stk-p-run-su
br, 163
br-cons-helper, 162
Ir-valp-cdr-assoc-firstn-cdr-as
soc, 135
Ir-valp-cons, 162
Ir-valp-deposit-a-list-cons, 162
Ir-valp-deposit-a-list-cons-con
s, 260
Ir-valp-deposit-a-list-cons-num
berp, 260
lr-valp-deposit-a-list-cons-truep, 261
Ir-valp-deposit-fetch-free-pointe
r, 114
r-offset, 113
r-offset-helper-1, 112
Ir-valp-equal-value-fact, 161

Ir-valp-f-lr-f-addr-opener, 219
Ir-valp-fetch-tag-cons-Ir-valp-
car-cdr, 160
Ir-valp-fetch-tag-not-cons-1r-v
alp-car-cdr-0, 161
alp-listp, 161
Ir-valp-fetch-tag-not-true-lr-v
alp-listp, 163
Ir-valp-lr-compile-quote, 324
Ir-valp-Ir-compile-quote-flag-t, 325
Ir-valp-lr-good-pointerp, 153
Ir-valp-lr-s-eval-Ir-s-similar-te
mps, 150
Ir-valp-not-tag-cons-not-listp, 161
Ir-valp-not-tag-true-not-listp, 163
Ir-valp-t-lr-t-addr-opener, 219
Irps, 10

make-p-call-frame, 38, 74, 210
make-symbol, 12, 13, 147
make-temps-entries, 170-172, 209, 324,
328, 329
mark-instr, 8, 9
max-count-codelist, 13
max-ctrl-reqs, 379, 383
max-r, 178-182, 190
max-temp-reqs, 379, 383
max-word-size-reqs, 379, 383
member-area-name-offset-same, 117
member-assoc-area-name-cdr-lr-p
rograms-properp, 347
member-cdr-assoc-strip-cdrs-defi
nedp, 151
member-definedp-car, 306
member-disjointp-cons-arg2, 145
member-disjointp-non-member-1, 141
member-f-definedp-0, 307
member-Ir-all-nodes, 228
member-Ir-all-nodes-helper, 227
member-Ir-free-list-nodes-type-
addr, 102
member-lr-good-pointerps-type-a
ddr-untag-whole, 366
member-make-symbol-max-count-co

408

de-list, 13
member-no-duplicatesp-assoc-equ
al, 307
member-strip-cdrs-lr-good-pointe
rp-tablep, 338
my-get-put, 2

name, 8, 9, 33, 59, 132, 168, 306,
309, 318-320, 324, 328, 329,
331, 380, 381
name-car-lr-compile-programs-pr
ogs, 132
name-car-p-prog-segment-s->1Ir, 381
name-car-s-progs-logic->s, 331
name-formal-vars-temp-var-dcls-p
rogram-body-cons, 59
no-duplicatesp, 117, 143, 147, 149,
150, 307, 308, 310, 318, 329,
332
no-duplicatesp-Ir-free-list-node
s, 117
no-duplicatesp-occurences-1, 117
no-duplicatesp-remove-duplicate
s, 310
no-duplicatesp-strip-cars-s-con
struct-programs, 332
no-duplicatesp-strip-cars-s-pro
gs-logic->s, 332
no-duplicatesp-strip-cdrs-Ir-ma
ke-temp-name-alist, 147
ke-temp-name-alist-1, 147
not-adpp-untag-add-addr-adpp-unt
ag, 120
not-adpp-untag-node-not-definedp
-lr-heap-name, 116
not-definedp-not-listp, 291
not-definedp-user-fname-p-runti
me-support-programs, 210
not-disjointp-member-argl-cons-
arg?2, 144
not-equal-0-count-list, 16
not-equal-lr-s-eval-temp-setp-n
ot-Ir-s-similar-temps, 149
not-equal-make-symbol-car-gensy

m, 147
not-equal-x-add1-add1-x, 114
not-equal-x-add1-x, 114
not-iff-Ir-s-temp-setp-not-Ir-s

-similar-statesp, 150

-similar-statesp-helper, 150
not-labelledp-instrs, 285
not-labelledp-instrs-append, 285
not-labelledp-instrs-comp-body-

1, 285
not-lessp-difference-lr-boundar

y-offsetp-fact, 265
not-lessp-help-fact, 207
not-lessp-length-p-temp-stk-Ir-

apply-subr, 89
not-lessp-length-proper-p-statep

-Ir-eval-Ir-set-pos, 353
not-lessp-Ir-count-free-nodes-1

r-data-seg-table-heap-r, 323

r-eval-list-lr-set-pos, 205
not-lessp-Ir-p-c-size-flag-t-1, 71
not-lessp-max-r-cadddr, 182
not-lessp-max-r-caddr, 182
not-lessp-max-r-cadr, 182
not-lessp-max-r-car, 182
not-lessp-p-ctrl-stk-size-make-p

-call-frame, 210
not-lessp-p-max-ctrl-stk-size-1

r-funcall, 92
not-lessp-p-max-temp-stk-size-1

r-funcall, 93

r-push-tstk, 60
not-lessp-plus-arity-length-for

mals, 208

mals-alt, 211
not-lessp-x-x, 71
not-listp-p-prog-segment-lr-exp

r, 84
not-listp-p-temp-stk-not-Ir-che

ck-resultl, 159
not-listp-prog-segment-not-lr-p

rograms-properp, 347
not-listp-s-progs-not-s-good-st

atep, 217

409

not-lr-check-resourcesp-temp-te
st-bad-max-temp-stk-size, 215
not-Ir-valp-Ir-undef-addr, 143
not-member-car-gensym-Ir-make-te
mp-name-alist-1-cdr, 147
not-member-Ir-all-nodes-too-sma
ll-addr, 228
not-member-make-symbol-lr-make-te
mp-name-alist-1-incr, 147
not-member-no-duplicates-cdr-as
soc, 149
soc-helper, 149
not-member-occurences-0, 117
not-p-max-node-fetch-fp-addr-not
-errorp-p-run-cons, 187
not-proper-p-statep-not-listp-p
-ctrl-stk, 75
not-psw-run-lr-eval, 128
not-same-signature-deposit-a-li
st-too-large-addr, 120
not-same-signature-deposit-too-
large-addr, 120
number-cons, 40, 282
number-cons-Ir-expr-t-list, 40
numberp-arity, 344
numberp-car-cadr-caddr-cadddr-s
-apply-subr-r, 181
numberp-cdr-Ir-p-pc, 45
numberp-cdr-untag-return-pc, 54
numberp-lessp-2-not-1-must-be-0, 265
numberp-lessp-4-not-3-not-2-not
-1-must-be-0, 265
numberp-max-r, 181
numberp-offset-return-pc, 54
numberp-offset-sub-addr, 115
numberp-s-eval-temp-ctrl-ws-heap
-r, 181
-r-opened, 195
nx, 40, 41, 56, 58, 110, 131, 133,
155,175, 179, 191, 295, 334,
349, 352

object-addrs, 324, 325
occurrences, 117

offset, 6-10, 15, 21, 40-42, 44, 48,
53, 54, 57, 58, 61-64, 72,
73, 75-98, 101, 104-107, 109,
110, 113-118, 120-127, 131,
137, 141, 148, 150, 153, 154,
156-160, 163, 168-172, 183,
184, 187, 198-204, 206, 218,
220, 221, 225-234, 241, 242,
249, 250, 253, 256, 264—269,
273, 310-313, 315, 334-343,
345-347, 349, 350, 352-378,
380, 381

offset-add-addr, 53

offset-lr-max-node, 104

offset-p-pc-lr-funcall, 92

offset-sub-addr, 54

offset-tag, 40

offset-tag-cons, 101

p, 36, 37, 46, 75-84, 187, 198-205,
347, 352, 353, 355, 358-363,
367-369, 371-375, 377, 378,
380, 381, 384

p-accessor-clock, 27

p-accessor-code, 26, 27

p-accessors-Ir->p, 44

p-accessors-lr-apply-subr, 46

p-accessors-lr-do-temp-fetch, 43

p-accessors-lr-funcall, 42

p-accessors-1r-if-ok, 43

p-accessors-lr-pop-cstk, 44

p-accessors-Ir-pop-tstk, 39

p-accessors-lr-push-tstk, 43

p-accessors-lr-set-error, 39

p-accessors-lr-set-expr, 38

p-accessors-lr-set-pos, 39

p-accessors-lr-set-temp, 43

p-accessors-Ir-set-tstk, 38

p-accessors-p-halt, 45

p-accessors-p-run-subr, 46

p-accessors-p-set-pc, 46

p-accessors-s->Irl, 101

p-call-okp, 37

410

p-car-clock, 27, 36, 75, 79, 80, 198,
333, 371
p-car-code, 27, 30, 51, 292
p-cdr-clock, 27, 36, 76, 80, 199, 333,
371
p-cdr-code, 27, 30, 51, 293
p-clockl, 334, 335, 352, 358, 359,
361-363, 368, 374, 377, 378,
381
p-cons-clock, 28, 36, 77, 80, 81, 187,
200, 333, 371
p-cons-code, 27, 30, 51, 293
p-ctrl-stk, 9, 10, 22-25, 36-39, 41,
43-46, 50, 61-63, 75-85, 87,
88, 90-92, 94, 95, 100, 101,
122,123, 130, 134, 135, 141,
142, 144-146, 148, 150, 151,
165, 182-184, 191, 192, 198—
204, 207, 210, 212, 324, 328,
336-338, 340, 343, 345-347,
353, 355, 358, 360, 361, 366
368, 370, 376, 378, 380, 382
p-ctrl-stk-size, 87, 92, 182, 184, 192,
198-204, 207, 209, 210, 212,
324, 328
p-ctrl-stk-size-0, 209
p-ctrl-stk-size-p-ctrl-stk-Ir-f
uncall, 212
p-ctrl-stk-size-p-ctrl-stk-s->
Ir, 328
p-current-instruction, 53
p-current-instruction-opener, 52
p-current-program, 7, 9, 21, 23, 40,
52, 57-59, 61-64, 72, 73,
85-95, 108, 114, 121-125,
130-133, 137, 141, 142, 148,
150, 153-160, 168-172, 175,
176, 183, 184, 192, 206, 336—
339, 341-343, 345-347, 349,
350, 352-370, 373-378, 380
p-current-program-lr-apply-subr, 87
p-current-program-Ir-do-temp-fet
ch, 108
p-current-program-lr-eval, 87

p-current-program-lr-pop-tstk, 108
p-current-program-lr-push-tstk, 108
p-current-program-lr-set-error, 133
p-current-program-lr-set-expr, 40
p-current-program-Ir-set-pos, 40
p-current-program-lr-set-temp, 108
p-current-program-p-state, 52
p-data-segment, 9-11, 22-25, 27, 36—
39, 42-46, 48-50, 63, 75—
84, 86, 87, 90, 94, 95, 101,
109, 114, 121-125, 130, 131,
135, 136, 144, 146, 148, 150—
152, 154-165, 171-176, 182—
185, 187-191, 193-195, 198~
207, 211, 214, 216, 235, 281,
282, 284, 292-294, 308-318,
320, 329, 333, 336-338, 340-
343, 345-347, 355, 358, 360,
361, 366, 368, 370, 378-382,
384
p-false-clock, 28, 36, 79, 81, 201, 333,
372
p-false-code, 28, 30, 51, 293
p-falsep-clock, 29, 36, 78, 82, 202,
333, 372
p-falsep-code, 28, 30, 51, 293
p-final-pc, 351-356, 358-363, 367—
369, 374, 377, 378
p-frame, 3, 19, 142, 144, 145, 337
p-good-resultp, 50-52, 75-79
p-good-resultp-p-halt-errorp-ope
ner, 52
p-good-resultp-p-state-opener, 51
p-good-resultp-run-car, 75
p-good-resultp-run-cdr, 75
p-good-resultp-run-cons, 77
p-good-resultp-run-false, 78
p-good-resultp-run-falsep, 78
p-good-resultp-run-listp, 76
p-good-resultp-run-nlistp, 76
p-good-resultp-run-true, 79
p-good-resultp-run-truep, 77
p-halt, 37, 38, 45, 46, 52
p-last-2-instrs-main-program, 379

p-listp-clock, 29, 37, 76, 82, 203, 333,
372
p-listp-code, 29, 30, 51, 293
p-max-ctrl-stk-size, 10, 22-25, 36—
39, 43-46, 87, 88, 92, 95,
101, 131, 182, 198-204, 207,
210, 370
p-max-ctrl-stk-size-lr-eval, 46
p-max-temp-stk-size, 10, 22-25, 36—
39, 41, 43-46, 60, 63, 64,
88, 89, 93, 95, 101, 111,
131, 139, 182, 198, 200-204,
207, 215, 353, 366-370
p-max-temp-stk-size-Ir-eval, 46
p-nlistp-clock, 29, 37, 76, 83, 203,
333, 372, 373
p-nlistp-code, 29, 30, 51, 293
p-objectp, 48, 60-63, 78, 220, 222,
223, 234-237, 239, 240, 262,
310, 311
p-objectp-bad-type, 78
p-objectp-car-Ir-compile-quote, 222
p-objectp-cdr-assoc-bindings-pr
oper-p-alistp, 63
p-objectp-cdr-assoc-car-lr-compi
le-quote, 262
p-objectp-cdr-assoc-litatom-prope
r-p-alistp, 61
p-objectp-lookup-deposit, 236
p-objectp-lookup-deposit-a-list, 235
p-objectp-lookup-Ir-init-data-se
g-table, 239
p-objectp-opener-alt-lr-proper-
free-listp, 235
p-objectp-similar-p-states, 48
p-objectp-type, 352
p-pc, 7, 9, 10, 21, 23-25, 35, 37—
47, 50, 53, 54, 57-59, 61—
64, 72, 73, 84-95, 101, 108,
114, 121-125, 131, 133, 134,
137, 141, 148, 150, 153, 154,
156-160, 163, 168-172, 183,
184, 206, 308, 334-343, 345—
347, 349, 350, 352-378, 380,

381
p-pc-run-car, 371
p-pe-run-cdr, 371
p-pec-run-cons, 371
p-pc-run-false, 372
p-pe-run-falsep, 372
p-pe-run-listp, 372
p-pe-run-nlistp, 372
p-pe-run-true, 373
p-pc-run-truep, 373
p-pe-s->Ir, 381
p-plus, 347
p-prog-segment, 10, 23-25, 35-39,
42-46, 48-51, 56, 57, 59,
61, 63, 72, 73, 75-95, 101,
108, 114, 121, 131, 133, 134,
154, 157, 163, 165, 169, 170,
172, 187, 198, 200204, 212,
283, 308-310, 338, 342-345,
347, 353-362, 364-366, 369—
373, 375, 377, 378, 380-382
p-prog-segment-lr-eval, 46
p-psw, 9, 10, 23-26, 36-46, 50, 60,
62-64, 73, 75-95, 101, 111,
114, 121-125, 128, 130, 131,
133, 135, 137, 138, 141, 142,
144, 145, 148, 151-160, 163—
165, 167-176, 183-185, 187—
195, 198-208, 210212, 214-
216, 320, 324, 334-338, 340,
342, 343, 345, 346, 352, 353,
355, 357-361, 363, 367-379,
381
p-psw-Ir-eval-flag-list-flag-t, 94
p-psw-Ir-pop-tstk-lr-eval-flag-t, 175
p-psw-not-run, 46
p-psw-p-halt-x-y-error-msg, 46
p-psw-run-lr-apply-subr-lr-chec
k-resourcesp, 207
p-psw-run-lr-if-ok-p-psw-run, 176
p-psw-run-p-psw-Ir-if-ok-not-ru
n-check-resourcesp, 215
p-psw-run-p-run-subr-Ir-check-re
sourcesp, 206

412

p-psw-run-run-car-Ir-check-reso
urcesp, 197
p-psw-run-run-cdr-lr-check-reso
urcesp, 198
p-psw-run-run-cons-lr-check-res
ourcesp, 200
p-psw-run-run-false-lr-check-re
sourcesp, 200
p-psw-run-run-falsep-lr-check-re
sourcesp, 201
p-psw-run-run-listp-Ir-check-re
sourcesp, 202
p-psw-run-run-nlistp-lr-check-re
sourcesp, 203
p-psw-run-run-true-Ir-check-res
ourcesp, 203
p-psw-run-run-truep-lr-check-re
sourcesp, 204
p-recognizer-clock, 26, 29, 30
p-recognizer-code, 26, 29, 30
p-run-subr, 36, 37, 46, 85, 86, 89,
90, 114, 121, 154, 159, 163,
168, 188, 207, 338, 340, 342,
343, 371, 374
p-run-subr-clock, 333, 335, 371, 374
p-run-subr-p-pc-add-addr-Ir-p-p
c-lr-p-c-size, 373
p-run-subr-preserves-Ir-good-poi
nterp-tablep, 338
nterps, 341
p-run-subr-preserves-lr-proper-
ctrl-stkp, 339
free-listp, 121
heapp, 342
heapp2, 154
heapp2-alt, 342
p-run-subr-preserves-lr-valp, 114
p-runtime-support-programs, 30, 33,
34, 84, 85, 163, 187, 206,
210, 216, 217, 290, 291, 309
p-set-pc, 36, 37, 46, 75-86, 114, 121,
154, 159, 163, 168, 187, 198—
205, 207, 333, 334, 338, 340,
342,343, 347, 352, 353, 355,

358-363, 367-375, 377, 378,
380
p-set-pc-lr->p-equal-p-fact, 370
p-set-pc-lr->p-Ir-set-expr, 347
p-set-pc-twice, 374
p-state, 10, 22-26, 36-38, 51-53, 196,
197, 222, 223, 235-240, 262,
263, 274, 285-292, 306-308,
370
p-statep, 11
p-temp-stk, 9-11, 22-25, 27, 36-39,
41, 43-46, 50, 60, 61, 63,
64, 73, 75-85, 89, 92, 93,
95,101, 111, 130, 131, 136—
140, 148, 151, 152, 154156,
159-165, 167171, 174-176,
182, 184, 185, 190, 192, 198—
205, 207, 212, 215, 320, 329,
333, 334, 336, 338, 342, 343,
345-347, 353, 355, 357, 358,
360, 361, 363, 366-370, 378—
382
p-temp-stk-lr-do-temp-fetch-p-p
sw-run, 151
p-temp-stk-lr-pop-tstk, 39
p-temp-stk-p-ctrl-stk-p-data-se
gment-run-car, 79
gment-run-cdr, 80
gment-run-cons, 80
gment-run-false, 81
gment-run-falsep, 81
gment-run-listp, 82
gment-run-nlistp, 82
gment-run-true, 83
gment-run-truep, 83
p-test-bool-and-jump-okp, 196, 197
p-test-bool-and-jump-okp-f-cons
-bool-f, 197
-bool-t, 197
p-test-bool-and-jump-okp-t-cons
-bool-f, 197
-bool-t, 196
p-true-clock, 29, 37, 79, 83, 204, 333,
373

413

p-true-code, 29, 30, 51, 294
p-truep-clock, 30, 37, 77, 84, 205,
334, 373
p-truep-code, 30, 51, 294
p-word-size, 10, 22-26, 36-39, 43—
50, 63, 86, 88, 95, 101, 131,
182, 198-205, 207, 216, 292—
294, 309, 310, 312-318, 370
p-word-size-lr-eval, 47
pair-formal-vars-with-actuals, 74, 165
pair-formals-with-addresses, 19, 220,
259, 273, 281, 326, 328
pair-formals-with-addresses-Ir-
data-seg-table-list, 327
pair-temps-with-initial-values, 74, 75,
165, 171, 344
pairlist-plist-1, 170
plist, 13, 74, 134, 144, 146, 148, 170,
217, 229, 259, 281, 348
plist-delete, 229
plist-listp-x-append-x-not-0, 146
plist-Ir-convert-num-to-ascii, 283
plist-strip-cdrs, 281
plistp, 34, 64, 66, 73, 130, 146, 155,
216, 233, 259, 281-283, 285,
296, 309
plistp-comp-body-1, 66
plistp-comp-if, 66
plistp-comp-programs-1, 281
plistp-comp-temp-test, 66
plistp-first-n, 73
plistp-label-instrs, 285
plistp-lastedr-nil, 130
plistp-lr-all-nodes, 233
plistp-Ir-compile-body, 155
plistp-Ir-compile-body-1, 216
plistp-lr-expr-s->Irl, 155
plistp-pair-formals-with-addres
ses, 259
plistp-pairlist, 73
plistp-strip-cars, 309
plus-constant-fact-helper-1, 68
plus-times-fact-1, 105
pop, 24, 25, 39, 44, 99, 336

pop-p-ctrl-stk-lr-funcall, 92
popn, 38, 74, 93, 173, 345
popn-nlistp, 93
popn-restn, 173
pps; 9
program-body, 7-9, 21, 33, 35, 53,
56-59, 61-64, 72-95, 114,
121-125, 128, 130-132, 137,
141, 148, 150, 153-160, 163,
168-172, 175, 176, 183, 184,
187, 192, 198, 200204, 206,
283, 286, 288, 292, 307-309,
318, 336-339, 341-343, 345—
347, 349, 350, 352-378, 380
program-body-assoc-cdr-Ir-compi
le-programs, 318
program-body-assoc-comp-program
s, b9
s-1, 59
program-body-assoc-lr-compile-p
rograms, 128
program-body-p-current-program-
s->Irl, 132
proper-labeled-p-instructionsp, 49, 64,
282, 285-292, 306, 308
proper-labeled-p-instructionsp-
append, 282
comp-body-1, 292
comp-body-1-helper-1, 285
comp-body-1-helper-2, 286
comp-body-1-helper-3, 287
comp-body-1-helper-4, 287
comp-body-1-helper-5, 289
comp-body-1-helper-6-1, 290
comp-body-1-helper-6-2, 290
comp-body-1-helper-7, 291
find-labelp-non-litatom, 64
label-ret, 306
Ir->p-similar-states, 49
nil, 285
proper-p-alistp, 50, 60-63, 92, 220,
274
proper-p-alistp-all-litatoms-al
l-p-objectps-lookup, 220

414

proper-p-alistp-lr->p-similar
-states, 50
proper-p-alistp-lr-funcall, 92
proper-p-alistp-lr-make-initial
-temps, 274
proper-p-alistp-p-objectp, 60
proper-p-alistp-pair-formal-wit
h-addresses, 273
proper-p-alistp-put-assoc, 62
proper-p-ctrl-stkp, 50, 88, 92
proper-p-ctrl-stkp-Ir->p-simi
lar-states, 50
proper-p-ctrl-stkp-lr-apply-sub
r, 88
proper-p-ctrl-stkp-Ir-funcall, 92
proper-p-data-segmentp, 49, 52, 90,
109, 310-318
proper-p-data-segmentp-bad-type, 52
proper-p-data-segmentp-deposit, 310
proper-p-data-segmentp-deposit-
a-list-cons, 311
a-list-cons-cons, 311
a-list-cons-numberp, 312
a-list-cons-truep, 312
helper, 310
proper-p-data-segmentp-fetch, 310
proper-p-data-segmentp-implies-
Ir-proper-p-areasp, 109
proper-p-data-segmentp-Ir->p-
similar-states, 49
proper-p-data-segmentp-lr-apply
-subr, 90
proper-p-data-segmentp-lr-data-
seg-table, 318
proper-p-data-segmentp-lr-init-
data-seg, 316
data-seg-compile-t0, 317
data-seg-helper, 316
proper-p-framep, 63, 86, 87, 92
proper-p-framep-lr->p-similar
-states, 86
proper-p-framep-lr-apply-subr, 87
proper-p-framep-top-p-ctrl-stk-
Ir-funcall, 91

proper-p-instructionp, 8, 49, 64, 281—
283, 308

proper-p-instructionp-add-addr, 281
proper-p-instructionp-deposit, 281
proper-p-instructionp-eq, 281
proper-p-instructionp-fetch, 281
proper-p-instructionp-jump-labe

1, 283
proper-p-instructionp-pop-globa

I-free-ptr, 281
proper-p-instructionp-push-const

ant-opener, 64
proper-p-instructionp-push-glob

al-free-ptr, 282
proper-p-instructionp-push-loca

l-temp-car, 282

l-temp-cdr, 282

I-temp-cons, 282
proper-p-instructionp-ret, 281
proper-p-instructionp-set-globa

1, 308
proper-p-instructionp-set-local

-temp-cons, 282
proper-p-instructionp-similar-p

-states, 49
proper-p-instructionp-test-bool

-and-jump-label, 283
proper-p-prog-segmentp, 49, 64, 73,

74, 89, 92, 308-310

proper-p-prog-segmentp-append, 64
proper-p-prog-segmentp-comp-pro

grams, 310

grams-1, 308

grams-1-helper, 307
proper-p-prog-segmentp-length-p

rogram-body, 74
proper-p-prog-segmentp-lr->p-

similar-states, 49
proper-p-prog-segmentp-lr-apply

-subr, 88
proper-p-prog-segmentp-p-runtime

-support-programs, 309
proper-p-programp, 8, 292-294, 309
proper-p-programp-append-car-pr

415

og-segment, 308
proper-p-programp-p-car-code, 292
proper-p-programp-p-cdr-code, 292
proper-p-programp-p-cons-code, 293
proper-p-programp-p-false-code, 293
proper-p-programp-p-falsep-code, 293
proper-p-programp-p-listp-code, 293
proper-p-programp-p-nlistp-code, 293
proper-p-programp-p-true-code, 293
proper-p-programp-p-truep-code, 294
proper-p-push-constant-instructi

onp, 64
proper-p-state-p-p-run-subr-ope

ner-1, 89

ner-2, 89

ner-3, 90
proper-p-statep, 61-64, 73, 75-83,

85-90, 93-95, 109, 114, 121-
125, 130, 131, 133-135, 137,
141, 144-146, 148, 150, 151,
154-161, 163, 164, 168, 170—
176, 182-185, 187, 188, 190
195, 198, 200-207, 210-212,
214-216, 319, 323, 336-338,
340-343, 345, 346, 352, 353,
355, 357, 358, 360, 361, 363,
366-368, 371-374, 376-378,
380, 383
proper-p-statep-bad-type-1, 75
proper-p-statep-bad-type-2, 78
proper-p-statep-lessp-length-p-te

mp-stk-max-temp-stk-size, 353
proper-p-statep-lr->p-equal-w

ord-size-0, 88
proper-p-statep-lr->p-implies

-lr-proper-p-areasp, 109
proper-p-statep-lr->p-lessp-ct

rl-stk-size, 87
proper-p-statep-lr->p-lessp-m

ax-ctrl-stk-size, 88

ax-temp-stk-size, 88
proper-p-statep-lr->p-lr-eval

-list, 158

-list-helper, 158

proper-p-statep-lr->p-lr-pop-t
stk, 62
proper-p-statep-lr->p-lr-push
-tstk, 61
proper-p-statep-lr->p-lr-set-e
xpr, 95
proper-p-statep-lr->p-lr-set-p
0s, 62
proper-p-statep-lr->p-member-
formals-definedp-bindings, 135
proper-p-statep-Ir->p-not-0-p
-temp-stk, 130
proper-p-statep-lr->p-numberp
-max-ctrl-stk-size, 87
-max-temp-stk-size, 88
-word-size, 88
proper-p-statep-lr->p-plistp-p
-temp-stk, 130
proper-p-statep-lr->p-s->Ir, 318
-logic->s, 383
1-strip-cars-bindings-ctrl-stk, 145
proper-p-statep-lr->p-strip-c
ars-bindings-ctrl-stk, 134
proper-p-statep-lr-apply-subr, 90
proper-p-statep-lr-apply-subr-st
ate, 86
proper-p-statep-lr-do-temp-fetc
h, 64
proper-p-statep-lr-funcall, 93
proper-p-statep-lr-if-ok, 95
proper-p-statep-lr-push-tstk-qu
ote, 73
proper-p-statep-Ir-set-error, 133
proper-p-statep-lr-set-expr-lr-p
op-cstk, 94
proper-p-statep-lr-set-temp, 63
proper-p-statep-p-run-subr, 85
proper-p-statep-p-set-pc, 352
proper-p-statep-p-set-pc-equal-p
-set-pc, 352
proper-p-temp-stkp, 49, 50, 60, 61,
63, 73, 74, 89, 92, 93, 130
proper-p-temp-stkp-all-p-objectp
s, 74

416

proper-p-temp-stkp-lr->p-lr-p
ush-tstk, 60
proper-p-temp-stkp-lr->p-simi
lar-states, 49
proper-p-temp-stkp-Ir-apply-sub
r, 89
proper-p-temp-stkp-Ir-funcall, 93
proper-p-temp-stkp-Ir-push-tstk
-assoc-bindings, 61
proper-p-temp-stkp-p-temp-stk-1
r-do-temp-fetch, 63
r-push-tstk-quote, 73
proper-p-temp-stkp-plistp-p-temp
-stk, 130
proper-p-temp-stkp-popn, 74
proper-p-temp-var-dclsp, 49, 284, 307
proper-p-temp-var-dclsp-all-lit
atoms-all-undef-addrs, 284
proper-p-temp-var-delsp-lr->p
-similar-states, 49
properp-p-temp-var-dclps-member
-lr-programs-properp, 307
push, 24, 38, 151
put, 2, 109, 218, 310
put-assoc, 47, 62, 109, 119, 140, 142
146, 337
put-assoc-opener-1, 142
put-assoc-opener-2, 142
put-assoc-put-assoc-1, 109
put-assoc-put-assoc-2, 109
put-assoc-restn, 144
put-not-listp, 109
put-put, 109
put-value, 8, 10
put-zero, 109

remainder-difference-not-equal-
lessp-fact, 227

remove-duplicates, 310, 331

restn, 7, 13, 23, 67-71, 99, 108, 112,
144, 149, 159, 160, 167, 173,
282, 295, 304

restn-add1-opener-alt, 159

restn-comp-body-1-list-fact, 69

ret-pc, 74, 88, 91, 92, 144, 376
ret-pc-make-p-call-frame, 74
reverse, 73, 100, 160, 163, 164, 166,
167, 170, 344
reverse-butlast, 166
reverse-reverse-alt, 170

s->Ir, 22, 319, 323, 328, 329, 333,
378, 380383

s->Ir-ok, 329

s->Irl, 22, 23, 101, 110-112, 132—
140, 144-146, 148, 150-153,
155, 156, 163-165, 170-176,
182-185, 187-195, 205208,
210-212, 214-216, 274, 306

s->Ir1-lr-funcall-s-fun-call-

state, 165

s->Irl-s-set-pos-lr-set-pos, 136

s-add-temp-r, 178-180

s-all-progs-temps-setp, 4, 183, 192,
216, 324, 329, 330

s-all-temps-setp, 4, 183, 192, 216,
324, 329

s-ans, 148, 155, 156, 164, 165, 172,
174,176, 179, 185, 190, 193,
197-205, 320, 329

s-apply-car-r, 177

s-apply-cdr-r, 177, 178

s-apply-cons-r, 177, 178

s-apply-false-r, 177, 178

s-apply-falsep-r, 177, 178

s-apply-listp-r, 177, 178

s-apply-nlistp-r, 177, 178

s-apply-subr-r, 177, 180, 181, 188,
189, 198-206, 214

s-apply-true-r, 177, 178

s-apply-truep-r, 177, 178

s-body, 4, 18, 20, 22, 128, 132, 134—
140, 144-146, 148, 150-152,
155, 156, 163-165, 170, 171,
173-176, 182-185, 187, 188,
190-195, 205-212, 214-217,
223,244, 246, 248, 277, 295,

417

296, 302-305, 318, 324, 329,
330
s-body-car-s-progs-logic->s, 330
s-change-temp, 144, 148
s-check-temps-setp, 4, 183, 192, 216,
324, 329
s-collect-all-temps, 183, 192
s-construct-programs, 331, 332
s-data-seg-body-restrictedp, 248, 277,
278, 294, 314, 326, 331
s-data-seg-list-restrictedp, 248, 278,
294, 314, 326, 327, 331
s-err-flag, 4, 22, 101, 110, 111, 133-
136, 147, 148, 155, 156, 165,
171, 174-176, 178-180, 182,
183, 190-193, 195, 205207,
209-216, 324, 329, 382
s-eval, 4, 101, 110-112, 133, 136,
147, 148, 155, 156, 164, 165,
171-174, 176, 179, 180, 183—
185, 188-195, 205-207, 209~
212, 214-216, 320, 324, 329,
382
s-eval-ctrl-heap-temp-ws-s-fun-
call-state-opener, 212
s-eval-ctrl-r, 180-182, 209, 210, 213,
319, 324, 329
s-eval-ctrl-r-funcall-opener, 209
s-eval-err-flag-not-run-fact, 101
s-eval-flag-run-car-s-apply-sub
r-r-not-zero, 214
s-eval-flag-run-flag-t-s-check-te
mps-setp, 183
s-eval-flag-run-flag-t-subsetp-
s-collect-all-temps, 183
s-eval-flag-run-s-eval-temp-r-n
ot-zero, 215
s-eval-flag-run-v&c$-not-f-fl
ag-t, 382
s-eval-heap-r, 180-182, 189, 191, 206,
207, 213, 319, 324, 329, 383
s-eval-r, 178-180, 195
s-eval-subsetp-s-collect-temp-a
list-s-set-pos-if, 192

s-eval-temp-r, 180-182, 213, 215, 319,
324, 329
s-eval-ws-r, 180-182, 213, 319, 324,
329
s-expand-temps, 4
s-expr, 4, 110-112, 134-140, 144-
146, 148, 150-153, 155, 156,
163-165, 170-174, 179, 180,
183, 187-195, 205-216, 332
s-expr-list, 4, 110, 132, 155, 170, 175,
178, 182, 191, 216
s-expr-logic->s, 332
s-formals, 20, 128, 132, 133, 135,
145, 146, 150, 171, 208, 209,
213, 305, 318, 328, 329, 332,
379
s-formals-car-s-progs-logic->
s, 332
s-formals-s-prog-logic->s, 379
s-fun-call-state, 112, 165, 174, 180,
209, 213, 214
s-good-state-logic->s, 329
s-good-statep, 4, 132, 138-140, 144,
146, 148, 150-152, 164, 170,
171,174, 176, 183-185, 188—
195, 205212, 214-217, 281,
306, 318-320, 324, 329, 330
s-good-statep-formals-assoc-cdr
-s-progs, 209
s-good-statep-length-cdr-s-expr
-funcall, 170
s-good-statep-length-s-temp-list, 281
s-good-statep-program-body-car-
Ir-compile-programs, 132
s-heap-reqs, 242-245, 250-253, 255,
259, 261-263, 267, 275, 311,
313, 325, 326
s-heap-reqs-body, 243, 244, 275278,
294, 314, 320, 326
s-heap-regs-flag-list-cons-opene
r, 252
s-heap-reqs-flag-list-nil-opene
r, 252
s-heap-reqs-list, 244, 245, 277-279,

418

294, 314, 321, 322, 327
s-heap-regs-object-0, 267
s-heap-regs-object-t, 250
s-init-data-seg-restrictedp, 248, 263,

273,278, 279, 295, 314, 325,

326, 328, 330
s-init-heap-reqs, 244, 245, 263, 278—

280, 295, 315, 322, 323, 325,

326, 328
s-init-ws-reqs, 246, 247, 263, 315
s-l-eval-equiv-hyps, 4
s-l-eval-flag-run-hyps, 4
s-max-subr-reqs, 180, 198-205, 207,

216, 247, 292, 293, 309, 310,

312, 315-318, 324
s-params, 4, 22, 135, 136, 151, 152,

172,173, 176, 180, 183-185,

188-191, 193, 194, 205207,

214, 216, 306, 318-320, 323,

324, 328-330, 382
s-params-logic->s, 330
s-pname, 22, 101, 133, 135, 144146,

150, 156, 187, 320, 324, 328,

329, 331, 381
s-pname-logic->s, 331
s-pos, 4, 22, 101, 110-112, 132-140,

144-146, 148, 150-153, 155,

156, 163-165, 170, 171, 173~

176, 178-180, 182-184, 187-

195, 205-216, 320, 324, 329,

331, 381
s-pos-logic->s, 331
s-prog, 4, 22, 132-140, 144-146, 148,

150-152, 155, 156, 163-165,

170, 171, 173-176, 182-185,

187, 188, 190-195, 205212,

214-216, 281, 318, 379
s-programs-okp, 169, 208, 212, 305
s-programs-okp-formals-not-f, 208
s-programs-properp, 305
s-progs, 4, 22, 101, 132, 133, 135,

144-146, 150, 156, 165, 171,

172,183, 187, 192, 208-210,

212,213, 216, 217, 273, 274,

306, 318-320, 323, 324, 328-
332, 380-383
s-proper-exprp, 217, 296, 298, 299,
303, 304
s-proper-exprp-plist-temp-list, 217
s-restrict-subrps, 217, 302-305, 331
s-restrict-subrps-list-lr-prope
r-get-t, 302
s-restrict-subrps-progs, 217, 305, 306,
318, 319, 329, 331
s-restrict-subrps-s-body-member
-s-restrict-subrps-progs, 305
s-restrict-subrps-s-restrict-su
brps-cur-expr, 303
s-restrict-subrps-t-lr-proper-get
-t, 303
s-restricted-objectp, 247, 248, 253,
255, 259-262, 311-313, 324,
325, 330
s-restrictedp, 248, 280, 295, 302, 304—
306, 318-320, 323, 324, 328,
329, 382
s-set-expr, 110, 111, 133, 136, 155,
179, 191, 193, 194
s-set-pos, 110-112, 136, 148, 156,
164, 165, 170-173, 179, 180,
184, 185, 188-190, 192-195,
205207, 209-215
s-temp-eval, 17, 19-21, 32, 34, 41,
56, 62, 66, 68-70, 73, 84,
111, 129, 139, 142, 144-146,
148, 150, 152, 156, 163, 164,
179, 187, 190, 194, 195, 205,
214, 217, 243, 246, 248, 287,
290, 296, 298-300, 302, 303,
335, 343, 348, 349, 362, 363,
369, 370, 374, 377
s-temp-fetch, 17, 19-21, 32, 34, 42,
56, 63, 64, 66, 69, 70, 73,
84, 111, 129, 140, 146, 150—
152, 156, 163, 164, 180, 187,
190, 194, 195, 205, 214, 217,
243, 246, 248, 286, 290, 295,
298, 300, 302, 303, 335, 337,

419

343, 348, 349, 365, 368-370,
374, 377
s-temp-list, 20, 128, 132, 133, 145,
146, 150, 171, 172, 209, 210,
213, 281, 305, 318, 328-330
s-temp-list-car-s-progs-logic->
s, 330
s-temp-setp, 150, 179, 194
s-temp-test, 17, 19-21, 33, 34, 41,
56, 62-64, 66, 68-70, 73,
84,111, 129, 139, 142, 144—
146, 148, 150-152, 156, 163,
164, 179, 187, 190, 194, 195,
205, 214, 215, 217, 243, 246,
248, 286, 287, 290, 296, 298
300, 302, 303, 335, 337, 343,
348, 349, 364-370, 374, 377
4, 22, 135, 144, 147, 148,
150-152, 172, 173, 176, 179,
180, 183185, 188-194, 205—
207, 214, 216, 281, 318-320,
323, 324, 328-330
s-temps-logic->s, 330
s-total-heap-reqs, 244, 273, 280, 295,
302, 304-306, 318-320, 323,
324, 328, 329, 380-383
s-total-ws-reqs, 247, 273, 318, 319,
329
s-total-ws-reqs-not-lessp-s-max
-subr-reqs, 318
s-ws-reqs, 245-247, 262, 313
s-ws-reqs-body, 245, 246, 314
s-ws-regs-flag-not-list-t, 313
s-ws-reqs-list, 246, 247, 314
same-signature, 48-50, 63, 86, 87,
94, 95, 108, 116, 119, 120,
156, 221-224, 267, 311-318,
320
same-signature-car-Ir-compile-q
uote, 223
uote-generalized, 221
uote-helper, 221
uote-reducer, 317
same-signature-car-Ir-data-seg-t

s-temps,

able, 320

able-body, 223

able-list, 224

able-list-helper, 223

able-list-reducer, 317
same-signature-car-Ir-init-data

-seg-table, 267

-seg-table-help-1, 267

-seg-table-reducer, 317
same-signature-commutative, 86
same-signature-cons, 119
same-signature-deposit, 116
same-signature-deposit-a-list, 120
same-signature-lr-apply-subr, 86
same-signature-nil, 119
same-signature-p-run-subr, 86
set-local-var-value, 25, 43
signature, 119
strip-cadrs, 35, 284, 292, 344
strip-cars-append, 74
strip-cars-bindings-top-p-ctrl-

stk-lr-funcall, 91
strip-cars-equal-definedp-equal, 141
strip-cars-firstn, 108
strip-cars-lr-compile-programs, 132
strip-cars-lr-make-initial-temp

s, 259
strip-cars-lr-make-temp-name-ali

st, 148

st-1, 148
strip-cars-lr-make-temp-var-dcl

s, 135
strip-cars-lr-temps-strip-cars-te

mp-var-dcls, 146
strip-cars-nil-fact, 140
strip-cars-pair-formals-with-ad

dresses, 259
strip-cars-pair-temps-with-initi

al-values, 74
strip-cars-pairlist, 74
strip-cars-restn, 108
strip-cdrs, 19, 34, 107, 135, 142, 143,

145-147, 149-152, 220, 263,
280, 281, 289, 297-300, 304,

420

305, 324, 327, 328, 336-338,
343, 344, 366, 382
strip-cdrs-append, 343
strip-cdrs-pair-temps-with-initi
al-values, 344
strip-cdrs-pairlist, 343
strip-logic-fnames, 35, 56, 57, 208,
289-292, 307, 308
strip-logic-fnames-cdr-lr-compi
le-programs, 208
strip-logic-fnames-lr-compile-p
rograms, 208
sub-addr, 44, 54, 96, 98, 103, 105,
115, 116, 225-227, 232
sub-addr-area-name-offset-same, 116
subl-plus-not-zerop-fact-1, 120
subr-arity-alist, 344
subseqp, 13
subseqp-append, 13
subsetp, 183, 185, 192, 304-306, 308
subsetp-cdr, 306
subsetp-not-member-both, 185

tag, 6, 14, 15, 17, 21-24, 26-29, 37—
40, 75-77, 79-84, 96, 101,
106, 127, 128, 160-163, 186,
218, 225, 229-234, 256258,
260, 261, 264-266, 268-273,
312, 313, 316, 320, 341, 352,
355, 358, 360, 361, 380, 381
tag-type-name-offset-equal-same, 230
temp-alist-to-set, 4, 183, 192, 216,
324, 329
temp-var-dcls, 9, 33, 35, 38, 56, 57,
59-61, 63, 91, 132-134, 142,
150, 165, 171, 212, 287-289,
292, 307, 309, 344
temp-var-dcls-assoc-comp-progra
ms, 61
ms-1, 60
ms-Ir-programs-properp, 91
temp-var-dcls-assoc-p-current-p
rogram-s->1Irl, 133
temp-var-dcls-Ir-compile-progra

ms, 132 user-fnamep, 51
times-quotient-lessp-fact-1, 196

top, 11, 27, 41, 63, 75, 76, 78-81, value, 8-10, 15, 19, 96, 120, 264
92, 99-101, 111, 138-140,
146. 334. 336 X-y-error-msg, 38, 46

top-stk, 11

zerop-lIr-convert-digit-to-ascii, 283

topl, 77, 81 zerop-lr-convert-num-to-ascii, 283

total-heap-reqs, 379, 383

type, 7, 26, 34, 45, 48, 52-55, 64, 75,
78, 96, 97, 102-106, 109,
112-114, 116-118, 121, 126—
128, 152-154, 161, 162, 186,
219, 226-233, 240, 242, 249,
255-258, 260, 261, 264268,
289, 302, 315, 339, 341, 353,
366

type-add-addr, 53

type-Ir-p-pc, 45

type-lr-return-pc, 54

type-sub-addr, 54

unlabel, 8, 53, 71, 75-84, 163, 187,
198, 200204, 354, 362, 364,
365, 371-373, 375
unlabel-car-last-comp-body, 375
unlabel-get-last-funcall-body-a
ssoc-comp-programs, 375
unlabel-get-Ir-p-pc-program-bod
y-assoc-comp-programs, 347
unlabel-list-label, 71
untag, 7, 9-11, 26, 44, 45, 47, 48,
52-55, 61, 75, 78, 86, 90,
91, 96-99, 102-107, 109, 112—
118, 120-122, 124-128, 130,
153-155, 162, 186, 196, 199,
200, 219, 220, 225, 227-233,
235, 240242, 249, 250, 254—
258, 260, 261, 264268, 289,
309-311, 318, 339, 342, 366,
379, 381
untag-addr-addr-tag, 106
user-fname, 33, 37, 84, 85, 91, 92,
165, 169, 171, 172, 187, 208—
210, 212, 213, 291, 331, 375

421

