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Copyright (C) 1994 by Computational Logic, Inc. All Rights Reserved.

This script is hereby placed in the public domain, and therefore unlimited
editing and redistribution is permitted.

NO WARRANTY

Computational Logic, Inc. PROVIDES ABSOLUTELY NO WARRANTY. THE EVENT SCRIPT
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE SCRIPT IS WITH YOU. SHOULD THE SCRIPT PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT WILL Computational Logic, Inc. BE LIABLE TO YOU FOR ANY DAMAGES,
ANY LOST PROFITS, LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SCRIPT (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY THIRD PARTIES), EVEN IF YOU HAVE ADVISED US OF THE POSSIBILITY OF
SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

|#

; ------------------------------------------------------------
; was lr-eval5-1.events
; ------------------------------------------------------------

Event: Start with the library "app-c-d-e" using the compiled version.

Theorem: axiom-53
subrp (fn) → (formals (fn) = f)

Event: Disable proper-p-statep-restructuring.

;; Function for testing s->r

Definition:
change-elements (list)
= if listp (list)

then if truep (car (list)) then cons (false, change-elements (cdr (list)))
else cons (true, change-elements (cdr (list))) endif
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elseif truep (list) then false
else true endif

Event: Disable deposit.

Event: Disable fetch.

Event: Disable add-addr.

Event: Disable sub-addr.

Event: Disable offset.

Event: Disable area-name.

Event: Disable errorp.

Event: Disable p-current-program.

;; The following is inspired by the lemma length-put of Piton.
;; Now in Piton-basis A. Flatau 8-Oct-1990
;(prove-lemma MY-LENGTH-PUT (rewrite)
; (equal (length (put val n lst))
; (if (lessp n (length lst))
; (length lst)
; (add1 n)))
; ((enable put)))
;
;(disable my-length-put)

;; This is similar to the lemma GET-PUT from Piton, but for the commented
;; out hypothesis.

Theorem: my-get-put
((k ∈ N) ∧ (n ∈ N))
→ (get (k , put (val , n, lst))

= if k = n then val
else get (k , lst) endif)

Event: Disable my-get-put.
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Theorem: listp-cdr-p-frame
listp (cdr (p-frame (bindings, ret-pc)))

Theorem: equal-cddr-p-frame-nil
cddr (p-frame (bindings , ret-pc)) = nil

#||
;; The following is used to test handling of temp variables
(defn FOO (state name)

(let ((prog (app name state)))
(cons state (cons (car prog) (cons (cadr prog) (caddr prog))))))

;(setq ss
; (logic->s ’(change-elements (cons ’*1*true (app x y)))
; ’((x . (*1*true *1*true . *1*false))
; (y . (*1*true . *1*false)))
; ’(change-elements app)))
;(setq lrs (s->lr ss ’main 50 50 50 32))
;(setq foop
; ’(FOO (STATE NAME)
; ((APP NAME STATE)
; (CDR ((TEMP-FETCH) (APP NAME STATE))))
; (CONS STATE
; (CONS (CAR ((TEMP-EVAL) (APP NAME STATE)))
; (CONS (CAR ((TEMP-EVAL)
; (CDR ((TEMP-FETCH) (APP NAME STATE)))))
; (CAR (CDR ((TEMP-FETCH)
; (CDR ((temp-fetch)
; (APP NAME STATE)))))))))))
;
;(setq ss1 (s-state (s-expr ss)
; (s-params ss)
; (s-temps ss)
; (s-consts ss)
; (put-assoc (cdr foop) ’foo (s-progs ss))
; ’run))
;
;(setq ss2 (s-state ’(FOO (CHANGE-ELEMENTS (CONS ’(ADDR (heap . 4))
; (APP ((temp-eval) X) Y)))
; ((temp-fetch) X))
; (s-params ss1)
; (make-temps-entries ’(x))
; (s-consts ss1)
; (s-progs ss1)
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; ’run))
||#

Definition:
s-l-eval-equiv-hyps (flag , s, c)
= (s-good-statep (s, c)

∧ good-posp (flag , s-pos (s), s-body (s-prog (s)))
∧ (s-err-flag (s-eval (flag , s, c)) = ’run))

Definition:
s-l-eval-flag-run-hyps (flag , s, c)
= (s-good-statep (s, c)

∧ s-all-temps-setp (flag ,
if flag = ’list then s-expr-list (s)
else s-expr (s) endif,
temp-alist-to-set (s-temps (s)))

∧ s-all-progs-temps-setp (s-progs (s))
∧ if flag = ’list

then f 6∈ l-eval (flag ,
s-expand-temps (flag , s-expr-list (s)),
s-params (s),
c)

else l-eval (flag ,
s-expand-temps (flag , s-expr (s)),
s-params (s),
c) endif

∧ s-check-temps-setp (s-temps (s)))

;; ***** The LR-level (R for Resource, L for logic). *****
;; We used to have an LR-STATE shell. Now we just use a P-STATE shell.
;; However we refer to LR-STATES which are P-STATEs with LR level programs.
;; The function LR->P compiles an LR-STATE to a Piton state, by compiling
;; the programs and converting the P-PC to a Piton PC.
;; We use P-STATE shells instead of LR-STATE shell because we used to have
;; define functions analogous to P-OBJECTP (and functions that called
;; P-OBJECTP) that took LR-STATES or parts thereof.

;; We use the Piton notion of a PROPER state. It should be the case that
;; all the LR-STATEs we are interested in are PROPER-P-STATEPs after we
;; apply LR->P to them.

;; An LR PC object is a combination of a Piton PC object and an S level
;; S-PNAME and S-POS. The translation of (s-pname s) and (s-pos s) from
;; the S level is: (TAG ’PC (CONS (S-PNAME S) (S-POS S)))

4



;; Each element of P-PROG-SEGMENT is a program. A program is a list
;; of the form:
;;
;; (name (formal1 formal2 ... formaln)
;; ((temp1 init1)
;; ...
;; (tempk initk))
;; body)
;;
;; The name and each formal and temp is a symbol. The initial values
;; of the temps are tagged values. Body is a form similar to that for
;; the S level, but temporary expressions have been replaced the name of
;; a temporary variable added to them
;; e.g. ((S-TEMP-EVAL) <expr>) -> ((S-TEMP-EVAL) <expr> <var>).
;; In the case of (S-TEMP-FETCH) <expr> is never used but we put it
;; in for consistency and so it is easier to convert back to s-states.
;; Also the numbers in the S level quote constructs have been replaced
;; by data-addresses that should contain pointers to the appropriate
;; structure in the heap.

;; Roughly speaking, a function application of FUN binds the formals to
;; the top n elements of the temp-stk (removing them from that stack and
;; building a ctrl-stk frame), binds the temps to the corresponding tagged
;; values (also in the ctrl-stk frame), and executes each instruction.

;; Producing LR-code from S-code.

Definition: lr-undefined-tag = 0

; Used in node to indicate
; uninitialized temporary variable

Definition: lr-init-tag = 1

; Used in initial nodes that have
; not been used

Definition: lr-false-tag = 2

Definition: lr-true-tag = 3

Definition: lr-add1-tag = 4

Definition: lr-cons-tag = 5
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Definition: lr-pack-tag = 6

Definition: lr-minus-tag = 7

Definition: lr-heap-name = ’heap

Definition: lr-node-size = 4

Definition: lr-undef-addr = tag (’addr, ’(heap . 0))

Definition: lr-f-addr = add-addr (lr-undef-addr, lr-node-size)

Definition: lr-t-addr = add-addr (lr-f-addr, lr-node-size)

Definition: lr-0-addr = add-addr (lr-t-addr, lr-node-size)

Definition: lr-fp-addr = tag (’addr, ’(free-ptr . 0))

Definition: lr-answer-addr = tag (’addr, ’(answer . 0))

Definition: lr-fetch-fp (data-seg) = fetch (lr-fp-addr, data-seg)

Definition:
lr-minimum-heap-size = offset (add-addr (lr-0-addr, lr-node-size))

;; The heap is a (presumably large) Piton data area. It contains Nodes
;; which are four words. One word is for the tag, one for the reference
;; count, and two for the contents. Some data-types only require one word
;; for the contents (e.g. NUMBERPs) in that case one word is wasted. Some
;; (user-defined) data-types require more than two words. In this case the
;; second word is a pointer to another node. This contains up to three
;; words of data, the fourth word (if the data type needs more that four
;; words) is used to link another node with the same format. The heap is
;; the Piton data area named HEAP.

;; LR-NEW-NODE returns another node to be stuck in memory

Definition:
lr-new-node (tag , ref-count , value1 , value2 )
= list (tag , ref-count , value1 , value2 )

Definition: lr-ref-count-offset = 1

Definition: lr-car-offset = 2

Definition: lr-cdr-offset = 3

Definition: lr-unpack-offset = 2
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Definition: lr-unbox-nat-offset = 2

Definition: lr-negative-guts-offset = 2

Definition:
lr-boundary-offsetp (offset) = ((offset mod lr-node-size) = 0)

Definition:
lr-boundary-nodep (node) = lr-boundary-offsetp (offset (node))

Definition:
lr-nodep (addr , data-seg)
= ((type (addr) = ’addr)

∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name))

;; LR-GOOD-POINTERP checks that an addr is a node and its ref count field
;; is a natural.

Definition:
lr-good-pointerp (addr , data-seg)
= (lr-nodep (addr , data-seg)

∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg))
= ’nat))

Definition:
lr-expr (p) = cur-expr (offset (p-pc (p)), program-body (p-current-program (p)))

Event: Disable lr-expr.

Definition:
lr-expr-list (p)
= restn (car (last (offset (p-pc (p)))),

cur-expr (butlast (offset (p-pc (p))),
program-body (p-current-program (p))))

Event: Disable lr-expr-list.

;;; Debugging Stuff.
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Definition:
mark-instr (instruction-list , n)
= if n ' 0

then cons (list (’pc->, car (instruction-list)), cdr (instruction-list))
else cons (car (instruction-list),

mark-instr (cdr (instruction-list), n − 1)) endif

Definition:
fix-program-segment (programs, pc)
= if listp (programs)

then let prog be car (programs)
in
if car (prog) = area-name (pc)
then cons (append (list (car (prog), cadr (prog), caddr (prog)),

mark-instr (program-body (prog), offset (pc))),
fix-program-segment (cdr (programs), pc))

else cons (car (prog),
fix-program-segment (cdr (programs), pc)) endif endlet

else nil endif

Definition:
fix-data-segment (data-segment)
= put-value (append (firstn (offset (lr-fetch-fp (data-segment)),

value (lr-heap-name, data-segment)),
length (value (lr-heap-name, data-segment))
− offset (lr-fetch-fp (data-segment))),

lr-heap-name,
data-segment)

Definition:
find-non-proper-instr (lst , name, p)
= if listp (lst)

then if legal-labelp (car (lst))
∧ proper-p-instructionp (unlabel (car (lst)), name, p)

then find-non-proper-instr (cdr (lst), name, p)
else car (lst) endif

else nil endif

Definition:
find-non-proper-programs (progs, p)
= if listp (progs)

then if proper-p-programp (car (progs), p)
then cons (name (car (progs)),

find-non-proper-programs (cdr (progs), p))
else cons (list (’not,
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name (car (progs)),
find-non-proper-instr (program-body (car (progs)),

name (car (progs)),
p)),

find-non-proper-programs (cdr (progs), p)) endif
else nil endif

Definition:
pps (state)
= list (’p-state,

p-pc (state),
p-ctrl-stk (state),
p-temp-stk (state),
let p be p-current-program (state)
in
append (list (name (p), formal-vars (p), temp-var-dcls (p)),

mark-instr (program-body (p), offset (p-pc (state)))) endlet,
fix-data-segment (p-data-segment (state)),
p-psw (state))

Definition:
lr-nodify-tag (tag)
= if untag (tag) = lr-false-tag then ’false

elseif untag (tag) = lr-true-tag then ’true
elseif untag (tag) = lr-add1-tag then ’add1
elseif untag (tag) = lr-cons-tag then ’cons
elseif untag (tag) = lr-pack-tag then ’pack
else ’unknown endif

Definition:
lr-nodify (number , nodes, final)
= if listp (nodes)

then cons (list (’node,
number ,
lr-nodify-tag (car (nodes)),
caddr (nodes),
cadddr (nodes)),

lr-nodify (number + lr-node-size, cddddr (nodes), final))
else final endif

Definition:
lr-fix-data-segment (data-seg)
= put-value (lr-nodify (0,

firstn (offset (lr-fetch-fp (data-seg)),
value (lr-heap-name, data-seg)),
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length (value (lr-heap-name, data-seg))
− offset (lr-fetch-fp (data-seg))),

lr-heap-name,
data-seg)

Definition:
lrps (state)
= p-state (p-pc (state),

p-ctrl-stk (state),
p-temp-stk (state),
p-prog-segment (state),
lr-fix-data-segment (p-data-segment (state)),
p-max-ctrl-stk-size (state),
p-max-temp-stk-size (state),
p-word-size (state),
p-psw (state))

;; Returns the object denoted by addr in the heap.

Definition:
lr-abs (addr , data-seg , n)
= if n ' 0 then nil

else let tag be untag (fetch (addr , data-seg))
in
if tag = lr-false-tag then f
elseif tag = lr-true-tag then t
elseif tag = lr-add1-tag
then untag (fetch (add-addr (addr , lr-unbox-nat-offset),

data-seg))
elseif tag = lr-cons-tag
then cons (lr-abs (fetch (add-addr (addr , lr-car-offset),

data-seg),
data-seg ,
n − 1),

lr-abs (fetch (add-addr (addr , lr-cdr-offset),
data-seg),

data-seg ,
n − 1))

elseif tag = lr-pack-tag
then pack (lr-abs (fetch (add-addr (addr ,

lr-unpack-offset),
data-seg),

data-seg ,
n − 1))

else − untag (fetch (add-addr (addr ,
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lr-negative-guts-offset),
data-seg)) endif endlet endif

Definition:
top-stk (p-or-p-state)
= let temp-stk be if p-statep (p-or-p-state)

then p-temp-stk (p-or-p-state)
else p-temp-stk (p-or-p-state) endif,

data-segment be if p-statep (p-or-p-state)
then p-data-segment (p-or-p-state)
else p-data-segment (p-or-p-state) endif

in
lr-abs (top (temp-stk), data-segment , 1000) endlet

;; This is accessed by the Piton accessors: NAME, FORMAL-VARS, TEMP-VAR-DCLS
;; and PROGRAM-BODY. Also LOCAL-VARS.

Definition:
lr-make-program (name, formals, temps, body)
= cons (name, cons (formals, cons (temps, body)))

#||
stolen from matt kaufmann’s code for gensym, but modified to probably be
less useful but simplier.

here is a sequence of events for generating a new symbol.
the main function is near the end, and is called gensym.
gensym returns a pair the new symbol and the next number list to try.
here are some examples:

>(r-loop)

trace mode: off abbreviated output mode: on
type ? for help.
*(gensym (unpack ’a*) ’(49) ’(a*0 a*1 a*2 a*3))
’(a*4 53)

*(gensym (unpack ’a*) ’(53) ’(a*0 a*1 a*2 a*3 a*4))
’(a*5 54)

*(gensym (unpack ’a*) ’(50) ’(a*2))
’(a*3 52)

*(gensym (unpack ’a*) ’(50) ’(a*0))
’(a*2 51)

*(gensym (unpack ’a) ’(48) ’(a*0 a*1))
’(a0 49)

*(gensym (unpack ’a) ’(48) ’(a b))
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’(a0 49)
*(gensym (unpack ’a*2*) ’(51) ’(a*2*3))
’(a*2*4 53)

*(gensym (unpack ’b*) ’(50) ’(a*0 a*1 a*2 a*3))
’(b*2 51)

*ok
exiting r-loop.
nil

||#

Definition: ascii-0 = 48

Definition: ascii-1 = 49

Definition: ascii-9 = 57

Definition: ascii-dash = 45

Definition: list-ascii-0 = list (ascii-0)

Definition: list-ascii-1 = list (ascii-1)

Definition:
increment-numlist (numlist)
= if listp (numlist)

then if car (numlist) = ascii-9
then cons (ascii-0, increment-numlist (cdr (numlist)))
else cons (1 + car (numlist), cdr (numlist)) endif

else list-ascii-1 endif

Definition:
make-symbol (initial , digit-list)
= pack (append (append (initial , digit-list), 0))

Event: Disable make-symbol.

Definition:
count-codelist1 (numlist)
= if listp (numlist)

then car (numlist) + (10 ∗ count-codelist1 (cdr (numlist)))
else 0 endif
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Definition:
subseqp (list1 , list2 )
= ((length (list2 ) 6< length (list1 ))

∧ (firstn (length (list1 ), list2 ) = list1 ))

Event: Disable subseqp.

Definition:
count-codelist (initial , ascii-list)
= if subseqp (initial , ascii-list)

then count-codelist1 (restn (length (initial), ascii-list))
else 0 endif

Event: Disable count-codelist.

Definition:
max-count-codelist (initial , list)
= if listp (list)

then max (count-codelist (initial , unpack (car (list))),
max-count-codelist (initial , cdr (list)))

else 0 endif

Theorem: increment-num-list-count-code-list1
count-codelist1 (num-list) < count-codelist1 (increment-numlist (num-list))

Theorem: subseqp-append
subseqp (plist (x ), append (x , anything))

Theorem: count-codelist-make-symbol
(x = make-symbol (initial , num-list))
→ (count-codelist (plist (initial), unpack (x ))

= count-codelist1 (num-list))

Theorem: member-make-symbol-max-count-code-list
(make-symbol (initial , num-list) ∈ atom-list)
→ (max-count-codelist (plist (initial), atom-list)

6< count-codelist1 (num-list))

;; Returns a pair, the new symbol and the next number to use

Definition:
gensym (initial , num-list , atom-list)
= if make-symbol (initial , num-list) ∈ atom-list

then gensym (initial , increment-numlist (num-list), atom-list)
else cons (make-symbol (initial , num-list),

increment-numlist (num-list)) endif
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Theorem: gensym-is-new
car (gensym (initial , num-list , atom-list)) 6∈ atom-list

;; MAKE-TEMP-NAME-ALIST takes a temps-alist triple a la S-TEMPS and
;; returns an alist with entries of the form:
;; (<temp expression> . <variable>) where <variable> is guaranteed to
;; occur only once in the resulting alist and is guaranteed not to occur
;; in FORMALS.

Definition:
lr-make-temp-name-alist-1 (initial , num-list , temp-list , formals)
= if listp (temp-list)

then let gensym be gensym (initial , num-list , formals)
in
cons (cons (car (temp-list), car (gensym)),

lr-make-temp-name-alist-1 (initial ,
cdr (gensym),
cdr (temp-list),
formals)) endlet

else nil endif

Definition:
lr-make-temp-name-alist (temp-list , formals)
= lr-make-temp-name-alist-1 (unpack (’t*), list-ascii-0, temp-list , formals)

Definition:
lr-new-cons (car , cdr)
= lr-new-node (tag (’nat, lr-cons-tag), tag (’nat, 1), car , cdr)

;; Deposit LIST of objects at ADDR, ADDR+1, ADDR+2, ... in DATA-SEG.

Definition:
deposit-a-list (list , addr , data-seg)
= if listp (list)

then deposit (car (list),
addr ,
deposit-a-list (cdr (list), add1-addr (addr), data-seg))

else data-seg endif

Definition:
lr-init-heap-contents (addr , size)
= if size ' 0 then list (tag (’nat, lr-init-tag))

else append (lr-new-node (tag (’nat, lr-init-tag),
add-addr (addr , lr-node-size),
tag (’nat, 0),
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tag (’nat, 0)),
lr-init-heap-contents (add-addr (addr , lr-node-size),

size − 1)) endif

Definition:
lr-add-to-data-seg (data-seg , new-node)
= if (length (value (lr-heap-name, data-seg)) − 1)

6< (offset (fetch (lr-fp-addr, data-seg)) + length (new-node))
then deposit (fetch (add-addr (fetch (lr-fp-addr, data-seg),

lr-ref-count-offset),
data-seg),

lr-fp-addr,
deposit-a-list (new-node,

fetch (lr-fp-addr, data-seg),
data-seg))

else data-seg endif

Definition:
lr-init-data-seg (heap-size)
= deposit-a-list (list (tag (’nat, lr-false-tag),

tag (’nat, 1),
lr-undef-addr,
lr-undef-addr),

lr-f-addr,
deposit-a-list (list (tag (’nat, lr-undefined-tag),

tag (’nat, 1),
lr-undef-addr,
lr-undef-addr),

lr-undef-addr,
list (list (area-name (lr-fp-addr),

add-addr (lr-f-addr,
lr-node-size)),

list (area-name (lr-answer-addr),
tag (’nat, 0)),

cons (lr-heap-name,
lr-init-heap-contents (tag (’addr,

cons (lr-heap-name,
0)),

heap-size)))))

Definition:
count-list (flag , object)
= if flag = ’list

then if listp (object)
then count-list (t, car (object))

15



+ count-list (’list, cdr (object))
else 1 endif

elseif listp (object)
then 1 + (1 + (count-list (t, car (object))

+ count-list (t, cdr (object))))
elseif object ∈ N then 1 + count (object)
else 1 endif

Theorem: not-equal-0-count-list
count-list (flag , object) 6= 0

Theorem: lessp-count-list-cdr-count-list-whole
listp (object)
→ (count-list (’list, cdr (object)) < count-list (’list, object))

Theorem: lessp-count-not-list-car-count-list-whole
listp (object)
→ (count-list (t, car (object)) < count-list (’list, object))

;; LR-COMPILE-QUOTE returns a pair, the new HEAP and the new TABLE.

Definition:
lr-compile-quote (flag , object , heap, table)
= if flag = ’list

then if listp (object)
then let car-pair be lr-compile-quote (t,

car (object),
heap,
table)

in
lr-compile-quote (’list,

cdr (object),
car (car-pair),
cdr (car-pair)) endlet

else cons (heap, table) endif
elseif definedp (object , table) then cons (heap, table)
elseif listp (object)
then let pair be lr-compile-quote (’list,

list (car (object), cdr (object)),
heap,
table)

in
cons (lr-add-to-data-seg (car (pair),

lr-new-cons (cdr (assoc (car (object),
cdr (pair))),
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cdr (assoc (cdr (object),
cdr (pair))))),

cons (cons (object , fetch (lr-fp-addr, car (pair))),
cdr (pair))) endlet

elseif object ∈ N
then cons (lr-add-to-data-seg (heap,

lr-new-node (tag (’nat, lr-add1-tag),
tag (’nat, 1),
tag (’nat, object),
lr-undef-addr)),

cons (cons (object , fetch (lr-fp-addr, heap)), table))
elseif truep (object)
then cons (lr-add-to-data-seg (heap,

lr-new-node (tag (’nat, lr-true-tag),
tag (’nat, 1),
lr-undef-addr,
lr-undef-addr)),

cons (cons (object , fetch (lr-fp-addr, heap)), table))
else cons (heap, cons (cons (object , lr-undef-addr), table)) endif

;; LR-DATA-SEG-TABLE-BODY returns a pair, the CAR is the extension of
;; DATA-SEG with any constants laid down in it, the CDR is an alist
;; mapping objects in the logic to addresses in the new DATA-SEG
;; where they are represented. The initial TABLE is such an alist

Definition:
lr-data-seg-table-body (flag , expr , data-seg , table)
= if flag = ’list

then if listp (expr)
then let dst1 be lr-data-seg-table-body (t,

car (expr),
data-seg ,
table)

in
lr-data-seg-table-body (’list,

cdr (expr),
car (dst1 ),
cdr (dst1 )) endlet

else cons (data-seg , table) endif
elseif listp (expr)
then if (car (expr) = s-temp-fetch)

∨ (car (expr) = s-temp-eval)
∨ (car (expr) = s-temp-test)

then lr-data-seg-table-body (t, cadr (expr), data-seg , table)
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elseif car (expr) = ’quote
then lr-compile-quote (t, cadr (expr), data-seg , table)
else lr-data-seg-table-body (’list,

cdr (expr),
data-seg ,
table) endif

else cons (data-seg , table) endif

Definition:
lr-data-seg-table-list (progs, data-seg , table)
= if listp (progs)

then lr-data-seg-table-list (cdr (progs),
car (lr-data-seg-table-body (t,

s-body (car (progs)),
data-seg ,
table)),

cdr (lr-data-seg-table-body (t,
s-body (car (progs)),
data-seg ,
table)))

else cons (data-seg , table) endif

Definition:
lr-init-data-seg-table (params, data-seg , table)
= if listp (params)

then let ds-tab be lr-compile-quote (t, cdar (params), data-seg , table)
in
lr-init-data-seg-table (cdr (params),

car (ds-tab),
cdr (ds-tab)) endlet

else cons (data-seg , table) endif

Definition:
lr-data-seg-table (progs, params, heap-size)
= let init-ds-table1 be lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
list (cons (f, lr-f-addr)))

in
let init-ds-table2 be lr-init-data-seg-table (params,

car (init-ds-table1 ),
cdr (init-ds-table1 ))

in
lr-data-seg-table-list (progs,

car (init-ds-table2 ),
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cdr (init-ds-table2 )) endlet endlet

Definition:
pair-formals-with-addresses (formals, table)
= if listp (formals)

then cons (cons (caar (formals), cdr (assoc (cdar (formals), table))),
pair-formals-with-addresses (cdr (formals), table))

else nil endif

Definition:
lr-make-initial-temps (temp-vars)
= if listp (temp-vars)

then cons (cons (car (temp-vars), lr-undef-addr),
lr-make-initial-temps (cdr (temp-vars)))

else nil endif

Definition:
lr-initial-cstk (params, temp-alist , table, pc)
= list (p-frame (append (pair-formals-with-addresses (params, table),

lr-make-initial-temps (strip-cdrs (temp-alist))),
pc))

Definition:
lr-compile-body (flag , body , temp-alist , const-table)
= if flag = ’list

then if listp (body)
then cons (lr-compile-body (t, car (body), temp-alist , const-table),

lr-compile-body (’list,
cdr (body),
temp-alist ,
const-table))

else nil endif
elseif listp (body)
then if (car (body) = s-temp-fetch)

∨ (car (body) = s-temp-eval)
∨ (car (body) = s-temp-test)

then list (car (body),
lr-compile-body (t, cadr (body), temp-alist , const-table),
value (cadr (body), temp-alist))

elseif car (body) = ’quote
then list (’quote, value (cadr (body), const-table))
else cons (car (body),

lr-compile-body (’list,
cdr (body),
temp-alist ,

19



const-table)) endif
else body endif

Definition:
lr-make-temp-var-dcls (temp-alist)
= if listp (temp-alist)

then cons (list (cdar (temp-alist), lr-undef-addr),
lr-make-temp-var-dcls (cdr (temp-alist)))

else nil endif

Definition:
lr-compile-programs (programs, const-table)
= if listp (programs)

then let prog be car (programs)
in
let temp-alist be lr-make-temp-name-alist (s-temp-list (prog),

s-formals (prog))
in
cons (lr-make-program (car (prog),

s-formals (prog),
lr-make-temp-var-dcls (temp-alist),
lr-compile-body (t,

s-body (prog),
temp-alist ,
const-table)),

lr-compile-programs (cdr (programs), const-table)) endlet endlet
else nil endif

Definition:
lr-p-c-size (flag , expr)
= if flag = ’list

then if listp (expr)
then lr-p-c-size (t, car (expr))

+ lr-p-c-size (’list, cdr (expr))
else 0 endif

elseif listp (expr)
then if car (expr) = ’if

then lr-p-c-size (t, cadr (expr))
+ lr-p-c-size (t, caddr (expr))
+ lr-p-c-size (t, cadddr (expr))
+ 4

elseif car (expr) = s-temp-fetch then 1
elseif car (expr) = s-temp-eval
then lr-p-c-size (t, cadr (expr)) + 1
elseif car (expr) = s-temp-test
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then lr-p-c-size (t, cadr (expr)) + 7
elseif car (expr) = ’quote then 1
else lr-p-c-size (’list, cdr (expr)) + 1 endif

else 1 endif

Definition:
lr-p-c-size-list (n, expr-list)
= if n ' 0 then 0

elseif n < length (expr-list)
then lr-p-c-size (t, get (n, expr-list))

+ lr-p-c-size-list (n − 1, expr-list)
else lr-p-c-size-list (length (expr-list) − 1, expr-list) endif

;; LR-P-PC-1 returns the number of Piton instructions before the start of
;; the expression denoted by POS in the compilation of EXPR.

Definition:
lr-p-pc-1 (expr , pos)
= if ¬ listp (pos) then 0

elseif ¬ listp (expr) then 0
elseif car (pos) ' 0 then 0
elseif car (expr) = ’if
then if car (pos) ' 0 then 0

elseif car (pos) = 1 then lr-p-pc-1 (cadr (expr), cdr (pos))
elseif car (pos) = 2
then 3

+ lr-p-c-size (t, cadr (expr))
+ lr-p-pc-1 (caddr (expr), cdr (pos))

else lr-p-c-size (t, cadr (expr))
+ lr-p-c-size (t, caddr (expr))
+ lr-p-pc-1 (cadddr (expr), cdr (pos))
+ 4 endif

elseif car (expr) = s-temp-fetch then 0
elseif car (expr) = s-temp-eval then lr-p-pc-1 (cadr (expr), cdr (pos))
elseif car (expr) = s-temp-test
then lr-p-pc-1 (cadr (expr), cdr (pos)) + 4
elseif car (expr) = ’quote then 0
else lr-p-c-size-list (car (pos) − 1, expr)

+ lr-p-pc-1 (get (car (pos), expr), cdr (pos)) endif

Definition:
lr-p-pc (l)
= tag (’pc,

cons (area-name (p-pc (l)),
lr-p-pc-1 (program-body (p-current-program (l)), offset (p-pc (l)))))
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Event: Disable lr-p-pc.

Definition:
s->lr1 (s, l , table)
= p-state (tag (’pc, cons (s-pname (s), s-pos (s))),

p-ctrl-stk (l),
p-temp-stk (l),
lr-compile-programs (s-progs (s), table),
p-data-segment (l),
p-max-ctrl-stk-size (l),
p-max-temp-stk-size (l),
p-word-size (l),
s-err-flag (s))

Event: Disable s->lr1.

;; Returns an P-STATE.
;; FREE-HEAP-SIZE is number of free nodes in resulting P-STATE.

Definition:
s->lr (s, fheap-size, max-ctrl , max-temp, word-size)
= let temp-alist be lr-make-temp-name-alist (strip-cars (s-temps (s)),

strip-cars (s-params (s))),
dataseg-table be lr-data-seg-table (s-progs (s),

s-params (s),
fheap-size)

in
let return-pc be tag (’pc,

cons (s-pname (s),
lr-p-pc-1 (lr-compile-body (t,

s-body (s-prog (s)),
temp-alist ,
cdr (dataseg-table)),

s-pos (s))))
in
s->lr1 (s,

p-state (nil,
lr-initial-cstk (s-params (s),

temp-alist ,
cdr (dataseg-table),
return-pc),

nil,
nil,
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car (dataseg-table),
max-ctrl ,
max-temp,
word-size,
nil),

cdr (dataseg-table)) endlet endlet

Event: Disable s->lr.

Definition:
lr-params (frame, p)
= firstn (length (formal-vars (p-current-program (p))), bindings (frame))

Event: Disable lr-params.

Definition:
lr-temps (frame, p)
= restn (length (formal-vars (p-current-program (p))), bindings (frame))

Event: Disable lr-temps.

Definition:
lr-set-expr (s1 , s2 , pos)
= p-state (tag (’pc, cons (area-name (p-pc (s2 )), pos)),

p-ctrl-stk (s1 ),
p-temp-stk (s1 ),
p-prog-segment (s2 ),
p-data-segment (s1 ),
p-max-ctrl-stk-size (s1 ),
p-max-temp-stk-size (s1 ),
p-word-size (s1 ),
p-psw (s1 ))

Definition:
lr-set-error (s, flag)
= p-state (p-pc (s),

p-ctrl-stk (s),
p-temp-stk (s),
p-prog-segment (s),
p-data-segment (s),
p-max-ctrl-stk-size (s),
p-max-temp-stk-size (s),
p-word-size (s),
flag)
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Definition:
lr-set-pos (s, pos)
= p-state (tag (’pc, cons (area-name (p-pc (s)), pos)),

p-ctrl-stk (s),
p-temp-stk (s),
p-prog-segment (s),
p-data-segment (s),
p-max-ctrl-stk-size (s),
p-max-temp-stk-size (s),
p-word-size (s),
p-psw (s))

Definition:
lr-set-tstk (s, temp-stk)
= p-state (p-pc (s),

p-ctrl-stk (s),
temp-stk ,
p-prog-segment (s),
p-data-segment (s),
p-max-ctrl-stk-size (s),
p-max-temp-stk-size (s),
p-word-size (s),
p-psw (s))

Definition:
lr-pop-tstk (s)
= if p-psw (s) = ’run

then if listp (p-temp-stk (s)) then lr-set-tstk (s, pop (p-temp-stk (s)))
else lr-set-error (s, ’lr-pop-tstk-empty-stack) endif

else s endif

Definition:
lr-push-tstk (s, value)
= if p-psw (s) = ’run

then if length (p-temp-stk (s)) < p-max-temp-stk-size (s)
then lr-set-tstk (s, push (value, p-temp-stk (s)))
else lr-set-error (s, ’lr-push-tstk-full-stack) endif

else s endif

Event: Disable lr-push-tstk.

Definition:
lr-if-ok (l)
= if p-max-temp-stk-size (l) 6< (1 + length (p-temp-stk (l))) then l

else lr-set-error (l , ’if-temp-stk-overflow) endif
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Event: Disable lr-if-ok.

Definition:
lr-set-temp (s, value, var-name)
= if p-psw (s) = ’run

then p-state (p-pc (s),
set-local-var-value (value, var-name, p-ctrl-stk (s)),
p-temp-stk (s),
p-prog-segment (s),
p-data-segment (s),
p-max-ctrl-stk-size (s),
p-max-temp-stk-size (s),
p-word-size (s),
p-psw (s))

else s endif

Event: Disable lr-set-temp.

Definition:
lr-eval-temp-setp (s)
= (local-var-value (caddr (lr-expr (s)), p-ctrl-stk (s)) 6= lr-undef-addr)

Event: Disable lr-eval-temp-setp.

Definition:
lr-do-temp-fetch (s)
= if lr-eval-temp-setp (s)

then lr-push-tstk (s, local-var-value (caddr (lr-expr (s)), p-ctrl-stk (s)))
else lr-set-error (s, ’temp-fetch-not-set) endif

Event: Disable lr-do-temp-fetch.

Definition:
lr-pop-cstk (s)
= if p-psw (s) = ’run

then p-state (p-pc (s),
pop (p-ctrl-stk (s)),
p-temp-stk (s),
p-prog-segment (s),
p-data-segment (s),
p-max-ctrl-stk-size (s),
p-max-temp-stk-size (s),
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p-word-size (s),
p-psw (s))

else s endif

Event: Disable lr-pop-cstk.

Definition:
lr-type-contents-p (object , tag , contents)
= ((type (object) = tag) ∧ (untag (object) = contents))

;; The following functions are used for the Piton code and to compute the LR
;; value for certain classes of functions (e.g. all shell accessors).

;; NOTE: The ’clock’ functions get a Piton state. This is the state just
;; BEFORE the execution of the appropriate CALL instruction. Therefore
;; to look at the parameters, it is necessary to look at the temp stack.
;; The clock function return the number of Piton instructions necessary to
;; run the CALL and the code for the SUBR.

;; Recognizers

Definition:
p-recognizer-code (name, tag)
= list (name,

’nil,
’nil,
’(fetch),
list (’push-constant, tag (’nat, tag)),
’(eq),
’(test-bool-and-jump f false),
list (’push-constant, lr-t-addr),
’(ret),
list (’dl, ’false, ’nil, list (’push-constant, lr-f-addr)),
’(ret))

Definition: p-recognizer-clock (p-state, tag) = 7

;; Accessor

Definition:
p-accessor-code (name, tag , default , offset)
= list (name,

’(x),
’nil,
’(push-local x),
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’(fetch),
list (’push-constant, tag (’nat, tag)),
’(eq),
’(test-bool-and-jump t arg1),
list (’push-constant, default),
’(ret),
’(dl arg1 nil (push-local x)),
list (’push-constant, tag (’nat, offset)),
’(add-addr),
’(fetch),
’(ret))

Definition:
p-accessor-clock (p, tag)
= if fetch (top (p-temp-stk (p)), p-data-segment (p)) = tag (’nat, tag)

then 11
else 8 endif

;; Now comes the actual code and values

Definition:
p-car-code = p-accessor-code (’car, lr-cons-tag, lr-0-addr, lr-car-offset)

Definition: p-car-clock (p) = p-accessor-clock (p, lr-cons-tag)

Event: Disable p-car-clock.

Definition:
p-cdr-code = p-accessor-code (’cdr, lr-cons-tag, lr-0-addr, lr-cdr-offset)

Definition: p-cdr-clock (p) = p-accessor-clock (p, lr-cons-tag)

Event: Disable p-cdr-clock.

Definition:
p-cons-code
= list (’cons,

’nil,
’((temp (nat 0))),
’(push-global free-ptr),
list (’push-constant, tag (’nat, lr-cdr-offset)),
’(add-addr),
’(deposit),
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’(push-global free-ptr),
list (’push-constant, tag (’nat, lr-car-offset)),
’(add-addr),
’(deposit),
’(push-global free-ptr),
’(push-global free-ptr),
list (’push-constant, tag (’nat, lr-ref-count-offset)),
’(add-addr),
’(set-local temp),
’(fetch),
’(push-constant (nat 1)),
’(push-local temp),
’(deposit),
list (’push-constant, tag (’nat, lr-cons-tag)),
’(push-global free-ptr),
’(deposit),
’(pop-global free-ptr),
’(ret))

Definition: p-cons-clock (p) = 23

Event: Disable p-cons-clock.

Definition:
p-false-code
= list (’false,

’nil,
’nil,
list (’push-constant, lr-f-addr),
’(ret))

Definition: p-false-clock (p) = 3

Event: Disable p-false-clock.

;; FALSEP TAKES ONE IMPLICIT ARG ON STACK.

Definition:
p-falsep-code
= list (’falsep,

’nil,
’nil,
list (’push-constant, lr-f-addr),
’(eq),
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’(test-bool-and-jump t true),
list (’push-constant, lr-f-addr),
’(ret),
list (’dl, ’true, ’nil, list (’push-constant, lr-t-addr)),
’(ret))

Definition: p-falsep-clock (p) = 6

Event: Disable p-falsep-clock.

;; Takes an implicit arg

Definition:
p-listp-code = p-recognizer-code (’listp, lr-cons-tag)

Definition:
p-listp-clock (p) = p-recognizer-clock (p, lr-cons-tag)

Event: Disable p-listp-clock.

Definition:
p-nlistp-code
= list (’nlistp,

’nil,
’nil,
’(fetch),
list (’push-constant, tag (’nat, lr-cons-tag)),
’(eq),
’(test-bool-and-jump f true),
list (’push-constant, lr-f-addr),
’(ret),
list (’dl, ’true, ’nil, list (’push-constant, lr-t-addr)),
’(ret))

Definition: p-nlistp-clock (p) = 7

Event: Disable p-nlistp-clock.

Definition:
p-true-code
= list (’true, ’nil, ’nil, list (’push-constant, lr-t-addr), ’(ret))

Definition: p-true-clock (p) = 3
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Event: Disable p-true-clock.

;; The old code for TRUEP is shown below. I used to ensure that there was
;; only one occurence of TRUE in the data-segment [namely at address
;; (lr-t-addr)], however only TRUEP took advantage of this. LR-PROPER-HEAPP
;; has been changed to not require only one occurrence, although only one
;; should appear. However this means we actually have to test the tag, a
;; small performance penalty for some simplicity and freedom in the spec.

Definition:
p-truep-code = p-recognizer-code (’truep, lr-true-tag)

;(defn P-TRUEP-CODE ()
; (list ’truep ’() ’()
; (list ’PUSH-CONSTANT (lr-t-addr))
; ’(EQ)
; ’(TEST-BOOL-AND-JUMP T TRUE)
; (list ’PUSH-CONSTANT (lr-f-addr))
; ’(RET)
; (list ’DL ’TRUE ’() (list ’PUSH-CONSTANT (lr-t-addr)))
; ’(RET)))

Definition:
p-truep-clock (p) = p-recognizer-clock (p, lr-false-tag)

;(defn P-TRUEP-CLOCK (p) 6)

Event: Disable p-truep-clock.

Definition:
p-runtime-support-programs
= list (p-car-code,

p-cdr-code,
p-cons-code,
p-false-code,
p-falsep-code,
p-listp-code,
p-nlistp-code,
p-true-code,
p-truep-code)

Event: Disable p-runtime-support-programs.
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Definition:
lr-convert-digit-to-ascii (digit) = (ascii-0 + digit)

Definition:
lr-convert-num-to-ascii (number , list)
= if number < 10 then cons (lr-convert-digit-to-ascii (number), list)

else lr-convert-num-to-ascii (number ÷ 10,
cons (lr-convert-digit-to-ascii (number mod 10),

list)) endif

Definition:
lr-make-label (n)
= pack (cons (car (unpack (’l)),

cons (ascii-dash, append (lr-convert-num-to-ascii (n, nil), 0))))

Event: Disable lr-make-label.

Definition:
label-instrs (instrs, n)
= if listp (instrs)

then cons (dl (lr-make-label (n), nil, car (instrs)),
label-instrs (cdr (instrs), 1 + n))

else nil endif

Definition:
comp-temp-test (expr , instrs, n)
= append (list (list (’push-local, caddr (expr)),

list (’push-constant, lr-undef-addr),
’(eq),
list (’test-bool-and-jump,

’f,
lr-make-label (n + 6 + length (instrs)))),

append (instrs ,
list (list (’set-local, caddr (expr)),

list (’jump,
lr-make-label (n + 7 + length (instrs))),

list (’push-local, caddr (expr)))))

Definition:
comp-if (test-instrs, then-instrs , else-instrs, n)
= append (test-instrs,

append (list (list (’push-constant, lr-f-addr),
’(eq),
list (’test-bool-and-jump,
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’t,
lr-make-label (n

+ 4
+ length (test-instrs)
+ length (then-instrs)))),

append (then-instrs ,
cons (list (’jump,

lr-make-label (n
+ 4
+ length (test-instrs)
+ length (then-instrs)
+ length (else-instrs))),

else-instrs))))

;; COMP-BODY-1 returns a list of Piton instructions to compile EXPR.
;; N is the number of Piton instructions previously generated, it is used
;; to generate unique labels.

Definition:
comp-body-1 (flag , expr , n)
= if flag = ’list

then if listp (expr)
then append (comp-body-1 (t, car (expr), n),

comp-body-1 (’list,
cdr (expr),
n + lr-p-c-size (t, car (expr))))

else nil endif
elseif listp (expr)
then if car (expr) = ’if

then comp-if (comp-body-1 (t, cadr (expr), n),
comp-body-1 (t,

caddr (expr),
n + 3 + lr-p-c-size (t, cadr (expr))),

comp-body-1 (t,
cadddr (expr),
n
+ 4
+ lr-p-c-size (t, cadr (expr))
+ lr-p-c-size (t, caddr (expr))),

n)
elseif car (expr) = s-temp-fetch
then list (list (’push-local, caddr (expr)))
elseif car (expr) = s-temp-eval
then append (comp-body-1 (t, cadr (expr), n),
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list (list (’set-local, caddr (expr))))
elseif car (expr) = s-temp-test
then comp-temp-test (expr , comp-body-1 (t, cadr (expr), n + 4), n)
elseif car (expr) = ’quote
then list (list (’push-constant, cadr (expr)))
else append (comp-body-1 (’list, cdr (expr), n),

if definedp (car (expr),
p-runtime-support-programs)

then list (list (’call, car (expr)))
else list (list (’call,

user-fname (car (expr)))) endif) endif
else list (list (’push-local, expr)) endif

Event: Disable comp-body-1.

Definition:
comp-body (body)
= label-instrs (append (comp-body-1 (t, body , 0), ’((ret))), 0)

Event: Disable comp-body.

Definition:
comp-programs-1 (programs)
= if listp (programs)

then cons (lr-make-program (name (car (programs)),
formal-vars (car (programs)),
temp-var-dcls (car (programs)),
comp-body (program-body (car (programs)))),

comp-programs-1 (cdr (programs)))
else nil endif

Definition:
comp-programs (programs)
= cons (lr-make-program (name (car (programs)),

formal-vars (car (programs)),
temp-var-dcls (car (programs)),
label-instrs (append (comp-body-1 (t,

program-body (car (programs)),
0),

list (list (’set-global,
area-name (lr-answer-addr)),

’(ret))),
0)),

append (comp-programs-1 (cdr (programs)), p-runtime-support-programs))
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Event: Disable comp-programs.

Definition:
lr-proper-exprp (flag , expr , pnames, formals , temps , table)
= if flag = ’list

then if listp (expr)
then lr-proper-exprp (t, car (expr), pnames, formals, temps , table)

∧ lr-proper-exprp (’list,
cdr (expr),
pnames,
formals ,
temps ,
table)

else expr = nil endif
elseif litatom (expr) then expr ∈ formals
elseif expr ' nil then f
elseif ¬ plistp (expr) then f
elseif car (expr) = s-temp-fetch
then (caddr (expr) ∈ temps) ∧ (length (expr) = 3)
elseif (car (expr) = s-temp-eval) ∨ (car (expr) = s-temp-test)
then (caddr (expr) ∈ temps)

∧ (length (expr) = 3)
∧ lr-proper-exprp (t, cadr (expr), pnames, formals , temps , table)

elseif car (expr) = ’quote
then (type (cadr (expr)) = ’addr)

∧ (cadr (expr) ∈ strip-cdrs (table))
∧ (length (cdr (expr)) = arity (car (expr)))

elseif subrp (car (expr))
then (length (cdr (expr)) = arity (car (expr)))

∧ ((car (expr) = ’if)
∨ definedp (car (expr), p-runtime-support-programs))

∧ (car (expr) 6∈ pnames)
∧ lr-proper-exprp (’list,

cdr (expr),
pnames,
formals,
temps,
table)

elseif body (car (expr))
then (length (cdr (expr)) = arity (car (expr)))

∧ (car (expr) ∈ pnames)
∧ lr-proper-exprp (’list,

cdr (expr),
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pnames,
formals,
temps ,
table)

else f endif

Definition:
all-undef-addrs (list)
= if listp (list)

then (car (list) = lr-undef-addr) ∧ all-undef-addrs (cdr (list))
else t endif

Definition:
lr-programs-properp-1 (programs, program-names, table)
= if listp (programs)

then all-litatoms (formal-vars (car (programs)))
∧ all-litatoms (strip-cars (temp-var-dcls (car (programs))))
∧ all-undef-addrs (strip-cadrs (temp-var-dcls (car (programs))))
∧ lr-proper-exprp (t,

program-body (car (programs)),
program-names ,
formal-vars (car (programs)),
strip-cars (temp-var-dcls (car (programs))),
table)

∧ lr-programs-properp-1 (cdr (programs), program-names, table)
else t endif

Event: Disable lr-programs-properp-1.

Definition:
lr-programs-properp (l , table)
= (definedp (area-name (p-pc (l)), p-prog-segment (l))

∧ (caar (p-prog-segment (l)) = ’main)
∧ all-user-fnamesp (cdr (strip-cars (p-prog-segment (l))))
∧ lr-programs-properp-1 (p-prog-segment (l),

strip-logic-fnames (cdr (p-prog-segment (l))),
table))

Event: Disable lr-programs-properp.

Theorem: lr-p-c-size-flag-not-list-not-0
(flag 6= ’list) → (lr-p-c-size (flag , expr) 6= 0)

Theorem: difference-decreases
((x 6< y) ∧ (y 6' 0)) → (((x − y) < x ) = t)
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Definition:
lr->p (p)
= p-state (lr-p-pc (p),

p-ctrl-stk (p),
p-temp-stk (p),
comp-programs (p-prog-segment (p)),
p-data-segment (p),
p-max-ctrl-stk-size (p),
p-max-temp-stk-size (p),
p-word-size (p),
p-psw (p))

Event: Disable lr->p.

Definition:
p-set-pc (p, pc)
= p-state (pc,

p-ctrl-stk (p),
p-temp-stk (p),
p-prog-segment (p),
p-data-segment (p),
p-max-ctrl-stk-size (p),
p-max-temp-stk-size (p),
p-word-size (p),
p-psw (p))

;; It should be the case that (P-CURRENT-INSTRUCTION p) = (CALL subr)
;; therefore we need to run P one more step than the clock functions
;; below to do the CALL.

Definition:
p-run-subr (subr , p)
= case on subr :

case = car
then p (p, p-car-clock (p))
case = cdr
then p (p, p-cdr-clock (p))

case = cons
then p (p, p-cons-clock (p))

case = false
then p (p, p-false-clock (p))

case = falsep
then p (p, p-falsep-clock (p))

case = listp
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then p (p, p-listp-clock (p))
case = nlistp
then p (p, p-nlistp-clock (p))

case = true
then p (p, p-true-clock (p))

case = truep
then p (p, p-truep-clock (p))

otherwise p-halt (p, ’bad-subr) endcase

Event: Disable p-run-subr.

Definition:
lr-return-pc (l)
= add-addr (lr-p-pc (l), lr-p-c-size (’list, cdr (lr-expr (l))))

Event: Disable lr-return-pc.

Definition:
lr-apply-subr (l , new-l)
= let res be p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l)))
in
p-state (p-pc (new-l),

p-ctrl-stk (res),
p-temp-stk (res),
p-prog-segment (new-l),
p-data-segment (res),
p-max-ctrl-stk-size (res),
p-max-temp-stk-size (res),
p-word-size (res),
p-psw (res)) endlet

Event: Disable lr-apply-subr.

Definition:
lr-funcall (l , new-l)
= let prog be definition (user-fname (car (lr-expr (l))),

p-prog-segment (l)),
newest-l be p-set-pc (lr->p (new-l), lr-return-pc (l))

in
if p-call-okp (list (’call, user-fname (car (lr-expr (l)))),

newest-l)
then p-state (tag (’pc, cons (user-fname (car (lr-expr (l))), nil)),
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push (make-p-call-frame (formal-vars (prog),
p-temp-stk (new-l),
temp-var-dcls (prog),
add1-addr (p-pc (newest-l))),

p-ctrl-stk (new-l)),
popn (length (formal-vars (prog)), p-temp-stk (new-l)),
p-prog-segment (new-l),
p-data-segment (new-l),
p-max-ctrl-stk-size (new-l),
p-max-temp-stk-size (new-l),
p-word-size (new-l),
’run)

else p-halt (new-l , x-y-error-msg (’p, ’call)) endif endlet

Event: Disable lr-funcall.

;; The following lemmas are needed to admit LR-EVAL

Theorem: p-accessors-lr-set-expr
(p-pc (lr-set-expr (s1 , s2 , pos)) = tag (’pc, cons (area-name (p-pc (s2 )), pos)))
∧ (p-ctrl-stk (lr-set-expr (s1 , s2 , pos)) = p-ctrl-stk (s1 ))
∧ (p-temp-stk (lr-set-expr (s1 , s2 , pos)) = p-temp-stk (s1 ))
∧ (p-prog-segment (lr-set-expr (s1 , s2 , pos)) = p-prog-segment (s2 ))
∧ (p-data-segment (lr-set-expr (s1 , s2 , pos)) = p-data-segment (s1 ))
∧ (p-max-ctrl-stk-size (lr-set-expr (s1 , s2 , pos))

= p-max-ctrl-stk-size (s1 ))
∧ (p-max-temp-stk-size (lr-set-expr (s1 , s2 , pos))

= p-max-temp-stk-size (s1 ))
∧ (p-word-size (lr-set-expr (s1 , s2 , pos)) = p-word-size (s1 ))
∧ (p-psw (lr-set-expr (s1 , s2 , pos)) = p-psw (s1 ))

Event: Disable lr-set-expr.

Theorem: p-accessors-lr-set-tstk
(p-pc (lr-set-tstk (s, ts)) = p-pc (s))
∧ (p-ctrl-stk (lr-set-tstk (s, ts)) = p-ctrl-stk (s))
∧ (p-temp-stk (lr-set-tstk (s, ts)) = ts)
∧ (p-prog-segment (lr-set-tstk (s, ts)) = p-prog-segment (s))
∧ (p-data-segment (lr-set-tstk (s, ts)) = p-data-segment (s))
∧ (p-max-ctrl-stk-size (lr-set-tstk (s, ts)) = p-max-ctrl-stk-size (s))
∧ (p-max-temp-stk-size (lr-set-tstk (s, ts)) = p-max-temp-stk-size (s))
∧ (p-word-size (lr-set-tstk (s, ts)) = p-word-size (s))
∧ (p-psw (lr-set-tstk (s, ts)) = p-psw (s))
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Event: Disable lr-set-tstk.

Theorem: p-accessors-lr-set-error
(p-pc (lr-set-error (s, flag)) = p-pc (s))
∧ (p-ctrl-stk (lr-set-error (s, flag)) = p-ctrl-stk (s))
∧ (p-temp-stk (lr-set-error (s, flag)) = p-temp-stk (s))
∧ (p-prog-segment (lr-set-error (s, flag)) = p-prog-segment (s))
∧ (p-data-segment (lr-set-error (s, flag)) = p-data-segment (s))
∧ (p-max-ctrl-stk-size (lr-set-error (s, flag)) = p-max-ctrl-stk-size (s))
∧ (p-max-temp-stk-size (lr-set-error (s, flag)) = p-max-temp-stk-size (s))
∧ (p-word-size (lr-set-error (s, flag)) = p-word-size (s))
∧ (p-psw (lr-set-error (s, flag)) = flag)

Event: Disable lr-set-error.

Theorem: p-accessors-lr-set-pos
(p-pc (lr-set-pos (s, pos)) = tag (’pc, cons (area-name (p-pc (s)), pos)))
∧ (p-ctrl-stk (lr-set-pos (s, pos)) = p-ctrl-stk (s))
∧ (p-temp-stk (lr-set-pos (s, pos)) = p-temp-stk (s))
∧ (p-prog-segment (lr-set-pos (s, pos)) = p-prog-segment (s))
∧ (p-data-segment (lr-set-pos (s, pos)) = p-data-segment (s))
∧ (p-max-ctrl-stk-size (lr-set-pos (s, pos)) = p-max-ctrl-stk-size (s))
∧ (p-max-temp-stk-size (lr-set-pos (s, pos)) = p-max-temp-stk-size (s))
∧ (p-word-size (lr-set-pos (s, pos)) = p-word-size (s))
∧ (p-psw (lr-set-pos (s, pos)) = p-psw (s))

Event: Disable lr-set-pos.

Theorem: p-accessors-lr-pop-tstk
(p-pc (lr-pop-tstk (s)) = p-pc (s))
∧ (p-ctrl-stk (lr-pop-tstk (s)) = p-ctrl-stk (s))
∧ (p-prog-segment (lr-pop-tstk (s)) = p-prog-segment (s))
∧ (p-data-segment (lr-pop-tstk (s)) = p-data-segment (s))
∧ (p-max-ctrl-stk-size (lr-pop-tstk (s)) = p-max-ctrl-stk-size (s))
∧ (p-max-temp-stk-size (lr-pop-tstk (s)) = p-max-temp-stk-size (s))
∧ (p-word-size (lr-pop-tstk (s)) = p-word-size (s))

Theorem: p-temp-stk-lr-pop-tstk
p-temp-stk (lr-pop-tstk (s))
= if listp (p-temp-stk (s)) ∧ (p-psw (s) = ’run)

then pop (p-temp-stk (s))
else p-temp-stk (s) endif

Event: Disable lr-pop-tstk.
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Theorem: area-name-tag
area-name (tag (tag , adp)) = adp-name (adp)

Theorem: offset-tag
offset (tag (tag , adp)) = adp-offset (adp)

Theorem: p-current-program-lr-set-expr
p-current-program (lr-set-expr (s1 , s2 , pos)) = p-current-program (s2 )

Theorem: p-current-program-lr-set-pos
p-current-program (lr-set-pos (s, pos)) = p-current-program (s)

Theorem: lr-expr-lr-set-expr
lr-expr (lr-set-expr (s1 , s2 , dv (offset (p-pc (s2 )), n))) = get (n, lr-expr (s2 ))

Theorem: lr-expr-lr-set-pos-t
lr-expr (lr-set-pos (s, dv (offset (p-pc (s)), n))) = get (n, lr-expr (s))

Theorem: lr-expr-flag-list-car
listp (offset (p-pc (p))) → (car (lr-expr-list (p)) = lr-expr (p))

Theorem: number-cons-lr-expr-t-list
(listp (lr-expr-list (p)) ∧ listp (offset (p-pc (p))))
→ (number-cons (lr-expr (p)) < number-cons (lr-expr-list (p)))

Theorem: lr-expr-lr-set-expr-nx
(listp (offset (p-pc (p))) ∧ listp (lr-expr-list (p)))
→ (lr-expr-list (lr-set-expr (p1 , p, nx (offset (p-pc (p)))))

= cdr (lr-expr-list (p)))

Theorem: lr-expr-list-lr-set-pos-dv-1
listp (lr-expr (p))
→ (lr-expr-list (lr-set-pos (p, dv (offset (p-pc (p)), 1)))

= cdr (lr-expr (p)))

;; If FLAG is ’LIST then state contains a list of expressions,
;; otherwise it is just one.
;; Returns a P-STATE. The result is left on the temp stack.
;; If the error flag of the resulting state is ’HALT then we terminated
;; normally. If the flag is ’RUN we have not terminated yet.
;; If the flag is anything else we got an error.

Definition:
lr-eval (flag , l , c)
= if p-psw (l) 6= ’run then l

elseif flag = ’list
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then if offset (p-pc (l)) ' nil
then lr-set-error (l , ’bad-list-position)
elseif listp (lr-expr-list (l))
then lr-eval (’list,

lr-set-expr (lr-eval (t, l , c), l , nx (offset (p-pc (l)))),
c)

else l endif
elseif c ' 0 then lr-set-error (l , ’out-of-time)
elseif litatom (lr-expr (l))
then lr-push-tstk (l , local-var-value (lr-expr (l), p-ctrl-stk (l)))
elseif lr-expr (l) ' nil then lr-set-error (l , ’bad-expression)
elseif car (lr-expr (l)) = ’if
then let test be lr-if-ok (lr-eval (t,

lr-set-pos (l ,
dv (offset (p-pc (l)), 1)),

c))
in
if p-psw (test) = ’run
then if top (p-temp-stk (test)) 6= lr-f-addr

then lr-eval (t,
lr-set-expr (lr-pop-tstk (test),

l ,
dv (offset (p-pc (l)), 2)),

c)
else lr-eval (t,

lr-set-expr (lr-pop-tstk (test),
l ,
dv (offset (p-pc (l)), 3)),

c) endif
else test endif endlet

elseif car (lr-expr (l)) = s-temp-eval
then let l1 be lr-eval (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)

in
lr-set-temp (l1 , top (p-temp-stk (l1 )), caddr (lr-expr (l))) endlet

elseif car (lr-expr (l)) = s-temp-test
then let l1 be lr-eval (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)

in
if p-max-temp-stk-size (l)
6< (2 + length (p-temp-stk (l)))

then if lr-eval-temp-setp (l) then lr-do-temp-fetch (l)
else lr-set-temp (l1 ,

top (p-temp-stk (l1 )),
caddr (lr-expr (l))) endif

else lr-set-error (l ,
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’lr-temp-setp-temp-stack-overflow) endif endlet
elseif car (lr-expr (l)) = s-temp-fetch then lr-do-temp-fetch (l)
elseif car (lr-expr (l)) = ’quote
then lr-push-tstk (l , cadr (lr-expr (l)))
elseif p-psw (lr-eval (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c))

6= ’run
then lr-eval (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
elseif subrp (car (lr-expr (l)))
then lr-apply-subr (l ,

lr-eval (’list,
lr-set-pos (l , dv (offset (p-pc (l)), 1)),
c))

elseif litatom (car (lr-expr (l)))
then let fs be lr-funcall (l ,

lr-eval (’list,
lr-set-pos (l ,

dv (offset (p-pc (l)), 1)),
c))

in
lr-set-expr (lr-pop-cstk (lr-eval (t, fs, c − 1)),

l ,
offset (p-pc (l))) endlet

else lr-set-error (l , ’bad-instruction) endif

;; Proper LR STATES

;; Sometimes we only need to know that LR-PROPER-P-AREASP holds on
;; a data-segment instead of LR-PROPER-P-DATA-SEGMENTP

Definition:
lr-proper-p-areasp (data-seg)
= if data-seg ' nil then data-seg = nil

else let area be car (data-seg)
in
litatom (car (area))
∧ listp (cdr (area))
∧ (¬ definedp (car (area), cdr (data-seg)))
∧ lr-proper-p-areasp (cdr (data-seg)) endlet endif

;; First we prove that LR-EVAL preserves PROPER-P-STATEP.

Theorem: p-accessors-lr-funcall
(p-prog-segment (lr-funcall (l , new-l)) = p-prog-segment (new-l))
∧ (p-data-segment (lr-funcall (l , new-l)) = p-data-segment (new-l))
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∧ (p-max-ctrl-stk-size (lr-funcall (l , new-l))
= p-max-ctrl-stk-size (new-l))

∧ (p-max-temp-stk-size (lr-funcall (l , new-l))
= p-max-temp-stk-size (new-l))

∧ (p-word-size (lr-funcall (l , new-l)) = p-word-size (new-l))

Theorem: p-accessors-lr-push-tstk
(p-pc (lr-push-tstk (s, v)) = p-pc (s))
∧ (p-ctrl-stk (lr-push-tstk (s, v)) = p-ctrl-stk (s))
∧ (p-prog-segment (lr-push-tstk (s, v)) = p-prog-segment (s))
∧ (p-data-segment (lr-push-tstk (s, v)) = p-data-segment (s))
∧ (p-max-ctrl-stk-size (lr-push-tstk (s, v)) = p-max-ctrl-stk-size (s))
∧ (p-max-temp-stk-size (lr-push-tstk (s, v)) = p-max-temp-stk-size (s))
∧ (p-word-size (lr-push-tstk (s, v)) = p-word-size (s))

Theorem: p-accessors-lr-if-ok
(p-pc (lr-if-ok (l)) = p-pc (l))
∧ (p-ctrl-stk (lr-if-ok (l)) = p-ctrl-stk (l))
∧ (p-temp-stk (lr-if-ok (l)) = p-temp-stk (l))
∧ (p-prog-segment (lr-if-ok (l)) = p-prog-segment (l))
∧ (p-data-segment (lr-if-ok (l)) = p-data-segment (l))
∧ (p-max-ctrl-stk-size (lr-if-ok (l)) = p-max-ctrl-stk-size (l))
∧ (p-max-temp-stk-size (lr-if-ok (l)) = p-max-temp-stk-size (l))
∧ (p-word-size (lr-if-ok (l)) = p-word-size (l))

Theorem: p-accessors-lr-set-temp
(p-pc (lr-set-temp (s, v , n)) = p-pc (s))
∧ (p-ctrl-stk (lr-set-temp (s, v , n))

= if p-psw (s) = ’run
then set-local-var-value (v , n, p-ctrl-stk (s))
else p-ctrl-stk (s) endif)

∧ (p-temp-stk (lr-set-temp (s, v , n)) = p-temp-stk (s))
∧ (p-prog-segment (lr-set-temp (s, v , n)) = p-prog-segment (s))
∧ (p-data-segment (lr-set-temp (s, v , n)) = p-data-segment (s))
∧ (p-max-ctrl-stk-size (lr-set-temp (s, v , n)) = p-max-ctrl-stk-size (s))
∧ (p-max-temp-stk-size (lr-set-temp (s, v , n)) = p-max-temp-stk-size (s))
∧ (p-word-size (lr-set-temp (s, v , n)) = p-word-size (s))
∧ (p-psw (lr-set-temp (s, v , n)) = p-psw (s))

Theorem: p-accessors-lr-do-temp-fetch
(p-pc (lr-do-temp-fetch (s)) = p-pc (s))
∧ (p-ctrl-stk (lr-do-temp-fetch (s)) = p-ctrl-stk (s))
∧ (p-prog-segment (lr-do-temp-fetch (s)) = p-prog-segment (s))
∧ (p-data-segment (lr-do-temp-fetch (s)) = p-data-segment (s))
∧ (p-max-ctrl-stk-size (lr-do-temp-fetch (s)) = p-max-ctrl-stk-size (s))
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∧ (p-max-temp-stk-size (lr-do-temp-fetch (s)) = p-max-temp-stk-size (s))
∧ (p-word-size (lr-do-temp-fetch (s)) = p-word-size (s))

Theorem: p-accessors-lr-pop-cstk
(p-pc (lr-pop-cstk (s)) = p-pc (s))
∧ (p-ctrl-stk (lr-pop-cstk (s))

= if p-psw (s) = ’run then pop (p-ctrl-stk (s))
else p-ctrl-stk (s) endif)

∧ (p-temp-stk (lr-pop-cstk (s)) = p-temp-stk (s))
∧ (p-prog-segment (lr-pop-cstk (s)) = p-prog-segment (s))
∧ (p-data-segment (lr-pop-cstk (s)) = p-data-segment (s))
∧ (p-max-ctrl-stk-size (lr-pop-cstk (s)) = p-max-ctrl-stk-size (s))
∧ (p-max-temp-stk-size (lr-pop-cstk (s)) = p-max-temp-stk-size (s))
∧ (p-word-size (lr-pop-cstk (s)) = p-word-size (s))
∧ (p-psw (lr-pop-cstk (s)) = p-psw (s))

Theorem: lr-eval-if-p-psw-1
((flag 6= ’list)
∧ (p-psw (lr-eval (flag , l , c)) = ’run)
∧ (car (lr-expr (l)) = ’if)
∧ (p-psw (l) = ’run)
∧ (c 6' 0)
∧ listp (lr-expr (l)))
→ (p-psw (lr-eval (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)) = ’run)

Event: Disable lr-eval-if-p-psw-1.

Theorem: adp-offset-untag-add-addr
adp-offset (untag (add-addr (addr , n))) = (offset (addr) + n)

Theorem: adp-offset-untag-sub-addr
adp-offset (untag (sub-addr (addr , n))) = (offset (addr) − n)

Theorem: adp-name-untag-sub-addr
adp-name (untag (sub-addr (addr , n))) = adp-name (untag (addr))

Theorem: adp-offset-cons
adp-offset (cons (area-name, offset)) = offset

Theorem: p-accessors-lr->p
(p-pc (lr->p (l)) = lr-p-pc (l))
∧ (p-ctrl-stk (lr->p (l)) = p-ctrl-stk (l))
∧ (p-temp-stk (lr->p (l)) = p-temp-stk (l))
∧ (p-prog-segment (lr->p (l)) = comp-programs (p-prog-segment (l)))
∧ (p-data-segment (lr->p (l)) = p-data-segment (l))
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∧ (p-max-ctrl-stk-size (lr->p (l)) = p-max-ctrl-stk-size (l))
∧ (p-max-temp-stk-size (lr->p (l)) = p-max-temp-stk-size (l))
∧ (p-word-size (lr->p (l)) = p-word-size (l))
∧ (p-psw (lr->p (l)) = p-psw (l))

Theorem: type-lr-p-pc
type (lr-p-pc (l)) = ’pc

Theorem: cddr-nil-lr-p-pc
cddr (lr-p-pc (l)) = nil

Theorem: listp-untag-lr-p-pc
listp (untag (lr-p-pc (l)))

Theorem: numberp-cdr-lr-p-pc
cdr (untag (lr-p-pc (l))) ∈ N

Theorem: car-untag-lr-p-pc
car (untag (lr-p-pc (p))) = car (untag (p-pc (p)))

Theorem: area-name-lr-p-pc
area-name (lr-p-pc (p)) = area-name (p-pc (p))

Theorem: definedp-comp-programs-1-definedp-orig
definedp (x , comp-programs-1 (programs)) = definedp (x , programs)

Theorem: definedp-append
definedp (x , append (l1 , l2 )) = (definedp (x , l1 ) ∨ definedp (x , l2 ))

Theorem: definedp-comp-programs-definedp-orig
definedp (x , programs) → definedp (x , comp-programs (programs))

Theorem: p-accessors-p-halt
(p-pc (p-halt (p, psw)) = p-pc (p))
∧ (p-ctrl-stk (p-halt (p, psw)) = p-ctrl-stk (p))
∧ (p-temp-stk (p-halt (p, psw)) = p-temp-stk (p))
∧ (p-prog-segment (p-halt (p, psw)) = p-prog-segment (p))
∧ (p-data-segment (p-halt (p, psw)) = p-data-segment (p))
∧ (p-max-ctrl-stk-size (p-halt (p, psw)) = p-max-ctrl-stk-size (p))
∧ (p-max-temp-stk-size (p-halt (p, psw)) = p-max-temp-stk-size (p))
∧ (p-word-size (p-halt (p, psw)) = p-word-size (p))
∧ (p-psw (p-halt (p, psw)) = psw)

Event: Disable p-halt.
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Theorem: p-accessors-p-set-pc
(p-pc (p-set-pc (p, pc)) = pc)
∧ (p-ctrl-stk (p-set-pc (p, pc)) = p-ctrl-stk (p))
∧ (p-temp-stk (p-set-pc (p, pc)) = p-temp-stk (p))
∧ (p-prog-segment (p-set-pc (p, pc)) = p-prog-segment (p))
∧ (p-data-segment (p-set-pc (p, pc)) = p-data-segment (p))
∧ (p-max-ctrl-stk-size (p-set-pc (p, pc)) = p-max-ctrl-stk-size (p))
∧ (p-max-temp-stk-size (p-set-pc (p, pc)) = p-max-temp-stk-size (p))
∧ (p-word-size (p-set-pc (p, pc)) = p-word-size (p))
∧ (p-psw (p-set-pc (p, pc)) = p-psw (p))

Event: Disable p-set-pc.

Theorem: p-psw-not-run
(p-psw (p-state) 6= ’run) → (p (p-state, clock) = p-state)

Theorem: p-psw-p-halt-x-y-error-msg
p (p-halt (p-state, x-y-error-msg (x , y)), n)
= p-halt (p-state, x-y-error-msg (x , y))

Event: Disable p-psw-p-halt-x-y-error-msg.

Theorem: p-accessors-p-run-subr
(p-prog-segment (p-run-subr (subr , p)) = p-prog-segment (p))
∧ (p-max-ctrl-stk-size (p-run-subr (subr , p)) = p-max-ctrl-stk-size (p))
∧ (p-max-temp-stk-size (p-run-subr (subr , p)) = p-max-temp-stk-size (p))
∧ (p-word-size (p-run-subr (subr , p)) = p-word-size (p))

Theorem: p-accessors-lr-apply-subr
(p-pc (lr-apply-subr (l1 , l2 )) = p-pc (l2 ))
∧ (p-prog-segment (lr-apply-subr (l1 , l2 )) = p-prog-segment (l2 ))
∧ (p-max-ctrl-stk-size (lr-apply-subr (l1 , l2 ))

= p-max-ctrl-stk-size (l2 ))
∧ (p-max-temp-stk-size (lr-apply-subr (l1 , l2 ))

= p-max-temp-stk-size (l2 ))
∧ (p-word-size (lr-apply-subr (l1 , l2 )) = p-word-size (l2 ))

Theorem: p-prog-segment-lr-eval
p-prog-segment (lr-eval (flag , l , c)) = p-prog-segment (l)

Theorem: p-max-ctrl-stk-size-lr-eval
p-max-ctrl-stk-size (lr-eval (flag , l , c)) = p-max-ctrl-stk-size (l)

Theorem: p-max-temp-stk-size-lr-eval
p-max-temp-stk-size (lr-eval (flag , l , c)) = p-max-temp-stk-size (l)
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Theorem: p-word-size-lr-eval
p-word-size (lr-eval (flag , l , c)) = p-word-size (l)

Theorem: area-name-p-pc-lr-eval
area-name (p-pc (lr-eval (flag , l , c))) = area-name (p-pc (l))

Theorem: lr-programs-properp-lr-eval
lr-programs-properp (lr-eval (flag , l , c), table)
= lr-programs-properp (l , table)

Theorem: definedp-deposit
definedp (tag , deposit (anything , addr , data-seg)) = definedp (tag , data-seg)

Theorem: deposit-a-list-cons-opener
deposit-a-list (cons (x , list), addr , data-seg)
= deposit (x , addr , deposit-a-list (list , add1-addr (addr), data-seg))

Theorem: deposit-a-list-nil
deposit-a-list (nil, addr , data-seg) = data-seg

Event: Disable deposit-a-list.

Theorem: assoc-put-assoc-3
assoc (name1 , put-assoc (val , name2 , alist))
= if name1 = name2

then if definedp (name1 , alist) then cons (name1 , val)
else f endif

else assoc (name1 , alist) endif

Event: Disable assoc-put-assoc-3.

Theorem: adpp-lessp-offset-deposit
((offset < length (cdr (assoc (name, data-seg)))) ∧ definedp (name, data-seg))
→ (offset < length (cdr (assoc (name, deposit (anything , anywhere, data-seg)))))

Theorem: adpp-deposit-anything-at-all
adpp (adp, data-seg) → adpp (adp, deposit (anything , addr2 , data-seg))

Event: Disable adpp-lessp-offset-deposit.

Event: Disable adpp-deposit-anything-at-all.

Theorem: adpp-untag-definedp-area-name
adpp (untag (addr), data-seg) → definedp (area-name (addr), data-seg)
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Event: Disable adpp-untag-definedp-area-name.

Theorem: adpp-cons-pack-definedp-area-name
adpp (cons (pack (xxx ), offset), data-seg) → definedp (pack (xxx ), data-seg)

Theorem: adpp-untag-numberp-offset
adpp (untag (addr), data-seg) → (offset (addr) ∈ N)

Event: Disable adpp-untag-numberp-offset.

Theorem: adpp-untag-listp
adpp (untag (addr), data-seg) → listp (untag (addr))

Event: Disable adpp-untag-listp.

Theorem: adpp-add-addr-0
(adpp (untag (addr), data-seg)
∧ (cddr (addr) = nil)
∧ (type (addr) = ’addr)
∧ (n ' 0))
→ (add-addr (addr , n) = addr)

Event: Disable adpp-add-addr-0.

Theorem: adpp-untag-lessp-offset
adpp (untag (addr), data-seg)
→ (offset (addr) < length (cdr (assoc (area-name (addr), data-seg))))

Event: Disable adpp-untag-lessp-offset.

Theorem: adpp-same-signature
same-signature (data-seg2 , data-seg1 )
→ (adpp (adp, data-seg2 ) = adpp (adp, data-seg1 ))

Event: Disable adpp.

Theorem: p-objectp-similar-p-states
(p-objectp (object , p0 )
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ (p-word-size (p0 ) = p-word-size (p1 )))
→ p-objectp (object , p1 )
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Theorem: all-p-objectps-lr->p-similar-states
(all-p-objectps (lst , p0 )
∧ (p-word-size (p0 ) = p-word-size (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 )))
→ all-p-objectps (lst , p1 )

Theorem: proper-p-data-segmentp-lr->p-similar-states
(proper-p-data-segmentp (data-seg , p0 )
∧ (p-word-size (p0 ) = p-word-size (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 )))
→ proper-p-data-segmentp (data-seg , p1 )

Theorem: proper-p-temp-var-dclsp-lr->p-similar-states
(proper-p-temp-var-dclsp (temp-var-dcls , p0 )
∧ (p-word-size (p0 ) = p-word-size (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 )))
→ proper-p-temp-var-dclsp (temp-var-dcls , p1 )

Theorem: proper-p-instructionp-similar-p-states
(proper-p-instructionp (ins, name, p0 )
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ (p-word-size (p0 ) = p-word-size (p1 )))
→ proper-p-instructionp (ins, name, p1 )

Theorem: proper-labeled-p-instructionsp-lr->p-similar-states
(proper-labeled-p-instructionsp (lst , name, p0 )
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ (p-word-size (p0 ) = p-word-size (p1 )))
→ proper-labeled-p-instructionsp (lst , name, p1 )

Theorem: proper-p-prog-segmentp-lr->p-similar-states
(proper-p-prog-segmentp (programs , p0 )
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ (p-word-size (p0 ) = p-word-size (p1 )))
→ proper-p-prog-segmentp (programs, p1 )

Theorem: proper-p-temp-stkp-lr->p-similar-states
(proper-p-temp-stkp (temp-stk , p0 )
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 ))
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∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ (p-word-size (p0 ) = p-word-size (p1 )))
→ proper-p-temp-stkp (temp-stk , p1 )

Theorem: proper-p-alistp-lr->p-similar-states
(proper-p-alistp (bindings, p0 )
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ (p-word-size (p0 ) = p-word-size (p1 )))
→ proper-p-alistp (bindings , p1 )

Theorem: proper-p-ctrl-stkp-lr->p-similar-states
(proper-p-ctrl-stkp (ctrl-stk , name, p0 )
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ (p-word-size (p0 ) = p-word-size (p1 )))
→ proper-p-ctrl-stkp (ctrl-stk , name, p1 )

;; Now we prove what the result of running the SUBRPs. We
;; start with a sample state (that the rewriter can match with
;; P-APPLY-SUBR-STATE) and run it. We are only interested in TEMP-STK and
;; DATA-SEGMENT of the result. However the running of the Piton code can
;; be a bit tedious, so we try and prove both parts at once with the
;; following function P-GOOD-RESULTP. This also has the not ERRORP check
;; inside of it so that we should only have one instance of the Piton
;; interpreter (P) in each theorem. This should hopefully reduce the time
;; (and pain) of proving these theorems.

Definition:
p-good-resultp (p, data-seg , temp-stk , ctrl-stk , pc)
= if p-psw (p) 6= ’run then t

else (p-data-segment (p) = data-seg)
∧ (p-temp-stk (p) = temp-stk)
∧ listp (ctrl-stk)
∧ (p-ctrl-stk (p) = ctrl-stk)
∧ (p-pc (p) = pc) endif

Theorem: assoc-append-1
assoc (x , append (list1 , list2 ))
= if definedp (x , list1 ) then assoc (x , list1 )

else assoc (x , list2 ) endif

Event: Disable assoc-append-1.

Theorem: lr-programs-properp-1-all-user-fnamesp-not-user-fnamep
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(all-user-fnamesp (strip-cars (programs)) ∧ (¬ user-fnamep (x )))
→ (¬ definedp (x , programs))

Theorem: definitions-subrps-lr-programs-properp
lr-programs-properp (l , table)
→ ((assoc (’car, comp-programs (p-prog-segment (l))) = p-car-code)

∧ (assoc (’cdr, comp-programs (p-prog-segment (l)))
= p-cdr-code)

∧ (assoc (’cons, comp-programs (p-prog-segment (l)))
= p-cons-code)

∧ (assoc (’false, comp-programs (p-prog-segment (l)))
= p-false-code)

∧ (assoc (’falsep, comp-programs (p-prog-segment (l)))
= p-falsep-code)

∧ (assoc (’listp, comp-programs (p-prog-segment (l)))
= p-listp-code)

∧ (assoc (’nlistp, comp-programs (p-prog-segment (l)))
= p-nlistp-code)

∧ (assoc (’true, comp-programs (p-prog-segment (l)))
= p-true-code)

∧ (assoc (’truep, comp-programs (p-prog-segment (l)))
= p-truep-code))

Event: Disable lr-programs-properp-1-all-user-fnamesp-not-user-fnamep.

Event: Disable definitions-subrps-lr-programs-properp.

;; and now some openers for p-good-resultp

Theorem: p-good-resultp-p-state-opener
p-good-resultp (p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
’run),

result-data-seg ,
result-temp-stk ,
result-ctrl-stk ,
result-pc)

= ((data-seg = result-data-seg)
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∧ (temp-stk = result-temp-stk)
∧ listp (result-ctrl-stk)
∧ (ctrl-stk = result-ctrl-stk)
∧ (pc = result-pc))

Theorem: p-good-resultp-p-halt-errorp-opener
(psw 6= ’run)
→ p-good-resultp (p-halt (p, psw), data-seg , temp-stk , ctrl-stk , pc)

Event: Disable p-good-resultp.

Theorem: all-p-objectps-bad-type
((get (offset , lst) 6= list (type (get (offset , lst)), untag (get (offset , lst))))
∧ (offset ∈ N)
∧ (offset < length (lst)))
→ (¬ all-p-objectps (lst , p))

Theorem: proper-p-data-segmentp-bad-type
((fetch (addr , data-seg)
6= list (type (fetch (addr , data-seg)), untag (fetch (addr , data-seg))))
∧ adpp (untag (addr), data-seg))
→ (¬ proper-p-data-segmentp (data-seg , p))

Theorem: p-current-program-p-state
p-current-program (p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

= assoc (area-name (pc), prog-seg)

Theorem: p-current-instruction-opener
p-current-instruction (p-state (pc,

temp-stk ,
ctrl-stk ,
prog-segment ,
data-segment ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
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psw))
= unlabel (get (offset (pc),

program-body (assoc (area-name (pc), prog-segment))))

Event: Disable p-current-instruction-opener.

Theorem: fetch-deposit
((offset (addr1 ) ∈ N) ∧ (offset (addr2 ) ∈ N))
→ (fetch (addr1 , deposit (value, addr2 , data-seg))

= if definedp (area-name (addr2 ), data-seg)
then if area-name (addr1 ) = area-name (addr2 )

then if offset (addr1 ) = offset (addr2 ) then value
else fetch (addr1 , data-seg) endif

else fetch (addr1 , data-seg) endif
else fetch (addr1 , data-seg) endif)

;; add-addr

Theorem: area-name-add-addr
area-name (add-addr (addr , n)) = area-name (addr)

Theorem: offset-add-addr
offset (add-addr (addr , n)) = (offset (addr) + n)

Theorem: adp-name-untag-add-addr
adp-name (untag (add-addr (addr , n))) = area-name (addr)

Theorem: add-addr-of-non-number
(n 6∈ N) → (add-addr (addr , n) = add-addr (addr , 0))

Theorem: add-addr-add-addr
add-addr (add-addr (addr , n), m) = add-addr (addr , n + m)

Theorem: listp-untag-add-addr
listp (untag (add-addr (addr , n)))

Theorem: type-add-addr
type (add-addr (addr , n)) = type (addr)

Theorem: cddr-add-addr
cddr (add-addr (addr , n)) = nil

Theorem: area-name-lr-return-pc
area-name (lr-return-pc (l)) = area-name (p-pc (l))
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Theorem: listp-untag-lr-return-pc
listp (untag (lr-return-pc (l)))

Theorem: type-lr-return-pc
type (lr-return-pc (l)) = ’pc

Theorem: cddr-lr-return-pc
cddr (lr-return-pc (l)) = nil

Theorem: numberp-offset-return-pc
offset (lr-return-pc (l)) ∈ N

Theorem: numberp-cdr-untag-return-pc
cdr (untag (lr-return-pc (l))) ∈ N

Theorem: car-untag-lr-return-pc
car (untag (lr-return-pc (l))) = car (untag (p-pc (l)))

;; sub-addr

Theorem: area-name-sub-addr
area-name (sub-addr (addr , n)) = area-name (addr)

Theorem: cddr-sub-addr
cddr (sub-addr (addr , n)) = nil

Theorem: type-sub-addr
type (sub-addr (addr , n)) = type (addr)

Theorem: listp-untag-sub-addr
listp (untag (sub-addr (addr , n)))

Theorem: offset-sub-addr
offset (sub-addr (addr , n)) = (offset (addr) − n)

;; LR-BOUNDARY-NODEP

Theorem: lr-boundary-nodep-sub-addr
lr-boundary-nodep (addr)
→ lr-boundary-nodep (sub-addr (addr , identity (lr-node-size)))

Theorem: lr-boundary-nodep-add-addr-lr-node-size
lr-boundary-nodep (addr)
→ lr-boundary-nodep (add-addr (addr , identity (lr-node-size)))

Event: Disable lr-boundary-nodep.
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;; LR-NODEP

Theorem: lr-nodep-opener
lr-nodep (addr , data-seg)
= ((type (addr) = ’addr)

∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = identity (lr-heap-name)))

Event: Disable lr-nodep.

;; LR-GOOD-POINTERP

Theorem: lr-good-pointerp-opener
lr-good-pointerp (addr , data-seg)
= ((type (addr) = ’addr)

∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = identity (lr-heap-name))
∧ (type (fetch (add-addr (addr , identity (lr-ref-count-offset)),

data-seg))
= ’nat))

Event: Disable lr-good-pointerp.

Theorem: equal-plus-remainder-0-fact
(((offset1 mod max ) = 0)
∧ ((offset2 mod max ) = 0)
∧ (n < max )
∧ (m < max )
∧ (offset1 ∈ N)
∧ (offset2 ∈ N))
→ (((n + offset1 ) = (m + offset2 ))

= ((fix (n) = fix (m)) ∧ (offset1 = offset2 )))

Theorem: lr-boundary-offsetp-equal-plus-fact
(lr-boundary-offsetp (offset1 )
∧ lr-boundary-offsetp (offset2 )
∧ (n < lr-node-size)
∧ (m < lr-node-size)
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∧ (offset1 ∈ N)
∧ (offset2 ∈ N))
→ (((n + offset1 ) = (m + offset2 ))

= ((fix (n) = fix (m)) ∧ (offset1 = offset2 )))

Theorem: good-posp-list-nx-t-simple
(good-posp (’list, pos, body)
∧ listp (pos)
∧ (car (last (pos)) < length (cur-expr (butlast (pos), body))))
→ (good-posp (’list, nx (pos), body) ∧ good-posp1 (pos, body))

Theorem: lr-programs-properp-1-lr-proper-exprp
(lr-programs-properp-1 (progs, program-names , table) ∧ (prog ∈ progs))
→ lr-proper-exprp (t,

program-body (prog),
program-names ,
formal-vars (prog),
strip-cars (temp-var-dcls (prog)),
table)

Theorem: lr-proper-exprp-list-lr-proper-get-t
lr-proper-exprp (’list, expr , pnames, formals, temps, table)
→ (lr-proper-exprp (t, get (n, expr), pnames, formals, temps, table)

= (n < length (expr)))

Theorem: lr-proper-exprp-t-lr-proper-get-t
((car (expr) 6= s-temp-fetch)
∧ (car (expr) 6= s-temp-eval)
∧ (car (expr) 6= s-temp-test)
∧ (car (expr) 6= ’quote)
∧ (n 6' 0)
∧ lr-proper-exprp (t, expr , pnames, formals, temps, table))
→ (lr-proper-exprp (t, get (n, expr), pnames, formals, temps , table)

= (n < length (expr)))

Event: Disable lr-proper-exprp-list-lr-proper-get-t.

Theorem: lr-proper-exprp-lr-proper-exprp-cur-expr
(lr-proper-exprp (t, body , pnames, formals, temps, table) ∧ good-posp1 (pos, body))
→ lr-proper-exprp (t, cur-expr (pos, body), pnames, formals, temps , table)

Theorem: lr-programs-properp-lr-programs-properp-1
(lr-programs-properp (l , table) ∧ (prog-seg = p-prog-segment (l)))
→ (lr-programs-properp-1 (p-prog-segment (l),

strip-logic-fnames (cdr (prog-seg)),
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table)
∧ definedp (area-name (p-pc (l)), prog-seg))

Theorem: lr-programs-properp-lr-proper-exprp-lr-expr
(lr-programs-properp (l , table)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l))))
→ lr-proper-exprp (t,

lr-expr (l),
strip-logic-fnames (cdr (p-prog-segment (l))),
formal-vars (p-current-program (l)),
strip-cars (temp-var-dcls (p-current-program (l))),
table)

Theorem: lr-proper-exprp-length-cur-expr
(lr-proper-exprp (t, expr , pnames, formals, temps , table)
∧ listp (expr)
∧ (subrp (car (expr)) ∨ body (car (expr)))
∧ (car (expr) 6= ’quote))
→ (length (expr) = (1 + arity (car (expr))))

Theorem: listp-comp-body-1
listp (comp-body-1 (flag , body , n))
= if flag = ’list then listp (body)

else t endif

Theorem: car-append
listp (x ) → (car (append (x , y)) = car (x ))

Theorem: length-cdr-comp-if-comp-body
length (comp-if (comp-body-1 (t, test , n1 ),

comp-body-1 (t, then, n2 ),
comp-body-1 (t, else, n3 ),
n))

= (length (comp-body-1 (t, test , n1 ))
+ length (comp-body-1 (t, then, n2 ))
+ length (comp-body-1 (t, else, n3 ))
+ 4)

Theorem: lr-p-c-size-list-0-opener
lr-p-c-size-list (0, expr) = 0

Theorem: lr-p-c-size-list-add1-opener
((1 + n) < length (expr))
→ (lr-p-c-size-list (1 + n, expr)

= (lr-p-c-size (t, cadr (expr)) + lr-p-c-size-list (n, cdr (expr))))
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Theorem: length-comp-body-1-lr-p-c-size
length (comp-body-1 (flag , body , n)) = lr-p-c-size (flag , body)

Event: Disable lr-p-c-size-list-add1-opener.

Theorem: length-label-instrs
length (label-instrs (instrs , n)) = length (instrs)

Theorem: length-comp-body-lr-p-c-size
length (comp-body (body)) = (1 + lr-p-c-size (t, body))

Theorem: lr-p-c-size-flag-list
lr-p-c-size (’list, cdr (expr)) = lr-p-c-size-list (length (expr) − 1, expr)

Theorem: lr-proper-exprp-car-if-cadr
(lr-proper-exprp (t, body , pnames, formals, temps, table)
∧ listp (body)
∧ (car (body) = ’if))
→ lr-proper-exprp (t, cadr (body), pnames, formals, temps, table)

Theorem: lr-proper-exprp-car-if-caddr
(lr-proper-exprp (t, body , pnames, formals, temps, table)
∧ listp (body)
∧ (car (body) = ’if))
→ lr-proper-exprp (t, caddr (body), pnames, formals, temps, table)

Theorem: lr-proper-exprp-car-if-cadddr
(lr-proper-exprp (t, body , pnames, formals , temps, table)
∧ listp (body)
∧ (car (body) = ’if))
→ lr-proper-exprp (t, cadddr (body), pnames, formals , temps , table)

Theorem: good-posp-list-t-offset-program-body
(good-posp (’list, offset (p-pc (l)), program-body (p-current-program (l)))
∧ listp (lr-expr-list (l))
∧ listp (offset (p-pc (l))))
→ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))

Theorem: good-posp-list-nx-offset-program-body
(good-posp (’list, offset (p-pc (l)), program-body (p-current-program (l)))
∧ listp (offset (p-pc (l)))
∧ listp (lr-expr-list (l)))
→ good-posp (’list,

nx (offset (p-pc (l))),
program-body (p-current-program (l)))
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Theorem: name-formal-vars-temp-var-dcls-program-body-cons
(name (cons (name, rest)) = name)
∧ (formal-vars (cons (name, cons (formal-vars , rest))) = formal-vars)
∧ (temp-var-dcls (cons (name,

cons (formal-vars, cons (temp-var-dcls , program-body))))
= temp-var-dcls)

∧ (program-body (cons (name,
cons (formal-vars, cons (temp-var-dcls , program-body))))

= program-body)

Theorem: program-body-assoc-comp-programs-1
definedp (name, programs)
→ (program-body (assoc (name, comp-programs-1 (programs)))

= comp-body (program-body (assoc (name, programs))))

Theorem: program-body-assoc-comp-programs
definedp (name, programs)
→ (program-body (assoc (name, comp-programs (programs)))

= if name = name (car (programs))
then label-instrs (append (comp-body-1 (t,

program-body (car (programs)),
0),

list (identity (list (’set-global,
area-name (lr-answer-addr))),

’(ret))),
0)

else comp-body (program-body (assoc (name, cdr (programs)))) endif)

Theorem: definedp-area-name-member-p-current-program
definedp (area-name (p-pc (l)), p-prog-segment (l))
→ (p-current-program (l) ∈ p-prog-segment (l))

Definition:
induct-hint-6 (n, body)
= if n < length (body) then induct-hint-6 (1 + n, body)

else t endif

Theorem: lr-p-c-size-list-0
listp (body)
→ ((lr-p-c-size-list (n, body) = 0) = ((n ' 0) ∨ (cdr (body) ' nil)))

Event: Disable lr-p-c-size-list-0.

Theorem: lessp-lr-p-c-size-list-lessp-sub1-length
(lr-p-c-size-list (n, body) 6= 0)
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→ ((lr-p-c-size-list (n, body) − 1)
< lr-p-c-size-list (length (body) − 1, body))

Theorem: lr-p-pc-1-body-0
lr-p-pc-1 (0, pos) = 0

Theorem: lessp-lr-p-pc-1-lr-p-c-size-helper-1
(listp (body)
∧ (n 6' 0)
∧ (lr-p-pc-1 (get (n, body), pos) < lr-p-c-size (t, get (n, body)))
∧ (lr-p-pc-1 (get (n, body), pos) 6= 0))
→ (((lr-p-c-size-list (n − 1, body) + lr-p-pc-1 (get (n, body), pos)) − 1)

< lr-p-c-size-list (length (body) − 1, body))

Theorem: lessp-lr-p-pc-1-lr-p-c-size
lr-p-pc-1 (body , pos) < lr-p-c-size (t, body)

Event: Disable lessp-lr-p-pc-1-lr-p-c-size-helper-1.

Theorem: not-lessp-p-max-temp-stk-size-lr-push-tstk
(p-psw (lr-push-tstk (l , anything)) = ’run)
→ (p-max-temp-stk-size (l)

6< length (p-temp-stk (lr-push-tstk (l , anything))))

Theorem: proper-p-temp-stkp-lr->p-lr-push-tstk
proper-p-temp-stkp (temp-stkp, lr->p (lr-push-tstk (l , anything)))
= proper-p-temp-stkp (temp-stkp, lr->p (l))

Theorem: proper-p-alistp-p-objectp
(proper-p-alistp (bindings, l) ∧ definedp (name, bindings))
→ p-objectp (cdr (assoc (name, bindings)), l)

Theorem: formal-vars-assoc-comp-programs-1
definedp (name, programs)
→ (formal-vars (assoc (name, comp-programs-1 (programs)))

= formal-vars (assoc (name, programs)))

Theorem: formal-vars-assoc-comp-programs
definedp (name, programs)
→ (formal-vars (assoc (name, comp-programs (programs)))

= formal-vars (assoc (name, programs)))

Theorem: temp-var-dcls-assoc-comp-programs-1
definedp (name, programs)
→ (temp-var-dcls (assoc (name, comp-programs-1 (programs)))

= temp-var-dcls (assoc (name, programs)))
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Theorem: temp-var-dcls-assoc-comp-programs
definedp (name, programs)
→ (temp-var-dcls (assoc (name, comp-programs (programs)))

= temp-var-dcls (assoc (name, programs)))

Theorem: lr-programs-properp-definedp-car-untag-p-pc
lr-programs-properp (l , table)
→ definedp (car (untag (p-pc (l))), p-prog-segment (l))

Theorem: p-objectp-cdr-assoc-litatom-proper-p-alistp
(proper-p-alistp (bindings, lp)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (strip-cars (bindings)

= append (formal-vars (assoc (car (untag (p-pc (l))),
comp-programs-1 (p-prog-segment (l)))),

strip-cars (temp-var-dcls (assoc (car (untag (p-pc (l))),
comp-programs-1 (p-prog-segment (l)))))))

∧ litatom (lr-expr (l)))
→ p-objectp (cdr (assoc (lr-expr (l), bindings)), lp)

Theorem: proper-p-temp-stkp-lr-push-tstk-assoc-bindings
(lr-programs-properp (l , table)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ proper-p-alistp (bindings (car (p-ctrl-stk (l))), lr->p (l))
∧ litatom (lr-expr (l))
∧ (strip-cars (bindings (car (p-ctrl-stk (l))))

= append (formal-vars (assoc (car (untag (p-pc (l))),
comp-programs-1 (p-prog-segment (l)))),

strip-cars (temp-var-dcls (assoc (car (untag (p-pc (l))),
comp-programs-1 (p-prog-segment (l))))))))

→ (proper-p-temp-stkp (p-temp-stk (lr-push-tstk (l ,
cdr (assoc (lr-expr (l),

bindings (car (p-ctrl-stk (l))))))),
lr->p (l))

= proper-p-temp-stkp (p-temp-stk (l), lr->p (l)))

Theorem: lr-p-pc-lr-push-tstk
lr-p-pc (lr-push-tstk (l , anything)) = lr-p-pc (l)

Theorem: proper-p-statep-lr->p-lr-push-tstk
(proper-p-statep (lr->p (l))
∧ lr-programs-properp (l , table)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ (p-psw (lr-push-tstk (l ,

61



cdr (assoc (lr-expr (l),
bindings (car (p-ctrl-stk (l)))))))

= ’run)
∧ litatom (lr-expr (l)))
→ proper-p-statep (lr->p (lr-push-tstk (l ,

cdr (assoc (lr-expr (l),
bindings (car (p-ctrl-stk (l))))))))

Theorem: good-posp1-cons-lessp-4-if-lr-proper-exprp
((car (cur-expr (pos, body)) = ’if)
∧ good-posp1 (pos, body)
∧ lr-proper-exprp (t, body , pnames, formals , temps, table))
→ (good-posp1 (dv (pos, 1), body)

∧ good-posp1 (dv (pos, 2), body)
∧ good-posp1 (dv (pos, 3), body))

Theorem: good-posp-cons-lessp-4-if-lr-programs-properp
((car (lr-expr (l)) = ’if)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (good-posp1 (dv (offset (p-pc (l)), 1), program-body (p-current-program (l)))

∧ good-posp1 (dv (offset (p-pc (l)), 2),
program-body (p-current-program (l)))

∧ good-posp1 (dv (offset (p-pc (l)), 3),
program-body (p-current-program (l))))

Theorem: proper-p-statep-lr->p-lr-set-pos
(lr-programs-properp (l , table) ∧ proper-p-statep (lr->p (l)))
→ proper-p-statep (lr->p (lr-set-pos (l , pos)))

Theorem: lr-p-pc-lr-pop-tstk
lr-p-pc (lr-pop-tstk (l)) = lr-p-pc (l)

Theorem: proper-p-statep-lr->p-lr-pop-tstk
proper-p-statep (lr->p (l)) → proper-p-statep (lr->p (lr-pop-tstk (l)))

Theorem: good-posp-dv-1-temps-lr-expr
(((car (lr-expr (l)) = s-temp-eval) ∨ (car (lr-expr (l)) = s-temp-test))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l))))
→ good-posp1 (dv (offset (p-pc (l)), 1), program-body (p-current-program (l)))

Theorem: proper-p-alistp-put-assoc
(proper-p-alistp (bindings, l) ∧ p-objectp (object , l))
→ proper-p-alistp (put-assoc (object , var-name, bindings), l)
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Theorem: listp-p-temp-stk-lr-push-tstk
(p-psw (lr-push-tstk (l , object)) = ’run)
→ listp (p-temp-stk (lr-push-tstk (l , object)))

Theorem: lr-p-pc-lr-set-temp
lr-p-pc (lr-set-temp (l , value, var-name)) = lr-p-pc (l)

Theorem: proper-p-statep-lr-set-temp
(proper-p-statep (lr->p (l)) ∧ listp (p-temp-stk (l)))
→ proper-p-statep (lr->p (lr-set-temp (l , car (p-temp-stk (l)), var-name)))

Theorem: p-objectp-cdr-assoc-bindings-proper-p-alistp
(proper-p-alistp (bindings, l) ∧ definedp (object , bindings))
→ p-objectp (cdr (assoc (object , bindings)), l)

Theorem: definedp-caddr-lr-expr-bindings-ctrl-stk
(lr-programs-properp-1 (progs, program-names , table)
∧ definedp (name, progs)
∧ ((car (cur-expr (pos, program-body (assoc (name, progs))))

= s-temp-fetch)
∨ (car (cur-expr (pos, program-body (assoc (name, progs))))

= s-temp-test))
∧ good-posp1 (pos, program-body (assoc (name, progs)))
∧ (strip-cars (bindings)

= append (formal-vars (assoc (name, comp-programs (progs))),
strip-cars (temp-var-dcls (assoc (name,

comp-programs (progs)))))))
→ definedp (caddr (cur-expr (pos, program-body (assoc (name, progs)))),

bindings)

Theorem: proper-p-temp-stkp-p-temp-stk-lr-do-temp-fetch
(proper-p-framep (top (p-ctrl-stk (l1 )), area-name (p-pc (l1 )), l2 )
∧ lr-programs-properp (l1 , table)
∧ ((car (lr-expr (l1 )) = s-temp-fetch)

∨ (car (lr-expr (l1 )) = s-temp-test))
∧ good-posp1 (offset (p-pc (l1 )), program-body (p-current-program (l1 )))
∧ same-signature (p-data-segment (l1 ), p-data-segment (l2 ))
∧ (p-prog-segment (lr->p (l1 )) = p-prog-segment (l2 ))
∧ (p-word-size (l1 ) = p-word-size (l2 )))
→ (proper-p-temp-stkp (p-temp-stk (lr-do-temp-fetch (l1 )), l2 )

= proper-p-temp-stkp (p-temp-stk (l1 ), l2 ))

Theorem: length-lr-do-temp-fetch
(p-psw (lr-do-temp-fetch (l)) = ’run)
→ (p-max-temp-stk-size (l) 6< length (p-temp-stk (lr-do-temp-fetch (l))))
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Theorem: lr-p-pc-lr-do-temp-fetch
lr-p-pc (lr-do-temp-fetch (l)) = lr-p-pc (l)

Theorem: proper-p-statep-lr-do-temp-fetch
((p-psw (lr-do-temp-fetch (l)) = ’run)
∧ lr-programs-properp (l , table)
∧ ((car (lr-expr (l)) = s-temp-fetch)

∨ (car (lr-expr (l)) = s-temp-test))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ proper-p-statep (lr->p (l)))
→ proper-p-statep (lr->p (lr-do-temp-fetch (l)))

Theorem: length-lr-push-tstk
(p-psw (lr-push-tstk (l , object)) = ’run)
→ (p-max-temp-stk-size (l)

6< length (p-temp-stk (lr-push-tstk (l , object))))

Theorem: listp-p-temp-stk-lr-do-temp-fetch
(p-psw (lr-do-temp-fetch (l)) = ’run)
→ listp (p-temp-stk (lr-do-temp-fetch (l)))

Theorem: proper-p-prog-segmentp-append
plistp (segment1 )
→ (proper-p-prog-segmentp (append (segment1 , segment2 ), p)

= (proper-p-prog-segmentp (segment1 , p)
∧ proper-p-prog-segmentp (segment2 , p)))

Theorem: lr-programs-properp-expr-quote-type-addr
(lr-programs-properp (l , table)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’quote))
→ (type (cadr (lr-expr (l))) = ’addr)

Theorem: proper-p-instructionp-push-constant-opener
proper-p-instructionp (list (’push-constant, object), name, p)
= proper-p-push-constant-instructionp (list (’push-constant, object),

name,
p)

Theorem: proper-labeled-p-instructionsp-find-labelp-non-litatom
(proper-labeled-p-instructionsp (body , name, p) ∧ (¬ litatom (label)))
→ (find-labelp (label , body) = f)

Theorem: lessp-4-not-zerop-not-1-not-2-3
((n 6' 0) ∧ (n 6= 1) ∧ (n 6= 2) ∧ (n < 4)) → (n = 3)
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Theorem: lessp-4-not-zerop-not-1-not-2-3-get-car-pos
((car (pos) 6' 0)
∧ (car (pos) 6= 1)
∧ (car (pos) 6= 2)
∧ (car (pos) < 4))
→ (get (car (pos), body) = cadddr (body))

Event: Disable lessp-4-not-zerop-not-1-not-2-3-get-car-pos.

Theorem: lessp-index-lessp-lr-p-c-size-list
lr-p-c-size-list (length (cdr (body)), body) 6< lr-p-c-size-list (n, body)

Theorem: lessp-plus-lr-p-c-size-lr-p-pc-1-helper
(listp (body)
∧ (n 6' 0)
∧ (lr-p-c-size (t, get (n, body)) 6< x )
∧ ((n − 1) < length (cdr (body)))
∧ (len = length (cdr (body))))
→ (((lr-p-c-size-list (len, body) + 1)

< (lr-p-c-size-list (n − 1, body) + x ))
= f)

Theorem: lessp-plus-lr-p-c-size-lr-p-pc-1
(good-posp1 (pos, body) ∧ lr-proper-exprp (t, body , pnames, formals, temps, table))
→ (lr-p-c-size (t, body)

6< (lr-p-pc-1 (body , pos) + lr-p-c-size (t, cur-expr (pos, body))))

Definition:
induct-hint-7 (pos, expr , n)
= if pos ' nil then t

elseif expr ' nil then t
elseif car (expr) = ’if
then let then-n be n + 3 + lr-p-c-size (t, cadr (expr))

in
case on car (pos):
case = 1
then induct-hint-7 (cdr (pos), cadr (expr), n)
case = 2
then induct-hint-7 (cdr (pos), caddr (expr), then-n)

otherwise induct-hint-7 (cdr (pos),
cadddr (expr),
1
+ then-n
+ lr-p-c-size (t, caddr (expr))) endcase endlet
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elseif car (expr) = s-temp-fetch then t
elseif car (expr) = s-temp-eval
then induct-hint-7 (cdr (pos), cadr (expr), n)
elseif car (expr) = s-temp-test
then induct-hint-7 (cdr (pos), cadr (expr), n + 4)
elseif car (expr) = ’quote then t
else induct-hint-7 (cdr (pos),

get (car (pos), expr),
n + lr-p-c-size-list (car (pos) − 1, expr)) endif

Theorem: lr-p-c-size-s-temp-test-eval-cadr-not-lessp-fact
(listp (expr)
∧ ((car (expr) = s-temp-eval) ∨ (car (expr) = s-temp-test)))
→ (lr-p-c-size (t, cadr (expr)) < lr-p-c-size (t, expr))

Theorem: length-comp-temp-test
(listp (body) ∧ (car (body) = s-temp-test))
→ (length (comp-temp-test (any-body , comp-body-1 (t, cadr (body), n), any-n))

= lr-p-c-size (t, body))

Theorem: plistp-comp-temp-test
plistp (comp-temp-test (body , instrs, n))

Theorem: length-comp-if-alt
(listp (body) ∧ (car (body) = ’if))
→ (length (comp-if (comp-body-1 (t, cadr (body), n1 ),

comp-body-1 (t, caddr (body), n2 ),
comp-body-1 (t, cadddr (body), n3 ),
any-n))

= lr-p-c-size (t, body))

Theorem: plistp-comp-if
(plistp (else-instrs) ∧ listp (else-instrs))
→ plistp (comp-if (test-intrs, then-instrs, else-instrs, n))

Theorem: plistp-comp-body-1
plistp (comp-body-1 (flag , body , n))

Theorem: lr-p-c-size-list-funcall-not-lessp-fact
(listp (expr)
∧ (car (expr) 6= s-temp-fetch)
∧ (car (expr) 6= s-temp-eval)
∧ (car (expr) 6= s-temp-test)
∧ (car (expr) 6= ’quote)
∧ (car (expr) 6= ’if))
→ (lr-p-c-size-list (length (expr) − 1, expr) < lr-p-c-size (t, expr))
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Theorem: lr-p-c-size-nlistp-body
(¬ listp (body)) → (lr-p-c-size (t, body) = 1)

Theorem: firstn-lr-p-c-size-restn-lr-p-pc-1-comp-body-1-helper-1
(good-posp1 (pos, cadr (body))
∧ (car (body) = ’if)
∧ listp (body)
∧ lr-proper-exprp (t, body , pnames , formals , temps, table))
→ (firstn (lr-p-c-size (t, cur-expr (pos, cadr (body))),

restn (lr-p-pc-1 (cadr (body), pos),
comp-if (comp-body-1 (t, cadr (body), n),

then-instrs ,
else-instrs,
n)))

= firstn (lr-p-c-size (t, cur-expr (pos, cadr (body))),
restn (lr-p-pc-1 (cadr (body), pos),

comp-body-1 (t, cadr (body), n))))

Theorem: firstn-restn-plus-comp-if-1
((j = length (test))
∧ listp (then)
∧ (m < length (then))
∧ (m ∈ N)
∧ listp (test)
∧ (length (then) 6< (k + m)))
→ (firstn (k , restn (3 + j + m, comp-if (test , then, else, n)))

= firstn (k , restn (m, then)))

Theorem: firstn-unlabel-instrs-comp-body-1-lr-p-pc-1-helper-2
(good-posp1 (pos, caddr (body))
∧ (car (body) = ’if)
∧ listp (body)
∧ lr-proper-exprp (t, body , pnames, formals, temps, table))
→ (lr-p-c-size (t, caddr (body))

6< (lr-p-pc-1 (caddr (body), pos)
+ lr-p-c-size (t, cur-expr (pos, caddr (body)))))

Theorem: firstn-restn-plus-comp-if-2
((j = length (test))
∧ (i = length (then))
∧ listp (then)
∧ (m < length (else))
∧ (m ∈ N)
∧ listp (test)
∧ listp (else)
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∧ (length (else) 6< (m + k)))
→ (firstn (k , restn (j + i + m + 4, comp-if (test , then, else, n)))

= firstn (k , restn (m, else)))

Theorem: firstn-unlabel-instrs-comp-body-1-lr-p-pc-1-helper-3
(good-posp1 (pos, cadddr (body))
∧ (car (body) = ’if)
∧ listp (body)
∧ lr-proper-exprp (t, body , pnames, formals , temps , table))
→ (lr-p-c-size (t, cadddr (body))

6< (lr-p-pc-1 (cadddr (body), pos)
+ lr-p-c-size (t, cur-expr (pos, cadddr (body)))))

Theorem: plus-constant-fact-helper-1
(1 + n + 3 + x + y) = (n + 4 + x + y)

Theorem: firstn-lr-p-c-size-restn-lr-p-pc-1-comp-body-1-helper-4
(good-posp1 (pos, cadr (body))
∧ listp (body)
∧ (car (body) = s-temp-test)
∧ lr-proper-exprp (t, body , pnames , formals, temps, table))
→ (firstn (lr-p-c-size (t, cur-expr (pos, cadr (body))),

restn (lr-p-pc-1 (cadr (body), pos) + 4,
comp-temp-test (body-1 , comp-body-1 (t, cadr (body), n), m)))

= firstn (lr-p-c-size (t, cur-expr (pos, cadr (body))),
restn (lr-p-pc-1 (cadr (body), pos),

comp-body-1 (t, cadr (body), n))))

Theorem: firstn-lr-p-c-size-restn-lr-p-pc-1-comp-body-1-helper-5
(4 + x ) = (x + 4)

Theorem: good-posp1-lr-proper-exprp-get-cadddr
(listp (pos)
∧ listp (body)
∧ (car (body) = ’if)
∧ (car (pos) 6= 1)
∧ (car (pos) 6= 2)
∧ (car (pos) 6= 0)
∧ (car (pos) ∈ N)
∧ lr-proper-exprp (t, body , pnames, formals , temps, table)
∧ ((((car (pos) − 1) − 1) − 1) < length (cdddr (body))))
→ (get (car (pos), body) = cadddr (body))

Theorem: lr-proper-exprp-cadr-temps
(lr-proper-exprp (t, expr , pnames, formals , temps , table)
∧ ((car (expr) = s-temp-eval) ∨ (car (expr) = s-temp-test)))
→ lr-proper-exprp (t, cadr (expr), pnames, formals, temps, table)
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Theorem: lessp-plus-lr-p-c-size-lr-p-pc-1-temps
(good-posp1 (pos, cadr (body))
∧ listp (body)
∧ ((car (body) = s-temp-eval) ∨ (car (body) = s-temp-test))
∧ lr-proper-exprp (t, body , pnames, formals, temps, table))
→ (lr-p-c-size (t, cadr (body))

6< (lr-p-pc-1 (cadr (body), pos)
+ lr-p-c-size (t, cur-expr (pos, cadr (body)))))

Theorem: firstn-lr-p-c-size-restn-lr-p-pc-1-comp-body-1-helper-6
(listp (body)
∧ (car (body) 6= ’if)
∧ (car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote)
∧ lr-proper-exprp (t, body , pnames, formals , temps , table)
∧ (n 6' 0))
→ (lr-p-c-size-list (length (body) − 1, body)

6< (lr-p-c-size-list (n − 1, body) + lr-p-pc-1 (get (n, body), pos)))

Definition:
induct-hint-10 (n, l , x )
= if ¬ listp (l) then t

elseif n ' 0 then t
elseif listp (cdr (l))
then induct-hint-10 (n − 1, cdr (l), x + lr-p-c-size (t, cadr (l)))
else t endif

Theorem: lr-p-c-size-list-car-opener
((n 6' 0) ∧ (n < length (body)))
→ (lr-p-c-size-list (n, body)

= (lr-p-c-size (t, cadr (body))
+ lr-p-c-size-list (n − 1, cdr (body))))

Theorem: restn-comp-body-1-list-fact
((lr-p-c-size (t, get (m, cdr (body))) 6< j )
∧ (m < length (cdr (body)))
∧ (m ∈ N)
∧ (n ∈ N)
∧ (j ∈ N))
→ (restn (lr-p-c-size-list (m, body) + j ,

comp-body-1 (’list, cdr (body), n))
= restn (j ,

comp-body-1 (’list,
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restn (m, cdr (body)),
n + lr-p-c-size-list (m, body))))

Event: Disable lr-p-c-size-list-car-opener.

Theorem: firstn-restn-small-enough-cdr-comp-body-1-list
(listp (body) ∧ (lr-p-c-size (t, car (body)) 6< (j + k)))
→ (firstn (j , restn (k , comp-body-1 (’list, body , n)))

= firstn (j , restn (k , comp-body-1 (t, car (body), n))))

Theorem: firstn-lr-p-c-size-restn-lr-p-pc-1-comp-body-1-helper-7
(listp (body)
∧ (car (body) 6= ’if)
∧ (car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote)
∧ (n ∈ N)
∧ lr-proper-exprp (t, body , pnames, formals , temps , table)
∧ (m 6' 0)
∧ (m < length (body))
∧ good-posp1 (pos, get (m, body)))
→ (firstn (lr-p-c-size (t, cur-expr (pos, get (m, body))),

restn (lr-p-c-size-list (m − 1, body)
+ lr-p-pc-1 (get (m, body), pos),
comp-body-1 (’list, cdr (body), n)))

= firstn (lr-p-c-size (t, cur-expr (pos, get (m, body))),
restn (lr-p-pc-1 (get (m, body), pos),

comp-body-1 (t,
get (m, body),
n + lr-p-c-size-list (m − 1, body)))))

Theorem: firstn-lr-p-c-size-restn-lr-p-pc-1-comp-body-1-helper-8
(listp (body)
∧ (car (body) 6= ’if)
∧ (car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote)
∧ lr-proper-exprp (t, body , pnames, formals , temps, table)
∧ (n 6' 0)
∧ (n < length (body))
∧ good-posp1 (pos, get (n, body)))
→ ((lr-p-c-size-list (length (body) − 1, body)
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− (lr-p-c-size-list (n − 1, body) + lr-p-pc-1 (get (n, body), pos)))
6< lr-p-c-size (t, cur-expr (pos, get (n, body))))

Theorem: firstn-lr-p-c-size-restn-lr-p-pc-1-comp-body-1
(good-posp1 (pos, body)
∧ lr-proper-exprp (t, body , pnames, formals, temps , table)
∧ (n ∈ N))
→ (firstn (lr-p-c-size (t, cur-expr (pos, body)),

restn (lr-p-pc-1 (body , pos), comp-body-1 (t, body , n)))
= comp-body-1 (t, cur-expr (pos, body), n + lr-p-pc-1 (body , pos)))

Event: Disable firstn-lr-p-c-size-restn-lr-p-pc-1-comp-body-1-helper-5.

Theorem: not-lessp-lr-p-c-size-flag-t-1
lr-p-c-size (t, body1 ) 6< 1

Theorem: not-lessp-x-x
(x < x ) = f

Theorem: get-plus
get (x + y , list) = get (y , restn (x , list))

Event: Disable get-plus.

Theorem: get-firstn-different-lists
((k < n) ∧ (firstn (n, list1 ) = firstn (n, list2 )))
→ (get (k , list1 ) = get (k , list2 ))

Theorem: unlabel-list-label
unlabel (list (’dl, lab, comment , instr)) = instr

Theorem: legal-labelp-label-make-label
legal-labelp (list (’dl, lr-make-label (n), comment , instr))

Theorem: lr-make-label-not-numberp
(n 6∈ N) → (lr-make-label (n) = lr-make-label (0))

Definition:
induct-hint-9 (m, instrs, n)
= if listp (instrs) then induct-hint-9 (m − 1, cdr (instrs), 1 + n)

else t endif

Theorem: get-label-instrs
(m < length (instrs))
→ (get (m, label-instrs (instrs, n))

= list (’dl, lr-make-label (n + m), nil, get (m, instrs)))
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Event: Disable lr-make-label-not-numberp.

Theorem: get-append
get (n, append (x , y))
= if n < length (x ) then get (n, x )

else get (n − length (x ), y) endif

Event: Disable get-append.

Theorem: get-lr-p-c-size-lessp-lr-p-c-size-comp-body-1
(good-posp1 (pos, body)
∧ lr-proper-exprp (t, body , pnames, formals, temps, table)
∧ (n ∈ N)
∧ (m < lr-p-c-size (t, cur-expr (pos, body))))
→ (get (lr-p-pc-1 (body , pos) + m, comp-body-1 (t, body , n))

= get (m,
comp-body-1 (t,

cur-expr (pos, body),
n + lr-p-pc-1 (body , pos))))

Theorem: get-lr-p-pc-1-comp-body-1-cur-expr-comp-body
(good-posp1 (offset (p-pc (l)), program-body (prog))
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’quote)
∧ lr-programs-properp (l , table)
∧ (prog = p-current-program (l)))
→ (get (lr-p-pc-1 (program-body (prog), offset (p-pc (l))),

comp-body (program-body (prog)))
= list (’dl,

lr-make-label (lr-p-pc-1 (program-body (prog),
offset (p-pc (l)))),

nil,
list (’push-constant, cadr (lr-expr (l)))))

Theorem: get-lr-p-pc-1-comp-body-1-quote
(good-posp1 (offset (p-pc (l)), program-body (car (p-prog-segment (l))))
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’quote)
∧ lr-programs-properp (l , table)
∧ (area-name (p-pc (l)) = caar (p-prog-segment (l))))
→ (get (lr-p-pc-1 (program-body (car (p-prog-segment (l))), offset (p-pc (l))),

comp-body-1 (t, program-body (car (p-prog-segment (l))), 0))
= list (’push-constant, cadr (lr-expr (l))))
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Theorem: proper-p-temp-stkp-p-temp-stk-lr-push-tstk-quote
(lr-programs-properp (l , table)
∧ proper-p-prog-segmentp (comp-programs (p-prog-segment (l)), lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’quote)
∧ proper-p-temp-stkp (p-temp-stk (l), lr->p (l)))
→ proper-p-temp-stkp (p-temp-stk (lr-push-tstk (l , cadr (lr-expr (l)))),

lr->p (l))

Theorem: proper-p-statep-lr-push-tstk-quote
(proper-p-statep (lr->p (l))
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’quote)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-push-tstk (l , cadr (lr-expr (l)))) = ’run))
→ proper-p-statep (lr->p (lr-push-tstk (l , cadr (lr-expr (l)))))

Theorem: good-posp-dv-1-funcall-lr-expr
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= s-temp-eval)
∧ (car (lr-expr (l)) 6= s-temp-test)
∧ (car (lr-expr (l)) 6= s-temp-fetch)
∧ (car (lr-expr (l)) 6= ’quote)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l))))
→ good-posp (’list,

dv (offset (p-pc (l)), 1),
program-body (p-current-program (l)))

Theorem: plistp-pairlist
plistp (pairlist (x , y))

Theorem: all-p-objectps-append
plistp (lst1 )
→ (all-p-objectps (append (lst1 , lst2 ), p)

= (all-p-objectps (lst1 , p) ∧ all-p-objectps (lst2 , p)))

Theorem: all-p-objectps-reverse
plistp (lst) → (all-p-objectps (reverse (lst), p) = all-p-objectps (lst , p))

Theorem: plistp-first-n
plistp (first-n (n, list))
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Theorem: proper-p-temp-stkp-all-p-objectps
proper-p-temp-stkp (temp-stk , p) → all-p-objectps (temp-stk , p)

Theorem: all-p-objectps-first-n
((length (lst) 6< n) ∧ all-p-objectps (lst , p))
→ all-p-objectps (first-n (n, lst), p)

Theorem: strip-cars-append
strip-cars (append (x , y)) = append (strip-cars (x ), strip-cars (y))

Event: Disable strip-cars-append.

Theorem: strip-cars-pairlist
strip-cars (pairlist (x , y)) = plist (x )

Event: Disable strip-cars-pairlist.

Theorem: strip-cars-pair-temps-with-initial-values
strip-cars (pair-temps-with-initial-values (temp-var-decls))
= strip-cars (temp-var-decls)

Theorem: length-popn
(length (list) 6< n) → (length (popn (n, list)) = (length (list) − n))

Theorem: proper-p-temp-stkp-popn
((length (temp-stk) 6< n) ∧ proper-p-temp-stkp (temp-stk , p))
→ proper-p-temp-stkp (popn (n, temp-stk), p)

Theorem: proper-p-prog-segmentp-length-program-body
(proper-p-prog-segmentp (prog-segment , p) ∧ definedp (name, prog-segment))
→ listp (program-body (assoc (name, prog-segment)))

Theorem: ret-pc-make-p-call-frame
ret-pc (make-p-call-frame (f-vars, temp-stk , temp-var-dcls , ret-pc)) = ret-pc

Theorem: bindings-make-p-call-frame
bindings (make-p-call-frame (f-vars, temp-stk , temp-var-dcls , ret-pc))
= append (pair-formal-vars-with-actuals (f-vars, temp-stk),

pair-temps-with-initial-values (temp-var-dcls))

Theorem: cddr-nil-make-p-call-frame
cddr (make-p-call-frame (f-vars, temp-stk , temp-var-dcls , ret-pc)) = nil

Theorem: listp-cdr-make-p-call-frame
listp (cdr (make-p-call-frame (f-vars, temp-stk , temp-var-dcls, ret-pc)))
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Theorem: length-pairlist
length (pairlist (x , y)) = length (x )

Theorem: length-pair-temps-with-initial-values
length (pair-temps-with-initial-values (temp-var-dcls))
= length (temp-var-dcls)

Theorem: not-proper-p-statep-not-listp-p-ctrl-stk
(¬ listp (p-ctrl-stk (l))) → (¬ proper-p-statep (lr->p (l)))

Theorem: proper-p-statep-bad-type-1
((fetch (car (p-temp-stk (l)), p-data-segment (l))
6= list (type (fetch (car (p-temp-stk (l)), p-data-segment (l))),

untag (fetch (car (p-temp-stk (l)), p-data-segment (l)))))
∧ adpp (untag (car (p-temp-stk (l))), p-data-segment (l)))
→ (¬ proper-p-statep (lr->p (l)))

Theorem: p-good-resultp-run-car
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call car)))
→ p-good-resultp (p (p-set-pc (lr->p (l), pc),

p-car-clock (p-set-pc (lr->p (l), pc))),
p-data-segment (l),
if fetch (top (p-temp-stk (l)), p-data-segment (l))

= tag (’nat, lr-cons-tag)
then cons (fetch (add-addr (top (p-temp-stk (l)),

lr-car-offset),
p-data-segment (l)),

cdr (p-temp-stk (l)))
else cons (lr-0-addr, cdr (p-temp-stk (l))) endif,
p-ctrl-stk (l),
add-addr (pc, 1))

Theorem: p-good-resultp-run-cdr
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))
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= ’(call cdr)))
→ p-good-resultp (p (p-set-pc (lr->p (l), pc),

p-cdr-clock (p-set-pc (lr->p (l), pc))),
p-data-segment (l),
if fetch (top (p-temp-stk (l)), p-data-segment (l))

= tag (’nat, lr-cons-tag)
then cons (fetch (add-addr (top (p-temp-stk (l)),

lr-cdr-offset),
p-data-segment (l)),

cdr (p-temp-stk (l)))
else cons (lr-0-addr, cdr (p-temp-stk (l))) endif,
p-ctrl-stk (l),
add-addr (pc, 1))

Theorem: p-good-resultp-run-listp
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call listp)))
→ p-good-resultp (p (p-set-pc (lr->p (l), pc),

p-listp-clock (p-set-pc (lr->p (l), pc))),
p-data-segment (l),
if fetch (car (p-temp-stk (l)), p-data-segment (l))

= tag (’nat, lr-cons-tag)
then cons (lr-t-addr, cdr (p-temp-stk (l)))
else cons (lr-f-addr, cdr (p-temp-stk (l))) endif,
p-ctrl-stk (l),
add-addr (pc, 1))

Theorem: p-good-resultp-run-nlistp
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call nlistp)))
→ p-good-resultp (p (p-set-pc (lr->p (l), pc),

p-nlistp-clock (p-set-pc (lr->p (l), pc))),
p-data-segment (l),
if fetch (car (p-temp-stk (l)), p-data-segment (l))
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= tag (’nat, lr-cons-tag)
then cons (lr-f-addr, cdr (p-temp-stk (l)))
else cons (lr-t-addr, cdr (p-temp-stk (l))) endif,
p-ctrl-stk (l),
add-addr (pc, 1))

Theorem: p-good-resultp-run-truep
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call truep)))
→ p-good-resultp (p (p-set-pc (lr->p (l), pc),

p-truep-clock (p-set-pc (lr->p (l), pc))),
p-data-segment (l),
if fetch (car (p-temp-stk (l)), p-data-segment (l))

= tag (’nat, lr-true-tag)
then cons (lr-t-addr, cdr (p-temp-stk (l)))
else cons (lr-f-addr, cdr (p-temp-stk (l))) endif,
p-ctrl-stk (l),
add-addr (pc, 1))

Event: Disable proper-p-statep-bad-type-1.

Theorem: p-good-resultp-run-cons
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call cons)))
→ p-good-resultp (p (p-set-pc (lr->p (l), pc),

p-cons-clock (p-set-pc (lr->p (l), pc))),
deposit (fetch (add-addr (fetch (lr-fp-addr,

p-data-segment (l)),
lr-ref-count-offset),

p-data-segment (l)),
lr-fp-addr,
deposit-a-list (list (tag (’nat, lr-cons-tag),

tag (’nat, 1),
top1 (p-temp-stk (l)),
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top (p-temp-stk (l))),
fetch (lr-fp-addr,

p-data-segment (l)),
p-data-segment (l))),

cons (fetch (lr-fp-addr, p-data-segment (l)),
cddr (p-temp-stk (l))),

p-ctrl-stk (l),
add-addr (pc, 1))

Theorem: p-objectp-bad-type
(object 6= list (type (object), untag (object))) → (¬ p-objectp (object , p))

Theorem: proper-p-statep-bad-type-2
((car (p-temp-stk (l))
6= list (type (car (p-temp-stk (l))), untag (car (p-temp-stk (l)))))
∧ listp (p-temp-stk (l)))
→ (¬ proper-p-statep (lr->p (l)))

Theorem: p-good-resultp-run-falsep
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call falsep)))
→ p-good-resultp (p (p-set-pc (lr->p (l), pc),

p-falsep-clock (p-set-pc (lr->p (l), pc))),
p-data-segment (l),
if car (p-temp-stk (l)) = lr-f-addr
then cons (lr-t-addr, cdr (p-temp-stk (l)))
else cons (lr-f-addr, cdr (p-temp-stk (l))) endif,
p-ctrl-stk (l),
add-addr (pc, 1))

Event: Disable proper-p-statep-bad-type-2.

Theorem: p-good-resultp-run-false
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))
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= ’(call false)))
→ p-good-resultp (p (p-set-pc (lr->p (l), pc),

p-false-clock (p-set-pc (lr->p (l), pc))),
p-data-segment (l),
cons (lr-f-addr, p-temp-stk (l)),
p-ctrl-stk (l),
add-addr (pc, 1))

Theorem: p-good-resultp-run-true
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call true)))
→ p-good-resultp (p (p-set-pc (lr->p (l), pc),

p-true-clock (p-set-pc (lr->p (l), pc))),
p-data-segment (l),
cons (lr-t-addr, p-temp-stk (l)),
p-ctrl-stk (l),
add-addr (pc, 1))

Theorem: p-temp-stk-p-ctrl-stk-p-data-segment-run-car
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-car-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call car)))
→ ((p-temp-stk (p (p-set-pc (lr->p (l), pc),

p-car-clock (p-set-pc (lr->p (l), pc))))
= if fetch (top (p-temp-stk (l)), p-data-segment (l))

= tag (’nat, lr-cons-tag)
then cons (fetch (add-addr (top (p-temp-stk (l)), lr-car-offset),

p-data-segment (l)),
cdr (p-temp-stk (l)))

else cons (lr-0-addr, cdr (p-temp-stk (l))) endif)
∧ (p-ctrl-stk (p (p-set-pc (lr->p (l), pc),

p-car-clock (p-set-pc (lr->p (l), pc))))
= p-ctrl-stk (l))
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∧ (p-data-segment (p (p-set-pc (lr->p (l), pc),
p-car-clock (p-set-pc (lr->p (l), pc))))

= p-data-segment (l)))

Theorem: p-temp-stk-p-ctrl-stk-p-data-segment-run-cdr
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-cdr-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call cdr)))
→ ((p-temp-stk (p (p-set-pc (lr->p (l), pc),

p-cdr-clock (p-set-pc (lr->p (l), pc))))
= if fetch (top (p-temp-stk (l)), p-data-segment (l))

= tag (’nat, lr-cons-tag)
then cons (fetch (add-addr (top (p-temp-stk (l)), lr-cdr-offset),

p-data-segment (l)),
cdr (p-temp-stk (l)))

else cons (lr-0-addr, cdr (p-temp-stk (l))) endif)
∧ (p-ctrl-stk (p (p-set-pc (lr->p (l), pc),

p-cdr-clock (p-set-pc (lr->p (l), pc))))
= p-ctrl-stk (l))

∧ (p-data-segment (p (p-set-pc (lr->p (l), pc),
p-cdr-clock (p-set-pc (lr->p (l), pc))))

= p-data-segment (l)))

Theorem: p-temp-stk-p-ctrl-stk-p-data-segment-run-cons
let fp-addr be fetch (lr-fp-addr, p-data-segment (l))
in
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc),

p-cons-clock (p-set-pc (lr->p (l), pc))))
= ’run)

∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call cons)))
→ ((p-temp-stk (p (p-set-pc (lr->p (l), pc),

p-cons-clock (p-set-pc (lr->p (l), pc))))
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= cons (fetch (lr-fp-addr, p-data-segment (l)),
cddr (p-temp-stk (l))))

∧ (p-ctrl-stk (p (p-set-pc (lr->p (l), pc),
p-cons-clock (p-set-pc (lr->p (l), pc))))

= p-ctrl-stk (l))
∧ (p-data-segment (p (p-set-pc (lr->p (l), pc),

p-cons-clock (p-set-pc (lr->p (l), pc))))
= deposit (fetch (add-addr (fetch (lr-fp-addr,

p-data-segment (l)),
lr-ref-count-offset),

p-data-segment (l)),
lr-fp-addr,
deposit-a-list (list (tag (’nat,

lr-cons-tag),
tag (’nat, 1),
top1 (p-temp-stk (l)),
top (p-temp-stk (l))),

fetch (lr-fp-addr,
p-data-segment (l)),

p-data-segment (l))))) endlet

Theorem: p-temp-stk-p-ctrl-stk-p-data-segment-run-false
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-false-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call false)))
→ ((p-temp-stk (p (p-set-pc (lr->p (l), pc),

p-false-clock (p-set-pc (lr->p (l), pc))))
= cons (lr-f-addr, p-temp-stk (l)))
∧ (p-ctrl-stk (p (p-set-pc (lr->p (l), pc),

p-false-clock (p-set-pc (lr->p (l), pc))))
= p-ctrl-stk (l))

∧ (p-data-segment (p (p-set-pc (lr->p (l), pc),
p-false-clock (p-set-pc (lr->p (l), pc))))

= p-data-segment (l)))

Theorem: p-temp-stk-p-ctrl-stk-p-data-segment-run-falsep
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
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∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-falsep-clock (p-set-pc (lr->p (l), pc))))
= ’run)

∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call falsep)))
→ ((p-temp-stk (p (p-set-pc (lr->p (l), pc),

p-falsep-clock (p-set-pc (lr->p (l), pc))))
= if car (p-temp-stk (l)) = lr-f-addr

then cons (lr-t-addr, cdr (p-temp-stk (l)))
else cons (lr-f-addr, cdr (p-temp-stk (l))) endif)

∧ (p-ctrl-stk (p (p-set-pc (lr->p (l), pc),
p-falsep-clock (p-set-pc (lr->p (l), pc))))

= p-ctrl-stk (l))
∧ (p-data-segment (p (p-set-pc (lr->p (l), pc),

p-falsep-clock (p-set-pc (lr->p (l), pc))))
= p-data-segment (l)))

Theorem: p-temp-stk-p-ctrl-stk-p-data-segment-run-listp
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-listp-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call listp)))
→ ((p-temp-stk (p (p-set-pc (lr->p (l), pc),

p-listp-clock (p-set-pc (lr->p (l), pc))))
= if fetch (car (p-temp-stk (l)), p-data-segment (l))

= tag (’nat, lr-cons-tag)
then cons (lr-t-addr, cdr (p-temp-stk (l)))
else cons (lr-f-addr, cdr (p-temp-stk (l))) endif)

∧ (p-ctrl-stk (p (p-set-pc (lr->p (l), pc),
p-listp-clock (p-set-pc (lr->p (l), pc))))

= p-ctrl-stk (l))
∧ (p-data-segment (p (p-set-pc (lr->p (l), pc),

p-listp-clock (p-set-pc (lr->p (l), pc))))
= p-data-segment (l)))

Theorem: p-temp-stk-p-ctrl-stk-p-data-segment-run-nlistp
(proper-p-statep (lr->p (l))
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∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-nlistp-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call nlistp)))
→ ((p-temp-stk (p (p-set-pc (lr->p (l), pc),

p-nlistp-clock (p-set-pc (lr->p (l), pc))))
= if fetch (car (p-temp-stk (l)), p-data-segment (l))

= tag (’nat, lr-cons-tag)
then cons (lr-f-addr, cdr (p-temp-stk (l)))
else cons (lr-t-addr, cdr (p-temp-stk (l))) endif)

∧ (p-ctrl-stk (p (p-set-pc (lr->p (l), pc),
p-nlistp-clock (p-set-pc (lr->p (l), pc))))

= p-ctrl-stk (l))
∧ (p-data-segment (p (p-set-pc (lr->p (l), pc),

p-nlistp-clock (p-set-pc (lr->p (l), pc))))
= p-data-segment (l)))

Theorem: p-temp-stk-p-ctrl-stk-p-data-segment-run-true
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-true-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call true)))
→ ((p-temp-stk (p (p-set-pc (lr->p (l), pc),

p-true-clock (p-set-pc (lr->p (l), pc))))
= cons (lr-t-addr, p-temp-stk (l)))
∧ (p-ctrl-stk (p (p-set-pc (lr->p (l), pc),

p-true-clock (p-set-pc (lr->p (l), pc))))
= p-ctrl-stk (l))

∧ (p-data-segment (p (p-set-pc (lr->p (l), pc),
p-true-clock (p-set-pc (lr->p (l), pc))))

= p-data-segment (l)))

Theorem: p-temp-stk-p-ctrl-stk-p-data-segment-run-truep
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
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∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-truep-clock (p-set-pc (lr->p (l), pc))))
= ’run)

∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call truep)))
→ ((p-temp-stk (p (p-set-pc (lr->p (l), pc),

p-truep-clock (p-set-pc (lr->p (l), pc))))
= if fetch (car (p-temp-stk (l)), p-data-segment (l))

= tag (’nat, lr-true-tag)
then cons (lr-t-addr, cdr (p-temp-stk (l)))
else cons (lr-f-addr, cdr (p-temp-stk (l))) endif)

∧ (p-ctrl-stk (p (p-set-pc (lr->p (l), pc),
p-truep-clock (p-set-pc (lr->p (l), pc))))

= p-ctrl-stk (l))
∧ (p-data-segment (p (p-set-pc (lr->p (l), pc),

p-truep-clock (p-set-pc (lr->p (l), pc))))
= p-data-segment (l)))

Theorem: get-last-funcall-cur-expr
(listp (expr)
∧ (car (expr) 6= ’if)
∧ (car (expr) 6= s-temp-eval)
∧ (car (expr) 6= s-temp-test)
∧ (car (expr) 6= s-temp-fetch)
∧ (car (expr) 6= ’quote))
→ (get (lr-p-c-size-list (length (expr) − 1, expr), comp-body-1 (t, expr , n))

= if definedp (car (expr), p-runtime-support-programs)
then list (’call, car (expr))
else list (’call, user-fname (car (expr))) endif)

Theorem: not-listp-p-prog-segment-lr-expr
(¬ listp (p-prog-segment (l))) → (¬ listp (lr-expr (l)))

Theorem: get-offset-return-pc-program-body-assoc-comp-programs
(good-posp1 (offset (p-pc (l)),

program-body (assoc (area-name (p-pc (l)), p-prog-segment (l))))
∧ lr-programs-properp (l , table)
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= s-temp-eval)
∧ (car (lr-expr (l)) 6= s-temp-test)
∧ (car (lr-expr (l)) 6= s-temp-fetch)
∧ (car (lr-expr (l)) 6= ’quote)
∧ listp (lr-expr (l)))
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→ (get (offset (lr-return-pc (l)),
program-body (assoc (area-name (p-pc (l)),

comp-programs (p-prog-segment (l)))))
= list (’dl,

lr-make-label (offset (lr-return-pc (l))),
nil,
if definedp (car (lr-expr (l)), p-runtime-support-programs)
then list (’call, car (lr-expr (l)))
else list (’call, user-fname (car (lr-expr (l)))) endif))

Theorem: listp-p-temp-stk-proper-ctrl-stk-p-run-subr
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (new-l , table)
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= ’run)

∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ (listp (p-temp-stk (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l)))))
∧ (p-ctrl-stk (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= p-ctrl-stk (new-l)))

Theorem: listp-p-temp-stk-proper-ctrl-stk-lr-apply-subr
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-programs-properp (new-l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ (listp (p-temp-stk (lr-apply-subr (l , new-l)))

∧ (p-ctrl-stk (lr-apply-subr (l , new-l)) = p-ctrl-stk (new-l)))

Theorem: cur-expr-nlistp-pos
(pos ' nil) → (cur-expr (pos, body) = body)

Theorem: proper-p-statep-p-run-subr
(proper-p-statep (p) ∧ (p-psw (p-run-subr (subr , p)) = ’run))
→ proper-p-statep (p-run-subr (subr , p))
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Theorem: same-signature-commutative
same-signature (x , y) = same-signature (y , x )

Theorem: same-signature-p-run-subr
(proper-p-statep (p)
∧ (p-psw (p-run-subr (subr , p)) = ’run)
∧ (data-seg = p-data-segment (p)))
→ same-signature (data-seg , p-data-segment (p-run-subr (subr , p)))

Theorem: proper-p-framep-lr->p-similar-states
(proper-p-framep (frame, name, p0 )
∧ same-signature (p-data-segment (p0 ), p-data-segment (p1 ))
∧ (p-prog-segment (p0 ) = p-prog-segment (p1 ))
∧ (p-word-size (p0 ) = p-word-size (p1 )))
→ proper-p-framep (frame, name, p1 )

Theorem: car-untag-p-pc-lr-eval
car (untag (p-pc (lr-eval (flag , l , c)))) = car (untag (p-pc (l)))

Theorem: lessp-cdr-untag-lr-return-pc-lr-p-c-size
(good-posp1 (offset (p-pc (l)),

program-body (assoc (car (untag (p-pc (l))), p-prog-segment (l))))
∧ lr-programs-properp (l , table)
∧ (subrp (car (lr-expr (l))) ∨ litatom (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ (name = area-name (p-pc (l))))
→ (cdr (untag (lr-return-pc (l)))

< length (program-body (assoc (name,
comp-programs (p-prog-segment (l))))))

Theorem: proper-p-statep-lr-apply-subr-state
(proper-p-statep (lr->p (new-l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l))))
→ proper-p-statep (p-set-pc (lr->p (new-l), lr-return-pc (l)))

Theorem: same-signature-lr-apply-subr
(proper-p-statep (lr->p (new-l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
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∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ (data-seg = p-data-segment (new-l)))
→ same-signature (data-seg , p-data-segment (lr-apply-subr (l , new-l)))

Theorem: p-current-program-lr-apply-subr
((area-name (p-pc (new-l)) = area-name (p-pc (l)))
∧ (p-prog-segment (new-l) = p-prog-segment (l)))
→ (p-current-program (lr-apply-subr (l , new-l)) = p-current-program (l))

Theorem: p-current-program-lr-eval
p-current-program (lr-eval (flag , l , c)) = p-current-program (l)

Theorem: proper-p-framep-lr-apply-subr
(proper-p-statep (lr->p (new-l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ (name = area-name (p-pc (new-l))))
→ proper-p-framep (car (p-ctrl-stk (new-l)),

name,
lr->p (lr-apply-subr (l , new-l)))

Theorem: proper-p-statep-lr->p-lessp-ctrl-stk-size
(proper-p-statep (lr->p (l)) ∧ (max = p-max-ctrl-stk-size (l)))
→ ((max < p-ctrl-stk-size (p-ctrl-stk (l))) = f)

Event: Disable proper-p-statep-lr->p-lessp-ctrl-stk-size.

Theorem: proper-p-statep-lr->p-numberp-max-ctrl-stk-size
proper-p-statep (lr->p (l)) → (p-max-ctrl-stk-size (l) ∈ N)

Event: Disable proper-p-statep-lr->p-numberp-max-ctrl-stk-size.
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Theorem: proper-p-statep-lr->p-numberp-max-temp-stk-size
proper-p-statep (lr->p (l)) → (p-max-temp-stk-size (l) ∈ N)

Event: Disable proper-p-statep-lr->p-numberp-max-temp-stk-size.

Theorem: proper-p-statep-lr->p-numberp-word-size
proper-p-statep (lr->p (l)) → (p-word-size (l) ∈ N)

Event: Disable proper-p-statep-lr->p-numberp-word-size.

Theorem: proper-p-statep-lr->p-lessp-max-ctrl-stk-size
proper-p-statep (lr->p (l))
→ ((p-max-ctrl-stk-size (l) < exp (2, p-word-size (l))) = t)

Event: Disable proper-p-statep-lr->p-lessp-max-ctrl-stk-size.

Theorem: proper-p-statep-lr->p-lessp-max-temp-stk-size
proper-p-statep (lr->p (l))
→ ((p-max-temp-stk-size (l) < exp (2, p-word-size (l))) = t)

Event: Disable proper-p-statep-lr->p-lessp-max-temp-stk-size.

Theorem: proper-p-statep-lr->p-equal-word-size-0
proper-p-statep (lr->p (l)) → (p-word-size (l) 6= 0)

Event: Disable proper-p-statep-lr->p-equal-word-size-0.

Theorem: proper-p-ctrl-stkp-lr-apply-subr
(proper-p-statep (lr->p (new-l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run))
→ proper-p-ctrl-stkp (cdr (p-ctrl-stk (new-l)),

area-name (ret-pc (car (p-ctrl-stk (new-l)))),
lr->p (lr-apply-subr (l , new-l)))

Theorem: proper-p-prog-segmentp-lr-apply-subr
(proper-p-statep (lr->p (new-l))
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∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ (progs = p-prog-segment (new-l)))
→ proper-p-prog-segmentp (comp-programs (progs),

lr->p (lr-apply-subr (l , new-l)))

Theorem: proper-p-state-p-p-run-subr-opener-1
(proper-p-statep (p) ∧ (p-psw (p-run-subr (subr , p)) = ’run))
→ proper-p-temp-stkp (p-temp-stk (p-run-subr (subr , p)), p-run-subr (subr , p))

Theorem: proper-p-temp-stkp-lr-apply-subr
(proper-p-statep (lr->p (new-l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run))
→ proper-p-temp-stkp (p-temp-stk (lr-apply-subr (l , new-l)),

lr->p (lr-apply-subr (l , new-l)))

Theorem: proper-p-state-p-p-run-subr-opener-2
(proper-p-statep (p) ∧ (p-psw (p-run-subr (subr , p)) = ’run))
→ (p-max-temp-stk-size (p) 6< length (p-temp-stk (p-run-subr (subr , p))))

Theorem: not-lessp-length-p-temp-stk-lr-apply-subr
(proper-p-statep (lr->p (new-l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ (p-max-temp-stk-size (l) = p-max-temp-stk-size (new-l)))
→ (p-max-temp-stk-size (l)

6< length (p-temp-stk (lr-apply-subr (l , new-l))))
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Theorem: proper-p-state-p-p-run-subr-opener-3
(proper-p-statep (p) ∧ (p-psw (p-run-subr (subr , p)) = ’run))
→ proper-p-data-segmentp (p-data-segment (p-run-subr (subr , p)),

p-run-subr (subr , p))

Theorem: proper-p-data-segmentp-lr-apply-subr
(proper-p-statep (lr->p (new-l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run))
→ proper-p-data-segmentp (p-data-segment (lr-apply-subr (l , new-l)),

lr->p (lr-apply-subr (l , new-l)))

Theorem: lr-programs-properp-lr-set-pos
lr-programs-properp (lr-set-pos (l , pos), table)
= lr-programs-properp (l , table)

Theorem: proper-p-statep-lr-apply-subr
(listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ proper-p-statep (lr->p (l))
∧ proper-p-statep (lr->p (lr-eval (’list, lr-set-pos (l , pos), c)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ (p-psw (lr-apply-subr (l , lr-eval (’list, lr-set-pos (l , pos), c)))

= ’run))
→ proper-p-statep (lr->p (lr-apply-subr (l ,

lr-eval (’list,
lr-set-pos (l , pos),
c))))

Theorem: cdr-untag-lr-p-pc-lr-funcall
(p-psw (lr-funcall (l , new-l)) = ’run)
→ (cdr (untag (lr-p-pc (lr-funcall (l , new-l)))) = 0)

Theorem: listp-p-ctrl-stk-lr-funcall
listp (p-ctrl-stk (new-l)) → listp (p-ctrl-stk (lr-funcall (l , new-l)))
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Theorem: proper-p-framep-top-p-ctrl-stk-lr-funcall
(p-psw (lr-funcall (l , new-l)) = ’run)
→ (listp (car (p-ctrl-stk (lr-funcall (l , new-l))))

∧ listp (cdr (car (p-ctrl-stk (lr-funcall (l , new-l)))))
∧ (cddr (car (p-ctrl-stk (lr-funcall (l , new-l)))) = nil)
∧ (ret-pc (car (p-ctrl-stk (lr-funcall (l , new-l))))

= add-addr (lr-return-pc (l), 1)))

Theorem: car-untag-p-pc-lr-funcall
(p-psw (lr-funcall (l , new-l)) = ’run)
→ (car (untag (p-pc (lr-funcall (l , new-l))))

= user-fname (car (lr-expr (l))))

Theorem: area-name-p-pc-lr-funcall
(p-psw (lr-funcall (l , new-l)) = ’run)
→ (area-name (p-pc (lr-funcall (l , new-l))) = user-fname (car (lr-expr (l))))

Theorem: strip-cars-bindings-top-p-ctrl-stk-lr-funcall
(p-psw (lr-funcall (l , new-l)) = ’run)
→ (strip-cars (bindings (car (p-ctrl-stk (lr-funcall (l , new-l)))))

= append (formal-vars (assoc (user-fname (car (lr-expr (l))),
p-prog-segment (l))),

strip-cars (temp-var-dcls (assoc (user-fname (car (lr-expr (l))),
p-prog-segment (l))))))

Theorem: formal-vars-assoc-comp-programs-lr-programs-properp
(definedp (name, cdr (p-prog-segment (l))) ∧ lr-programs-properp (l , table))
→ (formal-vars (assoc (name, comp-programs (p-prog-segment (l))))

= formal-vars (assoc (name, p-prog-segment (l))))

Theorem: temp-var-dcls-assoc-comp-programs-lr-programs-properp
(definedp (name, cdr (p-prog-segment (l))) ∧ lr-programs-properp (l , table))
→ (temp-var-dcls (assoc (name, comp-programs (p-prog-segment (l))))

= temp-var-dcls (assoc (name, p-prog-segment (l))))

Theorem: definedp-comp-programs-definedp-lr-programs-properp
(definedp (name, cdr (p-prog-segment (l))) ∧ lr-programs-properp (l , table))
→ definedp (name, comp-programs (p-prog-segment (l)))

Theorem: definedp-lr-funcall-prog-segment
(listp (lr-expr (l))
∧ (¬ subrp (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’quote)
∧ litatom (car (lr-expr (l)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
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∧ lr-programs-properp (l , table)
∧ (progs = cdr (p-prog-segment (l))))
→ definedp (user-fname (car (lr-expr (l))), progs)

Theorem: pop-p-ctrl-stk-lr-funcall
(p-psw (lr-funcall (l , new-l)) = ’run)
→ (cdr (p-ctrl-stk (lr-funcall (l , new-l))) = p-ctrl-stk (new-l))

Theorem: proper-p-alistp-lr-funcall
(lr-programs-properp (l , table)
∧ definedp (user-fname (car (lr-expr (l))), cdr (p-prog-segment (new-l)))
∧ proper-p-prog-segmentp (comp-programs (p-prog-segment (new-l)),

lr->p (new-l))
∧ proper-p-temp-stkp (p-temp-stk (new-l), lr->p (new-l))
∧ (p-psw (lr-funcall (l , new-l)) = ’run)
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ proper-p-alistp (bindings (car (p-ctrl-stk (lr-funcall (l , new-l)))),

lr->p (lr-funcall (l , new-l)))

Theorem: proper-p-ctrl-stkp-lr-funcall
(proper-p-ctrl-stkp (cdr (ctrl-stk),

area-name (ret-pc (car (ctrl-stk))),
lr->p (new-l))

∧ proper-p-framep (top (ctrl-stk), name, lr->p (new-l))
∧ listp (ctrl-stk))
→ proper-p-ctrl-stkp (ctrl-stk , name, lr->p (lr-funcall (l , new-l)))

Theorem: not-lessp-p-max-ctrl-stk-size-lr-funcall
(listp (lr-expr (l))
∧ (¬ subrp (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’quote)
∧ litatom (car (lr-expr (l)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-funcall (l , new-l)) = ’run)
∧ (p-max-ctrl-stk-size (l) = p-max-ctrl-stk-size (new-l))
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ (p-max-ctrl-stk-size (l)

6< p-ctrl-stk-size (p-ctrl-stk (lr-funcall (l , new-l))))

Theorem: offset-p-pc-lr-funcall
(p-psw (lr-funcall (l , new-l)) = ’run)
→ (offset (p-pc (lr-funcall (l , new-l))) = nil)

Theorem: lr-eval-t-lr-funcall-p-psw-run
(p-psw (lr-eval (t, lr-funcall (l , new-l), c)) = ’run)
→ (p-psw (lr-funcall (l , new-l)) = ’run)
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Theorem: proper-p-temp-stkp-lr-funcall
(listp (lr-expr (l))
∧ (¬ subrp (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’quote)
∧ litatom (car (lr-expr (l)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-funcall (l , new-l)) = ’run)
∧ proper-p-temp-stkp (p-temp-stk (new-l), lr->p (new-l))
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ proper-p-temp-stkp (p-temp-stk (lr-funcall (l , new-l)),

lr->p (lr-funcall (l , new-l)))

Theorem: popn-nlistp
(¬ listp (x )) → (¬ listp (popn (n, x )))

Theorem: length-popn-lessp-fact
length (list) 6< length (popn (n, list))

Event: Disable popn-nlistp.

Theorem: not-lessp-p-max-temp-stk-size-lr-funcall
((p-max-temp-stk-size (l) 6< length (p-temp-stk (new-l)))
∧ (p-max-temp-stk-size (l) = p-max-temp-stk-size (new-l)))
→ (p-max-temp-stk-size (l) 6< length (p-temp-stk (lr-funcall (l , new-l))))

Theorem: listp-label-instrs
listp (label-instrs (list , n)) = listp (list)

Theorem: listp-comp-body
listp (comp-body (body))

Theorem: lessp-offset-lr-return-pc-lr-p-c-size-good-posp
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (subrp (car (lr-expr (l))) ∨ litatom (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote))
→ ((1 + offset (lr-return-pc (l)))

< length (program-body (assoc (area-name (p-pc (l)),
comp-programs (p-prog-segment (l))))))

Theorem: proper-p-statep-lr-funcall
(proper-p-statep (lr->p (lr-eval (’list, lr-set-pos (l , pos), c)))
∧ listp (lr-expr (l))
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∧ (¬ subrp (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’quote)
∧ (car (lr-expr (l)) 6= ’if)
∧ litatom (car (lr-expr (l)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ (p-psw (lr-funcall (l , lr-eval (’list, lr-set-pos (l , pos), c))) = ’run))
→ proper-p-statep (lr->p (lr-funcall (l ,

lr-eval (’list, lr-set-pos (l , pos), c))))

Theorem: proper-p-statep-lr-set-expr-lr-pop-cstk
let l2 be lr-eval (t, lr-funcall (l , new-l), c − 1)
in
(definedp (area-name (p-pc (l)), p-prog-segment (l))
∧ (cdr (p-ctrl-stk (l2 )) = p-ctrl-stk (new-l))
∧ (cdr (p-ctrl-stk (new-l)) = cdr (p-ctrl-stk (l)))
∧ (strip-cars (bindings (car (p-ctrl-stk (new-l))))

= strip-cars (bindings (car (p-ctrl-stk (l)))))
∧ proper-p-statep (lr->p (l2 ))
∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (l2 ) = ’run)
∧ same-signature (p-data-segment (new-l), p-data-segment (l2 ))
∧ (p-prog-segment (new-l) = p-prog-segment (l))
∧ (area-name (p-pc (new-l)) = area-name (p-pc (l)))
∧ (pos = offset (p-pc (l))))
→ proper-p-statep (lr->p (lr-set-expr (lr-pop-cstk (l2 ), l , pos))) endlet

Theorem: p-psw-lr-eval-flag-list-flag-t
((p-psw (lr-eval (’list, lr-set-expr (lr-eval (t, l , c), l , pos), c)) = ’run)
∧ listp (offset (p-pc (l)))
∧ listp (lr-expr-list (l)))
→ (p-psw (lr-eval (t, l , c)) = ’run)

Theorem: lr-programs-properp-lr-set-expr
lr-programs-properp (lr-set-expr (l1 , l2 , pos), table)
= lr-programs-properp (l2 , table)

Theorem: lr-programs-properp-lr-pop-tstk
lr-programs-properp (lr-pop-tstk (l), table) = lr-programs-properp (l , table)

Theorem: lr-programs-properp-lr-funcall
(listp (lr-expr (l))
∧ (¬ subrp (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’quote)
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∧ litatom (car (lr-expr (l)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ lr-programs-properp (lr-funcall (l , lr-eval (’list, lr-set-pos (l , pos), c)),

table)

Theorem: proper-p-statep-lr->p-lr-set-expr
(lr-programs-properp (l2 , table)
∧ lr-programs-properp (l1 , table)
∧ proper-p-statep (lr->p (l2 ))
∧ proper-p-statep (lr->p (l1 ))
∧ (cdr (p-ctrl-stk (l1 )) = cdr (p-ctrl-stk (l2 )))
∧ (strip-cars (bindings (car (p-ctrl-stk (l1 ))))

= strip-cars (bindings (car (p-ctrl-stk (l2 )))))
∧ (p-prog-segment (l1 ) = p-prog-segment (l2 ))
∧ (p-word-size (l1 ) = p-word-size (l2 ))
∧ (p-max-ctrl-stk-size (l1 ) = p-max-ctrl-stk-size (l2 ))
∧ (p-max-temp-stk-size (l1 ) = p-max-temp-stk-size (l2 )))
→ proper-p-statep (lr->p (lr-set-expr (l1 , l2 , pos)))

Theorem: lr-programs-properp-lr-if-ok
lr-programs-properp (lr-if-ok (l), table) = lr-programs-properp (l , table)

Theorem: proper-p-statep-lr-if-ok
proper-p-statep (lr->p (lr-if-ok (l))) = proper-p-statep (lr->p (l))

Theorem: lr-eval-preserves-proper-p-statep-lr->p
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (proper-p-statep (lr->p (lr-eval (flag , l , c)))

∧ (strip-cars (bindings (car (p-ctrl-stk (lr-eval (flag , l , c)))))
= strip-cars (bindings (car (p-ctrl-stk (l)))))

∧ (cdr (p-ctrl-stk (lr-eval (flag , l , c))) = cdr (p-ctrl-stk (l)))
∧ ((flag = ’list) ∨ listp (p-temp-stk (lr-eval (flag , l , c))))
∧ same-signature (p-data-segment (l),

p-data-segment (lr-eval (flag , l , c))))

Theorem: lr-params-lr-eval
lr-params (frame, lr-eval (flag , l , c)) = lr-params (frame, l)

Theorem: lr-temps-lr-eval
lr-temps (frame, lr-eval (flag , l , c)) = lr-temps (frame, l)
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;; Later LR-FREE-LIST-NODES will filter out those nodes that are
;; part of for example pack’s or user-defined types that are larger than one
;; node (i.e. have more than two accessors).

Definition:
lr-free-list-nodes (addr , data-seg)
= if offset (addr) < lr-node-size then nil

else let sub-addr be sub-addr (addr , lr-node-size)
in
if type (fetch (add-addr (sub-addr , lr-ref-count-offset),

data-seg))
= ’addr

then cons (sub-addr ,
lr-free-list-nodes (sub-addr , data-seg))

else lr-free-list-nodes (sub-addr , data-seg) endif endlet endif

Theorem: length-delete-member
(addr ∈ node-list)
→ (length (delete (addr , node-list)) = (length (node-list) − 1))

;; Returns smallest address such that the address is too large to be
;; a pointer to a node in DATA-SEG.

Definition:
lr-max-node (data-seg)
= tag (’addr,

cons (lr-heap-name, length (value (lr-heap-name, data-seg)) − 1))

Definition:
lr-check-free-nodes (addr , node-list , data-seg , max-addr)
= if addr ∈ node-list

then lr-check-free-nodes (fetch (add-addr (addr , lr-ref-count-offset),
data-seg),

delete (addr , node-list),
data-seg ,
max-addr)

else addr = max-addr endif

Definition:
lr-proper-free-listp (data-seg)
= (adpp (untag (lr-fp-addr), data-seg)

∧ lr-check-free-nodes (lr-fetch-fp (data-seg),
lr-free-list-nodes (lr-max-node (data-seg),

data-seg),
data-seg ,
lr-max-node (data-seg)))
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Event: Disable lr-proper-free-listp.

Definition:
lr-check-f-addrp (addr , data-seg) = (addr = lr-f-addr)

Event: Disable lr-check-f-addrp.

Definition:
lr-check-undef-addrp (addr , data-seg) = (addr = lr-undef-addr)

Event: Disable lr-check-undef-addrp.

Definition:
lr-check-numberp-addrp (addr , data-seg)
= ((type (fetch (add-addr (addr , lr-unbox-nat-offset), data-seg)) = ’nat)

∧ lr-good-pointerp (fetch (add-addr (addr , 3), data-seg), data-seg)
∧ (untag (fetch (add-addr (addr , lr-unbox-nat-offset), data-seg)) ∈ N))

Event: Disable lr-check-numberp-addrp.

Definition:
lr-check-listp-addrp (addr , data-seg)
= (lr-good-pointerp (fetch (add-addr (addr , lr-car-offset), data-seg),

data-seg)
∧ lr-good-pointerp (fetch (add-addr (addr , lr-cdr-offset), data-seg),

data-seg))

Event: Disable lr-check-listp-addrp.

Definition:
lr-proper-heapp-nodep (addr , data-seg)
= if ¬ lr-nodep (addr , data-seg) then f

elseif type (fetch (add-addr (addr , lr-ref-count-offset), data-seg))
= ’addr

then offset (addr) 6< (lr-node-size + offset (lr-f-addr))
elseif type (fetch (add-addr (addr , lr-ref-count-offset), data-seg))

6= ’nat then f
elseif type (fetch (addr , data-seg)) 6= ’nat then f
elseif untag (fetch (addr , data-seg)) = lr-undefined-tag
then lr-check-undef-addrp (addr , data-seg)
elseif untag (fetch (addr , data-seg)) = lr-false-tag
then lr-check-f-addrp (addr , data-seg)
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elseif offset (addr) < offset (lr-t-addr) then f
elseif untag (fetch (addr , data-seg)) = lr-true-tag then t
elseif untag (fetch (addr , data-seg)) = lr-add1-tag
then lr-check-numberp-addrp (addr , data-seg)
elseif untag (fetch (addr , data-seg)) = lr-cons-tag
then lr-check-listp-addrp (addr , data-seg)
else f endif

Event: Disable lr-proper-heapp-nodep.

Definition:
lr-proper-heapp2 (addr , data-seg)
= if offset (addr) < lr-node-size then t

else let sub-addr be sub-addr (addr , lr-node-size)
in
lr-proper-heapp-nodep (sub-addr , data-seg)
∧ lr-proper-heapp2 (sub-addr , data-seg) endlet endif

Definition:
lr-valp (value, addr , data-seg)
= if lr-good-pointerp (addr , data-seg)

then let tag be untag (fetch (addr , data-seg))
in
if listp (value)
then (tag = lr-cons-tag)

∧ lr-valp (car (value),
fetch (add-addr (addr , lr-car-offset),

data-seg),
data-seg)

∧ lr-valp (cdr (value),
fetch (add-addr (addr , lr-cdr-offset),

data-seg),
data-seg)

elseif truep (value) then tag = lr-true-tag
elseif falsep (value) then tag = lr-false-tag
elseif value ∈ N
then (tag = lr-add1-tag)

∧ (value = untag (fetch (add-addr (addr ,
lr-unbox-nat-offset),

data-seg)))
else f endif endlet

else f endif

Definition:
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lr-proper-heapp1 (addr , data-seg)
= (lr-proper-heapp2 (addr , data-seg)

∧ lr-valp (t, lr-t-addr, data-seg)
∧ lr-valp (0, lr-0-addr, data-seg))

Event: Disable lr-proper-heapp1.

;; This is the minimum heap that allows all the predefineds to be defined.

Definition:
lr-minimum-heapp (data-seg)
= (adpp (untag (lr-undef-addr), data-seg)

∧ adpp (untag (lr-f-addr), data-seg)
∧ adpp (untag (lr-t-addr), data-seg)
∧ adpp (untag (lr-0-addr), data-seg)
∧ adpp (untag (add-addr (lr-0-addr, lr-node-size)), data-seg))

Event: Disable lr-minimum-heapp.

;; This needs to be augmented to test that the word-size is big enough to
;; hold piton tags.

Definition:
lr-proper-heapp (data-seg)
= (lr-minimum-heapp (data-seg)

∧ lr-nodep (lr-max-node (data-seg), data-seg)
∧ lr-proper-free-listp (data-seg)
∧ lr-proper-heapp1 (lr-max-node (data-seg), data-seg))

Event: Disable lr-proper-heapp.

Definition:
lr-check-result1 (value, temp-stk , data-seg)
= if listp (value)

then lr-valp (car (value), top (temp-stk), data-seg)
∧ lr-check-result1 (cdr (value), pop (temp-stk), data-seg)

else t endif

Definition:
lr-check-result (flag , value, temp-stk , data-seg , orig-temp-stk)
= ((orig-temp-stk = if flag = ’list

then restn (length (value), temp-stk)
else cdr (temp-stk) endif)

∧ if flag = ’list
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then lr-check-result1 (reverse (value), temp-stk , data-seg)
else lr-valp (value, top (temp-stk), data-seg) endif

∧ lr-proper-heapp (data-seg))

Event: Disable lr-check-result.

Definition:
lr-s-similar-params (s-params , lr-params, data-seg)
= if listp (s-params)

then if listp (lr-params)
then (caar (s-params) = caar (lr-params))

∧ lr-valp (cdar (s-params), cdar (lr-params), data-seg)
∧ lr-s-similar-params (cdr (s-params),

cdr (lr-params),
data-seg)

else f endif
else lr-params ' nil endif

Definition:
lr-s-similar-temps (s-temps, lr-temps , data-seg)
= if listp (s-temps)

then if listp (lr-temps)
then if cdar (lr-temps) = lr-undef-addr then ¬ cadar (s-temps)

else cadar (s-temps)
∧ lr-valp (caddar (s-temps),

cdar (lr-temps),
data-seg) endif

∧ lr-s-similar-temps (cdr (s-temps),
cdr (lr-temps),
data-seg)

else f endif
else lr-temps ' nil endif

Definition:
lr-s-similar-const-table (table, data-seg)
= if listp (table)

then lr-valp (caar (table), cdar (table), data-seg)
∧ lr-s-similar-const-table (cdr (table), data-seg)

else t endif

Definition:
lr-s-similar-statesp (s-params , s-temps, l , table)
= (lr-s-similar-params (s-params,

lr-params (top (p-ctrl-stk (l)), l),
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p-data-segment (l))
∧ lr-s-similar-temps (s-temps,

lr-temps (top (p-ctrl-stk (l)), l),
p-data-segment (l))

∧ lr-s-similar-const-table (table, p-data-segment (l)))

Event: Disable lr-s-similar-statesp.

Theorem: p-accessors-s->lr1
(p-pc (s->lr1 (s, l , table)) = tag (’pc, cons (s-pname (s), s-pos (s))))
∧ (p-ctrl-stk (s->lr1 (s, l , table)) = p-ctrl-stk (l))
∧ (p-temp-stk (s->lr1 (s, l , table)) = p-temp-stk (l))
∧ (p-prog-segment (s->lr1 (s, l , table))

= lr-compile-programs (s-progs (s), table))
∧ (p-data-segment (s->lr1 (s, l , table)) = p-data-segment (l))
∧ (p-max-ctrl-stk-size (s->lr1 (s, l , table)) = p-max-ctrl-stk-size (l))
∧ (p-max-temp-stk-size (s->lr1 (s, l , table)) = p-max-temp-stk-size (l))
∧ (p-word-size (s->lr1 (s, l , table)) = p-word-size (l))
∧ (p-psw (s->lr1 (s, l , table)) = s-err-flag (s))

Theorem: s-eval-err-flag-not-run-fact
(s-err-flag (s) 6= ’run) → (s-eval (flag , s, clock) = s)

;; OFFSET

Theorem: offset-tag-cons
offset (tag (tag , cons (area, offset))) = offset

;; ADP-NAME

Theorem: adp-name-cons
adp-name (cons (x , y)) = x

;; OFFSET-SUB-ADDR -- see above

;; LR-PROPER-P-AREASP

Theorem: definedp-litatom-lr-proper-p-areas
((¬ litatom (name)) ∧ lr-proper-p-areasp (data-seg))
→ (¬ definedp (name, data-seg))

Event: Disable definedp-litatom-lr-proper-p-areas.
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Theorem: member-lr-free-list-nodes-type-addr
(type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’addr)
→ (addr 6∈ lr-free-list-nodes (max-addr , data-seg))

Event: Disable member-lr-free-list-nodes-type-addr.

Theorem: lessp-length-deposit
length (cdr (assoc (name, deposit (any , addr , data-seg))))
6< length (cdr (assoc (name, data-seg)))

;; GET

Theorem: definedp-listp-cdr-assoc-lr-proper-p-areasp
lr-proper-p-areasp (data-seg)
→ (listp (cdr (assoc (area-name, data-seg)))

= definedp (area-name, data-seg))

Event: Disable definedp-listp-cdr-assoc-lr-proper-p-areasp.

;; LR-MINIMUM-HEAPP

Theorem: lr-minimum-heapp-opener-adpp-lr-f-addr
lr-minimum-heapp (data-seg) → adpp (identity (untag (lr-f-addr)), data-seg)

Theorem: lr-minimum-heapp-opener-adpp-lr-t-addr
lr-minimum-heapp (data-seg) → adpp (identity (untag (lr-t-addr)), data-seg)

Theorem: lr-minimum-heapp-opener-adpp-lr-0-addr
lr-minimum-heapp (data-seg) → adpp (identity (untag (lr-0-addr)), data-seg)

Theorem: lr-minimum-heapp-opener-adpp-lr-undef-addr
lr-minimum-heapp (data-seg)
→ adpp (identity (untag (lr-undef-addr)), data-seg)

Theorem: lr-boundary-offsetp-sub1-length-heap-name
lr-boundary-nodep (lr-max-node (data-seg))
→ lr-boundary-offsetp (length (cdr (assoc (identity (lr-heap-name), data-seg))) − 1)

Theorem: lessp-lr-boundary-offsetp-nodep-plus-node-size-fact-2
(lr-boundary-offsetp (offset1 )
∧ lr-boundary-offsetp (offset2 )
∧ (n < lr-node-size))
→ (((n + offset1 ) < offset2 ) = (offset1 < offset2 ))

Theorem: lr-boundary-offsetp-times-lr-node-size-anything
lr-boundary-offsetp (identity (lr-node-size) ∗ x )
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Theorem: lr-boundary-offsetp-difference-not-equal-lessp-fact-2
(lr-boundary-offsetp (x ) ∧ lr-boundary-offsetp (y) ∧ (x ∈ N) ∧ (x < y))
→ (((y − lr-node-size) < x ) = f)

Theorem: lr-minimum-heapp-opener-2
lr-minimum-heapp (data-seg)
→ (identity (lr-minimum-heap-size)

< length (cdr (assoc (identity (lr-heap-name), data-seg))))

Event: Disable lr-minimum-heapp-opener-2.

Theorem: lr-minimum-heapp-opener-3
lr-minimum-heapp (data-seg) → definedp (identity (lr-heap-name), data-seg)

Event: Disable lr-minimum-heapp-opener-3.

;; LR-PROPER-FREE-LISTP

Definition:
lr-node-listp (list , data-seg)
= if listp (list)

then lr-nodep (car (list), data-seg)
∧ lr-node-listp (cdr (list), data-seg)

else t endif

Event: Disable lr-node-listp.

Theorem: adpp-adpp-sub-addr
adpp (untag (addr), data-seg) → adpp (untag (sub-addr (addr , n)), data-seg)

Theorem: lr-node-listp-lr-free-list-nodes
(lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ adpp (untag (addr), data-seg2 )
∧ (type (addr) = ’addr))
→ lr-node-listp (lr-free-list-nodes (addr , data-seg1 ), data-seg2 )

Theorem: lr-nodep-member-lr-node-listp
(lr-node-listp (list , data-seg) ∧ (node ∈ list))
→ ((type (node) = ’addr)

∧ (cddr (node) = nil)
∧ listp (node)
∧ adpp (untag (node), data-seg)
∧ lr-boundary-nodep (node)
∧ (area-name (node) = lr-heap-name))
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Event: Disable lr-nodep-member-lr-node-listp.

Theorem: lr-max-node-lr-nodep-opener-facts
(type (lr-max-node (data-seg)) = ’addr)
∧ (cddr (lr-max-node (data-seg)) = nil)
∧ (area-name (lr-max-node (data-seg)) = lr-heap-name)

Theorem: lr-max-node-adpp-definedp-lr-heap-name
lr-proper-p-areasp (data-seg)
→ (adpp (untag (lr-max-node (data-seg)), data-seg)

= definedp (lr-heap-name, data-seg))

Theorem: offset-lr-max-node
offset (lr-max-node (data-seg))
= (length (cdr (assoc (identity (lr-heap-name), data-seg))) − 1)

Event: Disable lr-max-node.

Theorem: lr-proper-free-listp-opener-1
lr-proper-free-listp (data-seg)
→ adpp (identity (untag (lr-fp-addr)), data-seg)

Theorem: lr-proper-free-listp-opener-2
(lr-proper-free-listp (data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ ((type (fetch (identity (lr-fp-addr), data-seg)) = ’addr)

∧ (cddr (fetch (identity (lr-fp-addr), data-seg)) = nil)
∧ listp (fetch (identity (lr-fp-addr), data-seg))
∧ adpp (untag (fetch (identity (lr-fp-addr), data-seg)), data-seg)
∧ lr-boundary-nodep (fetch (identity (lr-fp-addr), data-seg))
∧ (area-name (fetch (identity (lr-fp-addr), data-seg))

= lr-heap-name))

Theorem: lr-proper-free-listp-opener-2-adpp-untag-numberp-offset
(lr-proper-free-listp (data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (offset (fetch (identity (lr-fp-addr), data-seg)) ∈ N)

Theorem: lr-proper-free-listp-opener-2-adpp-untag-listp
(lr-proper-free-listp (data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ listp (untag (fetch (identity (lr-fp-addr), data-seg)))
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Theorem: plus-times-fact-1
(n 6' 0) → (((n + (n ∗ w)) < (d ∗ n)) = ((1 + w) < d))

Event: Disable plus-times-fact-1.

Theorem: lessp-difference-fact-1
(((x mod n) = 0) ∧ ((y mod n) = 0) ∧ (x < y) ∧ (x ∈ N))
→ ((x < (y − n)) = (x 6= (y − n)))

Theorem: lessp-difference-lr-boundary-offsetp-fact-1
((offset ∈ N)
∧ lr-boundary-offsetp (offset)
∧ lr-boundary-offsetp (y)
∧ (offset < y))
→ ((offset < (y − identity (lr-node-size)))

= (offset 6= (y − identity (lr-node-size))))

Theorem: lessp-lr-node-on-boundaryp-node-size
(lr-boundary-nodep (addr) ∧ (offset (addr) ∈ N))
→ ((offset (addr) < identity (lr-node-size)) = (offset (addr) = 0))

Theorem: lessp-difference-node-size-sub-addr
((offset (addr) < offset (max-addr))
∧ (area-name (addr) = area-name (max-addr))
∧ lr-boundary-nodep (max-addr)
∧ (type (max-addr) = ’addr)
∧ (offset (max-addr) ∈ N)
∧ (cddr (max-addr) = nil)
∧ lr-boundary-nodep (addr)
∧ (type (addr) = ’addr)
∧ (offset (addr) ∈ N)
∧ (cddr (addr) = nil)
∧ listp (untag (addr)))
→ ((offset (addr) < (offset (max-addr) − identity (lr-node-size)))

= (sub-addr (max-addr , identity (lr-node-size)) 6= addr))

Theorem: lr-nodep-lr-proper-heapp-nodep
(lr-proper-heapp2 (max-addr , data-seg)
∧ (offset (addr) < offset (max-addr))
∧ lr-nodep (max-addr , data-seg)
∧ lr-nodep (addr , data-seg))
→ lr-proper-heapp-nodep (addr , data-seg)

Event: Disable lessp-difference-node-size-sub-addr.
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Theorem: adpp-area-name-offset-same
(listp (untag (addr1 ))
∧ (offset (addr1 ) ∈ N)
∧ (cddr (addr1 ) = nil)
∧ listp (untag (addr2 ))
∧ (offset (addr2 ) ∈ N)
∧ (cddr (addr2 ) = nil)
∧ (type (addr1 ) = type (addr2 )))
→ ((addr1 = addr2 )

= ((offset (addr1 ) = offset (addr2 ))
∧ (area-name (addr1 ) = area-name (addr2 ))))

Theorem: lr-proper-heapp-nodep-tag-cons
((untag (fetch (addr , data-seg)) = lr-cons-tag)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) = ’nat)
∧ lr-proper-heapp-nodep (addr , data-seg)
∧ ((offset = lr-car-offset) ∨ (offset = lr-cdr-offset)))
→ lr-good-pointerp (fetch (add-addr (addr , offset), data-seg), data-seg)

Theorem: adpp-add-addr-fact-2
(adpp (untag (addr1 ), data-seg)
∧ adpp (untag (add-addr (addr1 , n)), data-seg)
∧ adpp (untag (addr2 ), data-seg)
∧ (¬ adpp (untag (add-addr (addr2 , n)), data-seg))
∧ (area-name (addr1 ) = area-name (addr2 )))
→ (offset (addr1 ) < offset (addr2 ))

Theorem: fetch-lr-nodep-add-addr
((¬ adpp (untag (add-addr (addr , n)), data-seg)) ∧ lr-nodep (addr , data-seg))
→ (fetch (add-addr (addr , n), data-seg) = 0)

Event: Disable fetch-lr-nodep-add-addr.

Theorem: untag-addr-addr-tag
untag (add-addr (tag (tag , adp), n)) = cons (car (adp), cdr (adp) + n)

Theorem: lr-good-pointerp-lessp-offset-max-heap-node
(adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ listp (addr)
∧ (cddr (addr) = nil)
∧ (type (addr) = ’addr)
∧ (area-name (addr) = ’heap)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) = ’nat)
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∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (offset (addr)

< (length (cdr (assoc (identity (lr-heap-name), data-seg))) − 1))

Event: Disable lr-good-pointerp-lessp-offset-max-heap-node.

Theorem: lr-proper-heapp-opener-1
lr-proper-heapp (data-seg)
→ (lr-minimum-heapp (data-seg) ∧ lr-proper-free-listp (data-seg))

Theorem: lr-proper-heapp-opener-3
((addr = lr-max-node (data-seg)) ∧ lr-proper-heapp (data-seg))
→ lr-proper-heapp2 (addr , data-seg)

Theorem: deposit-free-ptr-preserves-lr-valp
(adpp (untag (lr-fp-addr), data-seg) ∧ lr-valp (value, addr , data-seg))
→ lr-valp (value, addr , deposit (anything , identity (lr-fp-addr), data-seg))

Theorem: lr-proper-p-areasp-deposit-anything-anywhere
lr-proper-p-areasp (data-seg)
→ lr-proper-p-areasp (deposit (anything , addr , data-seg))

Theorem: lr-node-listp-delete
lr-node-listp (list , data-seg)
→ lr-node-listp (delete (anything , list), data-seg)

Event: Disable lr-node-listp-delete.

Theorem: lr-node-listp-deposit-anything-at-all
lr-node-listp (addr , data-seg)
→ lr-node-listp (addr , deposit (anything , addr2 , data-seg))

Event: Disable lr-node-listp-deposit-anything-at-all.

Theorem: cdr-assoc-member-strip-cdrs
definedp (name, list) → (cdr (assoc (name, list)) ∈ strip-cdrs (list))

Event: Disable cdr-assoc-member-strip-cdrs.

Theorem: lr-set-error-lr->p
lr->p (lr-set-error (p, flag)) = lr-set-error (lr->p (p), flag)
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Theorem: lr-params-lr-set-expr
((area-name (p-pc (l)) = area-name (p-pc (l2 )))
∧ (p-prog-segment (l) = p-prog-segment (l2 )))
→ (lr-params (frame, lr-set-expr (l , l2 , pos)) = lr-params (frame, l))

Theorem: lr-temps-lr-set-expr
((area-name (p-pc (l)) = area-name (p-pc (l2 )))
∧ (p-prog-segment (l) = p-prog-segment (l2 )))
→ (lr-temps (frame, lr-set-expr (l , l2 , pos)) = lr-temps (frame, l))

Theorem: p-current-program-lr-push-tstk
p-current-program (lr-push-tstk (l , any)) = p-current-program (l)

Theorem: p-current-program-lr-set-temp
p-current-program (lr-set-temp (l , value, var)) = p-current-program (l)

Theorem: p-current-program-lr-pop-tstk
p-current-program (lr-pop-tstk (l)) = p-current-program (l)

Theorem: p-current-program-lr-do-temp-fetch
p-current-program (lr-do-temp-fetch (l)) = p-current-program (l)

Theorem: strip-cars-restn
strip-cars (restn (n, list)) = restn (n, strip-cars (list))

Event: Disable strip-cars-restn.

Theorem: strip-cars-firstn
strip-cars (firstn (n, list)) = firstn (n, strip-cars (list))

Event: Disable strip-cars-firstn.

Theorem: lr-params-lr-pop-tstk
lr-params (frame, lr-pop-tstk (l)) = lr-params (frame, l)

Theorem: lr-temps-lr-pop-tstk
lr-temps (frame, lr-pop-tstk (l)) = lr-temps (frame, l)

Theorem: lr-minimum-heapp-same-signature
same-signature (data-seg1 , data-seg2 )
→ (lr-minimum-heapp (data-seg2 ) = lr-minimum-heapp (data-seg1 ))

Event: Disable lr-minimum-heapp-same-signature.
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Theorem: put-not-listp
((¬ listp (list1 )) ∧ (¬ listp (list2 )))
→ (put (val , n, list1 ) = put (val , n, list2 ))

Theorem: put-zero
put (val , n, 0) = put (val , n, nil)

Event: Disable put-zero.

Theorem: put-put
((offset1 ∈ N) ∧ (offset2 ∈ N))
→ (put (val1 , offset1 , put (val2 , offset2 , list))

= if offset1 = offset2 then put (val1 , offset1 , list)
else put (val2 , offset2 , put (val1 , offset1 , list)) endif)

Theorem: proper-p-data-segmentp-implies-lr-proper-p-areasp
proper-p-data-segmentp (data-seg , p) → lr-proper-p-areasp (data-seg)

Theorem: proper-p-statep-lr->p-implies-lr-proper-p-areasp
proper-p-statep (lr->p (l)) → lr-proper-p-areasp (p-data-segment (l))

Event: Disable proper-p-data-segmentp-implies-lr-proper-p-areasp.

Theorem: lr-proper-free-listp-type-fetch-free-ptr
(lr-proper-free-listp (data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-proper-p-areasp (data-seg))
→ (type (fetch (add-addr (fetch (identity (lr-fp-addr), data-seg),

identity (lr-ref-count-offset)),
data-seg))

6= ’nat)

Theorem: put-assoc-put-assoc-1
put-assoc (val1 , name, put-assoc (val2 , name, alist))
= put-assoc (val1 , name, alist)

Theorem: put-assoc-put-assoc-2
put-assoc (val1 , name1 , put-assoc (val2 , name2 , alist))
= if name1 = name2 then put-assoc (val1 , name1 , alist)

else put-assoc (val2 , name2 , put-assoc (val1 , name1 , alist)) endif

Theorem: deposit-deposit
((offset (addr1 ) ∈ N) ∧ (offset (addr2 ) ∈ N))
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→ (deposit (value1 , addr1 , deposit (value2 , addr2 , data-seg))
= if (area-name (addr1 ) = area-name (addr2 ))

∧ (offset (addr1 ) = offset (addr2 ))
then deposit (value1 , addr1 , data-seg)
else deposit (value2 ,

addr2 ,
deposit (value1 , addr1 , data-seg)) endif)

Theorem: deposit-ref-count-move-outward
(offset (addr) ∈ N)
→ (deposit (value1 ,

addr ,
deposit (value2 ,

add-addr (addr , identity (lr-ref-count-offset)),
data-seg))

= deposit (value2 ,
add-addr (addr , lr-ref-count-offset),
deposit (value1 , addr , data-seg)))

Definition:
ihint-2 (flag , s, l , table, c)
= if s-err-flag (s) 6= ’run then t

elseif flag = ’list
then if s-pos (s) ' nil then t

elseif listp (s-expr-list (s))
then ihint-2 (t, s, l , table, c)

∧ ihint-2 (’list,
s-set-expr (s-eval (t, s, c), s, nx (s-pos (s))),
lr-eval (t, s->lr1 (s, l , table), c),
table,
c)

else t endif
elseif c ' 0 then t
elseif litatom (s-expr (s)) then t
elseif s-expr (s) ' nil then t
elseif car (s-expr (s)) = ’if
then let lrtest be lr-if-ok (lr-eval (t,

s->lr1 (s-set-pos (s,
dv (s-pos (s),

1)),
l ,
table),

c)),
stest be s-eval (t, s-set-pos (s, dv (s-pos (s), 1)), c)
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in
if p-psw (lrtest) = ’run
then if top (p-temp-stk (lrtest)) 6= lr-f-addr

then ihint-2 (t,
s-set-pos (s, dv (s-pos (s), 1)),
l ,
table,
c)

∧ ihint-2 (t,
s-set-expr (stest ,

s,
dv (s-pos (s), 2)),

lr-pop-tstk (lrtest),
table,
c)

else ihint-2 (t,
s-set-pos (s, dv (s-pos (s), 1)),
l ,
table,
c)

∧ ihint-2 (t,
s-set-expr (stest ,

s,
dv (s-pos (s), 3)),

lr-pop-tstk (lrtest),
table,
c) endif

else ihint-2 (t,
s-set-pos (s, dv (s-pos (s), 1)),
l ,
table,
c) endif endlet

elseif car (s-expr (s)) = s-temp-eval
then ihint-2 (t, s-set-pos (s, dv (s-pos (s), 1)), l , table, c)
elseif car (s-expr (s)) = s-temp-test
then if p-max-temp-stk-size (l) 6< (2 + length (p-temp-stk (l)))

then if lr-eval-temp-setp (s->lr1 (s, l , table)) then t
else ihint-2 (t, s-set-pos (s, dv (s-pos (s), 1)), l , table, c) endif

else t endif
elseif car (s-expr (s)) = s-temp-fetch then t
elseif car (s-expr (s)) = ’quote then t
elseif s-err-flag (s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c))

6= ’run
then ihint-2 (’list, s-set-pos (s, dv (s-pos (s), 1)), l , table, c)
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elseif subrp (car (s-expr (s)))
then ihint-2 (’list, s-set-pos (s, dv (s-pos (s), 1)), l , table, c)
elseif litatom (car (s-expr (s)))
then let s-arg-s be s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c),

lr-arg-s be lr-eval (’list,
s->lr1 (s-set-pos (s, dv (s-pos (s), 1)),

l ,
table),

c)
in
ihint-2 (’list, s-set-pos (s, dv (s-pos (s), 1)), l , table, c)
∧ ihint-2 (t,

s-fun-call-state (s-arg-s, car (s-expr (s))),
lr-funcall (s->lr1 (s, l , table), lr-arg-s),
table,
c − 1) endlet

else t endif

Definition:
induct-hint-4 (x , temp-stk)
= if listp (x ) then induct-hint-4 (cdr (x ), cdr (temp-stk))

else t endif

Theorem: lr-check-result1-append
lr-check-result1 (append (x , y), temp-stk , data-seg)
= (lr-check-result1 (x , temp-stk , data-seg)

∧ lr-check-result1 (y , restn (length (x ), temp-stk), data-seg))

Theorem: lr-proper-heapp-opener-4
lr-proper-heapp (data-seg)
→ (adpp (untag (lr-max-node (data-seg)), data-seg)

∧ lr-boundary-nodep (lr-max-node (data-seg)))

Theorem: length-strip-cars
length (strip-cars (temp-vars)) = length (temp-vars)

Theorem: definedp-lr-compile-programs
definedp (name, lr-compile-programs (progs, const-table))
= definedp (name, progs)

Theorem: lr-valp-deposit-fetch-free-pointer-offset-helper-1
((type (fetch (add-addr (addr , identity (lr-ref-count-offset)), data-seg))

= ’nat)
∧ lr-good-pointerp (addr , data-seg)
∧ lr-nodep (free-addr , data-seg)
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∧ (offset (addr) = offset (free-addr)))
→ (type (fetch (add-addr (free-addr , identity (lr-ref-count-offset)),

data-seg))
= ’nat)

Theorem: lr-boundary-nodep-equal-plus-fact-zero
((type (addr1 ) = ’addr)
∧ (cddr (addr1 ) = nil)
∧ listp (addr1 )
∧ listp (untag (addr1 ))
∧ (offset (addr1 ) ∈ N)
∧ lr-boundary-nodep (addr1 )
∧ (type (addr2 ) = ’addr)
∧ (cddr (addr2 ) = nil)
∧ listp (addr2 )
∧ listp (untag (addr2 ))
∧ (offset (addr2 ) ∈ N)
∧ lr-boundary-nodep (addr2 )
∧ (area-name (addr2 ) = area-name (addr1 ))
∧ (m < lr-node-size))
→ ((offset (addr1 ) = (m + offset (addr2 )))

= ((m ' 0) ∧ (addr1 = addr2 )))

Theorem: lr-boundary-nodep-equal-plus-fact
((type (addr1 ) = ’addr)
∧ (cddr (addr1 ) = nil)
∧ listp (addr1 )
∧ listp (untag (addr1 ))
∧ (offset (addr1 ) ∈ N)
∧ lr-boundary-nodep (addr1 )
∧ (type (addr2 ) = ’addr)
∧ (cddr (addr2 ) = nil)
∧ listp (addr2 )
∧ listp (untag (addr2 ))
∧ (offset (addr2 ) ∈ N)
∧ lr-boundary-nodep (addr2 )
∧ (n < lr-node-size)
∧ (m < lr-node-size)
∧ (area-name (addr1 ) = area-name (addr2 )))
→ (((n + offset (addr1 )) = (m + offset (addr2 )))

= ((fix (n) = fix (m)) ∧ (addr1 = addr2 )))

Theorem: lr-valp-deposit-fetch-free-pointer-offset
((type (fetch (add-addr (free-addr , lr-ref-count-offset), data-seg)) 6= ’nat)
∧ lr-nodep (free-addr , data-seg)
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∧ (n < lr-node-size)
∧ lr-valp (value, addr , data-seg))
→ lr-valp (value, addr , deposit (anything , add-addr (free-addr , n), data-seg))

Event: Disable lr-valp-deposit-fetch-free-pointer-offset.

Event: Disable lr-valp-deposit-fetch-free-pointer-offset-helper-1.

Theorem: lr-valp-deposit-fetch-free-pointer
((type (fetch (add-addr (free-addr , lr-ref-count-offset), data-seg)) 6= ’nat)
∧ lr-nodep (free-addr , data-seg)
∧ lr-valp (value, addr , data-seg))
→ lr-valp (value, addr , deposit (anything , free-addr , data-seg))

Event: Disable lr-valp-deposit-fetch-free-pointer.

Theorem: not-equal-x-add1-add1-x
(x = (1 + (1 + x ))) = f

Theorem: not-equal-x-add1-x
(x = (1 + x )) = f

Theorem: p-run-subr-preserves-lr-valp
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-programs-properp (new-l , table)
∧ listp (lr-expr (l))
∧ proper-p-statep (lr->p (new-l))
∧ lr-proper-free-listp (p-data-segment (new-l))
∧ adpp (untag (lr-max-node (p-data-segment (new-l))), p-data-segment (new-l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (new-l)))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= ’run)

∧ lr-valp (value, addr , p-data-segment (new-l))
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ lr-valp (value,

addr ,
p-data-segment (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l),
lr-return-pc (l)))))
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Theorem: numberp-offset-sub-addr
offset (sub-addr (addr , n)) ∈ N

Theorem: lr-free-list-nodes-deposit-non-ref-count
(lr-nodep (addr , data-seg)
∧ lr-nodep (max-addr , data-seg)
∧ (offset 6= lr-ref-count-offset)
∧ (offset ∈ N)
∧ (offset < lr-node-size))
→ (lr-free-list-nodes (max-addr ,

deposit (anything , add-addr (addr , offset), data-seg))
= lr-free-list-nodes (max-addr , data-seg))

Theorem: lr-nodep-member-lr-node-listp-adpp-untag-listp
(lr-node-listp (list , data-seg) ∧ (node ∈ list)) → listp (untag (node))

Event: Disable lr-nodep-member-lr-node-listp-adpp-untag-listp.

Theorem: lr-nodep-member-lr-node-listp-adpp-untag-numberp-offset
(lr-node-listp (list , data-seg) ∧ (node ∈ list)) → (offset (node) ∈ N)

Theorem: lr-nodep-member-lr-node-listp-lr-boundaryp-offsetp
(lr-node-listp (list , data-seg) ∧ (node ∈ list))
→ lr-boundary-offsetp (offset (node))

Theorem: lr-check-free-nodes-deposit-non-ref-count
(lr-nodep (addr2 , data-seg)
∧ lr-nodep (max-addr , data-seg)
∧ (offset 6= lr-ref-count-offset)
∧ (offset ∈ N)
∧ (offset < lr-node-size)
∧ lr-node-listp (node-list , data-seg))
→ (lr-check-free-nodes (addr1 ,

node-list ,
deposit (anything , add-addr (addr2 , offset), data-seg),
max-addr)

= lr-check-free-nodes (addr1 , node-list , data-seg , max-addr))

Event: Disable lr-nodep-member-lr-node-listp-adpp-untag-numberp-offset.

Theorem: adpp-deposit-other-area
(adp-name (adp) 6= area-name (addr))
→ (adpp (adp, deposit (anything , addr , data-seg)) = adpp (adp, data-seg))

Event: Disable adpp-deposit-other-area.
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Theorem: length-deposit
length (cdr (assoc (name, deposit (anything , addr , data-seg))))
= if definedp (area-name (addr), data-seg)

then if area-name (addr) = name
then if offset (addr) < length (cdr (assoc (name, data-seg)))

then length (cdr (assoc (name, data-seg)))
else 1 + offset (addr) endif

else length (cdr (assoc (name, data-seg))) endif
else length (cdr (assoc (name, data-seg))) endif

Theorem: same-signature-deposit
(adpp (untag (addr), segment2 ) ∧ lr-proper-p-areasp (segment2 ))
→ (same-signature (segment1 , deposit (anything , addr , segment2 ))

= same-signature (segment1 , segment2 ))

Theorem: lr-max-node-same-signature
same-signature (data-seg1 , data-seg2 )
→ (lr-max-node (data-seg2 ) = lr-max-node (data-seg1 ))

Event: Disable lr-max-node-same-signature.

Theorem: lr-max-node-deposit
(adpp (untag (addr), data-seg) ∧ lr-proper-p-areasp (data-seg))
→ (lr-max-node (deposit (anything , addr , data-seg))

= lr-max-node (data-seg))

Theorem: not-adpp-untag-node-not-definedp-lr-heap-name
(¬ definedp (area-name (addr), data-seg))
→ (¬ adpp (untag (addr), data-seg))

Theorem: sub-addr-area-name-offset-same
(listp (untag (addr1 ))
∧ (offset (addr1 ) ∈ N)
∧ (cddr (addr1 ) = nil)
∧ (type (addr1 ) = type (addr2 )))
→ ((addr1 = sub-addr (addr2 , n))

= ((offset (addr1 ) = (offset (addr2 ) − n))
∧ (area-name (addr1 ) = area-name (addr2 ))))

Theorem: lr-free-list-nodes-member-greater-offset
(offset (addr) 6< offset (max-addr))
→ (addr 6∈ lr-free-list-nodes (max-addr , data-seg))

Theorem: lr-free-list-nodes-deposit-lr-ref-count-offset
((type (addr) = ’addr)
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∧ (cddr (addr) = nil)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = ’heap)
∧ (type (max-addr) = ’addr)
∧ adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = ’heap)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N))
→ (lr-free-list-nodes (max-addr ,

deposit (ref-count ,
add-addr (addr ,

identity (lr-ref-count-offset)),
data-seg))

= delete (addr , lr-free-list-nodes (max-addr , data-seg)))

Event: Disable lr-free-list-nodes-member-greater-offset.

Event: Disable not-adpp-untag-node-not-definedp-lr-heap-name.

Definition:
no-duplicatesp (list)
= if listp (list)

then if car (list) ∈ cdr (list) then f
else no-duplicatesp (cdr (list)) endif

else t endif

Theorem: not-member-occurences-0
(x 6∈ z ) → (occurrences (x , z ) = 0)

Event: Disable not-member-occurences-0.

Theorem: no-duplicatesp-occurences-1
(no-duplicatesp (list) ∧ (e ∈ list)) → (occurrences (e, list) = 1)

Theorem: no-duplicatesp-lr-free-list-nodes
no-duplicatesp (lr-free-list-nodes (addr , data-seg))

Theorem: member-area-name-offset-same
((addr1 ∈ node-list)
∧ (offset (addr1 ) ∈ N)
∧ (cddr (addr1 ) = nil)
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∧ listp (untag (addr1 ))
∧ listp (untag (addr2 ))
∧ (offset (addr2 ) ∈ N)
∧ (cddr (addr2 ) = nil)
∧ (type (addr1 ) = type (addr2 ))
∧ (area-name (addr1 ) = area-name (addr2 ))
∧ (offset (addr2 ) = offset (addr1 )))
→ (addr2 ∈ node-list)

Theorem: lr-check-free-nodes-delete-deposit
(lr-check-free-nodes (addr2 , node-list , data-seg , max-addr)
∧ (addr1 6∈ node-list)
∧ lr-nodep (addr1 , data-seg)
∧ lr-node-listp (node-list , data-seg)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N))
→ lr-check-free-nodes (addr2 ,

node-list ,
deposit (ref-count ,

add-addr (addr1 ,
identity (lr-ref-count-offset)),

data-seg),
max-addr)

Event: Disable lr-check-free-nodes-delete-deposit.

Event: Disable member-area-name-offset-same.

Theorem: lr-check-free-nodes-deposit-free-ptr
(adpp (identity (untag (lr-fp-addr)), data-seg)
∧ lr-node-listp (node-list , data-seg))
→ (lr-check-free-nodes (addr ,

node-list ,
deposit (anything , identity (lr-fp-addr), data-seg),
max-addr)

= lr-check-free-nodes (addr , node-list , data-seg , max-addr))

Theorem: lr-free-list-nodes-deposit-free-ptr
(lr-nodep (max-addr , data-seg) ∧ adpp (identity (untag (lr-fp-addr)), data-seg))
→ (lr-free-list-nodes (max-addr ,

deposit (anything , identity (lr-fp-addr), data-seg))
= lr-free-list-nodes (max-addr , data-seg))

Theorem: deposit-ref-count-move-inward-2
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(lr-nodep (addr , data-seg)
∧ (offset 6= lr-ref-count-offset)
∧ (offset 6' 0)
∧ (offset < lr-node-size))
→ (deposit (any1 ,

add-addr (addr , identity (lr-ref-count-offset)),
deposit (any2 , add-addr (addr , offset), data-seg))

= deposit (any2 ,
add-addr (addr , offset),
deposit (any1 ,

add-addr (addr , identity (lr-ref-count-offset)),
data-seg)))

Event: Disable deposit-ref-count-move-inward-2.

Theorem: lr-free-list-nodes-deposit-lr-nodep
(lr-nodep (addr , data-seg) ∧ lr-nodep (max-addr , data-seg))
→ (lr-free-list-nodes (max-addr , deposit (anything , addr , data-seg))

= lr-free-list-nodes (max-addr , data-seg))

Theorem: lr-check-free-nodes-deposit-lr-nodep
(lr-nodep (addr2 , data-seg)
∧ lr-nodep (max-addr , data-seg)
∧ lr-node-listp (node-list , data-seg))
→ (lr-check-free-nodes (addr1 ,

node-list ,
deposit (anything , addr2 , data-seg),
max-addr)

= lr-check-free-nodes (addr1 , node-list , data-seg , max-addr))

Theorem: same-signature-cons
same-signature (data-seg1 , cons (x , data-seg2 ))
= if listp (data-seg1 )

then (signature (car (data-seg1 )) = signature (x ))
∧ same-signature (cdr (data-seg1 ), data-seg2 )

else f endif

Theorem: same-signature-nil
(data-seg1 ' nil)
→ (same-signature (data-seg1 , data-seg2 ) = (data-seg2 ' nil))

Theorem: listp-put-assoc
listp (put-assoc (val , name, alist)) = listp (alist)
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Theorem: not-same-signature-deposit-too-large-addr
(definedp (area-name (addr), data-seg2 )
∧ lr-proper-p-areasp (data-seg2 )
∧ (offset (addr) 6< length (value (area-name (addr), data-seg1 ))))
→ (¬ same-signature (data-seg1 , deposit (any , addr , data-seg2 )))

Event: Disable same-signature-cons.

Event: Disable same-signature-nil.

Theorem: adpp-deposit-a-list
adpp (adp, data-seg) → adpp (adp, deposit-a-list (list , addr2 , data-seg))

Theorem: lr-proper-p-areasp-deposit-a-list
lr-proper-p-areasp (data-seg)
→ lr-proper-p-areasp (deposit-a-list (list , addr , data-seg))

Theorem: definedp-deposit-a-list
definedp (tag , deposit-a-list (list , addr , data-seg)) = definedp (tag , data-seg)

Theorem: sub1-plus-not-zerop-fact-1
(x 6' 0) → ((((y + x ) − 1) < y) = f)

Theorem: not-adpp-untag-add-addr-adpp-untag
adpp (untag (addr), data-seg)
→ (adpp (untag (add-addr (addr , n)), data-seg)

= ((offset (addr) + n)
< length (cdr (assoc (area-name (addr), data-seg)))))

Theorem: not-same-signature-deposit-a-list-too-large-addr
(definedp (area-name (addr), data-seg2 )
∧ lr-proper-p-areasp (data-seg2 )
∧ (offset (addr) 6< length (value (area-name (addr), data-seg1 ))))
→ (same-signature (data-seg1 , deposit-a-list (list , addr , data-seg2 ))

= if listp (list) then f
else same-signature (data-seg1 , data-seg2 ) endif)

Theorem: same-signature-deposit-a-list
(adpp (untag (addr), data-seg2 )
∧ lr-proper-p-areasp (data-seg2 )
∧ same-signature (data-seg1 , data-seg2 ))
→ (same-signature (data-seg1 , deposit-a-list (list , addr , data-seg2 ))

= ((offset (addr) + (length (list) − 1))
< length (cdr (assoc (area-name (addr), data-seg1 )))))
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Event: Disable not-same-signature-deposit-too-large-addr.

Event: Disable not-same-signature-deposit-a-list-too-large-addr.

Theorem: deposit-good-node-preserves-lr-proper-free-listp
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (offset (fetch (lr-fp-addr, data-seg))

< (((length (cdr (assoc (lr-heap-name, data-seg))) − 1) − 1) − 1))
∧ (type (tag) = ’nat)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N))
→ lr-proper-free-listp (deposit (fetch (add-addr (fetch (identity (lr-fp-addr),

data-seg),
identity (lr-ref-count-offset)),

data-seg),
identity (lr-fp-addr),
deposit-a-list (list (tag , ref-count , x , y),

fetch (identity (lr-fp-addr),
data-seg),

data-seg)))

Theorem: p-run-subr-preserves-lr-proper-free-listp
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-programs-properp (new-l , table)
∧ listp (lr-expr (l))
∧ proper-p-statep (lr->p (new-l))
∧ lr-proper-free-listp (p-data-segment (new-l))
∧ adpp (untag (lr-max-node (p-data-segment (new-l))), p-data-segment (new-l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (new-l)))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= ’run)

∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l))))
→ lr-proper-free-listp (p-data-segment (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l),
lr-return-pc (l)))))

Event: Disable same-signature-deposit.
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Theorem: lr-apply-subr-preserves-lr-proper-free-listp
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ proper-p-statep (lr->p (new-l))
∧ lr-proper-free-listp (p-data-segment (new-l))
∧ adpp (untag (lr-max-node (p-data-segment (new-l))),

p-data-segment (new-l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (new-l)))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run))
→ lr-proper-free-listp (p-data-segment (lr-apply-subr (l , new-l))) endlet

Theorem: lr-eval-preserves-proper-p-statep-lr->p-rewrite
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ proper-p-statep (lr->p (lr-eval (flag , l , c)))

Theorem: lr-eval-preserves-cdr-p-ctrl-stk
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (cdr (p-ctrl-stk (lr-eval (flag , l , c))) = cdr (p-ctrl-stk (l)))

Theorem: lr-eval-preserves-strip-cars-bindings-car-p-ctrl-stk
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (strip-cars (bindings (car (p-ctrl-stk (lr-eval (flag , l , c)))))

= strip-cars (bindings (car (p-ctrl-stk (l)))))

Theorem: lr-eval-preserves-lr-max-node
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (lr-max-node (p-data-segment (lr-eval (flag , l , c)))

= lr-max-node (p-data-segment (l)))
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Theorem: lr-eval-preserves-adpp
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (adpp (adp, p-data-segment (lr-eval (flag , l , c)))

= adpp (adp, p-data-segment (l)))

Theorem: lr-eval-preserves-length-assoc-data-segment
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (length (cdr (assoc (name, p-data-segment (lr-eval (flag , l , c)))))

= length (cdr (assoc (name, p-data-segment (l)))))

Theorem: lr-eval-preserves-proper-p-statep-lr->p-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp (flag , pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , lr-set-pos (l , pos), c)) = ’run))
→ proper-p-statep (lr->p (lr-eval (flag , lr-set-pos (l , pos), c)))

Theorem: lr-eval-preserves-strip-cars-bindings-car-p-ctrl-stk-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp1 (pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (t, lr-set-pos (l , pos), c)) = ’run))
→ (strip-cars (bindings (car (p-ctrl-stk (lr-eval (t, lr-set-pos (l , pos), c)))))

= strip-cars (bindings (car (p-ctrl-stk (l)))))

Theorem: lr-eval-preserves-cdr-p-ctrl-stk-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp1 (pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (t, lr-set-pos (l , pos), c)) = ’run))
→ (cdr (p-ctrl-stk (lr-eval (t, lr-set-pos (l , pos), c)))

= cdr (p-ctrl-stk (l)))

Theorem: lr-eval-preserves-adpp-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp (flag , pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , lr-set-pos (l , pos), c)) = ’run))
→ (adpp (adp, p-data-segment (lr-eval (flag , lr-set-pos (l , pos), c)))

= adpp (adp, p-data-segment (l)))
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Theorem: lr-eval-preserves-lr-max-node-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp (flag , pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , lr-set-pos (l , pos), c)) = ’run))
→ (lr-max-node (p-data-segment (lr-eval (flag , lr-set-pos (l , pos), c)))

= lr-max-node (p-data-segment (l)))

Theorem: lr-eval-preserves-lr-proper-free-listp
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run)
∧ adpp (untag (lr-max-node (p-data-segment (l))), p-data-segment (l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (l)))
∧ lr-proper-free-listp (p-data-segment (l)))
→ lr-proper-free-listp (p-data-segment (lr-eval (flag , l , c)))

Theorem: lr-apply-subr-preserves-lr-valp
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ proper-p-statep (lr->p (new-l))
∧ lr-proper-free-listp (p-data-segment (new-l))
∧ adpp (untag (lr-max-node (p-data-segment (new-l))),

p-data-segment (new-l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (new-l)))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ lr-valp (value, addr , p-data-segment (new-l)))
→ lr-valp (value, addr , p-data-segment (lr-apply-subr (l , new-l))) endlet

Theorem: lr-eval-preserves-lr-proper-free-listp-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp (flag , pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , lr-set-pos (l , pos), c)) = ’run)
∧ adpp (untag (lr-max-node (p-data-segment (l))), p-data-segment (l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (l)))
∧ lr-proper-free-listp (p-data-segment (l)))
→ lr-proper-free-listp (p-data-segment (lr-eval (flag , lr-set-pos (l , pos), c)))
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Theorem: lr-eval-preserves-lr-valp
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run)
∧ lr-proper-free-listp (p-data-segment (l))
∧ adpp (untag (lr-max-node (p-data-segment (l))), p-data-segment (l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (l)))
∧ lr-valp (value, addr , p-data-segment (l)))
→ lr-valp (value, addr , p-data-segment (lr-eval (flag , l , c)))

Theorem: lr-check-f-addrp-deposit-anything-anywhere
lr-check-f-addrp (addr , deposit (anything , anywhere, data-seg))
= lr-check-f-addrp (addr , data-seg)

Theorem: lr-check-undef-addrp-deposit-anything-anywhere
lr-check-undef-addrp (addr , deposit (anything , anywhere, data-seg))
= lr-check-undef-addrp (addr , data-seg)

Theorem: lr-check-listp-addrp-deposit-free-ptr-0
lr-check-listp-addrp (addr , deposit (any , identity (lr-fp-addr), data-seg))
= lr-check-listp-addrp (addr , data-seg)

Theorem: lr-check-numberp-addrp-deposit-free-ptr-0
lr-check-numberp-addrp (addr , deposit (any , identity (lr-fp-addr), data-seg))
= lr-check-numberp-addrp (addr , data-seg)

Theorem: lr-proper-heapp-nodep-deposit-free-ptr-0
lr-proper-heapp-nodep (addr , deposit (any , identity (lr-fp-addr), data-seg))
= lr-proper-heapp-nodep (addr , data-seg)

Theorem: lr-proper-heapp2-deposit-free-ptr-0
lr-proper-heapp2 (addr , deposit (any , identity (lr-fp-addr), data-seg))
= lr-proper-heapp2 (addr , data-seg)

Theorem: lr-boundary-offsetp-equal-plus-fact-zero
(lr-boundary-offsetp (offset1 )
∧ lr-boundary-offsetp (offset2 )
∧ (n < lr-node-size)
∧ (offset1 ∈ N)
∧ (offset2 ∈ N))
→ (((n + offset1 ) = offset2 )

= ((n ' 0) ∧ (offset1 = offset2 )))

Theorem: fetch-add-addr-deposit-a-list-node
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(adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = area-name (max-addr))
∧ (n < lr-node-size))
→ (fetch (add-addr (max-addr , n),

deposit-a-list (list (x0 , x1 , x2 , x3 ), addr , data-seg))
= if offset (addr) = offset (max-addr)

then get (n, list (x0 , x1 , x2 , x3 ))
else fetch (add-addr (max-addr , n), data-seg) endif)

Theorem: fetch-deposit-a-list-node
(adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = area-name (max-addr)))
→ (fetch (max-addr , deposit-a-list (list (x0 , x1 , x2 , x3 ), addr , data-seg))

= if offset (addr) = offset (max-addr) then x0
else fetch (max-addr , data-seg) endif)

Event: Disable lr-boundary-offsetp-equal-plus-fact-zero.

Theorem: lr-check-f-addrp-deposit-a-list
lr-check-f-addrp (addr , deposit-a-list (list , anywhere, data-seg))
= lr-check-f-addrp (addr , data-seg)

Theorem: lr-check-undef-addrp-deposit-a-list
lr-check-undef-addrp (addr , deposit-a-list (list , anywhere, data-seg))
= lr-check-undef-addrp (addr , data-seg)

Theorem: lr-check-numberp-addrp-deposit-a-list-cons
((offset (addr) 6= offset (max-addr))
∧ (type (max-addr) = ’addr)
∧ (cddr (max-addr) = nil)
∧ listp (max-addr)
∧ adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = lr-heap-name)
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
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∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ lr-check-numberp-addrp (max-addr , data-seg)
∧ (type (tag) = ’nat)
∧ (untag (tag) ∈ N))
→ lr-check-numberp-addrp (max-addr ,

deposit-a-list (list (x0 , tag , x2 , x3 ),
addr ,
data-seg))

Theorem: lr-check-listp-addrp-deposit-a-list-cons
(lr-good-pointerp (good-pointer1 , data-seg)
∧ lr-good-pointerp (good-pointer2 , data-seg)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (addr) = lr-heap-name)
∧ (area-name (max-addr) = lr-heap-name)
∧ (type (tag) = ’nat)
∧ (untag (tag) ∈ N)
∧ (offset (addr) = offset (max-addr)))
→ lr-check-listp-addrp (max-addr ,

deposit-a-list (list (identity (tag (’nat,
lr-cons-tag)),

tag ,
good-pointer1 ,
good-pointer2 ),

addr ,
data-seg))

Theorem: lr-check-listp-addrp-deposit-a-list-other-place
(adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (addr) = lr-heap-name)
∧ (area-name (max-addr) = lr-heap-name)
∧ lr-check-listp-addrp (max-addr , data-seg)
∧ (offset (addr) 6= offset (max-addr))
∧ (type (ref-count) = ’nat))
→ lr-check-listp-addrp (max-addr ,

deposit-a-list (list (x0 , ref-count , x2 , x3 ),
addr ,
data-seg))
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Theorem: lr-proper-heapp-nodep-deposit-a-list-cons
(lr-nodep (max-addr , data-seg)
∧ lr-nodep (addr , data-seg)
∧ lr-proper-heapp-nodep (max-addr , data-seg)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’nat)
∧ lr-good-pointerp (good-pointer1 , data-seg)
∧ lr-good-pointerp (good-pointer2 , data-seg)
∧ (type (tag) = ’nat)
∧ (untag (tag) ∈ N))
→ lr-proper-heapp-nodep (max-addr ,

deposit-a-list (list (identity (tag (’nat,
lr-cons-tag)),

tag ,
good-pointer1 ,
good-pointer2 ),

addr ,
data-seg))

Theorem: lr-proper-heapp2-deposit-a-list-cons
(lr-nodep (max-addr , data-seg)
∧ lr-nodep (addr , data-seg)
∧ lr-proper-heapp2 (max-addr , data-seg)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’nat)
∧ lr-good-pointerp (good-pointer1 , data-seg)
∧ lr-good-pointerp (good-pointer2 , data-seg)
∧ (type (tag) = ’nat)
∧ (untag (tag) ∈ N))
→ lr-proper-heapp2 (max-addr ,

deposit-a-list (list (identity (tag (’nat, lr-cons-tag)),
tag ,
good-pointer1 ,
good-pointer2 ),

addr ,
data-seg))

Theorem: not-psw-run-lr-eval
(p-psw (l) 6= ’run) → (lr-eval (flag , l , c) = l)

Theorem: program-body-assoc-lr-compile-programs
program-body (assoc (name, lr-compile-programs (progs, table)))
= lr-compile-body (t,

s-body (assoc (name, progs)),
lr-make-temp-name-alist (s-temp-list (assoc (name, progs)),

s-formals (assoc (name, progs))),
table)
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Theorem: listp-lr-compile-body
listp (lr-compile-body (flag , body , temp-name-alist , table)) = listp (body)

Theorem: car-lr-compile-body
(flag 6= ’list)
→ (car (lr-compile-body (flag , body , temp-name-alist , table)) = car (body))

Theorem: good-posp1-expand-list-temps
(((temp = s-temp-eval) ∨ (temp = s-temp-test)) ∧ listp (pos))
→ (good-posp1 (pos, list (temp, body , name))

= ((car (pos) = 1) ∧ good-posp1 (cdr (pos), body)))

Theorem: length-lr-compile-body-list
length (lr-compile-body (’list, body , temp-name-alist , table))
= length (body)

Theorem: get-lr-compile-body-list
get (n, lr-compile-body (’list, body , temp-name-alist , table))
= lr-compile-body (t, get (n, body), temp-name-alist , table)

Theorem: get-lr-compile-body
(listp (body)
∧ (car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote)
∧ (n 6' 0))
→ (get (n, lr-compile-body (t, body , temp-name-alist , table))

= lr-compile-body (t, get (n, body), temp-name-alist , table))

Theorem: length-lr-compile-body-t
(listp (body)
∧ (car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote))
→ (length (lr-compile-body (t, body , temp-name-alist , table))

= length (body))

Theorem: good-posp1-lr-compile-body
good-posp1 (pos, lr-compile-body (t, body , temp-name-alist , table))
= good-posp1 (pos, body)

Theorem: cur-expr-lr-compile-body-t
good-posp1 (pos, body)
→ (cur-expr (pos, lr-compile-body (t, body , temp-name-alist , table))

= lr-compile-body (t, cur-expr (pos, body), temp-name-alist , table))
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Theorem: lr-check-result1-singleton-list-opener
lr-check-result1 (list (x ), temp-stk , data-seg)
= lr-valp (x , car (temp-stk), data-seg)

Theorem: proper-p-temp-stkp-plistp-p-temp-stk
proper-p-temp-stkp (temp-stk , p) → plistp (temp-stk)

Theorem: proper-p-statep-lr->p-plistp-p-temp-stk
proper-p-statep (lr->p (l)) → plistp (p-temp-stk (l))

Theorem: proper-p-statep-lr->p-not-0-p-temp-stk
proper-p-statep (lr->p (l)) → (p-temp-stk (l) 6= 0)

Theorem: plistp-lastcdr-nil
plistp (list) → (lastcdr (list) = nil)

Theorem: lr-eval-preserves-lr-valp-lr-set-expr
(proper-p-statep (lr->p (l))
∧ proper-p-statep (lr->p (lr-set-expr (l1 , l , pos)))
∧ good-posp (flag , pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , lr-set-expr (l1 , l , pos), c)) = ’run)
∧ lr-proper-free-listp (p-data-segment (l))
∧ lr-proper-free-listp (p-data-segment (l1 ))
∧ adpp (untag (lr-max-node (p-data-segment (l))), p-data-segment (l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (l)))
∧ adpp (untag (lr-max-node (p-data-segment (l1 ))), p-data-segment (l1 ))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (l1 )))
∧ lr-valp (value, addr , p-data-segment (l1 ))
∧ (length (cdr (assoc (lr-heap-name, p-data-segment (l1 ))))

= length (cdr (assoc (lr-heap-name, p-data-segment (l))))))
→ lr-valp (value,

addr ,
p-data-segment (lr-eval (flag , lr-set-expr (l1 , l , pos), c)))

Theorem: lr-eval-preserves-proper-p-statep-lr->p-lr-set-expr
(proper-p-statep (lr->p (l))
∧ good-posp (flag , pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , lr-set-expr (l1 , l , pos), c)) = ’run)
∧ lr-programs-properp (l1 , table)
∧ proper-p-statep (lr->p (l1 ))
∧ (cdr (p-ctrl-stk (l1 )) = cdr (p-ctrl-stk (l)))
∧ (strip-cars (bindings (car (p-ctrl-stk (l1 ))))

= strip-cars (bindings (car (p-ctrl-stk (l)))))
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∧ (p-prog-segment (l1 ) = p-prog-segment (l))
∧ (p-word-size (l1 ) = p-word-size (l))
∧ (p-max-ctrl-stk-size (l1 ) = p-max-ctrl-stk-size (l))
∧ (p-max-temp-stk-size (l1 ) = p-max-temp-stk-size (l)))
→ proper-p-statep (lr->p (lr-eval (flag , lr-set-expr (l1 , l , pos), c)))

Theorem: lr-check-result-flag-list-cons-value
let l2 be lr-eval (’list, lr-set-expr (lr-eval (t, l , c), l , nx (pos)), c)
in
(good-posp (’list, pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ proper-p-statep (lr->p (l))
∧ listp (lr-expr-list (l))
∧ listp (offset (p-pc (l)))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-check-result (t,

value1 ,
p-temp-stk (lr-eval (t, l , c)),
p-data-segment (lr-eval (t, l , c)),
p-temp-stk (l))

∧ lr-check-result (’list,
value2 ,
p-temp-stk (l2 ),
p-data-segment (l2 ),
p-temp-stk (lr-eval (t, l , c)))

∧ (p-psw (l2 ) = ’run)
∧ (pos = offset (p-pc (l)))
∧ (temp-stk = p-temp-stk (l)))
→ lr-check-result (’list,

cons (value1 , value2 ),
p-temp-stk (l2 ),
p-data-segment (l2 ),
temp-stk) endlet

Theorem: lr-check-result-nil
lr-proper-heapp (data-seg)
→ lr-check-result (’list, nil, temp-stk , data-seg , temp-stk)

Theorem: litatom-lr-compile-body
litatom (lr-compile-body (t, body , temp-name-alist , table)) = litatom (body)

Theorem: lr-params-lr-push-tstk
lr-params (frame, lr-push-tstk (l , anything)) = lr-params (frame, l)

Theorem: lr-temps-lr-push-tstk
lr-temps (frame, lr-push-tstk (l , anything)) = lr-temps (frame, l)
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Theorem: program-body-p-current-program-s->lr1
program-body (p-current-program (s->lr1 (s, l , table)))
= lr-compile-body (t,

s-body (s-prog (s)),
lr-make-temp-name-alist (s-temp-list (s-prog (s)),

s-formals (s-prog (s))),
table)

Theorem: name-car-lr-compile-programs-progs
name (car (lr-compile-programs (s-progs (s), table))) = caar (s-progs (s))

Theorem: car-car-lr-compile-programs-progs
caar (lr-compile-programs (s-progs (s), table)) = caar (s-progs (s))

Theorem: s-good-statep-program-body-car-lr-compile-programs
s-good-statep (s, c)
→ (program-body (car (lr-compile-programs (s-progs (s), table)))

= lr-compile-body (t,
s-body (car (s-progs (s))),
lr-make-temp-name-alist (s-temp-list (car (s-progs (s))),

s-formals (car (s-progs (s)))),
table))

Theorem: good-posp-lr-compile-body
good-posp (flag , pos, lr-compile-body (t, body , temp-name-alist , table))
= good-posp (flag , pos, body)

Theorem: strip-cars-lr-compile-programs
strip-cars (lr-compile-programs (progs, table)) = strip-cars (progs)

Theorem: listp-lr-expr-list-s->lr1
good-posp (’list, s-pos (s), s-body (s-prog (s)))
→ (listp (lr-expr-list (s->lr1 (s, l , table))) = listp (s-expr-list (s)))

Theorem: formal-vars-lr-compile-programs
formal-vars (assoc (name, lr-compile-programs (progs, table)))
= s-formals (assoc (name, progs))

Theorem: formal-vars-p-current-program-s->lr1
formal-vars (p-current-program (s->lr1 (s, l , table))) = s-formals (s-prog (s))

Theorem: temp-var-dcls-lr-compile-programs
definedp (name, progs)
→ (temp-var-dcls (assoc (name, lr-compile-programs (progs, table)))

= lr-make-temp-var-dcls (lr-make-temp-name-alist (s-temp-list (assoc (name,
progs)),

s-formals (assoc (name,
progs)))))

132



Theorem: temp-var-dcls-assoc-p-current-program-s->lr1
definedp (s-pname (s), s-progs (s))
→ (temp-var-dcls (p-current-program (s->lr1 (s, l , table)))

= lr-make-temp-var-dcls (lr-make-temp-name-alist (s-temp-list (s-prog (s)),
s-formals (s-prog (s)))))

Theorem: lr-set-expr-s->lr1-s-set-expr
s->lr1 (s-set-expr (s-eval (t, s, c), s, nx (s-pos (s))),

lr-eval (t, s->lr1 (s, l , table), c),
table)

= lr-set-error (lr-set-expr (lr-eval (t, s->lr1 (s, l , table), c),
s->lr1 (s, l , table),
nx (s-pos (s))),

s-err-flag (s-eval (t, s, c)))

Theorem: p-current-program-lr-set-error
p-current-program (lr-set-error (l , err-flag)) = p-current-program (l)

Theorem: lr-set-error-lr-set-error
lr-set-error (lr-set-error (l , err-flag1 ), err-flag2 )
= lr-set-error (l , err-flag2 )

Theorem: proper-p-statep-lr-set-error
proper-p-statep (lr-set-error (l , err-flag)) = proper-p-statep (l)

Theorem: lr-params-lr-set-error
lr-params (frame, lr-set-error (l , err-flag)) = lr-params (frame, l)

Theorem: lr-temps-lr-set-error
lr-temps (frame, lr-set-error (l , err-flag)) = lr-temps (frame, l)

Theorem: lr-s-similar-statesp-lr-set-error
lr-s-similar-statesp (params, temps , lr-set-error (l , err-flag), table)
= lr-s-similar-statesp (params, temps, l , table)

Theorem: lr-s-similar-statesp-lr-set-expr
((area-name (p-pc (l1 )) = area-name (p-pc (l2 )))
∧ (p-prog-segment (l1 ) = p-prog-segment (l2 )))
→ (lr-s-similar-statesp (params, temps, lr-set-expr (l1 , l2 , pos), table)

= lr-s-similar-statesp (params, temps , l1 , table))

Theorem: lr-eval-zerop-clock
((c ' 0) ∧ (flag 6= ’list) ∧ (p-psw (l) = ’run))
→ (lr-eval (flag , l , c) = lr-set-error (l , ’out-of-time))
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Theorem: litatom-lr-expr-s->lr1
(good-posp1 (s-pos (s), s-body (s-prog (s))) ∧ litatom (s-expr (s)))
→ (lr-expr (s->lr1 (s, l , table)) = s-expr (s))

Theorem: lr-eval-litatom-opener
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (flag 6= ’list)
∧ (c 6' 0)
∧ litatom (s-expr (s))
∧ (s-err-flag (s) = ’run))
→ (lr-eval (flag , s->lr1 (s, l , table), c)

= lr-push-tstk (s->lr1 (s, l , table),
local-var-value (s-expr (s), p-ctrl-stk (l))))

Theorem: lr-s-similar-statesp-lr-push-tstk-litatom
lr-s-similar-statesp (s-params, s-temps, lr-push-tstk (l , value), table)
= lr-s-similar-statesp (s-params , s-temps , l , table)

Theorem: lr-s-similar-params-assoc-definedp
(lr-s-similar-params (s-params, lr-params, data-seg)
∧ definedp (name, lr-params))
→ lr-valp (cdr (assoc (name, s-params)), cdr (assoc (name, lr-params)), data-seg)

Theorem: proper-p-statep-lr->p-strip-cars-bindings-ctrl-stk
(proper-p-statep (lr->p (l))
∧ definedp (area-name (p-pc (l)), p-prog-segment (l)))
→ (strip-cars (bindings (car (p-ctrl-stk (l))))

= append (formal-vars (assoc (area-name (p-pc (l)), p-prog-segment (l))),
strip-cars (temp-var-dcls (assoc (area-name (p-pc (l)),

p-prog-segment (l))))))

Definition:
induct-hint-11 (v , y)
= if listp (v)

then if listp (y) then induct-hint-11 (cdr (v), cdr (y))
else t endif

else t endif

Theorem: equal-append-same-length-fact
(length (v) = length (y))
→ ((append (strip-cars (v), w) = append (y , z ))

= ((strip-cars (v) = plist (y)) ∧ (w = z )))

Theorem: definedp-strip-cars-append-member-x
(strip-cars (x ) = append (y , z ))
→ ((e ∈ y) = definedp (e, firstn (length (y), x )))
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Theorem: proper-p-statep-lr->p-member-formals-definedp-bindings
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ definedp (s-pname (s), s-progs (s))
∧ (x ∈ s-formals (assoc (s-pname (s), s-progs (s)))))
→ definedp (x ,

firstn (length (s-formals (assoc (s-pname (s), s-progs (s)))),
bindings (car (p-ctrl-stk (l)))))

Theorem: lr-valp-addr-0
¬ lr-valp (addr , 0, data-seg)

Theorem: lr-valp-cdr-assoc-firstn-cdr-assoc
lr-valp (addr , cdr (assoc (name, firstn (n, list))), data-seg)
→ lr-valp (addr , cdr (assoc (name, list)), data-seg)

Theorem: lr-s-similar-statesp-lr-s-similar-params-opener
(lr-s-similar-statesp (s-params, s-temps, l , table)
∧ (frame = car (p-ctrl-stk (l)))
∧ (data-seg = p-data-segment (l)))
→ lr-s-similar-params (s-params, lr-params (frame, l), data-seg)

Theorem: lr-s-similar-statesp-lr-s-similar-temps-opener
(lr-s-similar-statesp (s-params, s-temps , l , table)
∧ (frame = car (p-ctrl-stk (l)))
∧ (data-seg = p-data-segment (l)))
→ lr-s-similar-temps (s-temps, lr-temps (frame, l), data-seg)

Theorem: strip-cars-lr-make-temp-var-dcls
strip-cars (lr-make-temp-var-dcls (temp-alist)) = strip-cdrs (temp-alist)

Theorem: lr-check-result-lr-push-tstk
let value be cdr (assoc (s-expr (s), bindings (car (p-ctrl-stk (l)))))
in
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ definedp (s-pname (s), s-progs (s))
∧ (s-err-flag (s) = ’run)
∧ litatom (s-expr (s))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ (p-psw (lr-push-tstk (s->lr1 (s, l , table), value)) = ’run)
∧ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr1 (s, l , table),
table))
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→ lr-check-result (t,
cdr (assoc (s-expr (s), s-params (s))),
p-temp-stk (lr-push-tstk (s->lr1 (s, l , table),

value)),
p-data-segment (l),
p-temp-stk (l)) endlet

Theorem: s->lr1-s-set-pos-lr-set-pos
s->lr1 (s-set-pos (s, pos), l , table) = lr-set-pos (s->lr1 (s, l , table), pos)

Theorem: lr-params-lr-set-pos
lr-params (frame, lr-set-pos (l , pos)) = lr-params (frame, l)

Theorem: lr-temps-lr-set-pos
lr-temps (frame, lr-set-pos (l , pos)) = lr-temps (frame, l)

Theorem: lr-s-similar-statesp-lr-s-set-pos
lr-s-similar-statesp (s-params, s-temps , lr-set-pos (l , pos), table)
= lr-s-similar-statesp (s-params, s-temps, l , table)

Theorem: lr-set-expr-s->lr1-s-set-expr-lr-pop-tstk
s->lr1 (s-set-expr (s-eval (t, s-set-pos (s, pos), c), s, dv (s-pos (s), n)),

lr-pop-tstk (lr-if-ok (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c))),
table)

= lr-set-error (lr-set-expr (lr-pop-tstk (lr-if-ok (lr-eval (t,
lr-set-pos (s->lr1 (s,

l ,
table),

pos),
c))),

s->lr1 (s, l , table),
dv (s-pos (s), n)),

s-err-flag (s-eval (t, s-set-pos (s, pos), c)))

Theorem: lr-s-similar-statesp-lr-pop-tstk
lr-s-similar-statesp (s-params, s-temps , lr-pop-tstk (l), table)
= lr-s-similar-statesp (s-params, s-temps, l , table)

Theorem: listp-lr-expr-s->lr1
good-posp1 (s-pos (s), s-body (s-prog (s)))
→ (listp (lr-expr (s->lr1 (s, l , table))) = listp (s-expr (s)))

Theorem: litatom-lr-expr-s->lr1-s-expr
good-posp1 (s-pos (s), s-body (s-prog (s)))
→ (litatom (lr-expr (s->lr1 (s, l , table))) = litatom (s-expr (s)))

136



Theorem: car-lr-expr-s->lr1
good-posp1 (s-pos (s), s-body (s-prog (s)))
→ (car (lr-expr (s->lr1 (s, l , table))) = car (s-expr (s)))

Theorem: equal-p-psw-lr-eval-run-lr-eval-lr-set-error
(p-psw (l) = ’run)
→ (lr-eval (flag , lr-set-error (l , ’run), c) = lr-eval (flag , l , c))

Theorem: lr-proper-heapp-lr-good-pointerp-lr-proper-heapp-nodep
(lr-good-pointerp (addr , data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg))
→ lr-proper-heapp-nodep (addr , data-seg)

Theorem: lr-check-result-f-not-lr-f-addr
((car (temp-stk) 6= lr-f-addr)
∧ lr-proper-p-areasp (data-seg)
∧ listp (temp-stk))
→ (lr-check-result (t, f, temp-stk , data-seg , orig-temp-stk) = f)

Theorem: lr-check-result-t-chain
((flag 6= ’list)
∧ lr-check-result (t, ans, temp-stk2 , data-seg2 , cdr (temp-stk1 ))
∧ lr-check-result (t, anything , temp-stk1 , data-seg1 , temp-stk0 ))
→ lr-check-result (flag , ans, temp-stk2 , data-seg2 , temp-stk0 )

Theorem: lr-check-result-not-f-lr-f-addr
((car (temp-stk) = lr-f-addr)
∧ listp (temp-stk)
∧ lr-proper-p-areasp (data-seg)
∧ (ans 6= f))
→ (lr-check-result (t, ans, temp-stk , data-seg , orig-temp-stk) = f)

Theorem: lr-eval-leaves-listp-p-temp-stk
(proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ (flag 6= ’list)
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ listp (p-temp-stk (lr-eval (flag , l , c)))

Theorem: lr-eval-s->lr1-if-opener-1
let lr-test be lr-if-ok (lr-eval (t,

lr-set-pos (s->lr1 (s, l , table),
dv (s-pos (s), 1)),
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c))
in
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = ’if)
∧ (flag 6= ’list)
∧ (p-psw (lr-test) = ’run)
∧ (top (p-temp-stk (lr-test)) 6= lr-f-addr))
→ (lr-eval (flag , s->lr1 (s, l , table), c)

= lr-eval (t,
lr-set-expr (lr-pop-tstk (lr-test),

s->lr1 (s, l , table),
dv (s-pos (s), 2)),

c)) endlet

Theorem: lr-eval-s->lr1-if-opener-2
let lr-test be lr-if-ok (lr-eval (t,

lr-set-pos (s->lr1 (s, l , table),
dv (s-pos (s), 1)),

c))
in
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = ’if)
∧ (flag 6= ’list)
∧ (p-psw (lr-test) = ’run)
∧ (top (p-temp-stk (lr-test)) = lr-f-addr))
→ (lr-eval (flag , s->lr1 (s, l , table), c)

= lr-eval (t,
lr-set-expr (lr-pop-tstk (lr-test),

s->lr1 (s, l , table),
dv (s-pos (s), 3)),

c)) endlet

Theorem: lr-eval-s->lr1-if-opener-3
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (flag 6= ’list)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = ’if)
∧ (c 6' 0)
∧ s-good-statep (s, c)
∧ (p-psw (lr-if-ok (lr-eval (t,

lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)),
c)))
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6= ’run))
→ (lr-eval (flag , s->lr1 (s, l , table), c)

= lr-if-ok (lr-eval (t,
lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)),
c)))

Theorem: lr-eval-s->lr1-temp-eval-opener
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (car (s-expr (s)) = s-temp-eval)
∧ (flag 6= ’list)
∧ (c 6' 0)
∧ listp (s-expr (s))
∧ s-good-statep (s, c))
→ (lr-eval (flag , s->lr1 (s, l , table), c)

= lr-set-temp (lr-eval (t,
lr-set-pos (s->lr1 (s, l , table),

dv (s-pos (s), 1)),
c),

top (p-temp-stk (lr-eval (t,
lr-set-pos (s->lr1 (s,

l ,
table),

dv (s-pos (s), 1)),
c))),

caddr (lr-expr (s->lr1 (s, l , table)))))

Theorem: lr-eval-s->lr1-temp-test-opener
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (car (s-expr (s)) = s-temp-test)
∧ (flag 6= ’list)
∧ (c 6' 0)
∧ listp (s-expr (s))
∧ s-good-statep (s, c))
→ (lr-eval (flag , s->lr1 (s, l , table), c)

= if p-max-temp-stk-size (l) 6< (2 + length (p-temp-stk (l)))
then if lr-eval-temp-setp (s->lr1 (s, l , table))

then lr-do-temp-fetch (s->lr1 (s, l , table))
else lr-set-temp (lr-eval (t,

lr-set-pos (s->lr1 (s,
l ,
table),

dv (s-pos (s), 1)),
c),

top (p-temp-stk (lr-eval (t,
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lr-set-pos (s->lr1 (s,
l ,
table),

dv (s-pos (s),
1)),

c))),
caddr (lr-expr (s->lr1 (s, l , table)))) endif

else lr-set-error (s->lr1 (s, l , table),
’lr-temp-setp-temp-stack-overflow) endif)

Theorem: lr-eval-s->lr1-temp-fetch-opener
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (car (s-expr (s)) = s-temp-fetch)
∧ (flag 6= ’list)
∧ (c 6' 0)
∧ listp (s-expr (s))
∧ s-good-statep (s, c))
→ (lr-eval (flag , s->lr1 (s, l , table), c)

= lr-do-temp-fetch (s->lr1 (s, l , table)))

Theorem: lr-eval-s->lr1-quote-opener
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (car (s-expr (s)) = ’quote)
∧ (flag 6= ’list)
∧ (c 6' 0)
∧ listp (s-expr (s))
∧ s-good-statep (s, c))
→ (lr-eval (flag , s->lr1 (s, l , table), c)

= lr-push-tstk (s->lr1 (s, l , table),
cadr (lr-expr (s->lr1 (s, l , table)))))

Theorem: lr-params-lr-set-temp
lr-params (frame, lr-set-temp (l , value, var-name)) = lr-params (frame, l)

Theorem: lr-temps-lr-set-temp
lr-temps (frame, lr-set-temp (l , value, var-name)) = lr-temps (frame, l)

Theorem: firstn-put-assoc
firstn (n, put-assoc (val , name, alist)) = put-assoc (val , name, firstn (n, alist))

Theorem: strip-cars-nil-fact
(nil = strip-cars (y)) = (¬ listp (y))

Definition:
induct-hint-13 (e, x , y)
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= if listp (x )
then if listp (y)

then if e = caar (x ) then t
else induct-hint-13 (e, cdr (x ), cdr (y)) endif

else t endif
else t endif

Theorem: strip-cars-equal-definedp-equal
(strip-cars (x ) = strip-cars (y)) → (definedp (e, x ) = definedp (e, y))

Theorem: lr-eval-preserves-definedp-firstn-bindings-car-p-ctrl-stk
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (definedp (x , firstn (n, bindings (car (p-ctrl-stk (lr-eval (flag , l , c))))))

= definedp (x , firstn (n, bindings (car (p-ctrl-stk (l))))))

Definition:
disjointp (list1 , list2 )
= if listp (list1 )

then (car (list1 ) 6∈ list2 ) ∧ disjointp (cdr (list1 ), list2 )
else t endif

Theorem: member-disjointp-non-member-1
(disjointp (x , y) ∧ (e ∈ x )) → (e 6∈ y)

Theorem: lr-eval-preserves-definedp-fn-bindings-car-ctrl-stk-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp1 (pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (t, lr-set-pos (l , pos), c)) = ’run))
→ (definedp (x ,

firstn (n,
bindings (car (p-ctrl-stk (lr-eval (t,

lr-set-pos (l , pos),
c))))))

= definedp (x , firstn (n, bindings (car (p-ctrl-stk (l))))))

Theorem: lr-params-p-frame-not-definedp-put-assoc-anything
(proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ good-posp1 (pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ disjointp (formal-vars (p-current-program (l)),
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strip-cars (temp-var-dcls (p-current-program (l))))
∧ listp (lr-expr (l))
∧ ((car (lr-expr (l)) = s-temp-eval)

∨ (car (lr-expr (l)) = s-temp-test))
∧ (p-psw (lr-eval (t, lr-set-pos (l , pos), c)) = ’run))
→ (lr-params (p-frame (put-assoc (anything ,

caddr (lr-expr (l)),
bindings (car (p-ctrl-stk (lr-eval (t,

lr-set-pos (l ,
pos),

c))))),
ret-pc),

l)
= lr-params (car (p-ctrl-stk (lr-eval (t, lr-set-pos (l , pos), c))), l))

Definition:
induct-hint-14 (s-temps, lr-temps , temp-alist)
= if listp (s-temps)

then if listp (lr-temps)
then if listp (temp-alist)

then if cdar (lr-temps) = lr-undef-addr
then induct-hint-14 (cdr (s-temps),

cdr (lr-temps),
cdr (temp-alist))

else induct-hint-14 (cdr (s-temps),
cdr (lr-temps),
cdr (temp-alist)) endif

else t endif
else t endif

else t endif

Theorem: put-assoc-opener-1
((name 6= caar (alist)) ∧ listp (alist))
→ (put-assoc (val , name, alist)

= cons (car (alist), put-assoc (val , name, cdr (alist))))

Theorem: put-assoc-opener-2
(listp (alist3 )
∧ (caar (alist3 ) 6∈ strip-cars (cdr (alist3 )))
∧ definedp (s-expr , alist1 )
∧ (strip-cars (alist1 ) = strip-cars (alist2 ))
∧ (strip-cdrs (alist2 ) = strip-cars (cdr (alist3 ))))
→ (put-assoc (val , cdr (assoc (s-expr , alist2 )), alist3 )

= cons (car (alist3 ),
put-assoc (val , cdr (assoc (s-expr , alist2 )), cdr (alist3 ))))
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Theorem: not-lr-valp-lr-undef-addr
(lr-proper-heapp (data-seg) ∧ lr-proper-p-areasp (data-seg))
→ (¬ lr-valp (value, identity (lr-undef-addr), data-seg))

Theorem: lr-s-similar-temps-put-assoc-put-assoc-helper-1
(listp (s-temps)
∧ listp (lr-temps)
∧ lr-s-similar-temps (s-temps, lr-temps, data-seg)
∧ lr-valp (value, addr , data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (name1 = caar (s-temps))
∧ (name2 = caar (lr-temps)))
→ lr-s-similar-temps (put-assoc (list (t, value), name1 , s-temps),

put-assoc (addr , name2 , lr-temps),
data-seg)

Theorem: lr-s-similar-temps-put-assoc-put-assoc-helper
(lr-s-similar-temps (s-temps, lr-temps, data-seg)
∧ lr-valp (value, addr , data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (strip-cars (temp-alist) = strip-cars (s-temps))
∧ (strip-cdrs (temp-alist) = strip-cars (lr-temps))
∧ no-duplicatesp (strip-cars (lr-temps))
∧ definedp (s-expr , s-temps))
→ lr-s-similar-temps (put-assoc (list (t, value), s-expr , s-temps),

put-assoc (addr ,
cdr (assoc (s-expr , temp-alist)),
lr-temps),

data-seg)

Theorem: disjointp-cons-arg2
(disjointp (list1 , list2 ) ∧ (x 6∈ list1 ))
→ disjointp (list1 , cons (x , list2 ))

Theorem: disjointp-nlistp-arg2
(list2 ' nil) → disjointp (list1 , list2 )

Theorem: disjointp-lr-make-temp-name-alist-1
disjointp (formals,

strip-cdrs (lr-make-temp-name-alist-1 (initial ,
num-list ,
temp-list ,
formals)))
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Theorem: lr-s-similar-statesp-s-change-temp-helper-2
let lr-eval be lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c)
in
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ good-posp1 (pos, s-body (s-prog (s)))
∧ lr-s-similar-statesp (s-params , s-temps (s-eval), lr-eval , table)
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ listp (s-expr (s))
∧ ((car (s-expr (s)) = s-temp-eval)

∨ (car (s-expr (s)) = s-temp-test))
∧ (p-psw (lr-eval) = ’run)
∧ (lr-expr = caddr (lr-expr (s->lr1 (s, l , table)))))
→ (lr-s-similar-statesp (s-params,

s-temps (s-change-temp (s-eval ,
s-expr ,
value)),

lr-set-temp (lr-eval , addr , lr-expr),
table)

= lr-s-similar-temps (put-assoc (list (t, value),
s-expr ,
s-temps (s-eval)),

lr-temps (p-frame (put-assoc (addr ,
lr-expr ,
bindings (car (p-ctrl-stk (lr-eval)))),

ret-pc (car (p-ctrl-stk (lr-eval)))),
s->lr1 (s, l , table)),

p-data-segment (lr-eval))) endlet

Theorem: good-posp1-dv-1-temps-lr-expr
(((car (s-expr (s)) = s-temp-eval) ∨ (car (s-expr (s)) = s-temp-test))
∧ listp (s-expr (s))
∧ good-posp1 (s-pos (s), s-body (assoc (s-pname (s), s-progs (s)))))
→ good-posp1 (dv (s-pos (s), 1), s-body (assoc (s-pname (s), s-progs (s))))

Theorem: put-assoc-restn
(¬ definedp (name, firstn (n, alist)))
→ (put-assoc (val , name, restn (n, alist))

= restn (n, put-assoc (val , name, alist)))

Theorem: disjointp-plist-arg-2
disjointp (x , plist (y)) = disjointp (x , y)

Theorem: not-disjointp-member-arg1-cons-arg2
(v ∈ y) → (¬ disjointp (y , cons (v , z )))
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Theorem: member-disjointp-cons-arg2
(v 6∈ y) → (disjointp (y , cons (v , z )) = disjointp (y , z ))

Theorem: disjointp-commutative
disjointp (x , y) = disjointp (y , x )

Theorem: disjointp-lr-make-temp-name-alist-2
disjointp (strip-cdrs (lr-make-temp-name-alist-1 (initial ,

num-list ,
temp-list ,
formals)),

formals)

Theorem: proper-p-statep-lr->p-s->lr1-strip-cars-bindings-ctrl-stk
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ definedp (s-pname (s), s-progs (s)))
→ (strip-cars (bindings (car (p-ctrl-stk (l))))

= append (s-formals (assoc (s-pname (s), s-progs (s))),
strip-cdrs (lr-make-temp-name-alist (s-temp-list (assoc (s-pname (s),

s-progs (s))),
s-formals (assoc (s-pname (s),

s-progs (s)))))))

Theorem: lr-programs-properp-lr->p-s->lr1-definedp-s-pname
(¬ definedp (s-pname (s), s-progs (s)))
→ (¬ lr-programs-properp (s->lr1 (s, l , table), table))

Theorem: lr-temps-p-frame-put-assoc
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ definedp (s-pname (s), s-progs (s))
∧ listp (s-expr (s))
∧ ((car (s-expr (s)) = s-temp-eval)

∨ (car (s-expr (s)) = s-temp-test))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (p-psw (lr-eval (t, l2 , c)) = ’run)
∧ (lr-expr = caddr (lr-expr (s->lr1 (s, l , table))))
∧ (l2 = lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1))))
→ (lr-temps (p-frame (put-assoc (val ,

lr-expr ,
bindings (car (p-ctrl-stk (lr-eval (t, l2 , c))))),

ret-pc),
s->lr1 (s, l , table))

= put-assoc (val ,
caddr (lr-expr (s->lr1 (s, l , table))),
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lr-temps (car (p-ctrl-stk (lr-eval (t, l2 , c))),
s->lr1 (s, l , table))))

Theorem: strip-cars-lr-temps-strip-cars-temp-var-dcls
(s-good-statep (s, c)
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ (frame = top (p-ctrl-stk (s->lr1 (s, l , table)))))
→ (strip-cars (lr-temps (frame, s->lr1 (s, l , table)))

= strip-cdrs (lr-make-temp-name-alist (s-temp-list (assoc (s-pname (s),
s-progs (s))),

s-formals (assoc (s-pname (s),
s-progs (s))))))

Event: Disable proper-p-statep-lr->p-s->lr1-strip-cars-bindings-ctrl-stk.

Theorem: lr-s-similar-statesp-s-change-temp-helper-1
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ listp (s-expr (s))
∧ ((car (s-expr (s)) = s-temp-eval)

∨ (car (s-expr (s)) = s-temp-test)
∨ (car (s-expr (s)) = s-temp-fetch)))

→ (caddr (lr-expr (s->lr1 (s, l , table)))
= cdr (assoc (cadr (s-expr (s)),

lr-make-temp-name-alist (s-temp-list (s-prog (s)),
s-formals (s-prog (s))))))

Theorem: lr-s-similar-statesp-s->lr1-lr-similar-temps
lr-s-similar-statesp (s-params, s-temps, l , table)
→ lr-s-similar-temps (s-temps,

lr-temps (top (p-ctrl-stk (l)), l),
p-data-segment (l))

Theorem: count-codelist1-cons
count-codelist1 (cons (x , y)) = (x + (10 ∗ count-codelist1 (y)))

Theorem: equal-append-initial
(append (x , y) = append (x , z )) = (y = z )

Theorem: plist-listp-x-append-x-not-0
plistp (x ) → ((append (x , 0) = 0) = (x = nil))

Theorem: equal-append-final-0
(append (y , 0) = append (z , 0)) = (plist (y) = plist (z ))
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Theorem: count-codelist1-append-non-listp
(¬ listp (z ))
→ (count-codelist1 (append (num-list , z )) = count-codelist1 (num-list))

Theorem: not-equal-make-symbol-car-gensym
(count-codelist1 (num-list1 ) < count-codelist1 (num-list2 ))
→ (make-symbol (initial , num-list1 )

6= car (gensym (initial , num-list2 , atom-list)))

Theorem: count-codelist1-cdr-gensym
(count-codelist1 (num-list1 ) < count-codelist1 (num-list2 ))
→ (count-codelist1 (num-list1 )

< count-codelist1 (cdr (gensym (initial , num-list2 , atom-list))))

Theorem: not-member-make-symbol-lr-make-temp-name-alist-1-incr
(count-codelist1 (num-list1 ) < count-codelist1 (num-list2 ))
→ ((make-symbol (initial , num-list1 )

∈ strip-cdrs (lr-make-temp-name-alist-1 (initial ,
num-list2 ,
temp-list ,
formals)))

= f)

Theorem: not-member-car-gensym-lr-make-temp-name-alist-1-cdr
(car (gensym (initial , num-list , atoms))
∈ strip-cdrs (lr-make-temp-name-alist-1 (initial ,

cdr (gensym (initial ,
num-list ,
atoms)),

temp-list ,
formals)))

= f

Theorem: no-duplicatesp-strip-cdrs-lr-make-temp-name-alist-1
no-duplicatesp (strip-cdrs (lr-make-temp-name-alist-1 (initial ,

num-list ,
temp-list ,
formals)))

Theorem: no-duplicatesp-strip-cdrs-lr-make-temp-name-alist
no-duplicatesp (strip-cdrs (lr-make-temp-name-alist (temp-list , formals)))

Theorem: definedp-s-temps-s-eval
(s-err-flag (s-eval (flag , s, c)) = ’run)
→ (definedp (x , s-temps (s-eval (flag , s, c))) = definedp (x , s-temps (s)))
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Theorem: strip-cars-lr-make-temp-name-alist-1
strip-cars (lr-make-temp-name-alist-1 (initial , num-list , temp-list , formals))
= plist (temp-list)

Theorem: strip-cars-lr-make-temp-name-alist
strip-cars (lr-make-temp-name-alist (temp-list , formals)) = plist (temp-list)

Theorem: lr-eval-preserves-strip-cars-lr-temps-car-p-ctrl-stk
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (strip-cars (lr-temps (car (p-ctrl-stk (lr-eval (flag , l , c))), l2 ))

= strip-cars (lr-temps (car (p-ctrl-stk (l)), l2 )))

Theorem: lr-s-similar-statesp-s-change-temp
let s-l be s->lr1 (s, l , table),

lr-eval be lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c)
in
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-s-similar-statesp (s-params , s-temps (s-eval), lr-eval , table)
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ listp (p-temp-stk (lr-eval))
∧ lr-check-result (t,

s-ans (s-eval),
p-temp-stk (lr-eval),
p-data-segment (lr-eval),
orig-temp-stk)

∧ listp (s-expr (s))
∧ ((car (s-expr (s)) = s-temp-eval)

∨ (car (s-expr (s)) = s-temp-test))
∧ (p-psw (lr-eval) = ’run)
∧ (s-err-flag (s-eval) = ’run)
∧ (s-eval = s-eval (t, s-set-pos (s, pos), c))
∧ (value = caddr (lr-expr (s-l)))
∧ (pos = dv (s-pos (s), 1)))
→ lr-s-similar-statesp (s-params,

s-temps (s-change-temp (s-eval ,
cadr (s-expr (s)),
s-ans (s-eval))),

lr-set-temp (lr-eval ,
car (p-temp-stk (lr-eval)),
value),
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table) endlet

Event: Disable lr-s-similar-statesp-s-change-temp-helper-2.

Theorem: lr-temps-lr-do-temp-fetch
lr-temps (frame, lr-do-temp-fetch (l)) = lr-temps (frame, l)

Theorem: lr-params-lr-do-temp-fetch
lr-params (frame, lr-do-temp-fetch (l)) = lr-params (frame, l)

Theorem: lr-s-simlar-statesp-lr-do-temp-fetch
lr-s-similar-statesp (s-params , s-temps , lr-do-temp-fetch (l), table)
= lr-s-similar-statesp (s-params, s-temps , l , table)

Theorem: not-member-no-duplicates-cdr-assoc-helper
(no-duplicatesp (list)
∧ (strip-cdrs (alist) = list)
∧ (name 6∈ list)
∧ definedp (s-expr , alist))
→ (cdr (assoc (s-expr , alist)) 6= name)

Theorem: not-member-no-duplicates-cdr-assoc
(no-duplicatesp (list)
∧ (strip-cdrs (alist1 ) = list)
∧ (name 6∈ list)
∧ definedp (s-expr , alist2 )
∧ (strip-cars (alist2 ) = strip-cars (alist1 )))
→ (cdr (assoc (s-expr , alist1 )) 6= name)

Theorem: not-equal-lr-s-eval-temp-setp-not-lr-s-similar-temps
((lr-expr = cdr (assoc (s-expr , temp-alist)))
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-s-similar-temps (s-temps, lr-temps, data-seg)
∧ (strip-cars (temp-alist) = strip-cars (s-temps))
∧ (strip-cdrs (temp-alist) = strip-cars (lr-temps))
∧ no-duplicatesp (strip-cars (lr-temps))
∧ definedp (s-expr , s-temps))
→ ((cdr (assoc (lr-expr , lr-temps)) 6= lr-undef-addr)

↔ cadr (assoc (s-expr , s-temps)))

Theorem: definedp-strip-cars-append-member-x-2
(strip-cars (x ) = append (y , z ))
→ ((e ∈ z ) = definedp (e, restn (length (y), x )))
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Theorem: not-iff-lr-s-temp-setp-not-lr-s-similar-statesp-helper
((x ∈ strip-cdrs (lr-make-temp-name-alist (s-temp-list (assoc (s-pname (s),

s-progs (s))),
s-formals (assoc (s-pname (s),

s-progs (s))))))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ definedp (s-pname (s), s-progs (s)))
→ (cdr (assoc (x , lr-temps (car (p-ctrl-stk (l)), s->lr1 (s, l , table))))

= cdr (assoc (x , bindings (car (p-ctrl-stk (l))))))

Theorem: lr-programs-properp-member-lr-expr-temps
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ ((car (lr-expr (l)) = s-temp-fetch)

∨ (car (lr-expr (l)) = s-temp-eval)
∨ (car (lr-expr (l)) = s-temp-test)))

→ (caddr (lr-expr (l))
∈ strip-cars (temp-var-dcls (p-current-program (l))))

Theorem: not-iff-lr-s-temp-setp-not-lr-s-similar-statesp
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ listp (s-expr (s))
∧ ((car (s-expr (s)) = s-temp-test)

∨ (car (s-expr (s)) = s-temp-fetch))
∧ (¬ (lr-eval-temp-setp (s->lr1 (s, l , table))

↔ s-temp-setp (cadr (s-expr (s)), s-temps (s))))
∧ s-good-statep (s, c))
→ (¬ lr-s-similar-statesp (s-params, s-temps (s), s->lr1 (s, l , table), table))

Theorem: lr-valp-lr-s-eval-lr-s-similar-temps
((lr-expr = cdr (assoc (s-expr , temp-alist)))
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-s-similar-temps (s-temps , lr-temps, data-seg)
∧ (strip-cars (temp-alist) = strip-cars (s-temps))
∧ (strip-cdrs (temp-alist) = strip-cars (lr-temps))
∧ no-duplicatesp (strip-cars (lr-temps))
∧ definedp (s-expr , s-temps)
∧ (cdr (assoc (lr-expr , lr-temps)) 6= lr-undef-addr))
→ lr-valp (caddr (assoc (s-expr , s-temps)),

cdr (assoc (lr-expr , lr-temps)),
data-seg)
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Theorem: member-cdr-assoc-strip-cdrs-definedp
definedp (x , alist) → (cdr (assoc (x , alist)) ∈ strip-cdrs (alist))

Theorem: definedp-pairlist
definedp (x , pairlist (temp-list , anything)) = (x ∈ temp-list)

Theorem: definedp-lr-make-temp-name-alist-1
definedp (x , lr-make-temp-name-alist-1 (initial , num-list , temp-list , formals))
= (x ∈ temp-list)

Theorem: definedp-lr-make-temp-name-alist
definedp (x , lr-make-temp-name-alist (temp-list , formals))
= (x ∈ temp-list)

Theorem: p-temp-stk-lr-do-temp-fetch-p-psw-run
(p-psw (lr-do-temp-fetch (l)) = ’run)
→ (p-temp-stk (lr-do-temp-fetch (l))

= push (local-var-value (caddr (lr-expr (l)), p-ctrl-stk (l)),
p-temp-stk (l)))

Theorem: lr-check-result-lr-do-temp-fetch
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-good-statep (s, c)
∧ (c 6' 0)
∧ listp (s-expr (s))
∧ ((car (s-expr (s)) = s-temp-test)

∨ (car (s-expr (s)) = s-temp-fetch))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ lr-eval-temp-setp (s->lr1 (s, l , table))
∧ (value = caddr (lr-expr (s->lr1 (s, l , table)))))
→ lr-check-result (t,

caddr (assoc (cadr (s-expr (s)), s-temps (s))),
cons (cdr (assoc (value, bindings (car (p-ctrl-stk (l))))),

p-temp-stk (l)),
p-data-segment (l),
p-temp-stk (l))

Theorem: lr-do-temp-fetch-run-lr-eval-temp-setp
(p-psw (lr-do-temp-fetch (l)) = ’run) → lr-eval-temp-setp (l)

Theorem: lr-s-similar-const-table-lr-valp-assoc
(definedp (value, table) ∧ lr-s-similar-const-table (table, data-seg))
→ lr-valp (value, cdr (assoc (value, table)), data-seg)
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Theorem: lr-proper-exprp-list-quote-opener
(flag 6= ’list)
→ (lr-proper-exprp (flag ,

list (’quote, addr),
program-names,
formals ,
temps,
table)

= ((type (addr) = ’addr) ∧ (addr ∈ strip-cdrs (table))))

Theorem: lr-check-result-lr-push-tstk-quote
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = ’quote)
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ lr-proper-heapp (p-data-segment (l))
∧ (p-psw (lr-push-tstk (s->lr1 (s, l , table),

cadr (lr-expr (s->lr1 (s, l , table)))))
= ’run))

→ lr-check-result (t,
cadr (s-expr (s)),
p-temp-stk (lr-push-tstk (s->lr1 (s, l , table),

cadr (lr-expr (s->lr1 (s, l , table))))),
p-data-segment (l),
p-temp-stk (l))

Theorem: lr-eval-subrp-user-funcall-opener
let lr-eval-list be lr-eval (’list,

lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)),
c)

in
((flag 6= ’list)
∧ (c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= s-temp-eval)
∧ (car (s-expr (s)) 6= s-temp-test)
∧ (car (s-expr (s)) 6= s-temp-fetch)
∧ (car (s-expr (s)) 6= ’quote)
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-good-statep (s, c))
→ (lr-eval (flag , s->lr1 (s, l , table), c)
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= if p-psw (lr-eval-list) 6= ’run then lr-eval-list
elseif subrp (car (s-expr (s)))
then lr-apply-subr (s->lr1 (s, l , table), lr-eval-list)
elseif litatom (car (s-expr (s)))
then lr-set-expr (lr-pop-cstk (lr-eval (t,

lr-funcall (s->lr1 (s,
l ,
table),

lr-eval-list),
c − 1)),

s->lr1 (s, l , table),
s-pos (s))

else lr-set-error (s->lr1 (s, l , table),
’bad-instruction) endif) endlet

Theorem: length-cdr-lr-expr-funcall
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ (subrp (car (lr-expr (l))) ∨ litatom (car (lr-expr (l)))))
→ (length (cdr (lr-expr (l))) = arity (car (lr-expr (l))))

Definition:
induct-hint-8 (n, value, temp-stk)
= if n ' 0 then t

else induct-hint-8 (n − 1, cdr (value), cdr (temp-stk)) endif

Theorem: lr-check-result1-lr-valp-get-n-lessp-length
(lr-check-result1 (values, temp-stk , data-seg) ∧ (n < length (values)))
→ lr-valp (get (n, values), get (n, temp-stk), data-seg)

Theorem: lr-valp-lr-good-pointerp
lr-valp (value, addr , data-seg) → lr-good-pointerp (addr , data-seg)

Theorem: lr-check-result1-lr-good-pointerp-get-n-lessp-car
(lr-check-result1 (values, temp-stk , data-seg) ∧ (length (values) 6< 1))
→ ((type (car (temp-stk)) = ’addr)

∧ (cddr (car (temp-stk)) = nil)
∧ listp (car (temp-stk))
∧ adpp (untag (car (temp-stk)), data-seg)
∧ lr-boundary-nodep (car (temp-stk))
∧ (area-name (car (temp-stk)) = identity (lr-heap-name))
∧ (type (fetch (add-addr (car (temp-stk),

identity (lr-ref-count-offset)),
data-seg))

= ’nat))
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Theorem: lr-check-result1-lr-good-pointerp-get-n-lessp-cadr
(lr-check-result1 (values , temp-stk , data-seg) ∧ (length (values) 6< 2))
→ ((type (cadr (temp-stk)) = ’addr)

∧ (cddr (cadr (temp-stk)) = nil)
∧ listp (cadr (temp-stk))
∧ adpp (untag (cadr (temp-stk)), data-seg)
∧ lr-boundary-nodep (cadr (temp-stk))
∧ (area-name (cadr (temp-stk)) = identity (lr-heap-name))
∧ (type (fetch (add-addr (cadr (temp-stk),

identity (lr-ref-count-offset)),
data-seg))

= ’nat))

Theorem: p-run-subr-preserves-lr-proper-heapp2
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-programs-properp (new-l , table)
∧ listp (lr-expr (l))
∧ proper-p-statep (lr->p (new-l))
∧ lr-proper-free-listp (p-data-segment (new-l))
∧ adpp (untag (lr-max-node (p-data-segment (new-l))), p-data-segment (new-l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (new-l)))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= ’run)

∧ lr-proper-heapp2 (addr , p-data-segment (new-l))
∧ lr-nodep (addr , p-data-segment (new-l))
∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ lr-check-result (’list,

value,
p-temp-stk (new-l),
p-data-segment (new-l),
p-temp-stk (l))

∧ (length (value) = length (cdr (lr-expr (l)))))
→ lr-proper-heapp2 (addr ,

p-data-segment (p-run-subr (car (lr-expr (l)),
p-set-pc (lr->p (new-l),

lr-return-pc (l)))))

Theorem: lr-apply-subr-preserves-lr-proper-heapp2
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
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∧ good-posp (’list, pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ proper-p-statep (lr->p (l))
∧ lr-proper-free-listp (p-data-segment (l))
∧ lr-proper-heapp2 (addr , p-data-segment (new-l))
∧ adpp (untag (lr-max-node (p-data-segment (l))), p-data-segment (l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (l)))
∧ lr-nodep (addr , p-data-segment (l))
∧ lr-check-result (’list,

value,
p-temp-stk (new-l),
p-data-segment (new-l),
p-temp-stk (l))

∧ (length (value) = length (cdr (lr-expr (l))))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run))
→ lr-proper-heapp2 (addr , p-data-segment (lr-apply-subr (l , new-l))) endlet

Definition:
induct-hint-15 (s, c)
= if listp (s-pos (s))

then if listp (s-expr-list (s))
then induct-hint-15 (s-set-expr (s-eval (t, s, c), s, nx (s-pos (s))), c)
else t endif

else t endif

Theorem: length-s-eval-list
(listp (s-pos (s)) ∧ (s-err-flag (s-eval (’list, s, c)) = ’run))
→ (length (s-ans (s-eval (’list, s, c))) = length (s-expr-list (s)))

Theorem: plistp-lr-compile-body
listp (body) → plistp (lr-compile-body (flag , body , temp-alist , const-alist))

Theorem: plistp-lr-expr-s->lr1
(good-posp1 (s-pos (s), s-body (s-prog (s))) ∧ listp (s-expr (s)))
→ plistp (lr-expr (s->lr1 (s, l , table)))

Theorem: length-cdr-lr-expr-funcall-s->lr1
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’quote)
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∧ (subrp (car (s-expr (s))) ∨ litatom (car (s-expr (s)))))
→ (length (cdr (lr-expr (s->lr1 (s, l , table)))) = length (cdr (s-expr (s))))

Theorem: adpp-same-signature-lr-apply-subr
same-signature (p-data-segment (new-l), p-data-segment (lr-apply-subr (l , new-l)))
→ (adpp (adp, p-data-segment (lr-apply-subr (l , new-l)))

= adpp (adp, p-data-segment (new-l)))

Theorem: lr-apply-subr-preserves-lr-proper-heapp
let new-l be lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c)
in
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ definedp (s-pname (s), s-progs (s))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= s-temp-eval)
∧ (car (s-expr (s)) 6= s-temp-test)
∧ (car (s-expr (s)) 6= s-temp-fetch)
∧ (car (s-expr (s)) 6= ’quote)
∧ subrp (car (s-expr (s)))
∧ (car (s-expr (s)) 6= ’if)
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-check-result (’list,

s-ans (s-eval (’list, s-set-pos (s, pos), c)),
p-temp-stk (new-l),
p-data-segment (new-l),
p-temp-stk (l))

∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (s->lr1 (s, l , table), new-l)) = ’run)
∧ lr-proper-heapp (p-data-segment (new-l))
∧ lr-proper-heapp (p-data-segment (l))
∧ (s-err-flag (s-eval (’list, s-set-pos (s, pos), c)) = ’run)
∧ (pos = dv (s-pos (s), 1)))
→ lr-proper-heapp (p-data-segment (lr-apply-subr (s->lr1 (s, l , table),

new-l))) endlet

Theorem: lr-s-similar-params-lr-apply-subr
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ proper-p-statep (lr->p (new-l))
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∧ lr-proper-heapp (p-data-segment (new-l))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ lr-s-similar-params (s-params, lr-params, p-data-segment (new-l)))
→ lr-s-similar-params (s-params,

lr-params,
p-data-segment (lr-apply-subr (l , new-l))) endlet

Theorem: lr-params-lr-apply-subr
((area-name (p-pc (new-l)) = area-name (p-pc (l)))
∧ (p-prog-segment (new-l) = p-prog-segment (l)))
→ (lr-params (frame, lr-apply-subr (l , new-l)) = lr-params (frame, l))

Theorem: lr-temps-lr-apply-subr
((area-name (p-pc (new-l)) = area-name (p-pc (l)))
∧ (p-prog-segment (new-l) = p-prog-segment (l)))
→ (lr-temps (frame, lr-apply-subr (l , new-l)) = lr-temps (frame, l))

Theorem: lr-s-similar-temps-lr-apply-subr
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ proper-p-statep (lr->p (new-l))
∧ lr-proper-heapp (p-data-segment (new-l))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ lr-s-similar-temps (s-temps, lr-temps , p-data-segment (new-l)))
→ lr-s-similar-temps (s-temps,

lr-temps ,
p-data-segment (lr-apply-subr (l , new-l))) endlet

Theorem: lr-s-similar-const-table-lr-apply-subr
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table1 )
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ proper-p-statep (lr->p (new-l))
∧ lr-proper-heapp (p-data-segment (new-l))
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∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ lr-s-similar-const-table (table2 , p-data-segment (new-l)))
→ lr-s-similar-const-table (table2 ,

p-data-segment (lr-apply-subr (l , new-l))) endlet

Theorem: lr-s-similar-statesp-lr-apply-subr
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ proper-p-statep (lr->p (new-l))
∧ lr-proper-heapp (p-data-segment (new-l))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ lr-s-similar-statesp (s-params, s-temps, new-l , table))
→ lr-s-similar-statesp (s-params,

s-temps,
lr-apply-subr (l , new-l),
table) endlet

Theorem: proper-p-statep-lr->p-lr-eval-list-helper
let cur-expr be cur-expr (offset (p-pc (l)),

program-body (p-current-program (l)))
in
((length (cur-expr) < 1)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ listp (cur-expr)
∧ (car (cur-expr) 6= ’if)
∧ (car (cur-expr) 6= ’quote)
∧ (litatom (car (cur-expr)) ∨ subrp (car (cur-expr)))
∧ proper-p-statep (lr->p (l))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ proper-p-statep (lr->p (lr-eval (’list, lr-set-pos (l , pos), c))) endlet

Theorem: proper-p-statep-lr->p-lr-eval-list
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
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∧ (subrp (car (lr-expr (l))) ∨ litatom (car (lr-expr (l))))
∧ proper-p-statep (lr->p (l))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ proper-p-statep (lr->p (lr-eval (’list, lr-set-pos (l , pos), c)))

Event: Disable proper-p-statep-lr->p-lr-eval-list-helper.

Theorem: not-listp-p-temp-stk-not-lr-check-result1
lr-check-result1 (value, temp-stk , data-seg)
→ (length (temp-stk) 6< length (value))

Theorem: restn-add1-opener-alt
restn (1 + n, list)
= if listp (list) then restn (n, cdr (list))

else list endif

Theorem: cdr-p-temp-stk-p-run-subr
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ subrp (car (lr-expr (l)))
∧ (p-temp-stk (l)

= restn (length (cdr (lr-expr (l))), p-temp-stk (new-l)))
∧ lr-check-result1 (value,

p-temp-stk (new-l),
p-data-segment (new-l))

∧ (length (value) = length (cdr (lr-expr (l))))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= ’run)

∧ (p-psw (new-l) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ (cdr (p-temp-stk (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l),
lr-return-pc (l)))))

= p-temp-stk (l)) endlet

Event: Disable restn-add1-opener-alt.

159



Theorem: cdr-p-temp-stk-lr-apply-subr
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ subrp (car (lr-expr (l)))
∧ (p-temp-stk (l)

= restn (length (cdr (lr-expr (l))), p-temp-stk (new-l)))
∧ lr-check-result1 (value,

p-temp-stk (new-l),
p-data-segment (new-l))

∧ (length (value) = length (cdr (lr-expr (l))))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ (cdr (p-temp-stk (lr-apply-subr (l , new-l))) = p-temp-stk (l)) endlet

Theorem: lr-check-result1-reverse-length-1-opener
(length (values) = 1)
→ (lr-check-result1 (reverse (values), temp-stk , data-seg)

= (lr-valp (car (values), car (temp-stk), data-seg)
∧ lr-good-pointerp (car (temp-stk), data-seg)))

Theorem: lr-check-result1-reverse-length-2-opener
(length (values) = 2)
→ (lr-check-result1 (reverse (values), temp-stk , data-seg)

= (lr-valp (cadr (values), car (temp-stk), data-seg)
∧ lr-good-pointerp (cadr (temp-stk), data-seg)
∧ lr-valp (car (values), cadr (temp-stk), data-seg)
∧ lr-good-pointerp (car (temp-stk), data-seg)))

Theorem: lr-valp-fetch-tag-cons-lr-valp-car-cdr
(lr-valp (value, addr , data-seg)
∧ (fetch (addr , data-seg) = tag (’nat, lr-cons-tag)))
→ (lr-valp (car (value),

fetch (add-addr (addr , identity (lr-car-offset)), data-seg),
data-seg)

∧ lr-valp (cdr (value),
fetch (add-addr (addr , identity (lr-cdr-offset)), data-seg),
data-seg))

Theorem: lr-good-pointerp-type-tag-nat
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(lr-proper-heapp (data-seg) ∧ lr-good-pointerp (addr , data-seg))
→ (type (fetch (addr , data-seg)) = ’nat)

Theorem: lr-proper-heapp-lr-valp-f-helper
(lr-proper-heapp-nodep (lr-f-addr, data-seg)
∧ lr-proper-heapp-nodep (addr , data-seg)
∧ lr-nodep (addr , data-seg)
∧ lr-minimum-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg))
→ (lr-valp (f, addr , data-seg) = (addr = lr-f-addr))

Theorem: lr-proper-heapp-lr-valp-f
(lr-proper-heapp (data-seg) ∧ lr-proper-p-areasp (data-seg))
→ (lr-valp (f, addr , data-seg) = (addr = lr-f-addr))

Theorem: lr-valp-equal-value-fact
(lr-valp (value1 , addr , data-seg) ∧ lr-valp (value2 , addr , data-seg))
→ (value1 = value2 )

Theorem: lr-proper-heapp-lr-valp-0
lr-proper-heapp (data-seg)
→ (lr-valp (value, identity (lr-0-addr), data-seg) = (value = 0))

Theorem: lr-proper-heapp-lr-valp-lr-f-addr
(lr-proper-heapp (data-seg) ∧ lr-proper-p-areasp (data-seg))
→ (lr-valp (value, identity (lr-f-addr), data-seg) = (value = f))

Theorem: lr-proper-heapp-lr-valp-lr-t-addr
lr-proper-heapp (data-seg)
→ (lr-valp (value, identity (lr-t-addr), data-seg) = (value = t))

Theorem: lr-valp-fetch-tag-not-cons-lr-valp-car-cdr-0
(proper-p-statep (lr->p (l))
∧ lr-proper-heapp (p-data-segment (l))
∧ (fetch (car (p-temp-stk (l)), p-data-segment (l))

6= tag (’nat, lr-cons-tag))
∧ ((car (value) 6= 0) ∨ (cdr (value) 6= 0)))
→ (¬ lr-valp (value, car (p-temp-stk (l)), p-data-segment (l)))

Theorem: lr-valp-not-tag-cons-not-listp
((¬ listp (value)) ∧ (fetch (addr , data-seg) = tag (’nat, lr-cons-tag)))
→ (¬ lr-valp (value, addr , data-seg))

Theorem: lr-valp-fetch-tag-not-cons-lr-valp-listp
(proper-p-statep (lr->p (l))
∧ lr-proper-heapp (p-data-segment (l))
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∧ (fetch (car (p-temp-stk (l)), p-data-segment (l))
6= tag (’nat, lr-cons-tag))

∧ listp (value))
→ (¬ lr-valp (value, car (p-temp-stk (l)), p-data-segment (l)))

Theorem: lr-valp-cons
lr-valp (cons (x , y), addr , data-seg)
= if lr-good-pointerp (addr , data-seg)

then (untag (fetch (addr , data-seg)) = lr-cons-tag)
∧ lr-valp (x ,

fetch (add-addr (addr , lr-car-offset), data-seg),
data-seg)

∧ lr-valp (y ,
fetch (add-addr (addr , lr-cdr-offset), data-seg),
data-seg)

else f endif

Theorem: lr-valp-deposit-a-list-cons
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-nodep (lr-max-node (data-seg), data-seg)
∧ lr-minimum-heapp (data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-valp (value, addr , data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (fp-addr = fetch (identity (lr-fp-addr), data-seg)))
→ lr-valp (value, addr , deposit-a-list (list (x0 , x1 , x2 , x3 ), fp-addr , data-seg))

Theorem: lr-valp-car-p-temp-stk-p-run-subr-cons-helper
(lr-proper-heapp (data-seg)
∧ lr-valp (car , car-addr , data-seg)
∧ lr-valp (cdr , cdr-addr , data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (type (ref-count) = ’nat))
→ lr-valp (cons (car , cdr),

fetch (identity (lr-fp-addr), data-seg),
deposit-a-list (list (identity (tag (’nat, lr-cons-tag)),

ref-count ,
car-addr ,
cdr-addr),

fetch (identity (lr-fp-addr), data-seg),
data-seg))

Event: Disable lr-valp-cons.
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Theorem: lr-valp-not-tag-true-not-listp
((¬ truep (value)) ∧ (fetch (addr , data-seg) = tag (’nat, lr-true-tag)))
→ (¬ lr-valp (value, addr , data-seg))

Theorem: lr-valp-fetch-tag-not-true-lr-valp-listp
(proper-p-statep (lr->p (l))
∧ lr-proper-heapp (p-data-segment (l))
∧ (fetch (car (p-temp-stk (l)), p-data-segment (l))

6= tag (’nat, lr-true-tag)))
→ (¬ lr-valp (t, car (p-temp-stk (l)), p-data-segment (l)))

Theorem: lr-valp-car-p-temp-stk-p-run-subr
(lr-proper-heapp (p-data-segment (l))
∧ lr-check-result1 (reverse (values), p-temp-stk (l), p-data-segment (l))
∧ (length (values) = arity (subr))
∧ proper-p-statep (lr->p (l))
∧ lr-programs-properp (l , table)
∧ (p-psw (p-run-subr (subr , p-set-pc (lr->p (l), pc))) = ’run)
∧ (p-psw (l) = ’run)
∧ (area-name (pc) = area-name (p-pc (l)))
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= list (’call, subr)))
→ lr-valp (apply-subr (subr , values),

car (p-temp-stk (p-run-subr (subr , p-set-pc (lr->p (l), pc)))),
p-data-segment (p-run-subr (subr , p-set-pc (lr->p (l), pc))))

Theorem: lr-programs-properp-not-definedp-subrp-runtime-support
(subrp (car (s-expr (s)))
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (¬ definedp (car (s-expr (s)), p-runtime-support-programs))
∧ good-posp1 (s-pos (s), s-body (s-prog (s))))
→ (¬ lr-programs-properp (s->lr1 (s, l , table), table))

Theorem: lr-valp-apply-subr-lr-apply-subr
let new-l be lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c)
in
(listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (car (s-expr (s)) 6= s-temp-eval)
∧ (car (s-expr (s)) 6= s-temp-test)
∧ (car (s-expr (s)) 6= s-temp-fetch)
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∧ subrp (car (s-expr (s)))
∧ lr-proper-heapp (p-data-segment (new-l))
∧ lr-check-result1 (reverse (values),

p-temp-stk (new-l),
p-data-segment (new-l))

∧ (length (values) = length (cdr (lr-expr (s->lr1 (s, l , table)))))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (s->lr1 (s, l , table), new-l)) = ’run)
∧ (pos = dv (s-pos (s), 1)))
→ lr-valp (apply-subr (car (s-expr (s)), values),

car (p-temp-stk (lr-apply-subr (s->lr1 (s, l , table), new-l))),
p-data-segment (lr-apply-subr (s->lr1 (s, l , table), new-l))) endlet

Event: Disable lr-programs-properp-not-definedp-subrp-runtime-support.

Theorem: lr-check-result-lr-apply-subr
let new-l be lr-eval (’list,

lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)),
c),

pos be dv (s-pos (s), 1)
in
(listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (car (s-expr (s)) 6= s-temp-eval)
∧ (car (s-expr (s)) 6= s-temp-test)
∧ (car (s-expr (s)) 6= s-temp-fetch)
∧ subrp (car (s-expr (s)))
∧ lr-check-result (’list,

s-ans (s-eval (’list, s-set-pos (s, pos), c)),
p-temp-stk (new-l),
p-data-segment (new-l),
p-temp-stk (l))

∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (s->lr1 (s, l , table), new-l)) = ’run)
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∧ (s-err-flag (s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c))
= ’run))

→ lr-check-result (t,
apply-subr (car (s-expr (s)),

s-ans (s-eval (’list,
s-set-pos (s, pos),
c))),

p-temp-stk (lr-apply-subr (s->lr1 (s, l , table),
new-l)),

p-data-segment (lr-apply-subr (s->lr1 (s, l , table),
new-l)),

p-temp-stk (l)) endlet

Theorem: s->lr1-lr-funcall-s-fun-call-state
(listp (s-expr (s))
∧ (¬ subrp (car (s-expr (s))))
∧ (car (s-expr (s)) 6= ’quote)
∧ (car (s-expr (s)) 6= ’if)
∧ litatom (car (s-expr (s)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (p-psw (lr-funcall (s->lr1 (s, l , table), lr-eval)) = ’run)
∧ (s-progs (s-eval) = s-progs (s))
∧ (p-prog-segment (lr-eval) = p-prog-segment (s->lr1 (s, l , table))))
→ (s->lr1 (s-fun-call-state (s-eval , car (s-expr (s))),

lr-funcall (s->lr1 (s, l , table), lr-eval),
table)

= lr-funcall (s->lr1 (s, l , table), lr-eval))

Theorem: lr-params-lr-funcall
((p-psw (lr-funcall (l1 , l2 )) = ’run)
∧ (p-prog-segment (l1 ) = p-prog-segment (l2 )))
→ (lr-params (car (p-ctrl-stk (lr-funcall (l1 , l2 ))), lr-funcall (l1 , l2 ))

= pair-formal-vars-with-actuals (formal-vars (assoc (user-fname (car (lr-expr (l1 ))),
p-prog-segment (l1 ))),

p-temp-stk (l2 )))

Theorem: lr-temps-lr-funcall
((p-psw (lr-funcall (l1 , l2 )) = ’run)
∧ (p-prog-segment (l1 ) = p-prog-segment (l2 )))
→ (lr-temps (car (p-ctrl-stk (lr-funcall (l1 , l2 ))), lr-funcall (l1 , l2 ))

= pair-temps-with-initial-values (temp-var-dcls (assoc (user-fname (car (lr-expr (l1 ))),
p-prog-segment (l1 )))))

Theorem: listp-pairlist
listp (pairlist (x , y)) = listp (x )
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Theorem: car-reverse-last
car (reverse (list)) = car (last (list))

Theorem: get-sub1-length-car-last
(listp (list) ∧ (n = (length (list) − 1)))
→ (get (n, list) = car (last (list)))

Theorem: car-last-first-n-add1-get
car (last (first-n (1 + n, list))) = get (n, list)

Theorem: length-butlast
length (butlast (x )) = (length (x ) − 1)

Definition:
induct-hint-1 (x , y , z )
= if listp (x )

then if listp (y)
then if listp (z )

then induct-hint-1 (cdr (x ), butlast (y), butlast (z ))
else t endif

else t endif
else t endif

Theorem: lr-check-result1-append-2
(length (values) = length (temp-stk1 ))
→ (lr-check-result1 (values, append (temp-stk1 , temp-stk2 ), data-seg)

= lr-check-result1 (values , temp-stk1 , data-seg))

Theorem: lr-check-result1-butlast
(lr-check-result1 (values , temp-stk , data-seg)
∧ (length (temp-stk) = length (values))
∧ listp (temp-stk)
∧ listp (values))
→ lr-check-result1 (butlast (values), butlast (temp-stk), data-seg)

Theorem: reverse-butlast
listp (x ) → (reverse (butlast (x )) = cdr (reverse (x )))

Theorem: lr-s-similar-params-lr-valp-get
((n < length (s-params))
∧ (strip-cars (s-params) = strip-cars (lr-params))
∧ lr-s-similar-params (s-params, lr-params, data-seg))
→ lr-valp (cdr (get (n, s-params)), cdr (get (n, lr-params)), data-seg)
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Theorem: lr-s-similar-params-lr-funcall-helper-1
(lr-s-similar-params (pairlist (cdr (formals), cdr (reverse (values))),

pairlist (cdr (formals), cdr (reverse (temp-stk))),
data-seg)

∧ listp (formals)
∧ listp (values)
∧ listp (temp-stk)
∧ lr-check-result1 (values, temp-stk , data-seg)
∧ ((1 + length (cdr (formals))) = length (temp-stk))
∧ (length (temp-stk) = length (values)))
→ lr-valp (car (last (values)), car (last (temp-stk)), data-seg)

Theorem: lr-s-similar-params-lr-funcall
(lr-check-result1 (values, temp-stk , data-seg)
∧ (length (temp-stk) = length (values))
∧ (length (temp-stk) = length (formals)))
→ lr-s-similar-params (pairlist (formals , reverse (values)),

pairlist (formals, reverse (temp-stk)),
data-seg)

Theorem: append-first-n-restn
(length (l) 6< i) → (append (first-n (i , l), restn (i , l)) = l)

Theorem: lr-check-result1-first-n-temp-stk
(length (p-temp-stk (l)) 6< length (values))
→ (lr-check-result1 (values, p-temp-stk (l), data-seg)

= lr-check-result1 (values,
first-n (length (values), p-temp-stk (l)),
data-seg))

Theorem: lr-push-tstk-length
(p-psw (lr-push-tstk (l , object)) = ’run)
→ (length (p-temp-stk (lr-push-tstk (l , object)))

= (1 + length (p-temp-stk (l))))

Theorem: length-add1-add1-cddr-fact
(length (x ) = (1 + (1 + length (y)))) → (length (cddr (x )) = length (y))

Theorem: length-p-temp-stk-p-run-subr-helper-1
(length (p-temp-stk (lr-eval (’list, lr-set-pos (l , pos), c)))
= (1 + (1 + length (p-temp-stk (l)))))
→ (length (cddr (p-temp-stk (lr-eval (’list, lr-set-pos (l , pos), c))))

= length (p-temp-stk (l)))

Theorem: length-p-temp-stk-p-run-subr
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let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ subrp (car (lr-expr (l)))
∧ (length (p-temp-stk (new-l))

= (length (p-temp-stk (l)) + arity (car (lr-expr (l)))))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= ’run)

∧ (p-psw (new-l) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ (length (p-temp-stk (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l),
lr-return-pc (l)))))

= (1 + length (p-temp-stk (l)))) endlet

Theorem: length-p-temp-stk-lr-apply-subr
let new-l be lr-eval (’list, lr-set-pos (l , pos), c)
in
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ subrp (car (lr-expr (l)))
∧ (length (p-temp-stk (new-l))

= (length (p-temp-stk (l)) + arity (car (lr-expr (l)))))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-apply-subr (l , new-l)) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ (length (p-temp-stk (lr-apply-subr (l , new-l)))

= (1 + length (p-temp-stk (l)))) endlet

Definition:
lr-proper-formalsp (programs)
= if listp (programs)

then ((logic-fname (name (car (programs))) = ’quote)
∨ (length (formal-vars (car (programs)))

= arity (logic-fname (name (car (programs))))))
∧ lr-proper-formalsp (cdr (programs))

else t endif
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Theorem: length-formal-vars-lr-proper-formalsp-arity
(definedp (name, programs)
∧ (logic-fname (name) 6= ’quote)
∧ lr-proper-formalsp (programs))
→ (length (formal-vars (assoc (name, programs)))

= arity (logic-fname (name)))

Theorem: arity-formals-not-quote
(formals (name) ∧ (name 6= ’quote))
→ (arity (name) = length (formals (name)))

Theorem: lr-proper-formalsp-lr-compile-programs
s-programs-okp (programs)
→ lr-proper-formalsp (lr-compile-programs (programs, table))

Event: Disable arity-formals-not-quote.

Event: Disable lr-proper-formalsp.

Theorem: lr-programs-properp-funcall-not-caar-prog-seg
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ (¬ subrp (car (lr-expr (l))))
∧ litatom (car (lr-expr (l)))
∧ listp (p-prog-segment (l))
∧ (user-fname (car (lr-expr (l))) = caar (p-prog-segment (l)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l))))
→ (¬ lr-programs-properp (l , table))

Theorem: length-p-temp-stk-lr-funcall
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ (p-psw (new-l) = ’run)
∧ (¬ subrp (car (lr-expr (l))))
∧ litatom (car (lr-expr (l)))
∧ (length (p-temp-stk (lr-eval (t, lr-funcall (l , new-l), c − 1)))

= (1 + length (p-temp-stk (lr-funcall (l , new-l)))))
∧ (length (p-temp-stk (new-l))

= (length (p-temp-stk (l)) + arity (car (lr-expr (l)))))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
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∧ (p-psw (lr-funcall (l , new-l)) = ’run))
→ (length (p-temp-stk (lr-funcall (l , new-l))) = length (p-temp-stk (l)))

Theorem: length-p-temp-stk-lr-eval
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (length (p-temp-stk (lr-eval (flag , l , c)))

= if flag = ’list
then length (lr-expr-list (l)) + length (p-temp-stk (l))
else 1 + length (p-temp-stk (l)) endif)

Theorem: length-p-temp-stk-lr-eval-flag-list
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp (’list, pos, s-body (s-prog (s)))
∧ s-good-statep (s, c)
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ (p-psw (lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c))

= ’run))
→ (length (p-temp-stk (lr-eval (’list,

lr-set-pos (s->lr1 (s, l , table), pos),
c)))

= (length (s-expr-list (s-set-pos (s, pos)))
+ length (p-temp-stk (l))))

Theorem: reverse-reverse-alt
reverse (reverse (l)) = plist (l)

Theorem: pairlist-plist-1
pairlist (x , plist (y)) = pairlist (x , y)

Theorem: s-good-statep-length-cdr-s-expr-funcall
(s-good-statep (s, c)
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’quote)
∧ (car (s-expr (s)) 6= ’if)
∧ (litatom (car (s-expr (s))) ∨ subrp (car (s-expr (s)))))
→ (length (cdr (s-expr (s))) = arity (car (s-expr (s))))

Theorem: lr-s-similar-temps-make-temps-pair-temps
lr-s-similar-temps (make-temps-entries (temp-list),

pair-temps-with-initial-values (lr-make-temp-var-dcls (lr-make-temp-name-alist-1 (initial ,
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num-list ,
temp-list ,
formals))),

data-seg)

Theorem: lr-s-similar-temps-lr-funcall
lr-s-similar-temps (make-temps-entries (s-temp-list (assoc (name, progs))),

pair-temps-with-initial-values (temp-var-dcls (assoc (name,
lr-compile-programs (progs,

table)))),
data-seg)

Theorem: lr-eval-preserves-lr-s-similar-const-table
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table1 )
∧ (p-psw (lr-eval (flag , l , c)) = ’run)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-s-similar-const-table (table2 , p-data-segment (l)))
→ lr-s-similar-const-table (table2 , p-data-segment (lr-eval (flag , l , c)))

Theorem: lr-s-similar-statesp-lr-funcall
let pos be dv (s-pos (s), 1)
in
(listp (s-expr (s))
∧ (¬ subrp (car (s-expr (s))))
∧ (car (s-expr (s)) 6= ’quote)
∧ (car (s-expr (s)) 6= ’if)
∧ litatom (car (s-expr (s)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-funcall (s->lr1 (s, l , table), lr-eval)) = ’run)
∧ (p-psw (lr-eval) = ’run)
∧ lr-check-result (’list,

values,
p-temp-stk (lr-eval),
p-data-segment (lr-eval),
p-temp-stk (l))

∧ lr-proper-heapp (p-data-segment (l))
∧ (s-err-flag (s-eval (’list, s-set-pos (s, pos), c)) = ’run)
∧ (formals = s-formals (assoc (user-fname (car (s-expr (s))),

s-progs (s))))
∧ (lr-eval = lr-eval (’list,
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lr-set-pos (s->lr1 (s, l , table), pos),
c))

∧ (values = s-ans (s-eval (’list, s-set-pos (s, pos), c)))
∧ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr1 (s, l , table),
table))

→ lr-s-similar-statesp (pairlist (formals, values),
make-temps-entries (s-temp-list (assoc (user-fname (car (s-expr (s))),

s-progs (s)))),
lr-funcall (s->lr1 (s, l , table), lr-eval),
table) endlet

Theorem: lr-params-lr-set-expr-lr-pop-cstk
((area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ (lr-params (frame,

lr-set-expr (lr-pop-cstk (lr-eval (t, lr-funcall (l , new-l), c)),
l ,
pos))

= lr-params (frame, l))

Theorem: lr-temps-lr-set-expr-lr-pop-cstk
((area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ (lr-temps (frame,

lr-set-expr (lr-pop-cstk (lr-eval (t, lr-funcall (l , new-l), c)),
l ,
pos))

= lr-temps (frame, l))

Theorem: lr-eval-preserves-lr-s-similar-params
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-s-similar-params (s-params, lr-params, p-data-segment (l)))
→ lr-s-similar-params (s-params,

lr-params,
p-data-segment (lr-eval (flag , l , c)))

Theorem: lr-eval-preserves-lr-s-similar-temps
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
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∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-s-similar-temps (s-temps, lr-temps, p-data-segment (l)))
→ lr-s-similar-temps (s-temps, lr-temps, p-data-segment (lr-eval (flag , l , c)))

Theorem: lr-s-similar-statesp-lr-set-expr-lr-pop-cstk
let funcall be lr-funcall (s->lr1 (s, l , table),

lr-eval (’list,
lr-set-pos (s->lr1 (s, l , table), pos),
c)),

lr-eval be lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c)
in
(lr-s-similar-statesp (s-params (s), s-temps (s-eval), lr-eval , table)
∧ listp (s-expr (s))
∧ (¬ subrp (car (s-expr (s))))
∧ (car (s-expr (s)) 6= ’quote)
∧ (car (s-expr (s)) 6= ’if)
∧ litatom (car (s-expr (s)))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-proper-heapp (p-data-segment (lr-eval))
∧ (pos = dv (s-pos (s), 1))
∧ (p-psw (lr-eval (t, funcall , c − 1)) = ’run)
∧ (p-psw (lr-eval) = ’run))
→ lr-s-similar-statesp (s-params (s),

s-temps (s-eval),
lr-set-expr (lr-pop-cstk (lr-eval (t,

funcall ,
c − 1)),

s->lr1 (s, l , table),
s-pos (s)),

table) endlet

Theorem: popn-restn
(length (list) 6< n) → (popn (n, list) = restn (n, list))

Theorem: lr-check-result-lr-funcall
let new-l be lr-eval (’list,

lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)),
c),

pos be dv (s-pos (s), 1),
s-eval be s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c)

in
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(listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ litatom (car (s-expr (s)))
∧ lr-check-result (’list,

s-ans (s-eval),
p-temp-stk (new-l),
p-data-segment (new-l),
p-temp-stk (l))

∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (new-l) = ’run)
∧ (p-psw (lr-funcall (s->lr1 (s, l , table), new-l)) = ’run)
∧ (s-err-flag (s-eval) = ’run)
∧ lr-check-result (t,

s-ans (s-eval (t,
s-fun-call-state (s-eval ,

car (s-expr (s))),
c − 1)),

p-temp-stk (lr-eval (t,
lr-funcall (s->lr1 (s,

l ,
table),

new-l),
c − 1)),

p-data-segment (lr-eval (t,
lr-funcall (s->lr1 (s,

l ,
table),

new-l),
c − 1)),

p-temp-stk (lr-funcall (s->lr1 (s, l , table), new-l))))
→ lr-check-result (t,

s-ans (s-eval (t,
s-fun-call-state (s-eval ,

car (s-expr (s))),
c − 1)),

p-temp-stk (lr-eval (t,
lr-funcall (s->lr1 (s, l , table),

new-l),
c − 1)),
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p-data-segment (lr-eval (t,
lr-funcall (s->lr1 (s,

l ,
table),

new-l),
c − 1)),

p-temp-stk (l)) endlet

Event: Disable popn-restn.

Theorem: lr-eval-s->lr1-flag-list-opener-1
(good-posp (’list, s-pos (s), s-body (s-prog (s)))
∧ listp (s-expr-list (s))
∧ listp (s-pos (s))
∧ (s-err-flag (s) = ’run))
→ (lr-eval (’list, s->lr1 (s, l , table), c)

= lr-eval (’list,
lr-set-expr (lr-eval (t, s->lr1 (s, l , table), c),

s->lr1 (s, l , table),
nx (s-pos (s))),

c))

Theorem: lr-eval-s->lr1-flag-list-opener-2
(good-posp (’list, s-pos (s), s-body (s-prog (s)))
∧ (¬ listp (s-expr-list (s)))
∧ listp (s-pos (s))
∧ (s-err-flag (s) = ’run))
→ (lr-eval (’list, s->lr1 (s, l , table), c) = s->lr1 (s, l , table))

Theorem: lr-check-result-lr-proper-heapp
lr-check-result (flag , value, temp-stk , data-seg , orig-temp-stk)
→ lr-proper-heapp (data-seg)

Theorem: lr-programs-properp-lr-set-error
lr-programs-properp (lr-set-error (l , error), table)
= lr-programs-properp (l , table)

Theorem: p-psw-lr-pop-tstk-lr-eval-flag-t
(proper-p-statep (lr->p (l))
∧ good-posp1 (pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-if-ok (lr-eval (t, lr-set-pos (l , pos), c))) = ’run))
→ (p-psw (lr-pop-tstk (lr-if-ok (lr-eval (t, lr-set-pos (l , pos), c))))

= ’run)
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Theorem: lr-eval-leaves-listp-p-temp-stk-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp1 (pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (t, lr-set-pos (l , pos), c)) = ’run))
→ listp (p-temp-stk (lr-eval (t, lr-set-pos (l , pos), c)))

Theorem: p-psw-run-lr-if-ok-p-psw-run
(p-psw (lr-if-ok (l)) = ’run) → (p-psw (l) = ’run)

Theorem: lr-s-similar-statesp-lr-if-ok
lr-s-similar-statesp (s-params , s-temps , lr-if-ok (l), table)
= lr-s-similar-statesp (s-params, s-temps, l , table)

Theorem: lr-eval-s-eval-equivalence
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp (flag , s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (flag , s->lr1 (s, l , table), c)) = ’run))
→ (lr-s-similar-statesp (s-params (s),

s-temps (s-eval (flag , s, c)),
lr-eval (flag , s->lr1 (s, l , table), c),
table)

∧ lr-check-result (if flag = ’list then ’list
else t endif,
s-ans (s-eval (flag , s, c)),
p-temp-stk (lr-eval (flag , s->lr1 (s, l , table), c)),
p-data-segment (lr-eval (flag ,

s->lr1 (s, l , table),
c)),

p-temp-stk (l))
∧ (s-err-flag (s-eval (flag , s, c)) = ’run))

Event: Disable p-psw-run-lr-if-ok-p-psw-run.

; ------------------------------------------------------------
; was lr-eval5.events
; ------------------------------------------------------------

;; The following define functions for each SUBR that tell how many
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;; resources are used. In the computations of the maximum control
;; stack size we break out the parts needed for formals and
;; temporaries and building a new control-stack frame. For example in
;; CONS we have (plus 2 0 1 ...), the 2 is for building a new frame,
;; the 0 is for the formals (CONS leaves its args on the temp stack)
;; and 1 for temporaries.

Definition:
s-apply-car-r (s) = list (1, 2 + 1 + 0 + 0, 0, 0)

Definition:
s-apply-cdr-r (s) = list (1, 2 + 1 + 0 + 0, 0, 0)

;; CONS takes two implicit args

Definition:
s-apply-cons-r (s) = list (2, 2 + 0 + 1 + 0, 0, 1)

Definition:
s-apply-false-r (s) = list (1, 2 + 0 + 0 + 0, 0, 0)

;; FALSEP takes one implicit arg on stack.

Definition:
s-apply-falsep-r (s) = list (1, 2 + 0 + 0 + 0, 0, 0)

;; LISTP takes an implicit arg

Definition:
s-apply-listp-r (s) = list (1, 2 + 0 + 0 + 0, 0, 0)

;; NLISTP takes an implicit arg

Definition:
s-apply-nlistp-r (s) = list (1, 2 + 0 + 0 + 0, 0, 0)

Definition:
s-apply-true-r (s) = list (1, 2 + 0 + 0 + 0, 0, 0)

Definition:
s-apply-truep-r (s) = list (1, 2 + 0 + 0 + 0, 0, 0)

Definition:
s-apply-subr-r (subr , s)
= case on subr :

case = car
then s-apply-car-r (s)

177



case = cdr
then s-apply-cdr-r (s)

case = cons
then s-apply-cons-r (s)

case = false
then s-apply-false-r (s)

case = falsep
then s-apply-falsep-r (s)

case = listp
then s-apply-listp-r (s)

case = nlistp
then s-apply-nlistp-r (s)

case = true
then s-apply-true-r (s)

case = truep
then s-apply-truep-r (s)

otherwise list (0, 0, 0, 0) endcase

Definition:
max-r (list1 , list2 )
= list (max (car (list1 ), car (list2 )),

max (cadr (list1 ), cadr (list2 )),
max (caddr (list1 ), caddr (list2 )),
cadddr (list1 ) + cadddr (list2 ))

Event: Disable max-r.

Definition:
s-add-temp-r (list , n)
= list (n + car (list), cadr (list), caddr (list), cadddr (list))

;; S-EVAL-R is somewhat similar to S-EVAL. It returns a list of four
;; numbers representing. the maximum temp stack size, maximum ctrl stack
;; size, maximum word size and number of free heap nodes respectively needed
;; to execute the compilation of the S-STATE s in Piton without getting an
;; error.

Definition:
s-eval-r (flag , s, c)
= if s-err-flag (s) 6= ’run then list (0, 0, 0, 0)

elseif flag = ’list
then if s-pos (s) ' nil then list (0, 0, 0, 0)

elseif listp (s-expr-list (s))
then max-r (s-eval-r (t, s, c),
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s-add-temp-r (s-eval-r (’list,
s-set-expr (s-eval (t, s, c),

s,
nx (s-pos (s))),

c),
1))

else list (0, 0, 0, 0) endif
elseif c ' 0 then list (0, 0, 0, 0)
elseif litatom (s-expr (s)) then list (1, 0, 0, 0)
elseif s-expr (s) ' nil then list (0, 0, 0, 0)
elseif car (s-expr (s)) = ’if
then let test be s-eval (t, s-set-pos (s, dv (s-pos (s), 1)), c)

in
if s-err-flag (test) = ’run
then if s-ans (test)

then max-r (s-add-temp-r (s-eval-r (t,
s-set-pos (s,

dv (s-pos (s),
1)),

c),
1),

s-eval-r (t,
s-set-expr (test ,

s,
dv (s-pos (s), 2)),

c))
else max-r (s-add-temp-r (s-eval-r (t,

s-set-pos (s,
dv (s-pos (s),

1)),
c),

1),
s-eval-r (t,

s-set-expr (test ,
s,
dv (s-pos (s), 3)),

c)) endif
else s-eval-r (t, s-set-pos (s, dv (s-pos (s), 1)), c) endif endlet

elseif car (s-expr (s)) = s-temp-eval
then s-eval-r (t, s-set-pos (s, dv (s-pos (s), 1)), c)
elseif car (s-expr (s)) = s-temp-test
then if s-temp-setp (cadr (s-expr (s)), s-temps (s)) then list (2, 0, 0, 0)

else max-r (list (2, 0, 0, 0),
s-eval-r (t, s-set-pos (s, dv (s-pos (s), 1)), c)) endif
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elseif car (s-expr (s)) = s-temp-fetch then list (1, 0, 0, 0)
elseif car (s-expr (s)) = ’quote then list (1, 0, 0, 0)
elseif s-err-flag (s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c))

6= ’run
then s-eval-r (’list, s-set-pos (s, dv (s-pos (s), 1)), c)
elseif subrp (car (s-expr (s)))
then max-r (s-eval-r (’list, s-set-pos (s, dv (s-pos (s), 1)), c),

s-add-temp-r (s-apply-subr-r (car (s-expr (s)),
s-eval (’list,

s-set-pos (s,
dv (s-pos (s),

1)),
c)),

arity (car (s-expr (s)))))
elseif litatom (car (s-expr (s)))
then let arg-s be s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c)

in
let fstate be s-fun-call-state (arg-s, car (s-expr (s)))
in
let arg-r be s-eval-r (t, fstate, c − 1)
in
max-r (s-eval-r (’list,

s-set-pos (s, dv (s-pos (s), 1)),
c),

list (car (arg-r),
2
+ length (s-params (fstate))
+ length (s-temps (fstate))
+ cadr (arg-r),
caddr (arg-r),
cadddr (arg-r))) endlet endlet endlet

else list (0, 0, 0, 0) endif

Definition: s-eval-temp-r (flag , s, c) = car (s-eval-r (flag , s, c))

Definition: s-eval-ctrl-r (flag , s, c) = cadr (s-eval-r (flag , s, c))

Definition: s-eval-ws-r (flag , s, c) = caddr (s-eval-r (flag , s, c))

Definition:
s-eval-heap-r (flag , s, c) = cadddr (s-eval-r (flag , s, c))

Definition:
s-max-subr-reqs
= max (log (2, lr-cons-tag),
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max (log (2, lr-true-tag),
max (log (2, lr-cdr-offset), log (2, lr-car-offset))))

Event: Disable s-max-subr-reqs.

Theorem: numberp-car-cadr-caddr-cadddr-s-apply-subr-r
(car (s-apply-subr-r (subr , s)) ∈ N)
∧ (cadr (s-apply-subr-r (subr , s)) ∈ N)
∧ (caddr (s-apply-subr-r (subr , s)) ∈ N)
∧ (cadddr (s-apply-subr-r (subr , s)) ∈ N)

Event: Disable s-apply-subr-r.

Theorem: numberp-max-r
(car (max-r (list1 , list2 )) ∈ N)
∧ (cadr (max-r (list1 , list2 )) ∈ N)
∧ (caddr (max-r (list1 , list2 )) ∈ N)
∧ (cadddr (max-r (list1 , list2 )) ∈ N)

Theorem: numberp-s-eval-temp-ctrl-ws-heap-r
(s-eval-temp-r (flag , s, c) ∈ N)
∧ (s-eval-ctrl-r (flag , s, c) ∈ N)
∧ (s-eval-ws-r (flag , s, c) ∈ N)
∧ (s-eval-heap-r (flag , s, c) ∈ N)

Event: Disable s-eval-temp-r.

Event: Disable s-eval-ctrl-r.

Event: Disable s-eval-ws-r.

Event: Disable s-eval-heap-r.

Definition:
lr-count-free-nodes (addr , node-list , data-seg)
= if addr ∈ node-list

then 1 + lr-count-free-nodes (fetch (add-addr (addr , lr-ref-count-offset),
data-seg),

delete (addr , node-list),
data-seg)

else 0 endif
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Definition:
lr-check-resourcesp (flag , s, l , c)
= ((p-max-temp-stk-size (l)

6< (length (p-temp-stk (l)) + s-eval-temp-r (flag , s, c)))
∧ (p-max-ctrl-stk-size (l)

6< (p-ctrl-stk-size (p-ctrl-stk (l))
+ s-eval-ctrl-r (flag , s, c)))

∧ (p-word-size (l) 6< s-eval-ws-r (flag , s, c))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (l)),

lr-free-list-nodes (lr-max-node (p-data-segment (l)),
p-data-segment (l)),

p-data-segment (l))
6< s-eval-heap-r (flag , s, c)))

Event: Disable lr-check-resourcesp.

Theorem: not-lessp-max-r-car
(car (max-r (list1 , list2 )) 6< car (list1 ))
∧ (car (max-r (list1 , list2 )) 6< car (list2 ))

Theorem: not-lessp-max-r-cadr
(cadr (max-r (list1 , list2 )) 6< cadr (list1 ))
∧ (cadr (max-r (list1 , list2 )) 6< cadr (list2 ))

Theorem: not-lessp-max-r-caddr
(caddr (max-r (list1 , list2 )) 6< caddr (list1 ))
∧ (caddr (max-r (list1 , list2 )) 6< caddr (list2 ))

Theorem: not-lessp-max-r-cadddr
(cadddr (max-r (list1 , list2 )) 6< cadddr (list1 ))
∧ (cadddr (max-r (list1 , list2 )) 6< cadddr (list2 ))

Theorem: lr-check-resourcesp-listp-s-expr-list
((s-err-flag (s) = ’run)
∧ listp (s-pos (s))
∧ listp (s-expr-list (s))
∧ good-posp (’list, s-pos (s), s-body (s-prog (s)))
∧ lr-check-resourcesp (’list, s, l , c))
→ lr-check-resourcesp (t, s, l , c)

Theorem: lr-eval-preserves-lr-proper-heapp
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp (flag , s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
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∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (flag , s->lr1 (s, l , table), c)) = ’run))
→ lr-proper-heapp (p-data-segment (lr-eval (flag , s->lr1 (s, l , table), c)))

Theorem: lr-eval-preserves-lr-s-similar-statesp
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp (flag , s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (flag , s->lr1 (s, l , table), c)) = ’run))
→ lr-s-similar-statesp (s-params (s),

s-temps (s-eval (flag , s, c)),
lr-eval (flag , s->lr1 (s, l , table), c),
table)

Theorem: s-eval-flag-run-flag-t-subsetp-s-collect-all-temps
(s-good-statep (s, c)
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-all-temps-setp (flag , s-expr (s), temp-alist-to-set (s-temps (s)))
∧ s-all-progs-temps-setp (s-progs (s))
∧ (s-err-flag (s-eval (flag , s, c)) = ’run)
∧ s-check-temps-setp (s-temps (s))
∧ (flag 6= ’list))
→ subsetp (s-collect-all-temps (flag , s-expr (s)),

temp-alist-to-set (s-temps (s-eval (flag , s, c))))

Theorem: s-eval-flag-run-flag-t-s-check-temps-setp
(s-good-statep (s, c)
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-all-temps-setp (flag , s-expr (s), temp-alist-to-set (s-temps (s)))
∧ s-all-progs-temps-setp (s-progs (s))
∧ (s-err-flag (s-eval (flag , s, c)) = ’run)
∧ s-check-temps-setp (s-temps (s))
∧ (flag 6= ’list))
→ s-check-temps-setp (s-temps (s-eval (flag , s, c)))

Theorem: lr-eval-preserves-length-bindings-car-p-ctrl-stk
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (length (bindings (car (p-ctrl-stk (lr-eval (flag , l , c)))))

= length (bindings (car (p-ctrl-stk (l)))))
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Theorem: lr-eval-s->lr1-preserves-p-ctrl-stk-size
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (p-ctrl-stk-size (p-ctrl-stk (lr-eval (flag , l , c)))

= p-ctrl-stk-size (p-ctrl-stk (l)))

Theorem: length-p-temp-stk-lr-eval-flag-not-list
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp (flag , s-pos (s), s-body (s-prog (s)))
∧ s-good-statep (s, c)
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ (p-psw (lr-eval (flag , s->lr1 (s, l , table), c)) = ’run)
∧ (flag 6= ’list))
→ (length (p-temp-stk (lr-eval (flag , s->lr1 (s, l , table), c)))

= (1 + length (p-temp-stk (l))))

Theorem: lr-eval-preserves-lr-proper-heapp-lr-set-pos
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp (flag , pos, s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (flag , lr-set-pos (s->lr1 (s, l , table), pos), c)) = ’run))
→ lr-proper-heapp (p-data-segment (lr-eval (flag ,

lr-set-pos (s->lr1 (s, l , table),
pos),

c)))

Theorem: lr-eval-preserves-lr-s-similar-statesp-lr-set-pos
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp (flag , pos, s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (flag , lr-set-pos (s->lr1 (s, l , table), pos), c)) = ’run))
→ lr-s-similar-statesp (s-params (s),

s-temps (s-eval (flag , s-set-pos (s, pos), c)),
lr-eval (flag , lr-set-pos (s->lr1 (s, l , table), pos), c),
table)

Theorem: lr-eval-s-eval-flag-t-s-ans-f-lr-set-pos
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(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (pos, s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c)) = ’run)
∧ (¬ s-ans (s-eval (t, s-set-pos (s, pos), c))))
→ (car (p-temp-stk (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c)))

= lr-f-addr)

Theorem: lr-eval-s-eval-flag-t-s-ans-non-f-lr-set-pos
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (pos, s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c)) = ’run)
∧ s-ans (s-eval (t, s-set-pos (s, pos), c)))
→ (car (p-temp-stk (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c)))

6= identity (lr-f-addr))

Theorem: subsetp-not-member-both
((addr 6∈ set2 ) ∧ subsetp (set1 , set2 )) → (addr 6∈ set1 )

Theorem: lr-count-free-nodes-deposit-free-ptr
(adpp (’(free-ptr . 0), data-seg) ∧ lr-node-listp (node-list , data-seg))
→ (lr-count-free-nodes (addr ,

node-list ,
deposit (anything , identity (lr-fp-addr), data-seg))

= lr-count-free-nodes (addr , node-list , data-seg))

Theorem: lr-count-free-nodes-deposit-non-ref-count
(lr-nodep (addr2 , data-seg)
∧ (offset 6= lr-ref-count-offset)
∧ (offset ∈ N)
∧ (offset < lr-node-size)
∧ lr-node-listp (node-list , data-seg))
→ (lr-count-free-nodes (addr1 ,

node-list ,
deposit (anything , add-addr (addr2 , offset), data-seg))

= lr-count-free-nodes (addr1 , node-list , data-seg))

Theorem: lr-count-free-nodes-deposit-lr-nodep
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(lr-nodep (addr2 , data-seg) ∧ lr-node-listp (node-list , data-seg))
→ (lr-count-free-nodes (addr1 , node-list , deposit (anything , addr2 , data-seg))

= lr-count-free-nodes (addr1 , node-list , data-seg))

Theorem: lr-count-free-nodes-delete-deposit
((addr1 6∈ node-list)
∧ lr-nodep (addr1 , data-seg)
∧ lr-node-listp (node-list , data-seg)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N))
→ (lr-count-free-nodes (addr2 ,

node-list ,
deposit (ref-count ,

add-addr (addr1 ,
identity (lr-ref-count-offset)),

data-seg))
= lr-count-free-nodes (addr2 , node-list , data-seg))

Theorem: lr-count-free-nodes-max-addr-lr-free-list-nodes
lr-count-free-nodes (max-addr ,

lr-free-list-nodes (max-addr , data-seg1 ),
data-seg2 )

= 0

Theorem: lr-count-lr-free-list-nodes-p-run-cons
let dds be deposit-a-list (list (identity (tag (’nat, 5)),

ref-count ,
any1 ,
any2 ),

fetch (identity (lr-fp-addr), data-seg),
data-seg)

in
(lr-proper-heapp (data-seg)
∧ (max-addr = lr-max-node (data-seg))
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N)
∧ (fetch (identity (lr-fp-addr), data-seg) 6= max-addr))
→ ((1 + lr-count-free-nodes (fetch (add-addr (fetch (identity (lr-fp-addr),

data-seg),
identity (lr-ref-count-offset)),

data-seg),
lr-free-list-nodes (max-addr , dds),
dds))

= lr-count-free-nodes (fetch (identity (lr-fp-addr),
data-seg),
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lr-free-list-nodes (max-addr ,
data-seg),

data-seg)) endlet

Theorem: not-p-max-node-fetch-fp-addr-not-errorp-p-run-cons
((p-psw (p (p-set-pc (lr->p (new-l), pc), p-cons-clock (p-set-pc (lr->p (new-l), pc))))

= ’run)
∧ proper-p-statep (lr->p (new-l))
∧ proper-p-statep (p-set-pc (lr->p (new-l), pc))
∧ (max-node = lr-max-node (p-data-segment (new-l)))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ lr-proper-heapp (p-data-segment (new-l))
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call cons)))
→ (fetch (identity (lr-fp-addr), p-data-segment (new-l)) 6= max-node)

Theorem: get-comp-body-lr-compile-programs
(good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= s-temp-eval)
∧ (car (s-expr (s)) 6= s-temp-test)
∧ (car (s-expr (s)) 6= s-temp-fetch)
∧ (car (s-expr (s)) 6= ’quote)
∧ listp (s-expr (s)))
→ (get (offset (lr-return-pc (s->lr1 (s, l , table))),

program-body (assoc (s-pname (s),
comp-programs (lr-compile-programs (s-progs (s),

table)))))
= list (’dl,

lr-make-label (offset (lr-return-pc (s->lr1 (s, l , table)))),
nil,
if definedp (car (s-expr (s)), p-runtime-support-programs)
then list (’call, car (s-expr (s)))
else list (’call, user-fname (car (s-expr (s)))) endif))

Theorem: lr-count-lr-free-list-nodes-p-run-subr
let p be p-set-pc (lr->p (lr-eval (’list,

lr-set-pos (s->lr1 (s, l , table), pos),
c)),

lr-return-pc (s->lr1 (s, l , table))),
new-l be lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c)
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in
(listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ subrp (car (s-expr (s)))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (p-run-subr (car (s-expr (s)), p)) = ’run)
∧ (p-psw (new-l) = ’run)
∧ (pos = dv (s-pos (s), 1))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr1 (s, l , table),
table))

→ (lr-count-free-nodes (fetch (identity (lr-fp-addr),
p-data-segment (new-l)),

lr-free-list-nodes (lr-max-node (p-data-segment (l)),
p-data-segment (new-l)),

p-data-segment (new-l))
= (lr-count-free-nodes (fetch (identity (lr-fp-addr),

p-data-segment (p-run-subr (car (s-expr (s)),
p))),

lr-free-list-nodes (lr-max-node (p-data-segment (l)),
p-data-segment (p-run-subr (car (s-expr (s)),

p))),
p-data-segment (p-run-subr (car (s-expr (s)),

p)))
+ cadddr (s-apply-subr-r (car (s-expr (s)),

s-eval (’list,
s-set-pos (s, pos),
c))))) endlet

Theorem: lr-count-lr-free-list-nodes-lr-apply-subr
let new-l be lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c)
in
(listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ subrp (car (s-expr (s)))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ (p-psw (new-l) = ’run)
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∧ (p-psw (lr-apply-subr (s->lr1 (s, l , table), new-l)) = ’run)
∧ s-good-statep (s, c)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr1 (s, l , table),
table)

∧ (pos = dv (s-pos (s), 1))
∧ (max-addr = lr-max-node (p-data-segment (l)))
∧ (s-eval-size = s-eval-heap-r (’list, s-set-pos (s, pos), c))
∧ ((lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),

lr-free-list-nodes (max-addr ,
p-data-segment (new-l)),

p-data-segment (new-l))
+ s-eval-size)

= lr-count-free-nodes (fetch (lr-fp-addr,
p-data-segment (l)),

lr-free-list-nodes (max-addr ,
p-data-segment (l)),

p-data-segment (l))))
→ ((s-eval-size

+ cadddr (s-apply-subr-r (car (s-expr (s)),
s-eval (’list,

s-set-pos (s, pos),
c)))

+ lr-count-free-nodes (fetch (identity (lr-fp-addr),
p-data-segment (lr-apply-subr (s->lr1 (s,

l ,
table),

new-l))),
lr-free-list-nodes (max-addr ,

p-data-segment (lr-apply-subr (s->lr1 (s,
l ,
table),

new-l))),
p-data-segment (lr-apply-subr (s->lr1 (s,

l ,
table),

new-l))))
= lr-count-free-nodes (fetch (identity (lr-fp-addr),

p-data-segment (l)),
lr-free-list-nodes (max-addr ,

p-data-segment (l)),
p-data-segment (l))) endlet
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Theorem: lr-eval-s-eval-equivalence-lr-check-result-flag-list
let lr-eval be lr-eval (’list,

lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)),
c)

in
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr1 (s, l , table),
table)

∧ s-good-statep (s, c)
∧ (p-psw (lr-eval) = ’run)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= s-temp-eval)
∧ (car (s-expr (s)) 6= s-temp-test)
∧ (car (s-expr (s)) 6= s-temp-fetch)
∧ (car (s-expr (s)) 6= ’quote))
→ lr-check-result (’list,

s-ans (s-eval (’list,
s-set-pos (s, dv (s-pos (s), 1)),
c)),

p-temp-stk (lr-eval),
p-data-segment (lr-eval),
p-temp-stk (l)) endlet

Theorem: cadddr-max-r
cadddr (max-r (list1 , list2 )) = (cadddr (list1 ) + cadddr (list2 ))

Theorem: lr-eval-s-eval-heap-r-lr-count-lr-free-list-nodes
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp (flag , s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (flag , s->lr1 (s, l , table), c)) = ’run)
∧ (s-err-flag (s-eval (flag , s, c)) = ’run))
→ ((lr-count-free-nodes (fetch (lr-fp-addr,

p-data-segment (lr-eval (flag ,
s->lr1 (s, l , table),
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c))),
lr-free-list-nodes (lr-max-node (p-data-segment (l)),

p-data-segment (lr-eval (flag ,
s->lr1 (s,

l ,
table),

c))),
p-data-segment (lr-eval (flag , s->lr1 (s, l , table), c)))

+ s-eval-heap-r (flag , s, c))
= lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (l)),

lr-free-list-nodes (lr-max-node (p-data-segment (l)),
p-data-segment (l)),

p-data-segment (l)))

Theorem: lr-check-resourcesp-list-set-expr-nx
(listp (s-pos (s))
∧ listp (s-expr-list (s))
∧ good-posp (’list, s-pos (s), s-body (s-prog (s)))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (t, s->lr1 (s, l , table), c)) = ’run)
∧ (s-err-flag (s-eval (t, s, c)) = ’run)
∧ lr-check-resourcesp (’list, s, l , c))
→ lr-check-resourcesp (’list,

s-set-expr (s-eval (t, s, c), s, nx (s-pos (s))),
lr-eval (t, s->lr1 (s, l , table), c),
c)

Theorem: lr-check-resourcesp-lr-push-tstk-flag-run
(lr-check-resourcesp (flag , s, l , c)
∧ (flag 6= ’list)
∧ litatom (s-expr (s))
∧ (c 6' 0)
∧ (s-err-flag (s) = ’run))
→ (p-psw (lr-push-tstk (s->lr1 (s, l , table),

cdr (assoc (s-expr (s), bindings (car (p-ctrl-stk (l)))))))
= ’run)

Theorem: lr-check-resourcesp-s-set-pos-if-cadr
(lr-check-resourcesp (flag , s, l , c)
∧ s-good-statep (s, c)
∧ (flag 6= ’list)
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∧ (c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = ’if))
→ lr-check-resourcesp (t, s-set-pos (s, dv (s-pos (s), 1)), l , c)

Theorem: s-eval-subsetp-s-collect-temp-alist-s-set-pos-if
(listp (s-expr (s))
∧ (car (s-expr (s)) = ’if)
∧ s-good-statep (s, c)
∧ good-posp1 (dv (s-pos (s), 1), s-body (s-prog (s)))
∧ s-check-temps-setp (s-temps (s))
∧ s-all-temps-setp (t, cadr (s-expr (s)), temp-alist-to-set (s-temps (s)))
∧ s-all-progs-temps-setp (s-progs (s))
∧ (s-err-flag (s-eval (t, s-set-pos (s, dv (s-pos (s), 1)), c)) = ’run))
→ subsetp (s-collect-all-temps (t, cadr (s-expr (s))),

temp-alist-to-set (s-temps (s-eval (t,
s-set-pos (s, dv (s-pos (s), 1)),
c))))

Theorem: length-p-temp-stk-lr-pop-tstk-lr-eval-flag-t
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (pos, s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-if-ok (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c)))

= ’run))
→ (length (p-temp-stk (lr-pop-tstk (lr-if-ok (lr-eval (t,

lr-set-pos (s->lr1 (s,
l ,
table),

pos),
c)))))

= length (p-temp-stk (l)))

Theorem: lr-eval-s->lr1-preserves-p-ctrl-stk-size-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp (flag , pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , lr-set-pos (l , pos), c)) = ’run))
→ (p-ctrl-stk-size (p-ctrl-stk (lr-eval (flag , lr-set-pos (l , pos), c)))

= p-ctrl-stk-size (p-ctrl-stk (l)))

Theorem: lr-check-resourcesp-lr-pop-tstk-lr-eval-1
let lr-eval be lr-if-ok (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c))
in
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((c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = ’if)
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr1 (s, l , table),
table)

∧ s-good-statep (s, c)
∧ (p-psw (lr-eval) = ’run)
∧ (pos = dv (s-pos (s), 1))
∧ (s-err-flag (s-eval (t, s-set-pos (s, pos), c)) = ’run)
∧ s-ans (s-eval (t, s-set-pos (s, dv (s-pos (s), 1)), c))
∧ lr-check-resourcesp (flag , s, l , c)
∧ (flag 6= ’list))
→ lr-check-resourcesp (t,

s-set-expr (s-eval (t, s-set-pos (s, pos), c),
s,
dv (s-pos (s), 2)),

lr-pop-tstk (lr-eval),
c) endlet

Theorem: lr-check-resourcesp-lr-pop-tstk-lr-eval-2
let lr-eval be lr-if-ok (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c))
in
((c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = ’if)
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr1 (s, l , table),
table)

∧ s-good-statep (s, c)
∧ (p-psw (lr-eval) = ’run)
∧ (pos = dv (s-pos (s), 1))
∧ (s-err-flag (s-eval (t, s-set-pos (s, pos), c)) = ’run)
∧ (¬ s-ans (s-eval (t, s-set-pos (s, dv (s-pos (s), 1)), c)))
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∧ lr-check-resourcesp (flag , s, l , c)
∧ (flag 6= ’list))
→ lr-check-resourcesp (t,

s-set-expr (s-eval (t, s-set-pos (s, pos), c),
s,
dv (s-pos (s), 3)),

lr-pop-tstk (lr-eval),
c) endlet

Theorem: lr-check-resourcesp-s-temp-eval
((c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = s-temp-eval)
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (pos = dv (s-pos (s), 1))
∧ lr-check-resourcesp (flag , s, l , c)
∧ (flag 6= ’list))
→ lr-check-resourcesp (t, s-set-pos (s, pos), l , c)

Theorem: lr-check-resourcesp-s-temp-test
((c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = s-temp-test)
∧ (¬ s-temp-setp (cadr (s-expr (s)), s-temps (s)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (pos = dv (s-pos (s), 1))
∧ lr-check-resourcesp (flag , s, l , c)
∧ (flag 6= ’list))
→ lr-check-resourcesp (t, s-set-pos (s, pos), l , c)

Theorem: lr-do-temp-fetch-lr-check-resourcesp-temp-test
(lr-check-resourcesp (flag , s, l , c)
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ listp (s-expr (s))
∧ ((car (s-expr (s)) = s-temp-test)

∨ (car (s-expr (s)) = s-temp-fetch))
∧ s-good-statep (s, c)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ (c 6' 0)
∧ s-temp-setp (cadr (s-expr (s)), s-temps (s))
∧ (flag 6= ’list))
→ (p-psw (lr-do-temp-fetch (s->lr1 (s, l , table))) = ’run)

194



Theorem: lr-push-tstk-lr-check-resourcesp-quote
(lr-check-resourcesp (flag , s, l , c)
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = ’quote)
∧ s-good-statep (s, c)
∧ (c 6' 0)
∧ (flag 6= ’list))
→ (p-psw (lr-push-tstk (s->lr1 (s, l , table),

cadr (lr-expr (s->lr1 (s, l , table)))))
= ’run)

Theorem: lr-check-resourcesp-funcall
((c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= s-temp-eval)
∧ (car (s-expr (s)) 6= s-temp-test)
∧ (car (s-expr (s)) 6= s-temp-fetch)
∧ (car (s-expr (s)) 6= ’quote)
∧ (s-err-flag (s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c)) = ’run)
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ lr-check-resourcesp (flag , s, l , c)
∧ (flag 6= ’list))
→ lr-check-resourcesp (’list, s-set-pos (s, dv (s-pos (s), 1)), l , c)

Theorem: numberp-s-eval-temp-ctrl-ws-heap-r-opened
(car (s-eval-r (flag , s, c)) ∈ N)
∧ (cadr (s-eval-r (flag , s, c)) ∈ N)
∧ (caddr (s-eval-r (flag , s, c)) ∈ N)
∧ (cadddr (s-eval-r (flag , s, c)) ∈ N)

Theorem: lessp-1-not-zerop-exp
((m 6' 0) ∧ (1 < n)) → (1 < exp (n, m))

Theorem: lessp-1-not-zerop-log
((1 < c) ∧ (n ∈ N)) → ((log (c, n) < 1) = (n < 1))

Definition:
induct-hint-18 (c, n, m)
= if c < 2 then t
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elseif n ' 0 then t
elseif m ' 0 then t
else induct-hint-18 (c, n ÷ c, m − 1) endif

Theorem: times-quotient-lessp-fact-1
((c 6' 0) ∧ (n ∈ N) ∧ (m ∈ N))
→ ((n < (c ∗ m)) = ((n ÷ c) < m))

Theorem: exp-log-lessp-fact-1
((1 < c) ∧ (n ∈ N) ∧ (m ∈ N))
→ ((n < exp (c, m)) = (log (c, n) < (1 + m)))

Event: Disable times-quotient-lessp-fact-1.

Theorem: adpp-untag-add-addr-offset-car
(lr-good-pointerp (addr , data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (untag (fetch (addr , data-seg)) = lr-cons-tag)
∧ lr-proper-heapp (data-seg))
→ adpp (untag (add-addr (addr , identity (lr-car-offset))), data-seg)

Theorem: adpp-untag-add-addr-offset-cdr
(lr-good-pointerp (addr , data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (untag (fetch (addr , data-seg)) = lr-cons-tag)
∧ lr-proper-heapp (data-seg))
→ adpp (untag (add-addr (addr , identity (lr-cdr-offset))), data-seg)

Theorem: exp-log-2-lessp-add1-fact-1
((1 + n) < exp (2, m)) = (log (2, 1 + n) < (1 + m))

;; The P-TEST-BOOL-AND-JUMP cause a lot of case splits after being opened
;; and the result rewritten with P-OBJECTP-TYPE, so we prove two simple
;; lemmas and disable it, this should hopefully speed up the proof.

Theorem: p-test-bool-and-jump-okp-t-cons-bool-t
p-test-bool-and-jump-okp (list (ins-name, ’t, label),

p-state (pc,
ctrl-stk ,
cons (’(bool t), temp-stk),
prog-seg ,
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

= t
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Theorem: p-test-bool-and-jump-okp-f-cons-bool-t
p-test-bool-and-jump-okp (list (ins-name, ’f, label),

p-state (pc,
ctrl-stk ,
cons (’(bool t), temp-stk),
prog-seg ,
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

= t

Theorem: p-test-bool-and-jump-okp-t-cons-bool-f
p-test-bool-and-jump-okp (list (ins-name, ’t, label),

p-state (pc,
ctrl-stk ,
cons (’(bool f), temp-stk),
prog-seg ,
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

= t

Theorem: p-test-bool-and-jump-okp-f-cons-bool-f
p-test-bool-and-jump-okp (list (ins-name, ’f, label),

p-state (pc,
ctrl-stk ,
cons (’(bool f), temp-stk),
prog-seg ,
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

= t

Event: Disable p-test-bool-and-jump-okp.

Theorem: p-psw-run-run-car-lr-check-resourcesp
(lr-check-result (’list,

s-ans (new-s),
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p-temp-stk (new-l),
p-data-segment (new-l),
orig-temp-stk)

∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call car))
∧ (p-max-temp-stk-size (new-l)

6< (length (p-temp-stk (new-l))
+ car (s-apply-subr-r (’car, new-s))))

∧ (p-max-ctrl-stk-size (new-l)
6< (p-ctrl-stk-size (p-ctrl-stk (new-l))

+ cadr (s-apply-subr-r (’car, new-s))))
∧ (p-word-size (new-l)

6< max (s-max-subr-reqs, caddr (s-apply-subr-r (’car, new-s))))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),

lr-free-list-nodes (lr-max-node (p-data-segment (new-l)),
p-data-segment (new-l)),

p-data-segment (new-l))
6< cadddr (s-apply-subr-r (’car, new-s)))

∧ (length (p-temp-stk (new-l)) 6< arity (’car))
∧ (length (s-ans (new-s)) = arity (’car)))
→ (p-psw (p (p-set-pc (lr->p (new-l), pc),

p-car-clock (p-set-pc (lr->p (new-l), pc))))
= ’run)

Theorem: p-psw-run-run-cdr-lr-check-resourcesp
(lr-check-result (’list,

s-ans (new-s),
p-temp-stk (new-l),
p-data-segment (new-l),
orig-temp-stk)

∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call cdr))
∧ (p-max-temp-stk-size (new-l)

6< (length (p-temp-stk (new-l))
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+ car (s-apply-subr-r (’cdr, new-s))))
∧ (p-max-ctrl-stk-size (new-l)

6< (p-ctrl-stk-size (p-ctrl-stk (new-l))
+ cadr (s-apply-subr-r (’cdr, new-s))))

∧ (p-word-size (new-l)
6< max (s-max-subr-reqs, caddr (s-apply-subr-r (’cdr, new-s))))

∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),
lr-free-list-nodes (lr-max-node (p-data-segment (new-l)),

p-data-segment (new-l)),
p-data-segment (new-l))

6< cadddr (s-apply-subr-r (’cdr, new-s)))
∧ (length (p-temp-stk (new-l)) 6< arity (’cdr))
∧ (length (s-ans (new-s)) = arity (’cdr)))
→ (p-psw (p (p-set-pc (lr->p (new-l), pc),

p-cdr-clock (p-set-pc (lr->p (new-l), pc))))
= ’run)

Theorem: lessp-plus-remainder-0-fact
(((offset1 mod max ) = 0)
∧ ((offset2 mod max ) = 0)
∧ (n < max )
∧ (offset1 ∈ N)
∧ (offset2 ∈ N))
→ (((n + offset1 ) < offset2 ) = (offset1 < offset2 ))

Theorem: lr-boundary-nodep-lessp-plus-fact
(lr-boundary-nodep (addr1 )
∧ lr-boundary-nodep (addr2 )
∧ (n < lr-node-size)
∧ (offset (addr1 ) ∈ N)
∧ (offset (addr2 ) ∈ N))
→ (((n + offset (addr1 )) < offset (addr2 ))

= (offset (addr1 ) < offset (addr2 )))

Theorem: adpp-untag-add-addr-lr-nodep-not-max-addr
(adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = ’heap)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (offset (addr) < offset (lr-max-node (data-seg)))
∧ (n < lr-node-size))
→ adpp (untag (add-addr (addr , n)), data-seg)

Theorem: adpp-untag-add-addr-offset-on-free-listp
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(lr-proper-p-areasp (data-seg)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< 1)

∧ lr-proper-heapp (data-seg)
∧ (n < lr-node-size))
→ adpp (untag (add-addr (fetch (identity (lr-fp-addr), data-seg), n)), data-seg)

Theorem: p-psw-run-run-cons-lr-check-resourcesp
(lr-check-result (’list,

s-ans (new-s),
p-temp-stk (new-l),
p-data-segment (new-l),
orig-temp-stk)

∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call cons))
∧ (p-max-temp-stk-size (new-l)

6< (length (p-temp-stk (new-l))
+ car (s-apply-subr-r (’cons, new-s))))

∧ (p-max-ctrl-stk-size (new-l)
6< (p-ctrl-stk-size (p-ctrl-stk (new-l))

+ cadr (s-apply-subr-r (’cons, new-s))))
∧ (p-word-size (new-l)

6< max (s-max-subr-reqs, caddr (s-apply-subr-r (’cons, new-s))))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),

lr-free-list-nodes (lr-max-node (p-data-segment (new-l)),
p-data-segment (new-l)),

p-data-segment (new-l))
6< cadddr (s-apply-subr-r (’cons, new-s)))

∧ (length (p-temp-stk (new-l)) 6< arity (’cons))
∧ (length (s-ans (new-s)) = arity (’cons)))
→ (p-psw (p (p-set-pc (lr->p (new-l), pc),

p-cons-clock (p-set-pc (lr->p (new-l), pc))))
= ’run)

Theorem: p-psw-run-run-false-lr-check-resourcesp
(lr-check-result (’list,
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s-ans (new-s),
p-temp-stk (new-l),
p-data-segment (new-l),
orig-temp-stk)

∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call false))
∧ (p-max-temp-stk-size (new-l)

6< (length (p-temp-stk (new-l))
+ car (s-apply-subr-r (’false, new-s))))

∧ (p-max-ctrl-stk-size (new-l)
6< (p-ctrl-stk-size (p-ctrl-stk (new-l))

+ cadr (s-apply-subr-r (’false, new-s))))
∧ (p-word-size (new-l)

6< max (s-max-subr-reqs, caddr (s-apply-subr-r (’false, new-s))))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),

lr-free-list-nodes (lr-max-node (p-data-segment (new-l)),
p-data-segment (new-l)),

p-data-segment (new-l))
6< cadddr (s-apply-subr-r (’false, new-s)))

∧ (length (p-temp-stk (new-l)) 6< arity (’false))
∧ (length (s-ans (new-s)) = arity (’false)))
→ (p-psw (p (p-set-pc (lr->p (new-l), pc),

p-false-clock (p-set-pc (lr->p (new-l), pc))))
= ’run)

Theorem: p-psw-run-run-falsep-lr-check-resourcesp
(lr-check-result (’list,

s-ans (new-s),
p-temp-stk (new-l),
p-data-segment (new-l),
orig-temp-stk)

∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call falsep))
∧ (p-max-temp-stk-size (new-l)
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6< (length (p-temp-stk (new-l))
+ car (s-apply-subr-r (’falsep, new-s))))

∧ (p-max-ctrl-stk-size (new-l)
6< (p-ctrl-stk-size (p-ctrl-stk (new-l))

+ cadr (s-apply-subr-r (’falsep, new-s))))
∧ (p-word-size (new-l)

6< max (s-max-subr-reqs, caddr (s-apply-subr-r (’falsep, new-s))))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),

lr-free-list-nodes (lr-max-node (p-data-segment (new-l)),
p-data-segment (new-l)),

p-data-segment (new-l))
6< cadddr (s-apply-subr-r (’falsep, new-s)))

∧ (length (p-temp-stk (new-l)) 6< arity (’falsep))
∧ (length (s-ans (new-s)) = arity (’falsep)))
→ (p-psw (p (p-set-pc (lr->p (new-l), pc),

p-falsep-clock (p-set-pc (lr->p (new-l), pc))))
= ’run)

Theorem: p-psw-run-run-listp-lr-check-resourcesp
(lr-check-result (’list,

s-ans (new-s),
p-temp-stk (new-l),
p-data-segment (new-l),
orig-temp-stk)

∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call listp))
∧ (p-max-temp-stk-size (new-l)

6< (length (p-temp-stk (new-l))
+ car (s-apply-subr-r (’listp, new-s))))

∧ (p-max-ctrl-stk-size (new-l)
6< (p-ctrl-stk-size (p-ctrl-stk (new-l))

+ cadr (s-apply-subr-r (’listp, new-s))))
∧ (p-word-size (new-l)

6< max (s-max-subr-reqs, caddr (s-apply-subr-r (’listp, new-s))))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),

lr-free-list-nodes (lr-max-node (p-data-segment (new-l)),
p-data-segment (new-l)),

p-data-segment (new-l))
6< cadddr (s-apply-subr-r (’listp, new-s)))

202



∧ (length (p-temp-stk (new-l)) 6< arity (’listp))
∧ (length (s-ans (new-s)) = arity (’listp)))
→ (p-psw (p (p-set-pc (lr->p (new-l), pc),

p-listp-clock (p-set-pc (lr->p (new-l), pc))))
= ’run)

Theorem: p-psw-run-run-nlistp-lr-check-resourcesp
(lr-check-result (’list,

s-ans (new-s),
p-temp-stk (new-l),
p-data-segment (new-l),
orig-temp-stk)

∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call nlistp))
∧ (p-max-temp-stk-size (new-l)

6< (length (p-temp-stk (new-l))
+ car (s-apply-subr-r (’nlistp, new-s))))

∧ (p-max-ctrl-stk-size (new-l)
6< (p-ctrl-stk-size (p-ctrl-stk (new-l))

+ cadr (s-apply-subr-r (’nlistp, new-s))))
∧ (p-word-size (new-l)

6< max (s-max-subr-reqs, caddr (s-apply-subr-r (’nlistp, new-s))))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),

lr-free-list-nodes (lr-max-node (p-data-segment (new-l)),
p-data-segment (new-l)),

p-data-segment (new-l))
6< cadddr (s-apply-subr-r (’nlistp, new-s)))

∧ (length (p-temp-stk (new-l)) 6< arity (’nlistp))
∧ (length (s-ans (new-s)) = arity (’nlistp)))
→ (p-psw (p (p-set-pc (lr->p (new-l), pc),

p-nlistp-clock (p-set-pc (lr->p (new-l), pc))))
= ’run)

Theorem: p-psw-run-run-true-lr-check-resourcesp
(lr-check-result (’list,

s-ans (new-s),
p-temp-stk (new-l),
p-data-segment (new-l),
orig-temp-stk)
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∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call true))
∧ (p-max-temp-stk-size (new-l)

6< (length (p-temp-stk (new-l))
+ car (s-apply-subr-r (’true, new-s))))

∧ (p-max-ctrl-stk-size (new-l)
6< (p-ctrl-stk-size (p-ctrl-stk (new-l))

+ cadr (s-apply-subr-r (’true, new-s))))
∧ (p-word-size (new-l)

6< max (s-max-subr-reqs, caddr (s-apply-subr-r (’true, new-s))))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),

lr-free-list-nodes (lr-max-node (p-data-segment (new-l)),
p-data-segment (new-l)),

p-data-segment (new-l))
6< cadddr (s-apply-subr-r (’true, new-s)))

∧ (length (p-temp-stk (new-l)) 6< arity (’true))
∧ (length (s-ans (new-s)) = arity (’true)))
→ (p-psw (p (p-set-pc (lr->p (new-l), pc),

p-true-clock (p-set-pc (lr->p (new-l), pc))))
= ’run)

Theorem: p-psw-run-run-truep-lr-check-resourcesp
(lr-check-result (’list,

s-ans (new-s),
p-temp-stk (new-l),
p-data-segment (new-l),
orig-temp-stk)

∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ lr-programs-properp (new-l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (new-l))))))

= ’(call truep))
∧ (p-max-temp-stk-size (new-l)

6< (length (p-temp-stk (new-l))
+ car (s-apply-subr-r (’truep, new-s))))

∧ (p-max-ctrl-stk-size (new-l)
6< (p-ctrl-stk-size (p-ctrl-stk (new-l))
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+ cadr (s-apply-subr-r (’truep, new-s))))
∧ (p-word-size (new-l)

6< max (s-max-subr-reqs, caddr (s-apply-subr-r (’truep, new-s))))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (new-l)),

lr-free-list-nodes (lr-max-node (p-data-segment (new-l)),
p-data-segment (new-l)),

p-data-segment (new-l))
6< cadddr (s-apply-subr-r (’truep, new-s)))

∧ (length (p-temp-stk (new-l)) 6< arity (’truep))
∧ (length (s-ans (new-s)) = arity (’truep)))
→ (p-psw (p (p-set-pc (lr->p (new-l), pc),

p-truep-clock (p-set-pc (lr->p (new-l), pc))))
= ’run)

Theorem: length-last
listp (l) → (length (last (l)) = 1)

Theorem: equal-plus-lessp-fact
((x + z ) = y) → ((y < (n + x )) = (z < n))

Theorem: not-lessp-lr-count-free-nodes-lr-eval-list-lr-set-pos
let new-l be lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c)
in
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr1 (s, l , table),
table)

∧ s-good-statep (s, c)
∧ (p-psw (new-l) = ’run)
∧ (s-err-flag (s-eval (’list, s-set-pos (s, pos), c)) = ’run)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= s-temp-eval)
∧ (car (s-expr (s)) 6= s-temp-test)
∧ (car (s-expr (s)) 6= s-temp-fetch)
∧ (car (s-expr (s)) 6= ’quote)
∧ (pos = dv (s-pos (s), 1))
∧ (max-addr = lr-max-node (p-data-segment (l))))
→ ((lr-count-free-nodes (fetch (identity (lr-fp-addr),

p-data-segment (new-l)),
lr-free-list-nodes (max-addr ,
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p-data-segment (new-l)),
p-data-segment (new-l))

< n)
= (lr-count-free-nodes (fetch (identity (lr-fp-addr),

p-data-segment (l)),
lr-free-list-nodes (max-addr ,

p-data-segment (l)),
p-data-segment (l))

< (s-eval-heap-r (’list,
s-set-pos (s, dv (s-pos (s), 1)),
c)

+ n))) endlet

Event: Disable equal-plus-lessp-fact.

Theorem: lr-programs-properp-definedp-subrp-runtime-support
((¬ definedp (car (lr-expr (l)), p-runtime-support-programs))
∧ (car (lr-expr (l)) 6= ’if)
∧ subrp (car (lr-expr (l)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l))))
→ (¬ lr-programs-properp (l , table))

Theorem: p-psw-run-p-run-subr-lr-check-resourcesp
let new-l be lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c),

new-s be s-eval (’list, s-set-pos (s, pos), c),
pc be lr-return-pc (s->lr1 (s, l , table)),
r be s-apply-subr-r (car (s-expr (s)), s-eval (’list, s-set-pos (s, pos), c))

in
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ (c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (s-err-flag (new-s) = ’run)
∧ subrp (car (s-expr (s)))
∧ (p-psw (new-l) = ’run)
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr1 (s, l , table),
table)

∧ s-good-statep (s, c)
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∧ (p-max-temp-stk-size (l)
6< (length (p-temp-stk (l))

+ arity (car (s-expr (s)))
+ car (r)))

∧ (p-max-ctrl-stk-size (l)
6< (p-ctrl-stk-size (p-ctrl-stk (l)) + cadr (r)))

∧ (p-word-size (l) 6< max (s-max-subr-reqs, caddr (r)))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, p-data-segment (l)),

lr-free-list-nodes (lr-max-node (p-data-segment (l)),
p-data-segment (l)),

p-data-segment (l))
6< (cadddr (r)

+ s-eval-heap-r (’list, s-set-pos (s, pos), c)))
∧ (pos = dv (s-pos (s), 1)))
→ (p-psw (p-run-subr (car (s-expr (s)), p-set-pc (lr->p (new-l), pc)))

= ’run) endlet

Event: Disable lr-programs-properp-definedp-subrp-runtime-support.

Theorem: not-lessp-help-fact
((x 6< y) ∧ (x 6< z )) → ((x < max (y , z )) = f)

Theorem: p-psw-run-lr-apply-subr-lr-check-resourcesp
((c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (s-err-flag (s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c)) = ’run)
∧ subrp (car (s-expr (s)))
∧ (p-psw (lr-eval (’list,

lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)),
c))

= ’run)
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ lr-check-resourcesp (flag , s, l , c)
∧ (p-word-size (l) 6< s-max-subr-reqs)
∧ (flag 6= ’list))
→ (p-psw (lr-apply-subr (s->lr1 (s, l , table),

lr-eval (’list,
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lr-set-pos (s->lr1 (s, l , table),
dv (s-pos (s), 1)),

c)))
= ’run)

Theorem: strip-logic-fnames-lr-compile-programs
strip-logic-fnames (lr-compile-programs (programs , const-table))
= strip-logic-fnames (programs)

Theorem: strip-logic-fnames-cdr-lr-compile-programs
strip-logic-fnames (cdr (lr-compile-programs (programs, const-table)))
= strip-logic-fnames (cdr (programs))

Theorem: lr-programs-properp-s->lr1-definedp-cdr-s-progs
(lr-programs-properp (s->lr1 (s, l , table), table)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ litatom (car (s-expr (s)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-programs-okp (cdr (s-progs (s))))
→ definedp (user-fname (car (s-expr (s))), cdr (s-progs (s)))

Theorem: s-programs-okp-formals-not-f
(s-programs-okp (progs) ∧ (prog ∈ progs)) → (s-formals (prog) 6= f)

Theorem: not-lessp-plus-arity-length-formals
(listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ litatom (car (s-expr (s)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-good-statep (s, c))
→ (((arity (car (s-expr (s))) + x ) < length (formals (car (s-expr (s)))))

= f)

Theorem: length-lr-make-temp-var-dcls
length (lr-make-temp-var-dcls (temp-alist)) = length (temp-alist)

Theorem: length-lr-make-temp-name-alist-1
length (lr-make-temp-name-alist-1 (initial , num-list , temp-list , formals))
= length (temp-list)
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Theorem: length-lr-make-temp-name-alist
length (lr-make-temp-name-alist (temp-list , formals)) = length (temp-list)

Theorem: p-ctrl-stk-size-0
(p-ctrl-stk-size (ctrl-stk) = 0) = (¬ listp (ctrl-stk))

Theorem: length-make-temps-entries
length (make-temps-entries (list)) = length (list)

Theorem: s-eval-ctrl-r-funcall-opener
let arg-s be s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c)
in
((c 6' 0)
∧ s-good-statep (s, c)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ litatom (car (s-expr (s)))
∧ (flag 6= ’list)
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ (s-err-flag (arg-s) = ’run))
→ (s-eval-ctrl-r (flag , s, c)

= max (s-eval-ctrl-r (’list,
s-set-pos (s, dv (s-pos (s), 1)),
c),

1 + (1 + (length (formals (car (s-expr (s))))
+ length (s-temp-list (assoc (user-fname (car (s-expr (s))),

s-progs (s))))
+ s-eval-ctrl-r (t,

s-fun-call-state (arg-s,
car (s-expr (s))),

c − 1))))) endlet

Theorem: s-good-statep-formals-assoc-cdr-s-progs
(s-good-statep (s, c)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ litatom (car (s-expr (s)))
∧ (progs = cdr (s-progs (s))))
→ (s-formals (assoc (user-fname (car (s-expr (s))), progs))

= formals (car (s-expr (s))))
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Theorem: not-lessp-p-ctrl-stk-size-make-p-call-frame
let s-prog be assoc (user-fname (car (s-expr (s))), cdr (s-progs (s))),

lr-eval be lr-eval (’list,
lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)),
c)

in
(listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ litatom (car (s-expr (s)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-good-statep (s, c)
∧ (c 6' 0)
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ (length (temp-list) = length (s-temp-list (s-prog)))
∧ (p-psw (lr-eval) = ’run)
∧ (s-err-flag (s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c))

= ’run)
∧ (p-max-ctrl-stk-size (l)

6< (p-ctrl-stk-size (p-ctrl-stk (l))
+ s-eval-ctrl-r (flag , s, c)))

∧ (flag 6= ’list))
→ (p-max-ctrl-stk-size (l)

6< p-ctrl-stk-size (cons (make-p-call-frame (formals (car (s-expr (s))),
temp-stk ,
temp-list ,
pc),

p-ctrl-stk (lr-eval)))) endlet

Theorem: definedp-0
definedp (x , 0) = f

Theorem: not-definedp-user-fname-p-runtime-support-programs
¬ definedp (user-fname (name), p-runtime-support-programs)

Theorem: comp-programs-assoc-cons-opener
(user-fname (name) 6= prog1-name)
→ (assoc (user-fname (name),

comp-programs (cons (cons (prog1-name, prog1 ), progs)))
= assoc (user-fname (name), comp-programs-1 (progs)))

Theorem: lr-check-resourcesp-lr-funcall-p-psw-run
((c 6' 0)
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∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ litatom (car (s-expr (s)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ (p-psw (lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c))

= ’run)
∧ (s-err-flag (s-eval (’list, s-set-pos (s, pos), c)) = ’run)
∧ (pos = dv (s-pos (s), 1))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ s-good-statep (s, c)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-check-resourcesp (flag , s, l , c)
∧ (flag 6= ’list))
→ (p-psw (lr-funcall (s->lr1 (s, l , table),

lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c)))
= ’run)

Theorem: lessp-max-arg2
max (x , y) 6< y

Theorem: not-lessp-plus-arity-length-formals-alt
(listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ litatom (car (s-expr (s)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-good-statep (s, c))
→ (((x + arity (car (s-expr (s)))) < length (formals (car (s-expr (s)))))

= f)

Theorem: listp-lr-compile-programs
listp (lr-compile-programs (progs, table)) = listp (progs)

Theorem: caar-lr-compile-programs
listp (progs) → (caar (lr-compile-programs (progs, table)) = caar (progs))

Theorem: length-p-temp-stk-lr-eval-lr-funcall
let lr-eval be lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c)
in
(listp (s-expr (s))
∧ (¬ subrp (car (s-expr (s))))
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∧ (car (s-expr (s)) 6= ’quote)
∧ (car (s-expr (s)) 6= ’if)
∧ litatom (car (s-expr (s)))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-good-statep (s, c)
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ (p-psw (lr-eval) = ’run)
∧ (p-psw (lr-funcall (s->lr1 (s, l , table), lr-eval)) = ’run)
∧ (s-err-flag (s-eval (’list, s-set-pos (s, pos), c)) = ’run)
∧ (pos = dv (s-pos (s), 1)))
→ (length (p-temp-stk (lr-funcall (s->lr1 (s, l , table), lr-eval)))

= length (p-temp-stk (l))) endlet

Theorem: p-ctrl-stk-size-p-ctrl-stk-lr-funcall
(p-psw (lr-funcall (l , new-l)) = ’run)
→ (p-ctrl-stk-size (p-ctrl-stk (lr-funcall (l , new-l)))

= (2
+ length (formal-vars (assoc (user-fname (car (lr-expr (l))),

p-prog-segment (l))))
+ length (temp-var-dcls (assoc (user-fname (car (lr-expr (l))),

p-prog-segment (l))))
+ p-ctrl-stk-size (p-ctrl-stk (new-l))))

Theorem: lr-programs-properp-s->lr1-definedp-s-progs
(lr-programs-properp (s->lr1 (s, l , table), table)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ litatom (car (s-expr (s)))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-programs-okp (cdr (s-progs (s))))
→ definedp (user-fname (car (s-expr (s))), s-progs (s))

Theorem: s-eval-ctrl-heap-temp-ws-s-fun-call-state-opener
let s-eval be s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c)
in
((c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ litatom (car (s-expr (s)))
∧ s-good-statep (s, c)
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∧ (s-err-flag (s-eval) = ’run)
∧ (flag 6= ’list))
→ ((s-eval-ctrl-r (flag , s, c)

= max (s-eval-ctrl-r (’list,
s-set-pos (s, dv (s-pos (s), 1)),
c),

2
+ length (s-formals (assoc (user-fname (car (s-expr (s))),

s-progs (s))))
+ length (s-temp-list (assoc (user-fname (car (s-expr (s))),

s-progs (s))))
+ s-eval-ctrl-r (t,

s-fun-call-state (s-eval ,
car (s-expr (s))),

c − 1)))
∧ (s-eval-heap-r (flag , s, c)

= (s-eval-heap-r (’list,
s-set-pos (s, dv (s-pos (s), 1)),
c)

+ s-eval-heap-r (t,
s-fun-call-state (s-eval ,

car (s-expr (s))),
c − 1)))

∧ (s-eval-temp-r (flag , s, c)
= max (s-eval-temp-r (’list,

s-set-pos (s, dv (s-pos (s), 1)),
c),

s-eval-temp-r (t,
s-fun-call-state (s-eval ,

car (s-expr (s))),
c − 1)))

∧ (s-eval-ws-r (flag , s, c)
= max (s-eval-ws-r (’list,

s-set-pos (s, dv (s-pos (s), 1)),
c),

s-eval-ws-r (t,
s-fun-call-state (s-eval ,

car (s-expr (s))),
c − 1)))) endlet

Theorem: lr-check-resourcesp-lr-funcall-s-fun-call-state
((c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
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∧ (car (s-expr (s)) 6= s-temp-eval)
∧ (car (s-expr (s)) 6= s-temp-test)
∧ (car (s-expr (s)) 6= s-temp-fetch)
∧ (car (s-expr (s)) 6= ’quote)
∧ (¬ subrp (car (s-expr (s))))
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ litatom (car (s-expr (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ (p-psw (lr-eval (’list, lr-set-pos (s->lr1 (s, l , table), pos), c))

= ’run)
∧ (s-err-flag (s-eval (’list, s-set-pos (s, pos), c)) = ’run)
∧ (pos = dv (s-pos (s), 1))
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ s-good-statep (s, c)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-check-resourcesp (flag , s, l , c)
∧ (flag 6= ’list)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table))
→ lr-check-resourcesp (t,

s-fun-call-state (s-eval (’list,
s-set-pos (s, pos),
c),

car (s-expr (s))),
lr-funcall (s->lr1 (s, l , table),

lr-eval (’list,
lr-set-pos (s->lr1 (s, l , table),

pos),
c)),

c − 1)

Event: Disable s-eval-ctrl-heap-temp-ws-s-fun-call-state-opener.

Theorem: s-eval-flag-run-car-s-apply-subr-r-not-zero
(listp (s-expr (s))
∧ (car (s-expr (s)) 6= ’if)
∧ (car (s-expr (s)) 6= ’quote)
∧ (s-err-flag (s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c)) = ’run)
∧ subrp (car (s-expr (s)))
∧ (p-psw (lr-apply-subr (s->lr1 (s, l , table), new-l)) = ’run)
∧ good-posp1 (s-pos (s), s-body (s-prog (s)))
∧ s-good-statep (s, c))
→ (car (s-apply-subr-r (car (s-expr (s)),

s-eval (’list, s-set-pos (s, dv (s-pos (s), 1)), c)))
6< 1)
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Theorem: length-p-temp-stk-lr-eval-lr-set-pos-flag-t
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ good-posp1 (pos, s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c)) = ’run))
→ (length (p-temp-stk (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), pos), c)))

= (1 + length (p-temp-stk (l))))

Theorem: s-eval-flag-run-s-eval-temp-r-not-zero
((p-psw (lr-eval (flag , s->lr1 (s, l , table), c)) = ’run)
∧ (s-err-flag (s-eval (flag , s, c)) = ’run)
∧ good-posp (flag , s-pos (s), s-body (s-prog (s)))
∧ s-good-statep (s, c)
∧ (flag 6= ’list))
→ (s-eval-temp-r (flag , s, c) 6< 1)

Theorem: p-psw-run-p-psw-lr-if-ok-not-run-check-resourcesp
((flag 6= ’list)
∧ (c 6' 0)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = ’if)
∧ s-good-statep (s, c)
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ (s-err-flag (s-eval (t, s-set-pos (s, dv (s-pos (s), 1)), c)) = ’run)
∧ (p-psw (lr-if-ok (lr-eval (t,

lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)),
c)))

6= ’run)
∧ (p-psw (lr-eval (t, lr-set-pos (s->lr1 (s, l , table), dv (s-pos (s), 1)), c))

= ’run)
∧ good-posp1 (s-pos (s), s-body (s-prog (s))))
→ (¬ lr-check-resourcesp (flag , s, l , c))

Theorem: not-lr-check-resourcesp-temp-test-bad-max-temp-stk-size
((flag 6= ’list)
∧ (c 6= 0)
∧ (c ∈ N)
∧ listp (s-expr (s))
∧ (car (s-expr (s)) = s-temp-test)
∧ (p-max-temp-stk-size (l) < (2 + length (p-temp-stk (l))))
∧ s-good-statep (s, c))
→ (¬ lr-check-resourcesp (flag , s, l , c))
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Theorem: lr-eval-s-eval-flag-run
(proper-p-statep (lr->p (s->lr1 (s, l , table)))
∧ lr-proper-heapp (p-data-segment (l))
∧ good-posp (flag , s-pos (s), s-body (s-prog (s)))
∧ lr-programs-properp (s->lr1 (s, l , table), table)
∧ lr-s-similar-statesp (s-params (s), s-temps (s), s->lr1 (s, l , table), table)
∧ s-good-statep (s, c)
∧ s-all-temps-setp (flag ,

if flag = ’list then s-expr-list (s)
else s-expr (s) endif,
temp-alist-to-set (s-temps (s)))

∧ s-all-progs-temps-setp (s-progs (s))
∧ s-check-temps-setp (s-temps (s))
∧ (s-err-flag (s-eval (flag , s, c)) = ’run)
∧ lr-check-resourcesp (flag , s, l , c)
∧ (p-word-size (l) 6< s-max-subr-reqs))
→ (p-psw (lr-eval (flag , s->lr1 (s, l , table), c)) = ’run)

Theorem: plistp-lr-compile-body-1
plistp (prog) → plistp (lr-compile-body (flag , prog , temp-alist , table))

Definition:
l-restrict-subrps (flag , expr)
= if flag = ’list

then if listp (expr)
then l-restrict-subrps (t, car (expr))

∧ l-restrict-subrps (’list, cdr (expr))
else t endif

elseif listp (expr)
then if car (expr) = ’quote then t

elseif car (expr) = ’if
then l-restrict-subrps (’list, cdr (expr))
elseif subrp (car (expr))
then definedp (car (expr), p-runtime-support-programs)

∧ l-restrict-subrps (’list, cdr (expr))
elseif body (car (expr)) then l-restrict-subrps (’list, cdr (expr))
else t endif

else t endif

Definition:
l-restrict-subrps-progs (pnames)
= if listp (pnames)

then l-restrict-subrps (t, body (car (pnames)))
∧ l-restrict-subrps-progs (cdr (pnames))

else t endif
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Definition:
s-restrict-subrps (flag , expr)
= if flag = ’list

then if listp (expr)
then s-restrict-subrps (t, car (expr))

∧ s-restrict-subrps (’list, cdr (expr))
else t endif

elseif listp (expr)
then if car (expr) = ’quote then t

elseif (car (expr) = s-temp-fetch)
∨ (car (expr) = s-temp-eval)
∨ (car (expr) = s-temp-test)

then s-restrict-subrps (t, cadr (expr))
elseif car (expr) = ’if
then s-restrict-subrps (’list, cdr (expr))
elseif subrp (car (expr))
then definedp (car (expr), p-runtime-support-programs)

∧ s-restrict-subrps (’list, cdr (expr))
elseif body (car (expr)) then s-restrict-subrps (’list, cdr (expr))
else t endif

else t endif

Definition:
s-restrict-subrps-progs (progs)
= if listp (progs)

then s-restrict-subrps (t, s-body (car (progs)))
∧ s-restrict-subrps-progs (cdr (progs))

else t endif

Theorem: s-proper-exprp-plist-temp-list
s-proper-exprp (flag , expr , program-names , formals, plist (temp-list))
= s-proper-exprp (flag , expr , program-names , formals , temp-list)

Theorem: not-listp-s-progs-not-s-good-statep
(¬ listp (s-progs (s))) → (¬ s-good-statep (s, c))

Theorem: length-lr-init-heap-contents
length (lr-init-heap-contents (addr , size)) = (1 + (size ∗ lr-node-size))

Theorem: fetch-cons
fetch (list (x , cons (name1 , n)), cons (cons (name2 , contents), rest-data-seg))
= if name1 = name2 then get (n, contents)

else fetch (list (x , cons (name1 , n)), rest-data-seg) endif

Theorem: lr-s-similar-const-table-cons
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lr-s-similar-const-table (cons (cons (object , addr), table), data-seg)
= (lr-valp (object , addr , data-seg)

∧ lr-s-similar-const-table (table, data-seg))

Theorem: lr-s-similar-const-table-nil
lr-s-similar-const-table (nil, data-seg)

Theorem: lr-init-heap-contents-add1-opener
lr-init-heap-contents (addr , 1 + size)
= append (lr-new-node (tag (’nat, lr-init-tag),

add-addr (addr , lr-node-size),
tag (’nat, 0),
tag (’nat, 0)),

lr-init-heap-contents (add-addr (addr , lr-node-size), size))

Theorem: deposit-cons
deposit (object ,

list (x , cons (name1 , n)),
cons (cons (name2 , contents), rest-data-seg))

= if name1 = name2
then cons (cons (name1 , put (object , n, contents)), rest-data-seg)
else cons (cons (name2 , contents),

deposit (object , list (x , cons (name1 , n)), rest-data-seg)) endif

Theorem: adpp-cons-pack-opener
(n ∈ N)
→ (adpp (cons (pack (xxx ), n), cons (cons (pack (yyy), contents), rest))

= if xxx = yyy then n < length (contents)
else adpp (cons (pack (xxx ), n), rest) endif)

Theorem: fetch-deposit-a-list
((offset (addr1 ) ∈ N) ∧ (offset (addr2 ) ∈ N) ∧ listp (list))
→ (fetch (addr1 , deposit-a-list (list , addr2 , data-seg))

= if definedp (area-name (addr2 ), data-seg)
then if area-name (addr1 ) = area-name (addr2 )

then if (offset (addr1 ) 6< offset (addr2 ))
∧ (offset (addr1 )

< (offset (addr2 ) + length (list)))
then get (offset (addr1 ) − offset (addr2 ), list)
else fetch (addr1 , data-seg) endif

else fetch (addr1 , data-seg) endif
else fetch (addr1 , data-seg) endif)

Theorem: lr-valp-0-lr-0-addr-opener
lr-valp (0, identity (lr-0-addr), data-seg)
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= (adpp (identity (untag (lr-0-addr)), data-seg)
∧ (type (fetch (identity (add-addr (lr-0-addr, lr-ref-count-offset)),

data-seg))
= ’nat)

∧ (untag (fetch (identity (lr-0-addr), data-seg)) = lr-add1-tag)
∧ (untag (fetch (identity (add-addr (lr-0-addr, lr-unbox-nat-offset)),

data-seg))
= 0))

Event: Disable lr-valp-0-lr-0-addr-opener.

Theorem: lr-valp-t-lr-t-addr-opener
lr-valp (t, identity (lr-t-addr), data-seg)
= (adpp (identity (untag (lr-t-addr)), data-seg)

∧ (type (fetch (identity (add-addr (lr-t-addr, lr-ref-count-offset)),
data-seg))

= ’nat)
∧ (untag (fetch (identity (lr-t-addr), data-seg)) = lr-true-tag))

Event: Disable lr-valp-t-lr-t-addr-opener.

Theorem: lr-valp-f-lr-f-addr-opener
lr-valp (f, identity (lr-f-addr), data-seg)
= (adpp (identity (untag (lr-f-addr)), data-seg)

∧ (type (fetch (identity (add-addr (lr-f-addr, lr-ref-count-offset)),
data-seg))

= ’nat)
∧ (untag (fetch (identity (lr-f-addr), data-seg)) = lr-false-tag))

Event: Disable lr-valp-f-lr-f-addr-opener.

Theorem: definedp-table-definedp-cdr-lr-compile-quote
definedp (x , table)
→ definedp (x , cdr (lr-compile-quote (flag , object , data-seg , table)))

Theorem: definedp-car-lr-compile-quote
definedp (x , car (lr-compile-quote (flag , object , data-seg , table)))
= definedp (x , data-seg)

Theorem: lr-proper-p-areasp-car-lr-compile-quote
lr-proper-p-areasp (data-seg)
→ lr-proper-p-areasp (car (lr-compile-quote (flag , object , data-seg , table)))
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Theorem: length-deposit-a-list
listp (list)
→ (length (cdr (assoc (name, deposit-a-list (list , addr , data-seg))))

= if definedp (area-name (addr), data-seg)
then if area-name (addr) = name

then if length (cdr (assoc (name, data-seg)))
< (offset (addr) + length (list))

then offset (addr) + length (list)
else length (cdr (assoc (name, data-seg))) endif

else length (cdr (assoc (name, data-seg))) endif
else length (cdr (assoc (name, data-seg))) endif)

Theorem: adpp-lr-compile-quote
adpp (addr , data-seg)
→ adpp (addr , car (lr-compile-quote (flag , object , data-seg , table)))

Theorem: adpp-untag-definedp-area-name-free-ptr
adpp (untag (lr-fp-addr), data-seg)
→ definedp (identity (area-name (lr-fp-addr)), data-seg)

Theorem: lr-max-node-deposit-a-list
(adpp (untag (addr), data-seg)
∧ listp (list)
∧ ((offset (addr) + length (list))

< length (cdr (assoc (area-name (addr), data-seg)))))
→ (lr-max-node (deposit-a-list (list , addr , data-seg))

= lr-max-node (data-seg))

Definition:
all-p-objects-lookup (list , table, p)
= if listp (list)

then p-objectp (cdr (assoc (car (list), table)), p)
∧ all-p-objects-lookup (cdr (list), table, p)

else t endif

Theorem: proper-p-alistp-all-litatoms-all-p-objectps-lookup
(all-litatoms (strip-cars (params))
∧ all-p-objects-lookup (strip-cdrs (params), table, p))
→ proper-p-alistp (pair-formals-with-addresses (params, table), p)

Theorem: definedp-table-definedp-cdr-lr-data-seg-table-body
definedp (object , table)
→ definedp (object , cdr (lr-data-seg-table-body (flag , expr , data-seg , table)))

Theorem: definedp-table-definedp-cdr-lr-data-seg-table-list
definedp (object , table)
→ definedp (object , cdr (lr-data-seg-table-list (progs, data-seg , table)))
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Theorem: definedp-table-definedp-cdr-lr-init-data-seg-table
definedp (object , table)
→ definedp (object , cdr (lr-init-data-seg-table (params, data-seg , table)))

Theorem: definedp-table-definedp-car-lr-data-seg-table-body
definedp (name, data-seg)
→ definedp (name, car (lr-data-seg-table-body (flag , expr , data-seg , table)))

Theorem: definedp-table-definedp-car-lr-data-seg-table-list
definedp (name, data-seg)
→ definedp (name, car (lr-data-seg-table-list (progs, data-seg , table)))

Theorem: equal-lengths-same-signature-car-lr-compile-quote
same-signature (data-seg , car (lr-compile-quote (flag , object , data-seg , table)))
→ (length (cdr (assoc (name,

car (lr-compile-quote (flag , object , data-seg , table)))))
= length (cdr (assoc (name, data-seg))))

Theorem: adpp-same-signature-car-lr-compile-quote
same-signature (data-seg , car (lr-compile-quote (flag , object , data-seg , table)))
→ (adpp (adp, car (lr-compile-quote (flag , object , data-seg , table)))

= adpp (adp, data-seg))

Theorem: same-signature-car-lr-compile-quote-helper
let pair be lr-compile-quote (’list,

list (car (object), cdr (object)),
data-seg ,
table)

in
(lr-proper-free-listp (car (pair))
∧ same-signature (data-seg , car (pair))
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ ((length (cdr (assoc (lr-heap-name, data-seg))) − 1)

6< (offset (fetch (lr-fp-addr, car (pair))) + length (list))))
→ same-signature (data-seg ,

deposit-a-list (list ,
fetch (identity (lr-fp-addr),

car (pair)),
car (pair))) endlet

Theorem: same-signature-car-lr-compile-quote-generalized
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
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∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (same-signature (data-seg ,

car (lr-compile-quote (flag , object , data-seg , table)))
∧ lr-proper-free-listp (car (lr-compile-quote (flag ,

object ,
data-seg ,
table))))

Event: Disable equal-lengths-same-signature-car-lr-compile-quote.

Event: Disable adpp-same-signature-car-lr-compile-quote.

Theorem: lr-proper-free-listp-car-lr-compile-quote
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ lr-proper-free-listp (car (lr-compile-quote (flag , object , data-seg , table)))

Theorem: p-objectp-car-lr-compile-quote
(p-objectp (object1 ,

p-state (pc,
ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

∧ lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ p-objectp (object1 ,

p-state (pc,
ctrl-stk ,
temp-stk ,
prog-seg ,
car (lr-compile-quote (flag , object2 , data-seg , table)),
max-ctrl ,
max-temp,
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word-size,
psw))

Theorem: lr-proper-p-areasp-car-lr-data-seg-table-body
lr-proper-p-areasp (data-seg)
→ lr-proper-p-areasp (car (lr-data-seg-table-body (flag ,

expr ,
data-seg ,
table)))

Theorem: same-signature-car-lr-compile-quote
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ same-signature (data-seg ,

car (lr-compile-quote (flag , object , data-seg , table)))

Theorem: same-signature-car-lr-data-seg-table-body
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (same-signature (data-seg ,

car (lr-data-seg-table-body (flag , expr , data-seg , table)))
∧ lr-proper-free-listp (car (lr-data-seg-table-body (flag ,

expr ,
data-seg ,
table))))

Event: Disable same-signature-car-lr-compile-quote.

Theorem: lr-max-node-car-lr-data-seg-table-body
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (lr-max-node (car (lr-data-seg-table-body (flag , body , data-seg , table)))

= lr-max-node (data-seg))

Theorem: same-signature-car-lr-data-seg-table-list-helper
let dst-body be lr-data-seg-table-body (t, s-body (prog), data-seg , table)
in
(same-signature (car (dst-body),
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car (lr-data-seg-table-list (progs,
car (dst-body),
cdr (dst-body))))

∧ lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ same-signature (data-seg ,

car (lr-data-seg-table-list (progs,
car (dst-body),
cdr (dst-body)))) endlet

Theorem: same-signature-car-lr-data-seg-table-list
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ same-signature (data-seg ,

car (lr-data-seg-table-list (progs, data-seg , table)))

Event: Disable same-signature-car-lr-data-seg-table-list-helper.

Theorem: length-car-lr-compile-quote
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (length (cdr (assoc (name,

car (lr-compile-quote (flag , object , data-seg , table)))))
= length (cdr (assoc (name, data-seg))))

Theorem: lr-max-node-car-lr-compile-quote
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (lr-max-node (car (lr-compile-quote (flag , object , data-seg , table)))

= lr-max-node (data-seg))

Theorem: lr-proper-free-listp-car-lr-init-data-seg-table
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ lr-proper-free-listp (car (lr-init-data-seg-table (params, data-seg , table)))
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Theorem: adpp-untag-lr-fp-addr-lr-init-data-seg
adpp (identity (untag (lr-fp-addr)), lr-init-data-seg (heap-size))

Theorem: lr-max-node-lr-init-data-seg
(heap-size 6< 2)
→ (lr-max-node (lr-init-data-seg (heap-size))

= tag (’addr,
cons (identity (lr-heap-name),

identity (lr-node-size) ∗ heap-size)))

Theorem: fetch-lr-fp-addr-lr-init-data-seg
fetch (identity (lr-fp-addr), lr-init-data-seg (heap-size))
= identity (add-addr (lr-f-addr, lr-node-size))

Theorem: lr-boundary-nodep-not-lessp-fact-helper
((x < (y ∗ z )) ∧ ((x mod y) = 0) ∧ (x ∈ N))
→ ((x < (y ∗ (z − 1))) = (x 6= (y ∗ (z − 1))))

Theorem: lessp-times-difference-fact
((z 6' 0) ∧ (x 6' 0) ∧ ((x mod y) = 0))
→ (((x − y) < (y ∗ (z − 1))) = (x < (y ∗ z )))

Theorem: lessp-times-difference-node-on-boundaryp-fact
((heap-size 6' 0) ∧ (offset (addr) 6' 0) ∧ lr-boundary-nodep (addr))
→ ((((((offset (addr) − 1) − 1) − 1) − 1)

< (identity (lr-node-size) ∗ (heap-size − 1)))
= (offset (addr) < (identity (lr-node-size) ∗ heap-size)))

Theorem: lr-boundary-nodep-lessp-lr-node-size-0
lr-boundary-nodep (addr)
→ ((((offset (addr) − 1) = 1) = f)

∧ ((((offset (addr) − 1) − 1) = 1) = f))

Theorem: lr-boundary-nodep-lessp-lr-node-size-1
((offset (addr) ∈ N) ∧ lr-boundary-nodep (addr) ∧ (n < lr-node-size))
→ ((n < offset (addr)) = (offset (addr) 6= 0))

Theorem: lr-boundary-nodep-lessp-lr-node-size-2
lr-boundary-nodep (addr) → ((offset (addr) = 1) = f)

Definition:
induct-hint-17 (addr1 , size, addr2 )
= if size ' 0 then t

elseif offset (addr2 ) ' 0 then t
else induct-hint-17 (add-addr (addr1 , lr-node-size),

size − 1,
sub-addr (addr2 , lr-node-size)) endif

225



Theorem: get-cdr-lr-init-heap-contents
((offset (addr2 ) < (lr-node-size ∗ heap-size))
∧ lr-boundary-nodep (addr2 )
∧ (offset (addr2 ) ∈ N)
∧ (offset (addr1 ) ∈ N))
→ (get (offset (addr2 ), cdr (lr-init-heap-contents (addr1 , heap-size)))

= add-addr (add-addr (addr1 , offset (addr2 )), lr-node-size))

Event: Disable lr-boundary-nodep-lessp-lr-node-size-0.

Event: Disable lr-boundary-nodep-lessp-lr-node-size-1.

Event: Disable lr-boundary-nodep-lessp-lr-node-size-2.

Theorem: length-cdr-assoc-lr-heap-name-lr-init-data-seg
(heap-size 6< 2)
→ (length (cdr (assoc (identity (lr-heap-name), lr-init-data-seg (heap-size))))

= (1 + (heap-size ∗ identity (lr-node-size))))

Theorem: fetch-add-addr-ref-count-offset-lr-init-data-seg-help-1
((offset (addr) = 0)
∧ (type (addr) = ’addr)
∧ (area-name (addr) = ’heap))
→ (add-addr (addr , 4) = ’(addr (heap . 4)))

Theorem: equal-add-addr-fact
(type (addr1 ) = type (addr2 ))
→ ((add-addr (addr1 , n1 ) = add-addr (addr2 , n2 ))

= ((area-name (addr1 ) = area-name (addr2 ))
∧ ((offset (addr1 ) + n1 ) = (offset (addr2 ) + n2 ))))

Definition:
lr-all-nodes (min-offset , max-addr)
= if offset (max-addr) ' 0 then nil

elseif min-offset 6< offset (max-addr) then nil
else cons (sub-addr (max-addr , lr-node-size),

lr-all-nodes (min-offset ,
sub-addr (max-addr , lr-node-size))) endif

Definition:
induct-hint-19 (addr , max-addr)
= if offset (addr) < offset (max-addr)

then induct-hint-19 (add-addr (addr , lr-node-size), max-addr)
else t endif

226



Theorem: lessp-times-plus-fact
(n 6' 0) → (((n ∗ v) < (n + (n ∗ w))) = (v < (1 + w)))

Theorem: lessp-sub1-lessp-fact
((x ∈ N) ∧ (y ∈ N) ∧ (x 6= 0) ∧ (x 6= y))
→ (((x − 1) < y) = (x < y))

Theorem: remainder-difference-not-equal-lessp-fact
(((x mod n) = 0)
∧ ((y mod n) = 0)
∧ (x 6= (y − n))
∧ (y 6< n)
∧ (x ∈ N)
∧ (y ∈ N))
→ ((x < (y − n)) = (x < y))

Event: Disable lessp-sub1-lessp-fact.

Theorem: lr-boundaryp-nodep-difference-node-size
lr-boundary-offsetp (offset)
→ lr-boundary-offsetp (offset − lr-node-size)

Theorem: lr-boundary-offsetp-difference-not-equal-lessp-fact-1
(lr-boundary-offsetp (x )
∧ lr-boundary-offsetp (y)
∧ (x 6= (y − lr-node-size))
∧ (y 6< lr-node-size)
∧ (x ∈ N)
∧ (y ∈ N))
→ ((x < (y − lr-node-size)) = (x < y))

Theorem: member-lr-all-nodes-helper
((offset (max-addr) 6' 0)
∧ (offset (addr) ∈ N)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ listp (untag (addr))
∧ lr-boundary-nodep (addr)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (addr) = area-name (max-addr))
∧ (type (addr) = type (max-addr))
∧ (addr 6= sub-addr (max-addr , lr-node-size)))
→ ((offset (addr) < ((((offset (max-addr) − 1) − 1) − 1) − 1))

= (offset (addr) < offset (max-addr)))
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Theorem: member-lr-all-nodes
((type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ listp (untag (addr))
∧ (offset (addr) ∈ N)
∧ (type (max-addr) = ’addr)
∧ (cddr (max-addr) = nil)
∧ listp (max-addr)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = lr-heap-name)
∧ listp (untag (max-addr))
∧ lr-boundary-offsetp (min-offset)
∧ (offset (addr) 6< min-offset))
→ ((addr ∈ lr-all-nodes (min-offset , max-addr))

= (offset (addr) < offset (max-addr)))

Event: Disable member-lr-all-nodes-helper.

Theorem: lr-all-nodes-nil
(lr-all-nodes (min-offset , max-addr) = nil)
= ((offset (max-addr) ' 0) ∨ (min-offset 6< offset (max-addr)))

Theorem: delete-append
delete (e, append (x , y))
= if e ∈ x then append (delete (e, x ), y)

else append (x , delete (e, y)) endif

Theorem: lessp-difference-node-size-sub-addr-2
((offset < offset (addr))
∧ lr-boundary-nodep (addr)
∧ (offset (addr) ∈ N)
∧ lr-boundary-offsetp (offset))
→ (((offset (addr) − identity (lr-node-size)) < offset) = f)

Theorem: not-member-lr-all-nodes-too-small-addr
(lr-boundary-nodep (addr)
∧ lr-boundary-nodep (max-addr)
∧ lr-boundary-offsetp (min-offset)
∧ (offset (addr) < min-offset)
∧ (min-offset ∈ N))
→ (addr 6∈ lr-all-nodes (min-offset , max-addr))
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Theorem: plist-delete
plist (delete (e, x )) = delete (e, plist (x ))

Theorem: lr-check-free-nodes-plist-node-list
lr-check-free-nodes (addr , plist (node-list), data-seg , max-addr)
= lr-check-free-nodes (addr , node-list , data-seg , max-addr)

Theorem: lr-all-nodes-offset-same-max
lr-all-nodes (offset (addr), addr) = nil

Theorem: lr-all-nodes-offset-max-addr-opener-helper
((offset (addr) 6' 0)
∧ lr-boundary-nodep (addr)
∧ (offset ∈ N)
∧ lr-boundary-offsetp (offset)
∧ (offset < offset (addr)))
→ ((offset < ((((offset (addr) − 1) − 1) − 1) − 1))

= (offset 6= ((((offset (addr) − 1) − 1) − 1) − 1)))

Theorem: lr-all-nodes-lessp-max-addr-opener
((type (max-addr) = ’addr)
∧ listp (max-addr)
∧ (cddr (max-addr) = nil)
∧ listp (untag (max-addr))
∧ (offset (max-addr) ∈ N)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = lr-heap-name)
∧ (min-offset < offset (max-addr))
∧ (min-offset ∈ N)
∧ lr-boundary-offsetp (min-offset))
→ (lr-all-nodes (min-offset , max-addr)

= append (lr-all-nodes (min-offset + identity (lr-node-size),
max-addr),

list (tag (’addr,
cons (identity (lr-heap-name), min-offset)))))

Theorem: fetch-init-init-data-seg-generalized
((offset (addr) ∈ N)
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ listp (untag (addr))
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ (offset (addr) < (identity (lr-node-size) ∗ heap-size))
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∧ (cdr (assoc (lr-heap-name, data-seg))
= lr-init-heap-contents (identity (tag (’addr,

cons (lr-heap-name, 0))),
heap-size)))

→ (fetch (add-addr (addr , identity (lr-ref-count-offset)), data-seg)
= add-addr (addr , 4))

Theorem: lessp-difference-node-size-sub-addr-3
((offset (addr) < (lr-node-size ∗ heap-size))
∧ lr-boundary-nodep (addr)
∧ (offset (addr) ∈ N))
→ (((((((identity (lr-node-size) ∗ heap-size) − 1) − 1) − 1) − 1)

< offset (addr))
= f)

Theorem: lr-boundary-nodep-tag-cons-times-lr-node-size
lr-boundary-nodep (tag (x , cons (name, identity (lr-node-size) ∗ heap-size)))

Theorem: tag-type-name-offset-equal-same
((type (addr) = x )
∧ (cddr (addr) = nil)
∧ listp (untag (addr))
∧ (offset (addr) ∈ N)
∧ (area-name (addr) = name))
→ (tag (x , cons (name, offset (addr))) = addr)

Theorem: lr-check-free-nodes-lr-free-list-nodes-init-data-seg
let init-data-seg be list (cons (area-name (lr-fp-addr), any1 ),

cons (area-name (lr-answer-addr), any2 ),
cons (lr-heap-name,

lr-init-heap-contents (tag (’addr,
cons (lr-heap-name,

0)),
heap-size)))

in
((offset (max-addr) 6< offset (addr))
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ listp (untag (addr))
∧ (offset (addr) ∈ N)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ (max-addr = lr-max-node (init-data-seg)))
→ lr-check-free-nodes (addr ,
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lr-all-nodes (offset (addr), max-addr),
list (cons (identity (area-name (lr-fp-addr)),

any1 ),
cons (identity (area-name (lr-answer-addr)),

any2 ),
cons (identity (lr-heap-name),

lr-init-heap-contents (identity (tag (’addr,
cons (lr-heap-name,

0))),
heap-size))),

max-addr) endlet

Event: Disable fetch-init-init-data-seg-generalized.

Theorem: lr-free-list-nodes-deposit-a-list-lr-nodep
((type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ (type (max-addr) = ’addr)
∧ (cddr (max-addr) = nil)
∧ listp (max-addr)
∧ adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = lr-heap-name))
→ (lr-free-list-nodes (max-addr ,

deposit-a-list (list (a, b, c, d), addr , data-seg))
= lr-free-list-nodes (max-addr ,

deposit (b,
add-addr (addr ,

identity (lr-ref-count-offset)),
data-seg)))

Theorem: lr-check-free-nodes-deposit-a-list-lr-nodep
((type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ (type (max-addr) = ’addr)
∧ (cddr (max-addr) = nil)
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∧ listp (max-addr)
∧ adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = lr-heap-name)
∧ lr-node-listp (node-list , data-seg))
→ (lr-check-free-nodes (addr1 ,

node-list ,
deposit-a-list (list (a, b, c, d), addr , data-seg),
max-addr)

= lr-check-free-nodes (addr1 ,
node-list ,
deposit (b,

add-addr (addr ,
identity (lr-ref-count-offset)),

data-seg),
max-addr))

Theorem: lr-all-nodes-not-lessp-min-offset-max-addr
(min-offset 6< offset (max-addr))
→ (lr-all-nodes (min-offset , max-addr) = nil)

Theorem: fetch-init-init-data-seg-sub-addr
(((identity (lr-node-size) ∗ heap-size) 6< offset (addr))
∧ (offset (addr) ∈ N)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ listp (untag (addr))
∧ (type (addr) = ’addr)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ ((offset (addr) − identity (lr-node-size))

< (lr-node-size ∗ heap-size))
∧ (offset (addr) 6= 0)
∧ (cdr (assoc (lr-heap-name, data-seg))

= lr-init-heap-contents (tag (’addr, cons (lr-heap-name, 0)),
heap-size)))

→ (fetch (add-addr (sub-addr (addr , identity (lr-node-size)),
identity (lr-ref-count-offset)),

data-seg)
= addr)

Theorem: lr-free-list-nodes-lr-init-heap-contents-generalized
(lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = lr-heap-name)
∧ (type (max-addr) = ’addr)
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∧ (cddr (max-addr) = nil)
∧ listp (max-addr)
∧ listp (untag (max-addr))
∧ ((lr-node-size ∗ heap-size) 6< offset (max-addr))
∧ (cdr (assoc (lr-heap-name, data-seg))

= lr-init-heap-contents (identity (tag (’addr,
cons (lr-heap-name, 0))),

heap-size)))
→ (lr-free-list-nodes (max-addr , data-seg) = lr-all-nodes (0, max-addr))

Theorem: lr-free-list-nodes-lr-init-heap-contents
(lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = lr-heap-name)
∧ (type (max-addr) = ’addr)
∧ (cddr (max-addr) = nil)
∧ listp (max-addr)
∧ listp (untag (max-addr))
∧ ((lr-node-size ∗ heap-size) 6< offset (max-addr)))
→ (lr-free-list-nodes (max-addr ,

list (cons (identity (area-name (lr-fp-addr)), any1 ),
cons (identity (area-name (lr-answer-addr)),

any2 ),
cons (identity (lr-heap-name),

lr-init-heap-contents (identity (tag (’addr,
cons (lr-heap-name,

0))),
heap-size))))

= lr-all-nodes (0, max-addr))

Theorem: lr-node-listp-lr-all-nodes
(lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ adpp (untag (addr), data-seg)
∧ (type (addr) = ’addr))
→ lr-node-listp (lr-all-nodes (min-offset , addr), data-seg)

Theorem: plistp-lr-all-nodes
plistp (lr-all-nodes (min-offset , max-addr))

Theorem: lr-free-list-nodes-lr-init-data-seg
(heap-size 6< 2)
→ (lr-free-list-nodes (tag (’addr,

cons (identity (lr-heap-name),
identity (lr-node-size) ∗ heap-size)),

lr-init-data-seg (heap-size))
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= lr-all-nodes (identity (offset (add-addr (lr-f-addr, lr-node-size))),
tag (’addr,

cons (identity (lr-heap-name),
identity (lr-node-size) ∗ heap-size))))

Theorem: lr-proper-free-listp-lr-init-data-seg-helper
(heap-size 6< 2)
→ lr-check-free-nodes (identity (add-addr (lr-f-addr, lr-node-size)),

lr-all-nodes (identity (offset (add-addr (lr-f-addr,
lr-node-size))),

tag (’addr,
cons (identity (lr-heap-name),

identity (lr-node-size)
∗ heap-size))),

lr-init-data-seg (heap-size),
tag (’addr,

cons (identity (lr-heap-name),
identity (lr-node-size) ∗ heap-size)))

Theorem: lr-proper-free-listp-lr-init-data-seg
(heap-size 6< 2) → lr-proper-free-listp (lr-init-data-seg (heap-size))

Theorem: definedp-lr-heap-name-lr-init-data-seg
definedp (identity (lr-heap-name), lr-init-data-seg (heap-size))

Theorem: lr-proper-p-areasp-lr-heap-name-lr-init-data-seg
lr-proper-p-areasp (lr-init-data-seg (heap-size))

Theorem: lr-proper-p-areasp-car-lr-init-data-seg-table
lr-proper-p-areasp (data-seg)
→ lr-proper-p-areasp (car (lr-init-data-seg-table (params, data-seg , table)))

Theorem: lr-proper-p-areasp-car-lr-data-seg-table-list
lr-proper-p-areasp (data-seg)
→ lr-proper-p-areasp (car (lr-data-seg-table-list (progs, data-seg , table)))

Theorem: definedp-table-definedp-car-lr-init-data-seg-table
definedp (name, car (lr-init-data-seg-table (params, data-seg , table)))
= definedp (name, data-seg)

Theorem: all-p-objects-lookup-cons-table
(all-p-objects-lookup (list , table, p) ∧ p-objectp (y , p))
→ all-p-objects-lookup (list , cons (cons (x , y), table), p)
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Theorem: p-objectp-opener-alt-lr-proper-free-listp
(lr-proper-free-listp (p-data-segment (p))
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (data-seg = p-data-segment (p)))
→ p-objectp (fetch (identity (lr-fp-addr), data-seg), p)

Theorem: p-objectp-lookup-deposit-a-list
p-objectp (object ,

p-state (pc,
ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

→ p-objectp (object ,
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
deposit-a-list (stuff , addr , data-seg),
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: all-p-objects-lookup-deposit-a-list
all-p-objects-lookup (list ,

table,
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

→ all-p-objects-lookup (list ,
table,
p-state (pc,
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ctrl-stk ,
temp-stk ,
prog-seg ,
deposit-a-list (stuff , addr , data-seg),
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: p-objectp-lookup-deposit
p-objectp (object ,

p-state (pc,
ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

→ p-objectp (object ,
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
deposit (anything , addr , data-seg),
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: all-p-objects-lookup-deposit
all-p-objects-lookup (list ,

table,
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

→ all-p-objects-lookup (list ,
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table,
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
deposit (anything , addr , data-seg),
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: definedp-name-p-objectp-tag-0-lr-proper-p-areasp
lr-proper-p-areasp (data-seg)
→ (p-objectp (list (’addr, cons (name, 0)),

p-state (pc,
ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

= definedp (name, data-seg))

Theorem: all-p-objects-lookup-lr-compile-quote
(all-p-objects-lookup (list ,

table,
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

∧ lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ all-p-objects-lookup (list ,

cdr (lr-compile-quote (flag , object , data-seg , table)),
p-state (pc,

237



ctrl-stk ,
temp-stk ,
prog-seg ,
car (lr-compile-quote (flag ,

object ,
data-seg ,
table)),

max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: all-p-objects-lookup-lr-data-seg-table-body
(all-p-objects-lookup (list ,

table,
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

∧ lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ all-p-objects-lookup (list ,

cdr (lr-data-seg-table-body (flag ,
body ,
data-seg ,
table)),

p-state (pc,
ctrl-stk ,
temp-stk ,
prog-seg ,
car (lr-data-seg-table-body (flag ,

body ,
data-seg ,
table)),

max-ctrl-stk-size,
max-temp-stk-size,
word-size,
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psw))

Theorem: all-p-objects-lookup-lr-data-seg-table-list
(all-p-objects-lookup (list ,

table,
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

∧ lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ all-p-objects-lookup (list ,

cdr (lr-data-seg-table-list (progs, data-seg , table)),
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
car (lr-data-seg-table-list (progs,

data-seg ,
table)),

max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: p-objectp-lookup-lr-init-data-seg-table
(p-objectp (object ,

p-state (pc,
ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

∧ lr-proper-free-listp (data-seg)
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∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ p-objectp (object ,

p-state (pc,
ctrl-stk ,
temp-stk ,
prog-seg ,
car (lr-init-data-seg-table (params, data-seg , table)),
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: assoc-definedp-table-lr-compile-quote
definedp (object1 , table)
→ (assoc (object1 , cdr (lr-compile-quote (flag , object2 , data-seg , table)))

= assoc (object1 , table))

Theorem: assoc-definedp-table-lr-init-data-seg-table
definedp (object , table)
→ (assoc (object , cdr (lr-init-data-seg-table (params, data-seg , table)))

= assoc (object , table))

Theorem: definedp-table-lr-compile-quote-self
(flag 6= ’list)
→ definedp (object , cdr (lr-compile-quote (flag , object , data-seg , table)))

Theorem: lr-s-similar-const-table-lr-good-pointerp-opener
(lr-s-similar-const-table (table, data-seg) ∧ definedp (object , table))
→ ((type (cdr (assoc (object , table))) = ’addr)

∧ (cddr (cdr (assoc (object , table))) = nil)
∧ listp (cdr (assoc (object , table)))
∧ adpp (untag (cdr (assoc (object , table))), data-seg)
∧ lr-boundary-nodep (cdr (assoc (object , table)))
∧ (area-name (cdr (assoc (object , table)))

= identity (lr-heap-name))
∧ (type (fetch (add-addr (cdr (assoc (object , table)),

identity (lr-ref-count-offset)),
data-seg))

= ’nat))

Theorem: lr-s-similar-const-table-deposit-lr-fp-addr
(adpp (untag (lr-fp-addr), data-seg)
∧ lr-s-similar-const-table (table, data-seg))
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→ lr-s-similar-const-table (table,
deposit (anything ,

identity (lr-fp-addr),
data-seg))

Theorem: adpp-fetch-lr-fp-addr-car-lr-compile-quote
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ adpp (untag (fetch (identity (lr-fp-addr),

car (lr-compile-quote (flag , object , data-seg , table)))),
data-seg)

Definition:
lr-good-pointerp-tablep (table, data-seg)
= if listp (table)

then lr-good-pointerp (cdar (table), data-seg)
∧ lr-good-pointerp-tablep (cdr (table), data-seg)

else t endif

Theorem: lr-good-pointerp-tablep-definedp-table
(lr-good-pointerp-tablep (table, data-seg) ∧ definedp (object , table))
→ lr-good-pointerp (cdr (assoc (object , table)), data-seg)

Theorem: lr-proper-free-listp-opener-2-area-name-alt
(lr-proper-free-listp (data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (car (untag (fetch (identity (lr-fp-addr), data-seg))) = lr-heap-name)

Theorem: lr-good-pointerp-tablep-deposit-free-ptr
lr-good-pointerp-tablep (table,

deposit (anything , identity (lr-fp-addr), data-seg))
= lr-good-pointerp-tablep (table, data-seg)

Theorem: add1-lr-boundary-nodep
(lr-boundary-nodep (addr1 ) ∧ lr-boundary-nodep (addr2 ))
→ ((offset (addr1 ) = (1 + offset (addr2 ))) = f)

Theorem: lr-boundary-offsetp-plus
lr-boundary-offsetp (n)
→ (lr-boundary-offsetp (m + n) = lr-boundary-offsetp (m))

Theorem: add1-add1-lr-boundary-nodep
(lr-boundary-nodep (addr1 ) ∧ lr-boundary-nodep (addr2 ))
→ ((offset (addr1 ) = (1 + (1 + offset (addr2 )))) = f)
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Theorem: lr-good-pointerp-tablep-deposit-a-list
(lr-good-pointerp-tablep (table, data-seg)
∧ (offset (addr) ∈ N)
∧ lr-boundary-nodep (addr)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N)
∧ (area-name (addr) = lr-heap-name)
∧ (type (tag) = ’nat))
→ lr-good-pointerp-tablep (table,

deposit-a-list (list (tag , ref-count , x , y),
addr ,
data-seg))

Theorem: lr-good-pointerp-table-cons
((type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name))
→ (lr-good-pointerp-tablep (cons (cons (object , addr), table), data-seg)

= ((type (fetch (add-addr (addr , identity (lr-ref-count-offset)),
data-seg))

= ’nat)
∧ lr-good-pointerp-tablep (table, data-seg)))

Theorem: lr-proper-free-listp-length-sub1-not-lessp
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ ((length (cdr (assoc (identity (lr-heap-name), data-seg))) − 1)

6< offset (fetch (identity (lr-fp-addr),
car (lr-compile-quote (flag , object , data-seg , table)))))

Theorem: lr-minimum-heapp-lr-compile-quote
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (lr-minimum-heapp (car (lr-compile-quote (flag , object , data-seg , table)))

= lr-minimum-heapp (data-seg))

Definition:
s-heap-reqs (flag , object , data-seg , table)
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= if flag = ’list
then if listp (object)

then let pair be lr-compile-quote (t,
car (object),
data-seg ,
table)

in
s-heap-reqs (t, car (object), data-seg , table)
+ s-heap-reqs (’list,

cdr (object),
car (pair),
cdr (pair)) endlet

else 0 endif
elseif definedp (object , table) then 0
elseif listp (object)
then 1 + s-heap-reqs (’list,

list (car (object), cdr (object)),
data-seg ,
table)

elseif object ∈ N then 1
elseif truep (object) then 1
else 0 endif

Event: Disable s-heap-reqs.

Definition:
s-heap-reqs-body (flag , expr , data-seg , table)
= if flag = ’list

then if listp (expr)
then let dst1 be lr-data-seg-table-body (t,

car (expr),
data-seg ,
table)

in
s-heap-reqs-body (t, car (expr), data-seg , table)
+ s-heap-reqs-body (’list,

cdr (expr),
car (dst1 ),
cdr (dst1 )) endlet

else 0 endif
elseif listp (expr)
then if (car (expr) = s-temp-fetch)

∨ (car (expr) = s-temp-eval)
∨ (car (expr) = s-temp-test)
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then s-heap-reqs-body (t, cadr (expr), data-seg , table)
elseif car (expr) = ’quote
then s-heap-reqs (t, cadr (expr), data-seg , table)
else s-heap-reqs-body (’list, cdr (expr), data-seg , table) endif

else 0 endif

Definition:
s-heap-reqs-list (progs, data-seg , table)
= if listp (progs)

then s-heap-reqs-body (t, s-body (car (progs)), data-seg , table)
+ s-heap-reqs-list (cdr (progs),

car (lr-data-seg-table-body (t,
s-body (car (progs)),
data-seg ,
table)),

cdr (lr-data-seg-table-body (t,
s-body (car (progs)),
data-seg ,
table)))

else 0 endif

Definition:
s-init-heap-reqs (params, data-seg , table)
= if listp (params)

then s-heap-reqs (t, cdar (params), data-seg , table)
+ s-init-heap-reqs (cdr (params),

car (lr-compile-quote (t,
cdar (params),
data-seg ,
table)),

cdr (lr-compile-quote (t,
cdar (params),
data-seg ,
table)))

else 0 endif

Definition:
s-total-heap-reqs (progs, params, heap-size)
= let init-ds-table1 be lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
list (cons (f, lr-f-addr)))

in
let init-ds-table2 be lr-init-data-seg-table (params,

car (init-ds-table1 ),
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cdr (init-ds-table1 ))
in
2
+ s-heap-reqs (’list,

list (t, 0),
lr-init-data-seg (heap-size),
list (cons (f, lr-f-addr)))

+ s-init-heap-reqs (params,
car (init-ds-table1 ),
cdr (init-ds-table1 ))

+ s-heap-reqs-list (progs,
car (init-ds-table2 ),
cdr (init-ds-table2 )) endlet endlet

Definition:
s-ws-reqs (flag , object , data-seg , table)
= if flag = ’list

then if listp (object)
then let pair be lr-compile-quote (t,

car (object),
data-seg ,
table)

in
max (s-ws-reqs (t, car (object), data-seg , table),

s-ws-reqs (’list,
cdr (object),
car (pair),
cdr (pair))) endlet

else 0 endif
elseif definedp (object , table) then 0
elseif listp (object)
then max (log (2, lr-cons-tag),

s-ws-reqs (’list,
list (car (object), cdr (object)),
data-seg ,
table))

elseif object ∈ N then max (log (2, lr-add1-tag), log (2, object))
elseif truep (object) then log (2, lr-true-tag)
elseif falsep (object) then log (2, lr-false-tag)
else 0 endif

Event: Disable s-ws-reqs.

Definition:
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s-ws-reqs-body (flag , expr , data-seg , table)
= if flag = ’list

then if listp (expr)
then let dst1 be lr-data-seg-table-body (t,

car (expr),
data-seg ,
table)

in
max (s-ws-reqs-body (t, car (expr), data-seg , table),

s-ws-reqs-body (’list,
cdr (expr),
car (dst1 ),
cdr (dst1 ))) endlet

else 0 endif
elseif listp (expr)
then if (car (expr) = s-temp-fetch)

∨ (car (expr) = s-temp-eval)
∨ (car (expr) = s-temp-test)

then s-ws-reqs-body (t, cadr (expr), data-seg , table)
elseif car (expr) = ’quote
then s-ws-reqs (t, cadr (expr), data-seg , table)
else s-ws-reqs-body (’list, cdr (expr), data-seg , table) endif

else 0 endif

Definition:
s-ws-reqs-list (progs, data-seg , table)
= if listp (progs)

then max (s-ws-reqs-body (t, s-body (car (progs)), data-seg , table),
s-ws-reqs-list (cdr (progs),

car (lr-data-seg-table-body (t,
s-body (car (progs)),
data-seg ,
table)),

cdr (lr-data-seg-table-body (t,
s-body (car (progs)),
data-seg ,
table))))

else 0 endif

Definition:
s-init-ws-reqs (params, data-seg , table)
= if listp (params)

then max (s-ws-reqs (t, cdar (params), data-seg , table),
s-init-ws-reqs (cdr (params),
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car (lr-compile-quote (t,
cdar (params),
data-seg ,
table)),

cdr (lr-compile-quote (t,
cdar (params),
data-seg ,
table))))

else 0 endif

Definition:
s-total-ws-reqs (progs, params, heap-size)
= let init-ds-table1 be lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
list (cons (f, lr-f-addr)))

in
let init-ds-table2 be lr-init-data-seg-table (params,

car (init-ds-table1 ),
cdr (init-ds-table1 ))

in
max (s-ws-reqs (’list,

list (f, t, 0),
lr-init-data-seg (heap-size),
nil),

max (s-init-ws-reqs (params,
car (init-ds-table1 ),
cdr (init-ds-table1 )),

max (s-ws-reqs-list (progs,
car (init-ds-table2 ),
cdr (init-ds-table2 )),

s-max-subr-reqs))) endlet endlet

Definition:
s-restricted-objectp (flag , object)
= if flag = ’list

then if listp (object)
then s-restricted-objectp (t, car (object))

∧ s-restricted-objectp (’list, cdr (object))
else t endif

elseif object = t then t
elseif object = f then t
elseif listp (object)
then s-restricted-objectp (’list, list (car (object), cdr (object)))

247



elseif object ∈ N then t
else f endif

Definition:
s-data-seg-body-restrictedp (flag , expr)
= if flag = ’list

then if listp (expr)
then s-data-seg-body-restrictedp (t, car (expr))

∧ s-data-seg-body-restrictedp (’list, cdr (expr))
else t endif

elseif listp (expr)
then if (car (expr) = s-temp-fetch)

∨ (car (expr) = s-temp-eval)
∨ (car (expr) = s-temp-test)

then s-data-seg-body-restrictedp (t, cadr (expr))
elseif car (expr) = ’quote
then s-restricted-objectp (t, cadr (expr))
else s-data-seg-body-restrictedp (’list, cdr (expr)) endif

else t endif

Definition:
s-data-seg-list-restrictedp (progs)
= if listp (progs)

then s-data-seg-body-restrictedp (t, s-body (car (progs)))
∧ s-data-seg-list-restrictedp (cdr (progs))

else t endif

Definition:
s-init-data-seg-restrictedp (params)
= if listp (params)

then s-restricted-objectp (t, cdar (params))
∧ s-init-data-seg-restrictedp (cdr (params))

else t endif

Definition:
s-restrictedp (progs, params)
= (s-init-data-seg-restrictedp (params)

∧ s-data-seg-list-restrictedp (progs))

Theorem: lr-minimum-heapp-not-equal-length-1
lr-minimum-heapp (data-seg)
→ (length (cdr (assoc (identity (lr-heap-name), data-seg))) 6= 1)

Theorem: lr-count-free-nodes-at-most
length (node-list) 6< lr-count-free-nodes (addr , node-list , data-seg)
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Theorem: lr-proper-free-listp-lr-count-free-nodes-max-addr
(lr-proper-free-listp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-proper-p-areasp (data-seg)
∧ (length (cdr (assoc (lr-heap-name, data-seg)))

= (1 + offset (fetch (lr-fp-addr, data-seg))))
∧ (max-addr = lr-max-node (data-seg)))
→ (lr-count-free-nodes (fetch (identity (lr-fp-addr), data-seg),

lr-free-list-nodes (max-addr , data-seg),
data-seg)

= 0)

Event: Disable lr-count-free-nodes-at-most.

Theorem: lr-count-free-nodes-deposit-a-list-lr-nodep
((type (addr1 ) = ’addr)
∧ (cddr (addr1 ) = nil)
∧ listp (addr1 )
∧ adpp (untag (addr1 ), data-seg)
∧ lr-boundary-nodep (addr1 )
∧ (area-name (addr1 ) = lr-heap-name)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-node-listp (node-list , data-seg)
∧ (addr1 6∈ node-list))
→ (lr-count-free-nodes (addr2 ,

node-list ,
deposit-a-list (list (x , ref-count , y , z ),

addr1 ,
data-seg))

= lr-count-free-nodes (addr2 , delete (addr1 , node-list), data-seg))

Theorem: lr-proper-free-listp-member-free-addr-lr-free-list-nodes
(adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (max-addr = lr-max-node (data-seg))
∧ (offset (fetch (lr-fp-addr, data-seg))

< (length (cdr (assoc (lr-heap-name, data-seg))) − 1))
∧ lr-proper-free-listp (data-seg))
→ (fetch (identity (lr-fp-addr), data-seg)

∈ lr-free-list-nodes (max-addr , data-seg))
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Theorem: lr-count-free-nodes-lr-compile-quote-s-heap-reqs-help1
(adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (offset (fetch (lr-fp-addr, data-seg))

< (length (cdr (assoc (lr-heap-name, data-seg))) − 1))
∧ lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (max-addr = lr-max-node (data-seg)))
→ (lr-count-free-nodes (fetch (identity (lr-fp-addr), data-seg),

lr-free-list-nodes (max-addr , data-seg),
data-seg)

= (1 + lr-count-free-nodes (fetch (add-addr (fetch (identity (lr-fp-addr),
data-seg),

identity (lr-ref-count-offset)),
data-seg),

delete (fetch (identity (lr-fp-addr),
data-seg),

lr-free-list-nodes (max-addr ,
data-seg)),

data-seg)))

Theorem: lr-proper-free-listp-lr-count-free-nodes-max-addr-alt
(lr-proper-free-listp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-proper-p-areasp (data-seg)
∧ (offset (fetch (lr-fp-addr, data-seg))

6< (length (cdr (assoc (lr-heap-name, data-seg))) − 1))
∧ (max-addr = lr-max-node (data-seg)))
→ (lr-count-free-nodes (fetch (identity (lr-fp-addr), data-seg),

lr-free-list-nodes (max-addr , data-seg),
data-seg)

= 0)

Theorem: s-heap-reqs-object-t
((flag 6= ’list) ∧ (¬ definedp (t, table)))
→ (s-heap-reqs (flag , t, data-seg , table) = 1)

Theorem: lessp-lr-boundary-offsetp-nodep-plus-node-size-fact-1
(lr-boundary-offsetp (offset) ∧ lr-boundary-nodep (addr))
→ ((offset < (identity (lr-node-size) + offset (addr)))

= (offset (addr) 6< offset))

Theorem: lr-count-free-nodes-lr-compile-quote-s-heap-reqs
(lr-proper-free-listp (data-seg)

250



∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-minimum-heapp (data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (flag , object , data-seg , table)))

→ ((lr-count-free-nodes (fetch (lr-fp-addr,
car (lr-compile-quote (flag ,

object ,
data-seg ,
table))),

lr-free-list-nodes (lr-max-node (data-seg),
car (lr-compile-quote (flag ,

object ,
data-seg ,
table))),

car (lr-compile-quote (flag , object , data-seg , table)))
+ s-heap-reqs (flag , object , data-seg , table))

= lr-count-free-nodes (fetch (lr-fp-addr, data-seg),
lr-free-list-nodes (lr-max-node (data-seg),

data-seg),
data-seg))

Theorem: lr-compile-quote-lr-good-pointerp-tablep-help-1
let ccar be lr-compile-quote (t, object , data-seg , table)
in
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-minimum-heapp (data-seg)
∧ (lr-count-free-nodes (fetch (identity (lr-fp-addr), data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< (s-heap-reqs (t, object , data-seg , table) + x )))

→ (lr-count-free-nodes (fetch (identity (lr-fp-addr), car (ccar)),
lr-free-list-nodes (lr-max-node (data-seg),

car (ccar)),
car (ccar))

6< x ) endlet
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Theorem: s-heap-reqs-flag-list-nil-opener
s-heap-reqs (’list, nil, data-seg , table) = 0

Theorem: lr-compile-quote-flag-list-nil-opener
lr-compile-quote (’list, nil, data-seg , table) = cons (data-seg , table)

Theorem: s-heap-reqs-flag-list-cons-opener
s-heap-reqs (’list, cons (x , y), data-seg , table)
= (s-heap-reqs (t, x , data-seg , table)

+ s-heap-reqs (’list,
y ,
car (lr-compile-quote (t, x , data-seg , table)),
cdr (lr-compile-quote (t, x , data-seg , table))))

Theorem: lr-compile-quote-flag-list-cons-opener
lr-compile-quote (’list, cons (x , y), data-seg , table)
= lr-compile-quote (’list,

y ,
car (lr-compile-quote (t, x , data-seg , table)),
cdr (lr-compile-quote (t, x , data-seg , table)))

Theorem: lr-compile-quote-lr-good-pointerp-tablep-help-2
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-minimum-heapp (data-seg)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6= 0)

∧ (lr-count-free-nodes (fetch (add-addr (fetch (lr-fp-addr, data-seg),
lr-ref-count-offset),

data-seg),
delete (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg)),

data-seg)
6< s-heap-reqs (’list,

list (car (object), cdr (object)),
data-seg ,
table))

∧ listp (object))
→ ((length (cdr (assoc (identity (lr-heap-name), data-seg))) − 1)
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6< (offset (fetch (identity (lr-fp-addr),
car (lr-compile-quote (’list,

list (car (object),
cdr (object)),

data-seg ,
table))))

+ identity (lr-node-size)))

Event: Disable s-heap-reqs-flag-list-cons-opener.

Event: Disable lr-compile-quote-flag-list-cons-opener.

Theorem: lr-compile-quote-lr-good-pointerp-tablep-help-3
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-minimum-heapp (data-seg)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< 1))

→ ((length (cdr (assoc (identity (lr-heap-name), data-seg))) − 1)
6< (offset (fetch (identity (lr-fp-addr), data-seg))

+ identity (lr-node-size)))

Theorem: lr-compile-quote-lr-good-pointerp-tablep
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-minimum-heapp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-restricted-objectp (flag , object)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (flag , object , data-seg , table))

∧ definedp (f, table))
→ lr-good-pointerp-tablep (cdr (lr-compile-quote (flag ,

object ,
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data-seg ,
table)),

car (lr-compile-quote (flag ,
object ,
data-seg ,
table)))

Theorem: lr-nodep-car-lr-compile-quote
lr-nodep (addr , data-seg)
→ lr-nodep (addr , car (lr-compile-quote (flag , object , data-seg , table)))

Theorem: lr-proper-free-listp-opener-2-lr-nodep
(lr-proper-free-listp (data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (addr = fetch (identity (lr-fp-addr), data-seg)))
→ lr-nodep (addr , data-seg)

Theorem: lr-nodep-deposit-a-list
lr-nodep (addr1 , data-seg)
→ lr-nodep (addr1 , deposit-a-list (list , addr2 , data-seg))

Definition:
induct-hint-16 (object , list , data-seg , table)
= if list ' nil then t

elseif object = car (list) then t
else induct-hint-16 (object ,

cdr (list),
car (lr-compile-quote (t,

car (list),
data-seg ,
table)),

cdr (lr-compile-quote (t,
car (list),
data-seg ,
table))) endif

Theorem: definedp-object-cdr-lr-compile-quote-list
(object ∈ list)
→ definedp (object , cdr (lr-compile-quote (’list, list , data-seg , table)))

Theorem: lr-good-pointerp-cdr-assoc-car-lr-compile-quote-list
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
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∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-minimum-heapp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-restricted-objectp (’list, object-list)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6= 0)

∧ ((lr-count-free-nodes (fetch (lr-fp-addr, data-seg),
lr-free-list-nodes (lr-max-node (data-seg),

data-seg),
data-seg) − 1)

6< s-heap-reqs (’list, object-list , data-seg , table))
∧ definedp (f, table)
∧ (object ∈ object-list))
→ lr-good-pointerp (cdr (assoc (object ,

cdr (lr-compile-quote (’list,
object-list ,
data-seg ,
table)))),

car (lr-compile-quote (’list,
object-list ,
data-seg ,
table)))

Theorem: lr-good-pointerp-deposit-non-ref-not-good-pointerp
(lr-boundary-nodep (addr)
∧ adpp (untag (addr), data-seg)
∧ (area-name (addr) = ’heap)
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ (n < lr-node-size)
∧ (n 6= lr-ref-count-offset)
∧ definedp (lr-heap-name, data-seg)
∧ lr-good-pointerp (good-pointer , data-seg)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’nat))
→ lr-good-pointerp (good-pointer , deposit (x , add-addr (addr , n), data-seg))

Theorem: lr-good-pointerp-deposit-ref-count-not-good-pointerp
(lr-boundary-nodep (addr)
∧ adpp (untag (addr), data-seg)
∧ (area-name (addr) = ’heap)
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∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ (type (x ) = ’nat)
∧ definedp (lr-heap-name, data-seg)
∧ lr-good-pointerp (good-pointer , data-seg)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’nat))
→ lr-good-pointerp (good-pointer ,

deposit (x ,
add-addr (addr , identity (lr-ref-count-offset)),
data-seg))

Theorem: lr-good-pointerp-deposit-non-add-addr-not-good-pointerp
(lr-boundary-nodep (addr)
∧ adpp (untag (addr), data-seg)
∧ (area-name (addr) = ’heap)
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ definedp (lr-heap-name, data-seg)
∧ lr-good-pointerp (good-pointer , data-seg)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’nat))
→ lr-good-pointerp (good-pointer , deposit (x , addr , data-seg))

Theorem: lr-check-numberp-addrp-deposit-a-list-cons-same-addr
((type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = ’heap)
∧ (offset (addr) 6< (lr-node-size + offset (lr-f-addr)))
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg))

= ’addr)
∧ lr-good-pointerp (good-pointer , data-seg)
∧ definedp (’heap, data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N)
∧ (type (tagged-number) = ’nat)
∧ (untag (tagged-number) ∈ N))
→ lr-check-numberp-addrp (addr ,

deposit-a-list (list (identity (tag (’nat,
lr-add1-tag)),
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ref-count ,
tagged-number ,
good-pointer),

addr ,
data-seg))

Theorem: lr-proper-heapp-nodep-deposit-a-list-numberp
(lr-nodep (max-addr , data-seg)
∧ lr-nodep (addr , data-seg)
∧ lr-proper-heapp-nodep (max-addr , data-seg)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’nat)
∧ lr-good-pointerp (good-pointer , data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N)
∧ (type (tagged-number) = ’nat)
∧ (untag (tagged-number) ∈ N))
→ lr-proper-heapp-nodep (max-addr ,

deposit-a-list (list (identity (tag (’nat,
lr-add1-tag)),

ref-count ,
tagged-number ,
good-pointer),

addr ,
data-seg))

Theorem: lr-proper-heapp2-deposit-a-list-numberp
(lr-nodep (max-addr , data-seg)
∧ lr-nodep (addr , data-seg)
∧ lr-proper-heapp2 (max-addr , data-seg)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’nat)
∧ lr-good-pointerp (good-pointer , data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (type (tag) = ’nat)
∧ (untag (tag) ∈ N)
∧ (type (tagged-number) = ’nat)
∧ (untag (tagged-number) ∈ N))
→ lr-proper-heapp2 (max-addr ,

deposit-a-list (list (identity (tag (’nat, lr-add1-tag)),
tag ,
tagged-number ,
good-pointer),
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addr ,
data-seg))

Theorem: lr-good-pointerp-lr-undef-addr
(lr-minimum-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp2 (lr-max-node (data-seg), data-seg)
∧ lr-nodep (lr-max-node (data-seg), data-seg))
→ lr-good-pointerp (identity (lr-undef-addr), data-seg)

Theorem: lr-proper-heapp-nodep-deposit-a-list-truep
(lr-nodep (max-addr , data-seg)
∧ lr-nodep (addr , data-seg)
∧ lr-proper-heapp-nodep (max-addr , data-seg)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’nat)
∧ lr-good-pointerp (good-pointer1 , data-seg)
∧ lr-good-pointerp (good-pointer2 , data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N))
→ lr-proper-heapp-nodep (max-addr ,

deposit-a-list (list (identity (tag (’nat,
lr-true-tag)),

ref-count ,
good-pointer1 ,
good-pointer2 ),

addr ,
data-seg))

Theorem: lr-proper-heapp2-deposit-a-list-truep
(lr-nodep (max-addr , data-seg)
∧ lr-nodep (addr , data-seg)
∧ lr-proper-heapp2 (max-addr , data-seg)
∧ (type (fetch (add-addr (addr , lr-ref-count-offset), data-seg)) 6= ’nat)
∧ lr-good-pointerp (good-pointer1 , data-seg)
∧ lr-good-pointerp (good-pointer2 , data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (type (tag) = ’nat)
∧ (untag (tag) ∈ N))
→ lr-proper-heapp2 (max-addr ,

deposit-a-list (list (identity (tag (’nat, lr-true-tag)),
tag ,
good-pointer1 ,
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good-pointer2 ),
addr ,
data-seg))

Theorem: lr-compile-quote-preserves-lr-proper-heapp2
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-nodep (lr-max-node (data-seg), data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-restricted-objectp (flag , object)
∧ lr-minimum-heapp (data-seg)
∧ lr-proper-heapp2 (lr-max-node (data-seg), data-seg)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (flag , object , data-seg , table)))

→ lr-proper-heapp2 (lr-max-node (data-seg),
car (lr-compile-quote (flag , object , data-seg , table)))

Theorem: plistp-pair-formals-with-addresses
plistp (pair-formals-with-addresses (formals, table))

Theorem: strip-cars-pair-formals-with-addresses
strip-cars (pair-formals-with-addresses (formals, table))
= strip-cars (formals)

Theorem: strip-cars-lr-make-initial-temps
strip-cars (lr-make-initial-temps (temp-vars)) = plist (temp-vars)

Theorem: lr-s-similar-const-table-implies-lr-good-pointerp-tablep
lr-s-similar-const-table (table, data-seg)
→ lr-good-pointerp-tablep (table, data-seg)

Theorem: lr-s-similar-const-table-deposit-cons
(lr-proper-heapp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ lr-proper-p-areasp (data-seg))
→ lr-s-similar-const-table (table,

deposit-a-list (list (x0 , x1 , x2 , x3 ),
fetch (identity (lr-fp-addr),

data-seg),
data-seg))
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Theorem: lr-valp-deposit-a-list-cons-cons
(listp (object)
∧ lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N)
∧ definedp (car (object), table)
∧ definedp (cdr (object), table)
∧ definedp (lr-heap-name, data-seg)
∧ (addr = fetch (identity (lr-fp-addr), data-seg)))
→ lr-valp (object ,

addr ,
deposit-a-list (list (identity (tag (’nat, lr-cons-tag)),

ref-count ,
cdr (assoc (car (object), table)),
cdr (assoc (cdr (object), table))),

addr ,
data-seg))

Theorem: lr-valp-deposit-a-list-cons-numberp
((object ∈ N)
∧ lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N)
∧ definedp (lr-heap-name, data-seg)
∧ (addr = fetch (identity (lr-fp-addr), data-seg)))
→ lr-valp (object ,

addr ,
deposit-a-list (list (identity (tag (’nat, lr-add1-tag)),

ref-count ,
tag (’nat, object),
identity (lr-undef-addr)),

addr ,
data-seg))

Theorem: lr-compile-quote-preserves-lr-valp
(lr-proper-p-areasp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-restricted-objectp (flag , object)
∧ lr-minimum-heapp (data-seg)
∧ lr-nodep (lr-max-node (data-seg), data-seg)
∧ lr-proper-free-listp (data-seg)
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∧ lr-proper-heapp2 (lr-max-node (data-seg), data-seg)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (flag , object , data-seg , table))

∧ lr-valp (value, addr , data-seg))
→ lr-valp (value, addr , car (lr-compile-quote (flag , object , data-seg , table)))

Theorem: lr-compile-quote-preserves-lr-proper-heapp
(lr-proper-p-areasp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ lr-proper-heapp (data-seg)
∧ s-restricted-objectp (flag , object)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (flag , object , data-seg , table)))

→ lr-proper-heapp (car (lr-compile-quote (flag , object , data-seg , table)))

Theorem: lr-valp-deposit-a-list-cons-truep
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ (type (ref-count) = ’nat)
∧ (untag (ref-count) ∈ N)
∧ definedp (lr-heap-name, data-seg)
∧ (addr = fetch (identity (lr-fp-addr), data-seg)))
→ lr-valp (t,

addr ,
deposit-a-list (list (identity (tag (’nat, lr-true-tag)),

ref-count ,
identity (lr-undef-addr),
identity (lr-undef-addr)),

addr ,
data-seg))

Theorem: lr-s-similar-const-table-lr-compile-quote
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ s-restricted-objectp (flag , object)
∧ definedp (f, table)
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∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),
lr-free-list-nodes (lr-max-node (data-seg),

data-seg),
data-seg)

6< s-heap-reqs (flag , object , data-seg , table)))
→ lr-s-similar-const-table (cdr (lr-compile-quote (flag ,

object ,
data-seg ,
table)),

car (lr-compile-quote (flag ,
object ,
data-seg ,
table)))

Theorem: p-objectp-cdr-assoc-car-lr-compile-quote
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ s-restricted-objectp (flag , object)
∧ (word-size 6< s-ws-reqs (flag , object , data-seg , table))
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (flag , object , data-seg , table))

∧ (flag 6= ’list))
→ p-objectp (cdr (assoc (object ,

cdr (lr-compile-quote (flag , object , data-seg , table)))),
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
car (lr-compile-quote (flag , object , data-seg , table)),
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: lr-count-free-nodes-s-init-heap-reqs
let ccar be lr-compile-quote (t, object , data-seg , table)
in
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
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∧ lr-s-similar-const-table (table, data-seg)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< (s-heap-reqs (t, object , data-seg , table)

+ s-init-heap-reqs (params, car (ccar), cdr (ccar)))))
→ (lr-count-free-nodes (fetch (identity (lr-fp-addr), car (ccar)),

lr-free-list-nodes (lr-max-node (data-seg),
car (ccar)),

car (ccar))
6< s-init-heap-reqs (params, car (ccar), cdr (ccar))) endlet

Theorem: all-p-objects-lookup-strip-cdrs-lr-init-data-seg-table
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ definedp (f, table)
∧ definedp (t, table)
∧ s-init-data-seg-restrictedp (params)
∧ (word-size 6< s-init-ws-reqs (params, data-seg , table))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table)))

→ all-p-objects-lookup (strip-cdrs (params),
cdr (lr-init-data-seg-table (params, data-seg , table)),
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
car (lr-init-data-seg-table (params,

data-seg ,
table)),

max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: lr-minimum-heapp-lr-init-data-seg
(heap-size 6< 4) → lr-minimum-heapp (lr-init-data-seg (heap-size))

Theorem: adpp-cons-heap-name-node-size-lr-init-data-seg
(heap-size 6< 2)
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→ adpp (cons (identity (lr-heap-name), identity (lr-node-size)
∗ heap-size),

lr-init-data-seg (heap-size))

Theorem: lr-check-f-addrp-lr-undef-addr-lr-init-data-seg
((offset (addr) = identity (offset (lr-undef-addr)))
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ (area-name (addr) = lr-heap-name)
∧ adpp (untag (addr), data-seg))
→ lr-check-undef-addrp (addr , data-seg)

Theorem: fetch-offset-lr-t-addr-ref-count-offset-compile-quote-t
((type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ (area-name (addr) = lr-heap-name)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (¬ definedp (t, table))
∧ lr-proper-free-listp (data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (offset (fetch (lr-fp-addr, data-seg)) < lr-minimum-heap-size)
∧ lr-proper-p-areasp (data-seg)
∧ ((length (cdr (assoc (lr-heap-name, data-seg))) − 1)

6< (offset (addr) + lr-node-size)))
→ (fetch (add-addr (addr , identity (lr-ref-count-offset)),

car (lr-compile-quote (t, t, data-seg , table)))
= if offset (addr) = offset (fetch (lr-fp-addr, data-seg))

then identity (tag (’nat, 1))
else fetch (add-addr (addr , identity (lr-ref-count-offset)),

data-seg) endif)

Theorem: definedp-cdr-lr-compile-quote-t
definedp (x , cdr (lr-compile-quote (t, t, data-seg , table)))
= ((x = t) ∨ definedp (x , table))

Theorem: fetch-lr-fp-addr-compile-quote-t
((¬ definedp (t, table))
∧ lr-proper-free-listp (data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ ((length (value (lr-heap-name, data-seg)) − 1)

6< (offset (fetch (lr-fp-addr, data-seg)) + lr-node-size))
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∧ lr-proper-p-areasp (data-seg))
→ (fetch (identity (lr-fp-addr), car (lr-compile-quote (t, t, data-seg , table)))

= fetch (add-addr (fetch (identity (lr-fp-addr), data-seg),
identity (lr-ref-count-offset)),

data-seg))

Theorem: numberp-lessp-4-not-3-not-2-not-1-must-be-0
((c ∈ N) ∧ (c 6= 3) ∧ (c 6= 2) ∧ (c 6= 1) ∧ (c < 4))
→ (c = 0)

Event: Disable fetch-offset-lr-t-addr-ref-count-offset-compile-quote-t.

Theorem: lessp-minimum-heap-size-not-0-f-t-must-be-undef-alt-1-help
(lr-boundary-offsetp (offset)
∧ (offset ∈ N)
∧ (offset 6= offset (lr-undef-addr))
∧ (offset 6= offset (lr-f-addr))
∧ (offset 6= offset (lr-t-addr))
∧ (offset 6= offset (lr-0-addr)))
→ (offset 6< lr-minimum-heap-size)

Theorem: lessp-minimum-heap-size-not-0-f-t-must-be-undef-alt-1
((offset (addr) < lr-minimum-heap-size)
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ (area-name (addr) = ’heap)
∧ adpp (untag (addr), lr-init-data-seg (heap-size))
∧ lr-boundary-nodep (addr)
∧ (offset (addr) 6= offset (lr-0-addr))
∧ (offset (addr) 6= offset (lr-t-addr))
∧ (offset (addr) 6= offset (lr-f-addr)))
→ (fetch (addr , lr-init-data-seg (heap-size))

= identity (tag (’nat, lr-undefined-tag)))

Theorem: lessp-lr-boundary-offsetp-3
(lr-boundary-offsetp (offset) ∧ (offset ∈ N))
→ ((offset < 3) = (offset = 0))

Theorem: numberp-lessp-2-not-1-must-be-0
((c ∈ N) ∧ (c 6= 1) ∧ (c < 2)) → (c = 0)

Theorem: not-lessp-difference-lr-boundary-offsetp-fact
((offset ∈ N) ∧ (offset < (lr-node-size + offset (lr-f-addr))))
→ (lr-boundary-offsetp (offset)
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= ((offset = identity (offset (lr-f-addr)))
∨ (offset = identity (offset (lr-undef-addr)))))

Theorem: fetch-ref-count-lr-init-data-seg-free-list
(((lr-node-size ∗ heap-size) 6< (offset (addr) + lr-node-size))
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ (area-name (addr) = lr-heap-name)
∧ listp (untag (addr))
∧ lr-boundary-nodep (addr)
∧ (heap-size 6< 2))
→ (fetch (add-addr (addr , identity (lr-ref-count-offset)),

lr-init-data-seg (heap-size))
= if offset (lr-f-addr) < offset (addr)

then add-addr (addr , identity (lr-node-size))
else identity (tag (’nat, 1)) endif)

Theorem: lessp-offset-lr-init-data-seg-adpp-untag-lessp-offset
(adpp (untag (addr), lr-init-data-seg (heap-size))
∧ lr-boundary-offsetp (offset)
∧ lr-boundary-offsetp (offset (addr))
∧ (offset < offset (addr))
∧ (area-name (addr) = lr-heap-name)
∧ (heap-size 6< 2))
→ ((offset < (identity (lr-node-size) ∗ heap-size)) = t)

Theorem: lr-count-free-nodes-lr-all-nodes
(lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ listp (untag (addr))
∧ (offset (addr) ∈ N)
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = lr-heap-name)
∧ adpp (untag (max-addr), lr-init-data-seg (heap-size))
∧ (type (max-addr) = ’addr)
∧ (cddr (max-addr) = nil)
∧ listp (max-addr)
∧ (offset (lr-f-addr) < offset (addr))
∧ (heap-size 6< 2))
→ (lr-count-free-nodes (addr ,

lr-all-nodes (offset (addr), max-addr),

266



lr-init-data-seg (heap-size))
= length (lr-all-nodes (offset (addr), max-addr)))

Theorem: same-signature-car-lr-init-data-seg-table-help-1
let comp-obj be lr-compile-quote (t, object , data-seg , table)
in
(same-signature (car (comp-obj ),

car (lr-init-data-seg-table (params,
car (comp-obj ),
cdr (comp-obj ))))

∧ lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ same-signature (data-seg ,

car (lr-init-data-seg-table (params,
car (comp-obj ),
cdr (comp-obj )))) endlet

Theorem: same-signature-car-lr-init-data-seg-table
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ same-signature (data-seg ,

car (lr-init-data-seg-table (params, data-seg , table)))

Theorem: lr-max-node-car-lr-init-data-seg-table
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (lr-max-node (car (lr-init-data-seg-table (params, data-seg , table)))

= lr-max-node (data-seg))

Theorem: s-heap-reqs-object-0
((flag 6= ’list) ∧ (¬ definedp (0, table)))
→ (s-heap-reqs (flag , 0, data-seg , table) = 1)

Theorem: lr-free-list-nodes-deposit-0
((type (max-addr) = ’addr)
∧ (cddr (max-addr) = nil)
∧ listp (max-addr)
∧ adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
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∧ (area-name (max-addr) = lr-heap-name)
∧ (¬ definedp (0, table))
∧ lr-proper-free-listp (data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-proper-p-areasp (data-seg)
∧ ((length (cdr (assoc (lr-heap-name, data-seg))) − 1)

6< (offset (fetch (lr-fp-addr, data-seg)) + lr-node-size)))
→ (lr-free-list-nodes (max-addr ,

car (lr-compile-quote (t, 0, data-seg , table)))
= lr-free-list-nodes (max-addr ,

deposit (identity (tag (’nat, 1)),
add-addr (fetch (identity (lr-fp-addr),

data-seg),
identity (lr-ref-count-offset)),

data-seg)))

Theorem: lr-free-list-nodes-deposit-t
((type (max-addr) = ’addr)
∧ (cddr (max-addr) = nil)
∧ listp (max-addr)
∧ adpp (untag (max-addr), data-seg)
∧ lr-boundary-nodep (max-addr)
∧ (area-name (max-addr) = lr-heap-name)
∧ (¬ definedp (t, table))
∧ lr-proper-free-listp (data-seg)
∧ adpp (untag (lr-max-node (data-seg)), data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-proper-p-areasp (data-seg)
∧ ((length (cdr (assoc (lr-heap-name, data-seg))) − 1)

6< (offset (fetch (lr-fp-addr, data-seg)) + lr-node-size)))
→ (lr-free-list-nodes (max-addr ,

car (lr-compile-quote (t, t, data-seg , table)))
= lr-free-list-nodes (max-addr ,

deposit (identity (tag (’nat, 1)),
add-addr (fetch (identity (lr-fp-addr),

data-seg),
identity (lr-ref-count-offset)),

data-seg)))

Theorem: fetch-lr-fp-addr-compile-quote-0
((¬ definedp (0, table))
∧ ((length (cdr (assoc (lr-heap-name, data-seg))) − 1)

6< (offset (fetch (lr-fp-addr, data-seg)) + lr-node-size))
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∧ definedp (area-name (lr-fp-addr), data-seg))
→ (fetch (identity (lr-fp-addr),

car (lr-compile-quote (t, 0, data-seg , table)))
= fetch (add-addr (fetch (identity (lr-fp-addr), data-seg),

identity (lr-ref-count-offset)),
data-seg))

Theorem: fetch-add-addr-ref-count-f-addr-lr-init-data-seg
(heap-size 6< 2)
→ (fetch (identity (add-addr (lr-f-addr, lr-ref-count-offset)),

lr-init-data-seg (heap-size))
= identity (tag (’nat, 1)))

Theorem: lr-good-pointerp-tablep-f-lr-f-addr-lr-init-data-seg
(heap-size 6< 4)
→ lr-good-pointerp-tablep (list (cons (f, identity (lr-f-addr))),

lr-init-data-seg (heap-size))

Theorem: lr-proper-heapp-nodep-lr-undef-addr-lr-init-data-seg
(heap-size 6< 2)
→ lr-proper-heapp-nodep (identity (lr-undef-addr),

lr-init-data-seg (heap-size))

Definition:
induct-hint-2 (offset)
= if offset < offset (add-addr (lr-f-addr, lr-node-size)) then t

else induct-hint-2 (offset − lr-node-size) endif

Theorem: lr-boundary-offsetp-difference-lr-node-size
lr-boundary-offsetp (offset)
→ lr-boundary-offsetp (offset − identity (lr-node-size))

Theorem: fetch-lr-f-addr-lr-init-data-seg
(heap-size 6< 2)
→ (fetch (identity (lr-f-addr), lr-init-data-seg (heap-size))

= identity (tag (’nat, lr-false-tag)))

Theorem: lr-proper-heapp-nodep-lr-init-data-seg-helper
((offset 6< offset (lr-f-addr))
∧ (heap-size 6< 2)
∧ (offset ∈ N)
∧ lr-boundary-nodep (tag (’addr, cons (lr-heap-name, offset)))
∧ ((lr-node-size ∗ heap-size) 6< (offset + lr-node-size)))
→ lr-proper-heapp-nodep (tag (’addr, cons (identity (lr-heap-name), offset)),

lr-init-data-seg (heap-size))
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Theorem: lr-proper-heapp2-lr-init-data-seg-helper
((heap-size 6< 2)
∧ (offset < length (cdr (assoc (lr-heap-name,

lr-init-data-seg (heap-size)))))
∧ (offset ∈ N)
∧ lr-boundary-nodep (tag (’addr, cons (lr-heap-name, offset))))
→ lr-proper-heapp2 (tag (’addr, cons (lr-heap-name, offset)),

lr-init-data-seg (heap-size))

Theorem: lr-proper-heapp2-lr-init-data-seg
(heap-size 6< 2)
→ lr-proper-heapp2 (tag (’addr,

cons (identity (lr-heap-name),
identity (lr-node-size) ∗ heap-size)),

lr-init-data-seg (heap-size))

Theorem: fetch-add-addr-ref-count-lr-t-addr-lr-init-data-seg
(heap-size 6< 4)
→ (fetch (identity (add-addr (lr-t-addr, lr-ref-count-offset)),

lr-init-data-seg (heap-size))
= identity (add-addr (lr-t-addr, lr-node-size)))

Theorem: fetch-t-addr-compile-quote-list-init-data-seg
((heap-size 6< 4) ∧ (¬ definedp (t, table)))
→ (fetch (identity (lr-t-addr),

car (lr-compile-quote (’list,
list (t, 0),
lr-init-data-seg (heap-size),
table)))

= identity (tag (’nat, lr-true-tag)))

Theorem: fetch-ref-count-t-addr-compile-quote-list-init-data-seg
((heap-size 6< 4) ∧ (¬ definedp (t, table)))
→ (fetch (identity (add-addr (lr-t-addr, lr-ref-count-offset)),

car (lr-compile-quote (’list,
list (t, 0),
lr-init-data-seg (heap-size),
table)))

= identity (tag (’nat, 1)))

Theorem: fetch-add-addr-ref-count-lr-0-addr-lr-init-data-seg
(heap-size 6< 4)
→ (fetch (identity (add-addr (lr-0-addr, lr-ref-count-offset)),

lr-init-data-seg (heap-size))
= identity (add-addr (lr-0-addr, lr-node-size)))
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Theorem: fetch-0-addr-compile-quote-list-init-data-seg
((heap-size 6< 4) ∧ (¬ definedp (t, table)) ∧ (¬ definedp (0, table)))
→ (fetch (identity (lr-0-addr),

car (lr-compile-quote (’list,
list (t, 0),
lr-init-data-seg (heap-size),
table)))

= identity (tag (’nat, lr-add1-tag)))

Theorem: fetch-ref-count-0-addr-compile-quote-list-init-data-seg
((heap-size 6< 4) ∧ (¬ definedp (t, table)) ∧ (¬ definedp (0, table)))
→ (fetch (identity (add-addr (lr-0-addr, lr-ref-count-offset)),

car (lr-compile-quote (’list,
list (t, 0),
lr-init-data-seg (heap-size),
table)))

= identity (tag (’nat, 1)))

Theorem: fetch-unbox-nat-0-addr-compile-quote-list-init-data-seg
((heap-size 6< 4) ∧ (¬ definedp (t, table)) ∧ (¬ definedp (0, table)))
→ (fetch (identity (add-addr (lr-0-addr, lr-unbox-nat-offset)),

car (lr-compile-quote (’list,
list (t, 0),
lr-init-data-seg (heap-size),
table)))

= identity (tag (’nat, 0)))

Theorem: lr-proper-heapp-lr-compile-quote-ft-lr-init-data-seg
(heap-size 6< 4)
→ lr-proper-heapp (car (lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
list (cons (f, identity (lr-f-addr))))))

Theorem: cdr-compile-quote-list-t0-lr-init-data-seg-cons-table
((¬ definedp (0, table)) ∧ (¬ definedp (t, table)) ∧ (heap-size 6< 4))
→ (cdr (lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
table))

= cons (cons (0, identity (lr-0-addr)),
cons (cons (t, identity (lr-t-addr)), table)))

Theorem: fetch-f-addr-compile-quote-list-init-data-seg
((heap-size 6< 4) ∧ (¬ definedp (t, table)) ∧ (¬ definedp (0, table)))
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→ (fetch (identity (lr-f-addr),
car (lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
table)))

= identity (tag (’nat, lr-false-tag)))

Theorem: fetch-ref-count-f-addr-compile-quote-list-init-data-seg
((heap-size 6< 4) ∧ (¬ definedp (t, table)) ∧ (¬ definedp (0, table)))
→ (fetch (identity (add-addr (lr-f-addr, lr-ref-count-offset)),

car (lr-compile-quote (’list,
list (t, 0),
lr-init-data-seg (heap-size),
table)))

= identity (tag (’nat, 1)))

Theorem: lr-s-similar-const-table-compile-quote-t0-init-data-seg
(heap-size 6< 4)
→ lr-s-similar-const-table (cdr (lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
list (cons (f,

identity (lr-f-addr))))),
car (lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
list (cons (f,

identity (lr-f-addr))))))

Event: Disable cdr-compile-quote-list-t0-lr-init-data-seg-cons-table.

Theorem: fetch-fp-addr-compile-quote-list-t0-lr-init-data-seg-cons-table
((¬ definedp (0, table)) ∧ (¬ definedp (t, table)) ∧ (heap-size 6< 4))
→ (fetch (identity (lr-fp-addr),

car (lr-compile-quote (’list,
list (t, 0),
lr-init-data-seg (heap-size),
table)))

= identity (add-addr (lr-0-addr, lr-node-size)))

Theorem: lr-free-list-nodes-lr-compile-quote-t0
((¬ definedp (t, table)) ∧ (¬ definedp (0, table)) ∧ (heap-size 6< 4))
→ (lr-free-list-nodes (tag (’addr,

cons (identity (lr-heap-name),
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identity (lr-node-size) ∗ heap-size)),
car (lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
table)))

= lr-all-nodes (identity (lr-node-size + offset (lr-0-addr)),
tag (’addr,

cons (identity (lr-heap-name),
identity (lr-node-size) ∗ heap-size))))

Theorem: listp-lr-all-nodes
listp (lr-all-nodes (min-offset , max-addr))
= ((offset (max-addr) 6' 0) ∧ (min-offset < offset (max-addr)))

Theorem: length-lr-all-nodes
(lr-boundary-offsetp (offset) ∧ (offset ∈ N) ∧ lr-boundary-nodep (addr))
→ (length (lr-all-nodes (offset , addr))

= ((offset (addr) − offset) ÷ identity (lr-node-size)))

Theorem: lr-count-free-nodes-append-lr-all-nodes-fact
(((lr-node-size ∗ heap-size) 6< lr-minimum-heap-size)
∧ (¬ definedp (t, table))
∧ (¬ definedp (0, table)))
→ (lr-count-free-nodes (identity (add-addr (lr-0-addr, lr-node-size)),

lr-all-nodes (identity (lr-minimum-heap-size),
tag (’addr,

cons (identity (lr-heap-name),
identity (lr-node-size)
∗ heap-size))),

car (lr-compile-quote (’list,
list (t, 0),
lr-init-data-seg (heap-size),
table)))

= (heap-size − lr-node-size))

Theorem: proper-p-alistp-pair-formal-with-addresses
(all-litatoms (strip-cars (params))
∧ s-init-data-seg-restrictedp (params)
∧ (heap-size 6< s-total-heap-reqs (s-progs (s), params, heap-size))
∧ (word-size 6< s-total-ws-reqs (s-progs (s), params, heap-size)))
→ proper-p-alistp (pair-formals-with-addresses (params,

cdr (lr-data-seg-table (s-progs (s),
params,
heap-size))),

lr->p (s->lr1 (s,
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p-state (pc,
ctrl-stk ,
temp-stk ,
prog-seg ,
car (lr-data-seg-table (s-progs (s),

params,
heap-size)),

max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw),

cdr (lr-data-seg-table (s-progs (s),
params,
heap-size)))))

Theorem: proper-p-alistp-lr-make-initial-temps
(lr-proper-heapp (data-seg)
∧ all-litatoms (temp-vars)
∧ lr-proper-p-areasp (data-seg))
→ proper-p-alistp (lr-make-initial-temps (temp-vars),

lr->p (s->lr1 (s,
p-state (pc,

ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw),

table)))

Theorem: lr-minimum-heapp-lr-data-seg-table-body
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (lr-minimum-heapp (car (lr-data-seg-table-body (flag , body , data-seg , table)))

= lr-minimum-heapp (data-seg))

Theorem: lr-count-free-nodes-lr-compile-quote-s-heap-reqs-flag-t
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-minimum-heapp (data-seg)
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∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (t, object , data-seg , table)))

→ ((s-heap-reqs (t, object , data-seg , table)
+ lr-count-free-nodes (fetch (identity (lr-fp-addr),

car (lr-compile-quote (t,
object ,
data-seg ,
table))),

lr-free-list-nodes (lr-max-node (data-seg),
car (lr-compile-quote (t,

object ,
data-seg ,
table))),

car (lr-compile-quote (t,
object ,
data-seg ,
table))))

= lr-count-free-nodes (fetch (identity (lr-fp-addr), data-seg),
lr-free-list-nodes (lr-max-node (data-seg),

data-seg),
data-seg))

Theorem: lr-count-free-nodes-lr-data-seg-table-body-s-heap-reqs
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-minimum-heapp (data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-body (flag , body , data-seg , table)))

→ ((lr-count-free-nodes (fetch (lr-fp-addr,
car (lr-data-seg-table-body (flag ,

body ,
data-seg ,
table))),

lr-free-list-nodes (lr-max-node (data-seg),
car (lr-data-seg-table-body (flag ,
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body ,
data-seg ,
table))),

car (lr-data-seg-table-body (flag ,
body ,
data-seg ,
table)))

+ s-heap-reqs-body (flag , body , data-seg , table))
= lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg))

Theorem: lr-data-seg-table-body-lr-good-pointerp-tablep-help1
let data-seg-tab be lr-data-seg-table-body (t, car (body), data-seg , table)
in
(listp (body)
∧ lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-minimum-heapp (data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< (s-heap-reqs-body (t, car (body), data-seg , table)

+ s-heap-reqs-body (’list,
cdr (body),
car (data-seg-tab),
cdr (data-seg-tab)))))

→ (lr-count-free-nodes (fetch (identity (lr-fp-addr),
car (data-seg-tab)),

lr-free-list-nodes (lr-max-node (data-seg),
car (data-seg-tab)),

car (data-seg-tab))
6< s-heap-reqs-body (’list,

cdr (body),
car (data-seg-tab),
cdr (data-seg-tab))) endlet

Theorem: lr-data-seg-table-body-lr-good-pointerp-tablep
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
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∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-minimum-heapp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-data-seg-body-restrictedp (flag , body)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-body (flag , body , data-seg , table)))

→ lr-good-pointerp-tablep (cdr (lr-data-seg-table-body (flag ,
body ,
data-seg ,
table)),

car (lr-data-seg-table-body (flag ,
body ,
data-seg ,
table)))

Theorem: lr-data-seg-table-list-lr-good-pointerp-tablep-helper-1
let dst-body be lr-data-seg-table-body (t,

s-body (car (progs)),
data-seg ,
table)

in
(listp (progs)
∧ lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-minimum-heapp (data-seg)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< (s-heap-reqs-body (t, s-body (car (progs)), data-seg , table)

+ s-heap-reqs-list (cdr (progs),
car (dst-body),
cdr (dst-body)))))

→ (lr-count-free-nodes (fetch (identity (lr-fp-addr), car (dst-body)),
lr-free-list-nodes (lr-max-node (data-seg),

car (dst-body)),
car (dst-body))
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6< s-heap-reqs-list (cdr (progs),
car (dst-body),
cdr (dst-body))) endlet

Theorem: lr-init-data-seg-table-lr-good-pointerp-tablep
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ lr-minimum-heapp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-init-data-seg-restrictedp (params)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table)))

→ lr-good-pointerp-tablep (cdr (lr-init-data-seg-table (params,
data-seg ,
table)),

car (lr-init-data-seg-table (params,
data-seg ,
table)))

Theorem: lr-proper-heapp-car-lr-data-seg-table-body
(lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-data-seg-body-restrictedp (flag , body)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-body (flag , body , data-seg , table)))

→ lr-proper-heapp (car (lr-data-seg-table-body (flag , body , data-seg , table)))

Theorem: lr-proper-heapp-car-lr-data-seg-table-list
(lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-data-seg-list-restrictedp (progs)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),
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lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-list (progs, data-seg , table)))

→ lr-proper-heapp (car (lr-data-seg-table-list (progs, data-seg , table)))

Theorem: lr-proper-heapp-car-lr-init-data-seg-table
(lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-init-data-seg-restrictedp (params)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table)))

→ lr-proper-heapp (car (lr-init-data-seg-table (params, data-seg , table)))

Theorem: lr-count-free-nodes-lr-init-data-seg-table-s-init-heap-reqs
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-minimum-heapp (data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table)))

→ ((lr-count-free-nodes (fetch (lr-fp-addr,
car (lr-init-data-seg-table (params,

data-seg ,
table))),

lr-free-list-nodes (lr-max-node (data-seg),
car (lr-init-data-seg-table (params,

data-seg ,
table))),

car (lr-init-data-seg-table (params,
data-seg ,
table)))

+ s-init-heap-reqs (params, data-seg , table))
= lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
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data-seg),
data-seg))

Theorem: lr-proper-heapp-car-lr-data-seg-table-helper-1
let data-seg-table be lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
list (cons (f, identity (lr-f-addr))))

in
((heap-size 6< (2

+ 2
+ s-init-heap-reqs (params,

car (data-seg-table),
cdr (data-seg-table))

+ x ))
∧ (max-addr = lr-max-node (car (data-seg-table))))
→ (lr-count-free-nodes (fetch (identity (lr-fp-addr),

car (lr-init-data-seg-table (params,
car (data-seg-table),
cdr (data-seg-table)))),

lr-free-list-nodes (max-addr ,
car (lr-init-data-seg-table (params,

car (data-seg-table),
cdr (data-seg-table)))),

car (lr-init-data-seg-table (params,
car (data-seg-table),
cdr (data-seg-table))))

6< x ) endlet

Theorem: lr-proper-heapp-car-lr-data-seg-table
((heap-size 6< s-total-heap-reqs (progs, params, heap-size))
∧ s-restrictedp (progs, params))
→ lr-proper-heapp (car (lr-data-seg-table (progs, params, heap-size)))

Theorem: litatom-car-gensym
litatom (car (gensym (initial , num-list , atom-list)))

Theorem: all-litatoms-strip-cdrs-lr-make-temp-name-alist-1
all-litatoms (strip-cdrs (lr-make-temp-name-alist-1 (initial ,

num-list ,
temp-list ,
formals)))

Theorem: all-litatoms-strip-cdrs-lr-make-temp-name-alist
all-litatoms (strip-cdrs (lr-make-temp-name-alist (temp-list , formals)))
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Theorem: lr-proper-p-areasp-car-lr-data-seg-table
lr-proper-p-areasp (car (lr-data-seg-table (progs, params, heap-size)))

Theorem: plist-strip-cdrs
plist (strip-cdrs (x )) = strip-cdrs (x )

Theorem: lr-make-temp-name-alist-1-plist-arg-1
lr-make-temp-name-alist-1 (initial , num-list , plist (temp-list), formals)
= lr-make-temp-name-alist-1 (initial , num-list , temp-list , formals)

Theorem: lr-make-temp-name-alist-plist-arg-1
lr-make-temp-name-alist (plist (temp-list), formals)
= lr-make-temp-name-alist (temp-list , formals)

Theorem: length-lr-make-initial-temps
length (lr-make-initial-temps (temp-vars)) = length (temp-vars)

Theorem: length-strip-cdrs
length (strip-cdrs (alist)) = length (alist)

Theorem: length-pair-formals-with-addresses
length (pair-formals-with-addresses (formals , alist)) = length (formals)

Theorem: s-good-statep-length-s-temp-list
s-good-statep (s, c)
→ (length (s-temp-list (s-prog (s))) = length (s-temps (s)))

Theorem: plistp-comp-programs-1
plistp (comp-programs-1 (progs))

Theorem: proper-p-instructionp-ret
proper-p-instructionp (’(ret), name, p)

Theorem: proper-p-instructionp-eq
proper-p-instructionp (’(eq), name, p)

Theorem: proper-p-instructionp-fetch
proper-p-instructionp (’(fetch), name, p)

Theorem: proper-p-instructionp-deposit
proper-p-instructionp (’(deposit), name, p)

Theorem: proper-p-instructionp-add-addr
proper-p-instructionp (’(add-addr), name, p)

Theorem: proper-p-instructionp-pop-global-free-ptr
lr-proper-heapp (p-data-segment (l))
→ proper-p-instructionp (’(pop-global free-ptr), name, lr->p (l))
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Theorem: proper-p-instructionp-push-global-free-ptr
lr-proper-heapp (p-data-segment (l))
→ proper-p-instructionp (’(push-global free-ptr), name, lr->p (l))

Theorem: proper-p-instructionp-push-local-temp-car
lr-programs-properp (l , table)
→ proper-p-instructionp (’(push-local x), ’car, lr->p (l))

Theorem: proper-p-instructionp-push-local-temp-cdr
lr-programs-properp (l , table)
→ proper-p-instructionp (’(push-local x), ’cdr, lr->p (l))

Theorem: proper-p-instructionp-push-local-temp-cons
lr-programs-properp (l , table)
→ proper-p-instructionp (’(push-local temp), ’cons, lr->p (l))

Theorem: proper-p-instructionp-set-local-temp-cons
lr-programs-properp (l , table)
→ proper-p-instructionp (’(set-local temp), ’cons, lr->p (l))

Theorem: proper-labeled-p-instructionsp-append
plistp (instrs1 )
→ (proper-labeled-p-instructionsp (append (instrs1 , instrs2 ), name, p)

= (proper-labeled-p-instructionsp (instrs1 , name, p)
∧ proper-labeled-p-instructionsp (instrs2 , name, p)))

Theorem: lessp-number-cons-cur-expr-dv-1-listp
listp (cur-expr (pos, body))
→ (number-cons (cur-expr (dv (pos, 1), body))

< number-cons (cur-expr (pos, body)))

Theorem: lessp-number-cons-cur-expr-dv-2-listp
listp (cur-expr (pos, body))
→ (number-cons (cur-expr (dv (pos, 2), body))

< number-cons (cur-expr (pos, body)))

Theorem: lessp-number-cons-cur-expr-dv-3-listp
listp (cur-expr (pos, body))
→ (number-cons (cur-expr (dv (pos, 3), body))

< number-cons (cur-expr (pos, body)))

Theorem: lessp-number-cons-restn-cdr
(listp (pos)
∧ (car (last (pos)) < length (cur-expr (butlast (pos), body)))
∧ listp (cur-expr (butlast (pos), body)))
→ (number-cons (restn (car (last (pos)), cdr (cur-expr (butlast (pos), body))))

< number-cons (restn (car (last (pos)), cur-expr (butlast (pos), body))))
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Theorem: proper-p-instructionp-test-bool-and-jump-label
proper-p-instructionp (list (’test-bool-and-jump, x , lab), name, p)
= find-labelp (lab, program-body (assoc (name, p-prog-segment (p))))

Theorem: proper-p-instructionp-jump-label
proper-p-instructionp (list (’jump, lab), name, p)
= find-labelp (lab, program-body (assoc (name, p-prog-segment (p))))

Theorem: plist-lr-convert-num-to-ascii
plistp (lr-convert-num-to-ascii (number , list)) = plistp (list)

Theorem: zerop-lr-convert-num-to-ascii
(number ' 0)
→ (lr-convert-num-to-ascii (number , list) = cons (ascii-0, list))

Theorem: lr-convert-digit-to-ascii-equal
(lr-convert-digit-to-ascii (m) = lr-convert-digit-to-ascii (n))
= (fix (m) = fix (n))

Theorem: zerop-lr-convert-digit-to-ascii
(number ' 0) → (lr-convert-digit-to-ascii (number) = ascii-0)

Theorem: equal-ascii-0-lr-convert-digit-to-ascii
(lr-convert-digit-to-ascii (number) = identity (ascii-0)) = (number ' 0)

Theorem: length-lr-convert-num-to-ascii
length (lr-convert-num-to-ascii (number , list)) 6< (1 + length (list))

Definition:
induct-hint-22 (n, m, list)
= if n < 10 then t

elseif m < 10 then t
else induct-hint-22 (n ÷ 10,

m ÷ 10,
cons (lr-convert-digit-to-ascii (n mod 10),

list)) endif

Theorem: lr-convert-num-to-ascii-equal-arg1
(lr-convert-num-to-ascii (x , list1 ) = lr-convert-num-to-ascii (x , list2 ))
= (list1 = list2 )

Definition:
induct-hint-23 (n, m, list1 , list2 )
= if n < 10 then t

elseif m < 10 then t
else induct-hint-23 (n ÷ 10,
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m ÷ 10,
cons (lr-convert-digit-to-ascii (n mod 10),

list1 ),
cons (lr-convert-digit-to-ascii (m mod 10),

list2 )) endif

Theorem: lr-convert-num-to-ascii-equal-arg2-lengths-helper-1
(length (list1 ) = length (list2 ))
→ (lr-convert-num-to-ascii (number , cons (x , list1 )) 6= cons (y , list2 ))

Theorem: lr-convert-num-to-ascii-equal-arg2-lengths
((length (list1 ) = length (list2 )) ∧ (list1 6= list2 ))
→ (lr-convert-num-to-ascii (x , list1 )

6= lr-convert-num-to-ascii (y , list2 ))

Theorem: lr-convert-num-to-ascii-equal-arg2-helper-1
(x 6= y)
→ (lr-convert-num-to-ascii (w , cons (x , list))

6= lr-convert-num-to-ascii (z , cons (y , list)))

Theorem: lr-convert-num-to-ascii-equal-arg2
(lr-convert-num-to-ascii (m, list) = lr-convert-num-to-ascii (n, list))
= (fix (m) = fix (n))

Theorem: lr-make-label-equal
(lr-make-label (m) = lr-make-label (n)) = (fix (m) = fix (n))

Theorem: find-labelp-lr-make-label-label-instrs
find-labelp (lr-make-label (m), label-instrs (instrs, n))
= ((m 6< n) ∧ (m < (n + length (instrs))))

Theorem: find-labelp-lr-make-label-comp-body
(n < length (comp-body (body)))
→ find-labelp (lr-make-label (n), comp-body (body))

Theorem: label-instrs-append
(n ∈ N)
→ (label-instrs (append (instrs1 , instrs2 ), n)

= append (label-instrs (instrs1 , n),
label-instrs (instrs2 , n + length (instrs1 ))))

Theorem: proper-p-temp-var-dclsp-all-litatoms-all-undef-addrs
(all-litatoms (strip-cars (temp-var-dcls))
∧ all-undef-addrs (strip-cadrs (temp-var-dcls))
∧ lr-proper-heapp (p-data-segment (p))
∧ lr-proper-p-areasp (p-data-segment (p)))
→ proper-p-temp-var-dclsp (temp-var-dcls, p)
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Theorem: plistp-label-instrs
plistp (label-instrs (instrs , n))

Definition:
not-labelledp-instrs (instrs)
= if listp (instrs)

then (¬ labelledp (car (instrs)))
∧ not-labelledp-instrs (cdr (instrs))

else t endif

Theorem: label-instrs-proper-labeled-p-instructionsp
(proper-labeled-p-instructionsp (instrs , name, p)
∧ not-labelledp-instrs (instrs))
→ proper-labeled-p-instructionsp (label-instrs (instrs , n), name, p)

Theorem: not-labelledp-instrs-append
not-labelledp-instrs (append (instrs1 , instrs2 ))
= (not-labelledp-instrs (instrs1 ) ∧ not-labelledp-instrs (instrs2 ))

Theorem: not-labelledp-instrs-comp-body-1
not-labelledp-instrs (comp-body-1 (flag , body , n))

Theorem: comp-body-1-list-not-listp
(¬ listp (body)) → (comp-body-1 (’list, body , n) = nil)

Theorem: proper-labeled-p-instructionsp-nil
proper-labeled-p-instructionsp (nil, name, p)

Theorem: proper-labeled-p-instructionsp-comp-body-1-helper-1
(proper-labeled-p-instructionsp (comp-body-1 (t, test-body , n1 ),

name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

∧ proper-labeled-p-instructionsp (comp-body-1 (t, then-body , n2 ),
name,
p-state (pc,

ctrl-stk ,
temp-stk ,
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comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

∧ proper-labeled-p-instructionsp (else-instrs,
name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (name, prog-seg)
∧ (((n

+ lr-p-c-size (t, test-body)
+ lr-p-c-size (t, then-body)
+ length (else-instrs)
+ 4)− 1)

< lr-p-c-size (t, program-body (assoc (name, prog-seg)))))
→ proper-labeled-p-instructionsp (comp-if (comp-body-1 (t, test-body , n1 ),

comp-body-1 (t, then-body , n2 ),
else-instrs,
n),

name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Theorem: proper-labeled-p-instructionsp-comp-body-1-helper-2
(listp (body)
∧ ((car (body) = s-temp-fetch) ∨ (car (body) = s-temp-test))
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∧ lr-proper-exprp (t,
body ,
program-names ,
formal-vars (assoc (name, prog-seg)),
strip-cars (temp-var-dcls (assoc (name, prog-seg))),
table)

∧ definedp (name, prog-seg))
→ proper-labeled-p-instructionsp (list (list (’push-local, caddr (body))),

name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Theorem: proper-labeled-p-instructionsp-comp-body-1-helper-3
(listp (body)
∧ ((car (body) = s-temp-eval) ∨ (car (body) = s-temp-test))
∧ lr-proper-exprp (t,

body ,
program-names ,
formal-vars (assoc (name, prog-seg)),
strip-cars (temp-var-dcls (assoc (name, prog-seg))),
table)

∧ definedp (name, prog-seg))
→ proper-labeled-p-instructionsp (list (list (’set-local, caddr (body))),

name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Theorem: proper-labeled-p-instructionsp-comp-body-1-helper-4
(listp (body)
∧ (car (body) = s-temp-test)
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∧ proper-labeled-p-instructionsp (comp-body-1 (t, cadr (body), n + 4),
name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

∧ lr-proper-exprp (t,
body ,
program-names ,
formal-vars (assoc (name, prog-seg)),
strip-cars (temp-var-dcls (assoc (name, prog-seg))),
table)

∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (lr-p-c-size (t, program-body (assoc (name, prog-seg)))

6< (n + lr-p-c-size (t, cadr (body)) + 7))
∧ definedp (name, prog-seg))
→ proper-labeled-p-instructionsp (comp-temp-test (body ,

comp-body-1 (t,
cadr (body),
n + 4),

n),
name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Definition:
assoc-cdr (x , l)
= if listp (l)

then if x = cdar (l) then car (l)
else assoc-cdr (x , cdr (l)) endif

else f endif

288



Theorem: lr-s-similar-const-table-lr-valp-member-strip-cdrs
((addr ∈ strip-cdrs (table)) ∧ lr-s-similar-const-table (table, data-seg))
→ lr-valp (car (assoc-cdr (addr , table)), addr , data-seg)

Theorem: lr-s-similar-const-table-type-addr-member-strip-cdrs
((addr ∈ strip-cdrs (table)) ∧ lr-s-similar-const-table (table, data-seg))
→ ((type (addr) = ’addr)

∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = identity (lr-heap-name))
∧ (type (fetch (add-addr (addr , identity (lr-ref-count-offset)),

data-seg))
= ’nat))

Theorem: proper-labeled-p-instructionsp-comp-body-1-helper-5
(listp (body)
∧ (car (body) = ’quote)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-proper-exprp (t,

body ,
strip-logic-fnames (cdr (prog-seg)),
formal-vars (assoc (name, prog-seg)),
strip-cars (temp-var-dcls (assoc (name, prog-seg))),
table)

∧ lr-s-similar-const-table (table, data-seg)
∧ definedp (name, prog-seg))
→ proper-labeled-p-instructionsp (list (list (’push-constant,

cadr (body))),
name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Event: Disable lr-s-similar-const-table-type-addr-member-strip-cdrs.

Theorem: lr-proper-exprp-flag-list-cdr-funcall
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(listp (body)
∧ (car (body) 6= ’if)
∧ (car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote)
∧ lr-proper-exprp (t, body , program-names , formals , temps , table))
→ lr-proper-exprp (’list, cdr (body), program-names, formals, temps, table)

Theorem: proper-labeled-p-instructionsp-comp-body-1-helper-6-1
(listp (body)
∧ (car (body) 6= ’if)
∧ (car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote)
∧ lr-proper-exprp (t,

body ,
strip-logic-fnames (cdr (prog-seg)),
formals ,
temps,
table)

∧ definedp (car (body), p-runtime-support-programs))
→ proper-labeled-p-instructionsp (list (list (’call, car (body))),

name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Theorem: proper-labeled-p-instructionsp-comp-body-1-helper-6-2
(listp (body)
∧ (car (body) 6= ’if)
∧ (car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote)
∧ lr-proper-exprp (t,

body ,
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strip-logic-fnames (cdr (prog-seg)),
formals,
temps ,
table)

∧ (¬ definedp (car (body), p-runtime-support-programs))
∧ all-user-fnamesp (cdr (strip-cars (prog-seg)))
∧ definedp (name, prog-seg))
→ proper-labeled-p-instructionsp (list (list (’call,

user-fname (car (body)))),
name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Theorem: proper-labeled-p-instructionsp-comp-body-1-helper-7
((¬ listp (body))
∧ lr-proper-exprp (t,

body ,
program-names,
formal-vars (assoc (name, prog-seg)),
temps,
table)

∧ definedp (name, prog-seg))
→ proper-labeled-p-instructionsp (list (list (’push-local, body)),

name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Theorem: not-definedp-not-listp
(¬ listp (alist)) → (¬ definedp (name, alist))

Theorem: proper-labeled-p-instructionsp-comp-body-1
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(lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ all-user-fnamesp (cdr (strip-cars (prog-seg)))
∧ lr-proper-exprp (if flag = ’list then ’list

else t endif,
body ,
strip-logic-fnames (cdr (prog-seg)),
formal-vars (assoc (name, prog-seg)),
strip-cars (temp-var-dcls (assoc (name, prog-seg))),
table)

∧ lr-s-similar-const-table (table, data-seg)
∧ ((n + lr-p-c-size (if flag = ’list then ’list

else t endif,
body))

< (1 + lr-p-c-size (t, program-body (assoc (name, prog-seg)))))
∧ definedp (name, prog-seg))
→ proper-labeled-p-instructionsp (comp-body-1 (flag , body , n),

name,
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Theorem: all-undef-addrs-strip-cadrs-lr-make-temp-var-dcls
all-undef-addrs (strip-cadrs (lr-make-temp-var-dcls (temp-alist)))

Theorem: proper-p-programp-p-car-code
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< s-max-subr-reqs)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
→ proper-p-programp (p-car-code, lr->p (l))

Theorem: proper-p-programp-p-cdr-code
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< s-max-subr-reqs)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
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→ proper-p-programp (p-cdr-code, lr->p (l))

Theorem: proper-p-programp-p-cons-code
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< s-max-subr-reqs)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
→ proper-p-programp (p-cons-code, lr->p (l))

Theorem: proper-p-programp-p-false-code
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< log (2, lr-false-tag))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
→ proper-p-programp (p-false-code, lr->p (l))

Theorem: proper-p-programp-p-falsep-code
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< log (2, lr-false-tag))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
→ proper-p-programp (p-falsep-code, lr->p (l))

Theorem: proper-p-programp-p-listp-code
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< s-max-subr-reqs)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
→ proper-p-programp (p-listp-code, lr->p (l))

Theorem: proper-p-programp-p-nlistp-code
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< s-max-subr-reqs)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
→ proper-p-programp (p-nlistp-code, lr->p (l))

Theorem: proper-p-programp-p-true-code
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
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∧ (p-word-size (l) 6< log (2, lr-true-tag))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
→ proper-p-programp (p-true-code, lr->p (l))

Theorem: proper-p-programp-p-truep-code
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< log (2, lr-true-tag))
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
→ proper-p-programp (p-truep-code, lr->p (l))

Theorem: lr-s-similar-const-table-lr-data-seg-table-body
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ s-data-seg-body-restrictedp (flag , body)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-body (flag , body , data-seg , table)))

→ lr-s-similar-const-table (cdr (lr-data-seg-table-body (flag ,
body ,
data-seg ,
table)),

car (lr-data-seg-table-body (flag ,
body ,
data-seg ,
table)))

Theorem: lr-s-similar-const-table-lr-data-seg-table-list
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ s-data-seg-list-restrictedp (progs)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-list (progs, data-seg , table)))

→ lr-s-similar-const-table (cdr (lr-data-seg-table-list (progs,
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data-seg ,
table)),

car (lr-data-seg-table-list (progs,
data-seg ,
table)))

Theorem: lr-s-similar-const-table-lr-init-data-seg-table
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ s-init-data-seg-restrictedp (params)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table)))

→ lr-s-similar-const-table (cdr (lr-init-data-seg-table (params,
data-seg ,
table)),

car (lr-init-data-seg-table (params,
data-seg ,
table)))

Theorem: lr-s-similar-const-table-cdr-car-lr-data-seg-table
((heap-size 6< s-total-heap-reqs (progs, params, heap-size))
∧ s-restrictedp (progs, params))
→ lr-s-similar-const-table (cdr (lr-data-seg-table (progs, params, heap-size)),

car (lr-data-seg-table (progs, params, heap-size)))

Definition:
induct-hint-3 (flag , pos, prog)
= if flag = ’list

then if pos ' nil then t
elseif listp (restn (car (last (pos)),

cur-expr (butlast (pos), s-body (prog))))
then induct-hint-3 (t, pos, prog)

∧ induct-hint-3 (’list, nx (pos), prog)
else t endif

elseif listp (cur-expr (pos, s-body (prog)))
then if car (cur-expr (pos, s-body (prog))) = ’if

then induct-hint-3 (t, dv (pos, 1), prog)
∧ induct-hint-3 (t, dv (pos, 2), prog)
∧ induct-hint-3 (t, dv (pos, 3), prog)

elseif car (cur-expr (pos, s-body (prog))) = s-temp-fetch then t
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elseif (car (cur-expr (pos, s-body (prog))) = s-temp-eval)
∨ (car (cur-expr (pos, s-body (prog))) = s-temp-test)

then induct-hint-3 (t, dv (pos, 1), prog)
elseif car (cur-expr (pos, s-body (prog))) = ’quote then t
else induct-hint-3 (’list, dv (pos, 1), prog) endif

else t endif

Theorem: lr-proper-exprp-p-lr-compile-programs-helper-1
listp (pos)
→ (lr-compile-body (t,

get (car (last (pos)), cur-expr (butlast (pos), body)),
temp-alist ,
table)

= lr-compile-body (t, cur-expr (pos, body), temp-alist , table))

Theorem: good-posp1-cons-lessp-4-if-s-proper-exprp
((car (cur-expr (pos, body)) = ’if)
∧ good-posp1 (pos, body)
∧ s-proper-exprp (t, body , program-names, formals, temp-list))
→ (good-posp1 (dv (pos, 1), body)

∧ good-posp1 (dv (pos, 2), body)
∧ good-posp1 (dv (pos, 3), body))

Theorem: lr-proper-exprp-flag-list-cons
lr-proper-exprp (’list, cons (car , cdr), program-names , formals , temps, table)
= (lr-proper-exprp (’list, cdr , program-names, formals , temps , table)

∧ lr-proper-exprp (t, car , program-names , formals , temps, table))

Theorem: lr-proper-exprp-flag-list-nil
lr-proper-exprp (’list, nil, program-names, formals, temps , table)

Theorem: length-3-cdr-cddr-not-nil
((length (x ) = 3) ∧ plistp (x ))
→ ((cdddr (x ) = nil) ∧ (cddr (x ) 6= nil) ∧ (cdr (x ) 6= nil))

Theorem: lr-proper-exprp-flag-not-list-cons-if-helper
(flag 6= ’list)
→ (lr-proper-exprp (flag ,

list (’if, test , then, else),
program-names ,
formals,
temp-alist ,
table)

= ((’if 6∈ program-names)
∧ lr-proper-exprp (t,
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test ,
program-names,
formals ,
temp-alist ,
table)

∧ lr-proper-exprp (t,
then,
program-names ,
formals ,
temp-alist ,
table)

∧ lr-proper-exprp (t,
else,
program-names ,
formals ,
temp-alist ,
table)))

Theorem: lr-proper-exprp-flag-not-list-cons-if
((flag 6= ’list)
∧ listp (cur-expr (pos, body))
∧ (car (cur-expr (pos, body)) = ’if)
∧ good-posp1 (pos, body)
∧ lr-proper-exprp (t,

lr-compile-body (t,
cur-expr (dv (pos, 3), body),
temp-alist ,
table),

program-names ,
formals,
strip-cdrs (temp-alist),
table)

∧ lr-proper-exprp (t,
lr-compile-body (t,

cur-expr (dv (pos, 2), body),
temp-alist ,
table),

program-names ,
formals,
strip-cdrs (temp-alist),
table)

∧ lr-proper-exprp (t,
lr-compile-body (t,

cur-expr (dv (pos, 1), body),
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temp-alist ,
table),

program-names ,
formals ,
strip-cdrs (temp-alist),
table)

∧ s-proper-exprp (t, body , program-names , formals , strip-cars (temp-alist)))
→ lr-proper-exprp (flag ,

cons (’if,
lr-compile-body (’list,

cdr (cur-expr (pos, body)),
temp-alist ,
table)),

program-names,
formals,
strip-cdrs (temp-alist),
table)

Theorem: lr-proper-exprp-flag-not-list-cons-temp-fetch
((flag 6= ’list)
∧ good-posp1 (pos, body)
∧ listp (cur-expr (pos, body))
∧ (car (cur-expr (pos, body)) = s-temp-fetch)
∧ s-proper-exprp (t, body , program-names , formals, strip-cars (temp-alist)))
→ lr-proper-exprp (flag ,

list (identity (s-temp-fetch),
x ,
cdr (assoc (cadr (cur-expr (pos, body)), temp-alist))),

program-names ,
formals,
strip-cdrs (temp-alist),
table)

Theorem: good-posp1-dv-1-temp-eval-test
(good-posp1 (pos, body)
∧ ((car (cur-expr (pos, body)) = s-temp-eval)

∨ (car (cur-expr (pos, body)) = s-temp-test))
∧ listp (cur-expr (pos, body)))
→ good-posp1 (dv (pos, 1), body)

Theorem: length-last-fact
(length (x ) = 1) → (last (x ) = x )

Theorem: lr-proper-exprp-flag-not-list-cons-temp-eval
((flag 6= ’list)
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∧ listp (cur-expr (pos, body))
∧ good-posp1 (pos, body)
∧ (car (cur-expr (pos, body)) = s-temp-eval)
∧ lr-proper-exprp (t,

lr-compile-body (t,
cur-expr (dv (pos, 1), body),
temp-alist ,
table),

program-names ,
formals ,
strip-cdrs (temp-alist),
table)

∧ s-proper-exprp (t, body , program-names, formals, strip-cars (temp-alist)))
→ lr-proper-exprp (flag ,

list (identity (s-temp-eval),
lr-compile-body (t,

cadr (cur-expr (pos, body)),
temp-alist ,
table),

cdr (assoc (cadr (cur-expr (pos, body)), temp-alist))),
program-names ,
formals,
strip-cdrs (temp-alist),
table)

Theorem: lr-proper-exprp-flag-not-list-cons-temp-test
((flag 6= ’list)
∧ listp (cur-expr (pos, body))
∧ good-posp1 (pos, body)
∧ (car (cur-expr (pos, body)) = s-temp-test)
∧ lr-proper-exprp (t,

lr-compile-body (t,
cur-expr (dv (pos, 1), body),
temp-alist ,
table),

program-names ,
formals ,
strip-cdrs (temp-alist),
table)

∧ s-proper-exprp (t, body , program-names, formals, strip-cars (temp-alist)))
→ lr-proper-exprp (flag ,

list (identity (s-temp-test),
lr-compile-body (t,

cadr (cur-expr (pos, body)),
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temp-alist ,
table),

cdr (assoc (cadr (cur-expr (pos, body)), temp-alist))),
program-names ,
formals,
strip-cdrs (temp-alist),
table)

Definition:
lr-data-seg-table-body-n (n, body , data-seg , table)
= if n ' 0 then cons (data-seg , table)

else lr-data-seg-table-body-n (n − 1,
cdr (body),
car (lr-data-seg-table-body (t,

car (body),
data-seg ,
table)),

cdr (lr-data-seg-table-body (t,
car (body),
data-seg ,
table))) endif

Definition:
induct-hint-20 (pos, body , data-seg , table)
= if pos ' nil then t

elseif body ' nil then f
elseif car (body) = s-temp-fetch then f
elseif (car (body) = s-temp-eval) ∨ (car (body) = s-temp-test)
then induct-hint-20 (cdr (pos), cadr (body), data-seg , table)
elseif car (body) = ’quote then f
else induct-hint-20 (cdr (pos),

get (car (pos), body),
car (lr-data-seg-table-body-n (car (pos) − 1,

cdr (body),
data-seg ,
table)),

cdr (lr-data-seg-table-body-n (car (pos) − 1,
cdr (body),
data-seg ,
table))) endif

Theorem: lr-data-seg-body-list-n
lr-data-seg-table-body (’list, body , data-seg , table)
= lr-data-seg-table-body-n (length (body), body , data-seg , table)
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Theorem: definedp-table-definedp-cdr-lr-data-seg-table-body-n
definedp (object , table)
→ definedp (object , cdr (lr-data-seg-table-body-n (n, body , data-seg , table)))

Theorem: definedp-lr-data-seg-body-list-n-not-lessp
(definedp (x , cdr (lr-data-seg-table-body-n (n, body , data-seg , table)))
∧ (m 6< n))
→ definedp (x , cdr (lr-data-seg-table-body-n (m, body , data-seg , table)))

Theorem: lr-data-seg-table-body-add1-opener
(n < length (body))
→ (lr-data-seg-table-body-n (1 + n, body , data-seg , table)

= lr-data-seg-table-body (t,
get (n, body),
car (lr-data-seg-table-body-n (n,

body ,
data-seg ,
table)),

cdr (lr-data-seg-table-body-n (n,
body ,
data-seg ,
table))))

Theorem: lr-data-seg-table-body-flag-t-flag-t
(definedp (object ,

cdr (lr-data-seg-table-body (t,
get (n, body),
car (lr-data-seg-table-body-n (n,

body ,
data-seg ,
table)),

cdr (lr-data-seg-table-body-n (n,
body ,
data-seg ,
table)))))

∧ (n ∈ N)
∧ (n < length (body)))
→ definedp (object ,

cdr (lr-data-seg-table-body (’list, body , data-seg , table)))

Theorem: definedp-cadr-cur-expr-quote-lr-data-seg-table-body
(listp (cur-expr (pos, body))
∧ (car (cur-expr (pos, body)) = ’quote)
∧ good-posp1 (pos, body))
→ definedp (cadr (cur-expr (pos, body)),

cdr (lr-data-seg-table-body (t, body , data-seg , table)))
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Theorem: definedp-cadr-cur-expr-quote-lr-data-seg-table-list
(listp (cur-expr (pos, s-body (prog)))
∧ (car (cur-expr (pos, s-body (prog))) = ’quote)
∧ (prog ∈ progs)
∧ good-posp1 (pos, s-body (prog)))
→ definedp (cadr (cur-expr (pos, s-body (prog))),

cdr (lr-data-seg-table-list (progs, data-seg , table)))

Theorem: definedp-cadr-cur-expr-quote-lr-data-seg-table
(listp (cur-expr (pos, s-body (prog)))
∧ (car (cur-expr (pos, s-body (prog))) = ’quote)
∧ (prog ∈ progs)
∧ good-posp1 (pos, s-body (prog)))
→ definedp (cadr (cur-expr (pos, s-body (prog))),

cdr (lr-data-seg-table (progs, params, heap-size)))

Theorem: lr-proper-exprp-p-lr-compile-programs-helper-2
(listp (cur-expr (pos, s-body (prog)))
∧ (car (cur-expr (pos, s-body (prog))) = ’quote)
∧ (prog ∈ progs)
∧ good-posp1 (pos, s-body (prog))
∧ (heap-size 6< s-total-heap-reqs (progs, params, heap-size))
∧ s-restrictedp (progs, params))
→ (type (cdr (assoc (cadr (cur-expr (pos, s-body (prog))),

cdr (lr-data-seg-table (progs, params, heap-size)))))
= ’addr)

Theorem: good-posp-dv-1-funcall-opened
(listp (cur-expr (pos, s-body (prog)))
∧ (car (cur-expr (pos, s-body (prog))) 6= ’if)
∧ (car (cur-expr (pos, s-body (prog))) 6= s-temp-eval)
∧ (car (cur-expr (pos, s-body (prog))) 6= s-temp-test)
∧ (car (cur-expr (pos, s-body (prog))) 6= s-temp-fetch)
∧ (car (cur-expr (pos, s-body (prog))) 6= ’quote)
∧ good-posp1 (pos, s-body (prog)))
→ good-posp (’list, dv (pos, 1), s-body (prog))

Theorem: s-restrict-subrps-list-lr-proper-get-t
(s-restrict-subrps (’list, cdr (expr))
∧ listp (expr)
∧ (n 6' 0)
∧ (n < length (expr)))
→ s-restrict-subrps (t, get (n, expr))

Theorem: s-restrict-subrps-t-lr-proper-get-t
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((car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote)
∧ listp (body)
∧ s-proper-exprp (t, body , program-names , formals, temp-list)
∧ (n 6' 0)
∧ (n < length (body))
∧ s-restrict-subrps (t, body))
→ s-restrict-subrps (t, get (n, body))

Event: Disable s-restrict-subrps-list-lr-proper-get-t.

Theorem: s-restrict-subrps-s-restrict-subrps-cur-expr
(s-restrict-subrps (t, body)
∧ s-proper-exprp (t, body , program-names , formals , temp-list)
∧ good-posp1 (pos, body))
→ s-restrict-subrps (t, cur-expr (pos, body))

Theorem: lr-proper-exprp-flag-not-list-cons-funcall
((flag 6= ’list)
∧ listp (cur-expr (pos, s-body (prog)))
∧ good-posp1 (pos, s-body (prog))
∧ (car (cur-expr (pos, s-body (prog))) 6= ’if)
∧ (car (cur-expr (pos, s-body (prog))) 6= s-temp-fetch)
∧ (car (cur-expr (pos, s-body (prog))) 6= s-temp-eval)
∧ (car (cur-expr (pos, s-body (prog))) 6= s-temp-test)
∧ (car (cur-expr (pos, s-body (prog))) 6= ’quote)
∧ lr-proper-exprp (’list,

lr-compile-body (’list,
cdr (cur-expr (pos, s-body (prog))),
temp-alist ,
table),

program-names ,
formals,
temps,
table)

∧ s-restrict-subrps (t, s-body (prog))
∧ s-proper-exprp (t, s-body (prog), program-names , formals , temp-list))
→ lr-proper-exprp (flag ,

cons (car (cur-expr (pos, s-body (prog))),
lr-compile-body (’list,

cdr (cur-expr (pos, s-body (prog))),
temp-alist ,
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table)),
program-names ,
formals ,
temps ,
table)

Theorem: lr-proper-exprp-flag-not-list-not-listp
((flag 6= ’list)
∧ (¬ listp (cur-expr (pos, body)))
∧ good-posp1 (pos, body)
∧ s-proper-exprp (t, body , program-names , formals, temp-list))
→ lr-proper-exprp (flag ,

cur-expr (pos, body),
program-names,
formals,
temps ,
table)

Theorem: lr-proper-exprp-p-lr-compile-programs
(s-restrict-subrps (t, s-body (prog))
∧ (prog ∈ progs)
∧ subsetp (progs, all-progs)
∧ s-proper-exprp (t,

s-body (prog),
program-names ,
formals,
strip-cars (temp-alist))

∧ good-posp (flag , pos, s-body (prog))
∧ (heap-size 6< s-total-heap-reqs (all-progs, params, heap-size))
∧ s-restrictedp (all-progs, params))
→ lr-proper-exprp (flag ,

lr-compile-body (flag ,
if flag = ’list
then restn (car (last (pos)),

cur-expr (butlast (pos),
s-body (prog)))

else cur-expr (pos, s-body (prog)) endif,
temp-alist ,
cdr (lr-data-seg-table (all-progs,

params,
heap-size))),

program-names,
formals ,
strip-cdrs (temp-alist),
cdr (lr-data-seg-table (all-progs, params, heap-size)))
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Event: Disable lr-proper-exprp-p-lr-compile-programs-helper-1.

Theorem: all-litatoms-s-formals-member-s-programs-properp
((prog ∈ progs) ∧ s-programs-properp (progs, program-names))
→ all-litatoms (s-formals (prog))

Theorem: s-restrict-subrps-s-body-member-s-restrict-subrps-progs
(s-restrict-subrps-progs (progs) ∧ (prog ∈ progs))
→ s-restrict-subrps (t, s-body (prog))

Theorem: lr-proper-exprp-p-lr-compile-programs-flag-t
(s-restrict-subrps-progs (all-progs)
∧ (prog ∈ all-progs)
∧ s-programs-properp (all-progs, program-names)
∧ (heap-size 6< s-total-heap-reqs (all-progs, params, heap-size))
∧ s-restrictedp (all-progs, params)
∧ (temp-alist = lr-make-temp-name-alist (s-temp-list (prog),

s-formals (prog))))
→ lr-proper-exprp (t,

lr-compile-body (t,
s-body (prog),
temp-alist ,
cdr (lr-data-seg-table (all-progs,

params,
heap-size))),

program-names,
s-formals (prog),
strip-cdrs (temp-alist),
cdr (lr-data-seg-table (all-progs, params, heap-size)))

Theorem: lr-programs-properp-1-lr-compile-programs
(s-programs-properp (all-progs, program-names)
∧ s-programs-okp (progs)
∧ s-restrict-subrps-progs (all-progs)
∧ subsetp (progs, all-progs)
∧ (heap-size 6< s-total-heap-reqs (all-progs, params, heap-size))
∧ s-restrictedp (all-progs, params))
→ lr-programs-properp-1 (lr-compile-programs (progs,

cdr (lr-data-seg-table (all-progs,
params,
heap-size))),

program-names,
cdr (lr-data-seg-table (all-progs,

params,
heap-size)))
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Event: Disable all-litatoms-s-formals-member-s-programs-properp.

Theorem: subsetp-cdr
subsetp (cdr (x ), x )

Theorem: lr-programs-properp-s->lr-opened
(s-good-statep (s, c)
∧ s-restrict-subrps-progs (s-progs (s))
∧ (heap-size 6< s-total-heap-reqs (s-progs (s), s-params (s), heap-size))
∧ s-restrictedp (s-progs (s), s-params (s))
∧ litatom (name (car (s-progs (s)))))
→ lr-programs-properp (s->lr1 (s,

p-state (pc,
ctrl-stk ,
temp-stk ,
anything ,
data-seg ,
max-ctrl ,
max-temp,
word-size,
nil),

cdr (lr-data-seg-table (s-progs (s),
s-params (s),
heap-size))),

cdr (lr-data-seg-table (s-progs (s),
s-params (s),
heap-size)))

Theorem: fall-off-proofp-append-cons-ret
fall-off-proofp (append (instrs, list (list (’dl, label , comment , ’(ret)))))

Theorem: proper-labeled-p-instructionsp-label-ret
litatom (label)
→ proper-labeled-p-instructionsp (list (list (’dl, label , comment , ’(ret))),

name,
p)

Theorem: member-definedp-car
(x ∈ y) → definedp (car (x ), y)

Theorem: all-litatoms-s-formals-member-lr-programs-properp
((prog ∈ prog-seg) ∧ (¬ all-litatoms (formal-vars (prog))))
→ (¬ lr-programs-properp-1 (prog-seg , program-names , table))
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Theorem: properp-p-temp-var-dclps-member-lr-programs-properp
((prog ∈ progs)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-programs-properp-1 (progs, strip-logic-fnames (cdr (prog-seg)), table))
→ proper-p-temp-var-dclsp (temp-var-dcls (prog),

p-state (pc,
ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Theorem: member-f-definedp-0
(f ∈ alist) → definedp (0, alist)

Theorem: member-no-duplicatesp-assoc-equal
((x ∈ alist) ∧ no-duplicatesp (strip-cars (alist)) ∧ good-alistp (alist))
→ (assoc (car (x ), alist) = x )

Event: Disable member-f-definedp-0.

Theorem: lr-proper-exprp-program-body-not-listp
(¬ listp (prog))
→ (¬ lr-proper-exprp (t, program-body (prog), pnames, formals, temps, table))

Theorem: good-alistp-lr-programs-properp
(¬ good-alistp (prog-seg))
→ (¬ lr-programs-properp-1 (prog-seg , program-names , table))

Event: Disable lr-proper-exprp-program-body-not-listp.

Theorem: proper-p-prog-segmentp-comp-programs-1-helper
(lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-programs-properp-1 (prog-seg ,

strip-logic-fnames (cdr (prog-seg)),
table)

∧ all-user-fnamesp (cdr (strip-cars (prog-seg)))
∧ lr-s-similar-const-table (table, data-seg)
∧ (prog ∈ prog-seg)
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∧ no-duplicatesp (strip-cars (prog-seg)))
→ proper-labeled-p-instructionsp (comp-body-1 (t, program-body (prog), 0),

car (prog),
p-state (pc,

ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw))

Theorem: proper-p-prog-segmentp-comp-programs-1
(lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-programs-properp-1 (prog-seg ,

strip-logic-fnames (cdr (prog-seg)),
table)

∧ all-user-fnamesp (cdr (strip-cars (prog-seg)))
∧ lr-s-similar-const-table (table, data-seg)
∧ no-duplicatesp (strip-cars (prog-seg))
∧ subsetp (progs, prog-seg)
∧ all-litatoms (strip-cars (progs)))
→ proper-p-prog-segmentp (comp-programs-1 (progs),

p-state (pc,
ctrl-stk ,
temp-stk ,
comp-programs (prog-seg),
data-seg ,
max-ctrl-stk-size,
max-temp-stk-size,
word-size,
psw))

Event: Disable all-litatoms-s-formals-member-lr-programs-properp.

Theorem: proper-p-instructionp-set-global
adpp (cons (name, 0), p-data-segment (l))
→ proper-p-instructionp (list (’set-global, name), x , lr->p (l))

Theorem: proper-p-programp-append-car-prog-segment
(lr-programs-properp-1 (prog-seg , strip-logic-fnames (cdr (prog-seg)), table)
∧ definedp (area-name (p-pc (l)), p-prog-segment (l))
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∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l))
∧ lr-s-similar-const-table (table, p-data-segment (l))
∧ adpp (untag (lr-answer-addr), p-data-segment (l))
∧ (prog-seg = p-prog-segment (l))
∧ all-litatoms (strip-cars (prog-seg))
∧ all-user-fnamesp (strip-cars (cdr (p-prog-segment (l)))))
→ proper-p-programp (cons (name (car (prog-seg)),

cons (formal-vars (car (prog-seg)),
cons (temp-var-dcls (car (prog-seg)),

append (label-instrs (comp-body-1 (t,
program-body (car (prog-seg)),
0),

0),
list (list (’dl,

lr-make-label (n1 ),
coment1 ,
list (’set-global,

identity (area-name (lr-answer-addr)))),
list (’dl,

lr-make-label (n2 ),
comment2 ,
’(ret))))))),

lr->p (l))

Theorem: all-litatoms-all-user-fnamesp-plistp
(all-user-fnamesp (list) ∧ plistp (list)) → all-litatoms (list)

Theorem: plistp-strip-cars
plistp (strip-cars (x ))

Theorem: lr-programs-properp-all-user-fnamesp-strip-cars-cdr
lr-programs-properp (l , table)
→ all-user-fnamesp (strip-cars (cdr (p-prog-segment (l))))

Theorem: lr-programs-properp-caar-main
lr-programs-properp (l , table) → (caar (p-prog-segment (l)) = ’main)

Theorem: proper-p-prog-segmentp-p-runtime-support-programs
(lr-programs-properp (l , table)
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< s-max-subr-reqs)
∧ lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l)))
→ proper-p-prog-segmentp (p-runtime-support-programs, lr->p (l))
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Theorem: proper-p-prog-segmentp-comp-programs
(lr-proper-heapp (p-data-segment (l))
∧ lr-proper-p-areasp (p-data-segment (l))
∧ (progs = p-prog-segment (l))
∧ lr-programs-properp (l , table)
∧ lr-s-similar-const-table (table, p-data-segment (l))
∧ no-duplicatesp (strip-cars (p-prog-segment (l)))
∧ (p-word-size (l) ∈ N)
∧ (p-word-size (l) 6< s-max-subr-reqs)
∧ adpp (untag (lr-answer-addr), p-data-segment (l)))
→ proper-p-prog-segmentp (comp-programs (progs), lr->p (l))

Event: Disable lr-programs-properp-caar-main.

Theorem: no-duplicatesp-remove-duplicates
no-duplicatesp (remove-duplicates (x ))

Theorem: all-p-objectps-put
(all-p-objectps (lst , p) ∧ p-objectp (value, p) ∧ (offset < length (lst)))
→ all-p-objectps (put (value, offset , lst), p)

Theorem: proper-p-data-segmentp-deposit-helper
(proper-p-data-segmentp (data-seg , p)
∧ (offset (addr) < length (cdr (assoc (area-name (addr), data-seg))))
∧ p-objectp (value, p))
→ proper-p-data-segmentp (deposit (value, addr , data-seg), p)

Theorem: proper-p-data-segmentp-deposit
(proper-p-data-segmentp (data-seg , p)
∧ adpp (untag (addr), data-seg)
∧ p-objectp (value, p))
→ proper-p-data-segmentp (deposit (value, addr , data-seg), p)

Theorem: all-p-objectps-get
(all-p-objectps (lst , p)
∧ (offset < length (lst))
∧ all-p-objectps (lst , p))
→ p-objectp (get (offset , lst), p)

Theorem: proper-p-data-segmentp-fetch
(proper-p-data-segmentp (data-seg , p)
∧ (offset (addr) < length (cdr (assoc (area-name (addr), data-seg))))
∧ definedp (area-name (addr), data-seg))
→ p-objectp (fetch (addr , data-seg), p)
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Theorem: lr-s-similar-const-table-p-objectp-definedp
(lr-s-similar-const-table (table, data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (flag , object2 , data-seg , table))

∧ definedp (object1 , cdr (lr-compile-quote (flag , object2 , data-seg , table)))
∧ same-signature (p-data-segment (p), data-seg)
∧ s-restricted-objectp (flag , object2 ))
→ p-objectp (cdr (assoc (object1 ,

cdr (lr-compile-quote (flag , object2 , data-seg , table)))),
p)

Theorem: lessp-x-sub1-facts
(x < ((y − 1) − 1)) → ((x < y) ∧ (x < (y − 1)))

Theorem: proper-p-data-segmentp-deposit-a-list-cons
((area-name (addr) = lr-heap-name)
∧ adpp (untag (addr), data-seg)
∧ ((offset (addr) + 3) < length (cdr (assoc (lr-heap-name, data-seg))))
∧ p-objectp (a, p)
∧ p-objectp (b, p)
∧ p-objectp (c, p)
∧ p-objectp (d , p)
∧ proper-p-data-segmentp (data-seg , p))
→ proper-p-data-segmentp (deposit-a-list (list (a, b, c, d), addr , data-seg), p)

Theorem: proper-p-data-segmentp-deposit-a-list-cons-cons
let ds-tab be lr-compile-quote (’list, list (x , y), data-seg , table),

count-nodes be lr-count-free-nodes (fetch (lr-fp-addr, data-seg),
lr-free-list-nodes (lr-max-node (data-seg),

data-seg),
data-seg)

in
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ definedp (f, table)
∧ ((count-nodes − 1)

6< s-heap-reqs (’list, list (x , y), data-seg , table))
∧ (count-nodes 6= 0)
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∧ proper-p-data-segmentp (car (ds-tab), p)
∧ ((length (cdr (assoc (lr-heap-name, data-seg))) − 1)

6< (offset (fetch (lr-fp-addr, car (ds-tab)))
+ lr-node-size))

∧ (p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-max-subr-reqs)
∧ same-signature (p-data-segment (p), data-seg)
∧ s-restricted-objectp (’list, list (x , y)))
→ proper-p-data-segmentp (deposit-a-list (list (identity (tag (’nat,

lr-cons-tag)),
identity (tag (’nat,

1)),
cdr (assoc (x ,

cdr (ds-tab))),
cdr (assoc (y ,

cdr (ds-tab)))),
fetch (identity (lr-fp-addr),

car (ds-tab)),
car (ds-tab)),

p) endlet

Theorem: proper-p-data-segmentp-deposit-a-list-cons-numberp
(lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ (p-word-size (p) 6< log (2, number))
∧ (number ∈ N)
∧ proper-p-data-segmentp (data-seg , p)
∧ ((length (cdr (assoc (lr-heap-name, data-seg))) − 1)

6< (offset (fetch (lr-fp-addr, data-seg)) + lr-node-size))
∧ (p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-max-subr-reqs)
∧ same-signature (p-data-segment (p), data-seg))
→ proper-p-data-segmentp (deposit-a-list (list (identity (tag (’nat,

lr-add1-tag)),
identity (tag (’nat, 1)),
tag (’nat, number),
identity (lr-undef-addr)),

fetch (identity (lr-fp-addr),
data-seg),

data-seg),
p)

Theorem: proper-p-data-segmentp-deposit-a-list-cons-truep
(lr-proper-p-areasp (data-seg)
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∧ lr-proper-heapp (data-seg)
∧ proper-p-data-segmentp (data-seg , p)
∧ ((length (cdr (assoc (lr-heap-name, data-seg))) − 1)

6< (offset (fetch (lr-fp-addr, data-seg)) + lr-node-size))
∧ (p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< log (2, lr-true-tag))
∧ same-signature (p-data-segment (p), data-seg))
→ proper-p-data-segmentp (deposit-a-list (list (identity (tag (’nat,

lr-true-tag)),
identity (tag (’nat, 1)),
identity (lr-undef-addr),
identity (lr-undef-addr)),

fetch (identity (lr-fp-addr),
data-seg),

data-seg),
p)

Event: Disable proper-p-data-segmentp-deposit-a-list-cons.

Theorem: s-ws-reqs-flag-not-list-t
((flag 6= ’list) ∧ (¬ definedp (t, table)))
→ (s-ws-reqs (flag , t, data-seg , table) = identity (log (2, lr-true-tag)))

Theorem: lr-compile-quote-preserves-proper-p-data-segmentp
(lr-s-similar-const-table (table, data-seg)
∧ s-restricted-objectp (flag , object)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (f, table)
∧ (p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-ws-reqs (flag , object , data-seg , table))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (flag , object , data-seg , table))

∧ proper-p-data-segmentp (data-seg , p)
∧ same-signature (p-data-segment (p), data-seg))
→ proper-p-data-segmentp (car (lr-compile-quote (flag ,

object ,
data-seg ,
table)),

p)
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Theorem: lr-data-seg-table-body-preserves-proper-p-data-segmentp
(lr-s-similar-const-table (table, data-seg)
∧ s-data-seg-body-restrictedp (flag , body)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ proper-p-data-segmentp (data-seg , p)
∧ definedp (f, table)
∧ (p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-ws-reqs-body (flag , body , data-seg , table))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-body (flag , body , data-seg , table))

∧ same-signature (p-data-segment (p), data-seg))
→ proper-p-data-segmentp (car (lr-data-seg-table-body (flag ,

body ,
data-seg ,
table)),

p)

Theorem: lr-data-seg-table-list-preserves-proper-p-data-segmentp
(lr-s-similar-const-table (table, data-seg)
∧ s-data-seg-list-restrictedp (progs)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ proper-p-data-segmentp (data-seg , p)
∧ definedp (f, table)
∧ (p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-ws-reqs-list (progs, data-seg , table))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-list (progs, data-seg , table))

∧ same-signature (p-data-segment (p), data-seg))
→ proper-p-data-segmentp (car (lr-data-seg-table-list (progs,

data-seg ,
table)),

p)

Theorem: lr-init-data-seg-table-preserves-proper-p-data-segmentp
(lr-s-similar-const-table (table, data-seg)
∧ s-init-data-seg-restrictedp (params)
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∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ proper-p-data-segmentp (data-seg , p)
∧ definedp (f, table)
∧ (p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-init-ws-reqs (params, data-seg , table))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table))

∧ same-signature (p-data-segment (p), data-seg))
→ proper-p-data-segmentp (car (lr-init-data-seg-table (params,

data-seg ,
table)),

p)

Theorem: all-p-objectps-lr-init-heap-contents-helper-helper
(heap-size 6' 0)
→ ((identity (lr-node-size)

+ x
+ (identity (lr-node-size) ∗ (heap-size − 1)))

= (x + (identity (lr-node-size) ∗ heap-size)))

Theorem: all-p-objectps-lr-init-heap-contents-helper
((p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-max-subr-reqs)
∧ (heap-size 6< 4)
∧ lr-proper-p-areasp (p-data-segment (p))
∧ lr-minimum-heapp (p-data-segment (p))
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ (offset (addr) ∈ N)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = lr-heap-name)
∧ definedp (lr-heap-name, p-data-segment (p))
∧ (((lr-node-size ∗ heap-size) + offset (addr))

< length (cdr (assoc (lr-heap-name, p-data-segment (p))))))
→ all-p-objectps (lr-init-heap-contents (addr , heap-size), p)

Event: Disable all-p-objectps-lr-init-heap-contents-helper-helper.

Theorem: all-p-objectps-lr-init-heap-contents
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((p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-max-subr-reqs)
∧ (heap-size 6< 4)
∧ lr-proper-p-areasp (p-data-segment (p))
∧ same-signature (p-data-segment (p), lr-init-data-seg (heap-size)))
→ all-p-objectps (lr-init-heap-contents (identity (tag (’addr,

cons (lr-heap-name,
0))),

heap-size),
p)

Theorem: proper-p-data-segmentp-lr-init-data-seg-helper
((p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-max-subr-reqs)
∧ (heap-size 6< 4)
∧ lr-proper-p-areasp (p-data-segment (p))
∧ same-signature (p-data-segment (p), lr-init-data-seg (heap-size)))
→ proper-p-data-segmentp (deposit-a-list (list (tag (’nat, lr-false-tag),

tag (’nat, 1),
lr-undef-addr,
lr-undef-addr),

lr-f-addr,
deposit-a-list (list (tag (’nat,

lr-undefined-tag),
tag (’nat,

1),
lr-undef-addr,
lr-undef-addr),

lr-undef-addr,
list (list (area-name (lr-fp-addr),

add-addr (lr-f-addr,
lr-node-size)),

list (area-name (lr-answer-addr),
tag (’nat,

0)),
cons (lr-heap-name,

lr-init-heap-contents (tag (’addr,
cons (lr-heap-name,

0)),
heap-size))))),

p)

Theorem: proper-p-data-segmentp-lr-init-data-seg
((p-word-size (p) ∈ N)
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∧ (p-word-size (p) 6< s-max-subr-reqs)
∧ (heap-size 6< 4)
∧ lr-proper-p-areasp (p-data-segment (p))
∧ same-signature (p-data-segment (p), lr-init-data-seg (heap-size)))
→ proper-p-data-segmentp (lr-init-data-seg (heap-size), p)

Theorem: proper-p-data-segmentp-lr-init-data-seg-compile-t0
((p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-max-subr-reqs)
∧ (heap-size 6< 4)
∧ lr-proper-p-areasp (p-data-segment (p))
∧ same-signature (p-data-segment (p), lr-init-data-seg (heap-size)))
→ proper-p-data-segmentp (car (lr-compile-quote (’list,

list (t, 0),
lr-init-data-seg (heap-size),
list (cons (f, addr)))),

p)

Theorem: same-signature-car-lr-data-seg-table-list-reducer
(lr-proper-free-listp (data-seg2 )
∧ lr-proper-p-areasp (data-seg2 )
∧ definedp (lr-heap-name, data-seg2 )
∧ lr-boundary-nodep (lr-max-node (data-seg2 )))
→ (same-signature (data-seg1 ,

car (lr-data-seg-table-list (progs, data-seg2 , table)))
↔ same-signature (data-seg1 , data-seg2 ))

Theorem: same-signature-car-lr-init-data-seg-table-reducer
(lr-proper-free-listp (data-seg2 )
∧ lr-proper-p-areasp (data-seg2 )
∧ definedp (lr-heap-name, data-seg2 )
∧ lr-boundary-nodep (lr-max-node (data-seg2 )))
→ (same-signature (data-seg1 ,

car (lr-init-data-seg-table (params, data-seg2 , table)))
↔ same-signature (data-seg1 , data-seg2 ))

Theorem: same-signature-car-lr-compile-quote-reducer
(lr-proper-free-listp (data-seg2 )
∧ lr-proper-p-areasp (data-seg2 )
∧ definedp (lr-heap-name, data-seg2 )
∧ lr-boundary-nodep (lr-max-node (data-seg2 )))
→ (same-signature (data-seg1 ,

car (lr-compile-quote (flag , object , data-seg2 , table)))
↔ same-signature (data-seg1 , data-seg2 ))
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Theorem: proper-p-data-segmentp-lr-data-seg-table
((p-word-size (p) ∈ N)
∧ (p-word-size (p) 6< s-max-subr-reqs)
∧ lr-proper-p-areasp (p-data-segment (p))
∧ s-restrictedp (progs, params)
∧ (heap-size 6< s-total-heap-reqs (progs, params, heap-size))
∧ (p-word-size (p) 6< s-total-ws-reqs (progs, params, heap-size))
∧ same-signature (p-data-segment (p),

car (lr-data-seg-table (progs, params, heap-size))))
→ proper-p-data-segmentp (car (lr-data-seg-table (progs, params, heap-size)),

p)

Theorem: adpp-untag-answer-addr-car-lr-data-seg-table
adpp (identity (untag (lr-answer-addr)),

car (lr-data-seg-table (progs, params, heap-size)))

Theorem: program-body-assoc-cdr-lr-compile-programs
(name 6= caar (progs))
→ (program-body (assoc (name, cdr (lr-compile-programs (progs, table))))

= lr-compile-body (t,
s-body (assoc (name, cdr (progs))),
lr-make-temp-name-alist (s-temp-list (assoc (name,

cdr (progs))),
s-formals (assoc (name,

cdr (progs)))),
table))

Theorem: s-total-ws-reqs-not-lessp-s-max-subr-reqs
(word-size 6< s-total-ws-reqs (progs, params, heap-size))
→ (word-size 6< s-max-subr-reqs)

Theorem: proper-p-statep-lr->p-s->lr
(s-good-statep (s, c)
∧ all-litatoms (strip-cars (s-params (s)))
∧ (max-ctrl 6< (2 + length (s-params (s)) + length (s-temps (s))))
∧ (word-size ∈ N)
∧ (max-temp < exp (2, word-size))
∧ (max-ctrl < exp (2, word-size))
∧ (max-temp ∈ N)
∧ (max-ctrl ∈ N)
∧ (heap-size 6< s-total-heap-reqs (s-progs (s), s-params (s), heap-size))
∧ s-restrict-subrps-progs (s-progs (s))
∧ litatom (name (car (s-progs (s))))
∧ no-duplicatesp (strip-cars (s-progs (s)))
∧ (strip-cars (s-params (s)) = s-formals (s-prog (s)))
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∧ s-restrictedp (s-progs (s), s-params (s))
∧ (word-size 6< s-total-ws-reqs (s-progs (s), s-params (s), heap-size)))
→ proper-p-statep (lr->p (s->lr (s, heap-size, max-ctrl , max-temp, word-size)))

Theorem: lr-programs-properp-s->lr
(s-good-statep (s, c)
∧ s-restrict-subrps-progs (s-progs (s))
∧ s-restrictedp (s-progs (s), s-params (s))
∧ (heap-size 6< s-total-heap-reqs (s-progs (s), s-params (s), heap-size))
∧ litatom (name (car (s-progs (s)))))
→ lr-programs-properp (s->lr (s, heap-size, max-ctrl , max-temp, word-size),

cdr (lr-data-seg-table (s-progs (s),
s-params (s),
heap-size)))

Definition:
lr-total-heap-reqs (expr , alist , program-names , heap-size, c)
= (s-total-heap-reqs (s-progs (logic->s (expr , alist , program-names)),

alist ,
heap-size)

+ s-eval-heap-r (t, logic->s (expr , alist , program-names), c))

Definition:
lr-max-ctrl-reqs (expr , alist , program-names , c)
= (2

+ length (s-params (logic->s (expr , alist , program-names)))
+ length (s-temps (logic->s (expr , alist , program-names)))
+ s-eval-ctrl-r (t, logic->s (expr , alist , program-names), c))

Definition:
lr-max-temp-reqs (expr , alist , program-names , c)
= s-eval-temp-r (t, logic->s (expr , alist , program-names), c)

Definition:
lr-max-word-size-reqs (expr , alist , program-names , heap-size, c)
= max (s-total-ws-reqs (s-progs (logic->s (expr , alist , program-names)),

s-params (logic->s (expr , alist , program-names)),
heap-size),

s-eval-ws-r (t, logic->s (expr , alist , program-names), c))

Theorem: lr-eval-s-eval-equivalence-s->lr
let s-lr be s->lr (s, heap-size, max-ctrl , max-temp, word-size)
in
(proper-p-statep (lr->p (s-lr))
∧ lr-programs-properp (s-lr ,
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cdr (lr-data-seg-table (s-progs (s),
s-params (s),
heap-size)))

∧ lr-s-similar-statesp (s-params (s),
s-temps (s),
s-lr ,
cdr (lr-data-seg-table (s-progs (s),

s-params (s),
heap-size)))

∧ s-restrictedp (s-progs (s), s-params (s))
∧ (heap-size 6< s-total-heap-reqs (s-progs (s),

s-params (s),
heap-size))

∧ s-good-statep (s, c)
∧ (p-psw (lr-eval (t, s-lr , c)) = ’run)
∧ (s-pname (s) = name (car (s-progs (s))))
∧ (s-pos (s) = nil))
→ lr-valp (s-ans (s-eval (t, s, c)),

car (p-temp-stk (lr-eval (t, s-lr , c))),
p-data-segment (lr-eval (t, s-lr , c))) endlet

Theorem: same-signature-car-lr-data-seg-table
(heap-size 6< s-total-heap-reqs (progs, params, heap-size))
→ same-signature (lr-init-data-seg (heap-size),

car (lr-data-seg-table (progs, params, heap-size)))

Theorem: lr-max-node-car-lr-data-seg-table
(heap-size 6< s-total-heap-reqs (progs, params, heap-size))
→ (lr-max-node (car (lr-data-seg-table (progs, params, heap-size)))

= tag (’addr,
cons (identity (lr-heap-name),

identity (lr-node-size) ∗ heap-size)))

Theorem: lr-count-free-nodes-lr-data-seg-table-list-s-heap-reqs-help
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-minimum-heapp (data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-body (t, body , data-seg , table)))

→ ((s-heap-reqs-body (t, body , data-seg , table)
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+ lr-count-free-nodes (fetch (identity (lr-fp-addr),
car (lr-data-seg-table-body (t,

body ,
data-seg ,
table))),

lr-free-list-nodes (lr-max-node (data-seg),
car (lr-data-seg-table-body (t,

body ,
data-seg ,
table))),

car (lr-data-seg-table-body (t,
body ,
data-seg ,
table))))

= lr-count-free-nodes (fetch (identity (lr-fp-addr), data-seg),
lr-free-list-nodes (lr-max-node (data-seg),

data-seg),
data-seg))

Theorem: lr-count-free-nodes-lr-data-seg-table-list-s-heap-reqs
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-minimum-heapp (data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg))
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-list (progs, data-seg , table)))

→ ((lr-count-free-nodes (fetch (lr-fp-addr,
car (lr-data-seg-table-list (progs,

data-seg ,
table))),

lr-free-list-nodes (lr-max-node (data-seg),
car (lr-data-seg-table-list (progs,

data-seg ,
table))),

car (lr-data-seg-table-list (progs, data-seg , table)))
+ s-heap-reqs-list (progs, data-seg , table))

= lr-count-free-nodes (fetch (lr-fp-addr, data-seg),
lr-free-list-nodes (lr-max-node (data-seg),

data-seg),
data-seg))
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Theorem: lr-max-node-car-lr-data-seg-table-list
(lr-proper-free-listp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ definedp (lr-heap-name, data-seg)
∧ lr-boundary-nodep (lr-max-node (data-seg)))
→ (lr-max-node (car (lr-data-seg-table-list (progs, data-seg , table)))

= lr-max-node (data-seg))

Theorem: lr-count-free-nodes-lr-data-seg-table-list-s-heap-reqs-1
(lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-list (progs, data-seg , table))

∧ (max-addr = lr-max-node (car (lr-data-seg-table-list (progs,
data-seg ,
table)))))

→ (lr-count-free-nodes (fetch (identity (lr-fp-addr),
car (lr-data-seg-table-list (progs,

data-seg ,
table))),

lr-free-list-nodes (max-addr ,
car (lr-data-seg-table-list (progs,

data-seg ,
table))),

car (lr-data-seg-table-list (progs, data-seg , table)))
= (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
− s-heap-reqs-list (progs, data-seg , table)))

Theorem: lr-count-free-nodes-lr-init-data-seg-table-s-heap-reqs-1
(lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table))

∧ (max-addr = lr-max-node (car (lr-init-data-seg-table (params,
data-seg ,
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table)))))
→ (lr-count-free-nodes (fetch (identity (lr-fp-addr),

car (lr-init-data-seg-table (params,
data-seg ,
table))),

lr-free-list-nodes (max-addr ,
car (lr-init-data-seg-table (params,

data-seg ,
table))),

car (lr-init-data-seg-table (params, data-seg , table)))
= (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
− s-init-heap-reqs (params, data-seg , table)))

Theorem: not-lessp-lr-count-free-nodes-lr-data-seg-table-heap-r
((heap-size 6< (s-total-heap-reqs (progs, params, heap-size) + x ))
∧ s-restrictedp (progs, params))
→ (lr-count-free-nodes (fetch (identity (lr-fp-addr),

car (lr-data-seg-table (progs,
params,
heap-size))),

lr-free-list-nodes (lr-max-node (car (lr-data-seg-table (progs,
params,
heap-size))),

car (lr-data-seg-table (progs,
params,
heap-size))),

car (lr-data-seg-table (progs, params, heap-size)))
6< x )

Theorem: lr-eval-s-eval-flag-run-s->lr
let s-lr be s->lr (s, heap-size, max-ctrl , max-temp, word-size)
in
(proper-p-statep (lr->p (s-lr))
∧ lr-programs-properp (s-lr ,

cdr (lr-data-seg-table (s-progs (s),
s-params (s),
heap-size)))

∧ lr-s-similar-statesp (s-params (s),
s-temps (s),
s-lr ,
cdr (lr-data-seg-table (s-progs (s),
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s-params (s),
heap-size)))

∧ s-restrictedp (s-progs (s), s-params (s))
∧ s-good-statep (s, c)
∧ s-all-temps-setp (t,

s-body (car (s-progs (s))),
temp-alist-to-set (s-temps (s)))

∧ s-all-progs-temps-setp (s-progs (s))
∧ s-check-temps-setp (s-temps (s))
∧ (s-err-flag (s-eval (t, s, c)) = ’run)
∧ (heap-size 6< (s-total-heap-reqs (s-progs (s),

s-params (s),
heap-size)

+ s-eval-heap-r (t, s, c)))
∧ (max-ctrl 6< (p-ctrl-stk-size (p-ctrl-stk (s-lr))

+ s-eval-ctrl-r (t, s, c)))
∧ (max-temp 6< s-eval-temp-r (t, s, c))
∧ (word-size 6< s-eval-ws-r (t, s, c))
∧ (word-size 6< s-max-subr-reqs)
∧ (s-pname (s) = name (car (s-progs (s))))
∧ (s-pos (s) = nil))
→ (p-psw (lr-eval (t, s-lr , c)) = ’run) endlet

Theorem: all-undef-addr-strip-cdrs-lr-make-initial-temps
all-undef-addrs (strip-cdrs (lr-make-initial-temps (x )))

Theorem: lr-s-similar-temps-make-temps-entries-initial-temps
(all-undef-addrs (strip-cdrs (lr-temps))
∧ (length (s-temps) = length (lr-temps)))
→ lr-s-similar-temps (make-temps-entries (s-temps), lr-temps, data-seg)

Definition:
object-addrs (object-list , table)
= if listp (object-list)

then cons (cdr (assoc (car (object-list), table)),
object-addrs (cdr (object-list), table))

else nil endif

Theorem: lr-valp-lr-compile-quote
(lr-proper-p-areasp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ s-restricted-objectp (flag , object)
∧ lr-proper-heapp (data-seg)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),
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lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs (flag , object , data-seg , table)))

→ if flag = ’list
then lr-check-result1 (object ,

object-addrs (object ,
cdr (lr-compile-quote (flag ,

object ,
data-seg ,
table))),

car (lr-compile-quote (flag , object , data-seg , table)))
else lr-valp (object ,

cdr (assoc (object ,
cdr (lr-compile-quote (flag ,

object ,
data-seg ,
table)))),

car (lr-compile-quote (flag , object , data-seg , table))) endif

Theorem: lr-init-data-seg-table-preserves-lr-valp
(lr-proper-p-areasp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-init-data-seg-restrictedp (params)
∧ lr-proper-heapp (data-seg)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table))

∧ lr-valp (value, addr , data-seg))
→ lr-valp (value, addr , car (lr-init-data-seg-table (params, data-seg , table)))

Theorem: lr-valp-lr-compile-quote-flag-t
(lr-proper-p-areasp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ s-restricted-objectp (t, object)
∧ lr-proper-heapp (data-seg)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
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6< s-heap-reqs (t, object , data-seg , table)))
→ lr-valp (object ,

cdr (assoc (object ,
cdr (lr-compile-quote (t, object , data-seg , table)))),

car (lr-compile-quote (t, object , data-seg , table)))

Theorem: lr-s-similar-params-pair-formals-lr-init-data-seg
(lr-proper-p-areasp (data-seg)
∧ lr-s-similar-const-table (table, data-seg)
∧ s-init-data-seg-restrictedp (params)
∧ lr-proper-heapp (data-seg)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table)))

→ lr-s-similar-params (params,
pair-formals-with-addresses (params,

cdr (lr-init-data-seg-table (params,
data-seg ,
table))),

car (lr-init-data-seg-table (params, data-seg , table)))

Theorem: lr-data-seg-table-body-preserves-lr-valp
(lr-proper-p-areasp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-data-seg-body-restrictedp (flag , body)
∧ lr-proper-heapp (data-seg)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-body (flag , body , data-seg , table))

∧ lr-valp (value, addr , data-seg))
→ lr-valp (value,

addr ,
car (lr-data-seg-table-body (flag , body , data-seg , table)))

Theorem: lr-data-seg-table-list-preserves-lr-valp
(lr-proper-p-areasp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-data-seg-list-restrictedp (progs)
∧ lr-proper-heapp (data-seg)
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∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-list (progs, data-seg , table))

∧ lr-valp (value, addr , data-seg))
→ lr-valp (value, addr , car (lr-data-seg-table-list (progs, data-seg , table)))

Theorem: lr-data-seg-table-list-preserves-lr-s-similar-params
(lr-proper-p-areasp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg)
∧ s-data-seg-list-restrictedp (progs)
∧ lr-proper-heapp (data-seg)
∧ definedp (f, table)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-heap-reqs-list (progs, data-seg , table))

∧ lr-s-similar-params (s-params , lr-params, data-seg))
→ lr-s-similar-params (s-params,

lr-params,
car (lr-data-seg-table-list (progs, data-seg , table)))

Definition:
all-definedp (list , alist)
= if listp (list)

then definedp (car (list), alist) ∧ all-definedp (cdr (list), alist)
else t endif

Theorem: assoc-definedp-table-lr-data-seg-table-body
definedp (object , table)
→ (assoc (object , cdr (lr-data-seg-table-body (flag , expr , data-seg , table)))

= assoc (object , table))

Theorem: assoc-definedp-table-lr-data-seg-table-list
definedp (object , table)
→ (assoc (object , cdr (lr-data-seg-table-list (progs, data-seg , table)))

= assoc (object , table))

Theorem: pair-formals-with-addresses-lr-data-seg-table-list
all-definedp (strip-cdrs (params), table)
→ (pair-formals-with-addresses (params,

cdr (lr-data-seg-table-list (progs,
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data-seg ,
table)))

= pair-formals-with-addresses (params, table))

Theorem: all-definedp-strip-cdrs-lr-init-data-seg-table
(lr-s-similar-const-table (table, data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ lr-proper-heapp (data-seg)
∧ definedp (f, table)
∧ s-init-data-seg-restrictedp (params)
∧ (lr-count-free-nodes (fetch (lr-fp-addr, data-seg),

lr-free-list-nodes (lr-max-node (data-seg),
data-seg),

data-seg)
6< s-init-heap-reqs (params, data-seg , table)))

→ all-definedp (strip-cdrs (params),
cdr (lr-init-data-seg-table (params, data-seg , table)))

Theorem: lr-s-similar-params-pair-formals-with-addresses
((heap-size 6< s-total-heap-reqs (progs, params, heap-size))
∧ s-restrictedp (progs, params))
→ lr-s-similar-params (params,

pair-formals-with-addresses (params,
cdr (lr-data-seg-table (progs,

params,
heap-size))),

car (lr-data-seg-table (progs, params, heap-size)))

Theorem: lr-s-similar-statesp-s->lr-lr-data-seg-table
((heap-size 6< s-total-heap-reqs (s-progs (s), s-params (s), heap-size))
∧ s-restrictedp (s-progs (s), s-params (s))
∧ (strip-cars (s-params (s)) = s-formals (car (s-progs (s))))
∧ (s-pname (s) = name (car (s-progs (s))))
∧ (s-temps (s) = make-temps-entries (s-temp-list (car (s-progs (s))))))
→ lr-s-similar-statesp (s-params (s),

s-temps (s),
s->lr (s, heap-size, max-ctrl , max-temp, word-size),
cdr (lr-data-seg-table (s-progs (s),

s-params (s),
heap-size)))

Theorem: p-ctrl-stk-size-p-ctrl-stk-s->lr
p-ctrl-stk-size (p-ctrl-stk (s->lr (s, heap-size, max-ctrl , max-temp, word-size)))
= (2 + length (s-params (s)) + length (s-temps (s)))
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Theorem: s->lr-ok
let s-lr be s->lr (s, heap-size, max-ctrl , max-temp, word-size)
in
(s-good-statep (s, c)
∧ s-all-temps-setp (t,

s-body (car (s-progs (s))),
temp-alist-to-set (s-temps (s)))

∧ s-all-progs-temps-setp (s-progs (s))
∧ (s-temps (s)

= make-temps-entries (s-temp-list (car (s-progs (s)))))
∧ s-check-temps-setp (s-temps (s))
∧ s-restrictedp (s-progs (s), s-params (s))
∧ (heap-size 6< (s-total-heap-reqs (s-progs (s),

s-params (s),
heap-size)

+ s-eval-heap-r (t, s, c)))
∧ s-restrict-subrps-progs (s-progs (s))
∧ (max-ctrl 6< (2

+ length (s-params (s))
+ length (s-temps (s))
+ s-eval-ctrl-r (t, s, c)))

∧ (max-ctrl ∈ N)
∧ (max-ctrl < exp (2, word-size))
∧ (max-temp ∈ N)
∧ (max-temp 6< s-eval-temp-r (t, s, c))
∧ (max-temp < exp (2, word-size))
∧ (word-size 6< max (s-total-ws-reqs (s-progs (s),

s-params (s),
heap-size),

s-eval-ws-r (t, s, c)))
∧ (word-size ∈ N)
∧ litatom (name (car (s-progs (s))))
∧ (s-pname (s) = name (car (s-progs (s))))
∧ (s-pos (s) = nil)
∧ all-litatoms (strip-cars (s-params (s)))
∧ no-duplicatesp (strip-cars (s-progs (s)))
∧ (strip-cars (s-params (s)) = s-formals (car (s-progs (s))))
∧ (s-err-flag (s-eval (t, s, c)) = ’run))
→ lr-valp (s-ans (s-eval (t, s, c)),

car (p-temp-stk (lr-eval (t, s-lr , c))),
p-data-segment (lr-eval (t, s-lr , c))) endlet

Theorem: s-good-state-logic->s
(l-proper-programsp (prog-names)
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∧ l-proper-exprp (t, expr , prog-names , strip-cars (alist))
∧ all-litatoms (strip-cars (alist)))
→ s-good-statep (logic->s (expr , alist , prog-names), c)

Theorem: s-body-car-s-progs-logic->s
s-body (car (s-progs (logic->s (expr , alist , pnames)))) = expr

Theorem: l-proper-programsp-s-progs-logic->s
(l-proper-programsp (pnames) ∧ l-proper-exprp (t, expr , pnames, formals))
→ s-all-progs-temps-setp (s-progs (logic->s (expr , alist , pnames)))

Theorem: s-temps-logic->s
s-temps (logic->s (expr , alist , pnames)) = nil

Theorem: s-temp-list-car-s-progs-logic->s
s-temp-list (car (s-progs (logic->s (expr , alist , pnames)))) = nil

Theorem: s-params-logic->s
s-params (logic->s (expr , alist , pnames)) = alist

Definition:
l-data-seg-body-restrictedp (flag , expr)
= if flag = ’list

then if listp (expr)
then l-data-seg-body-restrictedp (t, car (expr))

∧ l-data-seg-body-restrictedp (’list, cdr (expr))
else t endif

elseif listp (expr)
then if car (expr) = ’quote

then s-restricted-objectp (t, cadr (expr))
else l-data-seg-body-restrictedp (’list, cdr (expr)) endif

else t endif

Definition:
l-data-seg-list-restrictedp (fun-names)
= if listp (fun-names)

then l-data-seg-body-restrictedp (t, body (car (fun-names)))
∧ l-data-seg-list-restrictedp (cdr (fun-names))

else t endif

Definition:
l-restrictedp (fun-names, alist)
= (s-init-data-seg-restrictedp (alist)

∧ l-data-seg-list-restrictedp (fun-names))
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Theorem: l-data-seg-body-restrictedp-s-data-seg-body-restrictedp
l-data-seg-body-restrictedp (flag , body)
→ s-data-seg-body-restrictedp (flag , body)

Theorem: l-data-seg-body-restrictedp-delete-all
l-data-seg-list-restrictedp (pnames)
→ l-data-seg-list-restrictedp (delete-all (name, pnames))

Theorem: l-data-seg-list-restrictedp-s-data-seg-list-restrictedp
(l-data-seg-list-restrictedp (pnames) ∧ l-data-seg-body-restrictedp (t, expr))
→ s-data-seg-list-restrictedp (s-progs (logic->s (expr , alist , pnames)))

Theorem: l-restrict-subrps-s-restrict-subrps
(l-restrict-subrps (flag , expr)
∧ l-proper-exprp (flag , expr , program-names , formals))
→ s-restrict-subrps (flag , expr)

Theorem: l-restrict-subrps-progs-delete-all
l-restrict-subrps-progs (pnames)
→ l-restrict-subrps-progs (delete-all (name, pnames))

Theorem: l-restrict-subrps-progs-s-restrict-subrps-progs
(l-restrict-subrps-progs (pnames)
∧ l-proper-programsp-1 (pnames, program-names))
→ s-restrict-subrps-progs (s-construct-programs (remove-duplicates (pnames)))

Theorem: l-restrict-subrps-progs-s-restrict-subrps-progs-logic->s
(l-restrict-subrps-progs (pnames)
∧ l-restrict-subrps (t, expr)
∧ l-proper-exprp (t, expr , program-names , formals)
∧ l-proper-programsp (pnames))
→ s-restrict-subrps-progs (s-progs (logic->s (expr , alist , pnames)))

Theorem: name-car-s-progs-logic->s
name (car (s-progs (logic->s (expr , alist , pnames)))) = ’main

Theorem: s-pname-logic->s
s-pname (logic->s (expr , alist , pnames)) = ’main

Theorem: s-pos-logic->s
s-pos (logic->s (expr , alist , pnames)) = nil

Theorem: definedp-user-fname-s-construct-programs
(litatom (name) ∧ all-litatoms-not-plist (pnames))
→ (definedp (user-fname (name), s-construct-programs (pnames))

= (name ∈ pnames))
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Theorem: no-duplicatesp-strip-cars-s-construct-programs
all-litatoms-not-plist (pnames)
→ (no-duplicatesp (strip-cars (s-construct-programs (pnames)))

= no-duplicatesp (pnames))

Theorem: all-user-fnamesp-strip-cars-s-construct-programs
all-litatoms-not-plist (pnames)
→ all-user-fnamesp (strip-cars (s-construct-programs (pnames)))

Theorem: no-duplicatesp-strip-cars-s-progs-logic->s
all-litatoms-not-plist (pnames)
→ no-duplicatesp (strip-cars (s-progs (logic->s (expr , alist , pnames))))

Theorem: s-formals-car-s-progs-logic->s
s-formals (car (s-progs (logic->s (expr , alist , pnames)))) = strip-cars (alist)

Theorem: s-expr-logic->s
s-expr (logic->s (expr , alist , pnames)) = expr

Theorem: all-litatoms-not-plist-lr-proper-programsp
l-proper-programsp (prog-names) → all-litatoms-not-plist (prog-names)

Theorem: logic->lr-ok-really
(l-proper-exprp (t, expr , pnames, strip-cars (alist))
∧ l-proper-programsp (pnames)
∧ all-litatoms (strip-cars (alist))
∧ l-data-seg-body-restrictedp (t, expr)
∧ l-restrictedp (pnames, alist)
∧ v&c$ (t, expr , alist)
∧ (cdr (v&c$ (t, expr , alist)) < c)
∧ l-restrict-subrps (t, expr)
∧ l-restrict-subrps-progs (pnames)
∧ (heap-size 6< lr-total-heap-reqs (expr , alist , pnames, heap-size, c))
∧ (max-ctrl 6< lr-max-ctrl-reqs (expr , alist , pnames, c))
∧ (max-ctrl < exp (2, word-size))
∧ (max-ctrl ∈ N)
∧ (max-temp 6< lr-max-temp-reqs (expr , alist , pnames, c))
∧ (max-temp < exp (2, word-size))
∧ (max-temp ∈ N)
∧ (word-size 6< lr-max-word-size-reqs (expr , alist , pnames , heap-size, c))
∧ (word-size ∈ N))
→ lr-valp (car (v&c$ (t, expr , alist)),

car (p-temp-stk (lr-eval (t,
s->lr (logic->s (expr , alist , pnames),

heap-size,
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max-ctrl ,
max-temp,
word-size),

c))),
p-data-segment (lr-eval (t,

s->lr (logic->s (expr , alist , pnames),
heap-size,
max-ctrl ,
max-temp,
word-size),

c)))

; ------------------------------------------------------------
; was p1.events
; ------------------------------------------------------------

Definition:
logic->p (expr , alist , pnames, heap-size, max-ctrl , max-temp, word-size)
= lr->p (s->lr (logic->s (expr , alist , pnames),

heap-size,
max-ctrl ,
max-temp,
word-size))

Definition:
p-run-subr-clock (l , new-l)
= case on car (lr-expr (l)):

case = car
then p-car-clock (p-set-pc (lr->p (new-l), lr-return-pc (l)))
case = cdr
then p-cdr-clock (p-set-pc (lr->p (new-l), lr-return-pc (l)))

case = cons
then p-cons-clock (p-set-pc (lr->p (new-l), lr-return-pc (l)))

case = false
then p-false-clock (p-set-pc (lr->p (new-l), lr-return-pc (l)))

case = falsep
then p-falsep-clock (p-set-pc (lr->p (new-l), lr-return-pc (l)))

case = listp
then p-listp-clock (p-set-pc (lr->p (new-l), lr-return-pc (l)))

case = nlistp
then p-nlistp-clock (p-set-pc (lr->p (new-l), lr-return-pc (l)))

case = true
then p-true-clock (p-set-pc (lr->p (new-l), lr-return-pc (l)))

case = truep
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then p-truep-clock (p-set-pc (lr->p (new-l), lr-return-pc (l)))
otherwise 0 endcase

Event: Disable p-run-subr-clock.

Definition:
p-clock1 (flag , l , c)
= if p-psw (l) 6= ’run then 0

elseif flag = ’list
then if offset (p-pc (l)) ' nil then 0

elseif listp (lr-expr-list (l))
then p-clock1 (t, l , c)

+ p-clock1 (’list,
lr-set-expr (lr-eval (t, l , c),

l ,
nx (offset (p-pc (l)))),

c)
else 0 endif

elseif c ' 0 then 0
elseif litatom (lr-expr (l)) then 1
elseif lr-expr (l) ' nil then 0
elseif car (lr-expr (l)) = ’if
then let test be lr-if-ok (lr-eval (t,

lr-set-pos (l ,
dv (offset (p-pc (l)), 1)),

c))
in
if p-psw (test) = ’run
then if top (p-temp-stk (test)) 6= lr-f-addr

then p-clock1 (t,
lr-set-pos (l , dv (offset (p-pc (l)), 1)),
c)

+ 3
+ p-clock1 (t,

lr-set-expr (lr-pop-tstk (test),
l ,
dv (offset (p-pc (l)),

2)),
c)

+ 1
else p-clock1 (t,

lr-set-pos (l ,
dv (offset (p-pc (l)), 1)),

c)

334



+ 3
+ p-clock1 (t,

lr-set-expr (lr-pop-tstk (test),
l ,
dv (offset (p-pc (l)),

3)),
c) endif

else p-clock1 (t,
lr-set-pos (l , dv (offset (p-pc (l)), 1)),
c) endif endlet

elseif car (lr-expr (l)) = s-temp-eval
then p-clock1 (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c) + 1
elseif car (lr-expr (l)) = s-temp-test
then if lr-eval-temp-setp (l) then 5

else 4
+ p-clock1 (t,

lr-set-pos (l , dv (offset (p-pc (l)), 1)),
c)

+ 2 endif
elseif car (lr-expr (l)) = s-temp-fetch then 1
elseif car (lr-expr (l)) = ’quote then 1
elseif p-psw (lr-eval (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c))

6= ’run
then p-clock1 (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
elseif subrp (car (lr-expr (l)))
then p-clock1 (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)

+ p-run-subr-clock (l ,
lr-eval (’list,

lr-set-pos (l ,
dv (offset (p-pc (l)), 1)),

c))
elseif litatom (car (lr-expr (l)))
then let fs be lr-funcall (l ,

lr-eval (’list,
lr-set-pos (l ,

dv (offset (p-pc (l)), 1)),
c))

in
p-clock1 (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
+ 1
+ p-clock1 (t, fs, c − 1)
+ 1 endlet

else 0 endif
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Definition:
lr-good-pointerps (list , data-seg)
= if listp (list)

then lr-good-pointerp (car (list), data-seg)
∧ lr-good-pointerps (cdr (list), data-seg)

else t endif

Definition:
lr-proper-ctrl-stkp (ctrl-stk , data-seg)
= if ctrl-stk ' nil then ctrl-stk = nil

else lr-good-pointerps (strip-cdrs (bindings (top (ctrl-stk))),
data-seg)

∧ lr-proper-ctrl-stkp (pop (ctrl-stk), data-seg) endif

Definition:
lr-p-proper-statep (temp-stk , ctrl-stk , data-seg , table)
= (lr-proper-ctrl-stkp (ctrl-stk , data-seg)

∧ lr-good-pointerps (temp-stk , data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-good-pointerp-tablep (table, data-seg))

Event: Disable lr-p-proper-statep.

Theorem: definedp-cdr-assoc-lr-good-pointerps
((addr ∈ list) ∧ lr-good-pointerps (list , data-seg))
→ lr-good-pointerp (addr , data-seg)

Theorem: lr-p-proper-statep-lr-push-tstk-cdr-assoc-lr-expr
(litatom (lr-expr (l))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)

∧ (p-psw (lr-push-tstk (l ,
cdr (assoc (lr-expr (l),

bindings (car (p-ctrl-stk (l)))))))
= ’run))

→ lr-p-proper-statep (p-temp-stk (lr-push-tstk (l ,
cdr (assoc (lr-expr (l),

bindings (car (p-ctrl-stk (l))))))),
p-ctrl-stk (l),

336



p-data-segment (l),
table)

Theorem: lr-p-proper-statep-cdr-temp-stk
lr-p-proper-statep (temp-stk , ctrl-stk , data-seg , table)
→ lr-p-proper-statep (cdr (temp-stk), ctrl-stk , data-seg , table)

Theorem: lr-good-pointerps-put-assoc
(lr-good-pointerp (addr , data-seg)
∧ lr-good-pointerps (strip-cdrs (bindings), data-seg))
→ lr-good-pointerps (strip-cdrs (put-assoc (addr , expr , bindings)), data-seg)

Theorem: lr-p-proper-statep-cons-p-frame-put-assoc
(lr-p-proper-statep (temp-stk , ctrl-stk , data-seg , table)
∧ listp (temp-stk)
∧ listp (ctrl-stk)
∧ (cdr-ctrl-stk = cdr (ctrl-stk)))
→ lr-p-proper-statep (temp-stk ,

cons (p-frame (put-assoc (car (temp-stk),
expr ,
bindings (car (ctrl-stk))),

ret-pc),
cdr-ctrl-stk),

data-seg ,
table)

Theorem: lr-eval-leaves-listp-p-ctrl-stk-lr->p-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp (flag , pos, program-body (p-current-program (l)))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , lr-set-pos (l , pos), c)) = ’run))
→ listp (p-ctrl-stk (lr-eval (flag , lr-set-pos (l , pos), c)))

Theorem: lr-p-proper-statep-cdr-assoc-caddr-lr-expr-bindings
(proper-p-statep (lr->p (l))
∧ lr-p-proper-statep (temp-stk , p-ctrl-stk (l), data-seg , table)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ ((car (lr-expr (l)) = s-temp-test)

∨ (car (lr-expr (l)) = s-temp-fetch)))
→ lr-p-proper-statep (cons (cdr (assoc (caddr (lr-expr (l)),

bindings (car (p-ctrl-stk (l))))),
temp-stk),
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p-ctrl-stk (l),
data-seg ,
table)

Theorem: member-strip-cdrs-lr-good-pointerp-tablep
((object ∈ strip-cdrs (table)) ∧ lr-good-pointerp-tablep (table, data-seg))
→ lr-good-pointerp (object , data-seg)

Theorem: lr-p-proper-statep-p-temps-stk-lr-push-tstk-quote
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’quote)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-push-tstk (l , cadr (lr-expr (l)))) = ’run)
∧ lr-p-proper-statep (p-temp-stk (l), ctrl-stk , data-seg , table))
→ lr-p-proper-statep (p-temp-stk (lr-push-tstk (l , cadr (lr-expr (l)))),

ctrl-stk ,
data-seg ,
table)

Theorem: p-run-subr-preserves-lr-good-pointerp-tablep
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ (p-psw (new-l) = ’run)
∧ subrp (car (lr-expr (l)))
∧ lr-good-pointerp-tablep (table2 , p-data-segment (new-l))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table1 )
∧ lr-programs-properp (new-l , table1 )
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= ’run)

∧ lr-proper-heapp (p-data-segment (new-l))
∧ proper-p-statep (lr->p (new-l))
∧ (p-prog-segment (new-l) = p-prog-segment (l)))
→ lr-good-pointerp-tablep (table2 ,

p-data-segment (p-run-subr (car (lr-expr (l)),
p-set-pc (lr->p (new-l),

lr-return-pc (l)))))

Theorem: lr-good-pointerps-deposit-free-ptr
lr-good-pointerps (list , deposit (anything , identity (lr-fp-addr), data-seg))
= lr-good-pointerps (list , data-seg)
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Theorem: lr-proper-ctrl-stkp-deposit-free-ptr
lr-proper-ctrl-stkp (ctrl-stk , deposit (anything , identity (lr-fp-addr), data-seg))
= lr-proper-ctrl-stkp (ctrl-stk , data-seg)

Theorem: lr-good-pointerp-deposit-a-list-node
(lr-good-pointerp (addr1 , data-seg)
∧ (type (addr2 ) = ’addr)
∧ (cddr (addr2 ) = nil)
∧ listp (addr2 )
∧ adpp (untag (addr2 ), data-seg)
∧ lr-boundary-nodep (addr2 )
∧ (area-name (addr2 ) = ’heap)
∧ (type (ref-count) = ’nat))
→ lr-good-pointerp (addr1 ,

deposit-a-list (list (x , ref-count , y , z ), addr2 , data-seg))

Theorem: lr-good-pointerps-deposit-a-list-node
(lr-good-pointerps (list , data-seg)
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = ’heap)
∧ (type (ref-count) = ’nat))
→ lr-good-pointerps (list ,

deposit-a-list (list (x , ref-count , y , z ), addr , data-seg))

Theorem: lr-proper-ctrl-stkp-deposit-a-list-node
(lr-proper-ctrl-stkp (list , data-seg)
∧ (type (addr) = ’addr)
∧ (cddr (addr) = nil)
∧ listp (addr)
∧ adpp (untag (addr), data-seg)
∧ lr-boundary-nodep (addr)
∧ (area-name (addr) = ’heap)
∧ (type (ref-count) = ’nat))
→ lr-proper-ctrl-stkp (list ,

deposit-a-list (list (x , ref-count , y , z ),
addr ,
data-seg))

Theorem: p-run-subr-preserves-lr-proper-ctrl-stkp
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
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∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ proper-p-statep (lr->p (l))
∧ lr-proper-heapp (p-data-segment (lr-eval (’list, lr-set-pos (l , pos), c)))
∧ lr-proper-ctrl-stkp (p-ctrl-stk (lr-eval (’list, lr-set-pos (l , pos), c)),

p-data-segment (lr-eval (’list,
lr-set-pos (l , pos),
c)))

∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (lr-eval (’list, lr-set-pos (l , pos), c)),
lr-return-pc (l))))

= ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ lr-proper-ctrl-stkp (p-ctrl-stk (lr-eval (’list, lr-set-pos (l , pos), c)),

p-data-segment (p-run-subr (car (lr-expr (l)),
p-set-pc (lr->p (lr-eval (’list,

lr-set-pos (l ,
pos),

c)),
lr-return-pc (l)))))

Theorem: lr-good-pointerps-cons-lr-f-addr-lr-proper-heapp
(lr-good-pointerps (list , data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg))
→ lr-good-pointerps (cons (identity (lr-f-addr), list), data-seg)

Theorem: lr-good-pointerps-cons-lr-t-addr-lr-proper-heapp
(lr-good-pointerps (list , data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg))
→ lr-good-pointerps (cons (identity (lr-t-addr), list), data-seg)

Theorem: lr-good-pointerps-cons-lr-0-addr-lr-proper-heapp
(lr-good-pointerps (list , data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg))
→ lr-good-pointerps (cons (identity (lr-0-addr), list), data-seg)

Theorem: lr-good-pointerps-cdr
lr-good-pointerps (list , data-seg) → lr-good-pointerps (cdr (list), data-seg)
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Theorem: lr-good-pointerps-cons-fetch-car-temp-stk-cdr-car
(lr-good-pointerps (temp-stk , data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (length (temp-stk) 6< 1)
∧ (fetch (car (temp-stk), data-seg) = tag (’nat, lr-cons-tag)))
→ lr-good-pointerps (cons (fetch (add-addr (car (temp-stk),

identity (lr-car-offset)),
data-seg),

cdr (temp-stk)),
data-seg)

Theorem: lr-good-pointerps-cons-fetch-car-temp-stk-cdr-cdr
(lr-good-pointerps (temp-stk , data-seg)
∧ lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ (length (temp-stk) 6< 1)
∧ (fetch (car (temp-stk), data-seg) = tag (’nat, lr-cons-tag)))
→ lr-good-pointerps (cons (fetch (add-addr (car (temp-stk),

identity (lr-cdr-offset)),
data-seg),

cdr (temp-stk)),
data-seg)

Theorem: lr-good-pointerps-cons-fetch-fp-addr-deposit-a-list-cons
(lr-proper-heapp (data-seg)
∧ lr-good-pointerps (temp-stk , data-seg)
∧ (fp-addr = fetch (identity (lr-fp-addr), data-seg))
∧ (type (ref-count) = ’nat))
→ lr-good-pointerps (cons (fetch (identity (lr-fp-addr), data-seg), temp-stk),

deposit-a-list (list (x , ref-count , y , z ),
fp-addr ,
data-seg))

Theorem: p-run-subr-preserves-lr-good-pointerps
let lr-eval be lr-eval (’list, lr-set-pos (l , pos), c)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ proper-p-statep (lr->p (l))
∧ lr-proper-heapp (p-data-segment (lr-eval))
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∧ lr-good-pointerps (p-temp-stk (lr-eval), p-data-segment (lr-eval))
∧ (p-psw (lr-eval) = ’run)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (lr-eval), lr-return-pc (l))))
= ’run)

∧ (length (p-temp-stk (lr-eval)) 6< arity (car (lr-expr (l))))
∧ (pos = dv (offset (p-pc (l)), 1)))
→ lr-good-pointerps (p-temp-stk (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (lr-eval),
lr-return-pc (l)))),

p-data-segment (p-run-subr (car (lr-expr (l)),
p-set-pc (lr->p (lr-eval),

lr-return-pc (l))))) endlet

Theorem: p-run-subr-preserves-lr-proper-heapp2-alt
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-programs-properp (new-l , table)
∧ listp (lr-expr (l))
∧ proper-p-statep (lr->p (new-l))
∧ lr-proper-free-listp (p-data-segment (new-l))
∧ adpp (untag (lr-max-node (p-data-segment (new-l))), p-data-segment (new-l))
∧ lr-boundary-nodep (lr-max-node (p-data-segment (new-l)))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= ’run)

∧ lr-good-pointerps (p-temp-stk (new-l), p-data-segment (new-l))
∧ (length (p-temp-stk (new-l)) 6< arity (car (lr-expr (l))))
∧ lr-proper-heapp2 (addr , p-data-segment (new-l))
∧ lr-nodep (addr , p-data-segment (new-l))
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ lr-proper-heapp2 (addr ,

p-data-segment (p-run-subr (car (lr-expr (l)),
p-set-pc (lr->p (new-l),

lr-return-pc (l)))))

Theorem: p-run-subr-preserves-lr-proper-heapp
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-programs-properp (new-l , table)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ subrp (car (lr-expr (l)))
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∧ proper-p-statep (lr->p (new-l))
∧ (p-psw (new-l) = ’run)
∧ (p-psw (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l), lr-return-pc (l))))
= ’run)

∧ (p-prog-segment (l) = p-prog-segment (new-l))
∧ (area-name (p-pc (l)) = area-name (p-pc (new-l)))
∧ lr-proper-heapp (p-data-segment (new-l))
∧ lr-good-pointerps (p-temp-stk (new-l), p-data-segment (new-l))
∧ (length (p-temp-stk (new-l)) 6< arity (car (lr-expr (l)))))
→ lr-proper-heapp (p-data-segment (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l),
lr-return-pc (l)))))

Theorem: lr-apply-subr-preserves-lr-p-proper-statep
let lr-eval be lr-eval (’list, lr-set-pos (l , pos), c)
in
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ (car (lr-expr (l)) 6= s-temp-eval)
∧ (car (lr-expr (l)) 6= s-temp-test)
∧ (car (lr-expr (l)) 6= s-temp-fetch)
∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ subrp (car (lr-expr (l)))
∧ lr-p-proper-statep (p-temp-stk (lr-eval),

p-ctrl-stk (lr-eval),
p-data-segment (lr-eval),
table)

∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-apply-subr (l , lr-eval)) = ’run)
∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (pos = dv (offset (p-pc (l)), 1)))
→ lr-p-proper-statep (p-temp-stk (lr-apply-subr (l , lr-eval)),

p-ctrl-stk (lr-eval),
p-data-segment (lr-apply-subr (l , lr-eval)),
table) endlet

Theorem: strip-cdrs-append
strip-cdrs (append (x , y)) = append (strip-cdrs (x ), strip-cdrs (y))

Theorem: strip-cdrs-pairlist
(length (x ) 6< length (y))
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→ (strip-cdrs (pairlist (x , y)) = first-n (length (x ), y))

Theorem: lr-good-pointerps-append
lr-good-pointerps (append (x , y), data-seg)
= (lr-good-pointerps (x , data-seg) ∧ lr-good-pointerps (y , data-seg))

Theorem: lr-good-pointerps-reverse
lr-good-pointerps (reverse (x ), data-seg) = lr-good-pointerps (x , data-seg)

Theorem: lr-good-pointerps-first-n
(lr-good-pointerps (list , data-seg) ∧ (length (list) 6< n))
→ lr-good-pointerps (first-n (n, list), data-seg)

Definition:
all-numberps (list)
= if listp (list) then (car (list) ∈ N) ∧ all-numberps (cdr (list))

else t endif

Theorem: all-numberps-strip-cadrs-numberp-cdr-assoc
all-numberps (strip-cadrs (list)) → (cadr (assoc (x , list)) ∈ N)

Theorem: all-numberps-strip-cadrs-subr-arity-alist
all-numberps (strip-cadrs (subr-arity-alist))

Theorem: numberp-arity
arity (x ) ∈ N

Theorem: strip-cdrs-pair-temps-with-initial-values
strip-cdrs (pair-temps-with-initial-values (temp-var-dcls))
= strip-cadrs (temp-var-dcls)

Theorem: lr-good-pointerps-all-undef-addrs
(lr-proper-heapp (data-seg)
∧ lr-proper-p-areasp (data-seg)
∧ all-undef-addrs (list))
→ lr-good-pointerps (list , data-seg)

Theorem: all-undef-addrs-strip-cadrs-temp-vars-programs-properp-1
(lr-programs-properp-1 (programs, program-names , table)
∧ definedp (name, programs))
→ all-undef-addrs (strip-cadrs (temp-var-dcls (assoc (name, programs))))

Theorem: all-undef-addrs-strip-cadrs-temp-vars-programs-properp
(lr-programs-properp (l , table) ∧ definedp (name, cdr (p-prog-segment (l))))
→ all-undef-addrs (strip-cadrs (temp-var-dcls (assoc (name,

cdr (p-prog-segment (l))))))
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Theorem: lr-good-pointerps-popn
(lr-good-pointerps (list , data-seg) ∧ (length (list) 6< n))
→ lr-good-pointerps (popn (n, list), data-seg)

Theorem: lr-p-proper-statep-lr-funcall
((p-psw (lr-eval (t, lr-funcall (l , new-l), c − 1)) = ’run)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ litatom (car (lr-expr (l)))
∧ (¬ subrp (car (lr-expr (l))))
∧ proper-p-statep (lr->p (new-l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)

∧ lr-p-proper-statep (p-temp-stk (new-l),
p-ctrl-stk (new-l),
p-data-segment (new-l),
table)

∧ (length (p-temp-stk (new-l)) 6< arity (car (lr-expr (l))))
∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ lr-programs-properp (l , table))
→ lr-p-proper-statep (p-temp-stk (lr-funcall (l , new-l)),

p-ctrl-stk (lr-funcall (l , new-l)),
p-data-segment (new-l),
table)

Theorem: length-p-temp-stk-lr-eval-flag-list-alt
(proper-p-statep (lr->p (l))
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ (¬ subrp (car (lr-expr (l))))
∧ litatom (car (lr-expr (l)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c))

= ’run))
→ (length (p-temp-stk (lr-eval (’list,

lr-set-pos (l , dv (offset (p-pc (l)), 1)),
c)))

= (arity (car (lr-expr (l))) + length (p-temp-stk (l))))
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Theorem: lr-p-proper-statep-cdr-lr-ctrl-stk
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (¬ subrp (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’quote)
∧ litatom (car (lr-expr (l)))
∧ lr-p-proper-statep (temp-stk ,

p-ctrl-stk (lr-eval (t,
lr-funcall (l ,

lr-eval (’list,
lr-set-pos (l ,

pos),
c)),

c − 1)),
data-segment ,
table)

∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ proper-p-statep (lr->p (l))
∧ (p-psw (lr-eval (t,

lr-funcall (l , lr-eval (’list, lr-set-pos (l , pos), c)),
c − 1))

= ’run)
∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ lr-p-proper-statep (temp-stk ,

cdr (p-ctrl-stk (lr-eval (t,
lr-funcall (l ,

lr-eval (’list,
lr-set-pos (l ,

pos),
c)),

c − 1))),
data-segment ,
table)

Theorem: lr-eval-preserves-lr-p-proper-statep
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ (p-psw (lr-eval (flag , l , c)) = ’run)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)
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∧ lr-programs-properp (l , table)
∧ lr-proper-formalsp (cdr (p-prog-segment (l))))
→ lr-p-proper-statep (p-temp-stk (lr-eval (flag , l , c)),

p-ctrl-stk (lr-eval (flag , l , c)),
p-data-segment (lr-eval (flag , l , c)),
table)

Theorem: p-plus
p (p, c1 + c2 ) = p (p (p, c1 ), c2 )

Theorem: p-set-pc-lr->p-lr-set-expr
(p-prog-segment (l1 ) = p-prog-segment (l2 ))
→ (lr->p (lr-set-expr (l1 , l2 , pos))

= p-set-pc (lr->p (l1 ), lr-p-pc (lr-set-expr (l1 , l2 , pos))))

Event: Disable p-set-pc-lr->p-lr-set-expr.

Theorem: member-assoc-area-name-cdr-lr-programs-properp
((assoc (area-name (p-pc (l)), cdr (p-prog-segment (l))) 6∈ p-prog-segment (l))
∧ (area-name (p-pc (l)) 6= caar (p-prog-segment (l))))
→ (¬ lr-programs-properp (l , table))

Event: Disable member-assoc-area-name-cdr-lr-programs-properp.

Theorem: not-listp-prog-segment-not-lr-programs-properp
(¬ listp (p-prog-segment (l))) → (¬ lr-programs-properp (l , table))

Event: Disable not-listp-prog-segment-not-lr-programs-properp.

Theorem: unlabel-get-lr-p-pc-program-body-assoc-comp-programs
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (get (lr-p-pc-1 (program-body (p-current-program (l)), offset (p-pc (l))),

program-body (assoc (area-name (p-pc (l)),
comp-programs (p-prog-segment (l)))))

= list (’dl,
lr-make-label (offset (lr-p-pc (l))),
nil,
car (comp-body-1 (t, lr-expr (l), offset (lr-p-pc (l))))))

Theorem: car-comp-body-1-litatom
litatom (body)
→ (car (comp-body-1 (t, body , n)) = list (’push-local, body))

347



Theorem: lr-p-pc-1-append-helper-1
(listp (body) ∧ (car (body) = ’if) ∧ (n 6' 0))
→ (lr-p-pc-1 (body , cons (n, pos))

= if n = 1 then lr-p-pc-1 (cadr (body), pos)
elseif n = 2
then 3

+ lr-p-c-size (t, cadr (body))
+ lr-p-pc-1 (caddr (body), pos)

else lr-p-c-size (t, cadr (body))
+ lr-p-c-size (t, caddr (body))
+ lr-p-pc-1 (cadddr (body), pos)
+ 4 endif)

Theorem: lr-p-pc-1-append-helper-2
(listp (body) ∧ (car (body) = s-temp-eval))
→ (lr-p-pc-1 (body , cons (1, pos)) = lr-p-pc-1 (cadr (body), pos))

Theorem: lr-p-pc-1-append-helper-3
(listp (body) ∧ (car (body) = s-temp-test))
→ (lr-p-pc-1 (body , cons (1, pos)) = (lr-p-pc-1 (cadr (body), pos) + 4))

Theorem: lr-p-pc-1-append-helper-4
(listp (body)
∧ (car (body) 6= s-temp-fetch)
∧ (car (body) 6= s-temp-eval)
∧ (car (body) 6= s-temp-test)
∧ (car (body) 6= ’quote)
∧ (car (body) 6= ’if)
∧ (n 6' 0))
→ (lr-p-pc-1 (body , cons (n, pos))

= (lr-p-c-size-list (n − 1, body) + lr-p-pc-1 (get (n, body), pos)))

Theorem: lr-p-pc-1-append
(good-posp1 (pos1 , body)
∧ lr-proper-exprp (t, body , pnames, formals , temps , table))
→ (lr-p-pc-1 (body , append (pos1 , pos2 ))

= (lr-p-pc-1 (body , pos1 ) + lr-p-pc-1 (cur-expr (pos1 , body), pos2 )))

Theorem: append-butlast-list-car-last
listp (x ) → (append (butlast (x ), list (car (last (x )))) = plist (x ))

Theorem: listp-plist-car
listp (x ) → (car (plist (x )) = car (x ))

Theorem: lr-p-pc-1-plist
lr-p-pc-1 (body , plist (pos)) = lr-p-pc-1 (body , pos)
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Theorem: lr-p-pc-1-listp-offset
(listp (pos)
∧ good-posp1 (butlast (pos), body)
∧ lr-proper-exprp (t, body , pnames, formals, temps , table))
→ (lr-p-pc-1 (body , pos)

= (lr-p-pc-1 (body , butlast (pos))
+ lr-p-pc-1 (cur-expr (butlast (pos), body),

list (car (last (pos))))))

Theorem: lr-p-pc-1-nil
lr-p-pc-1 (body , nil) = 0

Theorem: lr-p-pc-1-nx-helper
(listp (expr)
∧ (car (expr) 6= s-temp-fetch)
∧ (car (expr) 6= s-temp-eval)
∧ (car (expr) 6= s-temp-test)
∧ (car (expr) 6= ’quote)
∧ (n 6' 0)
∧ (n < length (expr)))
→ (lr-p-pc-1 (expr , list (n))

= if car (expr) = ’if
then case on n:

case = 1
then 0
case = 2
then 3 + lr-p-c-size (t, cadr (expr))

otherwise lr-p-c-size (t, cadr (expr))
+ lr-p-c-size (t, caddr (expr))
+ 4 endcase

else lr-p-c-size-list (n − 1, expr) endif)

Theorem: lr-p-pc-1-nx
(lr-programs-properp (l , table)
∧ good-posp (’list, offset (p-pc (l)), program-body (p-current-program (l)))
∧ listp (offset (p-pc (l)))
∧ listp (lr-expr-list (l))
∧ (car (cur-expr (butlast (offset (p-pc (l))),

program-body (p-current-program (l))))
6= ’if))

→ (lr-p-pc-1 (program-body (p-current-program (l)), nx (offset (p-pc (l))))
= (lr-p-pc-1 (program-body (p-current-program (l)), offset (p-pc (l)))

+ lr-p-c-size (t, lr-expr (l))))

Event: Disable lr-p-pc-1-listp-offset.
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Theorem: lr-p-pc-1-dv-1-car-lr-expr-if
((car (lr-expr (l)) = ’if)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (body = program-body (p-current-program (l))))
→ (lr-p-pc-1 (body , dv (offset (p-pc (l)), 1))

= lr-p-pc-1 (body , offset (p-pc (l))))

Theorem: lr-p-pc-1-dv-2-car-lr-expr-if
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (lr-p-pc-1 (program-body (p-current-program (l)), dv (offset (p-pc (l)), 2))

= (3
+ lr-p-c-size (t, cadr (lr-expr (l)))
+ lr-p-pc-1 (program-body (p-current-program (l)),

offset (p-pc (l)))))

Theorem: lr-p-pc-1-dv-3-car-lr-expr-if
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (lr-p-pc-1 (program-body (p-current-program (l)), dv (offset (p-pc (l)), 3))

= (lr-p-c-size (t, cadr (lr-expr (l)))
+ 3
+ lr-p-c-size (t, caddr (lr-expr (l)))
+ 1
+ lr-p-pc-1 (program-body (p-current-program (l)),

offset (p-pc (l)))))

Theorem: lr-p-c-size-not-1-car-if
(listp (expr) ∧ (car (expr) = ’if)) → (lr-p-c-size (t, expr) 6= 1)

Theorem: lr-p-c-size-ge-plus-2-size-cadr-car-if
(listp (expr) ∧ (car (expr) = ’if))
→ ((1 + (1 + lr-p-c-size (t, cadr (expr)))) < lr-p-c-size (t, expr))

Theorem: get-comp-if-helper-helper
((n 6< (x + y + 3)) ∧ (n 6= (x + y + 3)))
→ (get (n − (x + 3 + y), cons (w , l3 ))

= get (n − (x + y + 4), l3 ))

Theorem: get-comp-if-helper
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get (n, append (l1 , append (list (x , y , z ), append (l2 , cons (w , l3 )))))
= if n < length (l1 ) then get (n, l1 )

elseif n < (length (l1 ) + 3)
then get (n − length (l1 ), list (x , y , z ))
elseif n < (length (l1 ) + length (l2 ) + 3)
then get (n − (length (l1 ) + 3), l2 )
elseif n = (length (l1 ) + length (l2 ) + 3) then w
else get (n − (length (l1 ) + length (l2 ) + 4), l3 ) endif

Theorem: get-comp-if
get (n, comp-if (test-instrs , then-instrs, else-instrs, m))
= if n < length (test-instrs) then get (n, test-instrs)

elseif n < (length (test-instrs) + 3)
then get (n − length (test-instrs),

list (identity (list (’push-constant, lr-f-addr)),
’(eq),
list (’test-bool-and-jump,

’t,
lr-make-label (m

+ 4
+ length (test-instrs)
+ length (then-instrs)))))

elseif n < (length (test-instrs) + length (then-instrs) + 3)
then get (n − (length (test-instrs) + 3), then-instrs)
elseif n = (length (test-instrs) + length (then-instrs) + 3)
then list (’jump,

lr-make-label (m
+ 4
+ length (test-instrs)
+ length (then-instrs)
+ length (else-instrs)))

else get (n − (length (test-instrs)
+ length (then-instrs)
+ 4),

else-instrs) endif

Definition:
p-final-pc (flag , l , n)
= if flag = ’list

then add-addr (lr-p-pc (l), n + lr-p-c-size (’list, lr-expr-list (l)))
else add-addr (lr-p-pc (l), n + lr-p-c-size (flag , lr-expr (l))) endif

Event: Disable p-final-pc.

Theorem: proper-p-statep-p-set-pc
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(proper-p-statep (p) ∧ (area-name (p-pc (p)) = area-name (pc)))
→ (proper-p-statep (p-set-pc (p, pc)) = p-objectp-type (’pc, pc, p))

Theorem: proper-p-statep-p-set-pc-equal-p-set-pc
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p (lr->p (l), p-clock1 (t, l , c))

= p-set-pc (lr->p (lr-eval (t, l , c)),
tag (’pc,

cons (area-name (p-pc (l)),
lr-p-pc-1 (program-body (p-current-program (l)),

offset (p-pc (l)))
+ lr-p-c-size (t, lr-expr (l))))))

∧ proper-p-statep (lr->p (lr-eval (t, l , c))))
→ proper-p-statep (p (lr->p (l), p-clock1 (t, l , c)))

Theorem: lr-eval-p-pc-equivalence-helper-1
p (lr->p (l1 ), p-clock1 (flag1 , l2 , c1 ) + p-clock1 (flag2 , l3 , c2 ))
= p (p (lr->p (l1 ), p-clock1 (flag1 , l2 , c1 )), p-clock1 (flag2 , l3 , c2 ))

Theorem: lr-eval-p-pc-equivalence-helper-1-5
(listp (offset (p-pc (l))) ∧ listp (lr-expr-list (l)))
→ (p-final-pc (’list,

lr-set-expr (lr-eval (t, l , c), l , nx (offset (p-pc (l)))),
0)

= tag (’pc,
cons (area-name (p-pc (l)),

lr-p-pc-1 (program-body (p-current-program (l)),
nx (offset (p-pc (l))))

+ lr-p-c-size-list (length (lr-expr-list (l)) − 1,
lr-expr-list (l)))))

Theorem: lr-eval-p-pc-equivalence-helper-2
((p-psw (l) = ’run)
∧ listp (offset (p-pc (l)))
∧ (¬ listp (lr-expr-list (l))))
→ (p-set-pc (lr->p (l),

tag (’pc,
cons (area-name (p-pc (l)),

lr-p-pc-1 (program-body (p-current-program (l)),
offset (p-pc (l))))))

= p (lr->p (l), 0))

Theorem: lr-eval-p-pc-equivalence-helper-3
((p-psw (l) = ’run)
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∧ (flag 6= ’list)
∧ litatom (lr-expr (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (length (p-temp-stk (l)) < p-max-temp-stk-size (l)))
→ (p-set-pc (lr->p (lr-set-tstk (l ,

cons (cdr (assoc (lr-expr (l),
bindings (car (p-ctrl-stk (l))))),

p-temp-stk (l)))),
p-final-pc (flag , l , 0))

= p (lr->p (l), 1))

Theorem: lr->p-lr-set-pos-dv-1-car-lr-expr-if
((car (lr-expr (l)) = ’if)
∧ listp (lr-expr (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (lr->p (lr-set-pos (l , dv (offset (p-pc (l)), 1))) = lr->p (l))

Theorem: lr-p-proper-statep-listp-p-temp-stk-type-car-addr
(lr-p-proper-statep (temp-stk , ctrl-stk , data-seg , table) ∧ listp (temp-stk))
→ (type (car (temp-stk)) = ’addr)

Theorem: proper-p-statep-lessp-length-p-temp-stk-max-temp-stk-size
proper-p-statep (lr->p (l))
→ (p-max-temp-stk-size (l) 6< length (p-temp-stk (l)))

Theorem: length-p-temp-stk-lr-eval-lr-set-pos
(proper-p-statep (lr->p (l))
∧ good-posp1 (pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (t, lr-set-pos (l , pos), c)) = ’run))
→ (length (p-temp-stk (lr-eval (t, lr-set-pos (l , pos), c)))

= (1 + length (p-temp-stk (l))))

Theorem: not-lessp-length-proper-p-statep-lr-eval-lr-set-pos
(good-posp1 (pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ proper-p-statep (lr->p (l))
∧ (length (p-temp-stk (l)) 6< (p-max-temp-stk-size (l) − 1))
∧ lr-proper-formalsp (cdr (p-prog-segment (l))))
→ (p-psw (lr-if-ok (lr-eval (t, lr-set-pos (l , pos), c))) 6= ’run)

Theorem: lr-pop-tstk-lr-if-ok
(p-psw (lr-if-ok (l)) = ’run)
→ (lr-pop-tstk (lr-if-ok (l)) = lr-pop-tstk (l))
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Theorem: add-addr-p-final-pc
(add-addr (p-final-pc (flag , l , n), 1 + m)
= add-addr (p-final-pc (flag , l , 1 + n), m))
∧ (add-addr (p-final-pc (flag , l , n), 0) = p-final-pc (flag , l , n))

Theorem: lessp-3-lr-p-c-size-car-if
(listp (expr) ∧ (car (expr) = ’if)) → (3 < lr-p-c-size (t, expr))

Theorem: comp-body-1-car-expr-if
((car (expr) = ’if) ∧ listp (expr))
→ (comp-body-1 (t, expr , n)

= comp-if (comp-body-1 (t, cadr (expr), n),
comp-body-1 (t,

caddr (expr),
n + 3 + lr-p-c-size (t, cadr (expr))),

comp-body-1 (t,
cadddr (expr),
n
+ 4
+ lr-p-c-size (t, cadr (expr))
+ lr-p-c-size (t, caddr (expr))),

n))

Theorem: get-lr-p-c-size-lessp-restn-lr-p-pc-1-comp-body-1
(good-posp1 (pos, program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ (m < 3)
∧ (name = area-name (p-pc (l)))
∧ (pos = offset (p-pc (l))))
→ (unlabel (get (offset (p-final-pc (t, lr-set-pos (l , dv (pos, 1)), m)),

program-body (assoc (name, comp-programs (p-prog-segment (l))))))
= get (m,

list (list (’push-constant, lr-f-addr),
’(eq),
list (’test-bool-and-jump,

’t,
lr-make-label (lr-p-pc-1 (program-body (p-current-program (l)),

pos)
+ 4
+ lr-p-c-size (t,

cadr (lr-expr (l)))
+ lr-p-c-size (t,

caddr (lr-expr (l))))))))
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Theorem: area-name-p-final-pc
area-name (p-final-pc (flag , l , n)) = area-name (p-pc (l))

Theorem: lr-eval-p-pc-equivalence-helper-4-helper-1
let test be lr-eval (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
in
((p-psw (l) = ’run)
∧ (c 6' 0)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ (p-psw (lr-if-ok (test)) = ’run)
∧ (car (p-temp-stk (test)) 6= lr-f-addr)
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)

∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (t,

lr-set-expr (lr-pop-tstk (test),
l ,
dv (offset (p-pc (l)), 2)),

c))
= ’run))

→ (p (p-set-pc (lr->p (test),
p-final-pc (t,

lr-set-pos (l , dv (offset (p-pc (l)), 1)),
0)),

3)
= p-set-pc (lr->p (lr-pop-tstk (test)),

tag (’pc,
cons (area-name (p-pc (l)),

3
+ lr-p-c-size (t,

cadr (lr-expr (l)))
+ lr-p-pc-1 (program-body (p-current-program (l)),

offset (p-pc (l))))))) endlet

Theorem: lessp-plus-lr-p-c-size-cadr-caddr-3-car-if
(listp (expr) ∧ (car (expr) = ’if))
→ ((lr-p-c-size (t, cadr (expr)) + lr-p-c-size (t, caddr (expr)))

< (((lr-p-c-size (t, expr) − 1) − 1) − 1))
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Theorem: get-plus-lr-p-c-size-cadr-caddr-4-comp-body-cur-expr
((size1 = length (test)) ∧ (size2 = length (then)))
→ (get (3 + size1 + size2 , comp-if (test , then, else, n))

= list (’jump,
lr-make-label (4

+ n
+ length (test)
+ length (then)
+ length (else))))

Theorem: cur-expr-add1-opener
cur-expr (cons (1 + n, pos), body) = cur-expr (pos, get (n, cdr (body)))

Theorem: lr-p-pc-1-car-expr-if-2
(listp (expr) ∧ (car (expr) = ’if))
→ (lr-p-pc-1 (expr , ’(2)) = (3 + lr-p-c-size (t, cadr (expr))))

Theorem: get-plus-lr-p-pc-1-lr-pc-size-cadr-assoc-comp-body-if-4
(good-posp1 (offset (p-pc (l1 )), program-body (p-current-program (l1 )))
∧ lr-programs-properp (l1 , table)
∧ listp (lr-expr (l1 ))
∧ (car (lr-expr (l1 )) = ’if)
∧ (pos = dv (offset (p-pc (l1 )), 2))
∧ (area-name (p-pc (l2 )) = area-name (p-pc (l1 )))
∧ (p-prog-segment (l2 ) = p-prog-segment (l1 )))
→ (get (offset (p-final-pc (t, lr-set-expr (l2 , l1 , pos), 0)),

program-body (assoc (area-name (p-pc (l1 )),
comp-programs (p-prog-segment (l1 )))))

= list (’dl,
lr-make-label (offset (p-final-pc (t,

lr-set-expr (l2 , l1 , pos),
0))),

nil,
list (’jump,

lr-make-label (4
+ lr-p-pc-1 (program-body (p-current-program (l1 )),

offset (p-pc (l1 )))
+ lr-p-c-size (t,

cadr (lr-expr (l1 )))
+ lr-p-c-size (t,

caddr (lr-expr (l1 )))
+ lr-p-c-size (t,

cadddr (lr-expr (l1 )))))))

Theorem: find-label-lr-make-label-label-instrs
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((m 6< n) ∧ (m ∈ N) ∧ (m < (n + length (instrs))))
→ (find-label (lr-make-label (m), label-instrs (instrs, n)) = (m − n))

Theorem: find-label-past-else-lr-expr-car-if
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ (expr = lr-expr (l))
∧ (body = program-body (p-current-program (l)))
∧ (pos = offset (p-pc (l)))
∧ lr-programs-properp (l , table)
∧ good-posp1 (pos, body))
→ (find-label (lr-make-label (1 + (1 + (1 + (1 + (lr-p-c-size (t,

cadr (expr))
+ lr-p-c-size (t,

caddr (expr))
+ lr-p-c-size (t,

cadddr (expr))
+ lr-p-pc-1 (body ,

pos)))))),
program-body (assoc (area-name (p-pc (l)),

comp-programs (p-prog-segment (l)))))
= (1 + (1 + (1 + (1 + (lr-p-c-size (t, cadr (expr))

+ lr-p-c-size (t, caddr (expr))
+ lr-p-c-size (t, cadddr (expr))
+ lr-p-pc-1 (body , pos)))))))

Theorem: lr-eval-p-pc-equivalence-helper-4-helper-2
let test be lr-eval (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
in
let then be lr-set-expr (lr-pop-tstk (test), l , dv (offset (p-pc (l)), 2))
in
((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ (c 6= 0)
∧ (c ∈ N)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ (p-psw (lr-if-ok (test)) = ’run)
∧ (car (p-temp-stk (test)) 6= lr-f-addr)
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)),

program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),
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p-ctrl-stk (l),
p-data-segment (l),
table)

∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (t, then, c)) = ’run))
→ (p (p-set-pc (lr->p (lr-eval (t, then, c)),

p-final-pc (t, then, 0)),
1)

= p-set-pc (lr->p (lr-eval (t, then, c)),
p-final-pc (flag , l , 0))) endlet endlet

Theorem: lr-eval-p-pc-equivalence-helper-4
let test be lr-eval (t, lr-set-pos (l , pos), c),

cadr-size be lr-p-c-size (t, cadr (lr-expr (l))),
lr-p-pc-1 be lr-p-pc-1 (program-body (p-current-program (l)),

offset (p-pc (l))),
then be lr-set-expr (lr-pop-tstk (lr-eval (t, lr-set-pos (l , pos), c)),

l ,
dv (offset (p-pc (l)), 2))

in
((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ (c 6= 0)
∧ (c ∈ N)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ (p-psw (lr-if-ok (test)) = ’run)
∧ (car (p-temp-stk (test)) 6= lr-f-addr)
∧ (p (lr->p (l), p-clock1 (t, lr-set-pos (l , pos), c))

= p-set-pc (lr->p (lr-eval (t, lr-set-pos (l , pos), c)),
p-final-pc (t, lr-set-pos (l , pos), 0)))

∧ (p (p-set-pc (lr->p (lr-pop-tstk (test)),
tag (’pc,

cons (area-name (p-pc (l)),
3 + cadr-size + lr-p-pc-1 ))),

p-clock1 (t, then, c))
= p-set-pc (lr->p (lr-eval (t, then, c)),

p-final-pc (t, then, 0)))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
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table)
∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (t, then, c)) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ (p (lr->p (l),

p-clock1 (t, lr-set-pos (l , pos), c)
+ 3
+ p-clock1 (t, then, c)
+ 1)

= p-set-pc (lr->p (lr-eval (t, then, c)),
p-final-pc (flag , l , 0))) endlet

Theorem: lessp-plus-lr-p-pc-1-lr-p-c-size-3-1-lr-expr-car-if
((car (lr-expr (l)) = ’if)
∧ listp (lr-expr (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ ((lr-p-c-size (t, cadr (lr-expr (l)))

+ 3
+ lr-p-c-size (t, caddr (lr-expr (l)))
+ 1
+ lr-p-pc-1 (program-body (p-current-program (l)), offset (p-pc (l))))

< length (program-body (assoc (area-name (p-pc (l)),
comp-programs (p-prog-segment (l))))))

Theorem: find-label-else-start-lr-expr-car-if
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ (expr = lr-expr (l))
∧ (body = program-body (p-current-program (l)))
∧ (pos = offset (p-pc (l)))
∧ lr-programs-properp (l , table)
∧ good-posp1 (pos, body))
→ (find-label (lr-make-label (1 + (1 + (1 + (1 + (lr-p-c-size (t,

cadr (expr))
+ lr-p-c-size (t,

caddr (expr))
+ lr-p-pc-1 (body ,

pos)))))),
program-body (assoc (area-name (p-pc (l)),

comp-programs (p-prog-segment (l)))))
= (1 + (1 + (1 + (1 + (lr-p-c-size (t, cadr (expr))

+ lr-p-c-size (t, caddr (expr))
+ lr-p-pc-1 (body , pos)))))))
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Theorem: lr-eval-p-pc-equivalence-helper-5-helper-1
let test be lr-eval (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
in
((p-psw (l) = ’run)
∧ (c 6' 0)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ (p-psw (lr-if-ok (test)) = ’run)
∧ (car (p-temp-stk (test)) = lr-f-addr)
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)

∧ lr-proper-formalsp (cdr (p-prog-segment (l))))
→ (p (p-set-pc (lr->p (test),

p-final-pc (t,
lr-set-pos (l , dv (offset (p-pc (l)), 1)),
0)),

3)
= p-set-pc (lr->p (lr-pop-tstk (test)),

tag (’pc,
cons (area-name (p-pc (l)),

lr-p-c-size (t, cadr (lr-expr (l)))
+ 3
+ lr-p-c-size (t,

caddr (lr-expr (l)))
+ 1
+ lr-p-pc-1 (program-body (p-current-program (l)),

offset (p-pc (l))))))) endlet

Theorem: lr-eval-p-pc-equivalence-helper-5-helper-2
let test be lr-eval (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
in
let else be lr-set-expr (lr-pop-tstk (test), l , dv (offset (p-pc (l)), 3))
in
((flag 6= ’list)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ good-posp1 (offset (p-pc (l)),

program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))

360



→ (p-final-pc (flag , l , 0) = p-final-pc (t, else, 0)) endlet endlet

Theorem: lr-eval-p-pc-equivalence-helper-5
let test be lr-eval (t, lr-set-pos (l , pos), c),

cadr-size be lr-p-c-size (t, cadr (lr-expr (l))),
caddr-size be lr-p-c-size (t, caddr (lr-expr (l))),
lr-p-pc-1 be lr-p-pc-1 (program-body (p-current-program (l)),

offset (p-pc (l))),
else be lr-set-expr (lr-pop-tstk (lr-eval (t, lr-set-pos (l , pos), c)),

l ,
dv (offset (p-pc (l)), 3))

in
((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ (c 6= 0)
∧ (c ∈ N)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’if)
∧ (p-psw (lr-if-ok (test)) = ’run)
∧ (car (p-temp-stk (test)) = lr-f-addr)
∧ (p (p-set-pc (lr->p (lr-pop-tstk (test)),

tag (’pc,
cons (area-name (p-pc (l)),

cadr-size
+ 3
+ caddr-size
+ 1
+ lr-p-pc-1 ))),

p-clock1 (t, else, c))
= p-set-pc (lr->p (lr-eval (t, else, c)),

p-final-pc (t, else, 0)))
∧ (p (lr->p (l), p-clock1 (t, lr-set-pos (l , pos), c))

= p-set-pc (lr->p (test),
p-final-pc (t, lr-set-pos (l , pos), 0)))

∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)

∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (t, else, c)) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
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→ (p (lr->p (l),
p-clock1 (t, lr-set-pos (l , pos), c)
+ 3
+ p-clock1 (t, else, c))

= p-set-pc (lr->p (lr-eval (t, else, c)),
p-final-pc (flag , l , 0))) endlet

Theorem: lr-p-pc-1-dv-1-car-lr-expr-temp-eval
((car (lr-expr (l)) = s-temp-eval)
∧ listp (lr-expr (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (body = program-body (p-current-program (l))))
→ (lr-p-pc-1 (body , dv (offset (p-pc (l)), 1))

= lr-p-pc-1 (body , offset (p-pc (l))))

Theorem: comp-body-1-car-expr-temp-eval
(listp (expr) ∧ (car (expr) = s-temp-eval))
→ (comp-body-1 (t, expr , n)

= append (comp-body-1 (t, cadr (expr), n),
list (list (’set-local, caddr (expr)))))

Theorem: lr-eval-p-pc-equivalence-helper-5-get-lr-p-c-size
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-eval)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (body = program-body (p-current-program (l)))
∧ (progs = p-prog-segment (l)))
→ (unlabel (get (lr-p-pc-1 (body , offset (p-pc (l)))

+ lr-p-c-size (t, cadr (lr-expr (l))),
program-body (assoc (area-name (p-pc (l)),

comp-programs (progs)))))
= list (’set-local, caddr (lr-expr (l))))

Theorem: lr->p-lr-set-pos-dv-1-car-lr-expr-temp-eval
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-eval)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (lr->p (lr-set-pos (l , dv (offset (p-pc (l)), 1))) = lr->p (l))

Theorem: lr-eval-p-pc-equivalence-helper-6-helper
let lr-eval be lr-eval (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
in
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((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ (c 6= 0)
∧ (c ∈ N)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-eval)
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval) = ’run))
→ (p (p-set-pc (lr->p (lr-eval),

p-final-pc (t,
lr-set-pos (l , dv (offset (p-pc (l)), 1)),
0)),

1)
= p-set-pc (lr->p (lr-set-temp (lr-eval ,

car (p-temp-stk (lr-eval)),
caddr (lr-expr (l)))),

p-final-pc (flag , l , 0))) endlet

Theorem: lr-eval-p-pc-equivalence-helper-6
((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ (c 6= 0)
∧ (c ∈ N)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-eval)
∧ (p (lr->p (l), p-clock1 (t, lr-set-pos (l , pos), c))

= p-set-pc (lr->p (lr-eval (t, lr-set-pos (l , pos), c)),
p-final-pc (t, lr-set-pos (l , pos), 0)))

∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (t, lr-set-pos (l , pos), c)) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ (p-set-pc (lr->p (lr-set-temp (lr-eval (t, lr-set-pos (l , pos), c),

car (p-temp-stk (lr-eval (t,
lr-set-pos (l , pos),
c))),

caddr (lr-expr (l)))),
p-final-pc (flag , l , 0))

= p (lr->p (l), p-clock1 (t, lr-set-pos (l , pos), c) + 1))

Theorem: get-comp-temp-test

363



(listp (expr) ∧ (car (expr) = s-temp-test))
→ (get (m, comp-body-1 (t, expr , n))

= if m < 4
then get (m,

list (list (’push-local, caddr (expr)),
list (’push-constant,

identity (lr-undef-addr)),
’(eq),
list (’test-bool-and-jump,

’f,
lr-make-label (n

+ 6
+ lr-p-c-size (t,

cadr (expr))))))
elseif m < (lr-p-c-size (t, cadr (expr)) + 4)
then get (m − 4, comp-body-1 (t, cadr (expr), n + 4))
else get (m − (lr-p-c-size (t, cadr (expr)) + 4),

list (list (’set-local, caddr (expr)),
list (’jump,

lr-make-label (n
+ 7
+ lr-p-c-size (t,

cadr (expr)))),
list (’push-local, caddr (expr)))) endif)

Theorem: lr-p-c-size-temp-test-opener
(listp (expr) ∧ (car (expr) = s-temp-test))
→ (lr-p-c-size (t, expr) = (lr-p-c-size (t, cadr (expr)) + 7))

Theorem: get-+-lr-p-pc-1-lessp-3-temp-test-assoc-comp-programs
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-test)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (n < 4)
∧ (progs = p-prog-segment (l))
∧ (body = program-body (p-current-program (l)))
∧ (pos = offset (p-pc (l))))
→ (unlabel (get (lr-p-pc-1 (body , pos) + n,

program-body (assoc (area-name (p-pc (l)),
comp-programs (progs)))))

= get (n,
list (list (’push-local, caddr (lr-expr (l))),

identity (list (’push-constant, lr-undef-addr)),
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’(eq),
list (’test-bool-and-jump,

’f,
lr-make-label (lr-p-pc-1 (body , pos)

+ 6
+ lr-p-c-size (t,

cadr (lr-expr (l))))))))

Theorem: car-comp-body-lr-expr-3-temp-test
(listp (expr) ∧ (car (expr) = s-temp-test))
→ (car (comp-body-1 (t, expr , n)) = list (’push-local, caddr (expr)))

Theorem: get-+-lr-p-pc-1-n-2-size-temp-test-assoc-comp-programs
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-test)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (n 6< 4)
∧ (6 6< n)
∧ (progs = p-prog-segment (l))
∧ (body = program-body (p-current-program (l)))
∧ (pos = offset (p-pc (l))))
→ (unlabel (get (lr-p-pc-1 (body , pos)

+ n
+ lr-p-c-size (t, cadr (lr-expr (l))),
program-body (assoc (area-name (p-pc (l)),

comp-programs (progs)))))
= get (n − 4,

list (list (’set-local, caddr (lr-expr (l))),
list (’jump,

lr-make-label (lr-p-pc-1 (body , pos)
+ 7
+ lr-p-c-size (t,

cadr (lr-expr (l))))),
list (’push-local, caddr (lr-expr (l))))))

Event: Disable get-comp-temp-test.

Event: Disable lr-p-c-size-temp-test-opener.

Theorem: definedp-caddr-lr-expr-bindings-ctrl-stk-rewrite
(lr-programs-properp (l , table)
∧ ((car (lr-expr (l)) = s-temp-fetch)

∨ (car (lr-expr (l)) = s-temp-test))
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∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ proper-p-statep (lr->p (l)))
→ definedp (caddr (lr-expr (l)), bindings (car (p-ctrl-stk (l))))

Theorem: member-lr-good-pointerps-type-addr-untag-whole
((addr ∈ list)
∧ (type (addr) = ’addr)
∧ (untag (addr) = rest)
∧ (addr 6= list (’addr, rest)))
→ (¬ lr-good-pointerps (list , data-seg))

Theorem: find-label-temp-test-end-lr-expr-car-temp-test
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-test)
∧ (body = program-body (p-current-program (l)))
∧ (pos = offset (p-pc (l)))
∧ (expr = lr-expr (l))
∧ lr-programs-properp (l , table)
∧ good-posp1 (pos, body)
∧ (7 6< n))
→ (find-label (lr-make-label (lr-p-pc-1 (body , pos)

+ n
+ lr-p-c-size (t, cadr (expr))),

program-body (assoc (area-name (p-pc (l)),
comp-programs (p-prog-segment (l)))))

= (lr-p-pc-1 (body , pos) + n + lr-p-c-size (t, cadr (expr))))

Theorem: lr-p-proper-statep-lr-good-pointerps-strip-cdrs-binding
(lr-p-proper-statep (p-temp-stk (l), p-ctrl-stk (l), p-data-segment (l), table)
∧ proper-p-statep (lr->p (l)))
→ lr-good-pointerps (strip-cdrs (bindings (car (p-ctrl-stk (l)))),

p-data-segment (l))

Theorem: lr-eval-p-pc-equivalence-helper-7
((flag 6= ’list)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-test)
∧ (p-max-temp-stk-size (l) 6< (2 + length (p-temp-stk (l))))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)
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∧ (p-psw (lr-do-temp-fetch (l)) = ’run))
→ (p-set-pc (lr->p (lr-do-temp-fetch (l)), p-final-pc (flag , l , 0))

= p (lr->p (l), 5))

Theorem: lr-p-pc-dv-1-s-temp-test
(listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-test)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (lr-p-pc-1 (program-body (p-current-program (l)), dv (offset (p-pc (l)), 1))

= (lr-p-pc-1 (program-body (p-current-program (l)), offset (p-pc (l)))
+ 4))

Theorem: lr-eval-p-pc-equivalence-helper-8-helper-1
((p-psw (l) = ’run)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-test)
∧ (p-max-temp-stk-size (l) 6< (2 + length (p-temp-stk (l))))
∧ (local-var-value (caddr (lr-expr (l)), p-ctrl-stk (l)) = lr-undef-addr)
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (lr->p (lr-set-pos (l , dv (offset (p-pc (l)), 1))) = p (lr->p (l), 4))

Theorem: lr-eval-p-pc-equivalence-helper-8-helper-2-helper
(4 + lr-p-c-size (t, expr) + 1) = (5 + lr-p-c-size (t, expr))

Theorem: lr-eval-p-pc-equivalence-helper-8-helper-2
let lr-eval be lr-eval (t, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
in
((flag 6= ’list)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-test)
∧ (p-max-temp-stk-size (l) 6= 0)
∧ (p-max-temp-stk-size (l) ∈ N)
∧ (p-max-temp-stk-size (l) 6= 1)
∧ (((p-max-temp-stk-size (l) − 1) − 1) 6< length (p-temp-stk (l)))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval) = ’run))
→ (p-set-pc (lr->p (lr-set-temp (lr-eval ,

car (p-temp-stk (lr-eval)),
caddr (lr-expr (l)))),

p-final-pc (flag , l , 0))
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= p (p-set-pc (lr->p (lr-eval),
p-final-pc (t,

lr-set-pos (l ,
dv (offset (p-pc (l)), 1)),

0)),
2)) endlet

Event: Disable lr-eval-p-pc-equivalence-helper-8-helper-2-helper.

Theorem: lr-eval-p-pc-equivalence-helper-8
((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-test)
∧ (p-max-temp-stk-size (l) 6< (2 + length (p-temp-stk (l))))
∧ (¬ lr-eval-temp-setp (l))
∧ (p (lr->p (lr-set-pos (l , pos)), p-clock1 (t, lr-set-pos (l , pos), c))

= p-set-pc (lr->p (lr-eval (t, lr-set-pos (l , pos), c)),
p-final-pc (t, lr-set-pos (l , pos), 0)))

∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)

∧ (p-psw (lr-eval (t, lr-set-pos (l , pos), c)) = ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ (p-set-pc (lr->p (lr-set-temp (lr-eval (t, lr-set-pos (l , pos), c),

car (p-temp-stk (lr-eval (t,
lr-set-pos (l , pos),
c))),

caddr (lr-expr (l)))),
p-final-pc (flag , l , 0))

= p (lr->p (l), 4 + p-clock1 (t, lr-set-pos (l , pos), c) + 2))

Theorem: comp-body-1-car-expr-temp-fetch
(listp (expr) ∧ (car (expr) = s-temp-fetch))
→ (comp-body-1 (t, expr , n) = list (list (’push-local, caddr (expr))))

Theorem: get-lr-p-pc-1-comp-body-1-temp-fetch
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-fetch)
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∧ lr-programs-properp (l , table)
∧ (prog = assoc (area-name (p-pc (l)), p-prog-segment (l))))
→ (get (lr-p-pc-1 (program-body (prog), offset (p-pc (l))),

comp-body-1 (t, program-body (prog), 0))
= list (’push-local, caddr (lr-expr (l))))

Theorem: lr-eval-p-pc-equivalence-helper-9
((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = s-temp-fetch)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-do-temp-fetch (l)) = ’run))
→ (p-set-pc (lr->p (lr-do-temp-fetch (l)), p-final-pc (flag , l , 0))

= p (lr->p (l), 1))

Theorem: lr-eval-p-pc-equivalence-helper-10
((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) = ’quote)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (length (p-temp-stk (l)) < p-max-temp-stk-size (l)))
→ (p-set-pc (lr->p (lr-set-tstk (l , cons (cadr (lr-expr (l)), p-temp-stk (l)))),

p-final-pc (flag , l , 0))
= p (lr->p (l), 1))

Theorem: lr-expr-cur-expr-if-same
(car (cur-expr (offset (p-pc (l)), program-body (p-current-program (l)))) = ’if)
= (car (lr-expr (l)) = ’if)

Theorem: lr-p-pc-lr-set-pos-dv-1-car-lr-expr-funcall
(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= s-temp-eval)
∧ (car (lr-expr (l)) 6= s-temp-test)
∧ (car (lr-expr (l)) 6= s-temp-fetch)
∧ (car (lr-expr (l)) 6= ’quote)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (lr-p-pc (lr-set-pos (l , dv (offset (p-pc (l)), 1))) = lr-p-pc (l))

Theorem: lr->p-lr-set-pos-dv-1-car-lr-expr-funcall
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(listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= s-temp-eval)
∧ (car (lr-expr (l)) 6= s-temp-test)
∧ (car (lr-expr (l)) 6= s-temp-fetch)
∧ (car (lr-expr (l)) 6= ’quote)
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table))
→ (lr->p (lr-set-pos (l , dv (offset (p-pc (l)), 1))) = lr->p (l))

Theorem: p-set-pc-lr->p-equal-p-fact
(p-set-pc (lr->p (p-state (pc1 ,

ctrl-stk ,
temp-stk ,
prog-seg ,
data-seg ,
max-ctrl ,
max-temp,
word-size,
psw)),

pc2 )
= p)

= ((p-pc (p) = pc2 )
∧ (p-ctrl-stk (p) = ctrl-stk)
∧ (p-temp-stk (p) = temp-stk)
∧ (p-data-segment (p) = data-seg)
∧ (p-prog-segment (p) = comp-programs (prog-seg))
∧ (p-max-ctrl-stk-size (p) = max-ctrl)
∧ (p-max-temp-stk-size (p) = max-temp)
∧ (p-word-size (p) = word-size)
∧ (p-psw (p) = psw))

Event: Disable p-set-pc-lr->p-equal-p-fact.

Theorem: lr->p-p-run-subr-p-run-subr-clock
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ subrp (car (lr-expr (l))))
→ (p-run-subr (car (lr-expr (l)),

p-set-pc (lr->p (new-l),
add-addr (lr-p-pc (l),

lr-p-c-size-list (arity (car (lr-expr (l))),
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lr-expr (l)))))
= p (p-set-pc (lr->p (new-l),

add-addr (lr-p-pc (l),
lr-p-c-size-list (arity (car (lr-expr (l))),

lr-expr (l)))),
p-run-subr-clock (l , new-l)))

Theorem: p-pc-run-car
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-car-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call car)))
→ (p-pc (p (p-set-pc (lr->p (l), pc), p-car-clock (p-set-pc (lr->p (l), pc))))

= add-addr (pc, 1))

Theorem: p-pc-run-cdr
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-cdr-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call cdr)))
→ (p-pc (p (p-set-pc (lr->p (l), pc), p-cdr-clock (p-set-pc (lr->p (l), pc))))

= add-addr (pc, 1))

Theorem: p-pc-run-cons
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-cons-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call cons)))
→ (p-pc (p (p-set-pc (lr->p (l), pc), p-cons-clock (p-set-pc (lr->p (l), pc))))

= add-addr (pc, 1))
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Theorem: p-pc-run-false
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-false-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call false)))
→ (p-pc (p (p-set-pc (lr->p (l), pc), p-false-clock (p-set-pc (lr->p (l), pc))))

= add-addr (pc, 1))

Theorem: p-pc-run-falsep
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-falsep-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call falsep)))
→ (p-pc (p (p-set-pc (lr->p (l), pc), p-falsep-clock (p-set-pc (lr->p (l), pc))))

= add-addr (pc, 1))

Theorem: p-pc-run-listp
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-listp-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call listp)))
→ (p-pc (p (p-set-pc (lr->p (l), pc), p-listp-clock (p-set-pc (lr->p (l), pc))))

= add-addr (pc, 1))

Theorem: p-pc-run-nlistp
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-nlistp-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)

372



∧ (unlabel (get (offset (pc),
program-body (assoc (area-name (pc),

p-prog-segment (lr->p (l))))))
= ’(call nlistp)))

→ (p-pc (p (p-set-pc (lr->p (l), pc), p-nlistp-clock (p-set-pc (lr->p (l), pc))))
= add-addr (pc, 1))

Theorem: p-pc-run-true
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-true-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call true)))
→ (p-pc (p (p-set-pc (lr->p (l), pc), p-true-clock (p-set-pc (lr->p (l), pc))))

= add-addr (pc, 1))

Theorem: p-pc-run-truep
(proper-p-statep (lr->p (l))
∧ (p-psw (l) = ’run)
∧ (p-psw (p (p-set-pc (lr->p (l), pc), p-truep-clock (p-set-pc (lr->p (l), pc))))

= ’run)
∧ lr-programs-properp (l , table)
∧ (unlabel (get (offset (pc),

program-body (assoc (area-name (pc),
p-prog-segment (lr->p (l))))))

= ’(call truep)))
→ (p-pc (p (p-set-pc (lr->p (l), pc), p-truep-clock (p-set-pc (lr->p (l), pc))))

= add-addr (pc, 1))

Theorem: p-run-subr-p-pc-add-addr-lr-p-pc-lr-p-c-size
let pos be dv (offset (p-pc (l)), 1)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ subrp (car (lr-expr (l)))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ proper-p-statep (lr->p (l))
∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ (p-psw (p-run-subr (car (lr-expr (l)),
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p-set-pc (lr->p (lr-eval (’list,
lr-set-pos (l , pos),
c)),

lr-return-pc (l))))
= ’run))

→ (p-pc (p-run-subr (car (lr-expr (l)),
p-set-pc (lr->p (lr-eval (’list,

lr-set-pos (l , pos),
c)),

lr-return-pc (l))))
= add-addr (lr-return-pc (l), 1)) endlet

Theorem: lr-eval-p-pc-equivalence-helper-11
((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ (c 6= 0)
∧ (c ∈ N)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= s-temp-eval)
∧ (car (lr-expr (l)) 6= s-temp-test)
∧ (car (lr-expr (l)) 6= s-temp-fetch)
∧ (car (lr-expr (l)) 6= ’quote)
∧ subrp (car (lr-expr (l)))
∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ (p (lr->p (l), p-clock1 (’list, lr-set-pos (l , pos), c))

= p-set-pc (lr->p (lr-eval (’list, lr-set-pos (l , pos), c)),
p-final-pc (’list, lr-set-pos (l , pos), 0)))

∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-apply-subr (l , lr-eval (’list, lr-set-pos (l , pos), c)))

= ’run)
∧ (pos = dv (offset (p-pc (l)), 1)))
→ (p-set-pc (lr->p (lr-apply-subr (l , lr-eval (’list, lr-set-pos (l , pos), c))),

p-final-pc (flag , l , 0))
= p (lr->p (l),

p-clock1 (’list, lr-set-pos (l , pos), c)
+ p-run-subr-clock (l ,

lr-eval (’list, lr-set-pos (l , pos), c))))

Theorem: p-set-pc-twice
p-set-pc (p-set-pc (p, pc1 ), pc2 ) = p-set-pc (p, pc2 )

Theorem: lr-eval-p-pc-equivalence-helper-12-helper-1
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(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ (¬ subrp (car (lr-expr (l))))
∧ litatom (car (lr-expr (l)))
∧ (p-psw (lr-eval (t, lr-funcall (l , new-l), c − 1)) = ’run)
∧ (p-psw (new-l) = ’run)
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ (p (p-set-pc (lr->p (new-l),

add-addr (lr-p-pc (l),
lr-p-c-size-list (arity (car (lr-expr (l))),

lr-expr (l)))),
1)

= lr->p (lr-funcall (l , new-l)))

Theorem: lr-expr-funcall
((p-psw (lr-funcall (l , new-l)) = ’run)
∧ (p-prog-segment (l) = p-prog-segment (new-l)))
→ (lr-expr (lr-funcall (l , new-l))

= program-body (assoc (user-fname (car (lr-expr (l))),
p-prog-segment (l))))

Theorem: unlabel-car-last-comp-body
unlabel (car (last (comp-body (body)))) = ’(ret)

Theorem: unlabel-get-last-funcall-body-assoc-comp-programs
(listp (lr-expr (l))
∧ (¬ subrp (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’quote)
∧ litatom (car (lr-expr (l)))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (prog-seg = p-prog-segment (l)))
→ (unlabel (get (lr-p-c-size (t,

program-body (assoc (user-fname (car (lr-expr (l))),
prog-seg))),

program-body (assoc (user-fname (car (lr-expr (l))),
comp-programs (prog-seg)))))

= ’(ret))

Theorem: lr-eval-preserves-cdr-p-ctrl-stk-lr-funcall
(listp (lr-expr (l))
∧ (¬ subrp (car (lr-expr (l))))
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∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ litatom (car (lr-expr (l)))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (t, lr-funcall (l , new-l), c − 1)) = ’run)
∧ (p-psw (new-l) = ’run)
∧ (new-l = lr-eval (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)))
→ (cdr (p-ctrl-stk (lr-eval (t, lr-funcall (l , new-l), c − 1)))

= p-ctrl-stk (new-l))

Theorem: lr-eval-preserves-ret-pc-car-p-ctrl-stk
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (ret-pc (car (p-ctrl-stk (lr-eval (flag , l , c))))

= ret-pc (car (p-ctrl-stk (l))))

Theorem: lr-eval-preserves-ret-pc-car-p-ctrl-stk-lr-funcall
(listp (lr-expr (l))
∧ (¬ subrp (car (lr-expr (l))))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ litatom (car (lr-expr (l)))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ (p-psw (lr-eval (t, lr-funcall (l , new-l), c − 1)) = ’run)
∧ (p-psw (new-l) = ’run)
∧ (new-l = lr-eval (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)))
→ (ret-pc (car (p-ctrl-stk (lr-eval (t, lr-funcall (l , new-l), c − 1))))

= add-addr (lr-return-pc (l), 1))

Theorem: lr-eval-p-pc-equivalence-helper-12-helper-2
let new-l be lr-eval (’list, lr-set-pos (l , dv (offset (p-pc (l)), 1)), c)
in
(good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= ’quote)
∧ (¬ subrp (car (lr-expr (l))))
∧ proper-p-statep (lr->p (l))
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∧ litatom (car (lr-expr (l)))
∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (t, lr-funcall (l , new-l), c − 1)) = ’run)
∧ (p-psw (new-l) = ’run))
→ (p (p-set-pc (lr->p (lr-eval (t, lr-funcall (l , new-l), c − 1)),

add-addr (lr-p-pc (lr-funcall (l , new-l)),
lr-p-c-size (t,

lr-expr (lr-funcall (l , new-l))))),
1)

= p-set-pc (lr->p (lr-pop-cstk (lr-eval (t,
lr-funcall (l , new-l),
c − 1))),

add-addr (lr-p-pc (l),
lr-p-c-size-list (arity (car (lr-expr (l))),

lr-expr (l))
+ 1))) endlet

Theorem: lr-eval-p-pc-equivalence-helper-12
let fs be lr-funcall (l , lr-eval (’list, lr-set-pos (l , pos), c))
in
((p-psw (l) = ’run)
∧ (flag 6= ’list)
∧ (c 6= 0)
∧ (c ∈ N)
∧ listp (lr-expr (l))
∧ (car (lr-expr (l)) 6= ’if)
∧ (car (lr-expr (l)) 6= s-temp-eval)
∧ (car (lr-expr (l)) 6= s-temp-test)
∧ (car (lr-expr (l)) 6= s-temp-fetch)
∧ (car (lr-expr (l)) 6= ’quote)
∧ (¬ subrp (car (lr-expr (l))))
∧ litatom (car (lr-expr (l)))
∧ (p-psw (lr-eval (’list, lr-set-pos (l , pos), c)) = ’run)
∧ (p (lr->p (fs), p-clock1 (t, fs, c − 1))

= p-set-pc (lr->p (lr-eval (t, fs, c − 1)),
p-final-pc (t, fs, 0)))

∧ (p (lr->p (l), p-clock1 (’list, lr-set-pos (l , pos), c))
= p-set-pc (lr->p (lr-eval (’list, lr-set-pos (l , pos), c)),

p-final-pc (’list, lr-set-pos (l , pos), 0)))
∧ proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (t, fs, c − 1)) = ’run)
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∧ (pos = dv (offset (p-pc (l)), 1)))
→ (p-set-pc (lr->p (lr-pop-cstk (lr-eval (t, fs, c − 1))),

p-final-pc (flag , l , 0))
= p (lr->p (l),

p-clock1 (’list, lr-set-pos (l , pos), c)
+ 1
+ p-clock1 (t, fs, c − 1)
+ 1)) endlet

Theorem: lr-eval-p-pc-equivalence
(proper-p-statep (lr->p (l))
∧ good-posp (flag , offset (p-pc (l)), program-body (p-current-program (l)))
∧ ((flag 6= ’list)

∨ (car (cur-expr (butlast (offset (p-pc (l))),
program-body (p-current-program (l))))

6= ’if))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)

∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (flag , l , c)) = ’run))
→ (p (lr->p (l), p-clock1 (flag , l , c))

= p-set-pc (lr->p (lr-eval (flag , l , c)), p-final-pc (flag , l , 0)))

Event: Disable lr-expr-cur-expr-if-same.

Definition:
logic->p-clock (expr ,

alist ,
program-names ,
heap-size,
max-temp-stk-size,
max-ctrl-stk-size,
word-size)

= (p-clock1 (t,
s->lr (logic->s (expr , alist , program-names),

heap-size,
max-temp-stk-size,
max-ctrl-stk-size,
word-size),

cdr (v&c$ (t, expr , alist)) + 1)
+ 2)
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Definition:
total-heap-reqs (expr , alist , program-names , heap-size)
= lr-total-heap-reqs (expr ,

alist ,
program-names ,
heap-size,
cdr (v&c$ (t, expr , alist)) + 1)

Definition:
max-ctrl-reqs (expr , alist , program-names)
= lr-max-ctrl-reqs (expr ,

alist ,
program-names,
cdr (v&c$ (t, expr , alist)) + 1)

Definition:
max-temp-reqs (expr , alist , program-names)
= lr-max-temp-reqs (expr ,

alist ,
program-names ,
cdr (v&c$ (t, expr , alist)) + 1)

Definition:
max-word-size-reqs (expr , alist , program-names, heap-size)
= lr-max-word-size-reqs (expr ,

alist ,
program-names ,
heap-size,
cdr (v&c$ (t, expr , alist)) + 1)

Theorem: s-formals-s-prog-logic->s
s-formals (s-prog (logic->s (expr , alist , pnames))) = strip-cars (alist)

Theorem: deposit-answer-addr-preserves-lr-valp
(adpp (untag (lr-answer-addr), data-seg) ∧ lr-valp (value, addr , data-seg))
→ lr-valp (value,

addr ,
deposit (anything , identity (lr-answer-addr), data-seg))

Theorem: p-last-2-instrs-main-program
(adpp (untag (lr-answer-addr), p-data-segment (l))
∧ (p-psw (l) = ’run)
∧ listp (p-temp-stk (l))
∧ lr-valp (value, car (p-temp-stk (l)), p-data-segment (l)))
→ lr-valp (value,
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fetch (identity (lr-answer-addr),
p-data-segment (p (p-set-pc (lr->p (l),

tag (’pc,
cons (name (car (p-prog-segment (l))),

lr-p-c-size (t,
program-body (car (p-prog-segment (l))))))),

2))),
p-data-segment (p (p-set-pc (lr->p (l),

tag (’pc,
cons (name (car (p-prog-segment (l))),

lr-p-c-size (t,
program-body (car (p-prog-segment (l))))))),

2)))

Theorem: lr-programs-properp-s->lr-logic->s
(l-proper-exprp (t, expr , pnames , strip-cars (alist))
∧ l-proper-programsp (pnames)
∧ all-litatoms (strip-cars (alist))
∧ l-data-seg-body-restrictedp (t, expr)
∧ l-restrict-subrps-progs (pnames)
∧ l-restrict-subrps (t, expr)
∧ l-restrictedp (pnames, alist)
∧ (heap-size 6< s-total-heap-reqs (s-progs (logic->s (expr , alist , pnames)),

alist ,
heap-size)))

→ lr-programs-properp (s->lr (logic->s (expr , alist , pnames),
heap-size,
max-ctrl ,
max-temp,
word-size),

cdr (lr-data-seg-table (s-progs (logic->s (expr ,
alist ,
pnames)),

alist ,
heap-size)))

Theorem: logic->p-ok-really-helper-1
(proper-p-statep (lr->p (l))
∧ good-posp1 (offset (p-pc (l)), program-body (p-current-program (l)))
∧ lr-programs-properp (l , table)
∧ lr-p-proper-statep (p-temp-stk (l),

p-ctrl-stk (l),
p-data-segment (l),
table)
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∧ lr-proper-formalsp (cdr (p-prog-segment (l)))
∧ (p-psw (lr-eval (t, l , c)) = ’run)
∧ adpp (untag (lr-answer-addr), p-data-segment (l))
∧ (area-name (p-pc (l)) = name (car (p-prog-segment (l))))
∧ (offset (p-pc (l)) = nil)
∧ lr-valp (value,

car (p-temp-stk (lr-eval (t, l , c))),
p-data-segment (lr-eval (t, l , c))))

→ lr-valp (value,
fetch (lr-answer-addr,

p-data-segment (p (p (lr->p (l), p-clock1 (t, l , c)), 2))),
p-data-segment (p (p (lr->p (l), p-clock1 (t, l , c)), 2)))

Theorem: name-car-p-prog-segment-s->lr
name (car (p-prog-segment (s->lr (s, heap-size, max-ctrl , max-temp, word-size))))
= name (car (s-progs (s)))

Theorem: p-pc-s->lr
p-pc (s->lr (s, heap-size, max-temp, max-ctrl , word-size))
= tag (’pc, cons (s-pname (s), s-pos (s)))

Theorem: adpp-untag-lr-answer-addr-s->lr
adpp (identity (untag (lr-answer-addr)),

p-data-segment (s->lr (s, heap-size, max-ctrl , max-temp, word-size)))

Theorem: lr-s-similar-statesp-s->lr-logic->s-lr-data-seg-table
((heap-size 6< s-total-heap-reqs (s-progs (logic->s (expr , alist , pnames)),

alist ,
heap-size))

∧ l-restrictedp (pnames , alist)
∧ l-data-seg-body-restrictedp (t, expr))
→ lr-s-similar-statesp (alist ,

nil,
s->lr (logic->s (expr , alist , pnames),

heap-size,
max-ctrl ,
max-temp,
word-size),

cdr (lr-data-seg-table (s-progs (logic->s (expr ,
alist ,
pnames)),

alist ,
heap-size)))

Theorem: s-eval-flag-run-v&c$-not-f-flag-t
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(v&c$ (t, expr , alist)
∧ (cdr (v&c$ (t, expr , alist)) < c)
∧ l-proper-programsp (pnames)
∧ l-proper-exprp (t, expr , pnames , strip-cars (alist))
∧ all-litatoms (strip-cars (alist)))
→ (s-err-flag (s-eval (t, logic->s (expr , alist , pnames), c)) = ’run)

Theorem: lr-proper-formalsp-cdr-p-prog-segment-s->lr-logic->s
(l-proper-programsp (pnames)
∧ l-proper-exprp (t, expr , pnames, strip-cars (alist))
∧ all-litatoms (strip-cars (alist)))
→ lr-proper-formalsp (cdr (p-prog-segment (s->lr (logic->s (expr ,

alist ,
pnames),

heap-size,
max-ctrl ,
max-temp,
word-size))))

Theorem: lr-s-similar-params-lr-good-pointerps-strip-cdrs
lr-s-similar-params (s-params, lr-params, data-seg)
→ lr-good-pointerps (strip-cdrs (lr-params), data-seg)

Theorem: lr-p-proper-statep-s->lr
((heap-size 6< s-total-heap-reqs (s-progs (s), s-params (s), heap-size))
∧ s-restrictedp (s-progs (s), s-params (s))
∧ (params = s-params (s)))
→ lr-p-proper-statep (p-temp-stk (s->lr (s,

heap-size,
max-ctrl ,
max-temp,
word-size)),

p-ctrl-stk (s->lr (s,
heap-size,
max-ctrl ,
max-temp,
word-size)),

p-data-segment (s->lr (s,
heap-size,
max-ctrl ,
max-temp,
word-size)),

cdr (lr-data-seg-table (s-progs (s), params, heap-size)))

Theorem: proper-p-statep-lr->p-s->lr-logic->s
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(l-proper-exprp (t, expr , pnames, strip-cars (alist))
∧ l-proper-programsp (pnames)
∧ all-litatoms (strip-cars (alist))
∧ l-data-seg-body-restrictedp (t, expr)
∧ l-restrictedp (pnames, alist)
∧ l-restrict-subrps (t, expr)
∧ l-restrict-subrps-progs (pnames)
∧ (heap-size 6< (s-total-heap-reqs (s-progs (logic->s (expr , alist , pnames)),

alist ,
heap-size)

+ s-eval-heap-r (t, logic->s (expr , alist , pnames), c)))
∧ (max-ctrl 6< lr-max-ctrl-reqs (expr , alist , pnames, c))
∧ (max-ctrl < exp (2, word-size))
∧ (max-ctrl ∈ N)
∧ (max-temp 6< lr-max-temp-reqs (expr , alist , pnames , c))
∧ (max-temp < exp (2, word-size))
∧ (max-temp ∈ N)
∧ (word-size 6< lr-max-word-size-reqs (expr , alist , pnames, heap-size, c))
∧ (word-size ∈ N))
→ proper-p-statep (lr->p (s->lr (logic->s (expr , alist , pnames),

heap-size,
max-ctrl ,
max-temp,
word-size)))

Theorem: logic->p-ok-really
(l-proper-exprp (t, expr , pnames, strip-cars (alist))
∧ l-proper-programsp (pnames)
∧ all-litatoms (strip-cars (alist))
∧ l-data-seg-body-restrictedp (t, expr)
∧ l-restrictedp (pnames, alist)
∧ v&c$ (t, expr , alist)
∧ l-restrict-subrps (t, expr)
∧ l-restrict-subrps-progs (pnames)
∧ (heap-size 6< total-heap-reqs (expr , alist , pnames, heap-size))
∧ (max-ctrl 6< max-ctrl-reqs (expr , alist , pnames))
∧ (max-ctrl < exp (2, word-size))
∧ (max-ctrl ∈ N)
∧ (max-temp 6< max-temp-reqs (expr , alist , pnames))
∧ (max-temp < exp (2, word-size))
∧ (max-temp ∈ N)
∧ (word-size 6< max-word-size-reqs (expr , alist , pnames, heap-size))
∧ (word-size ∈ N))
→ lr-valp (car (v&c$ (t, expr , alist)),
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fetch (lr-answer-addr,
p-data-segment (p (logic->p (expr ,

alist ,
pnames ,
heap-size,
max-ctrl ,
max-temp,
word-size),

logic->p-clock (expr ,
alist ,
pnames ,
heap-size,
max-ctrl ,
max-temp,
word-size)))),

p-data-segment (p (logic->p (expr ,
alist ,
pnames,
heap-size,
max-ctrl ,
max-temp,
word-size),

logic->p-clock (expr ,
alist ,
pnames,
heap-size,
max-ctrl ,
max-temp,
word-size))))
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