
#|

Copyright (C) 1994 by Computational Logic, Inc. All Rights Reserved.

This script is hereby placed in the public domain, and therefore unlimited
editing and redistribution is permitted.

NO WARRANTY

Computational Logic, Inc. PROVIDES ABSOLUTELY NO WARRANTY. THE EVENT SCRIPT
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE SCRIPT IS WITH YOU. SHOULD THE SCRIPT PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT WILL Computational Logic, Inc. BE LIABLE TO YOU FOR ANY DAMAGES,
ANY LOST PROFITS, LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SCRIPT (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY THIRD PARTIES), EVEN IF YOU HAVE ADVISED US OF THE POSSIBILITY OF
SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

|#

;; Matt Kaufmann

;; From a session with Shaun Cooper, 12/9/91. Based on CLI Internal
;; Note 210 by Bill Young.

Event: Start with the initial nqthm theory.

Definition:
length (x )
= if listp (x ) then 1 + length (cdr (x ))

else 0 endif

Definition:
plistp (x )
= if listp (x ) then plistp (cdr (x ))

else x = nil endif

Definition:
exp-p (exp)

1



= if exp ∈ N then t
elseif ¬ plistp (exp) then f
elseif length (exp) = 3
then if car (exp) = ’plus

then exp-p (cadr (exp)) ∧ exp-p (caddr (exp))
elseif car (exp) = ’times
then exp-p (cadr (exp)) ∧ exp-p (caddr (exp))
elseif car (exp) = ’subtract
then exp-p (cadr (exp)) ∧ exp-p (caddr (exp))
else f endif

else f endif

Theorem: exp-p-opener
(exp 6∈ N)
→ (exp-p (exp)

= if ¬ plistp (exp) then f
elseif length (exp) = 3
then if car (exp) = ’plus

then exp-p (cadr (exp)) ∧ exp-p (caddr (exp))
elseif car (exp) = ’times
then exp-p (cadr (exp)) ∧ exp-p (caddr (exp))
elseif car (exp) = ’subtract
then exp-p (cadr (exp)) ∧ exp-p (caddr (exp))
else f endif

else f endif)

Definition:
eval-s (exp)
= if ¬ exp-p (exp) then 0

elseif exp ∈ N then exp
elseif car (exp) = ’plus
then eval-s (cadr (exp)) + eval-s (caddr (exp))
elseif car (exp) = ’times
then eval-s (cadr (exp)) ∗ eval-s (caddr (exp))
elseif car (exp) = ’subtract
then eval-s (cadr (exp)) − eval-s (caddr (exp))
else 0 endif

Event: Disable exp-p-opener.

Definition:
target-inst-p (exp)
= if exp ' nil then exp ∈ ’(add mult sub)

else plistp (exp)

2



∧ (length (exp) = 2)
∧ (car (exp) = ’pushc)
∧ (cadr (exp) ∈ N) endif

Definition:
target-inst-list-p (exp)
= if listp (exp)

then target-inst-p (car (exp)) ∧ target-inst-list-p (cdr (exp))
else exp = nil endif

Definition:
single-step (inst , s)
= case on inst :

case = add
then cons (cadr (s) + car (s), cddr (s))
case = mult
then cons (cadr (s) ∗ car (s), cddr (s))

case = sub
then cons (cadr (s) − car (s), cddr (s))

otherwise cons (cadr (inst), s) endcase

Definition:
interpreter-target (inst-list , s)
= if listp (inst-list)

then interpreter-target (cdr (inst-list), single-step (car (inst-list), s))
else s endif

Event: Enable exp-p-opener.

Definition:
compile (exp)
= if ¬ exp-p (exp) then nil

elseif exp ∈ N then list (list (’pushc, exp))
elseif car (exp) = ’plus
then append (compile (cadr (exp)),

append (compile (caddr (exp)), list (’add)))
elseif car (exp) = ’times
then append (compile (cadr (exp)),

append (compile (caddr (exp)), list (’mult)))
elseif car (exp) = ’subtract
then append (compile (cadr (exp)),

append (compile (caddr (exp)), list (’sub)))
else nil endif

Event: Disable exp-p-opener.

3



Theorem: compile-preserves-legality
exp-p (exp) → target-inst-list-p (compile (exp))

Theorem: interpreter-target-append
interpreter-target (append (inst-list1 , inst-list2 ), s)
= interpreter-target (inst-list2 , interpreter-target (inst-list1 , s))

#| first version: provides too weak of an inductive hypothesis
(prove-lemma compiler-correctness (rewrite)

(implies (exp-p exp)
(equal (eval-s exp)

(car (interpreter-target (compile exp) s)))))
|#

Definition:
compiler-correctness-induct (exp, s)
= if length (exp) = 3

then compiler-correctness-induct (cadr (exp), s)
∧ compiler-correctness-induct (caddr (exp),

cons (eval-s (cadr (exp)), s))
else t endif

Theorem: compiler-correctness-plus
exp-p (exp) → (interpreter-target (compile (exp), s) = cons (eval-s (exp), s))

Theorem: compiler-correctness
exp-p (exp) → (eval-s (exp) = car (interpreter-target (compile (exp), s)))

4



Index
compile, 3, 4
compile-preserves-legality, 4
compiler-correctness, 4
compiler-correctness-induct, 4
compiler-correctness-plus, 4

eval-s, 2, 4
exp-p, 1–4
exp-p-opener, 2

interpreter-target, 3, 4
interpreter-target-append, 4

length, 1–4

plistp, 1, 2

single-step, 3

target-inst-list-p, 3, 4
target-inst-p, 2, 3

5


