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;; Matt Kaufmann

Event: Start with the initial nqthm theory.

;; Here’s a little note showing a method for proving (in some cases)
;; permutation-independence of list functions that are generated by
;; associative-commutative binary functions. For example, we’d like to
;; know that if SUMLIST is a function that adds up the elements of a
;; given list, then permuting a list X doesn’t change the value of
;; SUMLIST(X). The method is as follows. First, we introduce a name
;; AC-FN for an arbitrary associative-commutative binary function, along
;; with the axioms saying so (and a "witness" for the consistency of this
;; axiom, namely PLUS). This is followed by the definition of a function
;; FOLDR, which is defined in terms of AC-FN by applying it repeatedly to
;; the members of a given list. After defining PERMUTATION-P and proving
;; some useful rewrite rules, I prove the main lemma FOLDR-PERMUTATION-P,
;; which says (informally speaking, here) that FOLDR gives the same value
;; when you permute its list argument. Then, using the "functional
;; instantiation" mechanism in the Boyer-Moore system, I apply this
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;; "generic" lemma (that is, FOLDR-PERMUTATION-P) to three examples: the
;; sum of the elements of a list, the product of the elements of a list,
;; and the WIRED-OR of the elements of a list (in a four-valued logic,
;; intuitively speaking, though I don’t actually ever need to say so).
;;
;; As usual, this is all in Lisp syntax. Everything from a semicolon to
;; the end of a line is a comment, and I try to use lots of those in
;; order to explain what’s going on. Without further ado, then, here is
;; the annotated list of Boyer-Moore events (i.e. input).
;;
;; By the way, it took about two hours for me to do this exercise
;; (including documentation). Replay time (real time) was about a minute
;; and a quarter on a Sun 3/60; run time reported was 24.8 secs. In case
;; it’s not clear.... the text below is all input to the Boyer-Moore
;; prover.
;;
;; ============================================================

;; Add a new function declaring that the function ac-fn is
;; an associative-commutative binary function.

Conservative Axiom: ac-fn-intro
(ac-fn (x , y) = ac-fn (y , x ))
∧ (ac-fn (ac-fn (x , y), z ) = ac-fn (x , ac-fn (y , z )))

Simultaneously, we introduce the new function symbol ac-fn.

;; Next, recursively define a function that continually applies the
;; binary function AC-FN to the elements of a list. This is a
;; "fold-right" function; an analogous "fold-left" function exists,
;; and should be easy to prove equivalent to foldr; maybe I’ll do that
;; later.

Definition:
foldr (lst , root)
= if listp (lst) then ac-fn (car (lst), foldr (cdr (lst), root))

else root endif

;; The following function removes the first occurrence of the element
;; a from the list x; it’s auxiliary to the definition of permutation-p.

Definition:
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remove1 (a, x )
= if listp (x )

then if a = car (x ) then cdr (x )
else cons (car (x ), remove1 (a, cdr (x ))) endif

else x endif

;; Here is the usual recursive definition of permutation-p.

Definition:
permutation-p (x1 , x2 )
= if listp (x1 )

then (car (x1 ) ∈ x2 ) ∧ permutation-p (cdr (x1 ), remove1 (car (x1 ), x2 ))
else x2 ' nil endif

;; The strategy below is as follows. I wanted to prove that foldr is
;; preserved under permutations of its (first) argument; that’s the
;; lemma called FOLDR-PERMUTATION-P below. The proof attempt led me
;; to prove a lemma called FOLDR-REMOVE1, which occurs just above
;; FOLDR-PERMUTATION-P. In order to prove FOLDR-REMOVE1, though, I
;; found that I needed a property of associative-commutative
;; functions, stated in the lemma AC-FN-COMMUTATIVITY-2 below.

;; The following two lemmas are used in the proof of the lemma named
;; AC-FN-COMMUTATIVITY-2 below, which is key to FOLDR-REMOVE1, which
;; in turn is crucial for FOLDR-PERMUTATION-P.

Theorem: ac-fn-assoc-reversed
ac-fn (x , ac-fn (y , z )) = ac-fn (ac-fn (x , y), z )

Theorem: ac-fn-comm
ac-fn (x , z ) = ac-fn (z , x )

Theorem: ac-fn-commutativity-2
ac-fn (z , ac-fn (x , a)) = ac-fn (x , ac-fn (z , a))

;; The lemma AC-FN-ASSOC-REVERSED was used in the proof of the lemma
;; immediately above, but now we want to turn it off as a rewrite rule
;; so that it doesn’t loop in combination with the associativity rule
;; introduced at the outset.

Event: Disable ac-fn-assoc-reversed.

Theorem: foldr-remove1
(z ∈ x2 ) → (ac-fn (z , foldr (remove1 (z , x2 ), root)) = foldr (x2 , root))
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Theorem: foldr-permutation-p
permutation-p (x1 , x2 ) → (foldr (x1 , root) = foldr (x2 , root))

;; Having proved this general fact about foldr, let us apply it to
;; three examples: the sum of the elements of a list, the product
;; of the elements of a list, and a wired-or function.

;;;;;;;;;; SUMLIST ;;;;;;;;;;

;; First, we give a natural recursive definition of the sum of the
;; elements of a list. One could easily generate such definitions
;; automatically from the definition of foldr, by the way; for now,
;; I’ll take each application as it comes.

Definition:
sumlist (lst)
= if listp (lst) then car (lst) + sumlist (cdr (lst))

else 0 endif

;; Let us now instantiate the main result called FOLDR-PERMUTATION-P
;; above to the particular case in question, i.e. to the case of the
;; sum of the elements of a list.

Theorem: sumlist-permutation-p-lemma
*auto*

;; Finally, I’ll use the lemma above as a hint so that the theorem that
;; SUMLIST is invariant under a permutation of its argument is immediate.

Theorem: sumlist-permutation-p
permutation-p (x1 , x2 ) → (sumlist (x1 ) = sumlist (x2 ))

;;;;;;;;;; TIMESLIST ;;;;;;;;;;

;; Now let’s repeat the exercise above for TIMES. This case proceeds
;; similarly to the PLUS case, except we need a few lemmas about TIMES
;; because less is built into the prover about TIMES than for PLUS.
;; In practice, many users of the prover at CLInc would load a
;; standard arithmetic library that has these facts about TIMES, any
;; many others, included in it. (Such a library will have already
;; been proved correct, so such an inclusion is sound.)
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Theorem: times-assoc
((x ∗ y) ∗ z ) = (x ∗ (y ∗ z ))

Theorem: times-1
(x ∗ 1) = fix (x )

Theorem: times-comm
(x ∗ z ) = (z ∗ x )

;; Now we repeat the three main events that we did for PLUS:
;; definition of the n-ary version, the functional instantiation, and
;; the main result. It turns out that we need the "commutativity-2"
;; property proved above for ac-fn as a lemma; the first
;; functionally-instantiate event below derives this property for
;; times as an immediate corollary.

Definition:
timeslist (lst)
= if listp (lst) then car (lst) ∗ timeslist (cdr (lst))

else 1 endif

;; Need commutativity-2 as a lemma.....

Theorem: times-commutativity-2
*auto*

Theorem: timeslist-permutation-p-lemma
*auto*

Theorem: timeslist-permutation-p
permutation-p (x1 , x2 ) → (timeslist (x1 ) = timeslist (x2 ))

;;;;;;;;;; WIRED-OR ;;;;;;;;;;

;; Let’s say that wired-or treats Z as an identity, and returns X if
;; either argument is not Z. In particular, the OR of Z with itself
;; is Z.

;; First, the binary version.....

Definition:
or2 (a, b)
= if a = ’z then b

elseif b = ’z then a
else ’x endif
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;; Now, the list version, defined analogously to FOLDR:

Definition:
wired-or (lst)
= if listp (lst) then or2 (car (lst), wired-or (cdr (lst)))

else ’z endif

;; Now we just copy the usual two events, using ’z for root.
;; Commutativity-2 should be trivial in this case, so I won’t separate
;; it out as a separate lemma as I did for the TIMES version above.

Theorem: wired-or-permutation-p-lemma
*auto*

Theorem: wired-or-permutation-p
permutation-p (x1 , x2 ) → (wired-or (x1 ) = wired-or (x2 ))
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