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;; Matt Kaufmann

Event: Start with the initial nqthm theory.

;; These are events in support of the paper ‘‘A Mechanically-Checked
;; Correctness Proof for Generalization in the Presence of Free
;; Variables,’’ Journal of Automated Reasoning, Vol. 7, 1991.

;; This events file contains no DEFN-SK events, but instead contains two
;; DCLs and two ADD-AXIOMs from a DEFN-SK event that I commented out.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; sets.events file
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Requires deftheory enhancement.
;; Requires only ground-zero theory, nqthm mode.

;; Sets; Matt Kaufmann, Dec. 1989, revised March 1990. The first few events
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;; are some basic events about lists. I’ll take the approach that all these
;; basic functions will be disabled once enough algebraic properties have
;; been proved.

;; Theories:

;; (deftheory set-defns
;; (length properp fix-properp member append subsetp delete
;; disjoint intersection set-diff setp))

Definition:
length (x )
= if listp (x ) then 1 + length (cdr (x ))

else 0 endif

Theorem: length-nlistp
(x ' nil) → (length (x ) = 0)

Theorem: length-cons
length (cons (a, x )) = (1 + length (x ))

Theorem: length-append
length (append (x , y)) = (length (x ) + length (y))

Event: Disable length.

Theorem: append-assoc
append (append (x , y), z ) = append (x , append (y , z ))

Theorem: member-cons
(a ∈ cons (x , l)) = ((a = x ) ∨ (a ∈ l))

Theorem: member-nlistp
(l ' nil) → (a 6∈ l)

Event: Disable member.

Definition:
subsetp (x , y)
= if x ' nil then t

else (car (x ) ∈ y) ∧ subsetp (cdr (x ), y) endif
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Definition:
subsetp-wit (x , y)
= if x ' nil then t

elseif car (x ) ∈ y then subsetp-wit (cdr (x ), y)
else car (x ) endif

Theorem: subsetp-wit-witnesses
subsetp (x , y)
= (¬ ((subsetp-wit (x , y) ∈ x ) ∧ (subsetp-wit (x , y) 6∈ y)))

Theorem: subsetp-wit-witnesses-general-1
((subsetp-wit (x , y) 6∈ x ) ∧ (a ∈ x )) → (a ∈ y)

Theorem: subsetp-wit-witnesses-general-2
((subsetp-wit (x , y) ∈ y) ∧ (a ∈ x )) → (a ∈ y)

Event: Disable subsetp-wit-witnesses.

Event: Disable subsetp-wit-witnesses-general-1.

Event: Disable subsetp-wit-witnesses-general-2.

Theorem: subsetp-cons-1
subsetp (cons (a, x ), y) = ((a ∈ y) ∧ subsetp (x , y))

Theorem: subsetp-cons-2
subsetp (l , m) → subsetp (l , cons (a, m))

Theorem: subsetp-reflexivity
subsetp (x , x )

Theorem: cdr-subsetp
subsetp (cdr (x ), x )

Theorem: member-subsetp
((x ∈ y) ∧ subsetp (y , z )) → (x ∈ z )

Theorem: subsetp-is-transitive
(subsetp (x , y) ∧ subsetp (y , z )) → subsetp (x , z )

Theorem: member-append
(a ∈ append (x , y)) = ((a ∈ x ) ∨ (a ∈ y))

Theorem: subsetp-append
subsetp (append (x , y), z ) = (subsetp (x , z ) ∧ subsetp (y , z ))
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Theorem: subsetp-of-append-sufficiency
(subsetp (a, b) ∨ subsetp (a, c)) → subsetp (a, append (b, c))

Theorem: subsetp-nlistp
(x ' nil) → (subsetp (x , y) ∧ (subsetp (y , x ) = (y ' nil)))

Theorem: subsetp-cons-not-member
(z 6∈ x ) → (subsetp (x , cons (z , v)) = subsetp (x , v))

Event: Disable subsetp.

;;;;; Other set-theoretic and list-theoretic definitions, and properp observations.

Definition:
properp (x )
= if listp (x ) then properp (cdr (x ))

else x = nil endif

Definition:
fix-properp (x )
= if listp (x ) then cons (car (x ), fix-properp (cdr (x )))

else nil endif

Theorem: properp-fix-properp
properp (fix-properp (x ))

Theorem: fix-properp-properp
properp (x ) → (fix-properp (x ) = x )

Theorem: properp-cons
properp (cons (x , y)) = properp (y)

Theorem: properp-nlistp
(x ' nil) → (properp (x ) = (x = nil))

Theorem: fix-properp-cons
fix-properp (cons (x , y)) = cons (x , fix-properp (y))

Theorem: fix-properp-nlistp
(x ' nil) → (fix-properp (x ) = nil)

Theorem: properp-append
properp (append (x , y)) = properp (y)

Theorem: fix-properp-append
fix-properp (append (x , y)) = append (x , fix-properp (y))
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Theorem: append-nil
append (x , nil) = fix-properp (x )

Definition:
delete (x , l)
= if listp (l)

then if x = car (l) then cdr (l)
else cons (car (l), delete (x , cdr (l))) endif

else l endif

Theorem: properp-delete
properp (delete (x , l)) = properp (l)

Definition:
disjoint (x , y)
= if listp (x ) then (car (x ) 6∈ y) ∧ disjoint (cdr (x ), y)

else t endif

Definition:
disjoint-wit (x , y)
= if listp (x )

then if car (x ) ∈ y then car (x )
else disjoint-wit (cdr (x ), y) endif

else t endif

Theorem: disjoint-wit-witnesses
disjoint (x , y)
= (¬ ((disjoint-wit (x , y) ∈ x ) ∧ (disjoint-wit (x , y) ∈ y)))

Event: Disable disjoint-wit.

Event: Disable disjoint-wit-witnesses.

Definition:
intersection (x , y)
= if listp (x )

then if car (x ) ∈ y then cons (car (x ), intersection (cdr (x ), y))
else intersection (cdr (x ), y) endif

else nil endif

Theorem: properp-intersection
properp (intersection (x , y))
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Definition:
set-diff (x , y)
= if listp (x )

then if car (x ) ∈ y then set-diff (cdr (x ), y)
else cons (car (x ), set-diff (cdr (x ), y)) endif

else nil endif

Theorem: properp-set-diff
properp (set-diff (x , y))

Definition:
setp (x )
= if ¬ listp (x ) then x = nil

else (car (x ) 6∈ cdr (x )) ∧ setp (cdr (x )) endif

Theorem: setp-implies-properp
setp (x ) → properp (x )

Event: Disable properp.

Event: Let us define the theory set-defns to consist of the following events:
length, properp, fix-properp, member, append, subsetp, delete, disjoint, inter-
section, set-diff, setp, properp.

;; Set theory lemmas

Theorem: delete-cons
delete (a, cons (b, x ))
= if a = b then x

else cons (b, delete (a, x )) endif

Theorem: delete-nlistp
(x ' nil) → (delete (a, x ) = x )

Theorem: listp-delete
listp (delete (x , l))
= if listp (l) then (x 6= car (l)) ∨ listp (cdr (l))

else f endif

Theorem: delete-non-member
(x 6∈ y) → (delete (x , y) = y)

Theorem: delete-delete
delete (y , delete (x , z )) = delete (x , delete (y , z ))
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Theorem: member-delete
setp (x ) → ((a ∈ delete (b, x )) = ((a 6= b) ∧ (a ∈ x )))

Theorem: setp-delete
setp (x ) → setp (delete (a, x ))

Event: Disable delete.

Theorem: disjoint-cons-1
disjoint (cons (a, x ), y) = ((a 6∈ y) ∧ disjoint (x , y))

Theorem: disjoint-cons-2
disjoint (x , cons (a, y)) = ((a 6∈ x ) ∧ disjoint (x , y))

Theorem: disjoint-nlistp
((x ' nil) ∨ (y ' nil)) → disjoint (x , y)

Theorem: disjoint-symmetry
disjoint (x , y) = disjoint (y , x )

Theorem: disjoint-append-right
disjoint (u, append (y , z )) = (disjoint (u, y) ∧ disjoint (u, z ))

Theorem: disjoint-append-left
disjoint (append (y , z ), u) = (disjoint (y , u) ∧ disjoint (z , u))

Theorem: disjoint-non-member
((a ∈ x ) ∧ (a ∈ y)) → (¬ disjoint (x , y))

Theorem: disjoint-subsetp-monotone-second
(subsetp (y , z ) ∧ disjoint (x , z )) → disjoint (x , y)

Theorem: subsetp-disjoint-2
(subsetp (x , y) ∧ disjoint (y , z )) → disjoint (z , x )

Theorem: subsetp-disjoint-1
(subsetp (x , y) ∧ disjoint (y , z )) → disjoint (x , z )

Theorem: subsetp-disjoint-3
(subsetp (x , y) ∧ disjoint (z , y)) → disjoint (x , z )

Event: Disable disjoint.

Theorem: intersection-disjoint
(intersection (x , y) = nil) = disjoint (x , y)
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Theorem: intersection-nlistp
((x ' nil) ∨ (y ' nil)) → (intersection (x , y) = nil)

Theorem: member-intersection
(a ∈ intersection (x , y)) = ((a ∈ x ) ∧ (a ∈ y))

Theorem: subsetp-intersection
subsetp (x , intersection (y , z )) = (subsetp (x , y) ∧ subsetp (x , z ))

Theorem: intersection-symmetry
subsetp (intersection (x , y), intersection (y , x ))

Theorem: intersection-cons-1
intersection (cons (a, x ), y)
= if a ∈ y then cons (a, intersection (x , y))

else intersection (x , y) endif

Theorem: intersection-cons-2
(a 6∈ y) → (intersection (y , cons (a, x )) = intersection (y , x ))

;; The following is needed because DISJOINT-INTERSECTION-COMMUTER,
;; added during polishing, caused the proof of
;; DISJOINT-DOMAIN-CO-RESTRICT (in "alists.events") to fail.

Theorem: intersection-cons-3
(w ∈ x )
→ (subsetp (intersection (y , cons (w , z )), x )

= subsetp (intersection (y , z ), x ))

Theorem: intersection-cons-subsetp
subsetp (intersection (x , y), intersection (x , cons (a, y)))

Theorem: subsetp-intersection-left-1
subsetp (intersection (x , y), x )

Theorem: subsetp-intersection-left-2
subsetp (intersection (x , y), y)

Theorem: subsetp-intersection-sufficiency-1
subsetp (y , z ) → subsetp (intersection (x , y), z )

Theorem: subsetp-intersection-sufficiency-2
subsetp (y , z ) → subsetp (intersection (y , x ), z )

Theorem: intersection-associative
intersection (intersection (x , y), z ) = intersection (x , intersection (y , z ))
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Theorem: intersection-elimination
subsetp (x , y) → (intersection (x , y) = fix-properp (x ))

Theorem: length-intersection
length (x ) 6< length (intersection (x , y))

Theorem: subsetp-intersection-member
(subsetp (intersection (x , y), z ) ∧ (a 6∈ z ))
→ (((a ∈ x ) → (a 6∈ y)) ∧ ((a ∈ y) → (a 6∈ x )))

;; The following wasn’t needed in the proof about generalization, but it’s a nice rule.

Theorem: intersection-append
intersection (append (x , y), z ) = append (intersection (x , z ), intersection (y , z ))

;; I’d rather just prove that intersection distributes over append on
;; the right but that isn’t true. Congruence relations would probably
;; help a lot with that problem. In the meantime, I content myself
;; with the following.

Theorem: disjoint-intersection-append
disjoint (x , intersection (y , append (z1 , z2 )))
= (disjoint (x , intersection (y , z1 )) ∧ disjoint (x , intersection (y , z2 )))

;; See comment just above DISJOINT-INTERSECTION-APPEND

Theorem: subsetp-intersection-append
subsetp (intersection (u, append (x , y)), z )
= (subsetp (intersection (u, x ), z ) ∧ subsetp (intersection (u, y), z ))

Theorem: subsetp-intersection-elimination-lemma
(subsetp (y , x ) ∧ (¬ subsetp (y , z )))
→ (¬ subsetp (intersection (x , y), z ))

Theorem: subsetp-intersection-elimination
subsetp (y , x ) → (subsetp (intersection (x , y), z ) ↔ subsetp (y , z ))

Theorem: disjoint-intersection
disjoint (intersection (x , y), z ) = disjoint (x , intersection (y , z ))

Theorem: subsetp-intersection-monotone-1
(subsetp (intersection (x , y), z ) ∧ subsetp (x1 , x ))
→ subsetp (intersection (x1 , y), z )
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;; The lemma SUBSETP-INTERSECTION-MONOTONE-2 below was added during
;; polishing of the final proof in "generalize.events", since the
;; lemma immediately above wasn’t enough at that point. Actually
;; I realized at this point that intersection commutes from the point
;; of view of subsetp:

Theorem: subsetp-intersection-commuter
subsetp (intersection (x , y), z ) = subsetp (intersection (y , x ), z )

Theorem: subsetp-intersection-monotone-2
(subsetp (intersection (y , x ), z ) ∧ subsetp (x1 , x ))
→ subsetp (intersection (x1 , y), z )

Theorem: disjoint-intersection-commuter
disjoint (x , intersection (y , z )) = disjoint (x , intersection (z , y))

Theorem: disjoint-intersection3
disjoint (free, intersection (vars, x ))
→ (intersection (x , intersection (vars, free)) = nil)

Event: Disable intersection.

Theorem: member-set-diff
(a ∈ set-diff (y , z )) = ((a ∈ y) ∧ (a 6∈ z ))

Theorem: subsetp-set-diff-1
subsetp (set-diff (x , y), x )

Theorem: disjointp-set-diff
disjoint (set-diff (x , y), y)

Theorem: subsetp-set-diff-2
subsetp (x , set-diff (y , z )) = (subsetp (x , y) ∧ disjoint (x , z ))

Theorem: set-diff-cons
set-diff (cons (a, x ), y)
= if a ∈ y then set-diff (x , y)

else cons (a, set-diff (x , y)) endif

Theorem: set-diff-nlistp
(x ' nil) → (set-diff (x , y) = nil)

;; The following was discovered during final polishing, for the
;; proof of MAIN-HYPS-RELIEVED-6-FIRST.
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Theorem: disjoint-set-diff-general
disjoint (x , set-diff (y , z )) = subsetp (intersection (x , y), z )

;; No longer relevant:
;(prove-lemma disjoint-set-diff-subsetp (rewrite)
; (implies (and (disjoint x (set-diff y z))
; (subsetp z z1))
; (disjoint x (set-diff y z1)))
; ((use (disjoint-wit-witnesses (y (set-diff y z1))))
; (disable member-set-diff set-diff)))

;; Instead of the following I’ll prove the corresponding (in light of
;; DISJOINT-SET-DIFF-GENERAL) fact INTERSECTION-X-X about intersection.
;(prove-lemma disjoint-set-diff (rewrite)
; (disjoint x (set-diff y x)))

Theorem: intersection-subsetp-identity
(properp (x ) ∧ subsetp (x , y)) → (intersection (x , y) = x )

Theorem: intersection-x-x
properp (x ) → (intersection (x , x ) = x )

Theorem: subsetp-set-diff-mononone-2
subsetp (set-diff (x , append (y , z )), set-diff (x , z ))

Theorem: subsetp-set-diff-monotone-second
subsetp (set-diff (x , y), set-diff (x , z )) = subsetp (intersection (x , z ), y)

Theorem: set-diff-nil
set-diff (x , nil) = fix-properp (x )

Theorem: set-diff-cons-non-member-1
(a 6∈ x ) → (set-diff (x , cons (a, y)) = set-diff (x , y))

Theorem: length-intersection-set-diff
length (x ) = (length (set-diff (x , y)) + length (intersection (x , y)))

Theorem: length-set-diff-opener
length (set-diff (x , y)) = (length (x ) − length (intersection (x , y)))

Theorem: listp-set-diff
listp (set-diff (x , y)) = (¬ subsetp (x , y))

;; Here is a messy lemma about disjoint and such
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Theorem: disjoint-intersection-set-diff-intersection
disjoint (x , intersection (y , set-diff (z , intersection (y , x ))))

Event: Disable set-diff.

Theorem: member-fix-properp
(a ∈ fix-properp (x )) = (a ∈ x )

Theorem: setp-append
setp (append (x , y)) = (disjoint (x , y) ∧ setp (fix-properp (x )) ∧ setp (y))

Theorem: setp-cons
setp (cons (a, x )) = ((a 6∈ x ) ∧ setp (x ))

Theorem: setp-nlistp
(x ' nil) → (setp (x ) = (x = nil))

Definition:
make-set (l)
= if ¬ listp (l) then nil

elseif car (l) ∈ cdr (l) then make-set (cdr (l))
else cons (car (l), make-set (cdr (l))) endif

Theorem: make-set-preserves-member
(x ∈ make-set (l)) = (x ∈ l)

Theorem: make-set-preserves-subsetp-1
subsetp (make-set (x ), make-set (y)) = subsetp (x , y)

Theorem: make-set-preserves-subsetp-2
subsetp (x , make-set (y)) = subsetp (x , y)

Theorem: make-set-preserves-subsetp-3
subsetp (make-set (x ), y) = subsetp (x , y)

Theorem: make-set-gives-setp
setp (make-set (x ))

Theorem: make-set-set-diff
make-set (set-diff (x , y)) = set-diff (make-set (x ), make-set (y))

Theorem: set-diff-make-set
set-diff (x , make-set (y)) = set-diff (x , y)

Theorem: listp-make-set
listp (make-set (x )) = listp (x )
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Event: Disable setp.

;;;;;; The following were proved in the course of the final run
;;;;;; through the generalization proof. There are a couple or
;;;;;; so noted above here, too.

Theorem: set-diff-append
set-diff (x , append (y , z )) = set-diff (set-diff (x , z ), y)

Theorem: length-set-diff-leq
length (x ) 6< length (set-diff (x , y))

Theorem: lessp-length
listp (x ) → (0 < length (x ))

Theorem: listp-intersection
listp (intersection (x , y)) = (¬ disjoint (x , y))

Theorem: length-set-diff-lessp
(¬ disjoint (x , new)) → (length (set-diff (x , new)) < length (x ))

Theorem: disjoint-implies-empty-intersection
disjoint (x , y) → (intersection (x , y) = nil)

;; The following lemma DISJOINT-INTERSECTION3-MIDDLE is needed for the
;; proof of ALL-VARS-DISJOINT-OR-SUBSETP-GEN-CLOSURE in
;; generalize.events. I think I could avoid lemmas like this one
;; INTERSECTION were actually commutative-associative (in which case
;; I’d get rid of disjoint and rely on normalization).

Theorem: disjoint-intersection3-middle
disjoint (y , intersection (x , z ))
→ (intersection (x , intersection (y , z )) = nil)

;; Maybe I should redo the notion of disjoint sometime, perhaps using
;; the fact that intersection is commutative and associative when it’s
;; equated with nil.

Theorem: disjoint-subsetp-hack
(disjoint (x , intersection (u, v)) ∧ subsetp (w , x ))
→ disjoint (u, intersection (w , v))
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Theorem: subsetp-set-diff-sufficiency
subsetp (x , y) → subsetp (set-diff (x , z ), y)

;; The following lemma SETP-INTERSECTION-SUFFICIENCY is needed for
;; MAPPING-RESTRICT from "alists.events", because (I believe)
;; DOMAIN-RESTRICT, which was added during polishing, changed the
;; course of the previous proof. Similarly for
;; SETP-SET-DIFF-SUFFICIENCY and the lemma MAPPING-CO-RESTRICT.

Theorem: setp-intersection-sufficiency
setp (x ) → setp (intersection (x , y))

Theorem: setp-set-diff-sufficiency
setp (x ) → setp (set-diff (x , y))

;; The definition of FIX-PROPERP was also added in polishing because
;; of a problem with the proof of GEN-CLOSURE-ACCEPT in
;; "generalize.events". Here are a couple of lemmas about it that
;; might or might not be useful; all other lemmas about it above, and
;; the definition, were added during polishing.

Event: Disable fix-properp.

Theorem: subsetp-fix-properp-1
subsetp (fix-properp (x ), y) = subsetp (x , y)

Theorem: subsetp-fix-properp-2
subsetp (x , fix-properp (y)) = subsetp (x , y)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; alists.events file
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Requires deftheory enhancement.
;; Requires sets.

;; Alists, March 1990. Most of the definitions and some of the lemmas
;; were contributed by Bill Bevier; the rest are by Matt Kaufmann.

;; Functions defined here:

;; (deftheory alist-defns
;; (alistp domain range value bind rembind invert mapping
;; restrict co-restrict))
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Definition:
alistp (x )
= if listp (x ) then listp (car (x )) ∧ alistp (cdr (x ))

else x = nil endif

Theorem: alistp-implies-properp
alistp (x ) → properp (x )

Theorem: alistp-nlistp
(x ' nil) → (alistp (x ) = (x = nil))

Theorem: alistp-cons
alistp (cons (a, x )) = (listp (a) ∧ alistp (x ))

Event: Disable alistp.

Theorem: alistp-append
alistp (append (x , y)) = (alistp (fix-properp (x )) ∧ alistp (y))

Definition:
domain (map)
= if listp (map)

then if listp (car (map)) then cons (car (car (map)), domain (cdr (map)))
else domain (cdr (map)) endif

else nil endif

Theorem: properp-domain
properp (domain (map))

Theorem: domain-append
domain (append (x , y)) = append (domain (x ), domain (y))

Theorem: domain-nlistp
(map ' nil) → (domain (map) = nil)

Theorem: domain-cons
domain (cons (a, map))
= if listp (a) then cons (car (a), domain (map))

else domain (map) endif

Theorem: member-domain-sufficiency
(cons (a, x ) ∈ y) → (a ∈ domain (y))

Theorem: subsetp-domain
subsetp (x , y) → subsetp (domain (x ), domain (y))

15



Event: Disable domain.

Definition:
range (map)
= if listp (map)

then if listp (car (map)) then cons (cdr (car (map)), range (cdr (map)))
else range (cdr (map)) endif

else nil endif

Theorem: properp-range
properp (range (map))

Theorem: range-append
range (append (s1 , s2 )) = append (range (s1 ), range (s2 ))

Theorem: range-nlistp
(map ' nil) → (range (map) = nil)

Theorem: range-cons
range (cons (a, map))
= if listp (a) then cons (cdr (a), range (map))

else range (map) endif

Event: Disable range.

;; BOUNDP has been eliminated in favor of membership in domain.
;; Notice that I have to talk about things like disjointness of
;; domains anyhow. New definition body would be (member x (domain map)).

;(defn boundp (x map)
; (if (listp map)
; (if (listp (car map))
; (if (equal x (caar map))
; t
; (boundp x (cdr map)))
; (boundp x (cdr map)))
; f))

Definition:
value (x , map)
= if listp (map)

then if listp (car (map)) ∧ (x = caar (map)) then cdar (map)
else value (x , cdr (map)) endif

else 0 endif
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Theorem: value-nlistp
(map ' nil) → (value (x , map) = 0)

Theorem: value-cons
value (x , cons (pair , map))
= if listp (pair) ∧ (x = car (pair)) then cdr (pair)

else value (x , map) endif

Event: Disable value.

Definition:
bind (x , v , map)
= if listp (map)

then if listp (car (map))
then if x = caar (map) then cons (cons (x , v), cdr (map))

else cons (car (map), bind (x , v , cdr (map))) endif
else cons (car (map), bind (x , v , cdr (map))) endif

else cons (cons (x , v), nil) endif

Definition:
rembind (x , map)
= if listp (map)

then if listp (car (map))
then if x = caar (map) then cdr (map)

else cons (car (map), rembind (x , cdr (map))) endif
else cons (car (map), rembind (x , cdr (map))) endif

else nil endif

Definition:
invert (map)
= if listp (map)

then if listp (car (map))
then cons (cons (cdr (car (map)), car (car (map))), invert (cdr (map)))
else invert (cdr (map)) endif

else nil endif

Theorem: properp-invert
properp (invert (map))

Theorem: invert-nlistp
(map ' nil) → (invert (map) = nil)

Theorem: invert-cons
invert (cons (pair , map))
= if listp (pair) then cons (cons (cdr (pair), car (pair)), invert (map))

else invert (map) endif
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Theorem: value-invert-not-member-of-domain
((g ∈ range (sg)) ∧ disjoint (domain (s), domain (sg)))
→ (value (g , invert (sg)) 6∈ domain (s))

Event: Disable invert.

Definition: mapping (map) = (alistp (map) ∧ setp (domain (map)))

;; For when we disable mapping:

Theorem: mapping-implies-alistp
mapping (map) → alistp (map)

Theorem: mapping-implies-setp-domain
mapping (map) → setp (domain (map))

Definition:
restrict (s, new-domain)
= if listp (s)

then if listp (car (s)) ∧ (caar (s) ∈ new-domain)
then cons (car (s), restrict (cdr (s), new-domain))
else restrict (cdr (s), new-domain) endif

else nil endif

Definition:
co-restrict (s, new-domain)
= if listp (s)

then if listp (car (s)) ∧ (caar (s) 6∈ new-domain)
then cons (car (s), co-restrict (cdr (s), new-domain))
else co-restrict (cdr (s), new-domain) endif

else nil endif

Event: Let us define the theory alist-defns to consist of the following events: al-
istp, domain, range, value, bind, rembind, invert, mapping, restrict, co-restrict.

;;;;; alist lemmas

; DOMAIN

;; The following was proved in the course of the final run through
;; the generalization proof. The one after it isn’t needed but
;; seems like it’s worth proving too. Actually now I see that
;; some other lemmas are now obsolete, so I’ll put these both
;; early in the file and delete the others.
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Theorem: domain-restrict
domain (restrict (s, dom)) = intersection (domain (s), dom)

Theorem: domain-co-restrict
domain (co-restrict (s, dom)) = set-diff (domain (s), dom)

Theorem: domain-bind
domain (bind (x , v , map))
= if x ∈ domain (map) then domain (map)

else append (domain (map), list (x )) endif

Theorem: domain-rembind
domain (rembind (x , map)) = delete (x , domain (map))

Theorem: domain-invert
domain (invert (map)) = range (map)

; RANGE

Theorem: range-invert
range (invert (map)) = domain (map)

; BOUNDP

Theorem: boundp-bind
(x ∈ domain (bind (y , v , map))) = ((x = y) ∨ (x ∈ domain (map)))

Theorem: boundp-rembind
mapping (map)
→ ((x ∈ domain (rembind (y , map)))

= if x = y then f
else x ∈ domain (map) endif)

Theorem: boundp-subsetp
(subsetp (map1 , map2 ) ∧ (name ∈ domain (map1 )))
→ (name ∈ domain (map2 ))

Theorem: disjoint-domain-singleton
(disjoint (domain (s), list (x )) = (x 6∈ domain (s)))
∧ (disjoint (list (x ), domain (s)) = (x 6∈ domain (s)))

Theorem: boundp-value-invert
(x ∈ range (map)) → (value (x , invert (map)) ∈ domain (map))
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; VALUE

Theorem: value-when-not-bound
(name 6∈ domain (map)) → (value (name, map) = 0)

Theorem: value-bind
value (x , bind (y , v , map))
= if x = y then v

else value (x , map) endif

Theorem: value-rembind
mapping (map)
→ (value (x , rembind (y , map))

= if x = y then 0
else value (x , map) endif)

Theorem: value-append
value (x , append (s1 , s2 ))
= if x ∈ domain (s1 ) then value (x , s1 )

else value (x , s2 ) endif

Theorem: value-value-invert
((x ∈ range (s)) ∧ mapping (s)) → (value (value (x , invert (s)), s) = x )

; MAPPING

Theorem: mapping-append
mapping (append (s1 , s2 ))
= (disjoint (domain (s1 ), domain (s2 ))

∧ mapping (fix-properp (s1 ))
∧ mapping (s2 ))

Event: Disable mapping.

;; RESTRICT and CO-RESTRICT

Theorem: alistp-restrict
alistp (restrict (s, r))

Theorem: alistp-co-restrict
alistp (co-restrict (s, r))
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Theorem: value-restrict
((a ∈ r) ∧ (a ∈ domain (s)))
→ (value (a, restrict (s, r)) = value (a, s))

Theorem: value-co-restrict
((a 6∈ r) ∧ (a ∈ domain (s)))
→ (value (a, co-restrict (s, r)) = value (a, s))

Theorem: mapping-restrict
mapping (s) → mapping (restrict (s, x ))

Theorem: mapping-co-restrict
mapping (s) → mapping (co-restrict (s, x ))

Event: Disable restrict.

Event: Disable co-restrict.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; terms.events file
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Requires deftheory and constrain enhancments.
;; Requires sets and alists libraries.

;; This is a library of events about terms, including substitutions.
;; A TERMP is either a variable or the application of a function
;; symbol to a "proper list" of terms. Variables and function symbols
;; are introduced with CONSTRAIN.

;; NOTE: In functions like TERMP that have a flag, it seems to be
;; important to use T and F rather than, say, T and ’LIST. That’s
;; because otherwise, the "worse-than" heuristic will otherwise
;; prevent some necessary backchaining in cases where the hypothesis
;; to be relieved is of the form (TERMP ’LIST ...) and an "ancestor"
;; is of the form (TERMP T ...).

;; Definitions:

;; (deftheory term-defns
;; (variablep-intro variable-listp termp function-symbol-intro all-vars))

;; (deftheory substitution-defns
;; (instance var-substp compose apply-to-subst subst

21



;; nullify-subst ;; returns a substitution whose range has no variables
;; ))

Conservative Axiom: variablep-intro
(listp (x ) → (¬ variablep (x )))
∧ (truep (variablep (x )) ∨ falsep (variablep (x )))

Simultaneously, we introduce the new function symbol variablep.

Definition:
variable-listp (x )
= if listp (x ) then variablep (car (x )) ∧ variable-listp (cdr (x ))

else x = nil endif

Theorem: variable-listp-implies-properp
variable-listp (x ) → properp (x )

Theorem: variable-listp-cons
variable-listp (cons (a, x )) = (variablep (a) ∧ variable-listp (x ))

Theorem: variable-nlistp
(x ' nil) → (variable-listp (x ) = (x = nil))

Event: Disable variable-listp.

Conservative Axiom: function-symbol-intro
function-symbol-p (fn)

Simultaneously, we introduce the new function symbols function-symbol-p and
fn.

Definition:
termp (flg , x )
= if flg

then if variablep (x ) then t
elseif listp (x )
then function-symbol-p (car (x )) ∧ termp (f, cdr (x ))
else f endif

elseif listp (x ) then termp (t, car (x )) ∧ termp (f, cdr (x ))
else x = nil endif

Theorem: termp-list-cons
termp (f, cons (a, x )) = (termp (t, a) ∧ termp (f, x ))
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Theorem: termp-list-nlistp
(x ' nil) → (termp (f, x ) = (x = nil))

Theorem: termp-t-cons
flg → (termp (flg , cons (a, x )) = (function-symbol-p (a) ∧ termp (f, x )))

Theorem: termp-t-nlistp
(flg ∧ (¬ listp (x ))) → (termp (flg , x ) = variablep (x ))

Event: Disable termp.

Theorem: termp-list-implies-properp
termp (f, x ) → properp (x )

Definition:
all-vars (flg , x )
= if flg

then if variablep (x ) then list (x )
elseif listp (x ) then all-vars (f, cdr (x ))
else nil endif

elseif listp (x ) then append (all-vars (t, car (x )), all-vars (f, cdr (x )))
else nil endif

Theorem: properp-all-vars
properp (all-vars (flg , x ))

Theorem: all-vars-list-cons
all-vars (f, cons (a, x )) = append (all-vars (t, a), all-vars (f, x ))

Theorem: all-vars-t-cons
flg → (all-vars (flg , cons (a, x )) = all-vars (f, x ))

;; Here is a hack to deal with the flags.

Theorem: all-vars-subsetp-append-hack
(flg1 ∧ flg2 )
→ (subsetp (all-vars (flg1 , x ), append (all-vars (flg2 , x ), y))

∧ subsetp (all-vars (flg1 , x ), append (y , all-vars (flg2 , x ))))

;; The following is used later in the proof of MEMBER-PRESERVES-DISJOINT-ALL-VARS
;; and could conceivably be of use elsewhere.

Theorem: all-vars-flg-boolean
flg → (all-vars (flg , x ) = all-vars (t, x ))
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Event: Disable all-vars.

Event: Let us define the theory term-defns to consist of the following events:
variablep-intro, variable-listp, termp, function-symbol-intro, all-vars.

;;;;; lemmas about termps

Theorem: variable-listp-set-diff
variable-listp (x ) → variable-listp (set-diff (x , y))

Theorem: all-vars-variablep
(flg ∧ variablep (x )) → (all-vars (flg , x ) = list (x ))

Theorem: member-variable-listp-implies-variablep
((a ∈ x ) ∧ variable-listp (x )) → variablep (a)

;; The following was proved in the course of the final run through the
;; generalization proof. But in fact it’s useful for the next result,
;; especially in the presence of domain-restrict -- so I don’t need to
;; enable restrict there any longer. Similarly for the lemma after
;; that.

Theorem: variable-listp-intersection
(variable-listp (x ) ∨ variable-listp (y))
→ variable-listp (intersection (x , y))

Theorem: variable-listp-domain-restrict
variable-listp (domain (s)) → variable-listp (domain (restrict (s, x )))

Theorem: variable-listp-domain-co-restrict
variable-listp (domain (s)) → variable-listp (domain (co-restrict (s, x )))

Theorem: termp-range-restrict
termp (f, range (s)) → termp (f, range (restrict (s, x )))

Theorem: termp-range-co-restrict
termp (f, range (s)) → termp (f, range (co-restrict (s, x )))

Theorem: member-preserves-disjoint-all-vars-lemma
(disjoint (y , all-vars (f, x )) ∧ (g ∈ x )) → disjoint (y , all-vars (t, g))

Theorem: member-preserves-disjoint-all-vars
(flg ∧ disjoint (y , all-vars (f, x )) ∧ (g ∈ x ))
→ disjoint (y , all-vars (flg , g))
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Theorem: member-all-vars-subsetp
(flg ∧ (a ∈ x )) → subsetp (all-vars (flg , a), all-vars (f, x ))

Theorem: all-vars-f-monotone
subsetp (x , y) → subsetp (all-vars (f, x ), all-vars (f, y))

;;;;; substitutions: definitions

Definition:
var-substp (s)
= (mapping (s) ∧ variable-listp (domain (s)) ∧ termp (f, range (s)))

Definition:
subst (flg , s, x )
= if flg

then if x ∈ domain (s) then value (x , s)
elseif variablep (x ) then x
elseif listp (x ) then cons (car (x ), subst (f, s, cdr (x )))
else f endif

elseif listp (x ) then cons (subst (t, s, car (x )), subst (f, s, cdr (x )))
else nil endif

Definition:
apply-to-subst (s1 , s2 )
= if listp (s2 )

then if listp (car (s2 ))
then cons (cons (caar (s2 ), subst (t, s1 , cdar (s2 ))),

apply-to-subst (s1 , cdr (s2 )))
else apply-to-subst (s1 , cdr (s2 )) endif

else nil endif

Definition: compose (s1 , s2 ) = append (apply-to-subst (s2 , s1 ), s2 )

;; The following was in the original version, but isn’t needed.
;;; (defn-sk instance (flg term1 term2)
;;; ;; term1 is an instance of term2
;;; (exists one-way-unifier
;;; (and (var-substp one-way-unifier)
;;; (equal term1 (subst flg one-way-unifier term2)))))

;;;;; substitution lemmas

Theorem: subst-list-cons
subst (f, s, cons (a, x )) = cons (subst (t, s, a), subst (f, s, x ))
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Theorem: subst-list-nlistp
(x ' nil) → (subst (f, s, x ) = nil)

Theorem: subst-t-variablep
(flg ∧ variablep (x ))
→ (subst (flg , s, x )

= if x ∈ domain (s) then value (x , s)
else x endif)

Theorem: subst-t-non-variablep
flg → (subst (flg , s, cons (fn, x ))

= if cons (fn, x ) ∈ domain (s) then value (cons (fn, x ), s)
else cons (fn, subst (f, s, x )) endif)

Theorem: all-vars-subst-lemma
(flg ∧ (x ∈ domain (s)))
→ subsetp (all-vars (flg , value (x , s)), all-vars (f, range (s)))

Theorem: all-vars-subst
termp (flg , x )
→ subsetp (all-vars (flg , subst (flg , s, x )),

append (all-vars (flg , x ), all-vars (f, range (s))))

Theorem: subst-occur
(flg ∧ (x ∈ domain (s))) → (subst (flg , s, x ) = value (x , s))

Theorem: boundp-in-var-substp-implies-variablep
(variable-listp (domain (s)) ∧ (¬ variablep (a))) → (a 6∈ domain (s))

Theorem: variablep-value-invert
(variable-listp (domain (s)) ∧ (x ∈ range (s)))
→ variablep (value (x , invert (s)))

Theorem: subst-invert
(termp (flg , x ) ∧ disjoint (domain (s), all-vars (flg , x )) ∧ var-substp (s))
→ (subst (flg , s, subst (flg , invert (s), x )) = x )

Theorem: boundp-apply-to-subst
(x ∈ domain (apply-to-subst (s1 , s2 ))) = (x ∈ domain (s2 ))

Theorem: mapping-apply-to-subst
mapping (s) → mapping (apply-to-subst (s1 , s))

Theorem: alistp-apply-to-subst
alistp (apply-to-subst (s1 , s2 ))
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Theorem: subst-flg-not-list
flg → (((subst (flg , s, x ) = subst (t, s, x )) = t)

∧ ((subst (t, s, x ) = subst (flg , s, x )) = t))

Theorem: subst-co-restrict
(disjoint (x , intersection (domain (s), all-vars (flg , term)))
∧ variable-listp (domain (s))
∧ termp (flg , term))
→ (subst (flg , co-restrict (s, x ), term) = subst (flg , s, term))

Theorem: subst-restrict
(subsetp (intersection (domain (s), all-vars (flg , term)), x )
∧ variable-listp (domain (s))
∧ termp (flg , term))
→ (subst (flg , restrict (s, x ), term) = subst (flg , s, term))

Theorem: termp-value
(flg ∧ (x ∈ domain (s)) ∧ termp (f, range (s))) → termp (flg , value (x , s))

Theorem: termp-subst
(termp (flg , x ) ∧ termp (f, range (s))) → termp (flg , subst (flg , s, x ))

Theorem: termp-domain
variable-listp (domain (s)) → termp (f, domain (s))

Theorem: domain-apply-to-subst
domain (apply-to-subst (s1 , s2 )) = domain (s2 )

Theorem: var-substp-apply-to-subst
(termp (f, range (s)) ∧ termp (f, range (sg)))
→ termp (f, range (apply-to-subst (sg , s)))

Theorem: value-apply-to-subst
(g ∈ domain (s))
→ (value (g , apply-to-subst (sg , s)) = subst (t, sg , value (g , s)))

Theorem: non-variablep-not-member-of-variable-listp
(variable-listp (d) ∧ (¬ variablep (term))) → (term 6∈ d)

Theorem: compose-property
(variable-listp (domain (s2 )) ∧ termp (flg , x ))
→ (subst (flg , compose (s1 , s2 ), x ) = subst (flg , s2 , subst (flg , s1 , x )))

Theorem: compose-property-reversed
(variable-listp (domain (s2 )) ∧ termp (flg , x ))
→ (subst (flg , s2 , subst (flg , s1 , x )) = subst (flg , compose (s1 , s2 ), x ))
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Event: Disable compose-property.

Theorem: subst-not-occur
(termp (flg , x )
∧ variable-listp (domain (s))
∧ disjoint (domain (s), all-vars (flg , x )))
→ (subst (flg , s, x ) = x )

Theorem: disjoint-range-implies-disjoint-value
((x ∈ domain (s)) ∧ flg ∧ disjoint (z , all-vars (f, range (s))))
→ disjoint (z , all-vars (flg , value (x , s)))

Theorem: disjoint-all-vars-subst
(termp (flg , x )
∧ disjoint (z , all-vars (flg , x ))
∧ disjoint (z , all-vars (f, range (s))))
→ disjoint (z , all-vars (flg , subst (flg , s, x )))

Theorem: all-vars-variable-listp
variable-listp (x ) → (all-vars (f, x ) = x )

Theorem: variable-listp-append
variable-listp (append (x , y))
= (variable-listp (fix-properp (x )) ∧ variable-listp (y))

Theorem: termp-list-append
termp (f, append (x , y)) = (termp (f, fix-properp (x )) ∧ termp (f, y))

Theorem: apply-to-subst-append
apply-to-subst (sg , append (s1 , s2 ))
= append (apply-to-subst (sg , s1 ), apply-to-subst (sg , s2 ))

Theorem: subst-apply-to-subst
(flg ∧ (g ∈ domain (s)))
→ (subst (flg , apply-to-subst (sg , s), g) = subst (flg , sg , value (g , s)))

Theorem: subst-append-not-occur-1
(termp (flg , x )
∧ variable-listp (domain (s1 ))
∧ disjoint (all-vars (f, domain (s1 )), all-vars (flg , x )))
→ (subst (flg , append (s1 , s2 ), x ) = subst (flg , s2 , x ))

Theorem: subst-append-not-occur-2
(termp (flg , x )
∧ variable-listp (domain (s2 ))
∧ disjoint (all-vars (f, domain (s2 )), all-vars (flg , x )))
→ (subst (flg , append (s1 , s2 ), x ) = subst (flg , s1 , x ))
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Theorem: apply-to-subst-is-no-op-for-disjoint-domain
(variable-listp (domain (s1 ))
∧ alistp (s2 )
∧ termp (f, range (s2 ))
∧ disjoint (domain (s1 ), all-vars (f, range (s2 ))))
→ (apply-to-subst (s1 , s2 ) = s2 )

Theorem: member-subst
(flg ∧ (a ∈ x )) → (subst (flg , s, a) ∈ subst (f, s, x ))

Theorem: subsetp-subst
subsetp (x , y) → subsetp (subst (f, s, x ), subst (f, s, y))

;;; (disable instance) -- not included in this version
;;;(disable compose) -- COMPOSE is left enabled for use with COMPOSE-PROPERTY-REVERSED

Event: Disable apply-to-subst.

Event: Disable subst.

Event: Disable rembind.

Event: Disable bind.

;;;;; nullify-subst: a substitution that has a range containing
;; no variables

Definition:
nullify-subst (s)
= if listp (s)

then if listp (car (s))
then cons (cons (caar (s), list (fn)), nullify-subst (cdr (s)))
else nullify-subst (cdr (s)) endif

else nil endif

Theorem: properp-nullify-subst
properp (nullify-subst (s))

Theorem: all-vars-f-range-nullify-subst
all-vars (f, range (nullify-subst (s))) = nil

Theorem: termp-range-nullify-subst
termp (f, range (nullify-subst (s)))
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Theorem: domain-nullify-subst
domain (nullify-subst (s)) = domain (s)

Theorem: mapping-nullify-subst
alistp (s) → (mapping (nullify-subst (s)) = mapping (s))

Theorem: disjoint-all-vars-subst-nullify-subst
termp (flg , term)
→ disjoint (domain (sg), all-vars (flg , subst (flg , nullify-subst (sg), term)))

Theorem: disjoint-all-vars-range-apply-subst-nullify-subst
termp (f, range (s))
→ disjoint (domain (sg),

all-vars (f, range (apply-to-subst (nullify-subst (sg), s))))

Event: Disable nullify-subst.

Event: Let us define the theory substitution-defns to consist of the following
events: var-substp, compose, apply-to-subst, subst, nullify-subst.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; generalize.events file
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Requires sets, alists, and terms, which currently contain a number
;; of rules that aren’t really needed here, even indirectly.

;; This is a proof soundness of a slight abstraction of the GENERALIZE
;; command of PC-NQTHM.

#| Here’s what I want to prove.

(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))

(valid-state state))

I also prove the much simpler fact, GENERALIZE-STATEP:

(implies (generalize-okp sg state)
(statep (generalize sg state)))

|#

;; << 1 >>
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Conservative Axiom: theorem-intro
((theorem (x ) ∧ flg) → termp (flg , x ))
∧ ((theorem (x ) ∧ flg ∧ var-substp (s)) → theorem (subst (flg , s, x )))

Simultaneously, we introduce the new function symbol theorem.

;; << 2 >>

Definition:
theorem-list (x )
= if listp (x ) then theorem (car (x )) ∧ theorem-list (cdr (x ))

else x = nil endif

;; << 3 >>

Theorem: theorem-list-properties
(theorem-list (x ) → termp (f, x ))
∧ ((theorem-list (x ) ∧ var-substp (s)) → theorem-list (subst (f, s, x )))

;; << 4 >>

Definition:
statep (state)
= (listp (state) ∧ termp (f, car (state)) ∧ variable-listp (cdr (state)))

;; << 5 >>
#|
(DEFN-SK VALID-STATE

(STATE)
(AND (STATEP STATE)

(EXISTS WITNESSING-INSTANTIATION
(AND (VAR-SUBSTP WITNESSING-INSTANTIATION)

(SUBSETP (DOMAIN WITNESSING-INSTANTIATION)
(CDR STATE))

(THEOREM-LIST (SUBST F WITNESSING-INSTANTIATION
(CAR STATE)))))))

Adding the Skolem axiom:
(AND
(IMPLIES (AND (STATEP STATE)

(VAR-SUBSTP WITNESSING-INSTANTIATION)
(SUBSETP (DOMAIN WITNESSING-INSTANTIATION)

(CDR STATE))
(THEOREM-LIST (SUBST F WITNESSING-INSTANTIATION
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(CAR STATE))))
(VALID-STATE STATE))

(IMPLIES (NOT (AND (STATEP STATE)
(VAR-SUBSTP (WITNESSING-INSTANTIATION STATE))
(SUBSETP (DOMAIN (WITNESSING-INSTANTIATION STATE))

(CDR STATE))
(THEOREM-LIST (SUBST F

(WITNESSING-INSTANTIATION STATE)
(CAR STATE)))))

(NOT (VALID-STATE STATE)))).

As this is a DEFN-SK we can conclude that:
(OR (TRUEP (VALID-STATE STATE))

(FALSEP (VALID-STATE STATE)))
is a theorem.

|#

Event: Introduce the function symbol witnessing-instantiation of one argu-
ment.

Event: Introduce the function symbol valid-state of one argument.

Axiom: valid-state-intro
((statep (state)
∧ var-substp (witnessing-instantiation)
∧ subsetp (domain (witnessing-instantiation), cdr (state))
∧ theorem-list (subst (f, witnessing-instantiation, car (state))))
→ valid-state (state))
∧ ((¬ (statep (state)

∧ var-substp (witnessing-instantiation (state))
∧ subsetp (domain (witnessing-instantiation (state)),

cdr (state))
∧ theorem-list (subst (f,

witnessing-instantiation (state),
car (state)))))

→ (¬ valid-state (state)))

Axiom: valid-state-type
truep (valid-state (state)) ∨ falsep (valid-state (state))

32



;; << 6 >>

Definition:
new-gen-vars (goals, free, vars)
= if listp (goals)

then let current-free-vars be intersection (free,
all-vars (t, car (goals)))

in
if disjoint (current-free-vars, vars)
then new-gen-vars (cdr (goals), free, vars)
else append (current-free-vars,

new-gen-vars (cdr (goals), free, vars)) endif endlet
else nil endif

;; << 7 >>

Definition: cardinality (x ) = length (make-set (x ))

;; Next goal: get the definition of GEN-CLOSURE accepted. In fact,
;; the lemma GEN-CLOSURE-ACCEPT below suffices, taking NEW to be
;; (NEW-GEN-VARS GOALS FREE FREE-VARS-SO-FAR), as long as we prove the
;; following lemma, NEW-GEN-VARS-SUBSET.

;; << 8 >>

Theorem: new-gen-vars-subset
subsetp (new-gen-vars (goals, free, vars), free)

;; It is interesting to note that the exact form of the following
;; lemma changed while polishing the proof, since rewrite rules
;; applied to the old version so as to make it irrelevant.

;; << 9 >>

Theorem: gen-closure-accept
((¬ subsetp (new , free-vars-so-far)) ∧ subsetp (new , free))
→ (((length (make-set (free))

− length (intersection (make-set (free), free-vars-so-far)))
− length (intersection (set-diff (make-set (free), free-vars-so-far),

new)))
< (length (make-set (free))

− length (intersection (make-set (free), free-vars-so-far))))

;; Here I have a choice: I could intersect the accumulator with free
;; at the end, or I could assume that it’s intersected with free
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;; before it’s input. I’ll choose the former approach, so that I’ll
;; have a simpler rewrite rule and so that I can call gen-closure more
;; simply. I may wish to commute the arguments to intersection in the
;; exit below, but probably that won’t matter because I’ll only be
;; talking about membership.

;; << 10 >>

Definition:
gen-closure (goals, free, free-vars-so-far)
= let new-free-vars be new-gen-vars (goals, free, free-vars-so-far)

in
if subsetp (new-free-vars, free-vars-so-far)
then intersection (free-vars-so-far , free)
else gen-closure (goals,

free,
append (new-free-vars, free-vars-so-far)) endif endlet

;; << 11 >>

Definition:
generalize-okp (sg , state)
= (var-substp (sg)

∧ statep (state)
∧ disjoint (domain (sg), all-vars (f, car (state)))
∧ listp (car (state))
∧ disjoint (domain (sg), cdr (state)))

;; << 12 >>

Definition:
generalize (sg , state)
= let g be caar (state),

p be cdar (state),
free be cdr (state),
sg-vars be all-vars (f, range (sg))

in
let new-g be subst (t, invert (sg), g)
in
let new-free be set-diff (free,

intersection (gen-closure (cons (new-g ,
p),

free,
all-vars (t,

new-g)),
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all-vars (f,
range (sg))))

in
cons (cons (new-g , p), new-free) endlet endlet endlet

;; Here is a fact, not needed elsewhere, that is worth noticing, in
;; case we wish to extend the current theorem to a sequence of commands.

;; << 13 >>

Theorem: generalize-statep
generalize-okp (sg , state) → statep (generalize (sg , state))

;; << 14 >>

Definition:
gen-inst (sg , state)
= let s be witnessing-instantiation (generalize (sg , state)),

domain-1 be gen-closure (cons (subst (t, invert (sg), caar (state)),
cdar (state)),

cdr (state),
all-vars (t,

subst (t,
invert (sg),
caar (state))))

in
let s1 be restrict (s, domain-1 ),

s2 be apply-to-subst (nullify-subst (sg),
co-restrict (s, domain-1 ))

in
apply-to-subst (apply-to-subst (s2 , sg), append (s1 , s2 )) endlet endlet

;; Let’s see that it suffices to prove the result of opening up the
;; conclusion of the main theorem with a particular witness.

#|

(add-axiom main-theorem-1 (rewrite)
(let ((wit (gen-inst sg state)))

(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))

(and (statep state)
(var-substp wit)
(subsetp (domain wit) (cdr state))
(theorem-list (subst f wit (car state)))))))
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(prove-lemma generalize-is-correct (rewrite)
(implies (and (generalize-okp sg state)

(valid-state (generalize sg state)))
(valid-state state))

((disable-theory t)
(enable-theory ground-zero)
(enable main-theorem-1)
(use (valid-state-intro

(witnessing-instantiation (gen-inst sg state))))))

|#

;; So, it suffices to prove main-theorem-1. The first three conjuncts
;; of the conclusion are quite trivial.

;; << 15 >>

Theorem: main-theorem-1-case-1
generalize-okp (sg , state) → statep (state)

;; We put one direction of the definition of valid-state here, for
;; efficiency in proofs.

;; << 16 >>

Theorem: valid-state-opener
valid-state (state)
= (statep (state)

∧ let witnessing-instantiation be witnessing-instantiation (state)
in
var-substp (witnessing-instantiation)
∧ subsetp (domain (witnessing-instantiation),

cdr (state))
∧ theorem-list (subst (f,

witnessing-instantiation,
car (state))) endlet)

;; << 17 >>

Theorem: main-theorem-1-case-2
let wit be gen-inst (sg , state)
in
(generalize-okp (sg , state) ∧ valid-state (generalize (sg , state)))
→ var-substp (wit) endlet
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;; << 18 >>

Theorem: subsetp-cdr-generalize
subsetp (cdr (generalize (sg , state)), cdr (state))

;; At this point I had to prove SUBSETP-SET-DIFF-SUFFICIENCY because
;; of some lemma that was created during the polishing process
;; (perhaps DOMAIN-RESTRICT).

;; << 19 >>

Theorem: main-theorem-1-case-3
let wit be gen-inst (sg , state)
in
valid-state (generalize (sg , state))
→ subsetp (domain (wit), cdr (state)) endlet

;; So now we only have to prove MAIN-THEOREM-1-CASE-4 (written here
;; without use of LET):

#|

(add-axiom main-theorem-1-case-4 (rewrite)
(implies (and (generalize-okp sg state)

(valid-state (generalize sg state)))
(theorem-list (subst f (gen-inst sg state) (car state)))))

(prove-lemma main-theorem-1 (rewrite)
(let ((wit (gen-inst sg state)))

(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))

(and (statep state)
(var-substp wit)
(subsetp (domain wit) (cdr state))
(theorem-list (subst f wit (car state))))))

((disable-theory t)
(enable-theory ground-zero)
(enable main-theorem-1-case-1 main-theorem-1-case-2

main-theorem-1-case-3 main-theorem-1-case-4)))

|#

;; << 20 >>

Definition:
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gen-setting-substitutions (s1 , s2 , sg)
= (var-substp (s1 )

∧ var-substp (s2 )
∧ var-substp (sg)
∧ disjoint (domain (s1 ), domain (s2 ))
∧ disjoint (domain (s1 ), domain (sg))
∧ disjoint (domain (s2 ), domain (sg))
∧ disjoint (all-vars (f, range (sg)), domain (s1 ))
∧ disjoint (all-vars (f, range (s2 )), domain (sg)))

;; << 21 >>

Definition:
main-hyps (s1 , s2 , sg , g , p)
= (termp (t, g)

∧ disjoint (all-vars (t, g), domain (sg))
∧ termp (f, p)
∧ disjoint (all-vars (f, p), domain (sg))
∧ gen-setting-substitutions (s1 , s2 , sg)
∧ theorem-list (subst (f,

append (s1 , s2 ),
cons (subst (t, invert (sg), g), p))))

;; The goal above, MAIN-THEOREM-1-CASE-4, should follow from the
;; following two lemmas.

#|

(add-axiom main-hyps-suffice (rewrite)
(implies (and (listp goals)

(main-hyps s1 s2 sg (car goals) (cdr goals)))
(theorem-list (subst f

(apply-to-subst (apply-to-subst s2 sg)
(append s1 s2))

goals))))

(add-axiom main-hyps-relieved (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1

(gen-closure (cons new-g p) free (all-vars t new-g))))
(let ((s1 (restrict s domain-1))
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(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))

(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))

(main-hyps s1 s2 sg g p)))))))

(prove-lemma main-theorem-1-case-4 (rewrite)
(implies (and (generalize-okp sg state)

(valid-state (generalize sg state)))
(theorem-list (subst f (gen-inst sg state) (car state))))

((disable-theory t)
(enable-theory ground-zero)
(enable gen-inst main-hyps-suffice generalize-okp main-hyps-relieved)))

|#

;; So, now let us start with MAIN-HYPS-SUFFICE. It should follow from
;; two subgoals, as shown:

#|

(add-axiom main-hyps-suffice-first (rewrite)
(implies (main-hyps s1 s2 sg g p)

(theorem (subst t
(apply-to-subst (apply-to-subst s2 sg)

(append s1 s2))
g))))

(add-axiom main-hyps-suffice-rest (rewrite)
(implies (main-hyps s1 s2 sg g p)

(theorem-list (subst f
(apply-to-subst (apply-to-subst s2 sg)

(append s1 s2))
p))))

(prove-lemma main-hyps-suffice (rewrite)
(implies (and (listp goals)

(main-hyps s1 s2 sg (car goals) (cdr goals)))
(theorem-list (subst f

(apply-to-subst (apply-to-subst s2 sg)
(append s1 s2))

goals)))
((disable-theory t)
(enable-theory ground-zero)
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(enable theorem-list subst main-hyps-suffice-first main-hyps-suffice-rest)))

|#

;; Consider the first of these. Although COMPOSE-PROPERTY-REVERSED is
;; used in the proof (because it’s enabled), it’s actually not
;; necessary. A proof took slightly over 10 minutes with the rule
;; enabled, and roughly 9 minutes without.

;; << 22 >>

Theorem: main-hyps-suffice-first-lemma-general
(termp (flg , g)
∧ disjoint (all-vars (flg , g), domain (sg))
∧ gen-setting-substitutions (s1 , s2 , sg)
∧ (sg-1 = invert (sg)))
→ (subst (flg , apply-to-subst (apply-to-subst (s2 , sg), append (s1 , s2 )), g)

= subst (flg ,
apply-to-subst (s2 , sg),
subst (flg , append (s1 , s2 ), subst (flg , sg-1 , g))))

;; << 23 >>

Theorem: main-hyps-suffice-first-lemma
(termp (t, g)
∧ disjoint (all-vars (t, g), domain (sg))
∧ gen-setting-substitutions (s1 , s2 , sg))
→ (subst (t, apply-to-subst (apply-to-subst (s2 , sg), append (s1 , s2 )), g)

= subst (t,
apply-to-subst (s2 , sg),
subst (t, append (s1 , s2 ), subst (t, invert (sg), g))))

;; << 24 >>

Theorem: main-hyps-suffice-first
main-hyps (s1 , s2 , sg , g , p)
→ theorem (subst (t, apply-to-subst (apply-to-subst (s2 , sg), append (s1 , s2 )), g))

;; The following is useful with s = (append s1 s2).

;; << 25 >>

Theorem: main-hyps-suffice-rest-lemma
(termp (flg , p)
∧ variable-listp (domain (sg))
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∧ disjoint (all-vars (flg , p), domain (sg)))
→ (subst (flg , apply-to-subst (apply-to-subst (s2 , sg), s), p)

= subst (flg , apply-to-subst (s2 , sg), subst (flg , s, p)))

;; << 26 >>

Theorem: main-hyps-suffice-rest
main-hyps (s1 , s2 , sg , g , p)
→ theorem-list (subst (f,

apply-to-subst (apply-to-subst (s2 , sg), append (s1 , s2 )),
p))

;; << 27 >>

Theorem: main-hyps-suffice
(listp (goals) ∧ main-hyps (s1 , s2 , sg , car (goals), cdr (goals)))
→ theorem-list (subst (f,

apply-to-subst (apply-to-subst (s2 , sg), append (s1 , s2 )),
goals))

;; I’ll disable the two lemmas used above so that I avoid the possibility
;; of looping with COMPOSE-PROPERTY-REVERSED.

;; << 28 >>

Event: Disable main-hyps-suffice-first-lemma.

;; << 29 >>

Event: Disable main-hyps-suffice-rest-lemma.

;; All that remains now is to prove MAIN-HYPS-RELIEVED. If we open up
;; MAIN-HYPS we see what the necessary subgoals are. Recall the
;; definition of MAIN-HYPS:

#|
(defn main-hyps (s1 s2 sg g p)
(and (termp t g)

(disjoint (all-vars t g) (domain sg))
(termp f p)
(disjoint (all-vars f p) (domain sg))
(gen-setting-substitutions s1 s2 sg)
(theorem-list (subst f (append s1 s2)

(cons (subst t (invert sg) g) p)))))
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|#

;; << 30 >>

Theorem: main-hyps-relieved-1
let g be caar (state)
in
generalize-okp (sg , state) → termp (t, g) endlet

;; << 31 >>

Theorem: main-hyps-relieved-2
let g be caar (state)
in
generalize-okp (sg , state) → disjoint (all-vars (t, g), domain (sg)) endlet

;; << 32 >>

Theorem: main-hyps-relieved-3
let p be cdar (state)
in
generalize-okp (sg , state) → termp (f, p) endlet

;; << 33 >>

Theorem: main-hyps-relieved-4
let p be cdar (state)
in
generalize-okp (sg , state) → disjoint (all-vars (f, p), domain (sg)) endlet

#|

(add-axiom main-hyps-relieved-5 (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1

(gen-closure (cons new-g p) free (all-vars t new-g))))
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))

(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))
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(gen-setting-substitutions s1 s2 sg)))))))

(add-axiom main-hyps-relieved-6 (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1

(gen-closure (cons new-g p) free (all-vars t new-g))))
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))

(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))

(theorem-list (subst f (append s1 s2)
(cons (subst t (invert sg) g) p)))))))))

(prove-lemma main-hyps-relieved (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1

(gen-closure (cons new-g p) free (all-vars t new-g))))
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))

(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))

(main-hyps s1 s2 sg g p))))))
((disable-theory t)
(enable-theory ground-zero)
(enable main-hyps main-hyps-relieved-1 main-hyps-relieved-2 main-hyps-relieved-3

main-hyps-relieved-4 main-hyps-relieved-5 main-hyps-relieved-6)))

|#

;; So, we have left the goals MAIN-HYPS-RELIEVED-5 and
;; MAIN-HYPS-RELIEVED-6. Let us start with the first. Opening up
;; GEN-SETTING-SUBSTITUTIONS gives us a number of subgoals.

;; The first two cases below do not require knowledge about DOMAIN-1
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;; (or G, P, FREE, or NEW-G), but simply following from the validity
;; of the state (GENERALIZE SG STATE). Disabling GENERALIZE is very
;; useful (probably not necessary, though I didn’t let the prover run
;; long enough to find out).

;; << 34 >>

Theorem: main-hyps-relieved-5-lemma-1
let s be witnessing-instantiation (generalize (sg , state))
in
let s1 be restrict (s, domain-1 ),

s2 be apply-to-subst (nullify-subst (sg), co-restrict (s, domain-1 ))
in
valid-state (generalize (sg , state))
→ (var-substp (s1 ) ∧ var-substp (s2 )) endlet endlet

;; The next case is trivial.

;; << 35 >>

Theorem: main-hyps-relieved-5-lemma-2
generalize-okp (sg , state) → var-substp (sg)

;; The next case is also quite trivial; notice how abstracted it is.

;; << 36 >>

Theorem: main-hyps-relieved-5-lemma-3
let s1 be restrict (s, domain-1 ),

s2 be apply-to-subst (nullify-subst (sg), co-restrict (s, domain-1 ))
in
disjoint (domain (s1 ), domain (s2 )) endlet

;; For the next two cases we first observe that (DOMAIN S) is disjoint
;; from (DOMAIN SG), and then we use SUBSETP-DISJOINT-1 where X is the
;; domain of S1 or S2, Y is the domain of S, and Z is the domain of
;; SG:
;; (IMPLIES (AND (SUBSETP X Y) (DISJOINT Y Z))
;; (DISJOINT X Z))

;; << 37 >>

Theorem: witnessing-instantiation-is-disjoint-from-generalizing-substitution
let s be witnessing-instantiation (generalize (sg , state))
in
(generalize-okp (sg , state) ∧ valid-state (generalize (sg , state)))
→ disjoint (domain (s), domain (sg)) endlet
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;; In the next case we abstract away DOMAIN-1 (and hence G, P, FREE,
;; and NEW-G). Incidentally, a similar phenomenon occurred here to
;; the one reported just above the statement above of MAIN-THEOREM-1-CASE-3:
;; final polishing resulted in the need for another lemma. That extra
;; lemma is DISJOINT-SET-DIFF-SUFFICIENCY in this case, to be found
;; in "sets.events".

;; << 38 >>

Theorem: main-hyps-relieved-5-lemma-4
let s be witnessing-instantiation (generalize (sg , state))
in
let s1 be restrict (s, domain-1 ),

s2 be apply-to-subst (nullify-subst (sg), co-restrict (s, domain-1 ))
in
(generalize-okp (sg , state)
∧ valid-state (generalize (sg , state)))
→ (disjoint (domain (s1 ), domain (sg))

∧ disjoint (domain (s2 ), domain (sg))) endlet endlet

;; The lemma MAIN-HYPS-RELIEVED-5-LEMMA-5-WIT is true because the
;; domain of s is contained in the free variables of the generalized
;; state (by choice, i.e. definition, of witnessing-instantiation),
;; which is disjoint from the intersection of the indicated
;; GEN-CLOSURE with the variables in the range of sg. I’ll use a
;; trick that I learned from Ken Kunen (definable Skolem function is
;; all, really) to reduce disjointness considerations to membership
;; considerations.

;; << 39 >>

Theorem: main-hyps-relieved-5-lemma-5-wit
let g be caar (state),

p be cdar (state),
free be cdr (state),
s be witnessing-instantiation (generalize (sg , state))

in
let new-g be subst (t, invert (sg), g)
in
let domain-1 be gen-closure (cons (new-g , p),

free,
all-vars (t, new-g))

in
let s1 be restrict (s, domain-1 )
in
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(generalize-okp (sg , state)
∧ valid-state (generalize (sg , state))
∧ (wit ∈ all-vars (f, range (sg)))
∧ (wit ∈ domain (s)))
→ (wit 6∈ domain-1 ) endlet endlet endlet endlet

;; << 40 >>

Theorem: main-hyps-relieved-5-lemma-5
let g be caar (state),

p be cdar (state),
free be cdr (state),
s be witnessing-instantiation (generalize (sg , state))

in
let new-g be subst (t, invert (sg), g)
in
let domain-1 be gen-closure (cons (new-g , p),

free,
all-vars (t, new-g))

in
let s1 be restrict (s, domain-1 )
in
(generalize-okp (sg , state)
∧ valid-state (generalize (sg , state)))
→ disjoint (all-vars (f, range (sg)), domain (s1 )) endlet endlet endlet endlet

;; << 41 >>

Theorem: main-hyps-relieved-5-lemma-6
let g be caar (state),

p be cdar (state),
free be cdr (state),
s be witnessing-instantiation (generalize (sg , state))

in
let new-g be subst (t, invert (sg), g)
in
let domain-1 be gen-closure (cons (new-g , p),

free,
all-vars (t, new-g))

in
let s2 be apply-to-subst (nullify-subst (sg),

co-restrict (s, domain-1 ))
in
(generalize-okp (sg , state)
∧ valid-state (generalize (sg , state)))
→ disjoint (all-vars (f, range (s2 )), domain (sg)) endlet endlet endlet endlet
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;; << 42 >>

Theorem: main-hyps-relieved-5
let g be caar (state),

p be cdar (state),
free be cdr (state),
s be witnessing-instantiation (generalize (sg , state))

in
let new-g be subst (t, invert (sg), g)
in
let domain-1 be gen-closure (cons (new-g , p),

free,
all-vars (t, new-g))

in
let s1 be restrict (s, domain-1 ),

s2 be apply-to-subst (nullify-subst (sg),
co-restrict (s, domain-1 ))

in
(generalize-okp (sg , state)
∧ valid-state (generalize (sg , state)))
→ gen-setting-substitutions (s1 , s2 , sg) endlet endlet endlet endlet

;; Now all that is left is MAIN-HYPS-RELIEVED-6. Actually, this lemma
;; doesn’t have anything to do with inverse substitutions or even with
;; generalization, really. The idea is simply that one takes a valid
;; state and wishes to split its witnessing substitution into two
;; parts. The parts are the respective restriction and co-restriction
;; of the original substitution to some set that is ‘‘closed’’ in the
;; appropriate sense. Actually, the co-restriction is allowed to have
;; a substitution applied to it, whose domain is disjoint from the
;; goals ‘‘outside’’ that closure. Below we give the lemmas and the
;; proof of MAIN-HYPS-RELIEVED-6 from those lemmas. But first let us
;; introduce the necessary notions.

;; << 43 >>

Definition:
all-vars-disjoint-or-subsetp (goals, free, x )
= if listp (goals)

then (subsetp (intersection (free, all-vars (t, car (goals))), x )
∨ disjoint (intersection (free, all-vars (t, car (goals))), x ))
∧ all-vars-disjoint-or-subsetp (cdr (goals), free, x )

else t endif

;; Our plan will be to show that (CDR STATE) has the above property
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;; with respect to the free variables of the generalized state and the
;; appropriate gen-closure. In cases where one applies a substitution
;; of the form (append s1 s2) to such a list of goals, where the
;; domain of s1 is contained in the intersection of those free
;; variables with that closure and the domain of s2 is disjoint from
;; that intersection, we’ll show that the result is a theorem-list iff
;; each of the following are theorem-lists: apply s1 to the goals
;; whose vars intersect its domain, and apply s2 to the rest.
;; Reduction rules about applying restrictions etc. will then finish
;; the job.

;; Notice the similarity of the following definition with new-gen-vars.
;; Think of vars as the closure variables, and free as the free variable
;; set within which this all "takes place".

;; << 44 >>

Definition:
goals-intersecting-vars (goals, free, vars)
= if listp (goals)

then let current-free-vars be intersection (free,
all-vars (t, car (goals)))

in
if disjoint (current-free-vars, vars)
then goals-intersecting-vars (cdr (goals), free, vars)
else cons (car (goals),

goals-intersecting-vars (cdr (goals),
free,
vars)) endif endlet

else nil endif

;; << 45 >>

Definition:
goals-disjoint-from-vars (goals, free, vars)
= if listp (goals)

then let current-free-vars be intersection (free,
all-vars (t, car (goals)))

in
if disjoint (current-free-vars , vars)
then cons (car (goals),

goals-disjoint-from-vars (cdr (goals), free, vars))
else goals-disjoint-from-vars (cdr (goals), free, vars) endif endlet

else nil endif
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;; Now we begin the remaining goal, MAIN-HYPS-RELIEVED-6. The idea is
;; to show that the appropriate goal list is a theorem-list by showing
;; separately that the first and the rest are theorems, since the
;; reasons are slightly different. The first is a theorem because its
;; free vars are all in domain-1, hence in the domain of s1; so, s2
;; can be dropped from the APPEND. The rest all have the property
;; that their free vars are contained in or disjoint from domain-1,
;; and for those disjoint from it, they do not contain variables from
;; the domain of sg. Notice that the new current goal may violate the
;; latter requirement, since it may have no free vars at all but
;; contain vars from the domain of sg, and that’s why we have to make
;; a special case out of it.

#|

(add-axiom main-hyps-relieved-6-first (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1

(gen-closure (cons new-g p) free (all-vars t new-g))))
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))

(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))

(theorem (subst t (append s1 s2)
(subst t (invert sg) g)))))))))

(add-axiom main-hyps-relieved-6-rest (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1

(gen-closure (cons new-g p) free (all-vars t new-g))))
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))

(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))
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(theorem-list (subst f (append s1 s2) p))))))))

(prove-lemma main-hyps-relieved-6 (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1

(gen-closure (cons new-g p) free (all-vars t new-g))))
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))

(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))

(theorem-list (subst f (append s1 s2)
(cons (subst t (invert sg) g) p))))))))

((disable-theory t)
(enable-theory ground-zero)
(enable main-hyps-relieved-6-first main-hyps-relieved-6-rest subst theorem-list)))

|#

;; The first is true because the free vars in new-g are all in the
;; domain of s1, since they are all in domain-1. By the way, the
;; proof-checker was useful here; I dove to the subst term (after
;; adding abbreviations and promoting hypotheses) and saw that I
;; wanted to rewrite with SUBST-APPEND-NOT-OCCUR-2. I also notice the
;; need for GEN-CLOSURE-CONTAINS-THIRD-ARG during the attempt to prove
;; a goal.

;; First, we only want to open up GENERALIZE when we are looking at
;; goals, not when we are simply asking about the witnessing
;; substitution.

;; << 46 >>

Theorem: car-generalize
car (generalize (sg , state))
= cons (subst (t, invert (sg), caar (state)), cdar (state))

;; << 47 >>

Event: Disable generalize.
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;; Inspection of the proof of a subgoal of MAIN-HYPS-RELIEVED-6-FIRST
;; suggests that we need the following lemma. Actually, before the
;; final polishing it was the case that the following version sufficed.
;; But final polishing led me to prove a "better" version, as well
;; as the lemma DISJOINT-SET-DIFF-GENERAL in "sets.events".

#|
(prove-lemma gen-closure-contains-third-arg (rewrite)
(implies (subsetp domain free)

(subsetp (intersection domain free-vars-so-far)
(gen-closure goals free free-vars-so-far))))

|#

;; << 48 >>

Theorem: gen-closure-contains-third-arg
subsetp (x , intersection (free, free-vars-so-far))
→ subsetp (x , gen-closure (goals, free, free-vars-so-far))

;; << 49 >>

Theorem: main-hyps-relieved-6-first
let g be caar (state),

p be cdar (state),
free be cdr (state),
s be witnessing-instantiation (generalize (sg , state))

in
let new-g be subst (t, invert (sg), g)
in
let domain-1 be gen-closure (cons (new-g , p),

free,
all-vars (t, new-g))

in
let s1 be restrict (s, domain-1 ),

s2 be apply-to-subst (nullify-subst (sg),
co-restrict (s, domain-1 ))

in
(generalize-okp (sg , state)
∧ valid-state (generalize (sg , state)))
→ theorem (subst (t, append (s1 , s2 ), new-g)) endlet endlet endlet endlet

;; Now all that remains is MAIN-HYPS-RELIEVED-6-REST.

#|
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;; I originally forgot the (TERMP F P) hypothesis below, but it wasn’t
;; very hard to back up and fix this.

(add-axiom main-hyps-relieved-6-rest-generalization (rewrite)
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))

(implies (and (var-substp sg)
(var-substp s)
(subsetp (domain s) new-free)
(termp f p)
(theorem-list (subst f s p))
(disjoint (domain sg)

(all-vars f (goals-disjoint-from-vars
p new-free domain-1)))

(all-vars-disjoint-or-subsetp p new-free domain-1))
(theorem-list (subst f (append s1 s2) p)))))

(add-axiom main-hyps-relieved-6-rest-lemma-1 (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1

(gen-closure (cons new-g p) free (all-vars t new-g))))
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))

(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))

(disjoint (domain sg)
(all-vars f (goals-disjoint-from-vars

p (cdr (generalize sg state)) domain-1)))))))))

;; Minor note: I used the BREAK-LEMMA feature of NQTHM to realize
;; that I needed the following lemma.

(add-axiom main-hyps-relieved-6-rest-lemma-2 (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
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(let ((domain-1
(gen-closure (cons new-g p) free (all-vars t new-g))))

(let ((s1 (restrict s domain-1))
(s2 (apply-to-subst (nullify-subst sg)

(co-restrict s domain-1))))
(implies (and (generalize-okp sg state)

(valid-state (generalize sg state)))
(all-vars-disjoint-or-subsetp p (cdr (generalize sg state)) domain-1)))))))

(prove-lemma main-hyps-relieved-6-rest (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1

(gen-closure (cons new-g p) free (all-vars t new-g))))
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))

(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))

(theorem-list (subst f (append s1 s2) p)))))))
((disable-theory t)
(enable-theory ground-zero)
(enable theorem-list subst car-generalize ;; so that we can get at p from (car state)

;; relieving hyps of main-hyps-relieved-6-rest-generalization:
main-hyps-relieved-6-rest-lemma-1 main-hyps-relieved-6-rest-lemma-2
;; to relieve the (termp f p) hypothesis in main-hyps-relieved-6-rest-generalization:
statep termp-list-cons
generalize-okp valid-state-opener main-hyps-relieved-6-rest-generalization)))

;; At this point I did a sanity check and sure enough, the pushed
;; lemmas all go through at this point: main-hyps-relieved-6,
;; main-hyps-relieved, main-theorem-1-case-4, main-theorem-1, and
;; generalize-is-correct.

|#

;; It remains to prove MAIN-HYPS-RELIEVED-6-REST-LEMMA-1,
;; MAIN-HYPS-RELIEVED-6-REST-LEMMA-2, and
;; MAIN-HYPS-RELIEVED-6-REST-GENERALIZATION.

;; For the first of these we need the following trivial observation.
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;; << 50 >>

Theorem: goals-disjoint-from-vars-subsetp
subsetp (goals-disjoint-from-vars (goals, free, vars), goals)

;; Unfortunately the observation above doesn’t quite suffice, because
;; of a technical problem with free variables in hypotheses. The
;; following consequence does, though.

;; << 51 >>

Theorem: disjoint-all-vars-goals-disjoint-from-vars
disjoint (x , all-vars (f, goals))
→ disjoint (x , all-vars (f, goals-disjoint-from-vars (goals, free, vars)))

;; << 52 >>

Theorem: main-hyps-relieved-6-rest-lemma-1
let g be caar (state),

p be cdar (state),
free be cdr (state),
s be witnessing-instantiation (generalize (sg , state))

in
let new-g be subst (t, invert (sg), g)
in
let domain-1 be gen-closure (cons (new-g , p),

free,
all-vars (t, new-g))

in
let s1 be restrict (s, domain-1 ),

s2 be apply-to-subst (nullify-subst (sg),
co-restrict (s, domain-1 ))

in
(generalize-okp (sg , state)
∧ valid-state (generalize (sg , state)))
→ disjoint (domain (sg),

all-vars (f,
goals-disjoint-from-vars (p,

cdr (generalize (sg ,
state)),

domain-1 ))) endlet endlet endlet endlet

;; The next goal, MAIN-HYPS-RELIEVED-6-REST-LEMMA-2, needs the lemma
;; ALL-VARS-DISJOINT-OR-SUBSETP-GEN-CLOSURE below. That lemma’s
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;; mechanical proof depends on the trivial observation
;; DISJOINT-INTERSECTION3-MIDDLE in file sets.events.

;; << 53 >>

Theorem: all-vars-disjoint-or-subsetp-gen-closure
subsetp (domain, free)
→ all-vars-disjoint-or-subsetp (goals,

domain,
gen-closure (cons (g , goals), free, vars))

;; << 54 >>

Theorem: main-hyps-relieved-6-rest-lemma-2
let g be caar (state),

p be cdar (state),
free be cdr (state),
s be witnessing-instantiation (generalize (sg , state))

in
let new-g be subst (t, invert (sg), g)
in
let domain-1 be gen-closure (cons (new-g , p),

free,
all-vars (t, new-g))

in
let s1 be restrict (s, domain-1 ),

s2 be apply-to-subst (nullify-subst (sg),
co-restrict (s, domain-1 ))

in
(generalize-okp (sg , state)
∧ valid-state (generalize (sg , state)))
→ all-vars-disjoint-or-subsetp (p,

cdr (generalize (sg ,
state)),

domain-1 ) endlet endlet endlet endlet

;; Finally, all that’s left is
;; MAIN-HYPS-RELIEVED-6-REST-GENERALIZATION. An attempted proof by
;; induction of that theorem results in 11 goals, all but one of which
;; goes through automatically. The remaining one is as follows.

#|

(IMPLIES
(AND
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(DISJOINT NEW-FREE
(INTERSECTION DOMAIN-1

(ALL-VARS T X)))
(THEOREM-LIST
(SUBST F

(APPEND (RESTRICT S DOMAIN-1)
(APPLY-TO-SUBST (NULLIFY-SUBST SG)

(CO-RESTRICT S DOMAIN-1)))
Z))

(MAPPING SG)
(VARIABLE-LISTP (DOMAIN SG))
(TERMP F (RANGE SG))
(MAPPING S)
(VARIABLE-LISTP (DOMAIN S))
(TERMP F (RANGE S))
(SUBSETP (DOMAIN S) NEW-FREE)
(TERMP T X)
(TERMP F Z)
(THEOREM (SUBST T S X))
(THEOREM-LIST (SUBST F S Z))
(DISJOINT (DOMAIN SG) (ALL-VARS T X))
(DISJOINT (DOMAIN SG)

(ALL-VARS F
(GOALS-DISJOINT-FROM-VARS Z NEW-FREE DOMAIN-1)))

(ALL-VARS-DISJOINT-OR-SUBSETP Z NEW-FREE DOMAIN-1))
(THEOREM (SUBST T

(APPEND (RESTRICT S DOMAIN-1)
(APPLY-TO-SUBST (NULLIFY-SUBST SG)

(CO-RESTRICT S DOMAIN-1)))
X)))

|#

;; Let us attempt to prove this goal with the proof-checker, thus
;; seeing why the rewriter can’t handle it automatically. We would
;; like to rewrite with SUBST-APPEND-NOT-OCCUR-1 to replace the
;; conclusion with:

#|
(THEOREM (SUBST T

(APPLY-TO-SUBST (NULLIFY-SUBST SG)
(CO-RESTRICT S DOMAIN-1))

X))
|#
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;; However, in order to do that we need to observe that under the
;; hypotheses, the following holds.

#|
(DISJOINT (ALL-VARS F

(DOMAIN (RESTRICT S DOMAIN-1)))
(ALL-VARS T X))

|#

;; This is one of those cases of a problem with free variables in
;; hypotheses that are so annoying. The lemma DOMAIN-RESTRICT has
;; been put in alists.events to help with this. But then we lose the
;; fact that the first ALL-VARS in the goal above may be removed. The
;; lemma VARIABLE-LISTP-INTERSECTION has been added to terms.events to
;; take care of that.

;; Now it looks like the rewrite using SUBST-APPEND-NOT-OCCUR-1 should
;; succeed, since all hypotheses are relieved by rewriting alone.
;; Just to make sure, we back up in the proof checker and see if BASH
;; uses this rule on our original goal. Sure enough, it does.

;; Now our conclusion is the one displayed above, i.e.

#|
(THEOREM (SUBST T

(APPLY-TO-SUBST (NULLIFY-SUBST SG)
(CO-RESTRICT S DOMAIN-1))

X))
|#

;; Since (as we already know) (NULLIFY-SUBST SG) has the same domain
;; as does SG, and since the hypotheses imply that (DOMAIN SG) is
;; disjoint from the variables of X, the SUBST expression in this
;; conclusion should simplify to:

#|
(SUBST T (NULLIFY-SUBST SG)

(SUBST T (CO-RESTRICT S DOMAIN-1)
X))

|#

;; We therefore need the lemma SUBST-APPLY-TO-SUBST-ELIMINATOR below
;; (which is used under the substitution where S gets (CO-RESTRICT S
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;; DOMAIN-1) and SG gets (NULLIFY-SUBST SG)). However, we’ll
;; immediately derive the desired consequence and then disable this
;; lemma, since it appears that it would loop with
;; COMPOSE-PROPERTY-REVERSED.

;; << 55 >>

Theorem: subst-apply-to-subst-eliminator
(variable-listp (domain (sg))
∧ variable-listp (domain (s))
∧ termp (t, x )
∧ disjoint (domain (sg), all-vars (t, x )))
→ (subst (t, apply-to-subst (sg , s), x ) = subst (t, sg , subst (t, s, x )))

;; << 56 >>

Theorem: theorem-subst-apply-to-subst-with-disjoint-domain
(var-substp (sg)
∧ var-substp (s)
∧ termp (t, x )
∧ disjoint (domain (sg), all-vars (t, x ))
∧ theorem (subst (t, s, x )))
→ theorem (subst (t, apply-to-subst (sg , s), x ))

;; << 57 >>

Event: Disable subst-apply-to-subst-eliminator.

;; The proof of the remaining goal should go through now, one might
;; think. However, we need one more observation first, because we
;; need to apply the following lemma.

#|
(PROVE-LEMMA SUBST-CO-RESTRICT

(REWRITE)
(IMPLIES (AND (DISJOINT X

(INTERSECTION (DOMAIN S)
(ALL-VARS FLG TERM)))

(VARIABLE-LISTP (DOMAIN S))
(TERMP FLG TERM))

(EQUAL (SUBST FLG (CO-RESTRICT S X) TERM)
(SUBST FLG S TERM))))

|#
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;; but the first hypothesis of this lemma needs special handling because of
;; free variables. The lemma DISJOINT-SUBSETP-HACK was proved at this point,
;; and appears now in sets.events.

;; And finally, we finish. During polishing I suddenly needed the
;; lemma SUBSETP-INTERSECTION-MONOTONE-2, which is now included in
;; "sets.events", and which in turn suggested
;; SUBSETP-INTERSECTION-COMMUTER there.

;; << 58 >>

Theorem: main-hyps-relieved-6-rest-generalization
let s1 be restrict (s, domain-1 ),

s2 be apply-to-subst (nullify-subst (sg), co-restrict (s, domain-1 ))
in
(var-substp (sg)
∧ var-substp (s)
∧ subsetp (domain (s), new-free)
∧ termp (f, p)
∧ theorem-list (subst (f, s, p))
∧ disjoint (domain (sg),

all-vars (f,
goals-disjoint-from-vars (p,

new-free,
domain-1 )))

∧ all-vars-disjoint-or-subsetp (p, new-free, domain-1 ))
→ theorem-list (subst (f, append (s1 , s2 ), p)) endlet

;; Now to clean up the goals that have been pushed above:

;; << 59 >>

Theorem: main-hyps-relieved-6-rest
let g be caar (state),

p be cdar (state),
free be cdr (state),
s be witnessing-instantiation (generalize (sg , state))

in
let new-g be subst (t, invert (sg), g)
in
let domain-1 be gen-closure (cons (new-g , p),

free,
all-vars (t, new-g))

in
let s1 be restrict (s, domain-1 ),
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s2 be apply-to-subst (nullify-subst (sg),
co-restrict (s, domain-1 ))

in
(generalize-okp (sg , state)
∧ valid-state (generalize (sg , state)))
→ theorem-list (subst (f, append (s1 , s2 ), p)) endlet endlet endlet endlet

;; << 60 >>

Theorem: main-hyps-relieved-6
(generalize-okp (sg , state) ∧ valid-state (generalize (sg , state)))
→ theorem-list (subst (f,

append (restrict (witnessing-instantiation (generalize (sg ,
state)),

gen-closure (cons (subst (t,
invert (sg),
caar (state)),

cdar (state)),
cdr (state),
all-vars (t,

subst (t,
invert (sg),
caar (state))))),

apply-to-subst (nullify-subst (sg),
co-restrict (witnessing-instantiation (generalize (sg ,

state)),
gen-closure (cons (subst (t,

invert (sg),
caar (state)),

cdar (state)),
cdr (state),
all-vars (t,

subst (t,
invert (sg),
caar (state))))))),

cons (subst (t, invert (sg), caar (state)), cdar (state))))

;; << 61 >>

Theorem: main-hyps-relieved
(generalize-okp (sg , state) ∧ valid-state (generalize (sg , state)))
→ main-hyps (restrict (witnessing-instantiation (generalize (sg , state)),

gen-closure (cons (subst (t, invert (sg), caar (state)),
cdar (state)),

cdr (state),
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all-vars (t,
subst (t,

invert (sg),
caar (state))))),

apply-to-subst (nullify-subst (sg),
co-restrict (witnessing-instantiation (generalize (sg ,

state)),
gen-closure (cons (subst (t,

invert (sg),
caar (state)),

cdar (state)),
cdr (state),
all-vars (t,

subst (t,
invert (sg),
caar (state)))))),

sg ,
caar (state),
cdar (state))

;; << 62 >>

Theorem: main-theorem-1-case-4
(generalize-okp (sg , state) ∧ valid-state (generalize (sg , state)))
→ theorem-list (subst (f, gen-inst (sg , state), car (state)))

;; << 63 >>

Theorem: main-theorem-1
let wit be gen-inst (sg , state)
in
(generalize-okp (sg , state) ∧ valid-state (generalize (sg , state)))
→ (statep (state)

∧ var-substp (wit)
∧ subsetp (domain (wit), cdr (state))
∧ theorem-list (subst (f, wit , car (state)))) endlet

;; << 64 >>

Theorem: generalize-is-correct
(generalize-okp (sg , state) ∧ valid-state (generalize (sg , state)))
→ valid-state (state)
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all-vars-subst, 26
all-vars-subst-lemma, 26
all-vars-t-cons, 23
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boundp-apply-to-subst, 26
boundp-bind, 19
boundp-in-var-substp-implies-va

riablep, 26
boundp-rembind, 19
boundp-subsetp, 19
boundp-value-invert, 19

car-generalize, 50
cardinality, 33
cdr-subsetp, 3
co-restrict, 18–21, 24, 27, 35, 44–47,

51, 54, 55, 59–61
compose, 25, 27
compose-property, 27
compose-property-reversed, 27

delete, 5–7, 19
delete-cons, 6
delete-delete, 6
delete-nlistp, 6
delete-non-member, 6
disjoint, 5, 7, 9–13, 18–20, 24, 26–

30, 33, 34, 38, 40–42, 44–
48, 54, 58, 59

disjoint-all-vars-goals-disjoint
-from-vars, 54

disjoint-all-vars-range-apply-s
ubst-nullify-subst, 30

disjoint-all-vars-subst, 28
disjoint-all-vars-subst-nullify

-subst, 30
disjoint-append-left, 7
disjoint-append-right, 7
disjoint-cons-1, 7
disjoint-cons-2, 7
disjoint-domain-singleton, 19
disjoint-implies-empty-intersecti

on, 13
disjoint-intersection, 9
disjoint-intersection-append, 9
disjoint-intersection-commuter, 10
disjoint-intersection-set-diff-i

ntersection, 12
disjoint-intersection3, 10
disjoint-intersection3-middle, 13
disjoint-nlistp, 7
disjoint-non-member, 7
disjoint-range-implies-disjoint
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-value, 28
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disjoint-subsetp-hack, 13
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d, 7
disjoint-symmetry, 7
disjoint-wit, 5
disjoint-wit-witnesses, 5
disjointp-set-diff, 10
domain, 15, 18–21, 24–30, 32, 34,

36–38, 40–42, 44–46, 54, 58,
59, 61

domain-append, 15
domain-apply-to-subst, 27
domain-bind, 19
domain-co-restrict, 19
domain-cons, 15
domain-invert, 19
domain-nlistp, 15
domain-nullify-subst, 30
domain-rembind, 19
domain-restrict, 19

fix-properp, 4, 5, 9, 11, 12, 14, 15,
20, 28

fix-properp-append, 4
fix-properp-cons, 4
fix-properp-nlistp, 4
fix-properp-properp, 4
fn, 22, 29
function-symbol-intro, 22
function-symbol-p, 22, 23

gen-closure, 34, 35, 45–47, 51, 54,
55, 59–61

gen-closure-accept, 33
gen-closure-contains-third-arg, 51
gen-inst, 35–37, 61
gen-setting-substitutions, 37, 38, 40,

47
generalize, 34–37, 44–47, 50, 51, 54,

55, 59–61
generalize-is-correct, 61

generalize-okp, 34–36, 42, 44–47, 51,
54, 55, 60, 61

generalize-statep, 35
goals-disjoint-from-vars, 48, 54, 59
goals-disjoint-from-vars-subsetp, 54
goals-intersecting-vars, 48

intersection, 5, 7–14, 19, 24, 27, 33–
35, 47, 48, 51

intersection-append, 9
intersection-associative, 8
intersection-cons-1, 8
intersection-cons-2, 8
intersection-cons-3, 8
intersection-cons-subsetp, 8
intersection-disjoint, 7
intersection-elimination, 9
intersection-nlistp, 8
intersection-subsetp-identity, 11
intersection-symmetry, 8
intersection-x-x, 11
invert, 17–20, 26, 34, 35, 38, 40, 45–

47, 50, 51, 54, 55, 59–61
invert-cons, 17
invert-nlistp, 17

length, 2, 9, 11, 13, 33
length-append, 2
length-cons, 2
length-intersection, 9
length-intersection-set-diff, 11
length-nlistp, 2
length-set-diff-leq, 13
length-set-diff-lessp, 13
length-set-diff-opener, 11
lessp-length, 13
listp-delete, 6
listp-intersection, 13
listp-make-set, 12
listp-set-diff, 11

main-hyps, 38, 40, 41, 61
main-hyps-relieved, 60
main-hyps-relieved-1, 42
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main-hyps-relieved-2, 42
main-hyps-relieved-3, 42
main-hyps-relieved-4, 42
main-hyps-relieved-5, 47
main-hyps-relieved-5-lemma-1, 44
main-hyps-relieved-5-lemma-2, 44
main-hyps-relieved-5-lemma-3, 44
main-hyps-relieved-5-lemma-4, 45
main-hyps-relieved-5-lemma-5, 46
main-hyps-relieved-5-lemma-5-wit, 45
main-hyps-relieved-5-lemma-6, 46
main-hyps-relieved-6, 60
main-hyps-relieved-6-first, 51
main-hyps-relieved-6-rest, 59
main-hyps-relieved-6-rest-gener

alization, 59
main-hyps-relieved-6-rest-lemma

-1, 54
-2, 55

main-hyps-suffice, 41
main-hyps-suffice-first, 40
main-hyps-suffice-first-lemma, 40
main-hyps-suffice-first-lemma-ge

neral, 40
main-hyps-suffice-rest, 41
main-hyps-suffice-rest-lemma, 40
main-theorem-1, 61
main-theorem-1-case-1, 36
main-theorem-1-case-2, 36
main-theorem-1-case-3, 37
main-theorem-1-case-4, 61
make-set, 12, 33
make-set-gives-setp, 12
make-set-preserves-member, 12
make-set-preserves-subsetp-1, 12
make-set-preserves-subsetp-2, 12
make-set-preserves-subsetp-3, 12
make-set-set-diff, 12
mapping, 18–21, 25, 26, 30
mapping-append, 20
mapping-apply-to-subst, 26
mapping-co-restrict, 21
mapping-implies-alistp, 18
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