
#|

Copyright (C) 1994 by Computational Logic, Inc. All Rights Reserved.

This script is hereby placed in the public domain, and therefore unlimited
editing and redistribution is permitted.

NO WARRANTY

Computational Logic, Inc. PROVIDES ABSOLUTELY NO WARRANTY. THE EVENT SCRIPT
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE SCRIPT IS WITH YOU. SHOULD THE SCRIPT PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT WILL Computational Logic, Inc. BE LIABLE TO YOU FOR ANY DAMAGES,
ANY LOST PROFITS, LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SCRIPT (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY THIRD PARTIES), EVEN IF YOU HAVE ADVISED US OF THE POSSIBILITY OF
SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

|#

;; Here is a proof of correctness of mergesort. The
;; main events are marked with ‘‘!!!’’.

Event: Start with the initial nqthm theory.

Definition:
length (x)
= if listp (x) then 1 + length (cdr (x))

else 0 endif

;; [in r-loop, try:]
#|
*(cons 3 (cons 4 (cons 7 nil)))
’(3 4 7)

*(length ’(3 4 7))
|#

#|
;;[try without hint]

1

(defn merge (l m)
(if (not (listp l))

m
(if (not (listp m))

l
(if (lessp (car l) (car m))

(cons (car l) (merge (cdr l) m))
(cons (car m) (merge l (cdr m))))))

((lessp (plus (length l) (length m)))))
|#

Definition:
merge (l , m)
= if ¬ listp (l) then m

elseif ¬ listp (m) then l
elseif car (l) < car (m) then cons (car (l), merge (cdr (l), m))
else cons (car (m), merge (l , cdr (m))) endif

Definition:
odds (l)
= if ¬ listp (l) then nil

else cons (car (l), odds (cddr (l))) endif

#|
(defn mergesort (l)

(if (not (listp l))
nil

(if (not (listp (cdr l)))
l

(merge (mergesort (odds (cdr l)))
(mergesort (odds l))))))

|#

#|
(defn mergesort (l)

(if (not (listp l))
nil

(if (not (listp (cdr l)))
l

(merge (mergesort (odds (cdr l)))
(mergesort (odds l)))))

((lessp (length l))))
|#

2

#|
(prove-lemma mergesort-helper (rewrite)

(implies (and (listp l)
(listp (cdr l)))

(equal (lessp (sub1 (length (odds l)))
(length (cdr l)))

t)))
|#

;; still wasn’t enough, so we prove:

Theorem: mergesort-helper
(listp (l) ∧ listp (cdr (l)))
→ ((((length (odds (l)) − 1) < length (cdr (l))) = t)

∧ (((length (odds (cdr (l))) − 1) < length (cdr (l))) = t))

Definition:
mergesort (l)
= if ¬ listp (l) then nil

elseif ¬ listp (cdr (l)) then l
else merge (mergesort (odds (cdr (l))), mergesort (odds (l))) endif

;;[try (mergesort ’(3 7 8 2 9 4 7)) in r-loop]

Definition:
sortedp (x)
= if listp (x)

then if listp (cdr (x))
then (car (cdr (x)) 6< car (x)) ∧ sortedp (cdr (x))
else t endif

else t endif

;; !!! FIRST MAIN THEOREM -- note that the subgoal
;; (IMPLIES (AND (SORTEDP B) (SORTEDP U))
;; (SORTEDP (MERGE U B)))
;; is generated automatically!

Theorem: sortedp-mergesort
sortedp (mergesort (x))

Definition:
occur (a, x)
= if listp (x)

then if a = car (x) then 1 + occur (a, cdr (x))
else occur (a, cdr (x)) endif

else 0 endif

3

#|
;; Want to prove the following, but need lemmas.
;; Use the proof-checker to try to find them. Suggests
;; OCCUR-MERGE pretty quickly
(prove-lemma occur-mergesort (rewrite)

(equal (occur a (mergesort x))
(occur a x)))

|#

Theorem: occur-merge
occur (a, merge (x , y)) = (occur (a, x) + occur (a, y))

;; Now back into VERIFY.... prover goes into an induction in PROVE
;; call, so we abort. Use
#|
(INSTRUCTIONS INDUCT PROVE PROVE PROMOTE

(DIVE 1 2)
X TOP
(S LEMMAS)
(DIVE 1 1)
= NX = TOP
(DROP 3 4))

|#
;; in proof-checker.

Theorem: plus-occur-odds
(listp (x) ∧ listp (cdr (x)))
→ ((occur (a, odds (cdr (x))) + occur (a, odds (x))) = occur (a, x))

;; !!! SECOND MAIN THEOREM; see last event for permutationp version

Theorem: occur-mergesort
occur (a, mergesort (x)) = occur (a, x)

;; Events to show facts about permutationp:

Definition:
remove1 (a, x)
= if listp (x)

then if car (x) = a then cdr (x)
else cons (car (x), remove1 (a, cdr (x))) endif

else x endif

4

Definition:
badguy (x , y)
= if listp (x)

then if car (x) ∈ y then badguy (cdr (x), remove1 (car (x), y))
else car (x) endif

else 0 endif

Definition:
subbagp (x , y)
= if listp (x) then (car (x) ∈ y)

∧ subbagp (cdr (x), remove1 (car (x), y))
else t endif

Theorem: member-occur
(a ∈ x) = (0 < occur (a, x))

Theorem: occur-remove1
occur (a, remove1 (b, x))
= if a = b then occur (a, x) − 1

else occur (a, x) endif

Theorem: subbagp-wit-lemma
subbagp (x , y) = (occur (badguy (x , y), y) 6< occur (badguy (x , y), x))

Definition: permutationp (x , y) = (subbagp (x , y) ∧ subbagp (y , x))

;; !!! REVISED VERSION OF SECOND MAIN THEOREM

Theorem: permutationp-mergesort
permutationp (mergesort (x), x)

5

Index
badguy, 5

length, 1, 3

member-occur, 5
merge, 2–4
mergesort, 3–5
mergesort-helper, 3

occur, 3–5
occur-merge, 4
occur-mergesort, 4
occur-remove1, 5
odds, 2–4

permutationp, 5
permutationp-mergesort, 5
plus-occur-odds, 4

remove1, 4, 5

sortedp, 3
sortedp-mergesort, 3
subbagp, 5
subbagp-wit-lemma, 5

6

