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EVENT: Start with the initial nqthm theory.

DEFINITION:
ramsey (p, q)
= if p~0 then 1
elseif ¢ ~ 0 then 1
else ramsey (p — 1, ¢) + ramsey (p, ¢ — 1) endif

DEFINITION:
related (4, j, pairs) = ((cons (i, j) € pairs) V (cons (j, i) € pairs))

DEFINITION:
partition (n, rest, pairs)
= if listp (rest)
then if related (n, car (rest), pairs)
then cons (cons (car (rest), car (partition (n, cdr (rest), pairs))),
cdr (partition (n, cdr (rest), pairs)))
else cons (car (partition (n, cdr (rest), pairs)),
cons (car (rest), cdr (partition (n, cdr (rest), pairs)))) endif
else cons (nil, nil) endif



DEFINITION:

length (Ist)

= if listp (Ist) then 1 + length (cdr (Ist))
else 0 endif

DEFINITION:
wit (pairs, domain, p, q)
= if listp (domain)
then if p ~ 0 then cons (nil, 1)
elseif ¢ ~ 0 then cons (nil, 2)
elseif length (car (partition (car (domain), cdr (domain), pairs)))
< ramsey(p — 1, q)
then if cdr (wit (pairs,
cdr (partition (car (domain), cdr (domain), pairs)),
p7
qg—1))
= 1
then wit (pairs,
cdr (partition (car (domain), cdr (domain), pairs)),
p’
q—-1)
else cons (cons (car (domain),
car (wit (pairs,
cdr (partition (car (domain),
cdr (domain),
pairs)),
p7
q — 1)))7
2) endif
elseif cdr (wit (pairs,
car (partition (car (domain), cdr (domain), pairs)),
p = 1a
q))
= 2
then wit (pairs,
car (partition (car (domain), cdr (domain), pairs)),
p = 1a
q)
else cons (cons (car (domain),
car (wit (pairs,
car (partition (car (domain),
cdr (domain),
pairs)),
p = 1;
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1) endif
else cons (nil, 1) endif

DEFINITION:
homogeneousl (n, domain, pairs, flg)
= if listp (domain)
then if flg = 1 then related (n, car (domain), pairs)
else — related (n, car (domain), pairs) endif
A homogeneousl (n, cdr (domain), pairs, flg)
else t endif

DEFINITION:
homogeneous (domain, pairs, flg)
= if listp (domain)
then homogeneousl (car (domain), cdr (domain), pairs, flg)
A homogeneous (cdr (domain), pairs, flg)
else t endif

DEFINITION:

subsetp (z, y)

= if x ~ nil then t
elseif car (z) € y then subsetp (cdr (z), y)
else f endif

THEOREM: member-cons
(a €l) — (a € cons(z, 1))

THEOREM: subsetp-cons
subsetp (I, m) — subsetp (I, cons (a, m))

THEOREM: subsetp-reflexivity
subsetp (z, z)

THEOREM: cdr-subsetp
subsetp (cdr (z), z)

THEOREM: member-subsetp
((x € y) A subsetp (y, 2)) — (z € 2)

THEOREM: subsetp-is-transitive
(subsetp (z, y) A subsetp (y, z)) — subsetp (z, z)

THEOREM: subsetp-cdr-partition
subsetp (cdr (partition (z, z, pairs)), z)



THEOREM: subsetp-hom-set-domain-1
subsetp (car (wit (pairs, cdr (partition (z, z, pairs)), p, q)),
cdr (partition (z, z, pairs)))
—  subsetp (car (wit (pairs, cdr (partition (z, z, pairs)), p, q)), cons (z, z))

THEOREM: subsetp-car-partition
subsetp (car (partition (z, z, pairs)), z)

THEOREM: subsetp-hom-set-domain-2
subsetp (car (wit (pairs, car (partition (z, z, pairs)), p, q)),
car (partition (z, z, pairs)))
—  subsetp (car (wit (pairs, car (partition (z, z, pairs)), p, ¢)), cons (z, 2))

THEOREM: subsetp-hom-set-domain
subsetp (car (wit (pairs, domain, p, q)), domain)

DEFINITION:
good-hom-set (pairs, domain, p, q, flg)
= (homogeneous (car (wit (pairs, domain, p, q)), pairs, flg)
A (length (car (wit (pairs, domain, p, q)))
£ if flg =1 then p
else ¢ endif))

THEOREM: homogeneousl-subset
(subsetp (z, domain) A homogeneousl (elt, domain, pairs, flg))
—  homogeneousl (elt, z, pairs, flg)

THEOREM: homogeneousl-cdr-partition
homogeneousl (elt, cdr (partition (elt, dom, pairs)), pairs, 2)

THEOREM: length-partition-1
length (z2)
= (length (car (partition (z, z, pairs)))
+ length (cdr (partition (z, z, pairs))))

THEOREM: length-partition
length (car (partition (z, z, pairs)))
= (length (z) — length (cdr (partition (z, z, pairs))))

THEOREM: ramsey-not-zero
0 < ramsey (p, q)

THEOREM: homogeneousl-car-wit-cdr-partition
homogeneousl1 (elt, car (wit (pairs, cdr (partition (elt, dom, pairs)), p, q)), pairs, 2)

THEOREM: homogeneousl-car-partition
homogeneousl (elt, car (partition (elt, dom, pairs)), pairs, 1)



THEOREM: homogeneousl-car-wit-car-partition
homogeneousl (elt, car (wit (pairs, car (partition (elt, dom, pairs)), p, q)), pairs, 1)

THEOREM: cdr-wit-is-1-or-2
(cdr (wit (pairs, dom, p, q)) # 1) — (cdr (wit (pairs, dom, p, q)) = 2)

THEOREM: wit-yields-good-hom-set
(length (domain) £ ramsey (p, q))
—  good-hom-set (pairs, domain, p, ¢, cdr (wit (pairs, domain, p, q)))

DEFINITION:

setp ()

= if listp (z) then (car(z) ¢ cdr (z)) A setp (cdr (z))
else t endif

THEOREM: setp-partition

setp (z)
—  (setp (car (partition (a, =, pairs))) A setp (cdr (partition (a, z, pairs))))

THEOREM: not-member-car-wit-cdr-partition
(z € ) — (2 & car (wit (pairs, cdr (partition (z, z, pairs)), p, q)))

THEOREM: not-member-car-wit-car-partition
(z & ) — (2 & car (wit (pairs, car (partition (z, z, pairs)), p, q)))

THEOREM: setp-hom-set
setp (domain) — setp (car (wit (pairs, domain, p, q)))

THEOREM: ramsey-theorem-2

(ramsey (p, q) < length (domain))

—  (subsetp (car (wit (pairs, domain, p, q)), domain)
A good-hom-set (pairs, domain, p, g, cdr (wit (pairs, domain, p, q)))
A (setp (domain) — setp (car (wit (pairs, domain, p, q)))))



Index

cdr-subsetp, 3
cdr-wit-is-1-or-2, 5

good-hom-set, 4, 5

homogeneous, 3, 4
homogeneousl, 3-5
homogeneousl-car-partition, 4
homogeneousl1-car-wit-car-partiti
on, 5
homogeneousl-car-wit-cdr-partiti
on, 4
homogeneousl-cdr-partition, 4
homogeneousl-subset, 4

length, 2, 4, 5
length-partition, 4
length-partition-1, 4

member-cons, 3
member-subsetp, 3

not-member-car-wit-car-partitio
n, 5

not-member-car-wit-cdr-partitio
n, 5

partition, 1-5

ramsey, 1, 2, 4, 5
ramsey-not-zero, 4
ramsey-theorem-2, 5
related, 1, 3

setp, b

setp-hom-set, 5
setp-partition, 5

subsetp, 3-5
subsetp-car-partition, 4
subsetp-cdr-partition, 3
subsetp-cons, 3
subsetp-hom-set-domain, 4

subsetp-hom-set-domain-1, 4
subsetp-hom-set-domain-2, 4
subsetp-is-transitive, 3
subsetp-reflexivity, 3

wit, 2-5
wit-yields-good-hom-set, 5



