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;; Matt Kaufmann

;; Ramsey Theorem (infinite version) events supporting ‘‘An Extension
;; of the Boyer-Moore Theorem Prover to Support First-Order
;; Quantification,’’ to appear in JAR (1992?). The DEFN-SK events
;; have been replaced by DCLs and ADD-AXIOMs, as shown.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Ramsey Theorem Events List
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Event: Start with the initial nqthm theory.

Conservative Axiom: p-num-intro
((x ∈ N) ∧ (y ∈ N))
→ ((0 < p-num (x , y))

∧ (bound 6< p-num (x , y))
∧ (p-num (x , y) = p-num (y , x )))
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Simultaneously, we introduce the new function symbols p-num and bound .
Event: Disable p-num-intro.

Definition: p (x , y) = p-num (fix (x ), fix (y))

Theorem: p-intro
(0 < p (x , y)) ∧ (bound 6< p (x , y)) ∧ (p (x , y) = p (y , x ))

Event: Disable p.

Definition:
prehom-seq-1 (a, x )
= if listp (x )

then (p (caar (x ), a) = cdar (x )) ∧ prehom-seq-1 (a, cdr (x ))
else t endif

Definition:
prehom-seq (x )
= if listp (x )

then if listp (cdr (x ))
then (car (cadr (x )) < car (car (x )))

∧ prehom-seq-1 (caar (x ), cdr (x ))
∧ prehom-seq (cdr (x ))

else t endif
else t endif

#| The original DEFN-SK event here was processed as follows:

>(defn-sk extensible (s)
;; s is a list of pairs (i . c), and extensible means that there
;; are infinitely many a for which prehom-seq-1(a,s) holds.
(forall above

(exists next
(and (lessp above next)

(prehom-seq-1 next s)))))

Adding the Skolem axiom:
(AND (IMPLIES (AND (LESSP (ABOVE S) NEXT)

(PREHOM-SEQ-1 NEXT S))
(EXTENSIBLE S))

(IMPLIES (NOT (AND (LESSP ABOVE (NEXT ABOVE S))
(PREHOM-SEQ-1 (NEXT ABOVE S) S)))

(NOT (EXTENSIBLE S)))).
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As this is a DEFN-SK we can conclude that:
(OR (TRUEP (EXTENSIBLE S))

(FALSEP (EXTENSIBLE S)))
is a theorem.

[ 0.3 0.0 0.0 ]
EXTENSIBLE

>

|#

Event: Introduce the function symbol above of one argument.

Event: Introduce the function symbol next of 2 arguments.

Event: Introduce the function symbol extensible of one argument.

Axiom: extensible-intro
(((above (s) < next) ∧ prehom-seq-1 (next , s)) → extensible (s))
∧ ((¬ ((above < next (above, s)) ∧ prehom-seq-1 (next (above, s), s)))

→ (¬ extensible (s)))

Axiom: extensible-boolean
truep (extensible (s)) ∨ falsep (extensible (s))

;; The following two lemmas are for the benefit of the proof-checker
;; macro-command SK*.

Theorem: extensible-suff
((above (s) < next) ∧ prehom-seq-1 (next , s)) → extensible (s)

Theorem: extensible-necc
(¬ ((above < next (above, s)) ∧ prehom-seq-1 (next (above, s), s)))
→ (¬ extensible (s))

Definition:
above-all-aux (a, s, n)
= if n ' 0 then 0

else above (cons (cons (a, n), s)) + above-all-aux (a, s, n − 1) endif
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Definition: above-all (a, s) = above-all-aux (a, s, bound)

Theorem: lessp-above-all-aux
(0 < n) → (above-all-aux (a, s, n) 6< above (cons (cons (a, n), s)))

Theorem: above-all-aux-monotone
(bound 6< n) → (above-all-aux (a, s, bound) 6< above-all-aux (a, s, n))

Theorem: lessp-above-all-bound
((0 < n) ∧ (bound 6< n))
→ (above-all (a, s) 6< above (cons (cons (a, n), s)))

Definition: next-element (a, s) = next (above-all (a, s), s)

Definition: next-color (a, s) = p (a, next-element (a, s))

Theorem: numberp-p
p (x , y) ∈ N

Theorem: next-color-bound
(0 < next-color (a, s)) ∧ (bound 6< next-color (a, s))

Event: Disable above-all.

;; first of two goals for extensible-cons

Theorem: lessp-next-element
extensible (s)
→ (above (cons (cons (a, next-color (a, s)), s)) < next-element (a, s))

Theorem: prehom-seq-1-next-element
extensible (s) → prehom-seq-1 (next-element (a, s), s)

Event: Disable next-element.

;; second of two goals for extensible-cons

Theorem: prehom-seq-1-next-element-cons
extensible (s)
→ prehom-seq-1 (next-element (a, s), cons (cons (a, next-color (a, s)), s))

Event: Disable next-color.

Theorem: extensible-cons
extensible (s) → extensible (cons (cons (a, next-color (a, s)), s))
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Definition:
next-pair (s) = cons (next (caar (s), s), next-color (next (caar (s), s), s))

Theorem: next-pair-extends
extensible (s) → extensible (cons (next-pair (s), s))

Definition: ramsey-seq-p (s) = (extensible (s) ∧ prehom-seq (s))

Theorem: extensible-next-property
extensible (s) → ((a < next (a, s)) ∧ prehom-seq-1 (next (a, s), s))

Theorem: ramsey-seq-p-extends
ramsey-seq-p (s) → ramsey-seq-p (cons (next-pair (s), s))

Theorem: extensible-nlistp
(¬ listp (s)) → extensible (s)

Theorem: ramsey-seq-p-nlistp
(s ' nil) → ramsey-seq-p (s)

Event: Disable ramsey-seq-p.

Event: Disable next-pair.

Definition:
ramsey-seq (n)
= if n ' 0 then nil

else cons (next-pair (ramsey-seq (n − 1)), ramsey-seq (n − 1)) endif

Theorem: ramsey-seq-has-ramsey-seq-p
ramsey-seq-p (ramsey-seq (n))

;; Now we want to cut down this prehomogenous sequence to one that’s
;; homogeneous. First let’s define the flag.

#| The original DEFN-SK event here was processed as follows:

>(defn-sk good-color-p (c)
;; says that arbitrarily large elements of ramsey-seq agree with c
(forall big

(exists good-c-index
(and (lessp big good-c-index)

(equal c (cdr (car (ramsey-seq good-c-index))))))))
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Adding the Skolem axiom:
(AND

(IMPLIES (AND (LESSP (BIG C) GOOD-C-INDEX)
(EQUAL C

(CDAR (RAMSEY-SEQ GOOD-C-INDEX))))
(GOOD-COLOR-P C))

(IMPLIES (NOT (AND (LESSP BIG (GOOD-C-INDEX BIG C))
(EQUAL C

(CDAR (RAMSEY-SEQ (GOOD-C-INDEX BIG C))))))
(NOT (GOOD-COLOR-P C)))).

As this is a DEFN-SK we can conclude that:
(OR (TRUEP (GOOD-COLOR-P C))

(FALSEP (GOOD-COLOR-P C)))
is a theorem.

[ 0.2 0.0 0.0 ]
GOOD-COLOR-P

>

|#

Event: Introduce the function symbol big of one argument.

Event: Introduce the function symbol good-c-index of 2 arguments.

Event: Introduce the function symbol good-color-p of one argument.

Axiom: good-color-p-intro
(((big (c) < good-c-index ) ∧ (c = cdar (ramsey-seq (good-c-index ))))
→ good-color-p (c))
∧ ((¬ ((big < good-c-index (big , c))

∧ (c = cdar (ramsey-seq (good-c-index (big , c))))))
→ (¬ good-color-p (c)))

Axiom: good-color-p-boolean
truep (good-color-p (c)) ∨ falsep (good-color-p (c))

;; The following two lemmas are for the benefit of the proof-checker
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;; macro-command SK*.

Theorem: good-color-p-suff
((big (c) < good-c-index ) ∧ (c = cdar (ramsey-seq (good-c-index ))))
→ good-color-p (c)

Theorem: good-color-p-necc
(¬ ((big < good-c-index (big , c))

∧ (c = cdar (ramsey-seq (good-c-index (big , c))))))
→ (¬ good-color-p (c))

Definition:
good-c-index-wit (bound)
= if bound ' 0 then 1

else big (bound) + good-c-index-wit (bound − 1) endif

Theorem: good-c-index-wit-positive
0 < good-c-index-wit (bound)

Theorem: lessp-big-good-c-index
((0 < c) ∧ (bound 6< c))
→ ((big (c) < good-c-index-wit (bound)) = t)

Event: Disable good-c-index-wit.

Definition: color = cdar (ramsey-seq (good-c-index-wit (bound)))

Theorem: ramsey-seq-has-colors-in-bounds
(0 < n)
→ ((0 < cdar (ramsey-seq (n))) ∧ (bound 6< cdar (ramsey-seq (n))))

Theorem: color-in-bounds
(0 < color) ∧ (bound 6< color)

Theorem: color-is-good
good-color-p (color)

Event: Disable color.

Event: Disable *1*color.

Definition:
ramsey-index (n)
= if n ' 0 then good-c-index (0, color)

else good-c-index (ramsey-index (n − 1), color) endif
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Theorem: color-properties
(big < good-c-index (big , color))
∧ (cdr (car (ramsey-seq (good-c-index (big , color)))) = color)

Theorem: ramsey-index-increasing
(i < j ) → (ramsey-index (i) < ramsey-index (j ))

Definition: ramsey (n) = car (car (ramsey-seq (ramsey-index (n))))

; Next goal:
;(prove-lemma ramsey-increasing (rewrite)
; (implies (lessp i j)
; (lessp (ramsey i) (ramsey j))))

Theorem: good-c-index-numberp
good-c-index (big , color) ∈ N

Theorem: ramsey-index-numberp
ramsey-index (n) ∈ N

Theorem: car-next-pair
car (next-pair (s)) = next (caar (s), s)

Theorem: ramsey-seq-extensible
extensible (ramsey-seq (n))

Theorem: next-not-zerop
extensible (s) → ((next (a, s) ∈ N) ∧ (next (a, s) 6= 0))

Theorem: ramsey-seq-increasing
(i < j ) → ((caar (ramsey-seq (i)) < caar (ramsey-seq (j ))) = t)

Theorem: ramsey-index-increasing-rewrite
(i < j ) → ((ramsey-index (i) < ramsey-index (j )) = t)

Event: Disable ramsey-index-increasing.

Theorem: ramsey-increasing
(i < j ) → (ramsey (i) < ramsey (j ))

;; Now we want to show that ramsey is homogeneous for (color):

;(prove-lemma ramsey-homogeneous (rewrite)
; (implies (lessp i j)
; (iff (p (ramsey i) (ramsey j))
; (color))))
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Definition:
restn (n, l)
= if listp (l)

then if n ' 0 then l
else restn (n − 1, cdr (l)) endif

else l endif

;; We’ve already proved (ramsey-seq-p (ramseq-seq i)). So, in order
;; to prove the key lemma ramsey-seq-prehom below, we’ll use this
;; together with an appropriate fact about restn and prehom seqs.

Theorem: ramsey-seq-restn-length
restn (n, ramsey-seq (n)) = nil

Theorem: prehom-seq-ramsey
prehom-seq (ramsey-seq (n))

Definition:
length (l)
= if listp (l) then 1 + length (cdr (l))

else 0 endif

Theorem: prehom-seq-1-restn
(prehom-seq-1 (a, s) ∧ (x < length (s)))
→ (p (caar (restn (x , s)), a) = cdar (restn (x , s)))

Theorem: prehom-seq-restn
(prehom-seq (s) ∧ (0 < x ) ∧ (x < length (s)))
→ (p (caar (restn (x , s)), caar (s)) = cdar (restn (x , s)))

Theorem: ramsey-seq-plus
restn (x , ramsey-seq (x + y)) = ramsey-seq (y)

Theorem: plus-comm
(x + y) = (y + x )

Theorem: ramsey-seq-plus-commuted
restn (x , ramsey-seq (y + x )) = ramsey-seq (y)

Theorem: length-ramsey-seq
length (ramsey-seq (n)) = fix (n)

;; The lemmas from here to RAMSEY-SEQ-PREHOM were to eliminate the
;; proof-checker hints from that lemma.
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Theorem: plus-difference-elim
((j ∈ N) ∧ (j 6< i)) → ((i + (j − i)) = j )

Theorem: restn-difference-ramsey-seq
((0 < i) ∧ (i < j ))
→ (restn (j − i , ramsey-seq (j )) = ramsey-seq (i))

Theorem: prehom-seq-restn-commuted
(prehom-seq (s) ∧ (0 < x ) ∧ (x < length (s)))
→ (p (caar (s), caar (restn (x , s))) = cdar (restn (x , s)))

Theorem: ramsey-seq-prehom-lemma
((0 < i) ∧ (i < j ))
→ (p (caar (restn (j − i , ramsey-seq (j ))), caar (ramsey-seq (j )))

= cdar (restn (j − i , ramsey-seq (j ))))

Theorem: ramsey-seq-prehom
((0 < i) ∧ (i < j ))
→ (p (caar (ramsey-seq (i)), caar (ramsey-seq (j ))) = cdar (ramsey-seq (i)))

Theorem: cdar-ramseq-seq-ramsey-index
cdar (ramsey-seq (ramsey-index (n))) = color

Theorem: lessp-good-c-index
(big < good-c-index (big , color)) = t

Event: Disable color-properties.

Theorem: good-c-index-non-zero
(0 < good-c-index (big , color)) = t

Theorem: ramsey-index-positive
0 < ramsey-index (n)

Theorem: ramsey-seq-hom-lessp
(i < j ) → (p (ramsey (i), ramsey (j )) = color)

Theorem: p-num-is-p
((x ∈ N) ∧ (y ∈ N)) → (p-num (x , y) = p (x , y))

Theorem: numberp-ramsey
caar (ramsey-seq (ramsey-index (n))) ∈ N

Theorem: ramsey-seq-hom
((i ∈ N) ∧ (j ∈ N) ∧ (i 6= j ))
→ (p-num (ramsey (i), ramsey (j )) = color)
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;; The above, together with what was already proved, i.e.

;; (prove-lemma ramsey-increasing (rewrite)
;; (implies (lessp i j)
;; (lessp (ramsey i) (ramsey j))))

;; and the fact that p-num was arbitrary (and there are no add-axioms)
;; finishes the job.
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