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;; A solution to the Gilbreath card trick challenge.
;; Matt Kaufmann, 10/92.

;; The proof splits into two halves. The lemma main-1 handles the
;; case in which we do not make the final adjustment of rotating one
;; card. The lemma main-2 handles the other case. We glue these
;; together in the final theorem, main.

Event: Start with the initial nqthm theory.

Definition:
length (x )
= if listp (x ) then 1 + length (cdr (x ))

else 0 endif

;; The following definition takes an arbitrary ‘oracle’, which says
;; whether the next card in the shuffle comes from the left pile or
;; the right pile. See below for the definition of shuffle-top,
;; which makes the ‘move one card’ adjustment when necessary.
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Definition:
shuffle (left , right , oracle)
= if left ' nil then right

elseif right ' nil then left
elseif car (oracle)
then cons (car (left), shuffle (cdr (left), right , cdr (oracle)))
else cons (car (right), shuffle (left , cdr (right), cdr (oracle))) endif

;; To be really arbitrary, we postulate a color function that takes
;; two values (which might as well be booleans), using the
;; conservative CONSTRAIN principle to make this postulation.

Conservative Axiom: color-intro
truep (color (x )) ∨ falsep (color (x ))

Simultaneously, we introduce the new function symbol color .

Definition: same-color (x , y) = (color (x ) ↔ color (y))

Definition:
altp (pile)
= if listp (pile)

then if listp (cdr (pile))
then if same-color (car (pile), cadr (pile)) then f

else altp (cdr (pile)) endif
else t endif

else t endif

Definition:
last (x )
= if listp (x ) ∧ listp (cdr (x )) then last (cdr (x ))

else car (x ) endif

Definition:
butlast (x )
= if listp (x ) ∧ listp (cdr (x )) then cons (car (x ), butlast (cdr (x )))

else nil endif

Definition:
shuffle-top (left , right , oracle)
= let shuf be shuffle (left , right , oracle)

in
if ¬ same-color (last (left), last (right)) then shuf
else cons (last (shuf ), butlast (shuf )) endif endlet
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Definition:
even-length-p-rec (x )
= if listp (x ) then ¬ even-length-p-rec (cdr (x ))

else t endif

Theorem: even-length-p-rec-rewrite
(listp (x ) ∧ altp (x ))
→ (even-length-p-rec (x ) = (¬ same-color (car (x ), last (x ))))

Theorem: even-length-p-rec-append
even-length-p-rec (append (x , y))
= (even-length-p-rec (x ) ↔ even-length-p-rec (y))

;; A conditional rewrite rule with hypothesis
;; (and (listp x) (listp y)) would probably suffice for most of the
;; proof, but I believe that this version is needed somewhere late in
;; the proof.

Theorem: altp-append
altp (append (x , y))
= (altp (x )

∧ altp (y)
∧ ((listp (x ) ∧ listp (y)) → (¬ same-color (last (x ), car (y)))))

;; Probably the following lemma isn’t needed till the end, but let’s
;; make sure that we can prove it. Once we know this to be true,
;; we’ll use it implicitly by adding in the hypothesis
;; (not (same-color (car left) (car right))) to main-1 (and similarly
;; for main-2).

Theorem: last-same-color-iff-first-same-color
(listp (left)
∧ listp (right)
∧ altp (append (left , right))
∧ even-length-p-rec (append (left , right)))
→ (same-color (last (left), last (right))

↔ same-color (car (left), car (right)))

;; Here is the induction scheme we use for main-1, and in fact also
;; for main-2 (actually main-2-lemma).

Definition:

3



main-1-induction (left , right , oracle)
= if (left ' nil) ∨ (right ' nil) then t

elseif car (oracle)
then if cadr (oracle)

then main-1-induction (cddr (left), right , cddr (oracle))
else main-1-induction (cdr (left), cdr (right), cddr (oracle)) endif

elseif cadr (oracle)
then main-1-induction (cdr (left), cdr (right), cddr (oracle))
else main-1-induction (left , cddr (right), cddr (oracle)) endif

Definition:
alt2-p (x )
= if listp (x )

then if listp (cdr (x ))
then (¬ same-color (car (x ), cadr (x ))) ∧ alt2-p (cddr (x ))
else f endif

else t endif

Theorem: altp-implies-alt2-p
altp (x ) → (alt2-p (x ) = even-length-p-rec (x ))

Theorem: last-append
listp (y) → (last (append (x , y)) = last (y))

;; Now we may prove a version of the first half.

Theorem: main-1
(listp (left)
∧ listp (right)
∧ even-length-p-rec (append (left , right))
∧ altp (left)
∧ altp (right)
∧ (¬ same-color (car (left), car (right)))
∧ (¬ same-color (last (left), last (right))))
→ alt2-p (shuffle (left , right , oracle))

;; For the other half, we modify the notion of alt2-p (calling the
;; result by the weird name alt3-p), except that we expect an odd
;; number of cards. Our strategy is to first prove that in the second
;; case, the CDR of the shuffle has this alt3-p property
;; (main-2-lemma). Then we can show that when we move the final card
;; of the shuffle to the top, the result is an alt2-p. The lemma
;; alt3-p-to-alt2-p below lets us do that little adjustment, once we
;; know (by the lemma shuffle-preserves-reds-equal-blacks) that the
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;; shuffle has the property that the numbers of red and black cards in
;; it are the same.

Definition:
alt3-p (x )
= if listp (x )

then if listp (cdr (x ))
then (¬ same-color (car (x ), cadr (x ))) ∧ alt3-p (cddr (x ))
else t endif

else f endif

;; The following lemma is analogous to one proved for main-1; then the
;; proof of main-2-lemma goes through.

Theorem: altp-implies-alt3-p
altp (x ) → (alt3-p (x ) = (¬ even-length-p-rec (x )))

Theorem: main-2-lemma
(listp (left)
∧ listp (right)
∧ even-length-p-rec (append (left , right))
∧ altp (left)
∧ altp (right)
∧ same-color (car (left), car (right))
∧ same-color (last (left), last (right)))
→ alt3-p (cdr (shuffle (left , right , oracle)))

Definition:
count-color (color , x )
= if listp (x )

then if color = color (car (x )) then 1 + count-color (color , cdr (x ))
else count-color (color , cdr (x )) endif

else 0 endif

Definition:
reds-equal-blacks (x ) = (count-color (t, x ) = count-color (f, x ))

Theorem: alt-implies-reds-equal-blacks
altp (x )
→ if even-length-p-rec (x ) then count-color (t, x ) = count-color (f, x )

elseif color (car (x )) then count-color (t, x )
= (1 + count-color (f, x ))

else (1 + count-color (t, x )) = count-color (f, x ) endif
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Theorem: count-color-shuffle
count-color (color , shuffle (x , y , oracle))
= (count-color (color , x ) + count-color (color , y))

Theorem: shuffle-preserves-reds-equal-blacks
(altp (append (x , y)) ∧ even-length-p-rec (append (x , y)))
→ reds-equal-blacks (shuffle (x , y , oracle))

Theorem: alt3-p-to-alt2-p
(reds-equal-blacks (cons (a, x )) ∧ alt3-p (x ))
→ alt2-p (cons (last (x ), butlast (cons (a, x ))))

Theorem: shuffle-cdr
(listp (x ) ∧ listp (y))
→ (listp (shuffle (x , y , oracle)) ∧ listp (cdr (shuffle (x , y , oracle))))

Theorem: main-2
(listp (left)
∧ listp (right)
∧ even-length-p-rec (append (left , right))
∧ altp (left)
∧ altp (right)
∧ altp (append (left , right))
∧ same-color (car (left), car (right))
∧ same-color (last (left), last (right)))
→ alt2-p (shuffle-top (left , right , oracle))

;; The following three events are there simply to show that our
;; definition of ‘‘even length’’ is honest.

Definition: even-length-p (x ) = ((length (x ) mod 2) = 0)

Theorem: remainder-2-add1
(((1 + x ) mod 2) = 0) = ((x mod 2) 6= 0)

Theorem: even-length-p-is-even-length-p-rec
even-length-p (x ) = even-length-p-rec (x )

Theorem: main
(listp (left)
∧ listp (right)
∧ even-length-p (append (left , right))
∧ altp (append (left , right)))
→ alt2-p (shuffle-top (left , right , oracle))
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