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; Events from CLI Technical Report 100, ‘‘Interaction with the Boyer-Moore
; Theorem Prover: A Tutorial Study Using the Arithmetic-Geometric Mean
; Theorem,’’ by Matt Kaufmann and Paolo Pecchiari.

Event: Start with the library "naturals" using the compiled version.

Definition:
prodlist (lst)
= if listp (lst) then car (lst) ∗ prodlist (cdr (lst))

else 1 endif

Definition:
sumlist (lst)
= if listp (lst) then car (lst) + sumlist (cdr (lst))

else 0 endif

Definition:
length (x )
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= if listp (x ) then 1 + length (cdr (x ))
else 0 endif

Definition:
maxlist (x )
= if listp (x )

then if listp (cdr (x )) then max (car (x ), maxlist (cdr (x )))
else fix (car (x )) endif

else 0 endif

Definition:
min (x , y)
= if x < y then fix (x )

else fix (y) endif

Definition:
minlist (x )
= if listp (x )

then if listp (cdr (x )) then min (car (x ), minlist (cdr (x )))
else fix (car (x )) endif

else 0 endif

Definition:
delete1 (elt , x )
= if listp (x )

then if elt = car (x ) then cdr (x )
else cons (car (x ), delete1 (elt , cdr (x ))) endif

else x endif

Theorem: maxlist-delete1-rearrange
(b ∈ x ) → (maxlist (cons (b, delete1 (b, x ))) = maxlist (x ))

Event: Let us define the theory induction-fn-disables to consist of the following
events: sumlist, times, length, minlist, maxlist, delete1, occurrences.

Theorem: max-greater-than-average
(listp (x ) ∧ (sumlist (x ) ≥ (k ∗ length (x ))) ∧ (fix (k) 6= maxlist (x )))
→ (k < maxlist (x ))

Theorem: min-less-than-average
(listp (x ) ∧ (sumlist (x ) ≤ (k ∗ length (x ))) ∧ (fix (k) 6= minlist (x )))
→ (minlist (x ) < k)

Theorem: times-monotone-1
(u 6< v) → ((u ∗ y) 6< (v ∗ y))
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Theorem: lessp-times-preserved-in-first-arg
((a 6< (u ∗ y)) ∧ (u 6< v)) → (a 6< (v ∗ y))

Theorem: minlist-main-property
sumlist (x ) 6< (length (x ) ∗ minlist (x ))

Theorem: minlist-not-maxlist-implies-minlist-lessp-average-lemma
(minlist (x ) 6= maxlist (x )) → ((minlist (x ) ∗ length (x )) < sumlist (x ))

Theorem: minlist-not-maxlist-implies-minlist-lessp-average
(listp (x )
∧ (sumlist (x ) = (k ∗ length (x )))
∧ (minlist (x ) 6= maxlist (x )))
→ (minlist (x ) < fix (k))

Theorem: maxlist-main-property
(length (x ) ∗ maxlist (x )) 6< sumlist (x )

Theorem: minlist-not-maxlist-implies-maxlist-greaterp-average-lemma
(minlist (x ) 6= maxlist (x )) → (sumlist (x ) < (maxlist (x ) ∗ length (x )))

Theorem: minlist-not-maxlist-implies-maxlist-greaterp-average
(listp (x )
∧ (sumlist (x ) = (k ∗ length (x )))
∧ (minlist (x ) 6= maxlist (x )))
→ (fix (k) < maxlist (x ))

Theorem: minlist-less-than-maxlist-minus-1
(listp (x )
∧ (sumlist (x ) = (k ∗ length (x )))
∧ (minlist (x ) 6= maxlist (x )))
→ (minlist (x ) < (maxlist (x ) − 1))

Theorem: maxlist-delete1-leq
maxlist (lst) 6< maxlist (delete1 (a, lst))

Theorem: member-implies-maxlist-geq
(a ∈ x ) → (maxlist (x ) 6< a)

Theorem: delete1-preserves-maxlist-when-maxlist-occurs-more-than-once
(1 < occurrences (maxlist (x ), x ))
→ (maxlist (delete1 (any-element , x )) = maxlist (x ))

Theorem: delete1-occurrences
occurrences (a, delete1 (b, x ))
= if (a = b) ∧ (b ∈ x ) then occurrences (a, x ) − 1

else occurrences (a, x ) endif
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Theorem: occurrence-implies-listp
(1 < occurrences (a, x )) → (listp (delete1 (a, x )) = t)

Theorem: maxlist-geq-minlist
maxlist (x ) 6< minlist (x )

Theorem: induction-fn-help-2-max-occurs-twice-lemma-1
((sumlist (x ) = (k ∗ length (x )))
∧ (minlist (x ) 6= maxlist (x ))
∧ (1 < occurrences (maxlist (x ), x )))
→ (maxlist (cons (maxlist (x ) − 1,

cons (1 + minlist (x ),
delete1 (maxlist (x ), delete1 (minlist (x ), x )))))

= maxlist (x ))

Theorem: member-delete1
(a ∈ delete1 (b, c))
= if a = b then 1 < occurrences (b, c)

else a ∈ c endif

Theorem: member-implies-listp
(a ∈ x ) → listp (x )

Theorem: induction-fn-help-2-max-occurs-twice-lemma-2
((sumlist (x ) = (k ∗ length (x )))
∧ (minlist (x ) 6= maxlist (x ))
∧ (1 < occurrences (maxlist (x ), x )))
→ ((occurrences (maxlist (x ),

cons (maxlist (x ) − 1,
cons (1 + minlist (x ),

delete1 (maxlist (x ), delete1 (minlist (x ), x )))))
< occurrences (maxlist (x ), x ))

= t)

Event: Disable member-implies-listp.

Theorem: induction-fn-help-2-max-occurs-twice
let x0 be cons (maxlist (x ) − 1,

cons (1 + minlist (x ),
delete1 (maxlist (x ), delete1 (minlist (x ), x ))))

in
((sumlist (x ) = (k ∗ length (x )))
∧ (minlist (x ) 6= maxlist (x ))
∧ (1 < occurrences (maxlist (x ), x )))
→ ord-lessp (cons (1 + maxlist (x0 ), occurrences (maxlist (x0 ), x0 )),

cons (1 + maxlist (x ), occurrences (maxlist (x ), x ))) endlet
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Theorem: maxlist-not-minlist-implies-listp
(minlist (x ) 6= maxlist (x )) → listp (x )

Theorem: minlist-less-than-maxlist-minus-1-better
((sumlist (x ) = (k ∗ length (x ))) ∧ (minlist (x ) 6= maxlist (x )))
→ (minlist (x ) < (maxlist (x ) − 1))

Event: Disable minlist-less-than-maxlist-minus-1.

Theorem: maxlist-delete1-delete1
maxlist (delete1 (b, x )) 6< maxlist (delete1 (b, delete1 (a, x )))

Theorem: member-maxlist
(maxlist (z ) 6= 0) → (maxlist (z ) ∈ z )

Theorem: lessp-maxlist-delete1-maxlist
((0 < maxlist (x )) ∧ (1 6< occurrences (maxlist (x ), x )))
→ (maxlist (delete1 (maxlist (x ), x )) < maxlist (x ))

Theorem: induction-fn-help-2-max-occurs-once-main-lemma
((sumlist (x ) = (k ∗ length (x )))
∧ (minlist (x ) 6= maxlist (x ))
∧ (1 6< occurrences (maxlist (x ), x )))
→ ((maxlist (cons (maxlist (x ) − 1,

cons (1 + minlist (x ),
delete1 (maxlist (x ), delete1 (minlist (x ), x )))))

< maxlist (x ))
= t)

Theorem: induction-fn-help-2-max-occurs-once
let x0 be cons (maxlist (x ) − 1,

cons (1 + minlist (x ),
delete1 (maxlist (x ), delete1 (minlist (x ), x ))))

in
((sumlist (x ) = (k ∗ length (x )))
∧ (minlist (x ) 6= maxlist (x ))
∧ (1 6< occurrences (maxlist (x ), x )))
→ ord-lessp (cons (1 + maxlist (x0 ), occurrences (maxlist (x0 ), x0 )),

cons (1 + maxlist (x ), occurrences (maxlist (x ), x ))) endlet

Theorem: induction-fn-help-2
let x0 be cons (maxlist (x ) − 1,

cons (1 + minlist (x ),
delete1 (maxlist (x ), delete1 (minlist (x ), x ))))

in
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((sumlist (x ) = (k ∗ length (x ))) ∧ (minlist (x ) 6= maxlist (x )))
→ ord-lessp (cons (1 + maxlist (x0 ), occurrences (maxlist (x0 ), x0 )),

cons (1 + maxlist (x ), occurrences (maxlist (x ), x ))) endlet

Event: Disable theory induction-fn-disables.

Definition:
induction-fn (x , k)
= if sumlist (x ) 6= (k ∗ length (x )) then t

elseif minlist (x ) = maxlist (x ) then t
else induction-fn (cons (maxlist (x ) − 1,

cons (1 + minlist (x ),
delete1 (maxlist (x ),

delete1 (minlist (x ), x )))),
k) endif

Event: Enable theory induction-fn-disablesinduction-fn-disables.

Theorem: sumlist-delete1-plus-version
(a + sumlist (delete1 (a, x )))
= if a ∈ x then sumlist (x )

else a + sumlist (x ) endif

Theorem: sumlist-delete1
sumlist (delete1 (a, x ))
= if a ∈ x then sumlist (x ) − a

else sumlist (x ) endif

Theorem: maxlist-0-is-sumlist-0
(maxlist (x ) = 0) = (sumlist (x ) = 0)

Theorem: main-lemma-base-case-lemma-1
(minlist (x ) = maxlist (x )) → (exp (minlist (x ), length (x )) = prodlist (x ))

Theorem: main-lemma-base-case-lemma-2-lemma
(minlist (x ) = maxlist (x )) → (sumlist (x ) = (minlist (x ) ∗ length (x )))

Theorem: main-lemma-base-case-lemma-2-hack
(((k ∗ n) = sumlist) ∧ (n 6' 0) ∧ ((n ∗ maxlist) = sumlist))
→ (fix (k) = fix (maxlist))

Theorem: equal-length-0
(length (x ) = 0) = (¬ listp (x ))
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Theorem: main-lemma-base-case-lemma-2
(listp (x )
∧ (sumlist (x ) = (k ∗ length (x )))
∧ (minlist (x ) = maxlist (x )))
→ (minlist (x ) = fix (k))

Theorem: main-lemma-base-case
((sumlist (x ) = (k ∗ length (x ))) ∧ (minlist (x ) = maxlist (x )))
→ (exp (k , length (x )) = prodlist (x ))

Theorem: length-delete1
length (delete1 (a, x ))
= if a ∈ x then length (x ) − 1

else length (x ) endif

Definition:
numberp-listp (x )
= if listp (x ) then (car (x ) ∈ N) ∧ numberp-listp (cdr (x ))

else x = nil endif

Theorem: member-minlist
(listp (x ) ∧ numberp-listp (x )) → (minlist (x ) ∈ x )

Theorem: numberp-listp-delete1
numberp-listp (x ) → numberp-listp (delete1 (a, x ))

Theorem: add1-plus-sub1-second
(y 6' 0) → ((1 + (x + (y − 1))) = (x + y))

Theorem: sumlist-geq-maxlist
sumlist (x ) 6< maxlist (x )

Theorem: sumlist-geq-minlist
sumlist (x ) 6< minlist (x )

Theorem: sumlist-geq-minlist-plus-maxlist
(minlist (x ) 6= maxlist (x ))
→ (sumlist (x ) 6< (minlist (x ) + maxlist (x )))

Event: Disable plus.

Theorem: plus-times-sub1-second
(y 6' 0) → ((x + (x ∗ (y − 1))) = (x ∗ y))

Event: Disable times.
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Theorem: minlist-not-maxlist-implies-length-at-least-2
(minlist (x ) 6= maxlist (x )) → (1 < length (x ))

Event: Disable plus-add1-arg1.

Event: Disable plus-add1-arg2.

Event: Disable times-add1.

Event: Disable maxlist-0-is-sumlist-0.

Theorem: times-prodlist-delete1
(a ∈ x ) → ((a ∗ prodlist (delete1 (a, x ))) = prodlist (x ))

Theorem: product-of-modified-list-lemma
((min 6= max ) ∧ (min ∈ x ) ∧ (max ∈ x ))
→ ((max ∗ min ∗ prodlist (delete1 (max , delete1 (min, x ))))

= prodlist (x ))

Event: Disable times-prodlist-delete1.

Theorem: product-of-modified-list-lemma-2
((min < max ) ∧ (max 6' 0))
→ (((1 + min) ∗ (max − 1) ∗ rest)

= ((min ∗ max ∗ rest) + ((max − (1 + min)) ∗ rest)))

Theorem: positive-implies-numberp
(min < max ) → (max ∈ N)

Theorem: product-of-modified-list
((min < max ) ∧ (min ∈ x ) ∧ (max ∈ x ))
→ let rest be prodlist (delete1 (max , delete1 (min, x )))

in
((1 + min) ∗ (max − 1) ∗ rest)
= (prodlist (x ) + ((max − (1 + min)) ∗ rest)) endlet

Theorem: main-lemma
let n be length (x )
in
(numberp-listp (x ) ∧ (sumlist (x ) = (k ∗ n)))
→ (exp (k , n) 6< prodlist (x )) endlet
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Definition:
scalar-product (scalar , lst)
= if listp (lst)

then cons (scalar ∗ car (lst), scalar-product (scalar , cdr (lst)))
else nil endif

Theorem: sumlist-scalar-product
sumlist (scalar-product (scalar , lst)) = (scalar ∗ sumlist (lst))

Theorem: prodlist-scalar-product
prodlist (scalar-product (scalar , lst))
= (exp (scalar , length (lst)) ∗ prodlist (lst))

Theorem: length-scalar-product
length (scalar-product (n, a)) = length (a)

Theorem: numberp-listp-scalar-product
numberp-listp (a) → numberp-listp (scalar-product (n, a))

Theorem: main
numberp-listp (a)
→ let n be length (a)

in
exp (sumlist (a), n) ≥ (exp (n, n) ∗ prodlist (a)) endlet

Theorem: sumlist-for
sumlist (a)
= for x in a

sum x endfor

Theorem: prodlist-for
prodlist (a)
= for x in a

multiply x endfor

Theorem: main-again
(numberp-listp (a) ∧ (n = length (a)))
→ (exp (for x in a

sum x endfor,
n)

≥ (exp (n, n)
∗ for x in a

multiply x endfor))
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