
#|

Copyright (C) 1994 by Computational Logic, Inc. and Paolo Pecchiari. All
Rights Reserved.

This script is hereby placed in the public domain, and therefore unlimited
editing and redistribution is permitted.

NO WARRANTY

Computational Logic, Inc. AND Paolo Pecchiari PROVIDE ABSOLUTELY NO WARRANTY.
THE EVENT SCRIPT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE SCRIPT IS WITH YOU. SHOULD THE SCRIPT
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION. IN NO EVENT WILL Computational Logic, Inc. OR Paolo Pecchiari BE
LIABLE TO YOU FOR ANY DAMAGES, ANY LOST PROFITS, LOST MONIES, OR OTHER
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THIS SCRIPT (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD PARTIES), EVEN IF
YOU HAVE ADVISED US OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY
ANY OTHER PARTY.

|#

; Events from CLI Technical Report 100, ‘‘Interaction with the Boyer-Moore
; Theorem Prover: A Tutorial Study Using the Arithmetic-Geometric Mean
; Theorem,’’ by Matt Kaufmann and Paolo Pecchiari.

Event: Start with the library "naturals" using the compiled version.

Definition:
prodlist (lst)
= if listp (lst) then car (lst) ∗ prodlist (cdr (lst))

else 1 endif

Definition:
sumlist (lst)
= if listp (lst) then car (lst) + sumlist (cdr (lst))

else 0 endif

Definition:
length (x )

1



= if listp (x ) then 1 + length (cdr (x ))
else 0 endif

Definition:
maxlist (x )
= if listp (x )

then if listp (cdr (x )) then max (car (x ), maxlist (cdr (x )))
else fix (car (x )) endif

else 0 endif

Definition:
min (x , y)
= if x < y then fix (x )

else fix (y) endif

Definition:
minlist (x )
= if listp (x )

then if listp (cdr (x )) then min (car (x ), minlist (cdr (x )))
else fix (car (x )) endif

else 0 endif

Definition:
delete1 (elt , x )
= if listp (x )

then if elt = car (x ) then cdr (x )
else cons (car (x ), delete1 (elt , cdr (x ))) endif

else x endif

Theorem: maxlist-delete1-rearrange
(b ∈ x ) → (maxlist (cons (b, delete1 (b, x ))) = maxlist (x ))

Event: Let us define the theory induction-fn-disables to consist of the following
events: sumlist, times, length, minlist, maxlist, delete1, occurrences.

Theorem: max-greater-than-average
(listp (x ) ∧ (sumlist (x ) ≥ (k ∗ length (x ))) ∧ (fix (k) 6= maxlist (x )))
→ (k < maxlist (x ))

Theorem: min-less-than-average
(listp (x ) ∧ (sumlist (x ) ≤ (k ∗ length (x ))) ∧ (fix (k) 6= minlist (x )))
→ (minlist (x ) < k)

Theorem: times-monotone-1
(u 6< v) → ((u ∗ y) 6< (v ∗ y))

2



Theorem: lessp-times-preserved-in-first-arg
((a 6< (u ∗ y)) ∧ (u 6< v)) → (a 6< (v ∗ y))

Theorem: minlist-main-property
sumlist (x ) 6< (length (x ) ∗ minlist (x ))

Theorem: minlist-not-maxlist-implies-minlist-lessp-average-lemma
(minlist (x ) 6= maxlist (x )) → ((minlist (x ) ∗ length (x )) < sumlist (x ))

Theorem: minlist-not-maxlist-implies-minlist-lessp-average
(listp (x )
∧ (sumlist (x ) = (k ∗ length (x )))
∧ (minlist (x ) 6= maxlist (x )))
→ (minlist (x ) < fix (k))

Theorem: maxlist-main-property
(length (x ) ∗ maxlist (x )) 6< sumlist (x )

Theorem: minlist-not-maxlist-implies-maxlist-greaterp-average-lemma
(minlist (x ) 6= maxlist (x )) → (sumlist (x ) < (maxlist (x ) ∗ length (x )))

Theorem: minlist-not-maxlist-implies-maxlist-greaterp-average
(listp (x )
∧ (sumlist (x ) = (k ∗ length (x )))
∧ (minlist (x ) 6= maxlist (x )))
→ (fix (k) < maxlist (x ))

Theorem: minlist-less-than-maxlist-minus-1
(listp (x )
∧ (sumlist (x ) = (k ∗ length (x )))
∧ (minlist (x ) 6= maxlist (x )))
→ (minlist (x ) < (maxlist (x ) − 1))

Theorem: maxlist-delete1-leq
maxlist (lst) 6< maxlist (delete1 (a, lst))

Theorem: member-implies-maxlist-geq
(a ∈ x ) → (maxlist (x ) 6< a)

Theorem: delete1-preserves-maxlist-when-maxlist-occurs-more-than-once
(1 < occurrences (maxlist (x ), x ))
→ (maxlist (delete1 (any-element , x )) = maxlist (x ))

Theorem: delete1-occurrences
occurrences (a, delete1 (b, x ))
= if (a = b) ∧ (b ∈ x ) then occurrences (a, x ) − 1

else occurrences (a, x ) endif

3



Theorem: occurrence-implies-listp
(1 < occurrences (a, x )) → (listp (delete1 (a, x )) = t)

Theorem: maxlist-geq-minlist
maxlist (x ) 6< minlist (x )

Theorem: induction-fn-help-2-max-occurs-twice-lemma-1
((sumlist (x ) = (k ∗ length (x )))
∧ (minlist (x ) 6= maxlist (x ))
∧ (1 < occurrences (maxlist (x ), x )))
→ (maxlist (cons (maxlist (x ) − 1,

cons (1 + minlist (x ),
delete1 (maxlist (x ), delete1 (minlist (x ), x )))))

= maxlist (x ))

Theorem: member-delete1
(a ∈ delete1 (b, c))
= if a = b then 1 < occurrences (b, c)

else a ∈ c endif

Theorem: member-implies-listp
(a ∈ x ) → listp (x )

Theorem: induction-fn-help-2-max-occurs-twice-lemma-2
((sumlist (x ) = (k ∗ length (x )))
∧ (minlist (x ) 6= maxlist (x ))
∧ (1 < occurrences (maxlist (x ), x )))
→ ((occurrences (maxlist (x ),

cons (maxlist (x ) − 1,
cons (1 + minlist (x ),

delete1 (maxlist (x ), delete1 (minlist (x ), x )))))
< occurrences (maxlist (x ), x ))

= t)

Event: Disable member-implies-listp.

Theorem: induction-fn-help-2-max-occurs-twice
let x0 be cons (maxlist (x ) − 1,

cons (1 + minlist (x ),
delete1 (maxlist (x ), delete1 (minlist (x ), x ))))

in
((sumlist (x ) = (k ∗ length (x )))
∧ (minlist (x ) 6= maxlist (x ))
∧ (1 < occurrences (maxlist (x ), x )))
→ ord-lessp (cons (1 + maxlist (x0 ), occurrences (maxlist (x0 ), x0 )),

cons (1 + maxlist (x ), occurrences (maxlist (x ), x ))) endlet

4



Theorem: maxlist-not-minlist-implies-listp
(minlist (x ) 6= maxlist (x )) → listp (x )

Theorem: minlist-less-than-maxlist-minus-1-better
((sumlist (x ) = (k ∗ length (x ))) ∧ (minlist (x ) 6= maxlist (x )))
→ (minlist (x ) < (maxlist (x ) − 1))

Event: Disable minlist-less-than-maxlist-minus-1.

Theorem: maxlist-delete1-delete1
maxlist (delete1 (b, x )) 6< maxlist (delete1 (b, delete1 (a, x )))

Theorem: member-maxlist
(maxlist (z ) 6= 0) → (maxlist (z ) ∈ z )

Theorem: lessp-maxlist-delete1-maxlist
((0 < maxlist (x )) ∧ (1 6< occurrences (maxlist (x ), x )))
→ (maxlist (delete1 (maxlist (x ), x )) < maxlist (x ))

Theorem: induction-fn-help-2-max-occurs-once-main-lemma
((sumlist (x ) = (k ∗ length (x )))
∧ (minlist (x ) 6= maxlist (x ))
∧ (1 6< occurrences (maxlist (x ), x )))
→ ((maxlist (cons (maxlist (x ) − 1,

cons (1 + minlist (x ),
delete1 (maxlist (x ), delete1 (minlist (x ), x )))))

< maxlist (x ))
= t)

Theorem: induction-fn-help-2-max-occurs-once
let x0 be cons (maxlist (x ) − 1,

cons (1 + minlist (x ),
delete1 (maxlist (x ), delete1 (minlist (x ), x ))))

in
((sumlist (x ) = (k ∗ length (x )))
∧ (minlist (x ) 6= maxlist (x ))
∧ (1 6< occurrences (maxlist (x ), x )))
→ ord-lessp (cons (1 + maxlist (x0 ), occurrences (maxlist (x0 ), x0 )),

cons (1 + maxlist (x ), occurrences (maxlist (x ), x ))) endlet

Theorem: induction-fn-help-2
let x0 be cons (maxlist (x ) − 1,

cons (1 + minlist (x ),
delete1 (maxlist (x ), delete1 (minlist (x ), x ))))

in

5



((sumlist (x ) = (k ∗ length (x ))) ∧ (minlist (x ) 6= maxlist (x )))
→ ord-lessp (cons (1 + maxlist (x0 ), occurrences (maxlist (x0 ), x0 )),

cons (1 + maxlist (x ), occurrences (maxlist (x ), x ))) endlet

Event: Disable theory induction-fn-disables.

Definition:
induction-fn (x , k)
= if sumlist (x ) 6= (k ∗ length (x )) then t

elseif minlist (x ) = maxlist (x ) then t
else induction-fn (cons (maxlist (x ) − 1,

cons (1 + minlist (x ),
delete1 (maxlist (x ),

delete1 (minlist (x ), x )))),
k) endif

Event: Enable theory induction-fn-disablesinduction-fn-disables.

Theorem: sumlist-delete1-plus-version
(a + sumlist (delete1 (a, x )))
= if a ∈ x then sumlist (x )

else a + sumlist (x ) endif

Theorem: sumlist-delete1
sumlist (delete1 (a, x ))
= if a ∈ x then sumlist (x ) − a

else sumlist (x ) endif

Theorem: maxlist-0-is-sumlist-0
(maxlist (x ) = 0) = (sumlist (x ) = 0)

Theorem: main-lemma-base-case-lemma-1
(minlist (x ) = maxlist (x )) → (exp (minlist (x ), length (x )) = prodlist (x ))

Theorem: main-lemma-base-case-lemma-2-lemma
(minlist (x ) = maxlist (x )) → (sumlist (x ) = (minlist (x ) ∗ length (x )))

Theorem: main-lemma-base-case-lemma-2-hack
(((k ∗ n) = sumlist) ∧ (n 6' 0) ∧ ((n ∗ maxlist) = sumlist))
→ (fix (k) = fix (maxlist))

Theorem: equal-length-0
(length (x ) = 0) = (¬ listp (x ))

6



Theorem: main-lemma-base-case-lemma-2
(listp (x )
∧ (sumlist (x ) = (k ∗ length (x )))
∧ (minlist (x ) = maxlist (x )))
→ (minlist (x ) = fix (k))

Theorem: main-lemma-base-case
((sumlist (x ) = (k ∗ length (x ))) ∧ (minlist (x ) = maxlist (x )))
→ (exp (k , length (x )) = prodlist (x ))

Theorem: length-delete1
length (delete1 (a, x ))
= if a ∈ x then length (x ) − 1

else length (x ) endif

Definition:
numberp-listp (x )
= if listp (x ) then (car (x ) ∈ N) ∧ numberp-listp (cdr (x ))

else x = nil endif

Theorem: member-minlist
(listp (x ) ∧ numberp-listp (x )) → (minlist (x ) ∈ x )

Theorem: numberp-listp-delete1
numberp-listp (x ) → numberp-listp (delete1 (a, x ))

Theorem: add1-plus-sub1-second
(y 6' 0) → ((1 + (x + (y − 1))) = (x + y))

Theorem: sumlist-geq-maxlist
sumlist (x ) 6< maxlist (x )

Theorem: sumlist-geq-minlist
sumlist (x ) 6< minlist (x )

Theorem: sumlist-geq-minlist-plus-maxlist
(minlist (x ) 6= maxlist (x ))
→ (sumlist (x ) 6< (minlist (x ) + maxlist (x )))

Event: Disable plus.

Theorem: plus-times-sub1-second
(y 6' 0) → ((x + (x ∗ (y − 1))) = (x ∗ y))

Event: Disable times.

7



Theorem: minlist-not-maxlist-implies-length-at-least-2
(minlist (x ) 6= maxlist (x )) → (1 < length (x ))

Event: Disable plus-add1-arg1.

Event: Disable plus-add1-arg2.

Event: Disable times-add1.

Event: Disable maxlist-0-is-sumlist-0.

Theorem: times-prodlist-delete1
(a ∈ x ) → ((a ∗ prodlist (delete1 (a, x ))) = prodlist (x ))

Theorem: product-of-modified-list-lemma
((min 6= max ) ∧ (min ∈ x ) ∧ (max ∈ x ))
→ ((max ∗ min ∗ prodlist (delete1 (max , delete1 (min, x ))))

= prodlist (x ))

Event: Disable times-prodlist-delete1.

Theorem: product-of-modified-list-lemma-2
((min < max ) ∧ (max 6' 0))
→ (((1 + min) ∗ (max − 1) ∗ rest)

= ((min ∗ max ∗ rest) + ((max − (1 + min)) ∗ rest)))

Theorem: positive-implies-numberp
(min < max ) → (max ∈ N)

Theorem: product-of-modified-list
((min < max ) ∧ (min ∈ x ) ∧ (max ∈ x ))
→ let rest be prodlist (delete1 (max , delete1 (min, x )))

in
((1 + min) ∗ (max − 1) ∗ rest)
= (prodlist (x ) + ((max − (1 + min)) ∗ rest)) endlet

Theorem: main-lemma
let n be length (x )
in
(numberp-listp (x ) ∧ (sumlist (x ) = (k ∗ n)))
→ (exp (k , n) 6< prodlist (x )) endlet

8



Definition:
scalar-product (scalar , lst)
= if listp (lst)

then cons (scalar ∗ car (lst), scalar-product (scalar , cdr (lst)))
else nil endif

Theorem: sumlist-scalar-product
sumlist (scalar-product (scalar , lst)) = (scalar ∗ sumlist (lst))

Theorem: prodlist-scalar-product
prodlist (scalar-product (scalar , lst))
= (exp (scalar , length (lst)) ∗ prodlist (lst))

Theorem: length-scalar-product
length (scalar-product (n, a)) = length (a)

Theorem: numberp-listp-scalar-product
numberp-listp (a) → numberp-listp (scalar-product (n, a))

Theorem: main
numberp-listp (a)
→ let n be length (a)

in
exp (sumlist (a), n) ≥ (exp (n, n) ∗ prodlist (a)) endlet

Theorem: sumlist-for
sumlist (a)
= for x in a

sum x endfor

Theorem: prodlist-for
prodlist (a)
= for x in a

multiply x endfor

Theorem: main-again
(numberp-listp (a) ∧ (n = length (a)))
→ (exp (for x in a

sum x endfor,
n)

≥ (exp (n, n)
∗ for x in a

multiply x endfor))

9



Index
add1-plus-sub1-second, 7

delete1, 2–8
delete1-occurrences, 3
delete1-preserves-maxlist-when-

maxlist-occurs-more-than-once,
3

equal-length-0, 6
exp, 6–9

induction-fn, 6
induction-fn-disables, 2
induction-fn-help-2, 5
induction-fn-help-2-max-occurs-

once, 5
once-main-lemma, 5

induction-fn-help-2-max-occurs-t
wice, 4
wice-lemma-1, 4
wice-lemma-2, 4

length, 1–9
length-delete1, 7
length-scalar-product, 9
lessp-maxlist-delete1-maxlist, 5
lessp-times-preserved-in-first-

arg, 3

main, 9
main-again, 9
main-lemma, 8
main-lemma-base-case, 7
main-lemma-base-case-lemma-1, 6
main-lemma-base-case-lemma-2, 7
main-lemma-base-case-lemma-2-ha

ck, 6
main-lemma-base-case-lemma-2-le

mma, 6
max-greater-than-average, 2
maxlist, 2–8
maxlist-0-is-sumlist-0, 6

maxlist-delete1-delete1, 5
maxlist-delete1-leq, 3
maxlist-delete1-rearrange, 2
maxlist-geq-minlist, 4
maxlist-main-property, 3
maxlist-not-minlist-implies-listp, 5
member-delete1, 4
member-implies-listp, 4
member-implies-maxlist-geq, 3
member-maxlist, 5
member-minlist, 7
min, 2
min-less-than-average, 2
minlist, 2–8
minlist-less-than-maxlist-minus

-1, 3
-1-better, 5

minlist-main-property, 3
minlist-not-maxlist-implies-len

gth-at-least-2, 8
minlist-not-maxlist-implies-max

list-greaterp-average, 3
list-greaterp-average-lemma, 3

minlist-not-maxlist-implies-min
list-lessp-average, 3
list-lessp-average-lemma, 3

numberp-listp, 7–9
numberp-listp-delete1, 7
numberp-listp-scalar-product, 9

occurrence-implies-listp, 4
occurrences, 3–6

plus-times-sub1-second, 7
positive-implies-numberp, 8
prodlist, 1, 6–9
prodlist-for, 9
prodlist-scalar-product, 9
product-of-modified-list, 8
product-of-modified-list-lemma, 8

10



product-of-modified-list-lemma-
2, 8

scalar-product, 9
sumlist, 1–9
sumlist-delete1, 6
sumlist-delete1-plus-version, 6
sumlist-for, 9
sumlist-geq-maxlist, 7
sumlist-geq-minlist, 7
sumlist-geq-minlist-plus-maxlist, 7
sumlist-scalar-product, 9

times-monotone-1, 2
times-prodlist-delete1, 8

11


