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Event: Start with the library "extras" using the compiled version.

;; Proof of Matijasevich’s lemma constructed by MW week of 5-10-91. Inspired by
;; proof in Concrete Mathematics by Graham, Knuth, and Patashnik and notes from
;; Dijkstra’s Capita Selecta Spring ’90 course.

;;;; Some additional facts needed in the proof that appear useful
;;;; enough to add to libraries (and a few facts to prove them)

Theorem: irem-igcd-arg1
(irem (igcd (a, b), c) = 0) = ((irem (a, c) = 0) ∧ (irem (b, c) = 0))

Theorem: irem-x-x
irem (x , x ) = 0

;; The nonsensical induction hint is a silly trick to get the prover
;; to throw an equality away after using it
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Theorem: gcd-times-easy-proof-helper-helper
((a ∈ N) ∧ (b ∈ N) ∧ (c ∈ N))
→ (((c ∗ gcd (a, b)) mod gcd (a, b ∗ c)) = 0)

Theorem: gcd-times-easy-proof-helper
((c ∗ gcd (a, b)) mod gcd (a, b ∗ c)) = 0

Theorem: gcd-times-easy-proof
(gcd (a, b) = 1) → (gcd (a, b ∗ c) = gcd (a, c))

;; Would the more general case of rewriting gcd-times regardless
;; of the value of gcd with one of the times arguments be superior?

Theorem: gcd-times-easy
(gcd (a, b) = 1)
→ ((gcd (a, b ∗ c) = gcd (a, c)) ∧ (gcd (a, c ∗ b) = gcd (a, c)))

Theorem: lessp-gcd3
((gcd (a, b) < a) = (((b mod a) 6= 0) ∧ (a 6' 0) ∧ (b 6' 0)))
∧ ((gcd (b, a) < a) = (((b mod a) 6= 0) ∧ (a 6' 0) ∧ (b 6' 0)))

Theorem: equal-remainder-gcd-0-proof
((gcd (a, b) mod a) = 0) = ((b mod a) = 0)

;; not used in proof (though equal-remainder-gcd-0-proof is)

Theorem: equal-remainder-gcd-0
(((gcd (a, b) mod a) = 0) = ((b mod a) = 0))
∧ (((gcd (b, a) mod a) = 0) = ((b mod a) = 0))

Theorem: equal-remainder-x-y-x
((x mod y) = x )
= (((x ∈ N) ∧ (x < y))

∨ (x = 0)
∨ ((fix (y) = 0) ∧ (x ∈ N)))

Theorem: gcd-a-gcd-exp-a
gcd (a, exp (a, b))
= if b ' 0 then 1

else fix (a) endif

Theorem: equal-gcd-times-1-help1
((gcd (a, b) = 1) ∧ (gcd (a, c) = 1)) → (gcd (a, b ∗ c) = 1)

Theorem: remainder-gcd-gcd-0-hack
(gcd (a, b ∗ c) mod gcd (a, c)) = 0
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Theorem: lessp-gcd-times
((a 6' 0) ∨ ((b ∗ c) 6' 0)) → (gcd (a, b ∗ c) 6< gcd (a, c))

Theorem: lessp-1-hack
(1 < x ) = ((x 6' 0) ∧ (x 6= 1))

Theorem: equal-gcd-times-1-help2
(gcd (a, b ∗ c) = 1) → (gcd (a, c) = 1)

Theorem: equal-gcd-times-1
(gcd (a, b ∗ c) = 1) = ((gcd (a, b) = 1) ∧ (gcd (a, c) = 1))

Theorem: gcd-exp-1
((gcd (a, exp (b, c)) = 1) = ((gcd (a, b) = 1) ∨ (c ' 0)))
∧ ((gcd (exp (b, c), a) = 1) = ((gcd (a, b) = 1) ∨ (c ' 0)))

;; mistake in other version of this lemma limits applicability and
;; makes this version needed

Theorem: gcd-remainder-times-fact1-proof2
(gcd (a, b) = 1) → ((((c ∗ b) mod a) = 0) = ((c mod a) = 0))

Theorem: times-quotient-better
((x mod y) = 0)
→ ((((x ÷ y) ∗ y)

= if y ' 0 then 0
else fix (x ) endif)

∧ ((y ∗ (x ÷ y))
= if y ' 0 then 0

else fix (x ) endif))

Theorem: equal-remainder-exp-0
(((a mod c) = 0) ∧ (b 6' 0)) → ((exp (a, b) mod c) = 0)

Theorem: remainder-2-hack
(2 mod x )
= if (x = 1) ∨ (x = 2) then 0

else 2 endif

Theorem: remainder-times-hack2
((a mod b) 6= 0)
→ (((a mod (b ∗ c)) 6= 0) ∧ ((a mod (c ∗ b)) 6= 0))

Theorem: gcd-a-add1-a
gcd (a, 1 + a) = 1
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;; These facts should perhaps be generalized into a meta lemma that
;; factors first

Theorem: remainder-times-times-hack
((b ∗ (a ∗ c)) mod (a ∗ x )) = (a ∗ ((b ∗ c) mod x ))

Theorem: remainder-plus-times-hack
(((a ∗ x ) + (b ∗ (c ∗ (a ∗ y)))) mod (a ∗ z ))
= (a ∗ ((x + (b ∗ (c ∗ y))) mod z ))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Now, on to the proof
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Definition:
fib (x )
= if x ' 0 then 0

elseif x = 1 then 1
else fib ((x − 1) − 1) + fib (x − 1) endif

Theorem: fib-plus
fib (j + k)
= if j ' 0 then fib (k)

else (fib (1 + k) ∗ fib (j )) + (fib (j − 1) ∗ fib (k)) endif

Theorem: gcd-fib-next-fib
gcd (fib (n), fib (1 + n)) = 1

Theorem: gcd-fib
gcd (fib (a), fib (b)) = fib (gcd (a, b))

Theorem: equal-fib-constant
((fib (a) = 0) = (a ' 0))
∧ ((fib (a) = 1) = ((a = 1) ∨ (a = 2)))

Theorem: fib-small
(a < 3)
→ (fib (a)

= if a ' 0 then 0
else 1 endif)

Definition:
double-fib-induction (a, b)
= if (a < 3) ∨ (b < 3) then t

else double-fib-induction (a − 1, b − 1)
∧ double-fib-induction ((a − 1) − 1, (b − 1) − 1) endif
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Theorem: lessp-fib-fib
(fib (a) < fib (b)) = ((a < b) ∧ (¬ ((a = 1) ∧ (b = 2))))

Theorem: remainder-fib-fib-0
((fib (a) mod fib (b)) = 0) = (((a mod b) = 0) ∨ (b = 2))

;; fib-times-open and fib-add1-times-open apply fib-plus to
;; particular terms in a way that will be useful in the proof
;; of fib-times-special

Theorem: fib-times-open
(0 < k)
→ (fib (k ∗ n)

= ((fib (n) ∗ fib (1 + ((k − 1) ∗ n)))
+ (fib (n − 1) ∗ fib ((k − 1) ∗ n))))

Event: Disable fib-times-open.

Theorem: fib-add1-times-open
(0 < k)
→ (fib (1 + (k ∗ n))

= ((fib (1 + ((k − 1) ∗ n)) ∗ fib (1 + n))
+ (fib ((k − 1) ∗ n) ∗ fib (n))))

Event: Disable fib-add1-times-open.

Theorem: fib-times-special-step
(1 < k)
→ (((k ∗ (fib (n) ∗ exp (fib (1 + n), k − 1))) mod (fib (n) ∗ fib (n)))

= (((fib (n) ∗ exp (fib (1 + n), k − 1))
+ (fib (n − 1)

∗ ((k − 1)
∗ (fib (n)

∗ exp (fib (1 + n), (k − 1) − 1)))))
mod (fib (n) ∗ fib (n))))

Theorem: fib-remainder-hack
(fib (x ∗ y) mod fib (x )) = 0

;; We wish the rewriter to use a modulo arithmetic equality to rewrite
;; a term. Fortunately, we can can construct REMAINDER-FIB-BACKCHAIN
;; to do it the way we wish since the terms are of a specialized form

Theorem: remainder-backchain-proof1
((a mod c) = (b mod c)) → (((a ∗ d) mod c) = ((b ∗ d) mod c))
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Theorem: remainder-backchain-proof2
(((a mod c) = (b mod c)) ∧ ((d mod c) = (e mod c)))
→ (((a + d) mod c) = ((b + e) mod c))

Theorem: remainder-fib-backchain
(((fib (x ) mod c) = (exp (p, q) mod c))
∧ ((fib (y) mod c) = ((r ∗ s) mod c)))
→ ((((a ∗ fib (x )) + (b ∗ fib (y))) mod c)

= (((a ∗ exp (p, q)) + (b ∗ (r ∗ s))) mod c))

;; This is the guts of the proof

Theorem: fib-times-special
(1 < k)
→ (((fib (k ∗ n) mod exp (fib (n), 2))

= ((k ∗ (fib (n) ∗ exp (fib (1 + n), k − 1)))
mod exp (fib (n), 2)))

∧ ((fib (1 + (k ∗ n)) mod exp (fib (n), 2))
= (exp (fib (1 + n), k) mod exp (fib (n), 2))))

Theorem: fib-remainder-times-special
(fib (n ∗ k) mod (fib (n) ∗ fib (n)))
= ((k ∗ (fib (n) ∗ exp (fib (1 + n), k − 1))) mod (fib (n) ∗ fib (n)))

Theorem: remainder-times-times-hack2
((k ∗ n) mod (n ∗ p)) = (n ∗ (k mod p))

Theorem: matijasevich-lemma-helper
((2 < n) ∧ ((m mod n) = 0))
→ (((fib (m) mod (fib (n) ∗ fib (n))) = 0)

= ((m mod (n ∗ fib (n))) = 0))

Theorem: matijasevich-lemma
(2 < n)
→ (((fib (m) mod (fib (n) ∗ fib (n))) = 0)

= ((m mod (n ∗ fib (n))) = 0))
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