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; Matt Kaufmann
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; June 17, 1995

; This file contains what amounts to a proof of the following neat fact.
; Suppose 0 <= p <= q (where p and q are natural numbers, q non-zero) and you
; toss a fair coin, starting with p "credits", adding a credit each time you
; toss a head and subtracting a credit each time you toss a tail. Then the
; probability that you first reach q credits before first reaching 0 credits is
; p/q. A hand proof is included below. The idea (explained a bit further in
; that hand proof) is to take the following three properties of a function f(p)
; which is defined to be q times the probability of a "win" for a given p,
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A. f(0) = 0
B. f(q) = q
C. f(p) = (1/2)f(p-1) + (1/2)f(p+1) if p is neither 0 nor q.
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; and then prove f(p) = p from these properties. This Nqthm proof starts by
; introducing these axioms in a convenient form with an Nqthm constrain event,
; concluding with the theorem guaranteeing f(p) = p.

; This file has been successfully processed by Nqthm-1992 in about 4 seconds on
; a Sparc 20.

; Bring in a library of facts about natural numbers.

Event: Start with the library "naturals" using the compiled version.

; Introduce the axioms about a function with the appropriate properties.

Conservative Axiom: fn-intro
(fn (0) = 0)
∧ (fn (q) = q)
∧ (q ∈ N)
∧ (0 6= q)
∧ (fn (x ) ∈ N)
∧ (((0 < p) ∧ (p < q))

→ ((2 ∗ fn (p)) = (fn (p − 1) + fn (1 + p))))

Simultaneously, we introduce the new function symbols q and fn.

; The following function expresses our plan for the proof by induction.

Definition:
my-induction (p)
= if (p ' 0) ∨ (p = 1) then t

else my-induction (p − 1) ∧ my-induction ((p − 1) − 1) endif

; Other inductive hypothesis

; The following lemma captures the heart of the argument. It was actually
; generated by the theorem prover in the course of attempting to prove the
; lemma "main" below at one point during the proof effort, using Pc-Nqthm.

Theorem: main-inductive-case
((p 6= 0)
∧ (p ∈ N)
∧ (p 6= 1)
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∧ (fn ((p − 1) − 1) = (fn (1) ∗ ((p − 1) − 1)))
∧ (fn (p − 1) = (fn (1) ∗ (p − 1)))
∧ (q 6< p))
→ ((fn (p) = (fn (1) ∗ p)) = t)

; And finally, p*f(1)=f(p).

Theorem: main
((p ∈ N) ∧ (0 ≤ p) ∧ (p ≤ q)) → ((p ∗ fn (1)) = fn (p))

; And of course, f(1)=1.

Theorem: helper
fn (1) = 1

Theorem: final-theorem
((p ∈ N) ∧ (0 ≤ p) ∧ (p ≤ q)) → (fn (p) = p)

#| Hand proof:

Theorem: Suppose 0 <= p <= q and you toss a fair coin, starting with p
"credits", adding a credit each time you toss a head and subtracting a credit
each time you toss a tail. Then the probability that you first reach q credits
before first reaching 0 credits is p/q.

Proof. Fix q for the remainder of the proof. Now for any p with 0<=p<=q let
us write f(p) to denote q times the given probability for p and q. So, our
goal is to prove that f(p)=p, since if q times the probability is p, then the
probability is p/q. (This works better on paper.)

The following properties of f(p) are clear (but see below for an explanation of
C):

A. f(0) = 0
B. f(q) = q
C. f(p) = (1/2)f(p-1) + (1/2)f(p+1) if p is neither 0 nor q.

To explain C just a bit: The probability of getting to q credits first, from
p, is split into 2 cases: you could flip tails (with probability 1/2) and then
have to get to q from p-1, or you could flip heads (also with probability 1/2)
and then have to get to q from p. So the probability of "winning" from p is
1/2 times the probability of "winning" from p-1, plus 1/2 times the probability
of "winning" from p+1. Then equation C is just the result of multiplying both
sides of the preceding sentence by q.
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The theorem following easily from the following claim (see below):

Claim: For all p with 0<=p<=q,

f(p) = p*f(1)

For, if we believe this Claim, then we can substitute q for p to get

f(q) = q*f(1)

which implies, by Property B, that q=q*f(1) and hence (dividing both sides by
q) f(1) = 1. But when you substitute f(1)=1 into the Claim, then the Claim
reduces to f(p) = p, which is the goal we set for ourselves in the very first
paragraph of the proof above.

To prove the Claim, let us suppose that it fails for some p and then derive a
contradiction. (We are really using a form of strong induction.) In that
case, fix the smallest such "bad" p. Now, p is not 0, by Property A, because
the Claim is true for 0:

f(0) = 0*f(1), regardless of the value of f(1), because f(0) = 0 by Property A.

So p>0. In fact, p is not 1 either, because clearly the Claim holds for p=1,
as we see by substituting 1 for p into the Claim:

f(1) = 1*f(1).

Therefore p is at least 2, and we may substitute p-1 for p in Property C:

f(p-1) = (1/2)f((p-1)-1) + (1/2)f((p-1)+1)

i.e.

2*f(p-1) = f(p-2) + f(p)

Now p-1 and p-2 are less than p, and p is suppose to be the least "bad" p.
That is, we know that the Claim holds for p-1 and p-2, so we may use it to
substitute into the equation above:

2*(p-1)*f(1) = (p-2)*f(1) + f(p)

which simplifies by algebra to
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2p*f(1) - 2*f(1) = p*f(1) - 2*f(1) + f(p)

and then to

p*f(1) = f(p)

This contradicts our choice of p as a counterexample to the Claim!
|#
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