Copyright (C) 1994 by Natarajan Shankar. All Rights Reserved.

This script is hereby placed in the public domain, and therefore unlimited editing and redistribution is permitted.

NO WARRANTY

Natarajan Shankar PROVIDES ABSOLUTELY NO WARRANTY. THE EVENT SCRIPT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE SCRIPT IS WITH YOU. SHOULD THE SCRIPT PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT WILL Natarajan Shankar BE LIABLE TO YOU FOR ANY DAMAGES, ANY LOST PROFITS, LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SCRIPT (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD PARTIES), EVEN IF YOU HAVE ADVISED US OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

|#

EVENT: Start with the initial **thm** theory.

```
;Annotated script for mechanical proof of the Tautology theorem.
;Proof involves -
;Definition of proof-checker for Schoenfield's FOL.
;Proof of several derived inference rules, primarily the
;subset lemma.
;Definition of tautology-checker.
;Every tautology has a proof.
;Correctness of tautology-checker - every tautology is
;always logically-true, and all logical-truths are tautologies.
;First, functions, variables and predicate symbols.
```

DEFINITION: function (fn)= $((fn = \text{list} (\mathbf{'f}, \text{cadr} (fn), \text{caddr} (fn))))$ $\land \quad (\text{cadr} (fn) \in \mathbf{N})$ $\land \quad (\text{caddr} (fn) \in \mathbf{N}))$

#|

DEFINITION: variable $(x) = ((x = \text{list}(\mathbf{x}, \text{cadr}(x))) \land (\text{cadr}(x) \in \mathbf{N}))$ **DEFINITION:** predicate (p)= ((($p = \text{list}('\mathbf{p}, \text{cadr}(p), \text{caddr}(p))$) $\land \quad (\operatorname{cadr}(p) \in \mathbf{N})$ $\land \quad (\mathrm{caddr}\,(p) \in \mathbf{N}))$ \lor (p = 'equal)) **DEFINITION:** degree (fn)= if fn = 'equal then 2 else caddr (fn) endif DEFINITION: index $(fn) = \operatorname{cadr}(fn)$ DEFINITION: func-pred (x) = (function $(x) \lor$ predicate (x))DEFINITION: $v(x) = list(\mathbf{'x}, fix(x))$ THEOREM: numberp-fix $fix(x) \in \mathbf{N}$ THEOREM: variable-v variable (v(x))DEFINITION: $\operatorname{fn}(x, y) = \operatorname{list}(\mathsf{'f}, \operatorname{fix}(x), \operatorname{fix}(y))$ DEFINITION: p(x, y) = list('p, fix(x), fix(y))THEOREM: function-fn function $(\operatorname{fn}(x, y))$ THEOREM: predicate-p predicate (p(x, y));quantifer, there exists. DEFINITION: quantifier (x) = (x = 'forsome)**DEFINITION:** $(x \cup y)$ = **if** listp (x)then if $car(x) \in y$ then $cdr(x) \cup y$ else $cons(car(x), cdr(x) \cup y)$ endif else y endif

EVENT: Enable variable; name this event 'g0223'.

EVENT: Enable quantifier; name this event 'g0224'.

THEOREM: predicate-f-equal predicate ('equal)

EVENT: Enable function; name this event 'g0225'.

EVENT: Enable predicate; name this event 'g0226'.

```
DEFINITION:
append (x, y)
   if list p(x) then cons (car (x), append (cdr (x), y))
=
    else y endif
DEFINITION:
delete (x, y)
= if listp(y)
    then if x = \operatorname{car}(y) then delete (x, \operatorname{cdr}(y))
           else cons(car(y), delete(x, cdr(y))) endif
    else y endif
THEOREM: not-member-delete
x \notin \text{delete}(x, y)
;returns list of free variables in EXP.
DEFINITION:
collect-free (exp, flg)
=
   if listp (exp)
    then if flg = t
          then if variable (exp) then cons (exp, nil)
                 elseif quantifier (car(exp)) \land listp(cdr(exp))
                 then delete (cadr (exp), collect-free (cddr (exp), 'list))
                 elseif func-pred (car (exp))
                        \vee (car(exp) = 'not)
                           (car(exp) = 'or)
                        \vee
                 then collect-free (cdr (exp), 'list)
                 else nil endif
           else append (collect-free (car (exp), \mathbf{t}),
                         collect-free (cdr (exp), 'list)) endif
    else nil endif
```

DEFINITION: sentence (exp) = (collect-free (exp, t) = nil)

;returns bound variables in EXP that surround free occurrences of VAR.

DEFINITION:

```
covering (exp, var, flg)
= if listp (exp)
    then if flg = t
           then if variable (exp) then nil
                 elseif quantifier (car(exp)) \land listp(cdr(exp))
                 then if cadr(exp) = var then nil
                        elseif var \in \text{collect-free}(\text{cddr}(exp), 'list)
                        then cons(cadr(exp), covering(cddr(exp), var, 'list))
                        else nil endif
                 elseif func-pred (car (exp))
                         \vee (car(exp) = 'not)
                         \vee (car(exp) = 'or)
                 then covering (cdr (exp), var, 'list)
                 else nil endif
           else append (covering (car (exp), var, t),
                          covering (cdr (exp), var, 'list)) endif
    else nil endif
;X and Y are disjoint.
DEFINITION:
nil-intersect (x, y)
   if listp (x) then (\operatorname{car}(x) \notin y) \wedge \operatorname{nil-intersect}(\operatorname{cdr}(x), y)
=
    else t endif
;TERM is free for VAR in EXP.
DEFINITION:
free-for (exp, var, term, flg)
   nil-intersect (covering (exp, var, flg), collect-free (term, t))
=
DEFINITION: f-equal (x, y) = \text{list}(\text{'equal}, x, y)
DEFINITION: f-not (x) = list (, x)
DEFINITION: f-or (x, y) = list ('or, x, y)
DEFINITION: forsome (x, y) = list ('forsome, x, y)
DEFINITION: f-and (x, y) = \text{f-not}(\text{f-not}(x), \text{f-not}(y)))
```

```
DEFINITION: f-implies (x, y) = \text{f-or}(\text{f-not}(x), y)
DEFINITION: \forall var exp = f\text{-not}(for some(var, f\text{-not}(exp)))
DEFINITION: f-iff (x, y) = f-and (f-implies (x, y), f-implies (y, x))
DEFINITION:
var-list (list, n)
    if n \simeq 0 then list = nil
=
     else variable (car(list)) \land var-list(cdr(list), n-1) endif
DEFINITION:
var-set (list, n)
= if n \simeq 0 then list = nil
     else variable (car (list))
           \land \quad (\operatorname{car}(list) \not\in \operatorname{cdr}(list))
           \wedge var-set (cdr (list), n-1) endif
;Recognizer for terms.
DEFINITION:
termp (exp, flg, count)
= if flg = t
     then if exp \simeq nil then f
            else variable (exp)
                   \vee (function (car (exp))
                         \wedge \quad \text{termp} (\text{cdr} (exp)),
                                        'list,
                                       degree (car(exp))) endif
     elseif (exp \simeq nil) \lor (count \simeq 0) then (exp = nil) \land (count \simeq 0)
     else termp (car (exp), t, 0) \land termp (cdr (exp), 'list, count - 1) endif
DEFINITION: \operatorname{arg1}(x) = \operatorname{cadr}(x)
DEFINITION: \arg 2(x) = \operatorname{caddr}(x)
;EXP is an atom, pred. symbol followed by list of terms.
DEFINITION:
\operatorname{atomp}(exp)
   (\text{predicate}(\operatorname{car}(exp)) \land \operatorname{termp}(\operatorname{cdr}(exp), \text{'list}, \operatorname{degree}(\operatorname{car}(exp)))))
=
EVENT: Enable atomp; name this event 'g0253'.
```

;EXP is a formula

DEFINITION: formula (*exp*, *flg*, *count*) if flq = t= then if $exp \simeq nil$ then f **else** atomp (*exp*) \vee ((car(*exp*) = 'not) \wedge formula (cdr (*exp*), 'list, 1)) $((\operatorname{car}(exp) = \operatorname{'or}))$ \vee \wedge formula (cdr (*exp*), 'list, 2)) \vee ((car(exp) = 'forsome)) \wedge variable (cadr (*exp*)) \land formula (cddr (*exp*), 'list, 1)) endif elseif $(exp \simeq nil) \lor (count \simeq 0)$ then $(exp = nil) \land (count \simeq 0)$ else formula (car (exp), t, 0) \wedge formula (cdr (*exp*), 'list, *count* - 1) endif ;Result of substituting TERM for VAR in EXP. **DEFINITION:** subst (exp, var, term, flg) = **if** listp (*exp*) then if flq = tthen if variable (*exp*) then if exp = var then termelse exp endif **elseif** quantifier $(car(exp)) \land listp(cdr(exp))$ then if cadr(exp) = var then expelse cons(car(exp)), $\cos\left(\operatorname{cadr}\left(exp\right)\right)$ subst (cddr (exp), var, term, 'list))) endif **elseif** func-pred (car (*exp*)) \vee (car(*exp*) = 'not) \vee (car(*exp*) = 'or) then cons (car (*exp*), subst (cdr (*exp*), var, term, 'list)) else exp endif else cons (subst (car (*exp*), *var*, *term*, **t**), subst(cdr(exp), var, term, 'list)) endif else *exp* endif **DEFINITION:** $\operatorname{neg}(exp1, exp2) = ((exp1 = f-\operatorname{not}(exp2)) \lor (exp2 = f-\operatorname{not}(exp1)))$ **DEFINITION:** $\operatorname{conc}(pf, flg)$

= if $pf \simeq$ nil then nil

```
elseif flg = t then caddr (pf)
    else cons (conc (car (pf), t), conc (cdr (pf), 'list)) endif
DEFINITION:
subset (x, y)
= if listp (x) then (car(x) \in y) \land subset (cdr(x), y)
    else t endif
DEFINITION: set-equal (x, y) = (subset (x, y) \land subset (y, x))
;The axioms: propositional, substitution, identity, equality for functions and predicates.
DEFINITION: prop-axiom (exp) = f-or (f-not (exp), exp)
DEFINITION:
subst-axiom (exp, var, term)
    f-implies (subst (exp, var, term, t), forsome (var, exp))
=
DEFINITION: ident-axiom (var) = f-equal (var, var)
DEFINITION:
pairequals (vars1, vars2, exp)
   if listp (vars1)
=
    then f-implies (f-equal (car (vars1), car (vars2)),
                    pairequals (cdr (vars1), cdr (vars2), exp))
    else exp endif
DEFINITION:
equal-axiom2 (vars1, vars2, pr)
    pairequals (vars1, vars2, f-implies (cons (pr, vars1), cons (pr, vars2)))
=
DEFINITION:
assume (exp, list, flg)
   if listp (list)
=
    then if (\operatorname{caaar}(list) = flg) \land (exp = \operatorname{cadar}(list))
          then cdr(list)
          else assume (exp, cdr(list), flg) endif
    else f endif
;Proof-constructors
DEFINITION:
prop-axiom-proof(exp)
```

```
= list('axiom, list('prop-axiom, exp), prop-axiom(exp))
```

```
DEFINITION:
subst-axiom-proof (exp, var, term)
   list ('axiom,
=
        list ('subst-axiom, exp, var, term),
        subst-axiom (exp, var, term))
DEFINITION:
ident-axiom-proof (var)
=
   list('axiom, list('ident-axiom, var), f-equal(var, var))
DEFINITION:
equal-axiom1 (vars1, vars2, fn)
    pairequals (vars1, vars2, f-equal (cons (fn, vars1), cons (fn, vars2)))
=
DEFINITION:
equal-axiom1-proof (fn, vars1, vars2)
= list('axiom,
        list ('equal-axiom1, fn, vars1, vars2),
        equal-axiom1 (vars1, vars2, fn))
DEFINITION:
equal-axiom2-proof (pr, vars1, vars2)
   list ('axiom,
=
        list ('equal-axiom2, pr, vars1, vars2),
        equal-axiom2 (vars1, vars2, pr))
DEFINITION:
expan-proof (a, b, pf) = list ('rule, list ('expan, a, b), f-or (a, b), pf)
DEFINITION:
contrac-proof (a, pf) = list ('rule, list ('contrac, a), a, pf)
DEFINITION:
\operatorname{assoc-proof}(a, b, c, pf)
= list ('rule, list ('assoc, a, b, c), f-or (f-or (a, b), c), pf)
DEFINITION:
\operatorname{cut-proof}(a, b, c, pf1, pf2)
= list ('rule, list ('cut, a, b, c), f-or (b, c), list (pf1, pf2))
DEFINITION:
forsome-intro-proof (var, a, b, pf)
  list ('rule, list ('e-intro, var, a, b), f-implies (forsome (var, a), b), pf)
=
```

EVENT: Disable atomp; name this event 'g2737'.

DEFINITION: hint1(pf) = caadr(pf)DEFINITION: hint2(pf) = cadadr(pf)DEFINITION: hint3(pf) = caddadr(pf)DEFINITION: hint4(pf) = cadddadr(pf)DEFINITION: sub-proof (pf) = cadddr(pf);The proof-checker, PF is a proof. **DEFINITION:** $\operatorname{prf}(pf)$ = if $pf \simeq nil$ then f elseif car(pf) = 'axiomthen if hint1(pf) ='prop-axiom then formula (hint2 (pf), t, 0) $\land (pf = \text{prop-axiom-proof}(\text{hint}2(pf)))$ elseif hint1(pf) ='subst-axiom then formula (hint2 (pf), t, 0) \wedge variable (hint3 (*pf*)) \wedge termp (hint4 (*pf*), **t**, 0) \wedge free-for (hint2 (*pf*), hint3 (*pf*), hint4 (*pf*), **t**) \wedge (*pf* = subst-axiom-proof (hint2 (*pf*), hint3(pf), hint4(pf))elseif hint1(pf) = 'ident-axiom **then** variable (hint2(pf)) $\land (pf = ident-axiom-proof(hint2(pf)))$ elseif hint1(pf) ='equal-axiom1 **then** function (hint2(pf)) \wedge var-list (hint3 (*pf*), degree (hint2 (*pf*))) $\wedge \quad \text{var-list} \left(\text{hint4} \left(pf \right), \text{ degree} \left(\text{hint2} \left(pf \right) \right) \right)$ $\land \quad (pf = \text{equal-axiom1-proof}(\text{hint2}(pf)),$ hint3(pf), $\operatorname{hint4}(pf)))$ elseif hint1(pf) = 'equal-axiom2**then** predicate (hint2(pf)) \wedge var-list (hint3 (*pf*), degree (hint2 (*pf*))) \wedge var-list (hint4 (*pf*), degree (hint2 (*pf*))) $\land \quad (pf = \text{equal-axiom2-proof}(\text{hint2}(pf)),$ hint3(pf), hint4(pf))

else f endif

elseif car(pf) ='rule then if hint1(pf) = respanthen formula (hint2 (pf), t, 0) $\land \quad (pf = \operatorname{expan-proof}(\operatorname{hint2}(pf)),$ hint3(pf), $\operatorname{sub-proof}(pf)))$ $\land \quad (\operatorname{conc}(\operatorname{sub-proof}(pf), \mathbf{t}) = \operatorname{hint3}(pf))$ $\wedge \operatorname{prf}(\operatorname{sub-proof}(pf))$ elseif hint1(pf) = 'contracthen (pf = contrac-proof(hint2(pf), sub-proof(pf))) $\wedge \quad (\operatorname{conc}(\operatorname{sub-proof}(pf), \mathbf{t}) = \operatorname{f-or}(\operatorname{hint2}(pf), \operatorname{hint2}(pf)))$ $\wedge \operatorname{prf}(\operatorname{sub-proof}(pf))$ elseif hint1(pf) = assocthen (pf = assoc-proof(hint2(pf)),hint3(pf), hint4(pf), $\operatorname{sub-proof}(pf)))$ \wedge (conc (sub-proof (*pf*), **t**) = f-or (hint2(pf), f-or (hint3(pf), hint4(pf)))) $\wedge \operatorname{prf}(\operatorname{sub-proof}(pf))$ elseif hint1(pf) ='cut then (pf = cut-proof(hint2(pf)),hint3(pf), hint4(pf), $\operatorname{car}(\operatorname{sub-proof}(pf)),$ cadr (sub-proof (*pf*)))) \land (conc(sub-proof(*pf*), 'list) = list (f-or (hint2 (*pf*), hint3 (*pf*)), f-or (f-not(hint2(pf)), hint4(pf)))) $\wedge \operatorname{prf}(\operatorname{car}(\operatorname{sub-proof}(pf)))$ $\wedge \operatorname{prf}(\operatorname{cadr}(\operatorname{sub-proof}(pf)))$ elseif hint1(pf) = 'e-introthen variable (hint2(pf)) \wedge (*pf* = forsome-intro-proof (hint2 (*pf*)), hint3(pf), hint4(pf), $\operatorname{sub-proof}(pf)))$ $\land \quad (\text{hint2}(pf) \notin \text{collect-free}(\text{hint4}(pf), \mathbf{t}))$ $(\operatorname{conc}(\operatorname{sub-proof}(pf), \mathbf{t}))$ Λ = f-implies (hint3 (pf), hint4 (pf))) $\wedge \operatorname{prf}(\operatorname{sub-proof}(pf))$ else f endif else f endif

THEOREM: formula-or-reduc formula (list ('or, a, b), $\mathbf{t}, \mathbf{0}$) = (formula ($a, \mathbf{t}, \mathbf{0}$) \land formula ($b, \mathbf{t}, \mathbf{0}$))

THEOREM: formula-not-reduc formula (list ('not, a), t, 0) = formula (a, t, 0)

THEOREM: formula-forsome-reduc formula (list ('forsome, x, a), \mathbf{t} , $\mathbf{0}$) = (variable (x) \land formula (a, \mathbf{t} , $\mathbf{0}$))

```
;PF is a valid proof of EXP.
```

```
DEFINITION:
```

proves $(pf, exp) = ((\operatorname{conc}(pf, \mathbf{t}) = exp) \land \operatorname{formula}(exp, \mathbf{t}, \mathbf{0}) \land \operatorname{prf}(pf))$

THEOREM: proves-is-formula proves $(pf, exp) \rightarrow$ formula $(exp, \mathbf{t}, 0)$

THEOREM: proves-is-formula-again $(\neg \text{ formula}(exp, \mathbf{t}, \mathbf{0})) \rightarrow (\neg \text{ proves}(pf, exp))$

;Getting rid of PRF by lemmas.

THEOREM: prop-axiom-proves (formula (*exp*, \mathbf{t} , 0) \land (*concl* = f-or (f-not (*exp*), *exp*))) \rightarrow proves (prop-axiom-proof (*exp*), *concl*)

THEOREM: subst-axiom-proves

(formula(concl, t, 0))

- \wedge variable (var)
- $\wedge \quad \text{termp}(term, \mathbf{t}, \mathbf{0})$
- \land free-for (*exp*, *var*, *term*, **t**)
- $\land \quad (concl = subst-axiom(exp, var, term)))$
- \rightarrow proves (subst-axiom-proof (*exp*, *var*, *term*), *concl*)

THEOREM: equal-axiom1-proves

(function (fn))

- \wedge var-list (*vars1*, degree (*fn*))
- \wedge var-list (*vars2*, degree (*fn*))
- $\land \quad \text{formula} \left(\textit{concl}, \, \mathbf{t}, \, \mathbf{0} \right)$
- $\land \quad (concl = equal-axiom1(vars1, vars2, fn)))$
- \rightarrow proves (equal-axiom1-proof (fn, vars1, vars2), concl)

THEOREM: equal-axiom2-proves

(predicate(pr)

- \wedge var-list (*vars1*, degree (*pr*))
- \wedge var-list (*vars2*, degree (*pr*))
- \land formula (*concl*, **t**, 0)
- $\land \quad (concl = equal-axiom2(vars1, vars2, pr)))$
- \rightarrow proves (equal-axiom2-proof (*pr*, *vars1*, *vars2*), *concl*)

THEOREM: ident-axiom-proves (variable (var) \land (concl = ident-axiom (var)) \land formula (concl, t, 0)) \rightarrow proves (ident-axiom-proof (var), concl)

THEOREM: expan-proof-proves (formula $(a, \mathbf{t}, 0) \land \text{proves}(pf, b) \land (concl = \text{f-or}(a, b)))$ $\rightarrow \text{ proves}(\text{expan-proof}(a, b, pf), concl)$

THEOREM: contrac-proof-proves proves $(pf, \text{f-or}(a, a)) \rightarrow \text{proves}(\text{contrac-proof}(a, pf), a)$

THEOREM: assoc-proof-proves (proves $(pf, \text{ f-or } (a, \text{ f-or } (b, c))) \land (concl = \text{ f-or } (\text{f-or } (a, b), c)))$ \rightarrow proves (assoc-proof (a, b, c, pf), concl)

THEOREM: cut-proof-proves (proves (pf1, f-or (a, b)))

 \land proves (pf2, f-or(f-not(a), c))

 $\land \quad (concl = f-or(b, c)))$

 \rightarrow proves (cut-proof (a, b, c, pf1, pf2), concl)

; disabling the proof-constructors since the lemmas above show they work.

EVENT: Enable prop-axiom-proof; name this event 'g2752'.

EVENT: Enable subst-axiom-proof; name this event 'g2753'.

EVENT: Enable equal-axiom1-proof; name this event 'g2754'.

EVENT: Enable equal-axiom2-proof; name this event 'g2755'.

EVENT: Enable ident-axiom-proof; name this event 'g2756'.

EVENT: Enable expan-proof; name this event 'g2759'.

EVENT: Enable contrac-proof; name this event 'g2760'.

EVENT: Enable assoc-proof; name this event 'g2761'.

EVENT: Enable cut-proof; name this event 'g2762'.

THEOREM: for some-intro-proves (proves (pf, f-implies (a, b)))

- $\land (var \notin collect-free(b, \mathbf{t}))$
- \wedge variable (var)
- $\land \quad (a-prime = f-implies (for some (var, a), b)))$
- \rightarrow proves (for some-intro-proof (*var*, *a*, *b*, *pf*), *a-prime*)

EVENT: Enable forsome-intro-proof; name this event 'g2763'.

EVENT: Enable prf; name this event 'g2764'.

EVENT: Enable proves; name this event 'g2765'.

```
DEFINITION:
commut-proof(a, b, pf) = cut-proof(a, b, a, pf, prop-axiom-proof(a));The first derived inference rule - commutativity of disjunction.
```

```
THEOREM: commut-proof-proves
(proves (pf, \text{ f-or } (a, b)) \land \text{ formula} (\text{f-or } (a, b), \mathbf{t}, \mathbf{0}) \land (concl = \text{f-or } (b, a))) \rightarrow \text{ proves} (commut-proof } (a, b, pf), concl)
```

EVENT: Enable commut-proof; name this event 'g2766'.

;Modus Ponens.

```
DEFINITION:

detach-proof (a, b, pf1, pf2)

= contrac-proof (b, cut-proof (a, b, b, b, commut-proof (b, a, expan-proof (b, a, pf1)), pf2))
```

THEOREM: detach-proof-proves1 (proves $(pf1, a) \land proves (pf2, f-implies (a, b)) \land formula (b, t, 0))$ $\rightarrow proves (detach-proof (a, b, pf1, pf2), b)$

EVENT: Enable detach-proof; name this event 'g2767'.

DEFINITION: proves-list (*pflist*, *explist*) = **if** $explist \simeq$ **nil** then pflist = **nil** else proves (car (pflist), car (explist)) \land proves-list (cdr (pflist), cdr (explist)) endif

DEFINITION:

list-implies (*list*, *conc*)

 $= if list \simeq nil then conc$ $elseif cdr (list) \simeq nil then f-implies (car (list), conc)$ else f-implies (car (list), list-implies (cdr (list), conc)) endif

DEFINITION:

list-detach-proof (alist, b, pflist, pf2)

= if $alist \simeq nil$ then pf2elseif $cdr(alist) \simeq nil$ then detach-proof(car(alist), b, car(pflist), pf2)else list-detach-proof(cdr(alist),

$$\begin{array}{l} b, \\ \mathrm{cdr}\,(pflist), \\ \mathrm{detach-proof}\,(\mathrm{car}\,(alist), \\ & \mathrm{list-implies}\,(\mathrm{cdr}\,(alist), \, b), \\ & \mathrm{car}\,(pflist), \\ & pf2)) \,\, \mathbf{endif} \end{array}$$

;Chained Modus Ponens.

THEOREM: detach-list-implies (list(c))

- $\wedge \quad \text{proves}\left(pf, a\right)$
- \land proves (*pf2*, list-implies (cons (*a*, *c*), *b*))
- \wedge formula $(a, \mathbf{t}, \mathbf{0})$
- \wedge formula (list-implies $(c, b), \mathbf{t}, \mathbf{0}$))
- \rightarrow proves (detach-proof (a, list-implies (c, b), pf, pf2), list-implies (c, b))

THEOREM: formula-list-implies

(formula (list-implies (*alist*, *b*), \mathbf{t} , $\mathbf{0}$) \land listp (*alist*))

 \rightarrow formula (list-implies (cdr (*alist*), *b*), **t**, 0)

 $THEOREM: \ detach-rule-corr$

(proves-list (*pflist*, *alist*)

- \land proves (*pf2*, list-implies (*alist*, *b*))
- \wedge formula $(b, \mathbf{t}, \mathbf{0})$
- \rightarrow proves (list-detach-proof (*alist*, *b*, *pflist*, *pf2*), *b*)

EVENT: Enable list-detach-proof; name this event 'g0220'.

EVENT: Enable detach-list-implies; name this event 'g0221'.

DEFINITION: rt-expan-proof (a, b, pf) = commut-proof (b, a, expan-proof (b, a, pf))

THEOREM: rt-expan-proof-proves (proves $(pf, a) \land \text{formula}(b, \mathbf{t}, \mathbf{0}) \land (concl = \text{f-or}(a, b)))$ $\rightarrow \text{ proves}(\text{rt-expan-proof}(a, b, pf), concl)$

EVENT: Enable rt-expan-proof; name this event 'g0227'.

;Takes list of formulas and returns disjunction.

```
DEFINITION:
```

```
make-disjunct (flist)
= if flist \simeq nil then nil
elseif cdr (flist) \simeq nil then car (flist)
```

$$\mathbf{else} \ \mathbf{f}\text{-}\mathbf{or} \left(\mathrm{car} \left(\mathit{flist} \right), \ \mathbf{make-disjunct} \left(\mathrm{cdr} \left(\mathit{flist} \right) \right) \right) \ \mathbf{endif}$$

DEFINITION:

 $\begin{array}{ll} \text{m1-proof}\left(exp,\,flist,\,pf\right) \\ = & \text{if } flist \simeq \text{nil then nil} \\ & \text{elseif } \operatorname{cdr}\left(flist\right) \simeq \text{nil then } pf \\ & \text{elseif } exp = \operatorname{car}\left(flist\right) \\ & \text{then } rt\text{-expan-proof}\left(\operatorname{car}\left(flist\right),\, \text{make-disjunct}\left(\operatorname{cdr}\left(flist\right)\right),\,pf\right) \\ & \text{else } expan-proof\left(\operatorname{car}\left(flist\right), \\ & & \text{make-disjunct}\left(\operatorname{cdr}\left(flist\right)\right), \\ & & & \text{m1-proof}\left(exp,\,\operatorname{cdr}\left(flist\right),\,pf\right)\right) \text{ endif} \end{array}$

```
THEOREM: m1-proof-proves1
(formula (make-disjunct (flist), t, 0) \land (exp \in flist) \land proves (pf, exp))
\rightarrow proves (m1-proof (exp, flist, pf), make-disjunct (flist))
```

EVENT: Enable m1-proof; name this event 'g0228'.

```
DEFINITION:

rt-assoc-proof (a, b, c, pf)

= commut-proof (f-or (b, c),

a,

a,

c,

a,

commut-proof (f-or (c, a),

b,

assoc-proof (c, a),

a,

a,

b,

a,

a,

a,

b,

a,

a,

a,

a,

b,

a,

a,

a,

b,

a,

a,

a,

b,

a,

a,

a,

a,

b,

a,

a,

a,

b,

a,

a,

a,

b,

a,

a,

a,

a,

b,

a,

a,

a,

a,

b,

a,

a,

a,

b,

a,

a,

a,

b,

a,

a,

a,

a,

b,

a,

a,

a,

a,

a,

b,

a,

a,

a,

a,

a,

a,

a,

b,

a,

a,
```

 $\begin{array}{c} b,\\ \text{commut-proof}\,(\text{f-or}\,(a,\\b),\\ c,\\ pf))))) \end{array}$

THEOREM: rt-assoc-proof-proves

- $(\operatorname{proves}(pf, \operatorname{f-or}(a, b), c))$
- \wedge formula $(a, \mathbf{t}, \mathbf{0})$
- $\wedge \quad \text{formula}\,(b,\,\mathbf{t},\,\mathbf{0})$
- $\land \quad \text{formula} (c, \mathbf{t}, \mathbf{0})$
- $\land \quad (concl = f\text{-}or(a, f\text{-}or(b, c))))$
- \rightarrow proves (rt-assoc-proof (a, b, c, pf), concl)

EVENT: Enable rt-assoc-proof; name this event 'g0231'.

THEOREM: insert-proof-proves

 $\left(\mathrm{proves}\left(pf,\,\mathrm{f\text{-}or}\left(b,\,c\right) \right) \right.$

- \wedge formula $(a, \mathbf{t}, \mathbf{0})$
- \wedge formula $(b, \mathbf{t}, \mathbf{0})$
- \wedge formula (*c*, **t**, 0)
- $\land \quad (concl = f-or(b, f-or(a, c))))$
- \rightarrow proves (insert-proof (a, b, c, pf), concl)

EVENT: Enable insert-proof; name this event 'g0232'.

DEFINITION: m2-proof-step (exp1, exp2, flist, pf) = if flist \simeq nil then nil elseif cdr (flist) \simeq nil then if exp2 = car (flist) then pf else nil endif elseif exp2 = car (flist) then rt-assoc-proof (exp1, exp2,

THEOREM: m2-proof-step-proves

- (formula (make-disjunct (flist), \mathbf{t} , $\mathbf{0}$)
- $\land \quad (exp2 \in flist)$
- \wedge formula (*exp1*, **t**, 0)
- $\wedge \quad \text{formula} (exp2, \mathbf{t}, \mathbf{0})$
- \land proves (pf, f-or(exp1, exp2)))
- $\begin{array}{ll} \rightarrow & \operatorname{proves}\left(\mathrm{m2\text{-}proof\text{-}step}\left(\mathit{exp1}, \, \mathit{exp2}, \, \mathit{flist}, \, \mathit{pf}\right), \\ & \operatorname{f-or}\left(\mathit{exp1}, \, \operatorname{make\text{-}disjunct}\left(\mathit{flist}\right)\right) \right) \end{array}$

THEOREM: m2-proof-step-proves1

(formula (make-disjunct (*flist*), \mathbf{t} , $\mathbf{0}$)

- $\land \quad (exp2 \in flist)$
- \wedge formula (*exp1*, **t**, 0)
- \wedge formula (*exp2*, **t**, **0**)
- \land proves (pf, f-or(exp1, exp2))
- \land (concl = f-or (exp1, make-disjunct (flist))))
- \rightarrow proves (m2-proof-step (*exp1*, *exp2*, *flist*, *pf*), *concl*)

EVENT: Enable m2-proof-step; name this event 'g0233'.

EVENT: Enable m2-proof-step-proves; name this event 'g0234'.

```
DEFINITION:

m2-proof (exp1, exp2, flist, pf)

= if flist \simeq nil then nil

elseif exp1 = exp2 then m1-proof (exp1, flist, contrac-proof (exp1, pf))

elseif exp1 = car (flist)

then m2-proof-step (exp1, exp2, cdr (flist), pf)

elseif exp2 = car (flist)

then m2-proof-step (exp2, exp1, cdr (flist), commut-proof (exp1, exp2, pf))

else expan-proof (car (flist),

make-disjunct (cdr (flist)),

m2-proof (exp1, exp2, cdr (flist), pf)) endif
```

Theorem: m1-proof-proves

(formula (make-disjunct (flist), t, 0)

- $\land \quad (exp \in flist)$
- \land proves (pf, exp)
- $\land \quad (concl = make-disjunct(flist)))$
- \rightarrow proves (m1-proof (*exp*, *flist*, *pf*), *concl*)

Theorem: m2-proof-proves

(formula (make-disjunct (flist), \mathbf{t} , $\mathbf{0}$)

- \wedge formula (*exp1*, **t**, 0)
- \wedge formula (*exp2*, **t**, 0)
- $\land (exp1 \in flist)$
- $\land (exp2 \in flist)$
- \land proves (pf, f-or(exp1, exp2)))
- \rightarrow proves (m2-proof (*exp1*, *exp2*, *flist*, *pf*), make-disjunct (*flist*))

THEOREM: m2-proof-proves1

- (formula (make-disjunct (flist), t, 0)
- \wedge formula (*exp1*, **t**, 0)
- \wedge formula (*exp2*, **t**, 0)
- $\land (exp1 \in flist)$
- $\land (exp \mathcal{Z} \in flist)$
- \land proves (pf, f-or(exp1, exp2))
- \land (concl = make-disjunct (flist)))
- \rightarrow proves (m2-proof (*exp1*, *exp2*, *flist*, *pf*), *concl*)

EVENT: Enable m2-proof; name this event 'g0235'.

EVENT: Enable m2-proof-proves; name this event 'g0236'.

exp1,

 $\begin{array}{c} \text{commut-proof} \left(\text{f-or}\left(\text{make-disjunct}\left(flist2\right), \\ exp1\right), \\ \text{make-disjunct}\left(flist2\right), \\ \text{m2-proof}\left(\text{f-or}\left(\text{make-disjunct}\left(flist2\right), \\ exp1\right), \\ exp2, \\ \text{cons}\left(\text{f-or}\left(\text{make-disjunct}\left(flierer, exp1\right), \\ flist2\right), \\ \text{assoc-proof}\left(\text{make-disjunct}\left(exp1, \\ exp2, \\ exp2, \\ \text{commut-proof}\left(exp1, \\ exp2, \\ ex$

DEFINITION: m-proof (flist1, flist2, pf) = if *flist1* \simeq nil then nil elseif $cdr(flist1) \simeq nil$ then m1-proof(car(flist1), flist2, pf) elseif cddr (*flist1*) \simeq nil then m2-proof (car (flist1), cadr (flist1), flist2, pf) else m3-proof (car (*flist1*), cadr (flist1), flist2, m-proof (cons (f-or (car (*flist1*), cadr (*flist1*)), $\operatorname{cddr}(flist1)),$ $\cos(\text{f-or}(\operatorname{car}(flist1), \operatorname{cadr}(flist1))),$ flist2), $\operatorname{assoc-proof}(\operatorname{car}(flist1),$ $\operatorname{cadr}(flist1),$ make-disjunct (cddr (*flist1*)), pf))) endif **THEOREM:** subset-cons subset $(x, y) \rightarrow$ subset $(x, \cos(z, y))$ **DEFINITION:** form-list (flist) = **if** listp (*flist*) **then** formula (car (*flist*), \mathbf{t} , $\mathbf{0}$) \wedge form-list (cdr (*flist*)) else t endif THEOREM: formlist-formula-make-disj

 $(\text{form-list}(flist) \land \text{listp}(flist)) \rightarrow \text{formula}(\text{make-disjunct}(flist), \mathbf{t}, \mathbf{0})$

THEOREM: m3-proof-proves (formula (exp1, \mathbf{t} , $\mathbf{0}$)

 $(\text{Iormula}(exp1, \mathbf{t}, \mathbf{0}))$

- $\wedge \quad \text{formula}(exp2, \mathbf{t}, \mathbf{0})$
- \wedge form-list (*flist2*)
- $\wedge \quad \text{proves}\left(pf, \, \text{make-disjunct}\left(\cos\left(\text{f-or}\left(exp1, \, exp2 \right), \, flist2 \right) \right) \right)$
- $\land \quad (exp1 \in flist2)$
- $\land \quad (exp2 \in flist2))$
- \rightarrow proves (m3-proof (*exp1*, *exp2*, *flist2*, *pf*), make-disjunct (*flist2*))

EVENT: Enable m3-proof; name this event 'g0222'.

THEOREM: m3-proof-proves1

(formula (exp1, \mathbf{t} , $\mathbf{0}$)

- $\wedge \quad \mathrm{formula}\,(\mathit{exp2},\,\mathbf{t},\,\mathbf{0})$
- \wedge form-list (*flist2*)
- \land proves (*pf*, make-disjunct (cons (f-or (*exp1*, *exp2*), *flist2*)))
- $\land (exp1 \in flist2)$
- $\land (exp2 \in flist2)$
- $\land \quad (concl = \text{make-disjunct}(flist2)))$
- \rightarrow proves (m3-proof (*exp1*, *exp2*, *flist2*, *pf*), *concl*)

EVENT: Enable m3-proof-proves; name this event 'g0229'.

;The subset lemma

THEOREM: m-proof-proves

- (form-list(flist1))
- \land listp (*flist1*)
- \wedge form-list (*flist2*)
- $\wedge \quad \text{listp}(flist2)$
- \land subset (*flist1*, *flist2*)
- \land proves (*pf*, make-disjunct (*flist1*)))
- \rightarrow proves (m-proof (*flist1*, *flist2*, *pf*), make-disjunct (*flist2*))

EVENT: Enable m-proof; name this event 'g0247'.

THEOREM: m-proof-proves1 (form-list (flist1)

- \wedge form-list (*flist2*)
- \wedge subset (*flist1*, *flist2*)
- \land proves (*pf*, make-disjunct (*flist1*))
- $\land \quad (concl = \text{make-disjunct} (flist2)))$
- \rightarrow proves (m-proof (*flist1*, *flist2*, *pf*), *concl*)

;Disjunctions.

DEFINITION: or-type (exp) = (exp = f - or (cadr (exp), caddr (exp)))

;Negation of disjunctions.

DEFINITION: nor-type (exp) = (exp = f-not (f-or (cadadr (exp), caddadr (exp))))

EVENT: Enable atomp; name this event 'g0250'.

;Elementary and negation of elementary formulas

DEFINITION: elem-form $(exp) = (atomp (exp) \lor (exp = forsome (cadr (exp), caddr (exp))))$

DEFINITION: neg-elem-form (exp)= $((exp = f-not (cadr (exp))) \land elem-form (arg1 (exp)))$

DEFINITION: prop-atomp $(exp) = (elem-form (exp) \lor neg-elem-form (exp))$

```
;Double-negations
```

DEFINITION: dble-neg-type (exp) = (exp = f-not (f-not (cadadr (exp)))))

EVENT: Disable atomp; name this event 'g0251'.

THEOREM: dble-neg-not-prop-atomp dble-neg-type $(exp) \rightarrow (\neg \text{ prop-atomp}(exp))$

THEOREM: or-type-not-prop-atomp or-type $(exp) \rightarrow (\neg \text{ prop-atomp}(exp))$

THEOREM: nor-type-not-prop-atomp nor-type $(exp) \rightarrow (\neg \text{ prop-atomp}(exp))$

DEFINITION: list-count (*list*) = **if** *list* \simeq **nil then** 0 **else** (1 + count (car (*list*))) + list-count (cdr (*list*)) **endif** **DEFINITION:** neg-list (*exp*, *list*) if $list \simeq nil$ then f =else neg $(exp, car(list)) \lor$ neg-list(exp, cdr(list)) endif THEOREM: lessp-list-count $\operatorname{listp}(flist) \rightarrow (\operatorname{list-count}(\operatorname{cdr}(flist)) < \operatorname{list-count}(flist))$ THEOREM: or-type-list-count $(\text{or-type}(\operatorname{car}(flist)) \land \operatorname{listp}(flist))$ \rightarrow (list-count (cons (cadar (*flist*), cons (caddar (*flist*), cdr (*flist*)))) < list-count (*flist*)) THEOREM: nor-type-list-count1 $(\text{listp}(flist) \land \text{nor-type}(\text{car}(flist)))$ (list-count (cons (list ('not, cadadar (*flist*)), cdr (*flist*))) \rightarrow < list-count (*flist*)) THEOREM: nor-type-list-count2 $(\text{listp}(flist) \land \text{nor-type}(\text{car}(flist)))$ \rightarrow (list-count (cons (list ('not, caddadar (flist)), cdr (flist))) < list-count (*flist*)) THEOREM: dble-neg-list-count $(\text{listp}(flist) \land \text{dble-neg-type}(\text{car}(flist)))$ \rightarrow (list-count (cons (cadadar (*flist*), cdr (*flist*))) < list-count (*flist*)) EVENT: Enable prop-atomp; name this event 'g0230'. EVENT: Enable or-type; name this event 'g0237'. EVENT: Enable nor-type; name this event 'g0238'. EVENT: Enable dble-neg-type; name this event 'g0239'. EVENT: Enable list-count; name this event 'g0240'. ;The tautology-checker.

DEFINITION: tautologyp1 (flist, auxlist) = if flist \simeq nil then f elseif prop-atomp (car (flist))

```
then neg-list (car (flist), auxlist)
            \vee tautologyp1 (cdr (flist), cons (car (flist), auxlist))
     elseif or-type (car (flist))
     then tautologyp1 (cons(arg1(car(flist))),
                                  \cos(\arg 2(\operatorname{car}(\operatorname{flist})), \operatorname{cdr}(\operatorname{flist}))),
                           auxlist)
     elseif nor-type (car(flist))
     then tautologyp1 (cons (f-not (arg1 (arg1 (car (flist)))), cdr (flist)),
                           auxlist)
            \wedge tautologyp1 (cons (f-not (arg2 (arg1 (car (flist))))), cdr (flist)),
                                auxlist)
     elseif dble-neg-type (car (flist))
     then tautologyp1 (cons (arg1 (arg1 (car (flist))), cdr (flist)), auxlist)
     else f endif
THEOREM: form-list-append
(\text{form-list}(x) \land \text{form-list}(y)) \rightarrow \text{form-list}(\text{append}(x, y))
DEFINITION:
neg-proof(exp1, exp2)
=
    if exp1 = f-not(exp2) then prop-axiom-proof(exp2)
     else commut-proof (exp2, exp1, prop-axiom-proof (exp1)) endif
THEOREM: neg-proof-proves
```

```
(formula (exp1, \mathbf{t}, \mathbf{0})

\land formula (exp2, \mathbf{t}, \mathbf{0})

\land neg (exp1, exp2)

\land (concl = \text{f-or}(exp1, exp2)))

\rightarrow proves (neg-proof (exp1, exp2), concl)
```

EVENT: Enable neg-proof; name this event 'g0245'.

THEOREM: neg-list-reduc neg-list (exp, flist) = $((\text{f-not}(exp) \in flist))$ $\vee ((exp = \text{f-not}(\text{cadr}(exp))) \land (\text{cadr}(exp) \in flist)))$ DEFINITION: neg-list-proof (exp, flist) = **if** f-not (exp) \in flist

if f-not $(exp) \in flist$ then m2-proof (exp, f-not (exp), cons (exp, flist), neg-proof (exp, f-not (exp))) else m2-proof (exp,cadr (exp),cons (exp, flist),neg-proof (exp, cadr (exp))) endif

THEOREM: neg-list-proof-proves (formula (exp, t, 0) \land form-list (flist) \land neg-list (exp, flist) \land (concl = make-disjunct (cons (exp, flist)))) \rightarrow proves (neg-list-proof (exp, flist), concl)

EVENT: Enable neg-list-proof; name this event 'g0256'.

THEOREM: subset-ident subset (x, x)THEOREM: subset-car subset $(x, \cos(y, x))$ THEOREM: subset-append subset (cons (exp, list2), append (cons (exp, list1), list2)) THEOREM: nlistp-neg-list $(list \simeq nil) \rightarrow (\neg neg-list(exp, list))$ **DEFINITION:** prop-atom-proof1 (flist1, flist2) = m-proof (cons (car (*flist1*), *flist2*), append (flist1, flist2), neg-list-proof (car (*flist1*), *flist2*)) THEOREM: prop-atom-proof1-proves (form-list (*flist1*) \wedge listp (*flist1*) \wedge form-list (*flist2*) \wedge neg-list (car (*flist1*), *flist2*) \land (concl = make-disjunct (append (flist1, flist2)))) proves (prop-atom-proof1 (*flist1*, *flist2*), *concl*) \rightarrow

EVENT: Enable prop-atom-proof1; name this event 'g0259'.

THEOREM: subset-append-car subset (append (*list1*, cons (*exp*, *list2*)), append (cons (*exp*, *list1*), *list2*))

THEOREM: form-list-append-car

(form-list (cons (exp, list1)) \land form-list (list2))

 \rightarrow form-list (append (*list1*, cons (*exp*, *list2*)))

DEFINITION:

```
 \begin{array}{ll} \text{prop-atom-proof2} \left(flist1, flist2, pf\right) \\ = & \text{m-proof} \left( \text{append} \left( \text{cdr} \left(flist1\right), \text{cons} \left( \text{car} \left(flist1\right), flist2 \right) \right), \\ & \text{append} \left(flist1, flist2 \right), \\ & pf \right) \end{array}
```

THEOREM: prop-atom-proof2-proves

(form-list (flist1)

 \wedge listp (*flist1*)

 \wedge form-list (*flist2*)

 \wedge proves (*pf*,

make-disjunct (append (cdr (*flist1*), cons (car (*flist1*), *flist2*))))

- (concl = make-disjunct (append (flist1, flist2))))
- \rightarrow proves (prop-atom-proof2 (*flist1*, *flist2*, *pf*), *concl*)

EVENT: Enable prop-atom-proof2; name this event 'g0258'.

DEFINITION:

 \wedge

THEOREM: cancel-proof-proves

 $(\operatorname{proves}(pf1, \operatorname{f-not}(a)))$

 \land proves (*pf2*, f-or (*a*, *b*))

 \wedge formula $(a, \mathbf{t}, \mathbf{0})$

- $\land \quad \text{formula}(b, \mathbf{t}, \mathbf{0}))$
- \rightarrow proves (cancel-proof (a, b, pf1, pf2), b)

EVENT: Enable cancel-proof; name this event 'g0255'.

```
THEOREM: nlistp-nor-type-proof-proves (formula (a, \mathbf{t}, \mathbf{0})
```

- \wedge formula $(b, \mathbf{t}, \mathbf{0})$
- \land proves (pf1, f-not(a))
- \land proves (*pf2*, f-not (*b*))
- $\land \quad (concl = f\text{-not}(f\text{-}or(a, b))))$
- \rightarrow proves (nlistp-nor-type-proof (a, b, pf1, pf2), concl)

DEFINITION:

```
listp-nor-type-proof (a, b, c, pf1, pf2)
= m-proof (list (f-not (f-or (a, b)), c, c),
                list (f-not (f-or (a, b)), c),
                rt-assoc-proof (f-not (f-or (a, b)),
                                  c,
                                  c,
                                  \operatorname{cut-proof}(b,
                                              f-or (f-not (f-or (a, b)), c),
                                               c,
                                              rt-assoc-proof(b,
                                                                 f-not (f-or (a, b)),
                                                                 c,
                                                                 \operatorname{cut-proof}(a,
                                                                             f-or (b,
                                                                                   f-not (f-or (a, 
                                                                                                b))),
                                                                             c,
                                                                             m-proof (list (f-not (f-or (a,
                                                                                                           b)),
                                                                                             a,
                                                                                             b),
                                                                                        list (a,
                                                                                             b,
                                                                                             f-not (f-or (a, 
                                                                                                           b))),
                                                                                        prop-axiom-proof (f-or (a, 
                                                                                                                     b))),
                                                                             pf1)),
                                              pf2)))
```

THEOREM: listp-nor-type-proof-proves

- (formula(a, t, 0))
- $\wedge \quad \text{formula} (b, \mathbf{t}, \mathbf{0})$
- \wedge formula $(c, \mathbf{t}, \mathbf{0})$
- $\wedge \quad \text{proves} \left(pf1, \text{ f-or} \left(\text{f-not} \left(a \right), \, c \right) \right)$

- \land proves (*pf2*, f-or (f-not (*b*), *c*))
- $\land \quad (concl = f\text{-}or (f\text{-}not (f\text{-}or (a, b)), c)))$
- \rightarrow proves (listp-nor-type-proof (a, b, c, pf1, pf2), concl)

EVENT: Enable m-proof-proves; name this event 'g0242'.

EVENT: Enable nlistp-nor-type-proof; name this event 'g0243'.

EVENT: Enable listp-nor-type-proof; name this event 'g0244'.

DEFINITION:

nor-type-proof (a, b, clist, pf1, pf2)

= **if** $clist \simeq$ **nil** then nlistp-nor-type-proof (a, b, pf1, pf2)else listp-nor-type-proof (a, b, make-disjunct (clist), pf1, pf2) endif

EVENT: Disable nor-type; name this event 'g0292'.

THEOREM: nor-type-proof-proves

(nor-type(exp))

- \wedge formula (*exp*, **t**, **0**)
- \wedge form-list (*clist*)
- \land proves (*pf1*, make-disjunct (cons (f-not (cadadr (*exp*)), *clist*)))
- \land proves (*pf2*, make-disjunct (cons (f-not (caddadr (*exp*)), *clist*)))
- $\land \quad (concl = make-disjunct (cons (exp, clist))))$
- \rightarrow proves (nor-type-proof (cadadr (*exp*), caddadr (*exp*), *clist*, *pf1*, *pf2*), *concl*)

DEFINITION:

nlistp-dble-neg-proof (a, pf)

= contrac-proof (f-not (f-not (a)),

 $\begin{array}{c} \text{cut-proof}\left(a, \\ & \text{f-not}\left(f\text{-not}\left(a\right)\right), \\ & \text{f-not}\left(f\text{-not}\left(a\right)\right), \\ & \text{rt-expan-proof}\left(a, \text{ f-not}\left(f\text{-not}\left(a\right)\right), pf\right), \\ & \text{commut-proof}\left(f\text{-not}\left(f\text{-not}\left(a\right)\right), \\ & \text{f-not}\left(a\right), \\ & \text{prop-axiom-proof}\left(f\text{-not}\left(a\right)\right)\right) \end{array}$

EVENT: Enable nor-type-proof; name this event 'g0248'.

THEOREM: nlistp-dble-neg-proof-proves (formula $(a, \mathbf{t}, \mathbf{0}) \land \text{proves}(pf, a) \land (concl = \text{f-not}(\text{f-not}(a))))$ $\rightarrow \text{ proves}(\text{nlistp-dble-neg-proof}(a, pf), concl)$ EVENT: Enable nlistp-dble-neg-proof; name this event 'g0249'.

THEOREM: listp-dble-neg-proof-proves

(formula(a, t, 0))

- $\wedge \quad \text{formula} (c, \mathbf{t}, \mathbf{0})$
- $\wedge \quad \text{proves}\left(pf, \text{ f-or}\left(a, c\right)\right)$
- $\land \quad (concl = f\text{-}or (f\text{-}not (f\text{-}not (a)), c)))$
- \rightarrow proves (listp-dble-neg-proof (a, c, pf), concl)

EVENT: Enable listp-dble-neg-proof; name this event 'g0203'.

DEFINITION:

dble-neg-type-proof (a, clist, pf)

 $= if clist \simeq nil then nlistp-dble-neg-proof(a, pf)$ else listp-dble-neg-proof(a, make-disjunct(clist), pf) endif

EVENT: Disable dble-neg-type; name this event 'g0252'.

THEOREM: dble-neg-type-proof-proves

(dble-neg-type(exp))

- \wedge formula (*exp*, **t**, 0)
- \wedge form-list (*clist*)
- \land proves (*pf*, make-disjunct (cons (cadadr (*exp*), *clist*)))
- $\land \quad (concl = \text{make-disjunct} (cons(exp, clist))))$
- \rightarrow proves (dble-neg-type-proof (cadadr (*exp*), *clist*, *pf*), *concl*)

DEFINITION:

or-type-proof (a, b, clist, pf)

= if $clist \simeq nil$ then pfelse assoc-proof (a, b, make-disjunct (clist), pf) endif

EVENT: Disable or-type; name this event 'g0260'.

THEOREM: or-type-proof-proves

(or-type (car (flist1))

- \wedge form-list (*flist1*)
- $\wedge \quad \text{listp}(flist1)$
- \wedge form-list (*flist2*)
- $\wedge \quad \text{proves}(pf,$

make-disjunct (append (cons (cadar (*flist1*),

```
\cos(\operatorname{caddar}(flist1), \operatorname{cdr}(flist1))),
```

```
flist2)))
```

 $\land \quad (concl = \text{make-disjunct} (append (flist1, flist2))))$

```
\rightarrow proves (or-type-proof (cadar (flist1),
```

 $\operatorname{caddar}(flist1),$

pf),

append (cdr (flist1), flist2),

concl)

EVENT: Enable or-type-proof; name this event 'g0271'.

 $\begin{array}{l} \text{THEOREM: or-type-form-list} \\ (\text{or-type}\left(\operatorname{car}\left(flist\right)\right) \land \text{ form-list}\left(flist\right) \land \operatorname{listp}\left(flist\right)) \\ \rightarrow \quad \text{form-list}\left(\operatorname{cons}\left(\operatorname{cadar}\left(flist\right), \operatorname{cons}\left(\operatorname{caddar}\left(flist\right), \operatorname{cdr}\left(flist\right)\right)\right)) \end{array}$

THEOREM: nor-type-form-list (nor-type (car (*flist*)) \land form-list (*flist*) \land listp (*flist*)) \rightarrow form-list (cons (list ('not, cadadar (*flist*)), cdr (*flist*)))

THEOREM: nor-type-form-list2 (nor-type (car (*flist*)) \land form-list (*flist*) \land listp (*flist*)) \rightarrow form-list (cons (list ('not, caddadar (*flist*)), cdr (*flist*)))

 $\begin{array}{ll} \text{THEOREM: dble-neg-type-form-list} \\ (\text{dble-neg-type}\left(\operatorname{car}\left(flist\right)\right) \land \text{ form-list}\left(flist\right) \land \text{ listp}\left(flist\right)\right) \\ \rightarrow \quad \text{form-list}\left(\operatorname{cons}\left(\operatorname{cadadar}\left(flist\right), \operatorname{cdr}\left(flist\right)\right)\right) \end{array}$

EVENT: Enable or-type; name this event 'g0272'.

EVENT: Enable nor-type; name this event 'g0273'.

EVENT: Enable dble-neg-type; name this event 'g0274'.

EVENT: Enable dble-neg-type-proof; name this event 'g0254'.

;The proof-constructor for tautologies.

DEFINITION: taut-proof1 (flist, auxlist) if *flist* \simeq nil then nil =elseif prop-atomp (car (*flist*)) then if neg-list (car (*flist*), *auxlist*) then prop-atom-proof1 (*flist*, *auxlist*) else prop-atom-proof2 (flist, auxlist, taut-proof1 (cdr (flist), cons (car (*flist*), *auxlist*))) endif **elseif** or-type (car (*flist*)) **then** or-type-proof $(\arg 1 (\operatorname{car} (flist)))$, $\arg 2 (\operatorname{car} (flist)),$ append (cdr (flist), auxlist), taut-proof1 (cons (arg1 (car (*flist*)), $\cos(\arg 2(\operatorname{car}(\operatorname{flist})), \operatorname{cdr}(\operatorname{flist}))),$ auxlist)) **elseif** nor-type (car (*flist*)) **then** nor-type-proof $(\arg 1 (\arg 1 (\operatorname{car} (flist)))),$ $\arg 2 \left(\arg 1 \left(\operatorname{car} \left(flist \right) \right) \right),$ append (cdr (flist), auxlist), taut-proof1 (cons (f-not (arg1 (arg1 (car (*flist*))))), $\operatorname{cdr}(flist)),$ auxlist), taut-proof1 (cons (f-not (arg2 (arg1 (car (flist))))), $\operatorname{cdr}(flist)),$ auxlist)) **elseif** dble-neg-type (car(flist))**then** dble-neg-type-proof $(\arg 1 (\arg 1 (\operatorname{car} (flist)))),$ append (cdr(flist), auxlist), taut-proof1 (cons (arg1 (arg1 (car (*flist*)))), $\operatorname{cdr}(flist)),$ auxlist)) else nil endif ;Every tautology has a proof (when AUXLIST is NIL) THEOREM: taut-thm1 $(\text{form-list}(flist) \land \text{form-list}(auxlist) \land \text{tautologyp1}(flist, auxlist))$ \rightarrow proves (taut-proof1 (*flist*, *auxlist*), make-disjunct (append (*flist*, *auxlist*)))

EVENT: Enable taut-proof1; name this event 'g0275'.

THEOREM: taut-thm2

(form-list (*flist*)

 \wedge form-list (*auxlist*) \wedge tautologyp1 (*flist*, *auxlist*) \land (concl = make-disjunct (append (flist, auxlist)))) \rightarrow proves (taut-proof1 (*flist*, *auxlist*), *concl*) THEOREM: listp-elem-form $(exp \simeq nil) \rightarrow (\neg elem-form(exp))$;Truth value evaluator. **DEFINITION:** eval (exp, alist) = if $exp \simeq nil$ then f elseif elem-form (exp) then $exp \in alist$ elseif car(exp) ='not then $\neg eval(cadr(exp), alist)$ elseif car(exp) = 'or**then** eval $(cadr(exp), alist) \lor eval (caddr(exp), alist)$ else f endif THEOREM: elem-form-eval elem-form $(exp) \rightarrow (eval(exp, alist) = (exp \in alist))$ THEOREM: nlistp-eval $(exp \simeq nil) \rightarrow (\neg eval(exp, alist))$ THEOREM: not-eval $(\text{listp}(exp) \land (\text{car}(exp) = \text{'not}))$ \rightarrow (eval (exp, alist) = (\neg eval (cadr (exp), alist))) THEOREM: or-eval $(\text{listp}(exp) \land (\text{car}(exp) = '\text{or}))$ \rightarrow (eval (*exp*, *alist*)

 $= (eval(cadr(exp), alist) \lor eval(caddr(exp), alist)))$

THEOREM: member-eval $((exp \in flist) \land eval(exp, alist)) \rightarrow eval(make-disjunct(flist), alist)$

THEOREM: eval-elem-form (elem-form (exp) \land (exp \in list) \land (exp \in alist) \land (concl = make-disjunct (list))) \rightarrow eval (concl, alist) EVENT: Disable or-type; name this event 'g0278'.

EVENT: Disable nor-type; name this event 'g0279'.

EVENT: Disable dble-neg-type; name this event 'g0280'.

EVENT: Disable prop-atomp; name this event 'g0281'.

THEOREM: member-append $(exp \in append(flist1, flist2)) = ((exp \in flist1) \lor (exp \in flist2))$

THEOREM: eval-neg-elem-form

 $\begin{array}{ll} ((exp \in list) \\ \land & (\text{f-not} (exp) \in list) \\ \land & (concl = \text{make-disjunct} (list))) \\ \rightarrow & \text{eval} (concl, alist) \end{array}$

THEOREM: eval-make-disjunct eval (make-disjunct (append (list1, list2)), alist) = (eval (make-disjunct (list1), alist) \lor eval (make-disjunct (list2), alist))

THEOREM: neg-list-eval

(listp(flist1))

 \wedge neg-list (car (*flist1*), *flist2*)

 $\land \quad (concl = make-disjunct (append ($ *flist1*,*flist2*))))

 \rightarrow eval (concl, alist)

THEOREM: eval-prop-atomp

(listp(flist1))

- $\land \quad \text{eval} \left(\text{make-disjunct} \left(\text{append} \left(\text{cdr} \left(flist1 \right), \text{ cons} \left(\text{car} \left(flist1 \right), flist2 \right) \right) \right), \\ alist) \right)$
- \rightarrow eval (make-disjunct (append (*flist1*, *flist2*)), *alist*)

EVENT: Enable eval; name this event 'g1253'.

THEOREM: eval-or-type

 $\begin{array}{ll} (\text{listp} (\textit{flist1}) \land \text{ or-type} (\text{car} (\textit{flist1}))) \\ \rightarrow & (\text{eval} (\text{make-disjunct} (\text{append} (\textit{flist1}, \textit{flist2})), \textit{alist}) \\ &= & \text{eval} (\text{make-disjunct} (\text{append} (\text{cons} (\text{cadar} (\textit{flist1}), \\ & \text{cons} (\text{caddar} (\textit{flist1}), \\ & \text{cdr} (\textit{flist1}))), \\ & & \text{flist2})), \end{array}$

THEOREM: eval-nor-type $(\text{listp}(flist1) \land \text{nor-type}(\text{car}(flist1)))$ (eval (make-disjunct (append (*flist1*, *flist2*)), *alist*) \rightarrow = (eval (make-disjunct (append (cons (f-not (cadadar (*flist1*))), $\operatorname{cdr}(flist1)),$ flist2)), alist) \wedge eval (make-disjunct (append (cons (f-not (caddadar (*flist1*)), $\operatorname{cdr}(flist1)),$ flist2)), alist))) THEOREM: eval-dble-neg-type $(\text{listp}(flist1) \land \text{dble-neg-type}(\text{car}(flist1)))$ \rightarrow (eval (make-disjunct (append (*flist1*, *flist2*)), *alist*) = eval (make-disjunct (append (cons (cadadar (*flist1*), cdr (*flist1*))), flist2)), alist)) ;All tautologies are logically-true. THEOREM: taut-eval

tautologyp1 (flist, auxlist) \rightarrow eval (make-disjunct (append (flist, auxlist)), alist)

THEOREM: not-eval-prop-atomp

 $\begin{array}{l} (\text{listp} (\textit{flist1}) \\ \land \quad (\neg \text{ eval} (\text{make-disjunct} (\text{append} (\text{cdr} (\textit{flist1}), \text{ cons} (\text{car} (\textit{flist1}), \textit{flist2}))), \\ & alist))) \\ \rightarrow \quad (\neg \text{ eval} (\text{make-disjunct} (\text{append} (\textit{flist1}, \textit{flist2})), alist)) \end{array}$

THEOREM: prop-atomp-reduc

 $prop-atomp (exp) = (elem-form (exp)) \\ \lor ((exp = f-not (cadr (exp))) \land elem-form (cadr (exp))))$

EVENT: Enable elem-form; name this event 'g0263'.

EVENT: Enable prop-atomp; name this event 'g0264'.

```
DEFINITION:

prop-atomp-list (list)

= if list \simeq nil then t

else prop-atomp (car (list)) \wedge prop-atomp-list (cdr (list)) endif
```

THEOREM: falsify-step (f-not $(exp) \notin auxlist$) $\rightarrow (exp \notin falsify (auxlist))$

THEOREM: prop-atomp-auxlist

(prop-atomp(exp)

 $\land \quad (\neg \text{ neg-list}(exp, auxlist)) \\ \land \quad \text{prop-atomp-list}(auxlist)) \\ \land \quad (-expl(exp, f_{0})) \\ \land \quad (-expl(exp, f_{0})$

 \rightarrow (\neg eval (*exp*, falsify (cons (*exp*, *auxlist*))))

THEOREM: prop-atomp-auxlist2

 $((\neg \text{ neg-list}(exp, auxlist)))$

- \land prop-atomp-list (*auxlist*)
- \wedge prop-atomp (*exp*)
- \land (\neg eval (make-disjunct (*auxlist*), falsify (*alist*))))
- \rightarrow (\neg eval (make-disjunct (*auxlist*), falsify (cons (*exp*, *alist*))))

THEOREM: prop-atomp-falsify

(prop-atomp(exp)

- $\land \quad (\neg \text{ neg-list}(exp, auxlist))$
- \land prop-atomp-list (*auxlist*)
- \land (\neg eval (make-disjunct (*auxlist*), falsify (*auxlist*)))))
- \rightarrow (\neg eval (make-disjunct (cons (*exp*, *auxlist*)), falsify (cons (*exp*, *auxlist*))))

EVENT: Disable prop-atomp; name this event 'g0268'.

EVENT: Disable elem-form; name this event 'g0269'.

EVENT: Enable atomp; name this event 'g0204'.

THEOREM: formula-cases1 formula (exp, t, 0)

- \rightarrow (prop-atomp (*exp*)
 - \lor or-type (*exp*)
 - \lor nor-type (*exp*)
 - \lor dble-neg-type (exp))

EVENT: Disable atomp; name this event 'g0205'.

EVENT: Enable prop-atomp; name this event 'g0296'.

EVENT: Enable or-type; name this event 'g0297'.

EVENT: Enable nor-type; name this event 'g0298'.

EVENT: Enable dble-neg-type; name this event 'g0299'.

THEOREM: formula-cases

 $((\neg dble-neg-type(exp)))$ $\land \quad (\neg \text{ nor-type}(exp))$ \wedge (\neg or-type(*exp*)) $\land \quad (\neg \text{ prop-atomp}(exp)))$ \rightarrow (\neg formula(*exp*, **t**, 0)) **DEFINITION:** falsify-taut (flist, auxlist) = **if** flist \simeq **nil** then falsify (auxlist) elseif prop-atomp (car (*flist*)) then if neg-list (car (*flist*), *auxlist*) then f else falsify-taut (cdr (*flist*), cons (car (*flist*), *auxlist*)) endif **elseif** or-type (car (*flist*)) then falsify-taut (cons (cadar (*flist*), cons (caddar (*flist*), cdr (*flist*))), auxlist) **elseif** nor-type (car (*flist*)) then if falsify-taut (cons (f-not (caddadar (*flist*)), cdr (*flist*)), auxlist) then falsify-taut (cons (f-not (caddadar (*flist*)), cdr (*flist*)), auxlist) else falsify-taut (cons (f-not (cadadar (*flist*)), cdr (*flist*)), auxlist) endif **elseif** dble-neg-type (car (*flist*)) then falsify-taut (cons (cadadar (*flist*), cdr (*flist*)), *auxlist*) else nil endif THEOREM: append-nlistp $(x \simeq \mathbf{nil}) \rightarrow (\operatorname{append}(x, y) = y)$ THEOREM: not-falsify-taut

tautologyp1 (flist, auxlist) = $(\neg$ falsify-taut (flist, auxlist))

;Non-tautologies are falsifiable.

```
THEOREM: not-taut-false
```

(form-list (*flist*)

- \land prop-atomp-list (*auxlist*)
- $\land \quad (\neg \text{ eval (make-disjunct (auxlist), falsify (auxlist)))}$
- $\land \quad (\neg tautologyp1(flist, auxlist)))$
- $\rightarrow \ (\neg \text{ eval (make-disjunct (append (flist, auxlist))}, \\ \text{ falsify-taut (flist, auxlist)))}$

DEFINITION: tautologyp (flist) = tautologyp1 (flist, **nil**)

DEFINITION: taut-proof (*flist*) = taut-proof1 (*flist*, **nil**)

EVENT: Disable append; name this event 'g0300'.

THEOREM: form-list-append-nil make-disjunct (append (flist, nil)) = make-disjunct (flist)

THEOREM: tautology-theorem

 $(\text{form-list}(flist) \land \text{tautologyp}(flist) \land (concl = \text{make-disjunct}(flist))) \rightarrow \text{proves}(\text{taut-proof}(flist), concl)$

THEOREM: taut-eval2

 $\begin{array}{ll} (\text{tautologyp1}(\textit{flist, auxlist}) \\ \land & (\textit{concl} = \text{make-disjunct}(\text{append}(\textit{flist, auxlist})))) \\ \rightarrow & \text{eval}(\textit{concl, alist}) \end{array}$

THEOREM: tautologies-are-true (form-list (*flist*) \land tautologyp (*flist*)) \rightarrow eval (make-disjunct (*flist*), alist)

THEOREM: not-taut-falsify2

(form-list (*flist*)

 \land prop-atomp-list (*auxlist*)

 \land (\neg eval (make-disjunct (*auxlist*), falsify (*auxlist*)))

 $\land \quad (\neg tautologyp1(flist, auxlist))$

 \land (concl = make-disjunct (append (flist, auxlist))))

 \rightarrow (\neg eval(*concl*, falsify-taut(*flist*, *auxlist*)))

THEOREM: truths-are-tautologies

 $(form-list (flist) \land (\neg tautologyp (flist))) \\ \rightarrow \quad (\neg eval (make-disjunct (flist), falsify-taut (flist, nil)))$

EVENT: Enable truths-are-tautologies; name this event 'g2439'.

EVENT: Enable not-taut-falsify2; name this event 'g2440'.

- EVENT: Enable tautologies-are-true; name this event 'g2441'.
- EVENT: Enable taut-eval2; name this event 'g2442'.
- EVENT: Enable form-list-append-nil; name this event 'g2443'.
- EVENT: Enable taut-proof; name this event 'g2444'.
- EVENT: Enable not-taut-false; name this event 'g2445'.
- EVENT: Enable not-falsify-taut; name this event 'g2446'.
- EVENT: Enable append-nlistp; name this event 'g2447'.
- EVENT: Enable falsify-taut; name this event 'g2448'.
- EVENT: Enable formula-cases; name this event 'g2449'.
- EVENT: Enable formula-cases1; name this event 'g2450'.
- EVENT: Enable prop-atomp-falsify; name this event 'g2451'.
- EVENT: Enable prop-atomp-auxlist; name this event 'g2453'.
- EVENT: Enable prop-atomp-list; name this event 'g2454'.
- EVENT: Enable falsify-step; name this event 'g2455'.
- EVENT: Enable falsify; name this event 'g2456'.
- EVENT: Enable not-eval-prop-atomp; name this event 'g2457'.
- EVENT: Enable taut-eval; name this event 'g2458'.
- EVENT: Enable eval-dble-neg-type; name this event 'g2459'.

EVENT: Enable eval-nor-type; name this event 'g2460'.

EVENT: Enable eval-or-type; name this event 'g2461'.

EVENT: Enable eval-prop-atomp; name this event 'g2463'.

EVENT: Enable neg-list-eval; name this event 'g2464'.

EVENT: Enable eval-neg-elem-form; name this event 'g2465'.

EVENT: Enable elem-form-eval; name this event 'g2471'.

EVENT: Enable eval; name this event 'g2472'.

THEOREM: eval-tautologyp (form-list (*flist*) \land eval (make-disjunct (*flist*), falsify-taut (*flist*, **nil**))) \rightarrow tautologyp (*flist*)

DEFINITION: lis-not (*flist*) = **if** *flist* \simeq **nil then nil else** cons (f-not (car (*flist*)), lis-not (cdr (*flist*))) **endif**

DEFINITION: taut-conseq (*flist*, *exp*) = tautologyp (append (lis-not (*flist*), cons (*exp*, **nil**)))

DEFINITION: tautconseq-proof (flist, exp, pflist) = list-detach-proof (flist,

> exp, pflist,taut-proof (append (lis-not (flist), cons (exp, nil))))

THEOREM: list-implies-reduc list-implies (*flist*, *exp*) = make-disjunct (append (lis-not (*flist*), cons (*exp*, **nil**)))

THEOREM: append-exp-form-list (form-list (*flist*) \land formula (*exp*, **t**, 0)) \rightarrow form-list (append (lis-not (*flist*), cons (*exp*, **nil**)))

```
THEOREM: taut-conseq-proves (form-list (flist)
```

- \wedge formula (*exp*, **t**, **0**)
- $\wedge \quad \text{taut-conseq} \left(flist, \ exp \right)$
- \land proves-list (*pflist*, *flist*))
- \rightarrow proves (tautconseq-proof (*flist*, *exp*, *pflist*), *exp*)

EVENT: Enable tautconseq-proof; name this event 'g0276'.

THEOREM: eval-tautconseq (form-list (*flist*)

- \wedge formula (*exp*, **t**, 0)
- $\land \quad \text{eval} \left(\text{make-disjunct} \left(\text{append} \left(\text{lis-not} \left(flist \right), \, \text{cons} \left(exp, \, \mathbf{nil} \right) \right) \right), \\ \quad \text{falsify-taut} \left(\text{append} \left(\text{lis-not} \left(flist \right), \, \text{cons} \left(exp, \, \mathbf{nil} \right) \right), \, \mathbf{nil} \right) \right)$
- \rightarrow taut-conseq (*flist*, *exp*)

EVENT: Enable taut-conseq; name this event 'g0277'.

EVENT: Enable falsify-taut; name this event 'g0282'.

EVENT: Enable formula; name this event 'g0295'.

```
THEOREM: eval-tautconseq-proof-proves
```

```
(eval (make-disjunct (append (lis-not (flist), cons (exp, nil))),
```

- falsify-taut (append (lis-not (*flist*), cons (*exp*, **nil**)), **nil**))
- $\wedge \quad \text{proves-list} \left(\textit{pflist}, \textit{flist} \right)$
- \wedge form-list (*flist*)
- \wedge formula (*exp*, **t**, 0))
- \rightarrow proves (tautconseq-proof (*flist*, *exp*, *pflist*), *exp*)

EVENT: Enable taut-conseq-proves; name this event 'g0283'.

DEFINITION: f-iff-reduc-proof (a, b, pf1, pf2)= tautconseq-proof (list (f-iff (a, b), a), b, list (pf1, pf2))

Index

append, 3 append-exp-form-list, 38 append-nlistp, 35 arg1, 5, 21, 23, 30 arg2, 5, 23, 30 assoc-proof, 8, 10, 12, 16, 19, 28 assoc-proof-proves, 12 assume, 7 atomp, 5, 6, 21 cancel-proof, 25 cancel-proof-proves, 25 collect-free, 3, 4, 10, 13 commut-proof, 13, 15-17, 19, 23, 27, 28commut-proof-proves, 13 conc, 6, 7, 10, 11 contrac-proof, 8, 10, 12, 13, 17, 19, 25, 27 contrac-proof-proves, 12 covering, 4 cut-proof, 8, 10, 12, 13, 25-28 cut-proof-proves, 12 dble-neg-list-count, 22 dble-neg-not-prop-atomp, 21 dble-neg-type, 21-23, 28-30, 33-35 dble-neg-type-form-list, 29 dble-neg-type-proof, 28, 30 dble-neg-type-proof-proves, 28 degree, 2, 5, 9, 11 delete, 3 detach-list-implies, 14 detach-proof, 13, 14 detach-proof-proves1, 13 detach-rule-corr, 14 elem-form, 21, 31, 33 elem-form-eval, 31 equal-axiom1, 8, 11

equal-axiom1-proof, 8, 9, 11

equal-axiom1-proves, 11 equal-axiom2, 7, 8, 11 equal-axiom2-proof, 8, 9, 11 equal-axiom2-proves, 11 eval, 31-34, 36, 38, 39 eval-dble-neg-type, 33 eval-elem-form, 31 eval-make-disjunct, 32 eval-neg-elem-form, 32 eval-nor-type, 33 eval-or-type, 32 eval-prop-atomp, 32 eval-tautconseq, 39 eval-tautconseq-proof-proves, 39 eval-tautologyp, 38 expan-proof, 8, 10, 12, 13, 15-17 expan-proof-proves, 12 f-and, 4, 5 f-equal, 4, 7, 8 f-iff. 5. 39 f-iff-reduc-proof, 39 f-implies, 5, 7, 8, 10, 13, 14 f-not, 4-7, 10-12, 21, 23, 25-28, 30, 32-35, 38 f-or, 4, 5, 7, 8, 10-13, 15-21, 23, 25-28falsify, 34-36 falsify-step, 34 falsify-taut, 35, 36, 38, 39 fn, 2 forall, 5 form-list, 19, 20, 23-25, 27-31, 36, 38, 39 form-list-append, 23 form-list-append-car, 25 form-list-append-nil, 36 formlist-formula-make-disj, 19 formula, 6, 9–20, 23–28, 34, 35, 38, 39formula-cases, 35

formula-cases1, 34 g0250, 21formula-forsome-reduc, 11g0251, 21formula-list-implies, 14g0252, 28formula-not-reduc, 11g0253, 5forsome, 4, 5, 7, 8, 13, 21g0255, 25forsome-intro-proof, 8, 10, 13g0256, 24forsome-intro-proves, 13g0259, 24func-pred, 2–4, 6g0260, 28function-fn, 2g0268, 33g0203, 28g0268, 34g0204, 34g0271, 29g0205, 35g027, 29g0221, 14g0274, 29g0222, 20g0277, 30g0224, 3g0277, 39g0225, 3g0276, 32g0226, 3g0278, 32g0226, 3g0278, 32g0226, 3g0278, 32g0226, 3g0278, 32g0227, 15g0280, 32g0230, 22g0281, 32g0231, 16g0292, 27g0233, 17g0296, 35g0234, 17g0297, 35g0235, 18g0299, 35g0234, 17g0297, 35g0235, 18g0299, 35g0236, 18g0299, 35g0237, 22g0300, 36g0234, 27g2440, 36g0244, 27g2443, 37g0244, 27g2443, 37g0244, 27g2443, 37g0244, 27g2443, 37g0244, 27g2444, 37g0244, 27g2446, 37g0244, 27g2446, 37g0244, 27g2446, 37g0244, 27g2446, 37g0244, 28g2447, 37		0050 01
formula-list-implies, 14 $g0252, 28$ formula-not-reduc, 11 $g0253, 5$ formula-or-reduc, 11 $g0254, 29$ forsome, 4, 5, 7, 8, 13, 21 $g0255, 25$ forsome-intro-proof, 8, 10, 13 $g0256, 24$ forsome-intro-proves, 13 $g0258, 25$ free-for, 4, 9, 11 $g0263, 33$ function, 1, 2, 5, 9, 11 $g0263, 33$ function-fn, 2 $g0264, 33$ $g0203, 28$ $g0269, 34$ $g02020, 14$ $g0273, 29$ $g0221, 14$ $g0273, 29$ $g0224, 33$ $g0277, 39$ $g0225, 35$ $g0277, 39$ $g0224, 3$ $g0277, 39$ $g0225, 3$ $g0278, 32$ $g0228, 15$ $g0280, 32$ $g0230, 22$ $g0280, 32$ $g0231, 16$ $g0292, 27$ $g0232, 16$ $g0292, 33$ $g0233, 17$ $g0298, 35$ $g0234, 17$ $g0298, 35$ $g0234, 17$ $g0299, 35$ $g0234, 17$ $g0243, 37$ $g0244, 27$ $g2443, 37$ $g0244, 27$ $g2443, 37$ $g0244, 27$ $g2443, 37$ $g0244, 27$ $g2443, 37$ $g0244, 27$ $g2445, 37$ $g0244, 27$ $g2445, 37$ $g0245, 23$ $g2446, 37$. .
formula-not-reduc, 11 $g0253, 5$ formula-or-reduc, 11 $g0254, 29$ forsome, 4, 5, 7, 8, 13, 21 $g0255, 25$ forsome-intro-proof, 8, 10, 13 $g0256, 24$ forsome-intro-proves, 13 $g0258, 25$ free-for, 4, 9, 11 $g0259, 24$ func-pred, 2-4, 6 $g0260, 28$ function, 1, 2, 5, 9, 11 $g0263, 33$ g0203, 28 $g0264, 33$ g0204, 34 $g0271, 29$ g0220, 14 $g0271, 29$ g0222, 20 $g0275, 30$ g0224, 3 $g0277, 39$ g0225, 3 $g0277, 39$ g0226, 3 $g0277, 39$ g0227, 15 $g0280, 32$ g0228, 15 $g0280, 32$ g0230, 22 $g0280, 32$ g0231, 16 $g0292, 27$ g0232, 16 $g0292, 33$ g0234, 17 $g0297, 35$ g0235, 18 $g0299, 35$ g0236, 18 $g0299, 35$ g0237, 22 $g0300, 36$ g0238, 22 $g2440, 36$ g0244, 27 $g2443, 37$ g0244, 27 $g2443, 37$ g0245, 23 $g2444, 37$ g0244, 27 $g2445, 37$ g0244, 27 $g2445, 37$		
formula-or-reduc, 11 $g0254, 29$ forsome, 4, 5, 7, 8, 13, 21 $g0255, 25$ forsome-intro-proof, 8, 10, 13 $g0256, 24$ forsome-intro-proves, 13 $g0258, 25$ free-for, 4, 9, 11 $g0259, 24$ func-pred, 2-4, 6 $g0260, 28$ function, 1, 2, 5, 9, 11 $g0268, 33$ $g0203, 28$ $g0268, 34$ $g0204, 34$ $g0271, 29$ $g0222, 14$ $g0274, 29$ $g0224, 34$ $g0274, 29$ $g0222, 20$ $g0275, 30$ $g0226, 3$ $g0277, 39$ $g0224, 3$ $g0277, 39$ $g0225, 3$ $g0278, 32$ $g0226, 3$ $g0278, 32$ $g0228, 15$ $g0280, 32$ $g0223, 16$ $g0292, 27$ $g0233, 17$ $g0296, 35$ $g0234, 17$ $g0297, 35$ $g0234, 17$ $g0243, 32$ $g0244, 27$ $g2443, 37$ <td>1 <i>i</i></td> <td>e</td>	1 <i>i</i>	e
forsome, 4, 5, 7, 8, 13, 21 $g0255, 25$ forsome-intro-proof, 8, 10, 13 $g0256, 24$ forsome-intro-proves, 13 $g0258, 25$ free-for, 4, 9, 11 $g0259, 24$ func-pred, 2–4, 6 $g0260, 28$ function, 1, 2, 5, 9, 11 $g0263, 33$ function-fn, 2 $g0264, 33$ $g0203, 28$ $g0269, 34$ $g0202, 34$ $g0271, 29$ $g0202, 35$ $g0272, 29$ $g0222, 20$ $g0273, 29$ $g0222, 20$ $g0277, 39$ $g0224, 3$ $g0277, 39$ $g0225, 3$ $g0277, 39$ $g0227, 15$ $g0280, 32$ $g0228, 15$ $g0280, 32$ $g0230, 22$ $g0280, 32$ $g0233, 17$ $g0292, 39$ $g0231, 16$ $g0292, 27$ $g0233, 17$ $g0296, 35$ $g0234, 17$ $g0297, 35$ $g0234, 17$ $g0243, 27$ $g0244, 27$ $g2433, 37$ $g0244, 27$ $g2443, 37$ $g0244, 27$ $g2443, 37$ $g0244, 27$ $g2443, 37$ $g0244, 27$ $g2443, 37$ $g0245, 23$ $g2446, 37$		
forsome-intro-proof, 8, 10, 13 $g0256, 24$ forsome-intro-proves, 13 $g0258, 25$ free-for, 4, 9, 11 $g0259, 24$ func-pred, 2–4, 6 $g0260, 28$ function, 1, 2, 5, 9, 11 $g0263, 33$ function-fn, 2 $g0264, 33$ $g0203, 28$ $g0269, 34$ $g02020, 14$ $g0271, 29$ $g0221, 14$ $g0273, 29$ $g0222, 20$ $g0277, 39$ $g0224, 3$ $g0277, 39$ $g0225, 35$ $g0277, 39$ $g0224, 3$ $g0277, 39$ $g0225, 3$ $g0277, 39$ $g0222, 15$ $g0277, 39$ $g0224, 3$ $g0278, 32$ $g0228, 15$ $g0280, 32$ $g0230, 22$ $g0283, 39$ $g0231, 16$ $g0292, 27$ $g0234, 17$ $g0297, 35$ $g0234, 17$ $g0298, 35$ $g0234, 17$ $g0299, 35$ $g0234, 22$ $g2440, 36$ $g0244, 27$ $g2441, 37$ $g0244, 27$ $g2443, 37$ $g0244, 27$ $g2443, 37$ $g0244, 27$ $g2444, 37$ $g0244, 27$ $g2446, 37$	formula-or-reduc, 11	g0254, 29
forsome-intro-proves, 13 $g0258, 25$ free-for, 4, 9, 11 $g0259, 24$ func-pred, 2–4, 6 $g0260, 28$ function, 1, 2, 5, 9, 11 $g0263, 33$ function-fn, 2 $g0264, 33$ $g0203, 28$ $g0269, 34$ $g0204, 34$ $g0271, 29$ $g0220, 14$ $g0273, 29$ $g0222, 20$ $g0274, 29$ $g0222, 20$ $g0275, 30$ $g0225, 3$ $g0277, 39$ $g0224, 3$ $g0277, 39$ $g0225, 3$ $g0277, 39$ $g0224, 3$ $g0278, 32$ $g0228, 15$ $g0280, 32$ $g0228, 15$ $g0281, 32$ $g0230, 22$ $g0282, 39$ $g0231, 16$ $g0292, 27$ $g0233, 17$ $g0296, 35$ $g0234, 17$ $g0297, 35$ $g0235, 18$ $g0298, 35$ $g0236, 18$ $g0298, 35$ $g0237, 22$ $g0300, 36$ $g0244, 27$ $g2440, 36$ $g0244, 27$ $g2443, 37$ $g0244, 27$ $g2443, 37$ $g0244, 27$ $g2443, 37$ $g0244, 27$ $g2446, 37$	forsome, 4, 5, 7, 8, 13, 21	g0255, 25
free-for, 4, 9, 11 $g0259, 24$ func-pred, 2–4, 6 $g0260, 28$ function, 1, 2, 5, 9, 11 $g0263, 33$ function-fn, 2 $g0264, 33$ $g0203, 28$ $g0269, 34$ $g0204, 34$ $g0271, 29$ $g0220, 14$ $g0273, 29$ $g0221, 14$ $g0273, 29$ $g0222, 20$ $g0275, 30$ $g0225, 3$ $g0277, 39$ $g0224, 3$ $g0277, 39$ $g0225, 3$ $g0277, 39$ $g0226, 3$ $g0278, 32$ $g0228, 15$ $g0280, 32$ $g0228, 15$ $g0281, 32$ $g0228, 15$ $g0281, 32$ $g0230, 22$ $g0282, 39$ $g0231, 16$ $g0292, 27$ $g0233, 17$ $g0296, 35$ $g0234, 17$ $g0297, 35$ $g0235, 18$ $g0298, 35$ $g0236, 18$ $g0299, 35$ $g0237, 22$ $g0300, 36$ $g0244, 27$ $g2443, 37$ $g0244, 27$ $g2443, 37$ $g0244, 27$ $g2443, 37$ $g0244, 27$ $g2445, 37$ $g0244, 27$ $g2446, 37$	forsome-intro-proof, 8, 10, 13	g0256, 24
func-pred, 2–4, 6g0260, 28function, 1, 2, 5, 9, 11g0263, 33function-fn, 2g0264, 33g0203, 28g0268, 34g0204, 34g0271, 29g0205, 35g0272, 29g0220, 14g0273, 29g0222, 20g0275, 30g0223, 3g0276, 39g0224, 3g0277, 39g0225, 3g0278, 32g0226, 3g0278, 32g0227, 15g0280, 32g0229, 20g0281, 32g0229, 20g0282, 39g0230, 22g0283, 39g0231, 16g0292, 27g0232, 16g0297, 35g0234, 17g0297, 35g0235, 18g0299, 35g0236, 18g0299, 35g0237, 22g0300, 36g0240, 22g2440, 36g0244, 27g2441, 37g0245, 23g2444, 37g0244, 27g2445, 37g0244, 27g2446, 37	forsome-intro-proves, 13	g0258, 25
func-pred, 2–4, 6g0260, 28function, 1, 2, 5, 9, 11g0263, 33function-fn, 2g0264, 33g0203, 28g0269, 34g0204, 34g0271, 29g0205, 35g0272, 29g0220, 14g0273, 29g0222, 20g0275, 30g0223, 3g0276, 39g0226, 3g0277, 39g0227, 15g0280, 32g0228, 15g0281, 32g0230, 22g0283, 39g0231, 16g0292, 27g0232, 16g0295, 39g0233, 17g0296, 35g0236, 18g0299, 35g0237, 22g0300, 36g0238, 22g1253, 32g0244, 27g2441, 37g0244, 27g2443, 37g0244, 27g2443, 37g0244, 27g2446, 37	free-for, 4, 9, 11	g0259, 24
function, 1, 2, 5, 9, 11 $g0263, 33$ function-fn, 2 $g0264, 33$ $g0203, 28$ $g0269, 34$ $g0204, 34$ $g0271, 29$ $g0205, 35$ $g0272, 29$ $g0220, 14$ $g0273, 29$ $g0221, 14$ $g0274, 29$ $g0222, 20$ $g0275, 30$ $g0223, 3$ $g0276, 39$ $g0224, 3$ $g0277, 39$ $g0225, 3$ $g0277, 39$ $g0224, 3$ $g0277, 39$ $g0222, 15$ $g0278, 32$ $g0228, 15$ $g0280, 32$ $g0228, 15$ $g0280, 32$ $g0230, 22$ $g0283, 39$ $g0231, 16$ $g0292, 27$ $g0233, 17$ $g0296, 35$ $g0234, 17$ $g0297, 35$ $g0236, 18$ $g0299, 35$ $g0237, 22$ $g0300, 36$ $g0238, 22$ $g1253, 32$ $g0244, 27$ $g2443, 37$ $g0244, 27$ $g2444, 37$ $g0244, 27$ $g2444, 37$ $g0244, 27$ $g2445, 37$ $g0248, 27$ $g2446, 37$	func-pred, 2–4, 6	g0260, 28
function-fn, 2 $g0264, 33$ $g0203, 28$ $g0268, 34$ $g0204, 34$ $g0271, 29$ $g0205, 35$ $g0272, 29$ $g0220, 14$ $g0273, 29$ $g0221, 14$ $g0274, 29$ $g0222, 20$ $g0275, 30$ $g0223, 3$ $g0276, 39$ $g0224, 3$ $g0277, 39$ $g0225, 3$ $g0277, 39$ $g0227, 15$ $g0280, 32$ $g0228, 15$ $g0280, 32$ $g0230, 22$ $g0282, 39$ $g0231, 16$ $g0292, 27$ $g0235, 18$ $g0299, 35$ $g0236, 18$ $g0299, 35$ $g0236, 18$ $g0299, 35$ $g0237, 22$ $g2439, 36$ $g0244, 27$ $g2441, 37$ $g0244, 27$ $g2442, 37$ $g0244, 27$ $g2443, 37$ $g0244, 27$ $g2445, 37$ $g0244, 27$ $g2446, 37$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	g0203, 28	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	o	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	o	e
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	e
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	o	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	o	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0 ,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
g0244, 27g2443, 37g0245, 23g2444, 37g0247, 20g2445, 37g0248, 27g2446, 37		
g0245, 23g2444, 37g0247, 20g2445, 37g0248, 27g2446, 37	0	0 ,
g0247, 20g2445, 37g0248, 27g2446, 37	o	
g0248, 27 g2446, 37	•	
8-110, 01	<u> </u>	e
g0243, 20 g2447, 37	o	e
	502 10, 20	$g_{2447}, 37$

0440 97	
g2448, 37	insert-proof-proves, 16
g2449, 37	lessp-list-count, 22
g2450, 37	lis-not, 38, 39
g2451, 37	
g2453, 37	list-count, 21, 22
g2454, 37	list-detach-proof, 14, 38
g2455, 37	list-implies, 14, 38
g2456, 37	list-implies-reduc, 38
g2457, 37	listp-dble-neg-proof, 28
g2458, 37	listp-dble-neg-proof-proves, 28
g2459, 37	listp-elem-form, 31
g2460, 38	listp-nor-type-proof, 26, 27
g2461, 38	listp-nor-type-proof-proves, 26
g2463, 38	
g2464, 38	m-proof, 19, 20, 24–26
g2465, 38	m-proof-proves, 20
g2471, 38	m-proof-proves1, 20
g2472, 38	m1-proof, 15, 17–19
g2737, 8	m1-proof-proves, 18
g2752, 12	m1-proof-proves1, 15
g2753, 12	m2-proof, 17–19, 23, 24
g2754, 12	m2-proof-proves, 18
g2755, 12	m2-proof-proves1, 18
g2756, 12	m2-proof-step, 16, 17
g2759, 12	m2-proof-step-proves, 17
g2760, 12	m2-proof-step-proves1, 17
g2761, 12	m3-proof, 18–20
g2762, 12	m3-proof-proves, 20
g2763, 13	m3-proof-proves1, 20
g2764, 13	make-disjunct, 15, 17–20, 24, 25, 27–
g2765, 13	34, 36, 38, 39
g2766, 13	member-append, 32
g2767, 13	member-eval, 31
g2101, 15	
hint1, 9, 10	neg, 6, 22, 23
hint2, 9, 10	neg-elem-form, 21
hint3, 9, 10	neg-list, 22–24, 30, 32, 34, 35
hint4, 9, 10	neg-list-eval, 32
111114, 9, 10	neg-list-proof, 23, 24
ident-axiom, 7, 12	neg-list-proof-proves, 24
ident-axiom-proof, 8, 9, 12	neg-list-reduc, 23
ident-axiom-proves, 12	neg-proof, 23, 24
index, 2	neg-proof-proves, 23
insert-proof, 16, 17	nil-intersect, 4
moert-proof, 10, 17	

nlistp-dble-neg-proof, 27, 28 nlistp-dble-neg-proof-proves, 27 nlistp-eval, 31 nlistp-neg-list, 24 nlistp-nor-type-proof, 25-27 nlistp-nor-type-proof-proves, 26 nor-type, 21-23, 27, 29, 30, 33-35 nor-type-form-list, 29 nor-type-form-list2, 29 nor-type-list-count1, 22 nor-type-list-count2, 22 nor-type-not-prop-atomp, 21 nor-type-proof, 27, 30 nor-type-proof-proves, 27 not-eval, 31 not-eval-prop-atomp, 33 not-falsify-taut, 35 not-member-delete, 3 not-taut-false, 36 not-taut-falsify2, 36 numberp-fix, 2

or-eval, 31 or-type, 21–23, 29, 30, 32, 34, 35 or-type-form-list, 29 or-type-list-count, 22 or-type-not-prop-atomp, 21 or-type-proof, 28–30 or-type-proof-proves, 29

p, 2

pairequals, 7, 8 predicate, 2, 3, 5, 9, 11 predicate-f-equal, 3 predicate-p, 2 prf, 9–11 prop-atom-proof1, 24, 30 prop-atom-proof2, 25, 30 prop-atom-proof2-proves, 25 prop-atomp, 21, 22, 30, 33–35 prop-atomp-auxlist, 34 prop-atomp-auxlist2, 34 prop-atomp-falsify, 34

prop-atomp-list, 33, 34, 36 prop-atomp-reduc, 33 prop-axiom, 7 prop-axiom-proof, 7, 9, 11, 13, 23, 25 - 28prop-axiom-proves, 11 proves, 11-18, 20, 23-31, 36, 39 proves-is-formula, 11 proves-is-formula-again, 11 proves-list, 13, 14, 39 quantifier, 2-4, 6 rt-assoc-proof, 15-17, 26 rt-assoc-proof-proves, 16 rt-expan-proof, 15, 17, 25, 27 rt-expan-proof-proves, 15 sentence, 4 set-equal, 7 sub-proof, 9, 10 subset, 7, 19, 20, 24 subset-append, 24 subset-append-car, 24 subset-car, 24 subset-cons, 19 subset-ident, 24 subst, 6, 7 subst-axiom, 7, 8, 11 subst-axiom-proof, 8, 9, 11 subst-axiom-proves, 11 taut-conseq, 38, 39 taut-conseq-proves, 39 taut-eval, 33 taut-eval2, 36 taut-proof, 36, 38 taut-proof1, 30, 31, 36 taut-thm1, 30 taut-thm2, 31 tautconseq-proof, 38, 39 tautologies-are-true, 36 tautology-theorem, 36 tautologyp, 36, 38

 $\begin{array}{c} {\rm tautologyp1,\;22,\;23,\;30,\;31,\;33,\;35,}\\ {\rm 36}\\ {\rm termp,\;5,\;9,\;11}\\ {\rm truths-are-tautologies,\;36} \end{array}$

union, 2

v, 2 var-list, 5, 9, 11 var-set, 5 variable, 2–6, 9–13 variable-v, 2