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Event: Start with the initial thm theory.

;Annotated script for mechanical proof of the Tautology theorem.
;Proof involves -
;Definition of proof-checker for Schoenfield’s FOL.
;Proof of several derived inference rules, primarily the
;subset lemma.
;Definition of tautology-checker.
;Every tautology has a proof.
;Correctness of tautology-checker - every tautology is
;always logically-true, and all logical-truths are tautologies.
;First, functions, variables and predicate symbols.

Definition:
function (fn)
= ((fn = list (’f, cadr (fn), caddr (fn)))

∧ (cadr (fn) ∈ N)
∧ (caddr (fn) ∈ N))
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Definition:
variable (x ) = ((x = list (’x, cadr (x ))) ∧ (cadr (x ) ∈ N))

Definition:
predicate (p)
= (((p = list (’p, cadr (p), caddr (p)))

∧ (cadr (p) ∈ N)
∧ (caddr (p) ∈ N))
∨ (p = ’equal))

Definition:
degree (fn)
= if fn = ’equal then 2

else caddr (fn) endif

Definition: index (fn) = cadr (fn)

Definition: func-pred (x ) = (function (x ) ∨ predicate (x ))

Definition: v (x ) = list (’x, fix (x ))

Theorem: numberp-fix
fix (x ) ∈ N

Theorem: variable-v
variable (v (x ))

Definition: fn (x , y) = list (’f, fix (x ), fix (y))

Definition: p (x , y) = list (’p, fix (x ), fix (y))

Theorem: function-fn
function (fn (x , y))

Theorem: predicate-p
predicate (p (x , y))

;quantifer, there exists.

Definition: quantifier (x ) = (x = ’forsome)

Definition:
(x ∪ y)
= if listp (x )

then if car (x ) ∈ y then cdr (x ) ∪ y
else cons (car (x ), cdr (x ) ∪ y) endif

else y endif
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Event: Enable variable; name this event ‘g0223’.

Event: Enable quantifier; name this event ‘g0224’.

Theorem: predicate-f-equal
predicate (’equal)

Event: Enable function; name this event ‘g0225’.

Event: Enable predicate; name this event ‘g0226’.

Definition:
append (x , y)
= if listp (x ) then cons (car (x ), append (cdr (x ), y))

else y endif

Definition:
delete (x , y)
= if listp (y)

then if x = car (y) then delete (x , cdr (y))
else cons (car (y), delete (x , cdr (y))) endif

else y endif

Theorem: not-member-delete
x 6∈ delete (x , y)

;returns list of free variables in EXP.

Definition:
collect-free (exp, flg)
= if listp (exp)

then if flg = t
then if variable (exp) then cons (exp, nil)

elseif quantifier (car (exp)) ∧ listp (cdr (exp))
then delete (cadr (exp), collect-free (cddr (exp), ’list))
elseif func-pred (car (exp))

∨ (car (exp) = ’not)
∨ (car (exp) = ’or)

then collect-free (cdr (exp), ’list)
else nil endif

else append (collect-free (car (exp), t),
collect-free (cdr (exp), ’list)) endif

else nil endif
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Definition: sentence (exp) = (collect-free (exp, t) = nil)

;returns bound variables in EXP that surround free occurrences of VAR.

Definition:
covering (exp, var , flg)
= if listp (exp)

then if flg = t
then if variable (exp) then nil

elseif quantifier (car (exp)) ∧ listp (cdr (exp))
then if cadr (exp) = var then nil

elseif var ∈ collect-free (cddr (exp), ’list)
then cons (cadr (exp), covering (cddr (exp), var , ’list))
else nil endif

elseif func-pred (car (exp))
∨ (car (exp) = ’not)
∨ (car (exp) = ’or)

then covering (cdr (exp), var , ’list)
else nil endif

else append (covering (car (exp), var , t),
covering (cdr (exp), var , ’list)) endif

else nil endif

;X and Y are disjoint.

Definition:
nil-intersect (x , y)
= if listp (x ) then (car (x ) 6∈ y) ∧ nil-intersect (cdr (x ), y)

else t endif

;TERM is free for VAR in EXP.

Definition:
free-for (exp, var , term, flg)
= nil-intersect (covering (exp, var , flg), collect-free (term, t))

Definition: f-equal (x , y) = list (’equal, x , y)

Definition: f-not (x ) = list (’not, x )

Definition: f-or (x , y) = list (’or, x , y)

Definition: forsome (x , y) = list (’forsome, x , y)

Definition: f-and (x , y) = f-not (f-or (f-not (x ), f-not (y)))

4



Definition: f-implies (x , y) = f-or (f-not (x ), y)

Definition: ∀ var exp = f-not (forsome (var , f-not (exp)))

Definition: f-iff (x , y) = f-and (f-implies (x , y), f-implies (y , x ))

Definition:
var-list (list , n)
= if n ' 0 then list = nil

else variable (car (list)) ∧ var-list (cdr (list), n − 1) endif

Definition:
var-set (list , n)
= if n ' 0 then list = nil

else variable (car (list))
∧ (car (list) 6∈ cdr (list))
∧ var-set (cdr (list), n − 1) endif

;Recognizer for terms.

Definition:
termp (exp, flg , count)
= if flg = t

then if exp ' nil then f
else variable (exp)

∨ (function (car (exp))
∧ termp (cdr (exp),

’list,
degree (car (exp)))) endif

elseif (exp ' nil) ∨ (count ' 0) then (exp = nil) ∧ (count ' 0)
else termp (car (exp), t, 0) ∧ termp (cdr (exp), ’list, count − 1) endif

Definition: arg1 (x ) = cadr (x )

Definition: arg2 (x ) = caddr (x )

;EXP is an atom, pred. symbol followed by list of terms.

Definition:
atomp (exp)
= (predicate (car (exp)) ∧ termp (cdr (exp), ’list, degree (car (exp))))

Event: Enable atomp; name this event ‘g0253’.

;EXP is a formula
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Definition:
formula (exp, flg , count)
= if flg = t

then if exp ' nil then f
else atomp (exp)

∨ ((car (exp) = ’not)
∧ formula (cdr (exp), ’list, 1))

∨ ((car (exp) = ’or)
∧ formula (cdr (exp), ’list, 2))

∨ ((car (exp) = ’forsome)
∧ variable (cadr (exp))
∧ formula (cddr (exp), ’list, 1)) endif

elseif (exp ' nil) ∨ (count ' 0) then (exp = nil) ∧ (count ' 0)
else formula (car (exp), t, 0)

∧ formula (cdr (exp), ’list, count − 1) endif

;Result of substituting TERM for VAR in EXP.

Definition:
subst (exp, var , term, flg)
= if listp (exp)

then if flg = t
then if variable (exp)

then if exp = var then term
else exp endif

elseif quantifier (car (exp)) ∧ listp (cdr (exp))
then if cadr (exp) = var then exp

else cons (car (exp),
cons (cadr (exp),

subst (cddr (exp), var , term, ’list))) endif
elseif func-pred (car (exp))

∨ (car (exp) = ’not)
∨ (car (exp) = ’or)

then cons (car (exp), subst (cdr (exp), var , term, ’list))
else exp endif

else cons (subst (car (exp), var , term, t),
subst (cdr (exp), var , term, ’list)) endif

else exp endif

Definition:
neg (exp1 , exp2 ) = ((exp1 = f-not (exp2 )) ∨ (exp2 = f-not (exp1 )))

Definition:
conc (pf , flg)
= if pf ' nil then nil
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elseif flg = t then caddr (pf )
else cons (conc (car (pf ), t), conc (cdr (pf ), ’list)) endif

Definition:
subset (x , y)
= if listp (x ) then (car (x ) ∈ y) ∧ subset (cdr (x ), y)

else t endif

Definition: set-equal (x , y) = (subset (x , y) ∧ subset (y , x ))

;The axioms: propositional, substitution, identity, equality for functions and predicates.

Definition: prop-axiom (exp) = f-or (f-not (exp), exp)

Definition:
subst-axiom (exp, var , term)
= f-implies (subst (exp, var , term, t), forsome (var , exp))

Definition: ident-axiom (var) = f-equal (var , var)

Definition:
pairequals (vars1 , vars2 , exp)
= if listp (vars1 )

then f-implies (f-equal (car (vars1 ), car (vars2 )),
pairequals (cdr (vars1 ), cdr (vars2 ), exp))

else exp endif

Definition:
equal-axiom2 (vars1 , vars2 , pr)
= pairequals (vars1 , vars2 , f-implies (cons (pr , vars1 ), cons (pr , vars2 )))

Definition:
assume (exp, list , flg)
= if listp (list)

then if (caaar (list) = flg) ∧ (exp = cadar (list))
then cdr (list)
else assume (exp, cdr (list), flg) endif

else f endif

;Proof-constructors

Definition:
prop-axiom-proof (exp)
= list (’axiom, list (’prop-axiom, exp), prop-axiom (exp))
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Definition:
subst-axiom-proof (exp, var , term)
= list (’axiom,

list (’subst-axiom, exp, var , term),
subst-axiom (exp, var , term))

Definition:
ident-axiom-proof (var)
= list (’axiom, list (’ident-axiom, var), f-equal (var , var))

Definition:
equal-axiom1 (vars1 , vars2 , fn)
= pairequals (vars1 , vars2 , f-equal (cons (fn, vars1 ), cons (fn, vars2 )))

Definition:
equal-axiom1-proof (fn, vars1 , vars2 )
= list (’axiom,

list (’equal-axiom1, fn, vars1 , vars2 ),
equal-axiom1 (vars1 , vars2 , fn))

Definition:
equal-axiom2-proof (pr , vars1 , vars2 )
= list (’axiom,

list (’equal-axiom2, pr , vars1 , vars2 ),
equal-axiom2 (vars1 , vars2 , pr))

Definition:
expan-proof (a, b, pf ) = list (’rule, list (’expan, a, b), f-or (a, b), pf )

Definition:
contrac-proof (a, pf ) = list (’rule, list (’contrac, a), a, pf )

Definition:
assoc-proof (a, b, c, pf )
= list (’rule, list (’assoc, a, b, c), f-or (f-or (a, b), c), pf )

Definition:
cut-proof (a, b, c, pf1 , pf2 )
= list (’rule, list (’cut, a, b, c), f-or (b, c), list (pf1 , pf2 ))

Definition:
forsome-intro-proof (var , a, b, pf )
= list (’rule, list (’e-intro, var , a, b), f-implies (forsome (var , a), b), pf )

Event: Disable atomp; name this event ‘g2737’.
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Definition: hint1 (pf ) = caadr (pf )

Definition: hint2 (pf ) = cadadr (pf )

Definition: hint3 (pf ) = caddadr (pf )

Definition: hint4 (pf ) = cadddadr (pf )

Definition: sub-proof (pf ) = cadddr (pf )

;The proof-checker, PF is a proof.

Definition:
prf (pf )
= if pf ' nil then f

elseif car (pf ) = ’axiom
then if hint1 (pf ) = ’prop-axiom

then formula (hint2 (pf ), t, 0)
∧ (pf = prop-axiom-proof (hint2 (pf )))

elseif hint1 (pf ) = ’subst-axiom
then formula (hint2 (pf ), t, 0)

∧ variable (hint3 (pf ))
∧ termp (hint4 (pf ), t, 0)
∧ free-for (hint2 (pf ), hint3 (pf ), hint4 (pf ), t)
∧ (pf = subst-axiom-proof (hint2 (pf ),

hint3 (pf ),
hint4 (pf )))

elseif hint1 (pf ) = ’ident-axiom
then variable (hint2 (pf ))

∧ (pf = ident-axiom-proof (hint2 (pf )))
elseif hint1 (pf ) = ’equal-axiom1
then function (hint2 (pf ))

∧ var-list (hint3 (pf ), degree (hint2 (pf )))
∧ var-list (hint4 (pf ), degree (hint2 (pf )))
∧ (pf = equal-axiom1-proof (hint2 (pf ),

hint3 (pf ),
hint4 (pf )))

elseif hint1 (pf ) = ’equal-axiom2
then predicate (hint2 (pf ))

∧ var-list (hint3 (pf ), degree (hint2 (pf )))
∧ var-list (hint4 (pf ), degree (hint2 (pf )))
∧ (pf = equal-axiom2-proof (hint2 (pf ),

hint3 (pf ),
hint4 (pf )))

else f endif
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elseif car (pf ) = ’rule
then if hint1 (pf ) = ’expan

then formula (hint2 (pf ), t, 0)
∧ (pf = expan-proof (hint2 (pf ),

hint3 (pf ),
sub-proof (pf )))

∧ (conc (sub-proof (pf ), t) = hint3 (pf ))
∧ prf (sub-proof (pf ))

elseif hint1 (pf ) = ’contrac
then (pf = contrac-proof (hint2 (pf ), sub-proof (pf )))

∧ (conc (sub-proof (pf ), t) = f-or (hint2 (pf ), hint2 (pf )))
∧ prf (sub-proof (pf ))

elseif hint1 (pf ) = ’assoc
then (pf = assoc-proof (hint2 (pf ),

hint3 (pf ),
hint4 (pf ),
sub-proof (pf )))

∧ (conc (sub-proof (pf ), t)
= f-or (hint2 (pf ), f-or (hint3 (pf ), hint4 (pf ))))

∧ prf (sub-proof (pf ))
elseif hint1 (pf ) = ’cut
then (pf = cut-proof (hint2 (pf ),

hint3 (pf ),
hint4 (pf ),
car (sub-proof (pf )),
cadr (sub-proof (pf ))))

∧ (conc (sub-proof (pf ), ’list)
= list (f-or (hint2 (pf ), hint3 (pf )),

f-or (f-not (hint2 (pf )), hint4 (pf ))))
∧ prf (car (sub-proof (pf )))
∧ prf (cadr (sub-proof (pf )))

elseif hint1 (pf ) = ’e-intro
then variable (hint2 (pf ))

∧ (pf = forsome-intro-proof (hint2 (pf ),
hint3 (pf ),
hint4 (pf ),
sub-proof (pf )))

∧ (hint2 (pf ) 6∈ collect-free (hint4 (pf ), t))
∧ (conc (sub-proof (pf ), t)

= f-implies (hint3 (pf ), hint4 (pf )))
∧ prf (sub-proof (pf ))

else f endif
else f endif
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Theorem: formula-or-reduc
formula (list (’or, a, b), t, 0) = (formula (a, t, 0) ∧ formula (b, t, 0))

Theorem: formula-not-reduc
formula (list (’not, a), t, 0) = formula (a, t, 0)

Theorem: formula-forsome-reduc
formula (list (’forsome, x , a), t, 0) = (variable (x ) ∧ formula (a, t, 0))

;PF is a valid proof of EXP.

Definition:
proves (pf , exp) = ((conc (pf , t) = exp) ∧ formula (exp, t, 0) ∧ prf (pf ))

Theorem: proves-is-formula
proves (pf , exp) → formula (exp, t, 0)

Theorem: proves-is-formula-again
(¬ formula (exp, t, 0)) → (¬ proves (pf , exp))

;Getting rid of PRF by lemmas.

Theorem: prop-axiom-proves
(formula (exp, t, 0) ∧ (concl = f-or (f-not (exp), exp)))
→ proves (prop-axiom-proof (exp), concl)

Theorem: subst-axiom-proves
(formula (concl , t, 0)
∧ variable (var)
∧ termp (term, t, 0)
∧ free-for (exp, var , term, t)
∧ (concl = subst-axiom (exp, var , term)))
→ proves (subst-axiom-proof (exp, var , term), concl)

Theorem: equal-axiom1-proves
(function (fn)
∧ var-list (vars1 , degree (fn))
∧ var-list (vars2 , degree (fn))
∧ formula (concl , t, 0)
∧ (concl = equal-axiom1 (vars1 , vars2 , fn)))
→ proves (equal-axiom1-proof (fn, vars1 , vars2 ), concl)

Theorem: equal-axiom2-proves
(predicate (pr)
∧ var-list (vars1 , degree (pr))
∧ var-list (vars2 , degree (pr))
∧ formula (concl , t, 0)
∧ (concl = equal-axiom2 (vars1 , vars2 , pr)))
→ proves (equal-axiom2-proof (pr , vars1 , vars2 ), concl)
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Theorem: ident-axiom-proves
(variable (var) ∧ (concl = ident-axiom (var)) ∧ formula (concl , t, 0))
→ proves (ident-axiom-proof (var), concl)

Theorem: expan-proof-proves
(formula (a, t, 0) ∧ proves (pf , b) ∧ (concl = f-or (a, b)))
→ proves (expan-proof (a, b, pf ), concl)

Theorem: contrac-proof-proves
proves (pf , f-or (a, a)) → proves (contrac-proof (a, pf ), a)

Theorem: assoc-proof-proves
(proves (pf , f-or (a, f-or (b, c))) ∧ (concl = f-or (f-or (a, b), c)))
→ proves (assoc-proof (a, b, c, pf ), concl)

Theorem: cut-proof-proves
(proves (pf1 , f-or (a, b))
∧ proves (pf2 , f-or (f-not (a), c))
∧ (concl = f-or (b, c)))
→ proves (cut-proof (a, b, c, pf1 , pf2 ), concl)

;disabling the proof-constructors since the lemmas above show they work.

Event: Enable prop-axiom-proof; name this event ‘g2752’.

Event: Enable subst-axiom-proof; name this event ‘g2753’.

Event: Enable equal-axiom1-proof; name this event ‘g2754’.

Event: Enable equal-axiom2-proof; name this event ‘g2755’.

Event: Enable ident-axiom-proof; name this event ‘g2756’.

Event: Enable expan-proof; name this event ‘g2759’.

Event: Enable contrac-proof; name this event ‘g2760’.

Event: Enable assoc-proof; name this event ‘g2761’.

Event: Enable cut-proof; name this event ‘g2762’.
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Theorem: forsome-intro-proves
(proves (pf , f-implies (a, b))
∧ (var 6∈ collect-free (b, t))
∧ variable (var)
∧ (a-prime = f-implies (forsome (var , a), b)))
→ proves (forsome-intro-proof (var , a, b, pf ), a-prime)

Event: Enable forsome-intro-proof; name this event ‘g2763’.

Event: Enable prf; name this event ‘g2764’.

Event: Enable proves; name this event ‘g2765’.

Definition:
commut-proof (a, b, pf ) = cut-proof (a, b, a, pf , prop-axiom-proof (a))

;The first derived inference rule - commutativity of disjunction.

Theorem: commut-proof-proves
(proves (pf , f-or (a, b)) ∧ formula (f-or (a, b), t, 0) ∧ (concl = f-or (b, a)))
→ proves (commut-proof (a, b, pf ), concl)

Event: Enable commut-proof; name this event ‘g2766’.

;Modus Ponens.

Definition:
detach-proof (a, b, pf1 , pf2 )
= contrac-proof (b,

cut-proof (a,
b,
b,
commut-proof (b, a, expan-proof (b, a, pf1 )),
pf2 ))

Theorem: detach-proof-proves1
(proves (pf1 , a) ∧ proves (pf2 , f-implies (a, b)) ∧ formula (b, t, 0))
→ proves (detach-proof (a, b, pf1 , pf2 ), b)

Event: Enable detach-proof; name this event ‘g2767’.

Definition:
proves-list (pflist , explist)
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= if explist ' nil then pflist = nil
else proves (car (pflist), car (explist))

∧ proves-list (cdr (pflist), cdr (explist)) endif

Definition:
list-implies (list , conc)
= if list ' nil then conc

elseif cdr (list) ' nil then f-implies (car (list), conc)
else f-implies (car (list), list-implies (cdr (list), conc)) endif

Definition:
list-detach-proof (alist , b, pflist , pf2 )
= if alist ' nil then pf2

elseif cdr (alist) ' nil then detach-proof (car (alist), b, car (pflist), pf2 )
else list-detach-proof (cdr (alist),

b,
cdr (pflist),
detach-proof (car (alist),

list-implies (cdr (alist), b),
car (pflist),
pf2 )) endif

;Chained Modus Ponens.

Theorem: detach-list-implies
(list (c)
∧ proves (pf , a)
∧ proves (pf2 , list-implies (cons (a, c), b))
∧ formula (a, t, 0)
∧ formula (list-implies (c, b), t, 0))
→ proves (detach-proof (a, list-implies (c, b), pf , pf2 ), list-implies (c, b))

Theorem: formula-list-implies
(formula (list-implies (alist , b), t, 0) ∧ listp (alist))
→ formula (list-implies (cdr (alist), b), t, 0)

Theorem: detach-rule-corr
(proves-list (pflist , alist)
∧ proves (pf2 , list-implies (alist , b))
∧ formula (b, t, 0))
→ proves (list-detach-proof (alist , b, pflist , pf2 ), b)

Event: Enable list-detach-proof; name this event ‘g0220’.

Event: Enable detach-list-implies; name this event ‘g0221’.
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Definition:
rt-expan-proof (a, b, pf ) = commut-proof (b, a, expan-proof (b, a, pf ))

Theorem: rt-expan-proof-proves
(proves (pf , a) ∧ formula (b, t, 0) ∧ (concl = f-or (a, b)))
→ proves (rt-expan-proof (a, b, pf ), concl)

Event: Enable rt-expan-proof; name this event ‘g0227’.

;Takes list of formulas and returns disjunction.

Definition:
make-disjunct (flist)
= if flist ' nil then nil

elseif cdr (flist) ' nil then car (flist)
else f-or (car (flist), make-disjunct (cdr (flist))) endif

Definition:
m1-proof (exp, flist , pf )
= if flist ' nil then nil

elseif cdr (flist) ' nil then pf
elseif exp = car (flist)
then rt-expan-proof (car (flist), make-disjunct (cdr (flist)), pf )
else expan-proof (car (flist),

make-disjunct (cdr (flist)),
m1-proof (exp, cdr (flist), pf )) endif

Theorem: m1-proof-proves1
(formula (make-disjunct (flist), t, 0) ∧ (exp ∈ flist) ∧ proves (pf , exp))
→ proves (m1-proof (exp, flist , pf ), make-disjunct (flist))

Event: Enable m1-proof; name this event ‘g0228’.

Definition:
rt-assoc-proof (a, b, c, pf )
= commut-proof (f-or (b, c),

a,
assoc-proof (b,

c,
a,
commut-proof (f-or (c, a),

b,
assoc-proof (c,

a,
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b,
commut-proof (f-or (a,

b),
c,
pf )))))

Theorem: rt-assoc-proof-proves
(proves (pf , f-or (f-or (a, b), c))
∧ formula (a, t, 0)
∧ formula (b, t, 0)
∧ formula (c, t, 0)
∧ (concl = f-or (a, f-or (b, c))))
→ proves (rt-assoc-proof (a, b, c, pf ), concl)

Event: Enable rt-assoc-proof; name this event ‘g0231’.

Definition:
insert-proof (a, b, c, pf )
= commut-proof (f-or (a, c),

b,
assoc-proof (a,

c,
b,
expan-proof (a, f-or (c, b), commut-proof (b, c, pf ))))

Theorem: insert-proof-proves
(proves (pf , f-or (b, c))
∧ formula (a, t, 0)
∧ formula (b, t, 0)
∧ formula (c, t, 0)
∧ (concl = f-or (b, f-or (a, c))))
→ proves (insert-proof (a, b, c, pf ), concl)

Event: Enable insert-proof; name this event ‘g0232’.

Definition:
m2-proof-step (exp1 , exp2 , flist , pf )
= if flist ' nil then nil

elseif cdr (flist) ' nil
then if exp2 = car (flist) then pf

else nil endif
elseif exp2 = car (flist)
then rt-assoc-proof (exp1 ,

exp2 ,
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make-disjunct (cdr (flist)),
rt-expan-proof (f-or (exp1 , exp2 ),

make-disjunct (cdr (flist)),
pf ))

else insert-proof (car (flist),
exp1 ,
make-disjunct (cdr (flist)),
m2-proof-step (exp1 , exp2 , cdr (flist), pf )) endif

Theorem: m2-proof-step-proves
(formula (make-disjunct (flist), t, 0)
∧ (exp2 ∈ flist)
∧ formula (exp1 , t, 0)
∧ formula (exp2 , t, 0)
∧ proves (pf , f-or (exp1 , exp2 )))
→ proves (m2-proof-step (exp1 , exp2 , flist , pf ),

f-or (exp1 , make-disjunct (flist)))

Theorem: m2-proof-step-proves1
(formula (make-disjunct (flist), t, 0)
∧ (exp2 ∈ flist)
∧ formula (exp1 , t, 0)
∧ formula (exp2 , t, 0)
∧ proves (pf , f-or (exp1 , exp2 ))
∧ (concl = f-or (exp1 , make-disjunct (flist))))
→ proves (m2-proof-step (exp1 , exp2 , flist , pf ), concl)

Event: Enable m2-proof-step; name this event ‘g0233’.

Event: Enable m2-proof-step-proves; name this event ‘g0234’.

Definition:
m2-proof (exp1 , exp2 , flist , pf )
= if flist ' nil then nil

elseif exp1 = exp2 then m1-proof (exp1 , flist , contrac-proof (exp1 , pf ))
elseif exp1 = car (flist)
then m2-proof-step (exp1 , exp2 , cdr (flist), pf )
elseif exp2 = car (flist)
then m2-proof-step (exp2 , exp1 , cdr (flist), commut-proof (exp1 , exp2 , pf ))
else expan-proof (car (flist),

make-disjunct (cdr (flist)),
m2-proof (exp1 , exp2 , cdr (flist), pf )) endif

Theorem: m1-proof-proves
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(formula (make-disjunct (flist), t, 0)
∧ (exp ∈ flist)
∧ proves (pf , exp)
∧ (concl = make-disjunct (flist)))
→ proves (m1-proof (exp, flist , pf ), concl)

Theorem: m2-proof-proves
(formula (make-disjunct (flist), t, 0)
∧ formula (exp1 , t, 0)
∧ formula (exp2 , t, 0)
∧ (exp1 ∈ flist)
∧ (exp2 ∈ flist)
∧ proves (pf , f-or (exp1 , exp2 )))
→ proves (m2-proof (exp1 , exp2 , flist , pf ), make-disjunct (flist))

Theorem: m2-proof-proves1
(formula (make-disjunct (flist), t, 0)
∧ formula (exp1 , t, 0)
∧ formula (exp2 , t, 0)
∧ (exp1 ∈ flist)
∧ (exp2 ∈ flist)
∧ proves (pf , f-or (exp1 , exp2 ))
∧ (concl = make-disjunct (flist)))
→ proves (m2-proof (exp1 , exp2 , flist , pf ), concl)

Event: Enable m2-proof; name this event ‘g0235’.

Event: Enable m2-proof-proves; name this event ‘g0236’.

Definition:
m3-proof (exp1 , exp2 , flist2 , pf )
= contrac-proof (make-disjunct (flist2 ),

contrac-proof (f-or (make-disjunct (flist2 ),
make-disjunct (flist2 )),

m2-proof (f-or (make-disjunct (flist2 ),
make-disjunct (flist2 )),

exp1 ,
cons (f-or (make-disjunct (flist2 ),

make-disjunct (flist2 )),
cons (make-disjunct (flist2 ),

flist2 )),
assoc-proof (make-disjunct (flist2 ),

make-disjunct (flist2 ),
exp1 ,
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commut-proof (f-or (make-disjunct (flist2 ),
exp1 ),

make-disjunct (flist2 ),
m2-proof (f-or (make-disjunct (flist2 ),

exp1 ),
exp2 ,
cons (f-or (make-disjunct (flist2 ),

exp1 ),
flist2 ),

assoc-proof (make-disjunct (flist2 ),
exp1 ,
exp2 ,
commut-proof (f-or (exp1 ,

exp2 ),
make-disjunct (flist2 ),
pf ))))))))

Definition:
m-proof (flist1 , flist2 , pf )
= if flist1 ' nil then nil

elseif cdr (flist1 ) ' nil then m1-proof (car (flist1 ), flist2 , pf )
elseif cddr (flist1 ) ' nil
then m2-proof (car (flist1 ), cadr (flist1 ), flist2 , pf )
else m3-proof (car (flist1 ),

cadr (flist1 ),
flist2 ,
m-proof (cons (f-or (car (flist1 ), cadr (flist1 )),

cddr (flist1 )),
cons (f-or (car (flist1 ), cadr (flist1 )),

flist2 ),
assoc-proof (car (flist1 ),

cadr (flist1 ),
make-disjunct (cddr (flist1 )),
pf ))) endif

Theorem: subset-cons
subset (x , y) → subset (x , cons (z , y))

Definition:
form-list (flist)
= if listp (flist)

then formula (car (flist), t, 0) ∧ form-list (cdr (flist))
else t endif

Theorem: formlist-formula-make-disj
(form-list (flist) ∧ listp (flist)) → formula (make-disjunct (flist), t, 0)
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Theorem: m3-proof-proves
(formula (exp1 , t, 0)
∧ formula (exp2 , t, 0)
∧ form-list (flist2 )
∧ proves (pf , make-disjunct (cons (f-or (exp1 , exp2 ), flist2 )))
∧ (exp1 ∈ flist2 )
∧ (exp2 ∈ flist2 ))
→ proves (m3-proof (exp1 , exp2 , flist2 , pf ), make-disjunct (flist2 ))

Event: Enable m3-proof; name this event ‘g0222’.

Theorem: m3-proof-proves1
(formula (exp1 , t, 0)
∧ formula (exp2 , t, 0)
∧ form-list (flist2 )
∧ proves (pf , make-disjunct (cons (f-or (exp1 , exp2 ), flist2 )))
∧ (exp1 ∈ flist2 )
∧ (exp2 ∈ flist2 )
∧ (concl = make-disjunct (flist2 )))
→ proves (m3-proof (exp1 , exp2 , flist2 , pf ), concl)

Event: Enable m3-proof-proves; name this event ‘g0229’.

;The subset lemma

Theorem: m-proof-proves
(form-list (flist1 )
∧ listp (flist1 )
∧ form-list (flist2 )
∧ listp (flist2 )
∧ subset (flist1 , flist2 )
∧ proves (pf , make-disjunct (flist1 )))
→ proves (m-proof (flist1 , flist2 , pf ), make-disjunct (flist2 ))

Event: Enable m-proof; name this event ‘g0247’.

Theorem: m-proof-proves1
(form-list (flist1 )
∧ form-list (flist2 )
∧ subset (flist1 , flist2 )
∧ proves (pf , make-disjunct (flist1 ))
∧ (concl = make-disjunct (flist2 )))
→ proves (m-proof (flist1 , flist2 , pf ), concl)
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;Disjunctions.

Definition: or-type (exp) = (exp = f-or (cadr (exp), caddr (exp)))

;Negation of disjunctions.

Definition:
nor-type (exp) = (exp = f-not (f-or (cadadr (exp), caddadr (exp))))

Event: Enable atomp; name this event ‘g0250’.

;Elementary and negation of elementary formulas

Definition:
elem-form (exp) = (atomp (exp) ∨ (exp = forsome (cadr (exp), caddr (exp))))

Definition:
neg-elem-form (exp)
= ((exp = f-not (cadr (exp))) ∧ elem-form (arg1 (exp)))

Definition:
prop-atomp (exp) = (elem-form (exp) ∨ neg-elem-form (exp))

;Double-negations

Definition:
dble-neg-type (exp) = (exp = f-not (f-not (cadadr (exp))))

Event: Disable atomp; name this event ‘g0251’.

Theorem: dble-neg-not-prop-atomp
dble-neg-type (exp) → (¬ prop-atomp (exp))

Theorem: or-type-not-prop-atomp
or-type (exp) → (¬ prop-atomp (exp))

Theorem: nor-type-not-prop-atomp
nor-type (exp) → (¬ prop-atomp (exp))

Definition:
list-count (list)
= if list ' nil then 0

else (1 + count (car (list))) + list-count (cdr (list)) endif
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Definition:
neg-list (exp, list)
= if list ' nil then f

else neg (exp, car (list)) ∨ neg-list (exp, cdr (list)) endif

Theorem: lessp-list-count
listp (flist) → (list-count (cdr (flist)) < list-count (flist))

Theorem: or-type-list-count
(or-type (car (flist)) ∧ listp (flist))
→ (list-count (cons (cadar (flist), cons (caddar (flist), cdr (flist))))

< list-count (flist))

Theorem: nor-type-list-count1
(listp (flist) ∧ nor-type (car (flist)))
→ (list-count (cons (list (’not, cadadar (flist)), cdr (flist)))

< list-count (flist))

Theorem: nor-type-list-count2
(listp (flist) ∧ nor-type (car (flist)))
→ (list-count (cons (list (’not, caddadar (flist)), cdr (flist)))

< list-count (flist))

Theorem: dble-neg-list-count
(listp (flist) ∧ dble-neg-type (car (flist)))
→ (list-count (cons (cadadar (flist), cdr (flist))) < list-count (flist))

Event: Enable prop-atomp; name this event ‘g0230’.

Event: Enable or-type; name this event ‘g0237’.

Event: Enable nor-type; name this event ‘g0238’.

Event: Enable dble-neg-type; name this event ‘g0239’.

Event: Enable list-count; name this event ‘g0240’.

;The tautology-checker.

Definition:
tautologyp1 (flist , auxlist)
= if flist ' nil then f

elseif prop-atomp (car (flist))
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then neg-list (car (flist), auxlist)
∨ tautologyp1 (cdr (flist), cons (car (flist), auxlist))

elseif or-type (car (flist))
then tautologyp1 (cons (arg1 (car (flist)),

cons (arg2 (car (flist)), cdr (flist))),
auxlist)

elseif nor-type (car (flist))
then tautologyp1 (cons (f-not (arg1 (arg1 (car (flist)))), cdr (flist)),

auxlist)
∧ tautologyp1 (cons (f-not (arg2 (arg1 (car (flist)))), cdr (flist)),

auxlist)
elseif dble-neg-type (car (flist))
then tautologyp1 (cons (arg1 (arg1 (car (flist))), cdr (flist)), auxlist)
else f endif

Theorem: form-list-append
(form-list (x ) ∧ form-list (y)) → form-list (append (x , y))

Definition:
neg-proof (exp1 , exp2 )
= if exp1 = f-not (exp2 ) then prop-axiom-proof (exp2 )

else commut-proof (exp2 , exp1 , prop-axiom-proof (exp1 )) endif

Theorem: neg-proof-proves
(formula (exp1 , t, 0)
∧ formula (exp2 , t, 0)
∧ neg (exp1 , exp2 )
∧ (concl = f-or (exp1 , exp2 )))
→ proves (neg-proof (exp1 , exp2 ), concl)

Event: Enable neg-proof; name this event ‘g0245’.

Theorem: neg-list-reduc
neg-list (exp, flist)
= ((f-not (exp) ∈ flist)

∨ ((exp = f-not (cadr (exp))) ∧ (cadr (exp) ∈ flist)))

Definition:
neg-list-proof (exp, flist)
= if f-not (exp) ∈ flist

then m2-proof (exp,
f-not (exp),
cons (exp, flist),
neg-proof (exp, f-not (exp)))
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else m2-proof (exp,
cadr (exp),
cons (exp, flist),
neg-proof (exp, cadr (exp))) endif

Theorem: neg-list-proof-proves
(formula (exp, t, 0)
∧ form-list (flist)
∧ neg-list (exp, flist)
∧ (concl = make-disjunct (cons (exp, flist))))
→ proves (neg-list-proof (exp, flist), concl)

Event: Enable neg-list-proof; name this event ‘g0256’.

Theorem: subset-ident
subset (x , x )

Theorem: subset-car
subset (x , cons (y , x ))

Theorem: subset-append
subset (cons (exp, list2 ), append (cons (exp, list1 ), list2 ))

Theorem: nlistp-neg-list
(list ' nil) → (¬ neg-list (exp, list))

Definition:
prop-atom-proof1 (flist1 , flist2 )
= m-proof (cons (car (flist1 ), flist2 ),

append (flist1 , flist2 ),
neg-list-proof (car (flist1 ), flist2 ))

Theorem: prop-atom-proof1-proves
(form-list (flist1 )
∧ listp (flist1 )
∧ form-list (flist2 )
∧ neg-list (car (flist1 ), flist2 )
∧ (concl = make-disjunct (append (flist1 , flist2 ))))
→ proves (prop-atom-proof1 (flist1 , flist2 ), concl)

Event: Enable prop-atom-proof1; name this event ‘g0259’.

Theorem: subset-append-car
subset (append (list1 , cons (exp, list2 )), append (cons (exp, list1 ), list2 ))
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Theorem: form-list-append-car
(form-list (cons (exp, list1 )) ∧ form-list (list2 ))
→ form-list (append (list1 , cons (exp, list2 )))

Definition:
prop-atom-proof2 (flist1 , flist2 , pf )
= m-proof (append (cdr (flist1 ), cons (car (flist1 ), flist2 )),

append (flist1 , flist2 ),
pf )

Theorem: prop-atom-proof2-proves
(form-list (flist1 )
∧ listp (flist1 )
∧ form-list (flist2 )
∧ proves (pf ,

make-disjunct (append (cdr (flist1 ), cons (car (flist1 ), flist2 ))))
∧ (concl = make-disjunct (append (flist1 , flist2 ))))
→ proves (prop-atom-proof2 (flist1 , flist2 , pf ), concl)

Event: Enable prop-atom-proof2; name this event ‘g0258’.

Definition:
cancel-proof (a, b, pf1 , pf2 )
= contrac-proof (b, cut-proof (a, b, b, pf2 , rt-expan-proof (f-not (a), b, pf1 )))

Theorem: cancel-proof-proves
(proves (pf1 , f-not (a))
∧ proves (pf2 , f-or (a, b))
∧ formula (a, t, 0)
∧ formula (b, t, 0))
→ proves (cancel-proof (a, b, pf1 , pf2 ), b)

Event: Enable cancel-proof; name this event ‘g0255’.

Definition:
nlistp-nor-type-proof (a, b, pf1 , pf2 )
= cancel-proof (b,

f-not (f-or (a, b)),
pf2 ,
cancel-proof (a,

f-or (b, f-not (f-or (a, b))),
pf1 ,
m-proof (list (f-not (f-or (a, b)), a, b),

list (a, b, f-not (f-or (a, b))),
prop-axiom-proof (f-or (a, b)))))
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Theorem: nlistp-nor-type-proof-proves
(formula (a, t, 0)
∧ formula (b, t, 0)
∧ proves (pf1 , f-not (a))
∧ proves (pf2 , f-not (b))
∧ (concl = f-not (f-or (a, b))))
→ proves (nlistp-nor-type-proof (a, b, pf1 , pf2 ), concl)

Definition:
listp-nor-type-proof (a, b, c, pf1 , pf2 )
= m-proof (list (f-not (f-or (a, b)), c, c),

list (f-not (f-or (a, b)), c),
rt-assoc-proof (f-not (f-or (a, b)),

c,
c,
cut-proof (b,

f-or (f-not (f-or (a, b)), c),
c,
rt-assoc-proof (b,

f-not (f-or (a, b)),
c,
cut-proof (a,

f-or (b,
f-not (f-or (a,

b))),
c,
m-proof (list (f-not (f-or (a,

b)),
a,
b),

list (a,
b,
f-not (f-or (a,

b))),
prop-axiom-proof (f-or (a,

b))),
pf1 )),

pf2 )))

Theorem: listp-nor-type-proof-proves
(formula (a, t, 0)
∧ formula (b, t, 0)
∧ formula (c, t, 0)
∧ proves (pf1 , f-or (f-not (a), c))

26



∧ proves (pf2 , f-or (f-not (b), c))
∧ (concl = f-or (f-not (f-or (a, b)), c)))
→ proves (listp-nor-type-proof (a, b, c, pf1 , pf2 ), concl)

Event: Enable m-proof-proves; name this event ‘g0242’.

Event: Enable nlistp-nor-type-proof; name this event ‘g0243’.

Event: Enable listp-nor-type-proof; name this event ‘g0244’.

Definition:
nor-type-proof (a, b, clist , pf1 , pf2 )
= if clist ' nil then nlistp-nor-type-proof (a, b, pf1 , pf2 )

else listp-nor-type-proof (a, b, make-disjunct (clist), pf1 , pf2 ) endif

Event: Disable nor-type; name this event ‘g0292’.

Theorem: nor-type-proof-proves
(nor-type (exp)
∧ formula (exp, t, 0)
∧ form-list (clist)
∧ proves (pf1 , make-disjunct (cons (f-not (cadadr (exp)), clist)))
∧ proves (pf2 , make-disjunct (cons (f-not (caddadr (exp)), clist)))
∧ (concl = make-disjunct (cons (exp, clist))))
→ proves (nor-type-proof (cadadr (exp), caddadr (exp), clist , pf1 , pf2 ), concl)

Definition:
nlistp-dble-neg-proof (a, pf )
= contrac-proof (f-not (f-not (a)),

cut-proof (a,
f-not (f-not (a)),
f-not (f-not (a)),
rt-expan-proof (a, f-not (f-not (a)), pf ),
commut-proof (f-not (f-not (a)),

f-not (a),
prop-axiom-proof (f-not (a)))))

Event: Enable nor-type-proof; name this event ‘g0248’.

Theorem: nlistp-dble-neg-proof-proves
(formula (a, t, 0) ∧ proves (pf , a) ∧ (concl = f-not (f-not (a))))
→ proves (nlistp-dble-neg-proof (a, pf ), concl)
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Event: Enable nlistp-dble-neg-proof; name this event ‘g0249’.

Definition:
listp-dble-neg-proof (a, c, pf )
= commut-proof (c,

f-not (f-not (a)),
cut-proof (a,

c,
f-not (f-not (a)),
pf ,
commut-proof (f-not (f-not (a)),

f-not (a),
prop-axiom-proof (f-not (a)))))

Theorem: listp-dble-neg-proof-proves
(formula (a, t, 0)
∧ formula (c, t, 0)
∧ proves (pf , f-or (a, c))
∧ (concl = f-or (f-not (f-not (a)), c)))
→ proves (listp-dble-neg-proof (a, c, pf ), concl)

Event: Enable listp-dble-neg-proof; name this event ‘g0203’.

Definition:
dble-neg-type-proof (a, clist , pf )
= if clist ' nil then nlistp-dble-neg-proof (a, pf )

else listp-dble-neg-proof (a, make-disjunct (clist), pf ) endif

Event: Disable dble-neg-type; name this event ‘g0252’.

Theorem: dble-neg-type-proof-proves
(dble-neg-type (exp)
∧ formula (exp, t, 0)
∧ form-list (clist)
∧ proves (pf , make-disjunct (cons (cadadr (exp), clist)))
∧ (concl = make-disjunct (cons (exp, clist))))
→ proves (dble-neg-type-proof (cadadr (exp), clist , pf ), concl)

Definition:
or-type-proof (a, b, clist , pf )
= if clist ' nil then pf

else assoc-proof (a, b, make-disjunct (clist), pf ) endif

Event: Disable or-type; name this event ‘g0260’.
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Theorem: or-type-proof-proves
(or-type (car (flist1 ))
∧ form-list (flist1 )
∧ listp (flist1 )
∧ form-list (flist2 )
∧ proves (pf ,

make-disjunct (append (cons (cadar (flist1 ),
cons (caddar (flist1 ), cdr (flist1 ))),

flist2 )))
∧ (concl = make-disjunct (append (flist1 , flist2 ))))
→ proves (or-type-proof (cadar (flist1 ),

caddar (flist1 ),
append (cdr (flist1 ), flist2 ),
pf ),

concl)

Event: Enable or-type-proof; name this event ‘g0271’.

Theorem: or-type-form-list
(or-type (car (flist)) ∧ form-list (flist) ∧ listp (flist))
→ form-list (cons (cadar (flist), cons (caddar (flist), cdr (flist))))

Theorem: nor-type-form-list
(nor-type (car (flist)) ∧ form-list (flist) ∧ listp (flist))
→ form-list (cons (list (’not, cadadar (flist)), cdr (flist)))

Theorem: nor-type-form-list2
(nor-type (car (flist)) ∧ form-list (flist) ∧ listp (flist))
→ form-list (cons (list (’not, caddadar (flist)), cdr (flist)))

Theorem: dble-neg-type-form-list
(dble-neg-type (car (flist)) ∧ form-list (flist) ∧ listp (flist))
→ form-list (cons (cadadar (flist), cdr (flist)))

Event: Enable or-type; name this event ‘g0272’.

Event: Enable nor-type; name this event ‘g0273’.

Event: Enable dble-neg-type; name this event ‘g0274’.

Event: Enable dble-neg-type-proof; name this event ‘g0254’.

;The proof-constructor for tautologies.
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Definition:
taut-proof1 (flist , auxlist)
= if flist ' nil then nil

elseif prop-atomp (car (flist))
then if neg-list (car (flist), auxlist)

then prop-atom-proof1 (flist , auxlist)
else prop-atom-proof2 (flist ,

auxlist ,
taut-proof1 (cdr (flist),

cons (car (flist), auxlist))) endif
elseif or-type (car (flist))
then or-type-proof (arg1 (car (flist)),

arg2 (car (flist)),
append (cdr (flist), auxlist),
taut-proof1 (cons (arg1 (car (flist)),

cons (arg2 (car (flist)), cdr (flist))),
auxlist))

elseif nor-type (car (flist))
then nor-type-proof (arg1 (arg1 (car (flist))),

arg2 (arg1 (car (flist))),
append (cdr (flist), auxlist),
taut-proof1 (cons (f-not (arg1 (arg1 (car (flist)))),

cdr (flist)),
auxlist),

taut-proof1 (cons (f-not (arg2 (arg1 (car (flist)))),
cdr (flist)),

auxlist))
elseif dble-neg-type (car (flist))
then dble-neg-type-proof (arg1 (arg1 (car (flist))),

append (cdr (flist), auxlist),
taut-proof1 (cons (arg1 (arg1 (car (flist))),

cdr (flist)),
auxlist))

else nil endif

;Every tautology has a proof (when AUXLIST is NIL)

Theorem: taut-thm1
(form-list (flist) ∧ form-list (auxlist) ∧ tautologyp1 (flist , auxlist))
→ proves (taut-proof1 (flist , auxlist),

make-disjunct (append (flist , auxlist)))

Event: Enable taut-proof1; name this event ‘g0275’.

Theorem: taut-thm2
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(form-list (flist)
∧ form-list (auxlist)
∧ tautologyp1 (flist , auxlist)
∧ (concl = make-disjunct (append (flist , auxlist))))
→ proves (taut-proof1 (flist , auxlist), concl)

Theorem: listp-elem-form
(exp ' nil) → (¬ elem-form (exp))

;Truth value evaluator.

Definition:
eval (exp, alist)
= if exp ' nil then f

elseif elem-form (exp) then exp ∈ alist
elseif car (exp) = ’not then ¬ eval (cadr (exp), alist)
elseif car (exp) = ’or
then eval (cadr (exp), alist) ∨ eval (caddr (exp), alist)
else f endif

Theorem: elem-form-eval
elem-form (exp) → (eval (exp, alist) = (exp ∈ alist))

Theorem: nlistp-eval
(exp ' nil) → (¬ eval (exp, alist))

Theorem: not-eval
(listp (exp) ∧ (car (exp) = ’not))
→ (eval (exp, alist) = (¬ eval (cadr (exp), alist)))

Theorem: or-eval
(listp (exp) ∧ (car (exp) = ’or))
→ (eval (exp, alist)

= (eval (cadr (exp), alist) ∨ eval (caddr (exp), alist)))

Theorem: member-eval
((exp ∈ flist) ∧ eval (exp, alist)) → eval (make-disjunct (flist), alist)

Theorem: eval-elem-form
(elem-form (exp)
∧ (exp ∈ list)
∧ (exp ∈ alist)
∧ (concl = make-disjunct (list)))
→ eval (concl , alist)
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Event: Disable or-type; name this event ‘g0278’.

Event: Disable nor-type; name this event ‘g0279’.

Event: Disable dble-neg-type; name this event ‘g0280’.

Event: Disable prop-atomp; name this event ‘g0281’.

Theorem: member-append
(exp ∈ append (flist1 , flist2 )) = ((exp ∈ flist1 ) ∨ (exp ∈ flist2 ))

Theorem: eval-neg-elem-form
((exp ∈ list)
∧ (f-not (exp) ∈ list)
∧ (concl = make-disjunct (list)))
→ eval (concl , alist)

Theorem: eval-make-disjunct
eval (make-disjunct (append (list1 , list2 )), alist)
= (eval (make-disjunct (list1 ), alist)

∨ eval (make-disjunct (list2 ), alist))

Theorem: neg-list-eval
(listp (flist1 )
∧ neg-list (car (flist1 ), flist2 )
∧ (concl = make-disjunct (append (flist1 , flist2 ))))
→ eval (concl , alist)

Theorem: eval-prop-atomp
(listp (flist1 )
∧ eval (make-disjunct (append (cdr (flist1 ), cons (car (flist1 ), flist2 ))),

alist))
→ eval (make-disjunct (append (flist1 , flist2 )), alist)

Event: Enable eval; name this event ‘g1253’.

Theorem: eval-or-type
(listp (flist1 ) ∧ or-type (car (flist1 )))
→ (eval (make-disjunct (append (flist1 , flist2 )), alist)

= eval (make-disjunct (append (cons (cadar (flist1 ),
cons (caddar (flist1 ),

cdr (flist1 ))),
flist2 )),

alist))
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Theorem: eval-nor-type
(listp (flist1 ) ∧ nor-type (car (flist1 )))
→ (eval (make-disjunct (append (flist1 , flist2 )), alist)

= (eval (make-disjunct (append (cons (f-not (cadadar (flist1 )),
cdr (flist1 )),

flist2 )),
alist)

∧ eval (make-disjunct (append (cons (f-not (caddadar (flist1 )),
cdr (flist1 )),

flist2 )),
alist)))

Theorem: eval-dble-neg-type
(listp (flist1 ) ∧ dble-neg-type (car (flist1 )))
→ (eval (make-disjunct (append (flist1 , flist2 )), alist)

= eval (make-disjunct (append (cons (cadadar (flist1 ), cdr (flist1 )),
flist2 )),

alist))

;All tautologies are logically-true.

Theorem: taut-eval
tautologyp1 (flist , auxlist)
→ eval (make-disjunct (append (flist , auxlist)), alist)

Theorem: not-eval-prop-atomp
(listp (flist1 )
∧ (¬ eval (make-disjunct (append (cdr (flist1 ), cons (car (flist1 ), flist2 ))),

alist)))
→ (¬ eval (make-disjunct (append (flist1 , flist2 )), alist))

Theorem: prop-atomp-reduc
prop-atomp (exp)
= (elem-form (exp)

∨ ((exp = f-not (cadr (exp))) ∧ elem-form (cadr (exp))))

Event: Enable elem-form; name this event ‘g0263’.

Event: Enable prop-atomp; name this event ‘g0264’.

Definition:
prop-atomp-list (list)
= if list ' nil then t

else prop-atomp (car (list)) ∧ prop-atomp-list (cdr (list)) endif
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Definition:
falsify (list)
= if list ' nil then nil

elseif car (list) = f-not (cadar (list))
then cons (cadar (list), falsify (cdr (list)))
else falsify (cdr (list)) endif

Theorem: falsify-step
(f-not (exp) 6∈ auxlist) → (exp 6∈ falsify (auxlist))

Theorem: prop-atomp-auxlist
(prop-atomp (exp)
∧ (¬ neg-list (exp, auxlist))
∧ prop-atomp-list (auxlist))
→ (¬ eval (exp, falsify (cons (exp, auxlist))))

Theorem: prop-atomp-auxlist2
((¬ neg-list (exp, auxlist))
∧ prop-atomp-list (auxlist)
∧ prop-atomp (exp)
∧ (¬ eval (make-disjunct (auxlist), falsify (alist))))
→ (¬ eval (make-disjunct (auxlist), falsify (cons (exp, alist))))

Theorem: prop-atomp-falsify
(prop-atomp (exp)
∧ (¬ neg-list (exp, auxlist))
∧ prop-atomp-list (auxlist)
∧ (¬ eval (make-disjunct (auxlist), falsify (auxlist))))
→ (¬ eval (make-disjunct (cons (exp, auxlist)), falsify (cons (exp, auxlist))))

Event: Disable prop-atomp; name this event ‘g0268’.

Event: Disable elem-form; name this event ‘g0269’.

Event: Enable atomp; name this event ‘g0204’.

Theorem: formula-cases1
formula (exp, t, 0)
→ (prop-atomp (exp)

∨ or-type (exp)
∨ nor-type (exp)
∨ dble-neg-type (exp))
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Event: Disable atomp; name this event ‘g0205’.

Event: Enable prop-atomp; name this event ‘g0296’.

Event: Enable or-type; name this event ‘g0297’.

Event: Enable nor-type; name this event ‘g0298’.

Event: Enable dble-neg-type; name this event ‘g0299’.

Theorem: formula-cases
((¬ dble-neg-type (exp))
∧ (¬ nor-type (exp))
∧ (¬ or-type (exp))
∧ (¬ prop-atomp (exp)))
→ (¬ formula (exp, t, 0))

Definition:
falsify-taut (flist , auxlist)
= if flist ' nil then falsify (auxlist)

elseif prop-atomp (car (flist))
then if neg-list (car (flist), auxlist) then f

else falsify-taut (cdr (flist), cons (car (flist), auxlist)) endif
elseif or-type (car (flist))
then falsify-taut (cons (cadar (flist), cons (caddar (flist), cdr (flist))),

auxlist)
elseif nor-type (car (flist))
then if falsify-taut (cons (f-not (caddadar (flist)), cdr (flist)), auxlist)

then falsify-taut (cons (f-not (caddadar (flist)), cdr (flist)),
auxlist)

else falsify-taut (cons (f-not (cadadar (flist)), cdr (flist)),
auxlist) endif

elseif dble-neg-type (car (flist))
then falsify-taut (cons (cadadar (flist), cdr (flist)), auxlist)
else nil endif

Theorem: append-nlistp
(x ' nil) → (append (x , y) = y)

Theorem: not-falsify-taut
tautologyp1 (flist , auxlist) = (¬ falsify-taut (flist , auxlist))

;Non-tautologies are falsifiable.
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Theorem: not-taut-false
(form-list (flist)
∧ prop-atomp-list (auxlist)
∧ (¬ eval (make-disjunct (auxlist), falsify (auxlist)))
∧ (¬ tautologyp1 (flist , auxlist)))
→ (¬ eval (make-disjunct (append (flist , auxlist)),

falsify-taut (flist , auxlist)))

Definition: tautologyp (flist) = tautologyp1 (flist , nil)

Definition: taut-proof (flist) = taut-proof1 (flist , nil)

Event: Disable append; name this event ‘g0300’.

Theorem: form-list-append-nil
make-disjunct (append (flist , nil)) = make-disjunct (flist)

Theorem: tautology-theorem
(form-list (flist) ∧ tautologyp (flist) ∧ (concl = make-disjunct (flist)))
→ proves (taut-proof (flist), concl)

Theorem: taut-eval2
(tautologyp1 (flist , auxlist)
∧ (concl = make-disjunct (append (flist , auxlist))))
→ eval (concl , alist)

Theorem: tautologies-are-true
(form-list (flist) ∧ tautologyp (flist))
→ eval (make-disjunct (flist), alist)

Theorem: not-taut-falsify2
(form-list (flist)
∧ prop-atomp-list (auxlist)
∧ (¬ eval (make-disjunct (auxlist), falsify (auxlist)))
∧ (¬ tautologyp1 (flist , auxlist))
∧ (concl = make-disjunct (append (flist , auxlist))))
→ (¬ eval (concl , falsify-taut (flist , auxlist)))

Theorem: truths-are-tautologies
(form-list (flist) ∧ (¬ tautologyp (flist)))
→ (¬ eval (make-disjunct (flist), falsify-taut (flist , nil)))

Event: Enable truths-are-tautologies; name this event ‘g2439’.

Event: Enable not-taut-falsify2; name this event ‘g2440’.

36



Event: Enable tautologies-are-true; name this event ‘g2441’.

Event: Enable taut-eval2; name this event ‘g2442’.

Event: Enable form-list-append-nil; name this event ‘g2443’.

Event: Enable taut-proof; name this event ‘g2444’.

Event: Enable not-taut-false; name this event ‘g2445’.

Event: Enable not-falsify-taut; name this event ‘g2446’.

Event: Enable append-nlistp; name this event ‘g2447’.

Event: Enable falsify-taut; name this event ‘g2448’.

Event: Enable formula-cases; name this event ‘g2449’.

Event: Enable formula-cases1; name this event ‘g2450’.

Event: Enable prop-atomp-falsify; name this event ‘g2451’.

Event: Enable prop-atomp-auxlist; name this event ‘g2453’.

Event: Enable prop-atomp-list; name this event ‘g2454’.

Event: Enable falsify-step; name this event ‘g2455’.

Event: Enable falsify; name this event ‘g2456’.

Event: Enable not-eval-prop-atomp; name this event ‘g2457’.

Event: Enable taut-eval; name this event ‘g2458’.

Event: Enable eval-dble-neg-type; name this event ‘g2459’.
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Event: Enable eval-nor-type; name this event ‘g2460’.

Event: Enable eval-or-type; name this event ‘g2461’.

Event: Enable eval-prop-atomp; name this event ‘g2463’.

Event: Enable neg-list-eval; name this event ‘g2464’.

Event: Enable eval-neg-elem-form; name this event ‘g2465’.

Event: Enable elem-form-eval; name this event ‘g2471’.

Event: Enable eval; name this event ‘g2472’.

Theorem: eval-tautologyp
(form-list (flist) ∧ eval (make-disjunct (flist), falsify-taut (flist , nil)))
→ tautologyp (flist)

Definition:
lis-not (flist)
= if flist ' nil then nil

else cons (f-not (car (flist)), lis-not (cdr (flist))) endif

Definition:
taut-conseq (flist , exp) = tautologyp (append (lis-not (flist), cons (exp, nil)))

Definition:
tautconseq-proof (flist , exp, pflist)
= list-detach-proof (flist ,

exp,
pflist ,
taut-proof (append (lis-not (flist), cons (exp, nil))))

Theorem: list-implies-reduc
list-implies (flist , exp)
= make-disjunct (append (lis-not (flist), cons (exp, nil)))

Theorem: append-exp-form-list
(form-list (flist) ∧ formula (exp, t, 0))
→ form-list (append (lis-not (flist), cons (exp, nil)))
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Theorem: taut-conseq-proves
(form-list (flist)
∧ formula (exp, t, 0)
∧ taut-conseq (flist , exp)
∧ proves-list (pflist , flist))
→ proves (tautconseq-proof (flist , exp, pflist), exp)

Event: Enable tautconseq-proof; name this event ‘g0276’.

Theorem: eval-tautconseq
(form-list (flist)
∧ formula (exp, t, 0)
∧ eval (make-disjunct (append (lis-not (flist), cons (exp, nil))),

falsify-taut (append (lis-not (flist), cons (exp, nil)), nil)))
→ taut-conseq (flist , exp)

Event: Enable taut-conseq; name this event ‘g0277’.

Event: Enable falsify-taut; name this event ‘g0282’.

Event: Enable formula; name this event ‘g0295’.

Theorem: eval-tautconseq-proof-proves
(eval (make-disjunct (append (lis-not (flist), cons (exp, nil))),

falsify-taut (append (lis-not (flist), cons (exp, nil)), nil))
∧ proves-list (pflist , flist)
∧ form-list (flist)
∧ formula (exp, t, 0))
→ proves (tautconseq-proof (flist , exp, pflist), exp)

Event: Enable taut-conseq-proves; name this event ‘g0283’.

Definition:
f-iff-reduc-proof (a, b, pf1 , pf2 )
= tautconseq-proof (list (f-iff (a, b), a), b, list (pf1 , pf2 ))
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