
#|
Copyright (C) 1995 by William D. Young.

This script is hereby placed in the public domain, and therefore unlimited
editing and redistribution is permitted.

NO WARRANTY

William D. Young PROVIDES ABSOLUTELY NO WARRANTY. THE EVENT SCRIPT IS
PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE SCRIPT IS WITH YOU. SHOULD THE SCRIPT PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT WILL William D. Young BE LIABLE TO YOU FOR ANY DAMAGES,
ANY LOST PROFITS, LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SCRIPT (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY THIRD PARTIES), EVEN IF YOU HAVE ADVISED US OF THE POSSIBILITY OF
SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

|#

;; >> Might try to relax the assumption that there is only
;; one train and it always is going in the same direction.

Event: Start with the initial nqthm theory.

;; SOME SUBSIDIARY LEMMAS

Theorem: not-lessp-sub1
(x 6< y) → ((x < (y − 1)) = f)

Theorem: plus-add1
((x + (1 + y)) = (1 + (x + y)))
∧ (((1 + x ) + y) = (1 + (x + y)))

Theorem: difference-add1-sub1
(x 6' 0) → ((x − (1 + y)) = ((x − y) − 1))

;; THE SYSTEM
;; Our simple control system consists of three distinct components.

1



;; The train is an part of the environment; it produces in a way that
;; we cannot control but subject to certain constraints that we specify.
;; The gate is our controlled system and responds to a series of commands
;; generated by the controller. The controller is a device that inputs
;; a series of sensor readings from the environment, giving the position of
;; the train. It generates a series of actuator commands for the gate.
;;
;; Our task is to model the system comprised of these three components.

;; GATE SIMULATION
;; The gate is the controlled system, so we consider that it responds
;; reliably to a series of commands that are generated by the control
;; algorithm. These commands come in the form of a sequence of atoms
;; ’open and ’close. The simulation of the gate tells us its state
;; at each moment of time.

Conservative Axiom: choose-time-intro
(min ≤ max )
→ ((choose-time (min, max , oracle) ∈ N)

∧ (choose-time (min, max , oracle) 6< min)
∧ (max 6< choose-time (min, max , oracle)))

Simultaneously, we introduce the new function symbol choose-time.

Theorem: lessp-sub1-choose-sub1-max
(((max − 1) < x ) ∧ (min ≤ max ))
→ (((choose-time (min, max , oracle) − 1) < x ) = t)

;; The gate can be in 4 states: open, closed, going-up, going-down.

Conservative Axiom: gate-parameters-intro
(gate-closing-min-time ∈ N)
∧ (gate-closing-max-time ∈ N)
∧ (0 < gate-closing-max-time)
∧ (gate-closing-max-time 6< gate-closing-min-time)
∧ (gate-opening-min-time ∈ N)
∧ (0 < gate-opening-max-time)
∧ (gate-opening-max-time ∈ N)
∧ (gate-opening-max-time 6< gate-opening-min-time)

Simultaneously, we introduce the new function symbols gate-closing-min-time,
gate-closing-max-time, gate-opening-min-time, and gate-opening-max-time.

2



;; The gate state is a pair (current-state . n) where n is the time that
;; the gate will remain in that state. This is only required for going
;; up and going down and tells us how long they can expect to be in that
;; condition unless they are given a countervening order. This doesn’t
;; take into account some anomolous situations as , for example, when we
;; may have just told the gate to close and immediately tell it to open,
;; so that it has only a short distance to move.

Definition:
gate-positionp (x ) = (x ∈ ’(open closed going-up going-down))

Definition: gate-current-state (state) = car (state)

Definition: gate-state-duration (state) = cdr (state)

Definition:
open (state) = (gate-current-state (state) = ’open)

Definition:
closed (state) = (gate-current-state (state) = ’closed)

Definition:
going-up (state) = (gate-current-state (state) = ’going-up)

Definition:
going-down (state) = (gate-current-state (state) = ’going-down)

Theorem: gate-state-accessors
(gate-current-state (cons (x , y)) = x )
∧ (gate-state-duration (cons (x , y)) = y)

Definition:
legal-gate-statep (x )
= (gate-positionp (gate-current-state (x ))

∧ ((going-up (x ) ∨ going-down (x ))
→ (gate-state-duration (x ) ∈ N)))

Event: Disable gate-current-state.

Event: Disable gate-state-duration.

Definition:
compute-going-down-state (state)
= let n be gate-state-duration (state)

in
if n ' 0 then cons (’closed, 0)
else cons (’going-down, n − 1) endif endlet

3



Definition:
compute-going-up-state (state)
= let n be gate-state-duration (state)

in
if n ' 0 then cons (’open, 0)
else cons (’going-up, n − 1) endif endlet

Definition:
gate-next-state (cmd , state, oracle)
= case on cmd :

case = close
then case on gate-current-state (state):

case = open
then cons (’going-down,

choose-time (gate-closing-min-time,
gate-closing-max-time,
oracle) − 1)

case = closed
then state

case = going-up
then cons (’going-down,

choose-time (gate-closing-min-time,
gate-closing-max-time,
oracle) − 1)

case = going-down
then compute-going-down-state (state)

otherwise f endcase
case = open
then case on gate-current-state (state):

case = open
then state
case = closed
then cons (’going-up,

choose-time (gate-opening-min-time,
gate-opening-max-time,
oracle) − 1)

case = going-up
then compute-going-up-state (state)

case = going-down
then cons (’going-up,

choose-time (gate-opening-min-time,
gate-opening-max-time,
oracle) − 1)

otherwise f endcase

4



otherwise f endcase

;; TRAIN BEHAVIOR
;; The train provides our input to the system. The gate must act in
;; response to the train. It can do so only if the behavior of the
;; train meets certain reasonable criteria. Therefore, the specification
;; of the train consists of a set of constraints on the possible traces of
;; the train behavior as sensed by input sensors along the track. The
;; train can be in one of 4 states: approaching the crossing,
;; in the crossing, past the crossing (or outside of our field of view).
;; We assume that the sensors are accurate (debounced) and that trains are
;; sufficiently widely separated.

Definition:
train-positionp (x ) = (x ∈ ’(approaching in-gate elsewhere))

Definition: approaching (x ) = (x = ’approaching)

Definition: in-gate (x ) = (x = ’in-gate)

Definition: elsewhere (x ) = (x = ’elsewhere)

Definition:
legal-next-positions (x )
= case on x :

case = elsewhere
then ’(elsewhere approaching)
case = approaching
then ’(approaching in-gate)

case = in-gate
then ’(in-gate elsewhere)

otherwise nil endcase

Definition:
legal-transitionp (x , y) = (y ∈ legal-next-positions (x ))

Definition:
legal-train-trace1 (trace)
= if trace ' nil then trace = nil

else train-positionp (car (trace))
∧ if listp (cdr (trace))

then legal-transitionp (car (trace), cadr (trace))
else t endif

∧ legal-train-trace1 (cdr (trace)) endif

5



Conservative Axiom: train-constraints
(approaching-min-time ∈ N)
∧ (approaching-min-time 6< (1 + gate-closing-max-time))

Simultaneously, we introduce the new function symbol approaching-min-time.

Definition:
seq-long-enough (x , trace, seen-so-far , min)
= if seen-so-far ' 0

then if trace ' nil then t
elseif car (trace) = x
then seq-long-enough (x , cdr (trace), 1, min)
else seq-long-enough (x , cdr (trace), 0, min) endif

elseif trace ' nil then min ≤ seen-so-far
elseif car (trace) = x
then seq-long-enough (x , cdr (trace), 1 + seen-so-far , min)
else (min ≤ seen-so-far)

∧ seq-long-enough (x , cdr (trace), 0, min) endif

Definition:
approaches-long-enough (trace, seen-so-far)
= seq-long-enough (’approaching,

trace,
seen-so-far ,
approaching-min-time)

Definition:
distance-to-gate (trace)
= if trace ' nil then 1 + (1 + approaching-min-time)

elseif in-gate (car (trace)) then 0
else 1 + distance-to-gate (cdr (trace)) endif

Event: Disable approaches-long-enough.

Definition:
legal-train-trace (trace, n)
= (legal-train-trace1 (trace) ∧ approaches-long-enough (trace, n))

;; CONTROLLER
;; The controller takes as input a sequence of readings from the track
;; sensors telling where the train is. It’s output is a sequence of
;; actuator commands of the form ’open or ’close. The gate responds to
;; these.

6



Definition:
control-output (input)
= if input = ’elsewhere then ’open

else ’close endif

;; THE SYSTEM

Definition:
gate-behavior (train-trace, gate-state)
= let next-state be gate-next-state (control-output (car (train-trace)),

gate-state,
train-trace)

in
if train-trace ' nil then nil
else cons (next-state,

gate-behavior (cdr (train-trace), next-state)) endif endlet

Theorem: approaches-stay-long-enough
(approaches-long-enough (train-trace, approaching-time)
∧ (car (train-trace) = ’approaching))
→ approaches-long-enough (cdr (train-trace), 1 + approaching-time)

;; Now we state safety properties of this system. In particular,
;; we devise constraints that assure that the gate will always be
;; closed when the train is in the gate.

Theorem: approaches-long-enough-zero
listp (train-trace)
→ (approaches-long-enough (train-trace, approaching-time)

= if approaching-time ' 0
then if car (train-trace) = ’approaching

then approaches-long-enough (cdr (train-trace), 1)
else approaches-long-enough (cdr (train-trace), 0) endif

elseif car (train-trace) = ’approaching
then approaches-long-enough (cdr (train-trace),

1 + approaching-time)
else approaches-long-enough (cdr (train-trace), 0)

∧ (approaching-time 6< approaching-min-time) endif)

Definition:
distance-to-gate-induction (train-trace, n)
= if train-trace ' nil then t

elseif cdr (train-trace) ' nil then t

7



elseif car (train-trace) = ’approaching
then distance-to-gate-induction (cdr (train-trace), 1 + n)
else distance-to-gate-induction (cdr (train-trace), 0) endif

Theorem: distance-to-gate-first-approaching
(listp (train-trace)
∧ (car (train-trace) = ’approaching)
∧ approaches-long-enough (train-trace, n))
→ (approaching-min-time < (n + (1 + distance-to-gate (train-trace))))

Theorem: distance-to-gate-first-approaching2
(listp (train-trace)
∧ (car (train-trace) = ’approaching)
∧ approaches-long-enough (train-trace, 0))
→ ((approaching-min-time − 1) < distance-to-gate (train-trace))

Definition:
good-statep (train-state, gate-state, distance-to-gate, time-elsewhere)
= ((going-down (gate-state)

→ (gate-state-duration (gate-state) < gate-closing-max-time))
∧ (going-up (gate-state)

→ (gate-state-duration (gate-state)
< gate-opening-max-time))

∧ case on train-state:
case = in-gate
then closed (gate-state)
case = approaching
then closed (gate-state)

∨ (going-down (gate-state)
∧ (gate-state-duration (gate-state)

< distance-to-gate))
∨ (gate-closing-max-time < distance-to-gate)

case = elsewhere
then ((gate-opening-max-time < time-elsewhere)

→ open (gate-state))
∧ ((closed (gate-state) ∧ (time-elsewhere ' 0))

∨ open (gate-state)
∨ (going-up (gate-state)

∧ (gate-state-duration (gate-state)
≤ (gate-opening-max-time

− time-elsewhere))))
otherwise f endcase)

Definition:
su-invariant (train-trace, gate-trace, time-elsewhere)

8



= if train-trace ' nil then t
elseif gate-trace ' nil then f
else good-statep (car (train-trace),

car (gate-trace),
distance-to-gate (train-trace),
time-elsewhere)

∧ su-invariant (cdr (train-trace),
cdr (gate-trace),
if elsewhere (car (train-trace))
then 1 + time-elsewhere
else 0 endif) endif

Definition:
controller-induction (train-trace, gate-state, time-approaching , time-elsewhere)
= if train-trace ' nil then t

elseif cdr (train-trace) ' nil then t
else controller-induction (cdr (train-trace),

gate-next-state (control-output (car (train-trace)),
gate-state,
train-trace),

if car (train-trace)
= ’approaching

then 1 + time-approaching
else 0 endif,
if car (train-trace)

= ’elsewhere
then 1 + time-elsewhere
else 0 endif) endif

Theorem: controller-su-invariant
(legal-train-trace (train-trace, time-approaching)
∧ legal-gate-statep (gate-state)
∧ good-statep (car (train-trace),

gate-state,
distance-to-gate (train-trace),
time-elsewhere))

→ su-invariant (train-trace,
gate-behavior (train-trace, gate-state),
time-elsewhere)

;; Now we define the desired safety and utility properties and prove that
;; they follow from the su-invariant property.

Definition:

9



safety (train-trace, gate-trace)
= if train-trace ' nil then t

elseif in-gate (car (train-trace))
then closed (car (gate-trace))

∧ safety (cdr (train-trace), cdr (gate-trace))
else safety (cdr (train-trace), cdr (gate-trace)) endif

Theorem: su-invariant-implies-safety
su-invariant (train-trace, gate-trace, time-elsewhere)
→ safety (train-trace, gate-trace)

Definition:
utility (train-trace, gate-trace, time-elsewhere)
= if train-trace ' nil then t

elseif elsewhere (car (train-trace))
then if gate-opening-max-time < time-elsewhere

then open (car (gate-trace))
else t endif
∧ utility (cdr (train-trace),

cdr (gate-trace),
1 + time-elsewhere)

else utility (cdr (train-trace), cdr (gate-trace), 0) endif

Theorem: su-invariant-implies-utility
su-invariant (train-trace, gate-trace, time-elsewhere)
→ utility (train-trace, gate-trace, time-elsewhere)

Theorem: controller-maintains-safety-and-utility
(legal-train-trace (train-trace, time-approaching)
∧ legal-gate-statep (gate-state)
∧ good-statep (car (train-trace),

gate-state,
distance-to-gate (train-trace),
time-elsewhere))

→ (safety (train-trace, gate-behavior (train-trace, gate-state))
∧ utility (train-trace,

gate-behavior (train-trace, gate-state),
time-elsewhere))

;; We now characterize an initial state and show that our invariant
;; is true in that initial state.

Definition:
initial-statep (train-state, gate-state)
= ((train-state = ’elsewhere)

∧ (gate-current-state (gate-state) = ’open))

10



Theorem: controller-safety
(initial-statep (car (train-trace), gate-state)
∧ legal-train-trace (train-trace, time-approaching))
→ safety (train-trace, gate-behavior (train-trace, gate-state))

Theorem: controller-utility
(initial-statep (car (train-trace), gate-state)
∧ legal-train-trace (train-trace, time-approaching))
→ utility (train-trace,

gate-behavior (train-trace, gate-state),
time-elsewhere)

;; AN ALTERNATIVE SPECIFICATION
;; The criticism may be raised that our specification functions
;; SAFETY and UTILITY are harder to understand than the alternatives
;; available in some other specification languages, using quantifiers
;; for example. We offer alternative versions SAFETY2 and UTILITY2
;; that are in a quantified style and prove that they are
;; consequences of our versions.

Definition:
length (x )
= if listp (x ) then 1 + x

else 0 endif

Definition:
get (n, lst)
= if n ' 0 then car (lst)

else get (n − 1, cdr (lst)) endif

Definition:
safety2 (train-trace, gate-trace)
↔ ∀ i (in-gate (get (i , train-trace)) → closed (get (i , gate-trace)))

Theorem: safety2-suff
(in-gate (get (i (gate-trace, train-trace), train-trace))
→ closed (get (i (gate-trace, train-trace), gate-trace)))
→ safety2 (train-trace, gate-trace)

Theorem: safety2-necc
(¬ (in-gate (get (i , train-trace)) → closed (get (i , gate-trace))))
→ (¬ safety2 (train-trace, gate-trace))

Definition:
get-induct (i , x , y)
= if i ' 0 then t

else get-induct (i − 1, cdr (x ), cdr (y)) endif

11



Theorem: safety-implies-safety2-get
(safety (train-trace, gate-trace) ∧ in-gate (get (i , train-trace)))
→ closed (get (i , gate-trace))

Theorem: safety-implies-safety2
safety (train-trace, gate-trace) → safety2 (train-trace, gate-trace)

Theorem: controller-safety2
(initial-statep (car (train-trace), gate-state)
∧ legal-train-trace (train-trace, time-approaching))
→ safety2 (train-trace, gate-behavior (train-trace, gate-state))

Definition:
time-elsewhere (i , found-so-far , train-trace)
= if i ' 0 then found-so-far

elseif elsewhere (car (train-trace))
then time-elsewhere (i − 1, 1 + found-so-far , cdr (train-trace))
else time-elsewhere (i − 1, 0, cdr (train-trace)) endif

Definition:
utility2 (train-trace, gate-trace, n)
↔ ∀ i ((elsewhere (get (i , train-trace))

∧ (gate-opening-max-time
< time-elsewhere (i , n, train-trace)))

→ open (get (i , gate-trace)))

Theorem: utility2-suff
((elsewhere (get (i-1 (gate-trace, n, train-trace), train-trace))
∧ (gate-opening-max-time

< time-elsewhere (i-1 (gate-trace, n, train-trace), n, train-trace)))
→ open (get (i-1 (gate-trace, n, train-trace), gate-trace)))
→ utility2 (train-trace, gate-trace, n)

Theorem: utility2-necc
(¬ ((elsewhere (get (i , train-trace))

∧ (gate-opening-max-time < time-elsewhere (i , n, train-trace)))
→ open (get (i , gate-trace))))

→ (¬ utility2 (train-trace, gate-trace, n))

Definition:
get-induct2 (i , x , y , n)
= if i ' 0 then t

else get-induct2 (i − 1,
cdr (x ),
cdr (y),
if elsewhere (car (x )) then 1 + n
else 0 endif) endif

12



Theorem: utility-implies-utility2-get
(utility (train-trace, gate-trace, n)
∧ elsewhere (get (i , train-trace))
∧ (gate-opening-max-time < time-elsewhere (i , n, train-trace)))
→ open (get (i , gate-trace))

Theorem: utility-implies-utility2
utility (train-trace, gate-trace, time-elsewhere)
→ utility2 (train-trace, gate-trace, time-elsewhere)

Theorem: controller-utility2
(initial-statep (car (train-trace), gate-state)
∧ legal-train-trace (train-trace, time-approaching))
→ utility2 (train-trace,

gate-behavior (train-trace, gate-state),
time-elsewhere)

13



Index
approaches-long-enough, 6–8
approaches-long-enough-zero, 7
approaches-stay-long-enough, 7
approaching, 5
approaching-min-time, 6–8

choose-time, 2, 4
choose-time-intro, 2
closed, 3, 8, 10–12
compute-going-down-state, 3, 4
compute-going-up-state, 4
control-output, 7, 9
controller-induction, 9
controller-maintains-safety-and

-utility, 10
controller-safety, 11
controller-safety2, 12
controller-su-invariant, 9
controller-utility, 11
controller-utility2, 13

difference-add1-sub1, 1
distance-to-gate, 6, 8–10
distance-to-gate-first-approachi

ng, 8
ng2, 8

distance-to-gate-induction, 7, 8

elsewhere, 5, 9, 10, 12, 13

forall, 11, 12

gate-behavior, 7, 9–13
gate-closing-max-time, 2, 4, 6, 8
gate-closing-min-time, 2, 4
gate-current-state, 3, 4, 10
gate-next-state, 4, 7, 9
gate-opening-max-time, 2, 4, 8, 10,

12, 13
gate-opening-min-time, 2, 4
gate-parameters-intro, 2
gate-positionp, 3

gate-state-accessors, 3
gate-state-duration, 3, 4, 8
get, 11–13
get-induct, 11
get-induct2, 12
going-down, 3, 8
going-up, 3, 8
good-statep, 8–10

i, 11
i-1, 12
in-gate, 5, 6, 10–12
initial-statep, 10–13

legal-gate-statep, 3, 9, 10
legal-next-positions, 5
legal-train-trace, 6, 9–13
legal-train-trace1, 5, 6
legal-transitionp, 5
length, 11
lessp-sub1-choose-sub1-max, 2

not-lessp-sub1, 1

open, 3, 8, 10, 12, 13

plus-add1, 1

safety, 9–12
safety-implies-safety2, 12
safety-implies-safety2-get, 12
safety2, 11, 12
safety2-necc, 11
safety2-suff, 11
seq-long-enough, 6
su-invariant, 8–10
su-invariant-implies-safety, 10
su-invariant-implies-utility, 10

time-elsewhere, 12, 13
train-constraints, 6
train-positionp, 5

14



utility, 10, 11, 13
utility-implies-utility2, 13
utility-implies-utility2-get, 13
utility2, 12, 13
utility2-necc, 12
utility2-suff, 12

15


