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;; >> Might try to relax the assumption that there is only
;; one train and it always is going in the same direction.

Event: Start with the initial nqthm theory.

;; SOME SUBSIDIARY LEMMAS

Theorem: not-lessp-sub1
(x 6< y) → ((x < (y − 1)) = f)

Theorem: plus-add1
((x + (1 + y)) = (1 + (x + y)))
∧ (((1 + x ) + y) = (1 + (x + y)))

Theorem: difference-add1-sub1
(x 6' 0) → ((x − (1 + y)) = ((x − y) − 1))

;; THE SYSTEM
;; Our simple control system consists of three distinct components.
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;; The train is an part of the environment; it produces in a way that
;; we cannot control but subject to certain constraints that we specify.
;; The gate is our controlled system and responds to a series of commands
;; generated by the controller. The controller is a device that inputs
;; a series of sensor readings from the environment, giving the position of
;; the train. It generates a series of actuator commands for the gate.
;;
;; Our task is to model the system comprised of these three components.

;; GATE SIMULATION
;; The gate is the controlled system, so we consider that it responds
;; reliably to a series of commands that are generated by the control
;; algorithm. These commands come in the form of a sequence of atoms
;; ’open and ’close. The simulation of the gate tells us its state
;; at each moment of time.

Conservative Axiom: choose-time-intro
(min ≤ max )
→ ((choose-time (min, max , oracle) ∈ N)

∧ (choose-time (min, max , oracle) 6< min)
∧ (max 6< choose-time (min, max , oracle)))

Simultaneously, we introduce the new function symbol choose-time.

Theorem: lessp-sub1-choose-sub1-max
(((max − 1) < x ) ∧ (min ≤ max ))
→ (((choose-time (min, max , oracle) − 1) < x ) = t)

;; The gate can be in 4 states: open, closed, going-up, going-down.

Conservative Axiom: gate-parameters-intro
(gate-closing-min-time ∈ N)
∧ (gate-closing-max-time ∈ N)
∧ (0 < gate-closing-max-time)
∧ (gate-closing-max-time 6< gate-closing-min-time)
∧ (gate-opening-min-time ∈ N)
∧ (0 < gate-opening-max-time)
∧ (gate-opening-max-time ∈ N)
∧ (gate-opening-max-time 6< gate-opening-min-time)

Simultaneously, we introduce the new function symbols gate-closing-min-time,
gate-closing-max-time, gate-opening-min-time, and gate-opening-max-time.
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;; The gate state is a pair (current-state . n) where n is the time that
;; the gate will remain in that state. This is only required for going
;; up and going down and tells us how long they can expect to be in that
;; condition unless they are given a countervening order. This doesn’t
;; take into account some anomolous situations as , for example, when we
;; may have just told the gate to close and immediately tell it to open,
;; so that it has only a short distance to move.

Definition:
gate-positionp (x ) = (x ∈ ’(open closed going-up going-down))

Definition: gate-current-state (state) = car (state)

Definition: gate-state-duration (state) = cdr (state)

Definition:
open (state) = (gate-current-state (state) = ’open)

Definition:
closed (state) = (gate-current-state (state) = ’closed)

Definition:
going-up (state) = (gate-current-state (state) = ’going-up)

Definition:
going-down (state) = (gate-current-state (state) = ’going-down)

Theorem: gate-state-accessors
(gate-current-state (cons (x , y)) = x )
∧ (gate-state-duration (cons (x , y)) = y)

Definition:
legal-gate-statep (x )
= (gate-positionp (gate-current-state (x ))

∧ ((going-up (x ) ∨ going-down (x ))
→ (gate-state-duration (x ) ∈ N)))

Event: Disable gate-current-state.

Event: Disable gate-state-duration.

Definition:
compute-going-down-state (state)
= let n be gate-state-duration (state)

in
if n ' 0 then cons (’closed, 0)
else cons (’going-down, n − 1) endif endlet
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Definition:
compute-going-up-state (state)
= let n be gate-state-duration (state)

in
if n ' 0 then cons (’open, 0)
else cons (’going-up, n − 1) endif endlet

Definition:
gate-next-state (cmd , state, oracle)
= case on cmd :

case = close
then case on gate-current-state (state):

case = open
then cons (’going-down,

choose-time (gate-closing-min-time,
gate-closing-max-time,
oracle) − 1)

case = closed
then state

case = going-up
then cons (’going-down,

choose-time (gate-closing-min-time,
gate-closing-max-time,
oracle) − 1)

case = going-down
then compute-going-down-state (state)

otherwise f endcase
case = open
then case on gate-current-state (state):

case = open
then state
case = closed
then cons (’going-up,

choose-time (gate-opening-min-time,
gate-opening-max-time,
oracle) − 1)

case = going-up
then compute-going-up-state (state)

case = going-down
then cons (’going-up,

choose-time (gate-opening-min-time,
gate-opening-max-time,
oracle) − 1)

otherwise f endcase

4



otherwise f endcase

;; TRAIN BEHAVIOR
;; The train provides our input to the system. The gate must act in
;; response to the train. It can do so only if the behavior of the
;; train meets certain reasonable criteria. Therefore, the specification
;; of the train consists of a set of constraints on the possible traces of
;; the train behavior as sensed by input sensors along the track. The
;; train can be in one of 4 states: approaching the crossing,
;; in the crossing, past the crossing (or outside of our field of view).
;; We assume that the sensors are accurate (debounced) and that trains are
;; sufficiently widely separated.

Definition:
train-positionp (x ) = (x ∈ ’(approaching in-gate elsewhere))

Definition: approaching (x ) = (x = ’approaching)

Definition: in-gate (x ) = (x = ’in-gate)

Definition: elsewhere (x ) = (x = ’elsewhere)

Definition:
legal-next-positions (x )
= case on x :

case = elsewhere
then ’(elsewhere approaching)
case = approaching
then ’(approaching in-gate)

case = in-gate
then ’(in-gate elsewhere)

otherwise nil endcase

Definition:
legal-transitionp (x , y) = (y ∈ legal-next-positions (x ))

Definition:
legal-train-trace1 (trace)
= if trace ' nil then trace = nil

else train-positionp (car (trace))
∧ if listp (cdr (trace))

then legal-transitionp (car (trace), cadr (trace))
else t endif

∧ legal-train-trace1 (cdr (trace)) endif

5



Conservative Axiom: train-constraints
(approaching-min-time ∈ N)
∧ (approaching-min-time 6< (1 + gate-closing-max-time))

Simultaneously, we introduce the new function symbol approaching-min-time.

Definition:
seq-long-enough (x , trace, seen-so-far , min)
= if seen-so-far ' 0

then if trace ' nil then t
elseif car (trace) = x
then seq-long-enough (x , cdr (trace), 1, min)
else seq-long-enough (x , cdr (trace), 0, min) endif

elseif trace ' nil then min ≤ seen-so-far
elseif car (trace) = x
then seq-long-enough (x , cdr (trace), 1 + seen-so-far , min)
else (min ≤ seen-so-far)

∧ seq-long-enough (x , cdr (trace), 0, min) endif

Definition:
approaches-long-enough (trace, seen-so-far)
= seq-long-enough (’approaching,

trace,
seen-so-far ,
approaching-min-time)

Definition:
distance-to-gate (trace)
= if trace ' nil then 1 + (1 + approaching-min-time)

elseif in-gate (car (trace)) then 0
else 1 + distance-to-gate (cdr (trace)) endif

Event: Disable approaches-long-enough.

Definition:
legal-train-trace (trace, n)
= (legal-train-trace1 (trace) ∧ approaches-long-enough (trace, n))

;; CONTROLLER
;; The controller takes as input a sequence of readings from the track
;; sensors telling where the train is. It’s output is a sequence of
;; actuator commands of the form ’open or ’close. The gate responds to
;; these.
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Definition:
control-output (input)
= if input = ’elsewhere then ’open

else ’close endif

;; THE SYSTEM

Definition:
gate-behavior (train-trace, gate-state)
= let next-state be gate-next-state (control-output (car (train-trace)),

gate-state,
train-trace)

in
if train-trace ' nil then nil
else cons (next-state,

gate-behavior (cdr (train-trace), next-state)) endif endlet

Theorem: approaches-stay-long-enough
(approaches-long-enough (train-trace, approaching-time)
∧ (car (train-trace) = ’approaching))
→ approaches-long-enough (cdr (train-trace), 1 + approaching-time)

;; Now we state safety properties of this system. In particular,
;; we devise constraints that assure that the gate will always be
;; closed when the train is in the gate.

Theorem: approaches-long-enough-zero
listp (train-trace)
→ (approaches-long-enough (train-trace, approaching-time)

= if approaching-time ' 0
then if car (train-trace) = ’approaching

then approaches-long-enough (cdr (train-trace), 1)
else approaches-long-enough (cdr (train-trace), 0) endif

elseif car (train-trace) = ’approaching
then approaches-long-enough (cdr (train-trace),

1 + approaching-time)
else approaches-long-enough (cdr (train-trace), 0)

∧ (approaching-time 6< approaching-min-time) endif)

Definition:
distance-to-gate-induction (train-trace, n)
= if train-trace ' nil then t

elseif cdr (train-trace) ' nil then t
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elseif car (train-trace) = ’approaching
then distance-to-gate-induction (cdr (train-trace), 1 + n)
else distance-to-gate-induction (cdr (train-trace), 0) endif

Theorem: distance-to-gate-first-approaching
(listp (train-trace)
∧ (car (train-trace) = ’approaching)
∧ approaches-long-enough (train-trace, n))
→ (approaching-min-time < (n + (1 + distance-to-gate (train-trace))))

Theorem: distance-to-gate-first-approaching2
(listp (train-trace)
∧ (car (train-trace) = ’approaching)
∧ approaches-long-enough (train-trace, 0))
→ ((approaching-min-time − 1) < distance-to-gate (train-trace))

Definition:
good-statep (train-state, gate-state, distance-to-gate, time-elsewhere)
= ((going-down (gate-state)

→ (gate-state-duration (gate-state) < gate-closing-max-time))
∧ (going-up (gate-state)

→ (gate-state-duration (gate-state)
< gate-opening-max-time))

∧ case on train-state:
case = in-gate
then closed (gate-state)
case = approaching
then closed (gate-state)

∨ (going-down (gate-state)
∧ (gate-state-duration (gate-state)

< distance-to-gate))
∨ (gate-closing-max-time < distance-to-gate)

case = elsewhere
then ((gate-opening-max-time < time-elsewhere)

→ open (gate-state))
∧ ((closed (gate-state) ∧ (time-elsewhere ' 0))

∨ open (gate-state)
∨ (going-up (gate-state)

∧ (gate-state-duration (gate-state)
≤ (gate-opening-max-time

− time-elsewhere))))
otherwise f endcase)

Definition:
su-invariant (train-trace, gate-trace, time-elsewhere)
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= if train-trace ' nil then t
elseif gate-trace ' nil then f
else good-statep (car (train-trace),

car (gate-trace),
distance-to-gate (train-trace),
time-elsewhere)

∧ su-invariant (cdr (train-trace),
cdr (gate-trace),
if elsewhere (car (train-trace))
then 1 + time-elsewhere
else 0 endif) endif

Definition:
controller-induction (train-trace, gate-state, time-approaching , time-elsewhere)
= if train-trace ' nil then t

elseif cdr (train-trace) ' nil then t
else controller-induction (cdr (train-trace),

gate-next-state (control-output (car (train-trace)),
gate-state,
train-trace),

if car (train-trace)
= ’approaching

then 1 + time-approaching
else 0 endif,
if car (train-trace)

= ’elsewhere
then 1 + time-elsewhere
else 0 endif) endif

Theorem: controller-su-invariant
(legal-train-trace (train-trace, time-approaching)
∧ legal-gate-statep (gate-state)
∧ good-statep (car (train-trace),

gate-state,
distance-to-gate (train-trace),
time-elsewhere))

→ su-invariant (train-trace,
gate-behavior (train-trace, gate-state),
time-elsewhere)

;; Now we define the desired safety and utility properties and prove that
;; they follow from the su-invariant property.

Definition:
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safety (train-trace, gate-trace)
= if train-trace ' nil then t

elseif in-gate (car (train-trace))
then closed (car (gate-trace))

∧ safety (cdr (train-trace), cdr (gate-trace))
else safety (cdr (train-trace), cdr (gate-trace)) endif

Theorem: su-invariant-implies-safety
su-invariant (train-trace, gate-trace, time-elsewhere)
→ safety (train-trace, gate-trace)

Definition:
utility (train-trace, gate-trace, time-elsewhere)
= if train-trace ' nil then t

elseif elsewhere (car (train-trace))
then if gate-opening-max-time < time-elsewhere

then open (car (gate-trace))
else t endif
∧ utility (cdr (train-trace),

cdr (gate-trace),
1 + time-elsewhere)

else utility (cdr (train-trace), cdr (gate-trace), 0) endif

Theorem: su-invariant-implies-utility
su-invariant (train-trace, gate-trace, time-elsewhere)
→ utility (train-trace, gate-trace, time-elsewhere)

Theorem: controller-maintains-safety-and-utility
(legal-train-trace (train-trace, time-approaching)
∧ legal-gate-statep (gate-state)
∧ good-statep (car (train-trace),

gate-state,
distance-to-gate (train-trace),
time-elsewhere))

→ (safety (train-trace, gate-behavior (train-trace, gate-state))
∧ utility (train-trace,

gate-behavior (train-trace, gate-state),
time-elsewhere))

;; We now characterize an initial state and show that our invariant
;; is true in that initial state.

Definition:
initial-statep (train-state, gate-state)
= ((train-state = ’elsewhere)

∧ (gate-current-state (gate-state) = ’open))
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Theorem: controller-safety
(initial-statep (car (train-trace), gate-state)
∧ legal-train-trace (train-trace, time-approaching))
→ safety (train-trace, gate-behavior (train-trace, gate-state))

Theorem: controller-utility
(initial-statep (car (train-trace), gate-state)
∧ legal-train-trace (train-trace, time-approaching))
→ utility (train-trace,

gate-behavior (train-trace, gate-state),
time-elsewhere)

;; AN ALTERNATIVE SPECIFICATION
;; The criticism may be raised that our specification functions
;; SAFETY and UTILITY are harder to understand than the alternatives
;; available in some other specification languages, using quantifiers
;; for example. We offer alternative versions SAFETY2 and UTILITY2
;; that are in a quantified style and prove that they are
;; consequences of our versions.

Definition:
length (x )
= if listp (x ) then 1 + x

else 0 endif

Definition:
get (n, lst)
= if n ' 0 then car (lst)

else get (n − 1, cdr (lst)) endif

Definition:
safety2 (train-trace, gate-trace)
↔ ∀ i (in-gate (get (i , train-trace)) → closed (get (i , gate-trace)))

Theorem: safety2-suff
(in-gate (get (i (gate-trace, train-trace), train-trace))
→ closed (get (i (gate-trace, train-trace), gate-trace)))
→ safety2 (train-trace, gate-trace)

Theorem: safety2-necc
(¬ (in-gate (get (i , train-trace)) → closed (get (i , gate-trace))))
→ (¬ safety2 (train-trace, gate-trace))

Definition:
get-induct (i , x , y)
= if i ' 0 then t

else get-induct (i − 1, cdr (x ), cdr (y)) endif
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Theorem: safety-implies-safety2-get
(safety (train-trace, gate-trace) ∧ in-gate (get (i , train-trace)))
→ closed (get (i , gate-trace))

Theorem: safety-implies-safety2
safety (train-trace, gate-trace) → safety2 (train-trace, gate-trace)

Theorem: controller-safety2
(initial-statep (car (train-trace), gate-state)
∧ legal-train-trace (train-trace, time-approaching))
→ safety2 (train-trace, gate-behavior (train-trace, gate-state))

Definition:
time-elsewhere (i , found-so-far , train-trace)
= if i ' 0 then found-so-far

elseif elsewhere (car (train-trace))
then time-elsewhere (i − 1, 1 + found-so-far , cdr (train-trace))
else time-elsewhere (i − 1, 0, cdr (train-trace)) endif

Definition:
utility2 (train-trace, gate-trace, n)
↔ ∀ i ((elsewhere (get (i , train-trace))

∧ (gate-opening-max-time
< time-elsewhere (i , n, train-trace)))

→ open (get (i , gate-trace)))

Theorem: utility2-suff
((elsewhere (get (i-1 (gate-trace, n, train-trace), train-trace))
∧ (gate-opening-max-time

< time-elsewhere (i-1 (gate-trace, n, train-trace), n, train-trace)))
→ open (get (i-1 (gate-trace, n, train-trace), gate-trace)))
→ utility2 (train-trace, gate-trace, n)

Theorem: utility2-necc
(¬ ((elsewhere (get (i , train-trace))

∧ (gate-opening-max-time < time-elsewhere (i , n, train-trace)))
→ open (get (i , gate-trace))))

→ (¬ utility2 (train-trace, gate-trace, n))

Definition:
get-induct2 (i , x , y , n)
= if i ' 0 then t

else get-induct2 (i − 1,
cdr (x ),
cdr (y),
if elsewhere (car (x )) then 1 + n
else 0 endif) endif
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Theorem: utility-implies-utility2-get
(utility (train-trace, gate-trace, n)
∧ elsewhere (get (i , train-trace))
∧ (gate-opening-max-time < time-elsewhere (i , n, train-trace)))
→ open (get (i , gate-trace))

Theorem: utility-implies-utility2
utility (train-trace, gate-trace, time-elsewhere)
→ utility2 (train-trace, gate-trace, time-elsewhere)

Theorem: controller-utility2
(initial-statep (car (train-trace), gate-state)
∧ legal-train-trace (train-trace, time-approaching))
→ utility2 (train-trace,

gate-behavior (train-trace, gate-state),
time-elsewhere)
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