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Copyright (C) 1994 by Yuan Yu. All Rights Reserved.

This script is hereby placed in the public domain, and therefore unlimited
editing and redistribution is permitted.

NO WARRANTY

Yuan Yu PROVIDES ABSOLUTELY NO WARRANTY. THE EVENT SCRIPT IS PROVIDED "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
SCRIPT IS WITH YOU. SHOULD THE SCRIPT PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT WILL Yuan Yu BE LIABLE TO YOU FOR ANY DAMAGES, ANY LOST PROFITS,
LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THIS SCRIPT (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD
PARTIES), EVEN IF YOU HAVE ADVISED US OF THE POSSIBILITY OF SUCH DAMAGES, OR
FOR ANY CLAIM BY ANY OTHER PARTY.

|#

Event: Start with the library "gcd" using the compiled version.

#|

The following C program computes the greatest common divisor of
three nonnegative integers a, b and c. We investigate the machine
code of this program generated by a widely used C compiler gcc,
and verify the correctness of the code. The aim here is to see
how to handle subroutine calls.

gcd3(a, b, c)
long int a, b, c;
{

gcd(gcd(a, b), c);
}

Here is the MC68020 assembly code of the above GCD program. The code is
generated by gcc.
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0x2324 <gcd3>: linkw a6,#0
0x2328 <gcd3+4>: movel a2,sp@-
0x232a <gcd3+6>: movel a6@(16),sp@-
0x232e <gcd3+10>: movel a6@(12),sp@-
0x2332 <gcd3+14>: movel a6@(8),sp@-
0x2336 <gcd3+18>: lea @#0x2350 <gcd>,a2
0x233c <gcd3+24>: jsr a2@
0x233e <gcd3+26>: addqw #8,sp
0x2340 <gcd3+28>: movel d0,sp@-
0x2342 <gcd3+30>: jsr a2@
0x2344 <gcd3+32>: moveal a6@(-4),a2
0x2348 <gcd3+36>: unlk a6
0x234a <gcd3+38>: rts

The machine code of the above program is:

<gcd3>: 0x4e56 0x0000 0x2f0a 0x2f2e 0x0010 0x2f2e 0x000c 0x2f2e
<gcd3+16>: 0x0008 0x45f9 0x0000 0x2350 0x4e92 0x504f 0x2f00 0x4e92
<gcd3+32>: 0x246e 0xfffc 0x4e5e 0x4e75

’(78 86 0 0 47 10 47 46
0 16 47 46 0 12 47 46
0 8 69 249 0 0 35 80
78 146 80 79 47 0 78 146
36 110 255 252 78 94 78 117)

|#

; now we start to verify this GCD3 program, defined by (gcd3-code).

Definition:
gcd3-code
= ’(78 86 0 0 47 10 47 46 0 16 47 46 0 12 47 46 0 8 69

249 -1 -1 -1 -1 78 146 80 79 47 0 78 146 36 110 255
252 78 94 78 117)

Conservative Axiom: gcd3-load
gcd3-loadp (s)
= (evenp (gcd3-addr)

∧ (gcd3-addr ∈ N)
∧ nat-rangep (gcd3-addr, 32)
∧ rom-addrp (gcd3-addr, mc-mem (s), 40)
∧ mcode-addrp (gcd3-addr, mc-mem (s), gcd3-code)
∧ gcd-loadp (s)
∧ (pc-read-mem (add (32, gcd3-addr, 20), mc-mem (s), 4) = gcd-addr))
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Simultaneously, we introduce the new function symbols gcd3-loadp and gcd3-
addr .

Theorem: stepn-gcd3-loadp
gcd3-loadp (stepn (s, n)) = gcd3-loadp (s)

Definition: gcd3 (a, b, c) = gcd (gcd (a, b), c)

Definition: gcd3-t0 (a, b, c) = 7

Definition: gcd3-t1 (a, b, c) = gcd-t (a, b)

Definition: gcd3-t2 (a, b, c) = 3

Definition: gcd3-t3 (a, b, c) = gcd-t (gcd (a, b), c)

Definition: gcd3-t4 (a, b, c) = 3

Definition:
gcd3-t (a, b, c)
= splus (gcd3-t0 (a, b, c),

splus (gcd3-t1 (a, b, c),
splus (gcd3-t2 (a, b, c), splus (gcd3-t3 (a, b, c), gcd3-t4 (a, b, c)))))

; the initial state.

Definition:
gcd3-statep (s, a, b, c)
= ((mc-status (s) = ’running)

∧ gcd3-loadp (s)
∧ (mc-pc (s) = gcd3-addr)
∧ ram-addrp (sub (32, 36, read-sp (s)), mc-mem (s), 52)
∧ (a = iread-mem (add (32, read-sp (s), 4), mc-mem (s), 4))
∧ (b = iread-mem (add (32, read-sp (s), 8), mc-mem (s), 4))
∧ (c = iread-mem (add (32, read-sp (s), 12), mc-mem (s), 4))
∧ (0 < a)
∧ (0 < b)
∧ (0 < c))

; the state after the execution of the first JSR instruction, but before
; the execution of the subroutine GCD.

Definition:
gcd3-s0p (s, a, b, c)
= ((mc-status (s) = ’running)

∧ gcd3-loadp (s)
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∧ (mc-pc (s) = gcd-addr)
∧ (read-an (32, 2, s) = gcd-addr)
∧ (rts-addr (s) = add (32, gcd3-addr, 26))
∧ ram-addrp (sub (32, 12, read-sp (s)), mc-mem (s), 52)
∧ equal* (read-an (32, 6, s), add (32, read-sp (s), 20))
∧ (a = iread-mem (add (32, read-sp (s), 4), mc-mem (s), 4))
∧ (b = iread-mem (add (32, read-sp (s), 8), mc-mem (s), 4))
∧ (c = iread-mem (add (32, read-sp (s), 12), mc-mem (s), 4))
∧ (0 < a)
∧ (0 < b)
∧ (0 < c))

; the state right after return from the first call to subroutine GCD.

Definition:
gcd3-s1p (s, a, b, c)
= ((mc-status (s) = ’running)

∧ gcd3-loadp (s)
∧ (read-an (32, 2, s) = gcd-addr)
∧ (mc-pc (s) = add (32, gcd3-addr, 26))
∧ ram-addrp (sub (32, 16, read-sp (s)), mc-mem (s), 52)
∧ equal* (read-an (32, 6, s), add (32, read-sp (s), 16))
∧ (iread-dn (32, 0, s) = gcd (a, b))
∧ (c = iread-mem (add (32, read-sp (s), 8), mc-mem (s), 4))
∧ (0 < a)
∧ (0 < b)
∧ (0 < c))

; the state after the execution of the second JSR, but before the
; execution of the subroutine GCD.

Definition:
gcd3-s2p (s, a, b, c)
= ((mc-status (s) = ’running)

∧ gcd3-loadp (s)
∧ (mc-pc (s) = gcd-addr)
∧ (rts-addr (s) = add (32, gcd3-addr, 32))
∧ ram-addrp (sub (32, 16, read-sp (s)), mc-mem (s), 52)
∧ equal* (read-an (32, 6, s), add (32, read-sp (s), 16))
∧ (gcd (a, b) = iread-mem (add (32, read-sp (s), 4), mc-mem (s), 4))
∧ (c = iread-mem (add (32, read-sp (s), 8), mc-mem (s), 4))
∧ (0 < a)
∧ (0 < b)
∧ (0 < c))
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; the state returned from the second call to the subroutine GCD.

Definition:
gcd3-s3p (s, a, b, c)
= ((mc-status (s) = ’running)

∧ gcd3-loadp (s)
∧ (mc-pc (s) = add (32, gcd3-addr, 32))
∧ ram-addrp (sub (32, 12, read-sp (s)), mc-mem (s), 44)
∧ equal* (read-an (32, 6, s), add (32, read-sp (s), 12))
∧ (gcd (gcd (a, b), c) = iread-dn (32, 0, s))
∧ (0 < a)
∧ (0 < b)
∧ (0 < c))

; from the initial state to s0.

Theorem: gcd3-s-s0
let s0 be stepn (s, gcd3-t0 (a, b, c))
in
gcd3-statep (s, a, b, c)
→ (gcd3-s0p (s0 , a, b, c)

∧ (linked-rts-addr (s0 ) = rts-addr (s))
∧ (linked-a6 (s0 ) = read-an (32, 6, s))
∧ (read-rn (32, 14, mc-rfile (s0 ))

= sub (32, 4, read-sp (s)))
∧ (rn-saved (s0 ) = read-an (32, 2, s))) endlet

Theorem: gcd3-s-s0-rfile
(gcd3-statep (s, a, b, c) ∧ d2-7a3-5p (rn))
→ (read-rn (oplen, rn, mc-rfile (stepn (s, gcd3-t0 (a, b, c))))

= read-rn (oplen, rn, mc-rfile (s)))

Theorem: gcd3-s-s0-mem
(gcd3-statep (s, a, b, c) ∧ disjoint (x , k , sub (32, 36, read-sp (s)), 52))
→ (read-mem (x , mc-mem (stepn (s, gcd3-t0 (a, b, c))), k)

= read-mem (x , mc-mem (s), k))

; from s0 to s1.

Theorem: gcd3-s0-s1
let s1 be stepn (s, gcd3-t1 (a, b, c))
in
gcd3-s0p (s, a, b, c)
→ (gcd3-s1p (s1 , a, b, c)

∧ (linked-rts-addr (s1 ) = linked-rts-addr (s))
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∧ (read-rn (32, 14, mc-rfile (s1 ))
= read-rn (32, 14, mc-rfile (s)))

∧ (linked-a6 (s1 ) = linked-a6 (s))
∧ (rn-saved (s1 ) = rn-saved (s))) endlet

Theorem: gcd3-s0-s1-rfile
(gcd3-s0p (s, a, b, c) ∧ d2-7a2-5p (rn) ∧ (oplen ≤ 32))
→ (read-rn (oplen, rn, mc-rfile (stepn (s, gcd3-t1 (a, b, c))))

= read-rn (oplen, rn, mc-rfile (s)))

Theorem: gcd3-s0-s1-mem
(gcd3-s0p (s, a, b, c) ∧ disjoint (x , k , sub (32, 32, read-an (32, 6, s)), 52))
→ (read-mem (x , mc-mem (stepn (s, gcd3-t1 (a, b, c))), k)

= read-mem (x , mc-mem (s), k))

; from s1 to s2.

Theorem: gcd3-s1-s2
let s2 be stepn (s, gcd3-t2 (a, b, c))
in
gcd3-s1p (s, a, b, c)
→ (gcd3-s2p (s2 , a, b, c)

∧ (linked-rts-addr (s2 ) = linked-rts-addr (s))
∧ (read-rn (32, 14, mc-rfile (s2 ))

= read-rn (32, 14, mc-rfile (s)))
∧ (linked-a6 (s2 ) = linked-a6 (s))
∧ (rn-saved (s2 ) = rn-saved (s))) endlet

Theorem: gcd3-s1-s2-rfile
(gcd3-s1p (s, a, b, c) ∧ d2-7a3-5p (rn))
→ (read-rn (oplen, rn, mc-rfile (stepn (s, gcd3-t2 (a, b, c))))

= read-rn (oplen, rn, mc-rfile (s)))

Theorem: gcd3-s1-s2-mem
(gcd3-s1p (s, a, b, c) ∧ disjoint (x , k , sub (32, 32, read-an (32, 6, s)), 52))
→ (read-mem (x , mc-mem (stepn (s, gcd3-t2 (a, b, c))), k)

= read-mem (x , mc-mem (s), k))

; from s2 to s3.

Theorem: gcd-nonzero
((a 6' 0) ∧ (b 6' 0)) → (gcd (a, b) 6= 0)

Theorem: gcd3-s2-s3
let s3 be stepn (s, gcd3-t3 (a, b, c))
in
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gcd3-s2p (s, a, b, c)
→ (gcd3-s3p (s3 , a, b, c)

∧ (linked-rts-addr (s3 ) = linked-rts-addr (s))
∧ (read-rn (32, 14, mc-rfile (s3 ))

= read-rn (32, 14, mc-rfile (s)))
∧ (linked-a6 (s3 ) = linked-a6 (s))
∧ (rn-saved (s3 ) = rn-saved (s))) endlet

Theorem: gcd3-s2-s3-rfile
(gcd3-s2p (s, a, b, c) ∧ d2-7a2-5p (rn) ∧ (oplen ≤ 32))
→ (read-rn (oplen, rn, mc-rfile (stepn (s, gcd3-t3 (a, b, c))))

= read-rn (oplen, rn, mc-rfile (s)))

Theorem: gcd3-s2-s3-mem
(gcd3-s2p (s, a, b, c) ∧ disjoint (x , k , sub (32, 32, read-an (32, 6, s)), 52))
→ (read-mem (x , mc-mem (stepn (s, gcd3-t3 (a, b, c))), k)

= read-mem (x , mc-mem (s), k))

; from s3 to exit.

Theorem: gcd3-s3-sn
let sn be stepn (s, gcd3-t4 (a, b, c))
in
gcd3-s3p (s, a, b, c)
→ ((mc-status (sn) = ’running)

∧ (mc-pc (sn) = linked-rts-addr (s))
∧ (iread-dn (32, 0, sn) = gcd (gcd (a, b), c))
∧ (read-rn (32, 14, mc-rfile (sn)) = linked-a6 (s))
∧ (read-rn (32, 15, mc-rfile (sn))

= add (32, read-an (32, 6, s), 8))) endlet

Theorem: gcd3-s3-sn-rfile
(gcd3-s3p (s, a, b, c) ∧ (oplen ≤ 32) ∧ d2-7a2-5p (rn))
→ (read-rn (oplen, rn, mc-rfile (stepn (s, gcd3-t4 (a, b, c))))

= if rn = 10 then head (rn-saved (s), oplen)
else read-rn (oplen, rn, mc-rfile (s)) endif)

Theorem: gcd3-s3-sn-mem
(gcd3-s3p (s, a, b, c) ∧ disjoint (x , k , sub (32, 32, read-an (32, 6, s)), 52))
→ (read-mem (x , mc-mem (stepn (s, gcd3-t4 (a, b, c))), k)

= read-mem (x , mc-mem (s), k))

Event: Disable gcd3-t0.

Event: Disable gcd3-t1.
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Event: Disable gcd3-t2.

Event: Disable gcd3-t3.

Event: Disable gcd3-t4.

; the correctness of the program GCD3.

Theorem: gcd3-correctness
let sn be stepn (s, gcd3-t (a, b, c))
in
gcd3-statep (s, a, b, c)
→ ((mc-status (sn) = ’running)

∧ (mc-pc (sn) = rts-addr (s))
∧ (read-rn (32, 14, mc-rfile (sn))

= read-rn (32, 14, mc-rfile (s)))
∧ (read-rn (32, 15, mc-rfile (sn))

= add (32, read-rn (32, 15, mc-rfile (s)), 4))
∧ (((oplen ≤ 32) ∧ d2-7a2-5p (rn))

→ (read-rn (oplen, rn, mc-rfile (sn))
= read-rn (oplen, rn, mc-rfile (s))))

∧ (disjoint (x , k , sub (32, 36, read-sp (s)), 52)
→ (read-mem (x , mc-mem (sn), k)

= read-mem (x , mc-mem (s), k)))
∧ (iread-dn (32, 0, sn) = gcd (gcd (a, b), c))) endlet

Event: Disable gcd3-t.

; in the logic, the function gcd3 does computes the greatest common divisor
; of its three arguments.

Theorem: remainder-trans
(((a mod b) = 0) ∧ ((b mod c) = 0)) → ((a mod c) = 0)

Theorem: gcd3-is-cd
((a mod gcd3 (a, b, c)) = 0)
∧ ((b mod gcd3 (a, b, c)) = 0)
∧ ((c mod gcd3 (a, b, c)) = 0)

Theorem: cd-divides-gcd
(((a mod x ) = 0) ∧ ((b mod x ) = 0)) → ((gcd (a, b) mod x ) = 0)
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Theorem: gcd3-the-greatest
((a 6' 0)
∧ (b 6' 0)
∧ (c 6' 0)
∧ ((a mod x ) = 0)
∧ ((b mod x ) = 0)
∧ ((c mod x ) = 0))
→ (gcd3 (a, b, c) 6< x )

Event: Disable remainder-trans.
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