
#|

Copyright (C) 1994 by Yuan Yu. All Rights Reserved.

This script is hereby placed in the public domain, and therefore unlimited
editing and redistribution is permitted.

NO WARRANTY

Yuan Yu PROVIDES ABSOLUTELY NO WARRANTY. THE EVENT SCRIPT IS PROVIDED "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
SCRIPT IS WITH YOU. SHOULD THE SCRIPT PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT WILL Yuan Yu BE LIABLE TO YOU FOR ANY DAMAGES, ANY LOST PROFITS,
LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THIS SCRIPT (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD
PARTIES), EVEN IF YOU HAVE ADVISED US OF THE POSSIBILITY OF SUCH DAMAGES, OR
FOR ANY CLAIM BY ANY OTHER PARTY.

|#

Event: Start with the library "memmove" using the compiled version.

; Proof of the Correctness of the MEMCPY Function
#|
This is part of our effort to verify the Berkeley string library. The
Berkeley string library is widely used as part of the Berkeley Unix OS.

This is the source code of memcpy function in the Berkeley string library.

typedef int word; /* "word" used for optimal copy speed */

#define wsize sizeof(word)
#define wmask (wsize - 1)

/*
* Copy a block of memory, handling overlap.
* This is the routine that actually implements
* (the portable versions of) bcopy, memcpy, and memmove.

1

*/
void *
memcpy(dst0, src0, length)

void *dst0;
const void *src0;
register size_t length;

{
register char *dst = dst0;
register const char *src = src0;
register size_t t;

if (length == 0 || dst == src) /* nothing to do */
goto done;

/*
* Macros: loop-t-times; and loop-t-times, t>0
*/

#define TLOOP(s) if (t) TLOOP1(s)
#define TLOOP1(s) do { s; } while (--t)

if ((unsigned long)dst < (unsigned long)src) {
/*
* Copy forward.
*/

t = (int)src; /* only need low bits */
if ((t | (int)dst) & wmask) {

/*
* Try to align operands. This cannot be done
* unless the low bits match.
*/
if ((t ^ (int)dst) & wmask || length < wsize)

t = length;
else

t = wsize - (t & wmask);
length -= t;
TLOOP1(*dst++ = *src++);

}
/*
* Copy whole words, then mop up any trailing bytes.
*/

t = length / wsize;
TLOOP(*(word *)dst = *(word *)src; src += wsize; dst += wsize);
t = length & wmask;
TLOOP(*dst++ = *src++);

2

} else {
/*
* Copy backwards. Otherwise essentially the same.
* Alignment works as before, except that it takes
* (t&wmask) bytes to align, not wsize-(t&wmask).
*/

src += length;
dst += length;
t = (int)src;
if ((t | (int)dst) & wmask) {

if ((t ^ (int)dst) & wmask || length <= wsize)
t = length;

else
t &= wmask;

length -= t;
TLOOP1(*--dst = *--src);

}
t = length / wsize;
TLOOP(src -= wsize; dst -= wsize; *(word *)dst = *(word *)src);
t = length & wmask;
TLOOP(*--dst = *--src);

}
done:

return (dst0);
}

The MC68020 assembly code of the C function memcpy on SUN-3 is given as
follows. This binary is generated by "gcc -O".

0x2610 <memcpy>: linkw fp,#0
0x2614 <memcpy+4>: moveml d2-d4,sp@-
0x2618 <memcpy+8>: movel fp@(8),d3
0x261c <memcpy+12>: movel fp@(16),d2
0x2620 <memcpy+16>: moveal d3,a1
0x2622 <memcpy+18>: moveal fp@(12),a0
0x2626 <memcpy+22>: beq 0x26c4 <memcpy+180>
0x262a <memcpy+26>: cmpal d3,a0
0x262c <memcpy+28>: beq 0x26c4 <memcpy+180>
0x2630 <memcpy+32>: bls 0x267c <memcpy+108>
0x2632 <memcpy+34>: movel a0,d1
0x2634 <memcpy+36>: movel d1,d0
0x2636 <memcpy+38>: orl d3,d0
0x2638 <memcpy+40>: movel #3,d4
0x263a <memcpy+42>: andl d4,d0

3

0x263c <memcpy+44>: beq 0x2662 <memcpy+82>
0x263e <memcpy+46>: movel d1,d0
0x2640 <memcpy+48>: eorl d3,d0
0x2642 <memcpy+50>: movel #3,d4
0x2644 <memcpy+52>: andl d4,d0
0x2646 <memcpy+54>: bne 0x264e <memcpy+62>
0x2648 <memcpy+56>: movel #3,d4
0x264a <memcpy+58>: cmpl d2,d4
0x264c <memcpy+60>: bcs 0x2652 <memcpy+66>
0x264e <memcpy+62>: movel d2,d1
0x2650 <memcpy+64>: bra 0x265a <memcpy+74>
0x2652 <memcpy+66>: movel #3,d0
0x2654 <memcpy+68>: andl d1,d0
0x2656 <memcpy+70>: movel #4,d1
0x2658 <memcpy+72>: subl d0,d1
0x265a <memcpy+74>: subl d1,d2
0x265c <memcpy+76>: moveb a0@+,a1@+
0x265e <memcpy+78>: subl #1,d1
0x2660 <memcpy+80>: bne 0x265c <memcpy+76>
0x2662 <memcpy+82>: movel d2,d1
0x2664 <memcpy+84>: lsrl #2,d1
0x2666 <memcpy+86>: beq 0x266e <memcpy+94>
0x2668 <memcpy+88>: movel a0@+,a1@+
0x266a <memcpy+90>: subl #1,d1
0x266c <memcpy+92>: bne 0x2668 <memcpy+88>
0x266e <memcpy+94>: movel #3,d1
0x2670 <memcpy+96>: andl d2,d1
0x2672 <memcpy+98>: beq 0x26c4 <memcpy+180>
0x2674 <memcpy+100>: moveb a0@+,a1@+
0x2676 <memcpy+102>: subl #1,d1
0x2678 <memcpy+104>: bne 0x2674 <memcpy+100>
0x267a <memcpy+106>: bra 0x26c4 <memcpy+180>
0x267c <memcpy+108>: addal d2,a0
0x267e <memcpy+110>: addal d2,a1
0x2680 <memcpy+112>: movel a0,d1
0x2682 <memcpy+114>: movel a1,d0
0x2684 <memcpy+116>: orl d1,d0
0x2686 <memcpy+118>: movel #3,d4
0x2688 <memcpy+120>: andl d4,d0
0x268a <memcpy+122>: beq 0x26ac <memcpy+156>
0x268c <memcpy+124>: movel a1,d0
0x268e <memcpy+126>: eorl d1,d0
0x2690 <memcpy+128>: movel #3,d4
0x2692 <memcpy+130>: andl d4,d0

4

0x2694 <memcpy+132>: bne 0x269c <memcpy+140>
0x2696 <memcpy+134>: movel #4,d4
0x2698 <memcpy+136>: cmpl d2,d4
0x269a <memcpy+138>: bcs 0x26a0 <memcpy+144>
0x269c <memcpy+140>: movel d2,d1
0x269e <memcpy+142>: bra 0x26a4 <memcpy+148>
0x26a0 <memcpy+144>: movel #3,d4
0x26a2 <memcpy+146>: andl d4,d1
0x26a4 <memcpy+148>: subl d1,d2
0x26a6 <memcpy+150>: moveb a0@-,a1@-
0x26a8 <memcpy+152>: subl #1,d1
0x26aa <memcpy+154>: bne 0x26a6 <memcpy+150>
0x26ac <memcpy+156>: movel d2,d1
0x26ae <memcpy+158>: lsrl #2,d1
0x26b0 <memcpy+160>: beq 0x26b8 <memcpy+168>
0x26b2 <memcpy+162>: movel a0@-,a1@-
0x26b4 <memcpy+164>: subl #1,d1
0x26b6 <memcpy+166>: bne 0x26b2 <memcpy+162>
0x26b8 <memcpy+168>: movel #3,d1
0x26ba <memcpy+170>: andl d2,d1
0x26bc <memcpy+172>: beq 0x26c4 <memcpy+180>
0x26be <memcpy+174>: moveb a0@-,a1@-
0x26c0 <memcpy+176>: subl #1,d1
0x26c2 <memcpy+178>: bne 0x26be <memcpy+174>
0x26c4 <memcpy+180>: movel d3,d0
0x26c6 <memcpy+182>: moveml fp@(-12),d2-d4
0x26cc <memcpy+188>: unlk fp
0x26ce <memcpy+190>: rts

The machine code of the above program is:

<memcpy>: 0x4e56 0x0000 0x48e7 0x3800 0x262e 0x0008 0x242e 0x0010
<memcpy+16>: 0x2243 0x206e 0x000c 0x6700 0x009c 0xb1c3 0x6700 0x0096
<memcpy+32>: 0x634a 0x2208 0x2001 0x8083 0x7803 0xc084 0x6724 0x2001
<memcpy+48>: 0xb780 0x7803 0xc084 0x6606 0x7803 0xb882 0x6504 0x2202
<memcpy+64>: 0x6008 0x7003 0xc081 0x7204 0x9280 0x9481 0x12d8 0x5381
<memcpy+80>: 0x66fa 0x2202 0xe489 0x6706 0x22d8 0x5381 0x66fa 0x7203
<memcpy+96>: 0xc282 0x6750 0x12d8 0x5381 0x66fa 0x6048 0xd1c2 0xd3c2
<memcpy+112>: 0x2208 0x2009 0x8081 0x7803 0xc084 0x6720 0x2009 0xb380
<memcpy+128>: 0x7803 0xc084 0x6606 0x7804 0xb882 0x6504 0x2202 0x6004
<memcpy+144>: 0x7803 0xc284 0x9481 0x1320 0x5381 0x66fa 0x2202 0xe489
<memcpy+160>: 0x6706 0x2320 0x5381 0x66fa 0x7203 0xc282 0x6706 0x1320
<memcpy+176>: 0x5381 0x66fa 0x2003 0x4cee 0x001c 0xfff4 0x4e5e 0x4e75

5

’(78 86 0 0 72 231 56 0
38 46 0 8 36 46 0 16
34 67 32 110 0 12 103 0
0 156 177 195 103 0 0 150
99 74 34 8 32 1 128 131
120 3 192 132 103 36 32 1
183 128 120 3 192 132 102 6
120 3 184 130 101 4 34 2
96 8 112 3 192 129 114 4
146 128 148 129 18 216 83 129
102 250 34 2 228 137 103 6
34 216 83 129 102 250 114 3
194 130 103 80 18 216 83 129
102 250 96 72 209 194 211 194
34 8 32 9 128 129 120 3
192 132 103 32 32 9 179 128
120 3 192 132 102 6 120 4
184 130 101 4 34 2 96 4
120 3 194 132 148 129 19 32
83 129 102 250 34 2 228 137
103 6 35 32 83 129 102 250
114 3 194 130 103 6 19 32
83 129 102 250 32 3 76 238
0 28 255 244 78 94 78 117)

|#

; in the logic, the above program is defined by (memcpy-code).

Definition:
memcpy-code
= ’(78 86 0 0 72 231 56 0 38 46 0 8 36 46 0 16 34 67 32

110 0 12 103 0 0 156 177 195 103 0 0 150 99 74 34 8
32 1 128 131 120 3 192 132 103 36 32 1 183 128 120 3
192 132 102 6 120 3 184 130 101 4 34 2 96 8 112 3
192 129 114 4 146 128 148 129 18 216 83 129 102 250
34 2 228 137 103 6 34 216 83 129 102 250 114 3 194
130 103 80 18 216 83 129 102 250 96 72 209 194 211
194 34 8 32 9 128 129 120 3 192 132 103 32 32 9 179
128 120 3 192 132 102 6 120 4 184 130 101 4 34 2 96
4 120 3 194 132 148 129 19 32 83 129 102 250 34 2
228 137 103 6 35 32 83 129 102 250 114 3 194 130 103
6 19 32 83 129 102 250 32 3 76 238 0 28 255 244 78
94 78 117)

; the initial state.

6

Definition:
memcpy-statep (s, str1 , n, lst1 , str2 , lst2)
= ((mc-status (s) = ’running)

∧ evenp (mc-pc (s))
∧ rom-addrp (mc-pc (s), mc-mem (s), 192)
∧ mcode-addrp (mc-pc (s), mc-mem (s), memmove-code)
∧ ram-addrp (sub (32, 16, read-sp (s)), mc-mem (s), 32)
∧ ram-addrp (str1 , mc-mem (s), n)
∧ mem-lst (1, str1 , mc-mem (s), n, lst1)
∧ ram-addrp (str2 , mc-mem (s), n)
∧ mem-lst (1, str2 , mc-mem (s), n, lst2)
∧ disjoint (sub (32, 16, read-sp (s)), 32, str1 , n)
∧ disjoint (sub (32, 16, read-sp (s)), 32, str2 , n)
∧ (str1 = read-mem (add (32, read-sp (s), 4), mc-mem (s), 4))
∧ (str2 = read-mem (add (32, read-sp (s), 8), mc-mem (s), 4))
∧ (n = uread-mem (add (32, read-sp (s), 12), mc-mem (s), 4))
∧ uint-rangep (nat-to-uint (str1) + n, 32)
∧ uint-rangep (nat-to-uint (str2) + n, 32))

; the time function.

Definition:
memcpy-t (str1 , n, lst1 , str2 , lst2) = memmove-t (str1 , n, lst1 , str2 , lst2)

; the behavior.

Definition:
memcpy (str1 , str2 , n, lst1 , lst2) = memmove (str1 , str2 , n, lst1 , lst2)

; memcpy and memmove are identical.

Theorem: memcpy-memmove-statep
memcpy-statep (s, str1 , n, lst1 , str2 , lst2)
= memmove-statep (s, str1 , n, lst1 , str2 , lst2)

; the correctness.

Theorem: memcpy-correctness
let sn be stepn (s, memcpy-t (str1 , n, lst1 , str2 , lst2))
in
memcpy-statep (s, str1 , n, lst1 , str2 , lst2)
→ ((mc-status (sn) = ’running)

∧ (mc-pc (sn) = rts-addr (s))
∧ (read-rn (32, 14, mc-rfile (sn))

= read-rn (32, 14, mc-rfile (s)))

7

∧ (read-rn (32, 15, mc-rfile (sn))
= add (32, read-sp (s), 4))

∧ ((d2-7a2-5p (rn) ∧ (oplen ≤ 32))
→ (read-rn (oplen, rn, mc-rfile (sn))

= read-rn (oplen, rn, mc-rfile (s))))
∧ ((disjoint (x , k , sub (32, 16, read-sp (s)), 32)

∧ disjoint (x , k , str1 , n))
→ (read-mem (x , mc-mem (sn), k)

= read-mem (x , mc-mem (s), k)))
∧ (read-dn (32, 0, sn) = str1)
∧ mem-lst (1,

str1 ,
mc-mem (sn),
n,
memcpy (str1 , str2 , n, lst1 , lst2))) endlet

Event: Disable memcpy-t.

; some properties of memcpy.
; the same as memmove.

8

Index
add, 7, 8

d2-7a2-5p, 8
disjoint, 7, 8

evenp, 7

mc-mem, 7, 8
mc-pc, 7
mc-rfile, 7, 8
mc-status, 7
mcode-addrp, 7
mem-lst, 7, 8
memcpy, 7, 8
memcpy-code, 6
memcpy-correctness, 7
memcpy-memmove-statep, 7
memcpy-statep, 7
memcpy-t, 7
memmove, 7
memmove-code, 7
memmove-statep, 7
memmove-t, 7

nat-to-uint, 7

ram-addrp, 7
read-dn, 8
read-mem, 7, 8
read-rn, 7, 8
read-sp, 7, 8
rom-addrp, 7
rts-addr, 7

stepn, 7
sub, 7, 8

uint-rangep, 7
uread-mem, 7

9

