#]
Copyright (C) 1994 by Yuan Yu. All Rights Reserved.

This script is hereby placed in the public domain, and therefore unlimited
editing and redistribution is permitted.

NO WARRANTY

Yuan Yu PROVIDES ABSOLUTELY NO WARRANTY. THE EVENT SCRIPT IS PROVIDED "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
SCRIPT IS WITH YOU. SHOULD THE SCRIPT PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT WILL Yuan Yu BE LIABLE TO YOU FOR ANY DAMAGES, ANY LOST PROFITS,
LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THIS SCRIPT (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD
PARTIES), EVEN IF YOU HAVE ADVISED US OF THE POSSIBILITY OF SUCH DAMAGES, OR
FOR ANY CLAIM BY ANY OTHER PARTY.

| #
EVENT: Start with the library "memmove" using the compiled version.

; Proof of the Correctness of the MEMCPY Function
#
This is part of our effort to verify the Berkeley string library. The

Berkeley string library is widely used as part of the Berkeley Unix 0S.
This is the source code of memcpy function in the Berkeley string library.
typedef int word; /* "word" used for optimal copy speed */

#tdefine wsize sizeof (word)
#define wmask (wsize - 1)

/*

* Copy a block of memory, handling overlap.

* This is the routine that actually implements

* (the portable versions of) bcopy, memcpy, and memmove.

*/

void *
memcpy (dst0O, srcO, length)
void *dstO;
const void *srcO;
register size_t length;
{

register char *dst = dstO;
register const char *src = srcO;
register size_t t;

if (length == 0 || dst == src) /* nothing to do */
goto done;

/*
* Macros: loop-t-times; and loop-t-times, t>0
*/
#define TLOOP(s) if (t) TLOOP1(s)
#define TLOOP1(s) do { s; } while (--t)

if ((unsigned long)dst < (unsigned long)src) {
/*
* Copy forward.
*/
t = (int)src; /* only need low bits */
if ((t | (int)dst) & wmask) {
/*
* Try to align operands. This cannot be done
* unless the low bits match.

*/

if ((¢t ~ (int)dst) & wmask || length < wsize)
t = length;

else

t = wsize - (t & wmask);
length -= t;
TLOOP1 (*dst++ = *src++);
}
/*
* Copy whole words, then mop up any trailing bytes.
*/
t = length / wsize;
TLOOP (*(word *)dst = *(word *)src; src += wsize; dst += wsize);
t = length & wmask;
TLOOP (*dst++ = *src++);

} else {
/%

*

Copy backwards. Otherwise essentially the same.
Alignment works as before, except that it takes
(t&wmask) bytes to align, not wsize-(t&wmask).

* *

*/
src += length;
dst += length;
t = (int)src;
if ((t | (int)dst) & wmask) {
if ((t ~ (int)dst) & wmask || length <= wsize)

t = length;
else
t &= wmask;
length -= t;
TLOOP1(*--dst = *--src);
}
t = length / wsize;
TLOOP(src -= wsize; dst —-= wsize; *(word *)dst = *(word *)src);

t = length & wmask;
TLOOP (*--dst = *--src);
}
done:
return (dstO);

The MC68020 assembly code of the C function memcpy on SUN-3 is given as
follows. This binary is generated by '"gcc -0".

0x2610 <memcpy>: linkw fp,#0

0x2614 <memcpy+4>: moveml d2-d4,sp@-
0x2618 <memcpy+8>: movel fp@(8),d3

0x261c <memcpy+12>: movel fp@(16),d2

0x2620 <memcpy+16>: moveal d3,al

0x2622 <memcpy+18>: moveal fp@(12),a0l
0x2626 <memcpy+22>: beq 0x26c4 <memcpy+180>
0x262a <memcpy+26>: cmpal d3,a0

0x262c <memcpy+28>: beq 0x26c4 <memcpy+180>
0x2630 <memcpy+32>: bls 0x267c <memcpy+108>
0x2632 <memcpy+34>: movel a0,dl

0x2634 <memcpy+36>: movel di1,do0

0x2636 <memcpy+38>: orl d3,d0

0x2638 <memcpy+40>: movel #3,d4

0x263a <memcpy+42>: andl d4,d0

0x263c
0x263e
0x2640
0x2642
0x2644
0x2646
0x2648
0x264a
0x264c
0x264e
0x2650
0x2652
0x2654
0x2656
0x2658
0x265a
0x265c
0x265e
0x2660
0x2662
0x2664
0x2666
0x2668
0x266a
0x266¢
0x266e
0x2670
0x2672
0x2674
0x2676
0x2678
0x267a
0x267c
0x267e
0x2680
0x2682
0x2684
0x2686
0x2688
0x268a
0x268c
0x268e
0x2690
0x2692

<memcpy+44>:
<memcpy+46>:
<memcpy+48>:
<memcpy+50>:
<memcpy+52>:
<memcpy+54>:
<memcpy+56>:
<memcpy+58>:
<memcpy+60>:
<memcpy+62>:
<memcpy+64>:
<memcpy+66>:
<memcpy+68>:
<memcpy+70>:
<memcpy+72>:
<memcpy+74>:
<memcpy+76>:
<memcpy+78>:
<memcpy+80>:
<memcpy+82>:
<memcpy+84>:
<memcpy+86>:
<memcpy+88>:
<memcpy+90>:
<memcpy+92>:
<memcpy+94>:
<memcpy+96>:
<memcpy+98>:

<memcpy+100>:
<memcpy+102>:
<memcpy+104>:
<memcpy+106>:
<memcpy+108>:
<memcpy+110>:
<memcpy+112>:
<memcpy+114>:
<memcpy+116>:
<memcpy+118>:
<memcpy+120>:
<memcpy+122>:
<memcpy+124>:
<memcpy+126>:
<memcpy+128>:
<memcpy+130>:

beq 0x2662 <memcpy+82>
movel d1,d0

eorl d3,d0

movel #3,d4

andl d4,d0

bne 0x264e <memcpy+62>
movel #3,d4

cmpl d2,d4

bcs 0x2652 <memcpy+66>
movel d2,d1

bra 0x265a <memcpy+74>
movel #3,d0

andl d1,d0

movel #4,d1

subl d0,d1

subl di1,d2

moveb al0@+,al@+

subl #1,d1

bne 0x265c <memcpy+76>
movel d2,d1

1srl #2,d1

beq 0x266e <memcpy+94>
movel a0@+,al@+

subl #1,d1

bne 0x2668 <memcpy+88>
movel #3,d1

andl d2,d1

beq 0x26c4 <memcpy+180>
moveb a0Q+,al@+

subl #1,d1

bne 0x2674 <memcpy+100>
bra 0x26c4 <memcpy+180>
addal d2,a0

addal d2,al

movel a0,dl

movel al,dO

orl di1,d0

movel #3,d4

andl d4,d0

beq 0x26ac <memcpy+156>
movel al,do

eorl di1,d0

movel #3,d4

andl d4,d0

0x2694
0x2696
0x2698
0x269a
0x269c
0x269e
0x26a0
0x26a2
0x26a4
0x26a6
0x26a8
0x26aa
0x26ac
Ox26ae
0x26b0
0x26b2
0x26b4
0x26b6
0x26b8
0x26ba
0x26bc
0x26be
0x26¢c0
0x26c2
0x26c4
0x26¢c6
0x26¢cc
0x26¢ce

<memcpy+132>:
<memcpy+134>:
<memcpy+136>:
<memcpy+138>:
<memcpy+140>:
<memcpy+142>:
<memcpy+144>:
<memcpy+146>:
<memcpy+148>:
<memcpy+150>:
<memcpy+152>:
<memcpy+154>:
<memcpy+156>:
<memcpy+158>:
<memcpy+160>:
<memcpy+162>:
<memcpy+164>:
<memcpy+166>:
<memcpy+168>:
<memcpy+170>:
<memcpy+172>:
<memcpy+174>:
<memcpy+176>:
<memcpy+178>:
<memcpy+180>:
<memcpy+182>:
<memcpy+188>:
<memcpy+190>:

The machine code of the

<memcpy>: 0x4e56
<memcpy+16>: 0x2243
<memcpy+32>: 0x634a
<memcpy+48>: 0xb780
<memcpy+64>: 0x6008
<memcpy+80>: Ox66fa
<memcpy+96>: 0xc282
<memcpy+112>: 0x2208
<memcpy+128>: 0x7803
<memcpy+144>: 0x7803
<memcpy+160>: 0x6706
<memcpy+176>: 0x5381

bne 0x269c <memcpy+140>
movel #4,d4

cmpl d2,d4

bcs 0x26a0 <memcpy+144>
movel d2,d1

bra 0x26a4 <memcpy+148>
movel #3,d4

andl d4,d1

subl d1,d2

moveb a0@-,al@-

subl #1,d1

bne 0x26a6 <memcpy+150>
movel d2,d1

1srl #2,d1

beq 0x26b8 <memcpy+168>
movel a0@-,al@-

subl #1,d1

bne 0x26b2 <memcpy+162>
movel #3,d1

andl d2,d1

beq 0x26c4 <memcpy+180>
moveb a0@-,al@-

subl #1,d1

bne 0x26be <memcpy+174>
movel d3,d0

moveml fp@(-12),d2-d4
unlk fp

rts

above program is:

0x0000
0x206e
0x2208
0x7803
0x7003
0x2202
0x6750
0x2009
0xc084
0xc284
0x2320
0x66fa

0x48e7
0x000c
0x2001
0xc084
0xc081
0xe489
0x12d8
0x8081
0x6606
0x9481
0x5381
0x2003

0x3800
0x6700
0x8083
0x6606
0x7204
0x6706
0x5381
0x7803
0x7804
0x1320
0x66fa
Ox4cee

0x262e
0x009c
0x7803
0x7803
0x9280
0x22d8
0x66fa
0xc084
0xb882
0x5381
0x7203
0x001c

0x0008
Oxb1lc3
0xc084
0xb882
0x9481
0x5381
0x6048
0x6720
0x6504
0x66fa
0xc282
Ooxfff4

0x242e
0x6700
0x6724
0x6504
0x12d8
0x66fa
0Oxdic2
0x2009
0x2202
0x2202
0x6706
Ox4ebe

0x0010
0x0096
0x2001
0x2202
0x5381
0x7203
0xd3c2
0xb380
0x6004
0xe489
0x1320
0x4e75

’(

| #

78
38
34

99
120
183
120
96
146
102
34
194
102
34
192
120
184
120
83
103
114
83
0

86 0 0 72 231 56
46 0 8 36 46 0
67 32 110 0 12 103
156 177 195 103 0 0
74 34 8 32 1 128
3 192 132 103 36 32
128 120 3 192 132 102
3 184 130 101 4 34
8 112 3 192 129 114
128 148 129 18 216 83
250 34 2 228 137 103
216 83 129 102 250 114
130 103 80 18 216 83
250 96 72 209 194 211
8 32 9 128 129 120
132 103 32 32 9 179
3 192 132 102 6 120
130 101 4 34 2 96
3 194 132 148 129 19
129 102 250 34 2 228
6 35 32 83 129 102
3 194 130 103 6 19
129 102 250 32 3 76
28 255 244 78 94 78

129

129
194

128
4

4
32
137
250
32
238
117)

; in the logic, the above program is defined by (memcpy-code).

DEFINITION:
MEMCPY-CODE
(78 86 0 0 72 231 56 0 38 46 0 8 36 46 0 16 34 67 32

>

; the

110 0 12 103 0 0 156 177 195 103 O O 150 99 74 34 8
32 1 128 131 120 3 192 132 103 36 32 1 183 128 120 3
192 132 102 6 120 3 184 130 101 4 34 2 96 8 112 3
192 129 114 4 146 128 148 129 18 216 83 129 102 250
34 2 228 137 103 6 34 216 83 129 102 250 114 3 194
130 103 80 18 216 83 129 102 250 96 72 209 194 211
194 34 8 32 9 128 129 120 3 192 132 103 32 32 9 179
128 120 3 192 132 102 6 120 4 184 130 101 4 34 2 96
4 120 3 194 132 148 129 19 32 83 129 102 250 34 2
228 137 103 6 35 32 83 129 102 250 114 3 194 130 103
6 19 32 83 129 102 250 32 3 76 238 0 28 255 244 78
94 78 117)

initial state.

DEFINITION:

memcpy-statep (s, strl, n, lstl, str2, lst2)

= ((mc-status (s) = ’running)

evenp (me-pc ())

rom-addrp (me-pc ($), me-mem (s), 192)

mcode-addrp (me-pc (s), mc-mem (s), MEMMOVE-CODE)
ram-addrp (sub (32, 16, read-sp (s)), mc-mem (s), 32)
ram-addrp (str1, mc-mem (s), n)

mem-lst (1, strl, mc-mem (s), n, Istl)

ram-addrp (str2, mec-mem (s), n)
mem-lIst (1, str2, mc-mem (s), n, st2)

disjoint (sub (32, 16, read-sp (s)), 32, strl, n)

disjoint (sub (32, 16, read-sp (s)), 32, str2, n)

(str! = read-mem (add (32, read-sp (s), 4), mc-mem (s), 4))
(str2 = read-mem (add (32, read-sp (s), 8), mc-mem (s), 4))
(n = uread-mem (add (32, read-sp (s), 12), mc-mem (s), 4))
uint-rangep (nat-to-uint (str1) + n, 32)

uint-rangep (nat-to-uint (str2) + n, 32))

>>>>>>>>>>>>>> >

; the time function.

DEFINITION:
memcpy-t (strl, n, lstl, str2, lst2) = memmove-t (strl, n, Istl, str2, lst2)

; the behavior.

DEFINITION:
memcpy (strl, str2, n, lst1, lst2) = memmove (strl, str2, n, lst1, lst2)

; memcpy and memmove are identical.

THEOREM: memcpy-memmove-statep
memcpy-statep (s, strl, n, lstl, str2, lst2)
= memmove-statep (s, strl, n, Istl, str2, lst2)

; the correctness.

THEOREM: memcpy-correctness
let sn be stepn (s, memcpy-t (strl, n, Ist1, str2, lst2))
in
memcpy-statep (s, strl, n, lstl, str2, lst2)
— ((mec-status (sn) = ’running)

A (me-pc (sn) = rts-addr (s))

A (read-rn (32, 14, mc-rfile (sn))

= read-rn (32, 14, mc-rfile (s)))

(read-rn (32, 15, me-rfile (sn))
= add (32, read-sp (s), 4))
((d2-7a2-5p (rn) A (oplen < 32))
— (read-rn (oplen, rn, mc-rfile (sn))
= read-rn (oplen, rn, me-rfile (s))))
((disjoint (z, k, sub (32, 16, read-sp (s)), 32)
A disjoint (z, k, strl, n))
— (read-mem (z, mc-mem (sn), k)
= read-mem (z, mc-mem (s), k)))
(read-dn (32, 0, sn) = strl)
mem-lst (1,
strl,
mec-mem (sn),
n,

memcpy (strl, str2, n, Ist1, Ist2))) endlet

EVENT: Disable memcpy-t.

; some properties of memcpy.

’

the same as memmove.

Index
add, 7, 8

d2-7a2-5p, 8
disjoint, 7, 8

evenp, 7

mc-mem, 7, 8

me-pce, 7

mc-rfile, 7, 8
mc-status, 7
mcode-addrp, 7
mem-Ist, 7, 8

memcpy, 7, 8
memcpy-code, 6
memcpy-correctness, 7
memcpy-memmove-statep, 7
memcpy-statep, 7
memcpy-t, 7
memmove, 7
memmove-code, 7
memmove-statep, 7
memmove-t, 7

nat-to-uint, 7

ram-addrp, 7
read-dn, 8
read-mem, 7, 8
read-rn, 7, 8
read-sp, 7, 8
rom-addrp, 7
rts-addr, 7

stepn, 7
sub, 7, 8

uint-rangep, 7
uread-mem, 7

