
#|

Copyright (C) 1994 by Yuan Yu. All Rights Reserved.

This script is hereby placed in the public domain, and therefore unlimited
editing and redistribution is permitted.

NO WARRANTY

Yuan Yu PROVIDES ABSOLUTELY NO WARRANTY. THE EVENT SCRIPT IS PROVIDED "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
SCRIPT IS WITH YOU. SHOULD THE SCRIPT PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT WILL Yuan Yu BE LIABLE TO YOU FOR ANY DAMAGES, ANY LOST PROFITS,
LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THIS SCRIPT (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD
PARTIES), EVEN IF YOU HAVE ADVISED US OF THE POSSIBILITY OF SUCH DAMAGES, OR
FOR ANY CLAIM BY ANY OTHER PARTY.

|#

Event: Start with the library "mc20-2" using the compiled version.

; Proof of the Corectness of a Majority Voting Program
;
#|
The following C function MJRTY determines if there is a candidate who
has received a majority of votes cast in an election.

/* a majority voting algorithm invented by Boyer and Moore */
#define YES 1
#define NO 0

struct winner {
int x;
int y;

};

struct winner mjrty (int a[], int n)

1



{
int cand, i, k;
struct winner temp;

k = 0;
for (i = 0; i < n; i++)

if (k == 0) {
cand = a[i];
k = 1;

}
else {

if (cand == a[i])
k++;

else
k--;

};
temp.x = cand;
if (k == 0) {

temp.y = NO;
return temp;

};
if (k > n/2) {

temp.y = YES;
return temp;

};
k = 0;
for (i = 0; i < n; i++)

if (a[i] == cand)
k++;

if (k > n/2)
temp.y = YES;

else temp.y = NO;
return temp;

}

Here is the MC68020 assembly code of the above C program. The code is
generated by "gcc -O".

0x2310 <mjrty>: linkw a6,#0
0x2314 <mjrty+4>: moveml d2-d5,sp@-
0x2318 <mjrty+8>: moveal a6@(8),a0
0x231c <mjrty+12>: movel a6@(12),d2
0x2320 <mjrty+16>: clrl d1
0x2322 <mjrty+18>: clrl d0

2



0x2324 <mjrty+20>: cmpl d0,d2
0x2326 <mjrty+22>: ble 0x2346 <mjrty+54>
0x2328 <mjrty+24>: tstl d1
0x232a <mjrty+26>: bne 0x2334 <mjrty+36>
0x232c <mjrty+28>: movel 0(a0)[d0.l*4],d3
0x2330 <mjrty+32>: movel #1,d1
0x2332 <mjrty+34>: bra 0x2340 <mjrty+48>
0x2334 <mjrty+36>: cmpl 0(a0)[d0.l*4],d3
0x2338 <mjrty+40>: bne 0x233e <mjrty+46>
0x233a <mjrty+42>: addql #1,d1
0x233c <mjrty+44>: bra 0x2340 <mjrty+48>
0x233e <mjrty+46>: subl #1,d1
0x2340 <mjrty+48>: addql #1,d0
0x2342 <mjrty+50>: cmpl d0,d2
0x2344 <mjrty+52>: bgt 0x2328 <mjrty+24>
0x2346 <mjrty+54>: movel d3,d4
0x2348 <mjrty+56>: tstl d1
0x234a <mjrty+58>: beq 0x2382 <mjrty+114>
0x234c <mjrty+60>: movel d2,d0
0x234e <mjrty+62>: bge 0x2352 <mjrty+66>
0x2350 <mjrty+64>: addql #1,d0
0x2352 <mjrty+66>: asrl #1,d0
0x2354 <mjrty+68>: cmpl d1,d0
0x2356 <mjrty+70>: bge 0x235c <mjrty+76>
0x2358 <mjrty+72>: movel #1,d5
0x235a <mjrty+74>: bra 0x2384 <mjrty+116>
0x235c <mjrty+76>: clrl d1
0x235e <mjrty+78>: clrl d0
0x2360 <mjrty+80>: cmpl d0,d2
0x2362 <mjrty+82>: ble 0x2372 <mjrty+98>
0x2364 <mjrty+84>: cmpl 0(a0)[d0.l*4],d3
0x2368 <mjrty+88>: bne 0x236c <mjrty+92>
0x236a <mjrty+90>: addql #1,d1
0x236c <mjrty+92>: addql #1,d0
0x236e <mjrty+94>: cmpl d0,d2
0x2370 <mjrty+96>: bgt 0x2364 <mjrty+84>
0x2372 <mjrty+98>: movel d2,d0
0x2374 <mjrty+100>: bge 0x2378 <mjrty+104>
0x2376 <mjrty+102>: addql #1,d0
0x2378 <mjrty+104>: asrl #1,d0
0x237a <mjrty+106>: cmpl d1,d0
0x237c <mjrty+108>: bge 0x2382 <mjrty+114>
0x237e <mjrty+110>: movel #1,d5
0x2380 <mjrty+112>: bra 0x2384 <mjrty+116>

3



0x2382 <mjrty+114>: clrl d5
0x2384 <mjrty+116>: movel d4,d0
0x2386 <mjrty+118>: movel d5,d1
0x2388 <mjrty+120>: moveml a6@(-16),d2-d5
0x238e <mjrty+126>: unlk a6
0x2390 <mjrty+128>: rts

The machine code of the above program is:

<mjrty>: 0x4e56 0x0000 0x48e7 0x3c00 0x206e 0x0008 0x242e 0x000c
<mjrty+16>: 0x4281 0x4280 0xb480 0x6f1e 0x4a81 0x6608 0x2630 0x0c00
<mjrty+32>: 0x7201 0x600c 0xb6b0 0x0c00 0x6604 0x5281 0x6002 0x5381
<mjrty+48>: 0x5280 0xb480 0x6ee2 0x2803 0x4a81 0x6736 0x2002 0x6c02
<mjrty+64>: 0x5280 0xe280 0xb081 0x6c04 0x7a01 0x6028 0x4281 0x4280
<mjrty+80>: 0xb480 0x6f0e 0xb6b0 0x0c00 0x6602 0x5281 0x5280 0xb480
<mjrty+96>: 0x6ef2 0x2002 0x6c02 0x5280 0xe280 0xb081 0x6c04 0x7a01
<mjrty+112>: 0x6002 0x4285 0x2004 0x2205 0x4cee 0x003c 0xfff0 0x4e5e
<mjrty+128>: 0x4e75

In the Nqthm logic, it is like:

’(78 86 0 0 72 231 60 0
32 110 0 8 36 46 0 12
66 129 66 128 180 128 111 30
74 129 102 8 38 48 12 0
114 1 96 12 182 176 12 0
102 4 82 129 96 2 83 129
82 128 180 128 110 226 40 3
74 129 103 54 32 2 108 2
82 128 226 128 176 129 108 4
122 1 96 40 66 129 66 128
180 128 111 14 182 176 12 0
102 2 82 129 82 128 180 128
110 242 32 2 108 2 82 128
226 128 176 129 108 4 122 1
96 2 66 133 32 4 34 5
76 238 0 60 255 240 78 94
78 117)

|#

; in the logic, the above program is defined by (mjrty-code).

Definition:

4



mjrty-code
= ’(78 86 0 0 72 231 60 0 32 110 0 8 36 46 0 12 66 129

66 128 180 128 111 30 74 129 102 8 38 48 12 0 114 1
96 12 182 176 12 0 102 4 82 129 96 2 83 129 82 128
180 128 110 226 40 3 74 129 103 54 32 2 108 2 82 128
226 128 176 129 108 4 122 1 96 40 66 129 66 128 180
128 111 14 182 176 12 0 102 2 82 129 82 128 180 128
110 242 32 2 108 2 82 128 226 128 176 129 108 4 122
1 96 2 66 133 32 4 34 5 76 238 0 60 255 240 78 94 78
117)

; mjrty-cand is a function in the logic to simulate the candidate
; findhe above code.

Definition:
mjrty-cand (n, lst , cand , i , k)
= if i < n

then if k ' 0 then mjrty-cand (n, lst , get-nth (i , lst), 1 + i , 1)
elseif cand = get-nth (i , lst)
then mjrty-cand (n, lst , cand , 1 + i , 1 + k)
else mjrty-cand (n, lst , cand , 1 + i , k − 1) endif

else cand endif

Definition:
mjrty-k (n, lst , cand , i , k)
= if i < n

then if k ' 0 then mjrty-k (n, lst , get-nth (i , lst), 1 + i , 1)
elseif cand = get-nth (i , lst)
then mjrty-k (n, lst , cand , 1 + i , 1 + k)
else mjrty-k (n, lst , cand , 1 + i , k − 1) endif

else k endif

; cand-cnt is a function in the logic to simulate the process of
; counting the number of votes for the given candidate.

Definition:
cand-cnt (n, lst , cand , i , k)
= if i < n

then if cand = get-nth (i , lst) then cand-cnt (n, lst , cand , 1 + i , 1 + k)
else cand-cnt (n, lst , cand , 1 + i , k) endif

else k endif

; mjrty-p determines if the given candidate cand has received a majority
; voting.

5



Definition:
mjrty-p (n, lst , cand , i , k)
= if mjrty-k (n, lst , cand , i , k) ' 0 then f

elseif (n ÷ 2) < mjrty-k (n, lst , cand , i , k) then t
else (n ÷ 2)

< cand-cnt (n, lst , mjrty-cand (n, lst , cand , i , k), i , k) endif

; the computation time.

Definition:
mjrty-cand-t (a, n, lst , cand , i , k)
= if i < n

then if k ' 0
then let cand1 be get-nth (i , lst)

in
splus (8, mjrty-cand-t (a, n, lst , cand1 , 1 + i , 1)) endlet

elseif cand = get-nth (i , lst)
then splus (9, mjrty-cand-t (a, n, lst , cand , 1 + i , 1 + k))
else splus (8, mjrty-cand-t (a, n, lst , cand , 1 + i , k − 1)) endif

elseif cand = get-nth (0, lst) then 18
else 17 endif

Definition:
mjrty-sn-t (a, n, lst , cand , i , k)
= if i < n

then if k ' 0
then let cand1 be get-nth (i , lst)

in
splus (8, mjrty-sn-t (a, n, lst , cand1 , 1 + i , 1)) endlet

elseif cand = get-nth (i , lst)
then splus (9, mjrty-sn-t (a, n, lst , cand , 1 + i , 1 + k))
else splus (8, mjrty-sn-t (a, n, lst , cand , 1 + i , k − 1)) endif

elseif k ' 0 then 11
else 17 endif

Definition:
cand-cnt-t (a, n, lst , cand , i , k)
= if i < n

then if cand = get-nth (i , lst)
then splus (6, cand-cnt-t (a, n, lst , cand , 1 + i , 1 + k))
else splus (5, cand-cnt-t (a, n, lst , cand , 1 + i , k)) endif

elseif (n ÷ 2) < k then 14
else 13 endif

Definition:

6



mjrty-t (a, n, lst)
= let cand be get-nth (0, lst)

in
splus (14,

if (mjrty-k (n, lst , cand , 1, 1) ' 0)
∨ ((n ÷ 2) < mjrty-k (n, lst , cand , 1, 1))

then mjrty-sn-t (a, n, lst , cand , 1, 1)
else splus (mjrty-cand-t (a, n, lst , cand , 1, 1),

if cand = mjrty-cand (n, lst , cand , 1, 1)
then cand-cnt-t (a,

n,
lst ,
mjrty-cand (n,

lst ,
cand ,
1,
1),

1,
1)

else cand-cnt-t (a,
n,
lst ,
mjrty-cand (n,

lst ,
cand ,
1,
1),

1,
0) endif) endif) endlet

; induction hints.

Definition:
mjrty-cand-induct (s, n, lst , cand , i , k)
= if i < n

then if k ' 0
then let cand1 be get-nth (i , lst)

in
mjrty-cand-induct (stepn (s, 8), n, lst , cand1 , 1 + i , 1) endlet

elseif cand = get-nth (i , lst)
then mjrty-cand-induct (stepn (s, 9), n, lst , cand , 1 + i , 1 + k)
else mjrty-cand-induct (stepn (s, 8), n, lst , cand , 1 + i , k − 1) endif

else t endif

Definition:

7



cand-cnt-induct (s, n, lst , cand , i , k)
= if i < n

then if cand = get-nth (i , lst)
then cand-cnt-induct (stepn (s, 6), n, lst , cand , 1 + i , 1 + k)
else cand-cnt-induct (stepn (s, 5), n, lst , cand , 1 + i , k) endif

else t endif

; the preconditions of the initial state.

Definition:
mjrty-statep (s, a, n, lst)
= ((mc-status (s) = ’running)

∧ evenp (mc-pc (s))
∧ rom-addrp (mc-pc (s), mc-mem (s), 130)
∧ mcode-addrp (mc-pc (s), mc-mem (s), mjrty-code)
∧ ram-addrp (sub (32, 20, read-sp (s)), mc-mem (s), 32)
∧ ram-addrp (a, mc-mem (s), 4 ∗ n)
∧ mem-ilst (4, a, mc-mem (s), n, lst)
∧ disjoint (a, 4 ∗ n, sub (32, 20, read-sp (s)), 32)
∧ (a = read-mem (add (32, read-sp (s), 4), mc-mem (s), 4))
∧ (n = iread-mem (add (32, read-sp (s), 8), mc-mem (s), 4))
∧ (n 6' 0))

; the conditions of the intermediate state s0.

Definition:
mjrty-s0p (s, a, n, lst , cand , i , k)
= ((mc-status (s) = ’running)

∧ evenp (mc-pc (s))
∧ rom-addrp (sub (32, 50, mc-pc (s)), mc-mem (s), 130)
∧ mcode-addrp (sub (32, 50, mc-pc (s)), mc-mem (s), mjrty-code)
∧ ram-addrp (sub (32, 16, read-an (32, 6, s)), mc-mem (s), 32)
∧ ram-addrp (a, mc-mem (s), 4 ∗ n)
∧ mem-ilst (4, a, mc-mem (s), n, lst)
∧ disjoint (a, 4 ∗ n, sub (32, 16, read-an (32, 6, s)), 32)
∧ (a = read-rn (32, 8, mc-rfile (s)))
∧ (n = nat-to-int (read-rn (32, 2, mc-rfile (s)), 32))
∧ (cand = nat-to-int (read-rn (32, 3, mc-rfile (s)), 32))
∧ (i = nat-to-int (read-rn (32, 0, mc-rfile (s)), 32))
∧ (k = nat-to-int (read-rn (32, 1, mc-rfile (s)), 32))
∧ (n 6' 0)
∧ (i ∈ N)
∧ (k ∈ N)
∧ (k ≤ i))

8



; the conditions of the intermediate state s1.

Definition:
mjrty-s1p (s, a, n, lst , cand , i , k)
= ((mc-status (s) = ’running)

∧ evenp (mc-pc (s))
∧ rom-addrp (sub (32, 94, mc-pc (s)), mc-mem (s), 130)
∧ mcode-addrp (sub (32, 94, mc-pc (s)), mc-mem (s), mjrty-code)
∧ ram-addrp (sub (32, 16, read-an (32, 6, s)), mc-mem (s), 32)
∧ ram-addrp (a, mc-mem (s), 4 ∗ n)
∧ mem-ilst (4, a, mc-mem (s), n, lst)
∧ disjoint (a, 4 ∗ n, sub (32, 16, read-an (32, 6, s)), 32)
∧ (a = read-rn (32, 8, mc-rfile (s)))
∧ (n = nat-to-int (read-rn (32, 2, mc-rfile (s)), 32))
∧ (cand = nat-to-int (read-rn (32, 4, mc-rfile (s)), 32))
∧ (cand = nat-to-int (read-rn (32, 3, mc-rfile (s)), 32))
∧ (i = nat-to-int (read-rn (32, 0, mc-rfile (s)), 32))
∧ (k = nat-to-int (read-rn (32, 1, mc-rfile (s)), 32))
∧ (n 6' 0)
∧ (i ∈ N)
∧ (k ∈ N)
∧ (k ≤ i))

; the initial segment. From the initial state to s0.

Theorem: mjrty-s-s0
let cand be get-nth (0, lst)
in
mjrty-statep (s, a, n, lst)
→ (mjrty-s0p (stepn (s, 14), a, n, lst , cand , 1, 1)

∧ (linked-rts-addr (stepn (s, 14)) = rts-addr (s))
∧ (linked-a6 (stepn (s, 14)) = read-an (32, 6, s))
∧ (read-rn (32, 14, mc-rfile (stepn (s, 14)))

= sub (32, 4, read-sp (s)))
∧ (movem-saved (stepn (s, 14), 4, 16, 4)

= readm-rn (32, ’(2 3 4 5), mc-rfile (s)))) endlet

Theorem: mjrty-s-s0-rfile
(mjrty-statep (s, a, n, lst) ∧ d6-7a2-5p (rn))
→ (read-rn (oplen, rn, mc-rfile (stepn (s, 14)))

= read-rn (oplen, rn, mc-rfile (s)))

Theorem: mjrty-s-s0-mem
(mjrty-statep (s, a, n, lst) ∧ disjoint (sub (32, 20, read-sp (s)), 32, x , k))
→ (read-mem (x , mc-mem (stepn (s, 14)), k) = read-mem (x , mc-mem (s), k))

9



; s0 --> exit.
; base case.

Theorem: mjrty-s0-sn-base-1
(mjrty-s0p (s, a, n, lst , cand , i , k) ∧ (i 6< n) ∧ (k ' 0))
→ ((mc-status (stepn (s, 11)) = ’running)

∧ (mc-pc (stepn (s, 11)) = linked-rts-addr (s))
∧ (iread-dn (32, 0, stepn (s, 11)) = cand)
∧ (iread-dn (32, 1, stepn (s, 11)) = 0)
∧ (read-rn (32, 14, mc-rfile (stepn (s, 11))) = linked-a6 (s))
∧ (read-rn (32, 15, mc-rfile (stepn (s, 11)))

= add (32, read-an (32, 6, s), 8))
∧ (read-mem (x , mc-mem (stepn (s, 11)), l)

= read-mem (x , mc-mem (s), l)))

Theorem: mjrty-s0-sn-base-2
(mjrty-s0p (s, a, n, lst , cand , i , k)
∧ (i 6< n)
∧ (k 6' 0)
∧ ((n ÷ 2) < k))
→ ((mc-status (stepn (s, 17)) = ’running)

∧ (mc-pc (stepn (s, 17)) = linked-rts-addr (s))
∧ (iread-dn (32, 0, stepn (s, 17)) = cand)
∧ (iread-dn (32, 1, stepn (s, 17)) = 1)
∧ (read-rn (32, 14, mc-rfile (stepn (s, 17))) = linked-a6 (s))
∧ (read-rn (32, 15, mc-rfile (stepn (s, 17)))

= add (32, read-an (32, 6, s), 8))
∧ (read-mem (x , mc-mem (stepn (s, 17)), l)

= read-mem (x , mc-mem (s), l)))

Theorem: mjrty-s0-sn-rfile-base-1
(mjrty-s0p (s, a, n, lst , cand , i , k)
∧ (i 6< n)
∧ (k ' 0)
∧ d2-7a2-5p (rn)
∧ (oplen ≤ 32))
→ (read-rn (oplen, rn, mc-rfile (stepn (s, 11)))

= if d6-7a2-5p (rn) then read-rn (oplen, rn, mc-rfile (s))
else get-vlst (oplen,

0,
rn,
’(2 3 4 5),
movem-saved (s, 4, 16, 4)) endif)

Theorem: mjrty-s0-sn-rfile-base-2

10



(mjrty-s0p (s, a, n, lst , cand , i , k)
∧ (i 6< n)
∧ (k 6' 0)
∧ ((n ÷ 2) < k)
∧ d2-7a2-5p (rn)
∧ (oplen ≤ 32))
→ (read-rn (oplen, rn, mc-rfile (stepn (s, 17)))

= if d6-7a2-5p (rn) then read-rn (oplen, rn, mc-rfile (s))
else get-vlst (oplen,

0,
rn,
’(2 3 4 5),
movem-saved (s, 4, 16, 4)) endif)

; induction case.

Theorem: add1-int-rangep
(x < nat-to-int (y , n)) → int-rangep (1 + x , n)

Event: Enable iplus.

Theorem: mjrty-s0-s0-1
let cand1 be get-nth (i , lst)
in
(mjrty-s0p (s, a, n, lst , cand , i , k) ∧ (i < n) ∧ (k ' 0))
→ (mjrty-s0p (stepn (s, 8), a, n, lst , cand1 , 1 + i , 1)

∧ (linked-rts-addr (stepn (s, 8)) = linked-rts-addr (s))
∧ (linked-a6 (stepn (s, 8)) = linked-a6 (s))
∧ (read-rn (32, 14, mc-rfile (stepn (s, 8)))

= read-rn (32, 14, mc-rfile (s)))
∧ (movem-saved (stepn (s, 8), 4, 16, 4)

= movem-saved (s, 4, 16, 4))
∧ (read-mem (x , mc-mem (stepn (s, 8)), l)

= read-mem (x , mc-mem (s), l))) endlet

Theorem: add1-int-rangepxx
((i ≤ r) ∧ (r < n) ∧ int-rangep (n, 32)) → int-rangep (1 + i , 32)

Theorem: mjrty-s0-s0-2
(mjrty-s0p (s, a, n, lst , cand , i , k)
∧ (i < n)
∧ (k 6' 0)
∧ (cand = get-nth (i , lst)))
→ (mjrty-s0p (stepn (s, 9), a, n, lst , cand , 1 + i , 1 + k)

11



∧ (linked-rts-addr (stepn (s, 9)) = linked-rts-addr (s))
∧ (linked-a6 (stepn (s, 9)) = linked-a6 (s))
∧ (read-rn (32, 14, mc-rfile (stepn (s, 9)))

= read-rn (32, 14, mc-rfile (s)))
∧ (movem-saved (stepn (s, 9), 4, 16, 4) = movem-saved (s, 4, 16, 4))
∧ (read-mem (x , mc-mem (stepn (s, 9)), l)

= read-mem (x , mc-mem (s), l)))

Theorem: mjrty-s0-s0-3
(mjrty-s0p (s, a, n, lst , cand , i , k)
∧ (i < n)
∧ (k 6' 0)
∧ (cand 6= get-nth (i , lst)))
→ (mjrty-s0p (stepn (s, 8), a, n, lst , cand , 1 + i , k − 1)

∧ (linked-rts-addr (stepn (s, 8)) = linked-rts-addr (s))
∧ (linked-a6 (stepn (s, 8)) = linked-a6 (s))
∧ (read-rn (32, 14, mc-rfile (stepn (s, 8)))

= read-rn (32, 14, mc-rfile (s)))
∧ (movem-saved (stepn (s, 8), 4, 16, 4) = movem-saved (s, 4, 16, 4))
∧ (read-mem (x , mc-mem (stepn (s, 8)), l)

= read-mem (x , mc-mem (s), l)))

Theorem: mjrty-s0-s0-rfile-1
(mjrty-s0p (s, a, n, lst , cand , i , k) ∧ (i < n) ∧ (k ' 0) ∧ d6-7a2-5p (rn))
→ (read-rn (oplen, rn, mc-rfile (stepn (s, 8)))

= read-rn (oplen, rn, mc-rfile (s)))

Theorem: mjrty-s0-s0-rfile-2
(mjrty-s0p (s, a, n, lst , cand , i , k)
∧ (i < n)
∧ (k 6' 0)
∧ (cand = get-nth (i , lst))
∧ d6-7a2-5p (rn))
→ (read-rn (oplen, rn, mc-rfile (stepn (s, 9)))

= read-rn (oplen, rn, mc-rfile (s)))

Theorem: mjrty-s0-s0-rfile-3
(mjrty-s0p (s, a, n, lst , cand , i , k)
∧ (i < n)
∧ (k 6' 0)
∧ (cand 6= get-nth (i , lst))
∧ d6-7a2-5p (rn))
→ (read-rn (oplen, rn, mc-rfile (stepn (s, 8)))

= read-rn (oplen, rn, mc-rfile (s)))

12



; the proof of s0 --> exit.

Theorem: mjrty-s0-sn
let sn be stepn (s, mjrty-sn-t (a, n, lst , cand , i , k))
in
(mjrty-s0p (s, a, n, lst , cand , i , k)
∧ ((mjrty-k (n, lst , cand , i , k) ' 0)

∨ ((n ÷ 2) < mjrty-k (n, lst , cand , i , k))))
→ ((mc-status (sn) = ’running)

∧ (mc-pc (sn) = linked-rts-addr (s))
∧ (iread-dn (32, 0, sn) = mjrty-cand (n, lst , cand , i , k))
∧ (iread-dn (32, 1, sn)

= if (n ÷ 2) < mjrty-k (n, lst , cand , i , k)
then 1
else 0 endif)

∧ (read-rn (32, 14, mc-rfile (sn)) = linked-a6 (s))
∧ (read-rn (32, 15, mc-rfile (sn))

= add (32, read-an (32, 6, s), 8))
∧ (read-mem (x , mc-mem (sn), l) = read-mem (x , mc-mem (s), l))) endlet

Theorem: mjrty-s0-sn-rfile
let sn be stepn (s, mjrty-sn-t (a, n, lst , cand , i , k))
in
(mjrty-s0p (s, a, n, lst , cand , i , k)
∧ ((mjrty-k (n, lst , cand , i , k) ' 0)

∨ ((n ÷ 2) < mjrty-k (n, lst , cand , i , k)))
∧ d2-7a2-5p (rn)
∧ (oplen ≤ 32))
→ (read-rn (oplen, rn, mc-rfile (sn))

= if d6-7a2-5p (rn) then read-rn (oplen, rn, mc-rfile (s))
else get-vlst (oplen,

0,
rn,
’(2 3 4 5),
movem-saved (s, 4, 16, 4)) endif) endlet

; s0 --> s1.
; base case:

Theorem: mjrty-s0-s1-base1
(mjrty-s0p (s, a, n, lst , cand , i , k)
∧ (i 6< n)
∧ (k 6' 0)
∧ ((n ÷ 2) 6< k)
∧ (cand = get-nth (0, lst)))

13



→ (mjrty-s1p (stepn (s, 18), a, n, lst , cand , 1, 1)
∧ (linked-rts-addr (stepn (s, 18)) = linked-rts-addr (s))
∧ (linked-a6 (stepn (s, 18)) = linked-a6 (s))
∧ (read-rn (32, 14, mc-rfile (stepn (s, 18)))

= read-rn (32, 14, mc-rfile (s)))
∧ (movem-saved (stepn (s, 18), 4, 16, 4) = movem-saved (s, 4, 16, 4))
∧ (read-mem (x , mc-mem (stepn (s, 18)), l)

= read-mem (x , mc-mem (s), l)))

Theorem: mjrty-s0-s1-base2
(mjrty-s0p (s, a, n, lst , cand , i , k)
∧ (i 6< n)
∧ (k 6' 0)
∧ ((n ÷ 2) 6< k)
∧ (cand 6= get-nth (0, lst)))
→ (mjrty-s1p (stepn (s, 17), a, n, lst , cand , 1, 0)

∧ (linked-rts-addr (stepn (s, 17)) = linked-rts-addr (s))
∧ (linked-a6 (stepn (s, 17)) = linked-a6 (s))
∧ (read-rn (32, 14, mc-rfile (stepn (s, 17)))

= read-rn (32, 14, mc-rfile (s)))
∧ (movem-saved (stepn (s, 17), 4, 16, 4) = movem-saved (s, 4, 16, 4))
∧ (read-mem (x , mc-mem (stepn (s, 17)), l)

= read-mem (x , mc-mem (s), l)))

Theorem: mjrty-s0-s1-rfile-base1
(mjrty-s0p (s, a, n, lst , cand , i , k)
∧ (i 6< n)
∧ (k 6' 0)
∧ ((n ÷ 2) 6< k)
∧ (cand = get-nth (0, lst))
∧ d6-7a2-5p (rn))
→ (read-rn (oplen, rn, mc-rfile (stepn (s, 18)))

= read-rn (oplen, rn, mc-rfile (s)))

Theorem: mjrty-s0-s1-rfile-base2
(mjrty-s0p (s, a, n, lst , cand , i , k)
∧ (i 6< n)
∧ (k 6' 0)
∧ ((n ÷ 2) 6< k)
∧ (cand 6= get-nth (0, lst))
∧ d6-7a2-5p (rn))
→ (read-rn (oplen, rn, mc-rfile (stepn (s, 17)))

= read-rn (oplen, rn, mc-rfile (s)))

; the proof of s0 --> s1.

14



Theorem: mjrty-s0-s1
let s1 be stepn (s, mjrty-cand-t (a, n, lst , cand , i , k))
in
(mjrty-s0p (s, a, n, lst , cand , i , k)
∧ (mjrty-k (n, lst , cand , i , k) 6' 0)
∧ ((n ÷ 2) 6< mjrty-k (n, lst , cand , i , k))
∧ (cand0 = mjrty-cand (n, lst , cand , i , k))
∧ (k0 = if mjrty-cand (n, lst , cand , i , k) = get-nth (0, lst)

then 1
else 0 endif))

→ (mjrty-s1p (s1 , a, n, lst , cand0 , 1, k0 )
∧ (linked-rts-addr (s1 ) = linked-rts-addr (s))
∧ (linked-a6 (s1 ) = linked-a6 (s))
∧ (read-rn (32, 14, mc-rfile (s1 ))

= read-rn (32, 14, mc-rfile (s)))
∧ (movem-saved (s1 , 4, 16, 4) = movem-saved (s, 4, 16, 4))
∧ (read-mem (x , mc-mem (s1 ), l) = read-mem (x , mc-mem (s), l))) endlet

Theorem: mjrty-s0-s1-rfile
let s1 be stepn (s, mjrty-cand-t (a, n, lst , cand , i , k))
in
(mjrty-s0p (s, a, n, lst , cand , i , k)
∧ (mjrty-k (n, lst , cand , i , k) 6' 0)
∧ ((n ÷ 2) 6< mjrty-k (n, lst , cand , i , k))
∧ d6-7a2-5p (rn))
→ (read-rn (oplen, rn, mc-rfile (s1 ))

= read-rn (oplen, rn, mc-rfile (s))) endlet

; s1 --> exit.
; base case.

Theorem: mjrty-s1-sn-1
(mjrty-s1p (s, a, n, lst , cand , i , k) ∧ (i 6< n) ∧ ((n ÷ 2) < k))
→ ((mc-status (stepn (s, 14)) = ’running)

∧ (mc-pc (stepn (s, 14)) = linked-rts-addr (s))
∧ (iread-dn (32, 0, stepn (s, 14)) = cand)
∧ (iread-dn (32, 1, stepn (s, 14)) = 1)
∧ (read-rn (32, 14, mc-rfile (stepn (s, 14))) = linked-a6 (s))
∧ (read-rn (32, 15, mc-rfile (stepn (s, 14)))

= add (32, read-an (32, 6, s), 8))
∧ (read-mem (x , mc-mem (stepn (s, 14)), l)

= read-mem (x , mc-mem (s), l)))

Theorem: mjrty-s1-sn-rfile-1
(mjrty-s1p (s, a, n, lst , cand , i , k)

15



∧ (i 6< n)
∧ ((n ÷ 2) < k)
∧ d2-7a2-5p (rn)
∧ (oplen ≤ 32))
→ (read-rn (oplen, rn, mc-rfile (stepn (s, 14)))

= if d6-7a2-5p (rn) then read-rn (oplen, rn, mc-rfile (s))
else get-vlst (oplen,

0,
rn,
’(2 3 4 5),
movem-saved (s, 4, 16, 4)) endif)

Theorem: mjrty-s1-sn-2
(mjrty-s1p (s, a, n, lst , cand , i , k) ∧ (i 6< n) ∧ ((n ÷ 2) 6< k))
→ ((mc-status (stepn (s, 13)) = ’running)

∧ (mc-pc (stepn (s, 13)) = linked-rts-addr (s))
∧ (iread-dn (32, 0, stepn (s, 13)) = cand)
∧ (iread-dn (32, 1, stepn (s, 13)) = 0)
∧ (read-rn (32, 14, mc-rfile (stepn (s, 13))) = linked-a6 (s))
∧ (read-rn (32, 15, mc-rfile (stepn (s, 13)))

= add (32, read-an (32, 6, s), 8))
∧ (read-mem (x , mc-mem (stepn (s, 13)), l)

= read-mem (x , mc-mem (s), l)))

Theorem: mjrty-s1-sn-rfile-2
(mjrty-s1p (s, a, n, lst , cand , i , k)
∧ (i 6< n)
∧ ((n ÷ 2) 6< k)
∧ d2-7a2-5p (rn)
∧ (oplen ≤ 32))
→ (read-rn (oplen, rn, mc-rfile (stepn (s, 13)))

= if d6-7a2-5p (rn) then read-rn (oplen, rn, mc-rfile (s))
else get-vlst (oplen,

0,
rn,
’(2 3 4 5),
movem-saved (s, 4, 16, 4)) endif)

; induction case.

Theorem: mjrty-s1-s1-1
(mjrty-s1p (s, a, n, lst , cand , i , k) ∧ (i < n) ∧ (cand = get-nth (i , lst)))
→ (mjrty-s1p (stepn (s, 6), a, n, lst , cand , 1 + i , 1 + k)

∧ (linked-rts-addr (stepn (s, 6)) = linked-rts-addr (s))
∧ (linked-a6 (stepn (s, 6)) = linked-a6 (s))

16



∧ (read-rn (32, 14, mc-rfile (stepn (s, 6)))
= read-rn (32, 14, mc-rfile (s)))

∧ (movem-saved (stepn (s, 6), 4, 16, 4) = movem-saved (s, 4, 16, 4))
∧ (read-mem (x , mc-mem (stepn (s, 6)), l)

= read-mem (x , mc-mem (s), l)))

Theorem: mjrty-s1-s1-2
(mjrty-s1p (s, a, n, lst , cand , i , k) ∧ (i < n) ∧ (cand 6= get-nth (i , lst)))
→ (mjrty-s1p (stepn (s, 5), a, n, lst , cand , 1 + i , k)

∧ (linked-rts-addr (stepn (s, 5)) = linked-rts-addr (s))
∧ (linked-a6 (stepn (s, 5)) = linked-a6 (s))
∧ (read-rn (32, 14, mc-rfile (stepn (s, 5)))

= read-rn (32, 14, mc-rfile (s)))
∧ (movem-saved (stepn (s, 5), 4, 16, 4) = movem-saved (s, 4, 16, 4))
∧ (read-mem (x , mc-mem (stepn (s, 5)), l)

= read-mem (x , mc-mem (s), l)))

Theorem: mjrty-s1-s1-rfile-1
(mjrty-s1p (s, a, n, lst , cand , i , k)
∧ (i < n)
∧ (cand = get-nth (i , lst))
∧ d6-7a2-5p (rn))
→ (read-rn (oplen, rn, mc-rfile (stepn (s, 6)))

= read-rn (oplen, rn, mc-rfile (s)))

Theorem: mjrty-s1-s1-rfile-2
(mjrty-s1p (s, a, n, lst , cand , i , k)
∧ (i < n)
∧ (cand 6= get-nth (i , lst))
∧ d6-7a2-5p (rn))
→ (read-rn (oplen, rn, mc-rfile (stepn (s, 5)))

= read-rn (oplen, rn, mc-rfile (s)))

Theorem: mjrty-s1-sn
let sn be stepn (s, cand-cnt-t (a, n, lst , cand , i , k))
in
mjrty-s1p (s, a, n, lst , cand , i , k)
→ ((mc-status (sn) = ’running)

∧ (mc-pc (sn) = linked-rts-addr (s))
∧ (iread-dn (32, 0, sn) = cand)
∧ (iread-dn (32, 1, sn)

= if (n ÷ 2) < cand-cnt (n, lst , cand , i , k)
then 1
else 0 endif)

∧ (read-rn (32, 14, mc-rfile (sn)) = linked-a6 (s))

17



∧ (read-rn (32, 15, mc-rfile (sn))
= add (32, read-an (32, 6, s), 8))

∧ (read-mem (x , mc-mem (sn), l) = read-mem (x , mc-mem (s), l))) endlet

Theorem: mjrty-s1-sn-rfile
let sn be stepn (s, cand-cnt-t (a, n, lst , cand , i , k))
in
(mjrty-s1p (s, a, n, lst , cand , i , k) ∧ d2-7a2-5p (rn) ∧ (oplen ≤ 32))
→ (read-rn (oplen, rn, mc-rfile (sn))

= if d6-7a2-5p (rn) then read-rn (oplen, rn, mc-rfile (s))
else get-vlst (oplen,

0,
rn,
’(2 3 4 5),
movem-saved (s, 4, 16, 4)) endif) endlet

; the correctness of MJRTY.

Theorem: mjrty-statep-info
mjrty-statep (s, a, n, lst) → (n 6' 0)

Theorem: mjrty-correctness
let sn be stepn (s, mjrty-t (a, n, lst))
in
mjrty-statep (s, a, n, lst)
→ ((mc-status (sn) = ’running)

∧ (mc-pc (sn) = rts-addr (s))
∧ (read-rn (32, 14, mc-rfile (sn))

= read-rn (32, 14, mc-rfile (s)))
∧ (read-rn (32, 15, mc-rfile (sn))

= add (32, read-sp (s), 4))
∧ ((d2-7a2-5p (rn) ∧ (oplen ≤ 32))

→ (read-rn (oplen, rn, mc-rfile (sn))
= read-rn (oplen, rn, mc-rfile (s))))

∧ (disjoint (sub (32, 20, read-sp (s)), 32, x , k)
→ (read-mem (x , mc-mem (sn), k)

= read-mem (x , mc-mem (s), k)))
∧ (iread-dn (32, 0, sn) = mjrty-cand (n, lst , 0, 0, 0))
∧ (iread-dn (32, 1, sn)

= if mjrty-p (n, lst , 0, 0, 0) then 1
else 0 endif)) endlet

Event: Disable mjrty-t.

; in the logic, mjrty is expected to have these properties:

18



; 1. mjrty-thm-1: if mjrty-p returns 1, cand wins the majority.
; 2. mjrty-thm-2: if mjrty-p returns 0, no one wins the majority.

Theorem: mjrty-cand-0
mjrty-cand (n, lst , x , n, k) = x

Theorem: mjrty-cand-1
mjrty-cand (1 + n, lst , x , n, k)
= if k ' 0 then get-nth (n, lst)

else x endif

Theorem: mjrty-k-0
mjrty-k (n, lst , x , n, k) = k

Theorem: mjrty-k-1
mjrty-k (1 + n, lst , x , n, k)
= if k ' 0 then 1

elseif x = get-nth (n, lst) then 1 + k
else k − 1 endif

Theorem: cand-cnt-0
cand-cnt (n, lst , x , n, k) = k

Theorem: cand-cnt-1
cand-cnt (1 + n, lst , x , n, k)
= if x = get-nth (n, lst) then 1 + k

else k endif

Theorem: mjrty-k-lemma
((i ≤ n) ∧ (j ≤ i) ∧ (i ∈ N))
→ (mjrty-k (n, lst , mjrty-cand (i , lst , x , j , k), i , mjrty-k (i , lst , x , j , k))

= mjrty-k (n, lst , x , j , k))

Theorem: mjrty-cand-lemma
((i ≤ n) ∧ (j ≤ i) ∧ (i ∈ N))
→ (mjrty-cand (n, lst , mjrty-cand (i , lst , x , j , k), i , mjrty-k (i , lst , x , j , k))

= mjrty-cand (n, lst , x , j , k))

Theorem: cand-cnt-lemma
((i ≤ n) ∧ (j ≤ i) ∧ (i ∈ N))
→ (cand-cnt (n, lst , x , i , cand-cnt (i , lst , x , j , k)) = cand-cnt (n, lst , x , j , k))

Theorem: mjrty-cand-rec
(n ∈ N)
→ (mjrty-cand (1 + n, lst , x , 0, 0)

= mjrty-cand (1 + n,

19



lst ,
mjrty-cand (n, lst , x , 0, 0),
n,
mjrty-k (n, lst , x , 0, 0)))

Theorem: mjrty-k-rec
(n ∈ N)
→ (mjrty-k (1 + n, lst , x , 0, 0)

= mjrty-k (1 + n,
lst ,
mjrty-cand (n, lst , x , 0, 0),
n,
mjrty-k (n, lst , x , 0, 0)))

Theorem: cand-cnt-rec
(n ∈ N)
→ (cand-cnt (1 + n, lst , x , 0, 0)

= cand-cnt (1 + n, lst , x , n, cand-cnt (n, lst , x , 0, 0)))

Event: Disable mjrty-cand-lemma.

Event: Disable mjrty-k-lemma.

Event: Disable cand-cnt-lemma.

Theorem: mjrty-lemma1
cand-cnt (n, lst , mjrty-cand (n, lst , 0, 0, 0), 0, 0) 6< mjrty-k (n, lst , 0, 0, 0)

Definition:
mjrty-lemma2-induct (n, lst , x )
= if n ' 0 then t

else mjrty-lemma2-induct (n − 1, lst , x )
∧ mjrty-lemma2-induct (n − 1, lst , get-nth (n − 1, lst)) endif

Theorem: mjrty-lemma2
((n + mjrty-k (n, lst , 0, 0, 0))
6< (2 ∗ cand-cnt (n, lst , mjrty-cand (n, lst , 0, 0, 0), 0, 0)))
∧ ((x 6= mjrty-cand (n, lst , 0, 0, 0))

→ (n 6< (mjrty-k (n, lst , 0, 0, 0)
+ (2 ∗ cand-cnt (n, lst , x , 0, 0)))))

Event: Disable mjrty-cand-rec.

Event: Disable mjrty-k-rec.

20



Event: Disable cand-cnt-rec.

Theorem: mjrty-thm1
mjrty-p (n, lst , 0, 0, 0)
→ ((n ÷ 2) < cand-cnt (n, lst , mjrty-cand (n, lst , 0, 0, 0), 0, 0))

Theorem: mjrty-thm2
(¬ mjrty-p (n, lst , 0, 0, 0)) → ((n ÷ 2) 6< cand-cnt (n, lst , x , 0, 0))

; a simple time analysis.

Theorem: mjrty-t-crock
(z ∗ ((x − 1) − y)) = ((z ∗ (x − y)) − z )

Theorem: mjrty-cand-t-0
(mjrty-cand-t (a, 0, lst , cand , i , k)
= if cand = get-nth (0, lst) then 18

else 17 endif)
∧ (mjrty-cand-t (a, 1, lst , cand , 1, k)

= if cand = get-nth (0, lst) then 18
else 17 endif)

Theorem: mjrty-cand-t-1
mjrty-cand-t (a, 1, lst , cand , i , k)
= if i ' 0

then if k ' 0 then 26
elseif cand = get-nth (i , lst)
then if cand = get-nth (0, lst) then 27

else 26 endif
elseif cand = get-nth (0, lst) then 26
else 25 endif

elseif cand = get-nth (0, lst) then 18
else 17 endif

Theorem: mjrty-cand-t-ubound
(18 + (9 ∗ (n − i))) 6< mjrty-cand-t (a, n, lst , cand , i , k)

Theorem: mjrty-sn-t-ubound
(17 + (9 ∗ (n − i))) 6< mjrty-sn-t (a, n, lst , cand , i , k)

Theorem: cand-cnt-t-0
(cand-cnt-t (a, 0, lst , cand , i , k)
= if 0 < k then 14

else 13 endif)
∧ (cand-cnt-t (a, n, lst , cand , n, k)

= if (n ÷ 2) < k then 14
else 13 endif)

21



Theorem: cand-cnt-t-1
cand-cnt-t (a, 1, lst , cand , i , k)
= if i ' 0

then if cand = get-nth (i , lst) then 20
elseif 0 < k then 19
else 18 endif

elseif 0 < k then 14
else 13 endif

Theorem: cand-cnt-t-ubound
(14 + (6 ∗ (n − i))) 6< cand-cnt-t (a, n, lst , cand , i , k)

Theorem: mjrty-t-ubound
mjrty-t (a, n, lst) ≤ (46 + (15 ∗ (n − 1)))

22



Index
add, 8, 10, 13, 15, 16, 18
add1-int-rangep, 11
add1-int-rangepxx, 11

cand-cnt, 5, 6, 17, 19–21
cand-cnt-0, 19
cand-cnt-1, 19
cand-cnt-induct, 7, 8
cand-cnt-lemma, 19
cand-cnt-rec, 20
cand-cnt-t, 6, 7, 17, 18, 21, 22
cand-cnt-t-0, 21
cand-cnt-t-1, 22
cand-cnt-t-ubound, 22

d2-7a2-5p, 10, 11, 13, 16, 18
d6-7a2-5p, 9–18
disjoint, 8, 9, 18

evenp, 8, 9

get-nth, 5–9, 11–17, 19–22
get-vlst, 10, 11, 13, 16, 18

int-rangep, 11
iread-dn, 10, 13, 15–18
iread-mem, 8

linked-a6, 9–17
linked-rts-addr, 9–17

mc-mem, 8–18
mc-pc, 8–10, 13, 15–18
mc-rfile, 8–18
mc-status, 8–10, 13, 15–18
mcode-addrp, 8, 9
mem-ilst, 8, 9
mjrty-cand, 5–7, 13, 15, 18–21
mjrty-cand-0, 19
mjrty-cand-1, 19
mjrty-cand-induct, 7
mjrty-cand-lemma, 19

mjrty-cand-rec, 19
mjrty-cand-t, 6, 7, 15, 21
mjrty-cand-t-0, 21
mjrty-cand-t-1, 21
mjrty-cand-t-ubound, 21
mjrty-code, 4, 5, 8, 9
mjrty-correctness, 18
mjrty-k, 5–7, 13, 15, 19, 20
mjrty-k-0, 19
mjrty-k-1, 19
mjrty-k-lemma, 19
mjrty-k-rec, 20
mjrty-lemma1, 20
mjrty-lemma2, 20
mjrty-lemma2-induct, 20
mjrty-p, 6, 18, 21
mjrty-s-s0, 9
mjrty-s-s0-mem, 9
mjrty-s-s0-rfile, 9
mjrty-s0-s0-1, 11
mjrty-s0-s0-2, 11
mjrty-s0-s0-3, 12
mjrty-s0-s0-rfile-1, 12
mjrty-s0-s0-rfile-2, 12
mjrty-s0-s0-rfile-3, 12
mjrty-s0-s1, 15
mjrty-s0-s1-base1, 13
mjrty-s0-s1-base2, 14
mjrty-s0-s1-rfile, 15
mjrty-s0-s1-rfile-base1, 14
mjrty-s0-s1-rfile-base2, 14
mjrty-s0-sn, 13
mjrty-s0-sn-base-1, 10
mjrty-s0-sn-base-2, 10
mjrty-s0-sn-rfile, 13
mjrty-s0-sn-rfile-base-1, 10
mjrty-s0-sn-rfile-base-2, 11
mjrty-s0p, 8–15
mjrty-s1-s1-1, 16
mjrty-s1-s1-2, 17
mjrty-s1-s1-rfile-1, 17

23



mjrty-s1-s1-rfile-2, 17
mjrty-s1-sn, 17
mjrty-s1-sn-1, 15
mjrty-s1-sn-2, 16
mjrty-s1-sn-rfile, 18
mjrty-s1-sn-rfile-1, 15
mjrty-s1-sn-rfile-2, 16
mjrty-s1p, 9, 14–18
mjrty-sn-t, 6, 7, 13, 21
mjrty-sn-t-ubound, 21
mjrty-statep, 8, 9, 18
mjrty-statep-info, 18
mjrty-t, 6, 7, 18, 22
mjrty-t-crock, 21
mjrty-t-ubound, 22
mjrty-thm1, 21
mjrty-thm2, 21
movem-saved, 9–18

nat-to-int, 8, 9, 11

ram-addrp, 8, 9
read-an, 8–10, 13, 15, 16, 18
read-mem, 8–18
read-rn, 8–18
read-sp, 8, 9, 18
readm-rn, 9
rom-addrp, 8, 9
rts-addr, 9, 18

splus, 6, 7
stepn, 7–18
sub, 8, 9, 18

24


