#]
Copyright (C) 1994 by Yuan Yu. All Rights Reserved.

This script is hereby placed in the public domain, and therefore unlimited
editing and redistribution is permitted.

NO WARRANTY

Yuan Yu PROVIDES ABSOLUTELY NO WARRANTY. THE EVENT SCRIPT IS PROVIDED "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
SCRIPT IS WITH YOU. SHOULD THE SCRIPT PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT WILL Yuan Yu BE LIABLE TO YOU FOR ANY DAMAGES, ANY LOST PROFITS,
LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THIS SCRIPT (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD
PARTIES), EVEN IF YOU HAVE ADVISED US OF THE POSSIBILITY OF SUCH DAMAGES, OR
FOR ANY CLAIM BY ANY OTHER PARTY.

| #
EVENT: Start with the library "mc20-2" using the compiled version.

; Proof of the Corectness of a Majority Voting Program
#1
The following C function MJRTY determines if there is a candidate who

has received a majority of votes cast in an election.

/* a majority voting algorithm invented by Boyer and Moore */
#define YES 1
#define NO O

struct winner {
int x;
int y;

};

struct winner mjrty (int a[], int n)

int cand, i, k;
struct winner temp;

k = 0;
for (i = 0; i < n; i++)
if (k == 0) {
cand = ali];
k=1;
}
else {
if (cand == a[i])
k++;
else
k--;
};
temp.x = cand;
if (k == 0) {
temp.y = NO;
return temp;
};
if (k > n/2) {
temp.y = YES;
return temp,
};
k = 0;
for (i = 0; i < n; i++)
if (al[i] == cand)
k++;
if (k > n/2)
temp.y = YES;
else temp.y = NO;
return temp;

Here is the MC68020 assembly code of the above C program. The code is
generated by "gcc -0".

0x2310 <mjrty>: linkw a6,#0
0x2314 <mjrty+4>: moveml d2-d5,sp@-
0x2318 <mjrty+8>: moveal a6@(8),a0
0x231c <mjrty+12>: movel a6@(12),d2
0x2320 <mjrty+16>: clrl d1

0x2322 <mjrty+18>: clrl 4O

0x2324
0x2326
0x2328
0x232a
0x232c
0x2330
0x2332
0x2334
0x2338
0x233a
0x233c
0x233e
0x2340
0x2342
0x2344
0x2346
0x2348
0x234a
0x234c
0x234e
0x2350
0x2352
0x2354
0x2356
0x2358
0x23ba
0x235c
0x235e
0x2360
0x2362
0x2364
0x2368
0x236a
0x236¢
0x236e
0x2370
0x2372
0x2374
0x2376
0x2378
0x237a
0x237c
0x237e
0x2380

<mjrty+20>:
<mjrty+22>:
<mjrty+24>:
<mjrty+26>:
<mjrty+28>:
<mjrty+32>:
<mjrty+34>:
<mjrty+36>:
<mjrty+40>:
<mjrty+42>:
<mjrty+44>:
<mjrty+46>:
<mjrty+48>:
<mjrty+50>:
<mjrty+52>:
<mjrty+54>:
<mjrty+56>:
<mjrty+58>:
<mjrty+60>:
<mjrty+62>:
<mjrty+64>:
<mjrty+66>:
<mjrty+68>:
<mjrty+70>:
<mjrty+72>:
<mjrty+74>:
<mjrty+76>:
<mjrty+78>:
<mjrty+80>:
<mjrty+82>:
<mjrty+84>:
<mjrty+88>:
<mjrty+90>:
<mjrty+92>:
<mjrty+94>:
<mjrty+96>:
<mjrty+98>:

<mjrty+100>:
<mjrty+102>:
<mjrty+104>:
<mjrty+106>:
<mjrty+108>:
<mjrty+110>:
<mjrty+112>:

cmpl d0,d2

ble 0x2346 <mjrty+b4>

tstl di

bne 0x2334 <mjrty+36>

movel 0(a0) [d0.1%*4],d3
movel #1,d1

bra 0x2340 <mjrty+48>

cmpl 0(a0) [d0.1%4],d3

bne 0x233e <mjrty+46>

addql #1,d1

bra 0x2340 <mjrty+48>

subl #1,d1

addql #1,d0

cmpl d0,d2

bgt 0x2328 <mjrty+24>

movel d3,d4

tstl di

beq 0x2382 <mjrty+114>
movel d2,d0

bge 0x2352 <mjrty+66>

addql #1,d0

asrl #1,d0

cmpl d1,d0

bge 0x235c <mjrty+76>

movel #1,d5

bra 0x2384 <mjrty+116>
clrl di

clrl dO

cmpl d0,d2

ble 0x2372 <mjrty+98>

cmpl 0(a0) [d0.1%4],d3

bne 0x236¢ <mjrty+92>

addql #1,d1

addql #1,d0

cmpl d0,d2

bgt 0x2364 <mjrty+84>

movel d2,d0

bge 0x2378 <mjrty+104>
addql #1,d0

asrl #1,d0

cmpl d1,d0

bge 0x2382 <mjrty+114>
movel #1,d5

bra 0x2384 <mjrty+116>

0x2382 <mjrty+114>:
0x2384 <mjrty+116>:
0x2386 <mjrty+118>:
0x2388 <mjrty+120>:
0x238e <mjrty+126>:
0x2390 <mjrty+128>:

clrl db5

movel
movel

d4,do
d5,d1

moveml a6@(-16),d2-d5
unlk a6

rts

The machine code of the above program is:

<mjrty>:
<mjrty+16>:
<mjrty+32>:
<mjrty+48>:
<mjrty+64>:
<mjrty+80>:
<mjrty+96>:
<mjrty+112>:
<mjrty+128>:

0x4eb6
0x4281
0x7201
0x5280
0x5280
0xb480
Ox6ef2
0x6002
0x4e75

0x0000
0x4280
0x600c
0xb480
0xe280
0x6f0e
0x2002
0x4285

0x48e7
0xb480
0xb6b0
Ox6ee?2
0xb081
0xb6b0
0x6c02
0x2004

In the Nqthm logic, it is like:

(78
32
66
74
114
102
82
74
82
122
180
102
110
226
96
76
78

| #

86
110
129
129
1

4
128
129
128
1
128
2
242
128
2
238
117)

0

0
66
102
96
82
180
103
226
96
111
82
32
176
66

0
8
128

12
129
128
54
128
40
14
129

129
133
60

72
36
180
38
182
96
110
32
176
66
182
82
108
108
32
255

0x3c00
Ox6fle
0x0c00
0x2803
0x6c04
0x0c00
0x5280
0x2205

231
46
128
48
176

226

129
129
176
128

SN

240

0x206e
0x4a81
0x6604
0x4a81
0x7a01
0x6602
0xe280
Ox4cee

60

111
12
12
83
40
108
108
66
12
180
82
122
34
78

0x0008
0x6608
0x5281
0x6736
0x6028
0x5281
0xb081
0x003c

129

N

128

128
128

94

; in the logic, the above program is defined by (mjrty-code).

DEFINITION:

0x242e
0x2630
0x6002
0x2002
0x4281
0x5280
0x6c04
Oxf£ff0

0x000c
0x0c00
0x5381
0x6c02
0x4280
0xb480
0x7a01
Ox4ebe

MJRTY-CODE

= (78 86 0 0 72 231 60 0 32 110 0 8 36 46 0 12 66 129
66 128 180 128 111 30 74 129 102 8 38 48 12 0 114 1
96 12 182 176 12 0 102 4 82 129 96 2 83 129 82 128
180 128 110 226 40 3 74 129 103 54 32 2 108 2 82 128
226 128 176 129 108 4 122 1 96 40 66 129 66 128 180
128 111 14 182 176 12 0 102 2 82 129 82 128 180 128
110 242 32 2 108 2 82 128 226 128 176 129 108 4 122
1 96 2 66 133 32 4 34 5 76 238 0 60 255 240 78 94 78
117)

; mjrty-cand is a function in the logic to simulate the candidate
; findhe above code.

DEFINITION:
mjrty-cand (n, Ist, cand, i, k)
= ifi<n
then if &k ~ 0 then mjrty-cand (n, Ist, get-nth (4, Ist), 1 + 4, 1)
elseif cand = get-nth (7, Ist)
then mjrty-cand (n, Ist, cand, 1 + i, 1 + k)
else mjrty-cand (n, Ist, cand, 1 + i, k — 1) endif
else cand endif

DEFINITION:
mjrty-k (n, Ist, cand, i, k)
= ifi<n
then if k ~ 0 then mjrty-k (n, Ist, get-nth (7, Ist), 1 + ¢, 1)
elseif cand = get-nth (7, Ist)
then mjrty-k (n, Ist, cand, 1 + i, 1 + k)
else mjrty-k (n, Ist, cand, 1 + i, k — 1) endif
else k endif

; cand-cnt is a function in the logic to simulate the process of
; counting the number of votes for the given candidate.

DEFINITION:
cand-cnt (n, Ist, cand, i, k)
= ifi<n
then if cand = get-nth (4, Ist) then cand-cnt (n, Ist, cand, 1 + i, 1 + k)
else cand-cnt (n, Ist, cand, 1 + i, k) endif
else k endif

; mjrty-p determines if the given candidate cand has received a majority
; voting.

DEFINITION:
mjrty-p (n, Ist, cand, i, k)
= if mjrty-k (n, Ist, cand, i, k) ~ 0 then f
elseif (n + 2) < mjrty-k (n, Ist, cand, i, k) then t
else (n + 2)
< cand-cnt (n, Ist, mjrty-cand (n, Ist, cand, i, k), i, k) endif

; the computation time.

DEFINITION:
mjrty-cand-t (a, n, Ist, cand, i, k)
= ifi<n
then if £ ~ 0
then let candl be get-nth (i, Ist)
in
splus (8, mjrty-cand-t (a, n, Ist, candl, 1 + 7, 1)) endlet
elseif cand = get-nth (i, Ist)
then splus (9, mjrty-cand-t (a, n, Ist, cand, 1 + i, 1 + k))
else splus (8, mjrty-cand-t (a, n, Ist, cand, 1 + i, k — 1)) endif
elseif cand = get-nth (0, Ist) then 18
else 17 endif

DEFINITION:
mjrty-sn-t (a, n, lst, cand, i, k)
= ifi<n
then if £ ~ 0
then let cand! be get-nth (4, Ist)

in
splus (8, mjrty-sn-t (a, n, Ist, candl, 1 4+ i, 1)) endlet
elseif cand = get-nth (7, Ist)
then splus (9, mjrty-sn-t (a, n, lst, cand, 1 + i, 1 + k))
else splus (8, mjrty-sn-t (a, n, Ist, cand, 1 + i, k — 1)) endif
elseif £ ~ 0 then 11
else 17 endif

DEFINITION:
cand-cnt-t (a, n, Ist, cand, i, k)
= ifi<n
then if cand = get-nth (7, lst)
then splus (6, cand-cnt-t (a, n, Ist, cand, 1 + i, 1 + k))
else splus (5, cand-cnt-t (a, n, Ist, cand, 1 + i, k)) endif
elseif (n = 2) < k then 14
else 13 endif

DEFINITION:

mjrty-t (a, n, lst)
= let cand be get-nth (0, Ist)
in
splus (14,
if (mjrty-k (n, Ist, cand, 1, 1) ~0)
Vo ((n + 2) < mjrty-k (n, Ist, cand, 1, 1))
then mjrty-sn-t (a, n, Ist, cand, 1, 1)
else splus (mjrty-cand-t (a, n, Ist, cand, 1, 1),
if cand = mjrty-cand (n, Ist, cand, 1, 1)

then cand-cnt-t (a,

n,
Ist,
mjrty-cand (n,
lst,
cand,
17
),
1,
1)
else cand-cnt-t (a,
n,
lst,
mjrty-cand (n,
lst,
cand,
17
),
17

0) endif) endif) endlet

; induction hints.

>

DEFINITION:
mjrty-cand-induct (s, n, Ist, cand, i, k)
= ifi<n
then if £ ~0
then let cand! be get-nth (i, Ist)

in
mjrty-cand-induct (stepn (s, 8), n, Ist, cand1, 1 + i, 1) endlet

elseif cand = get-nth (7, Ist)
then mjrty-cand-induct (stepn (s, 9), n, Ist, cand, 1 + 4, 1 + k)
else mjrty-cand-induct (stepn (s, 8), n, Ist, cand, 1 + i, k — 1) endif

else t endif

DEFINITION:

cand-cnt-induct (s, n, Ist, cand, i, k)
= ifi<n
then if cand = get-nth (4, Ist)

then cand-cnt-induct (stepn (s, 6), n, Ist, cand, 1 + i, 1 + k)
else cand-cnt-induct (stepn (s, 5), n, Ist, cand, 1 + 4, k) endif

else t endif
; the preconditions of the initial state.

DEFINITION:
mjrty-statep (s, a, n, lst)
= ((mc-status (s) = ’running)
A evenp (me-pe (s))
A rom-addrp (me-pe (s), me-mem (s), 130)
A mcode-addrp (me-pc (s), me-mem (s), MJRTY-CODE)
A ram-addrp (sub (32, 20, read-sp (s)), mc-mem (s), 32)
A ram-addrp (@, mc-mem (s), 4 % n)
A mem-ilst (4, a, mc-mem (s), n, lst)
A disjoint (a, 4 * n, sub (32, 20, read-sp (s)), 32)
A (a = read-mem (add (32, read-sp (s), 4), mc-mem (s), 4))
A (n = iread-mem (add (32, read-sp (s), 8), mc-mem (s), 4))
A

(n #0))
; the conditions of the intermediate state sO.

DEFINITION:

mjrty-sOp (s, a, n, Ist, cand, i, k)

= ((mc-status (s) = ’running)

evenp (me-pc (s))

rom-addrp (sub (32, 50, me-pc (s)), me-mem (s), 130)

ram-addrp (sub (32, 16, read-an (32, 6, s)), mc-mem (s), 32)
ram-addrp (@, me-mem (s), 4 * n)

mem-ilst (4, a, mc-mem (s), n, Ist)

disjoint (a, 4 * n, sub (32, 16, read-an (32, 6, s)), 32)
(@ = read-rn (32, 8, mc-rfile (s)))

>>>>>>>>>>>>>>> >

(n = nat-to-int (read rn (32, 2, me-rfile (s)), 32))
(cand = nat-to-int (read-rn (32 3, me-rfile (s)), 32))
(i = nat-to-int (read-rn (32, 0, mec-rfile (s)), 32))

(k = nat-to-int (read-rn (32, 1, me-rfile (s)), 32))

(n % 0)

(i eN)

(k e N)

(k <))

mcode-addrp (sub (32, 50, mc-pc (s)), me-mem (s), MJRTY-CODE)

; the conditions of the intermediate state si.

DEFINITION:

mjrty-slp (s, a, n, lst, cand, i, k)

= ((mc-status (s) = ’running)

evenp (me-pc (8))

rom-addrp (sub (32, 94, me-pc (s)), me-mem (s), 130)
mcode-addrp (sub (32, 94, mc-pc (s)), me-mem ($), MJRTY-CODE)
ram-addrp (sub (32, 16, read-an (32, 6, s)), mc-mem (s), 32)
ram-addrp (@, mc-mem (s), 4 * n)

mem-ilst (4, a, me-mem (s), n, lst)

disjoint (a, 4 * n, sub (32, 16, read-an (32, 6, s)), 32)

(a = read-rn (32, 8, me-rfile (s)))

(n = nat-to-int (read rn (32, 2, me-rfile (s)), 32))

(cand = nat-to-int (read-rn (32 4, me-rfile (s)), 32))

(cand = nat-to-int (read-rn (32, 3, me-rfile (s)), 32))

(i = nat-to-int (read-rn (32, 0, mc—rﬁle(), 32))

(k = nat-to-int (read-rn (32, 1, me-rfile (s)), 32))
(
(i e
(
(

n?éo)

>>>>>>>>>>>>>> > > >

; the initial segment. From the initial state to s0.

THEOREM: mjrty-s-s0
let cand be get-nth (0, Ist)
in
mjrty-statep (s, a, n, lst)
— (mjrty-sOp (stepn (s, 14), a, n, Ist, cand, 1, 1)
A (linked-rts-addr (stepn (s, 14)) = rts-addr (s))
A (linked-a6 (stepn (s, 14)) = read-an (32, 6, s))
A (read-rn (32, 14, me-rfile (stepn (s, 14)))
= sub(32, 4, read-sp (s)))
A (movem-saved (stepn (s, 14), 4, 16, 4)
= readm-rn (32, (2 3 4 5), mc-rfile (s)))) endlet

THEOREM: mjrty-s-sO-rfile

(mjrty-statep (s, a, n, Ist) A d6-7a2-5p (rn))

— (read-rn (oplen, rn, mc-rfile (stepn (s, 14)))
= read-rn (oplen, rn, me-rfile (s)))

THEOREM: mjrty-s-sO-mem
(mjrty-statep (s, a, n, Ist) A disjoint (sub (32, 20, read-sp (s)), 32, z, k))
— (read-mem (z, mc-mem (stepn (s, 14)), k) = read-mem (z, me-mem (s), k))

; 80 ——> exit.
; base case.

THEOREM: mjrty-sO-sn-base-1

(mjrty-sOp (s, a, n, Ist, cand, i, k) A (i £ n) A (k = 0))
— ((mec-status (stepn (s, 11)) = ’running)

(me-pe (stepn (s, 11)) = linked-rts-addr (s))
(iread-dn (32, 0, stepn (s, 11)) = cand)
(iread-dn (32, 1, stepn (s, 11)) = 0)

(read-rn (32, 14, mc-rfile (stepn (s, 11))) = linked-a6 (s))
(read-rn (32, 15, mec-rfile (stepn (s, 11)))

= add (32, read-an (32, 6, s), 8))
(read-mem (z, mc-mem (stepn (s, 11)), {)

= read-mem (z, mc-mem (s), 1)))

> > > > >

>

THEOREM: mjrty-sO-sn-base-2
(mjrty-sOp (s, a, n, Ist, cand, i, k)

(me-pe (stepn (s, 17)) = linked-rts-addr (s))

(iread-dn (32, 0, stepn (s, 17)) = cand)

(iread-dn (32, 1, stepn (s, 17)) = 1)

(read-rn (32, 14, mc-rfile (stepn (s, 17))) = linked-a6 (s))
(read-rn (32, 15, mec-rfile (stepn (s, 17)))

= add (32, read-an (32, 6, s), 8))

A (read-mem (z, mc-mem (stepn (s, 17)), 1)

= read-mem (z, mc-mem (s), [)))

THEOREM: mjrty-sO-sn-rfile-base-1
(mjrty-sOp (s, a, n, lst, cand, i, k)
A (k~0)
A d2-7a2-5p (rn)
A (oplen < 32))
— (read-rn (oplen, rn, me-rfile (stepn (s, 11)))
= if d6-7a2-5p (rn) then read-rn (oplen, rn, mc-rfile (s))
else get-vlst (oplen,
0,
™,
(234 5),
movem-saved (s, 4, 16, 4)) endif)

THEOREM: mjrty-sO-sn-rfile-base-2

10

(mjrty-sOp (s, a, n, lst, cand, i, k)
(i £)
(k % 0)
((n+2) <k)
d2-7a2-5p (rn)
(oplen < 32))
(read-rn (oplen, rn, mc-rfile (stepn (s, 17)))
= if d6-7a2-5p (rn) then read-rn (oplen, rn, mc-rfile (s))
else get-vlst (oplen,
0,
™,
’(2 3 4 5),
movem-saved (s, 4, 16, 4)) endif)

L>>>>>

; induction case.

THEOREM: addl-int-rangep
(z < nat-to-int (y, n)) — int-rangep (1 + z, n)

EVENT: Enable iplus.

THEOREM: mjrty-s0-s0-1
let candl be get-nth (i, Ist)
in
(mjrty-s0p (s, a, n, Ist, cand, i, k) A (i < n) A (k ~0))
— (mjrty-sOp (stepn (s, 8), a, n, Ist, candl, 1 + i, 1)
A (linked-rts-addr (stepn (s, 8)) = linked-rts-addr (s))
A (linked-a6 (stepn (s, 8)) = linked-a6 (s))
A (read-rn (32, 14, mc-rfile (stepn (s, 8)))
= read-rn (32, 14, mc-rfile (s)))
A (movem-saved (stepn (s, 8), 4, 16, 4)
= movem-saved (s, 4, 16, 4))
A (read-mem (z, mc-mem (stepn(s 8)), 1)
= read-mem (z, mc-mem (s), [))) endlet

THEOREM: addl-int-rangepxx
((i <r) A(r <n) A int-rangep (n, 32)) — int-rangep (1 + i, 32)

THEOREM: mjrty-s0-s0-2
(mjrty-sOp (s, a, n, lst, cand, i, k)
A (i <n)
A (k#£0)
A (cand = get-nth (i, Ist)))
— (mjrty-sOp (stepn (s, 9), a, n, Ist, cand, 1 + i, 1 + k)

11

A (linked-rts-addr (stepn (s, 9)) = linked-rts-addr (s))
A (linked-a6 (stepn (s, 9)) = linked-a6 (s))
A (read-rn (32, 14, mc-rfile (stepn (s, 9)))
= read-rn (32, 14, mc-rfile (s)))
A (movem-saved (stepn (s, 9), 4, 16, 4) = movem-saved (s, 4, 16, 4))
A (read-mem (z, mc-mem (stepn (s, 9)), 1)
= read-mem (z, mc-mem (s), 1)))

THEOREM: mjrty-s0-s0-3
(mjrty-sOp (s, a, n, Ist, cand, i, k)
A (i <n)
A (k#£0)
A (cand # get-nth (i, lst)))
— (mjrty-sOp (stepn (s, 8), a, n, Ist, cand, 1 + i, k — 1)

A (linked-rts-addr (stepn (s, 8)) = linked-rts-addr (s))
A (linked-a6 (stepn (s, 8)) = linked-a6 (s))
A (read-rn (32, 14, mc-rfile (stepn (s, 8)))
= read-rn (32, 14, mc-rfile (s)))
A (movem-saved (stepn (s, 8), 4, 16, 4) = movem-saved (s, 4, 16, 4))
A (read-mem (z, mc-mem (stepn (s, 8)), 1)

= read-mem (z, mc-mem (s), 1)))

THEOREM: mjrty-s0-sO-rfile-1
(mjrty-sOp (s, a, n, Ist, cand, i, k) A (i < n) A (k ~0) A d6-7a2-5p (rn))
— (read-rn (oplen, rn, mc-rfile (stepn (s, 8)))

= read-rn (oplen, rn, mc-rfile (s)))

THEOREM: mjrty-s0-s0-rfile-2
(mjrty-sOp (s, a, n, Ist, cand, i, k)
A (i <n)
A (k#£0)
A (cand = get-nth (i, Ist))
A d6-7a2-5p (rn))
— (read-rn (oplen, rn, mec-rfile (stepn (s, 9)))
= read-rn (oplen, rn, mec-rfile (s)))

THEOREM: mjrty-s0-sO-rfile-3
(mjrty-sOp (s, a, n, lst, cand, i, k)
A (i <n)
A (k#£0)
A (cand # get-nth (i, Ist))
A d6-7a2-5p (rn))
— (read-rn (oplen, rn, mec-rfile (stepn (s, 8)))
= read-rn (oplen, rn, me-rfile (s)))

12

; the proof of sO0 --> exit.

THEOREM: mjrty-s0-sn
let sn be stepn (s, mjrty-sn-t (a, n, Ist, cand, i, k))
in
(mjrty-sOp (s, a, n, Ist, cand, i, k)
A ((mjrty-k (n, Ist, cand, i, k) ~ 0)
Vo ((n + 2) < mjrty-k (n, Ist, cand, i, k))))
— ((mc-status (sn) = ’running)
A (me-pe (sn) = linked-rts-addr (s))
A (iread-dn (32, 0, sn) = mjrty-cand (n, Ist, cand, i, k))
A (iread-dn (32, 1, sn)
= if (n + 2) < mjrty-k (n, Ist, cand, i, k)
then 1
else 0 endif)
A (read-rn (32, 14, mc-rfile (sn)) = linked-a6 (s))
A (read-rn (32, 15, mc-rfile (sn))
= add (32, read-an (32, 6, s), 8))
A (read-mem (z, mc-mem (sn), I) = read-mem (z, me-mem (s), 1))) endlet

THEOREM: mjrty-s0-sn-rfile
let sn be stepn (s, mjrty-sn-t (a, n, Ist, cand, i, k))
in
(mjrty-sOp (s, a, n, lst, cand, i, k)
A ((mjrty-k (n, Ist, cand, i, k) ~ 0)
vV ((n + 2) < mjrty-k (n, Ist, cand, i, k)))
A d2-Ta2-5p (rn)
A (oplen < 32))
— (read-rn (oplen, rn, mc-rfile (sn))
= if d6-7a2-5p (rn) then read-rn (oplen, rn, mec-rfile (s))
else get-vlst (oplen,
07
™,
(2 34 5),
movem-saved (s, 4, 16, 4)) endif) endlet

; sO ——> s1.
; base case:

THEOREM: mjrty-s0-sl-basel
(mjrty-sOp (s, a, n, lst, cand, i, k)

A (i n)

A (k #£0)

A ((n+2) £Fk)

A (cand = get-nth (0, Ist)))

13

— (mjrty-slp (stepn (s, 18), a, n, Ist, cand, 1, 1)
A (linked-rts-addr (stepn (s, 18)) = linked-rts-addr (s))
A (linked-a6 (stepn (s, 18)) = linked-a6 (s))
A (read-rn (32, 14, me-rfile (stepn (s, 18)))
= read-rn (32, 14, mc-rfile (s)))
A (movem-saved (stepn (s, 18), 4, 16, 4) = movem-saved (s, 4, 16, 4))
A (read-mem (z, mc-mem (stepn (s, 18)),)
= read-mem (z, mc-mem (s),)))

THEOREM: mjrty-s0-sl-base2
(mjrty-sOp (s, a, n, Ist, cand, i, k)
A (k#£0)
A ((n+2) £ k)
A (cand # get-nth (0, Ist)))
— (mjrty-slp (stepn (s, 17), a, n, lst, cand, 1, 0)

A (linked-rts-addr (stepn (s, 17)) = linked-rts-addr (s))
A (linked-a6 (stepn (s, 17)) = linked-a6 (s))
A (read-rn (32, 14, me-rfile (stepn (s, 17)))
= read-rn (32, 14, mc-rfile (s)))
A (movem-saved (stepn (s, 17), 4, 16, 4) = movem-saved (s, 4, 16, 4))
A (read-mem (z, mc-mem (stepn (s, 17)),)

= read-mem (2, mc-mem (s), 1)))

THEOREM: mjrty-sO-sl-rfile-basel

(mjrty-sOp (s, a, n, Ist, cand, i, k)

(i £ n)

(k % 0)

((n+2) £F)

(cand = get-nth (0, Ist))

d6-7a2-5p (rn))

(read-rn (oplen, rn, mc-rfile (stepn (s, 18)))
= read-rn (oplen, rn, mc-rfile (s)))

l>>>>>

THEOREM: mjrty-s0-s1-rfile-base2

(mjrty-sOp (s, a, n, Ist, cand, i, k)

(i £n)

(k #0)

(0 +2) £ b)

(cand # get-nth (0, Ist))

d6-7a2-5p (rn))

(read-rn (oplen, rn, me-rfile (stepn (s, 17)))
= read-rn (oplen, rn, me-rfile (s)))

l>>>>>

; the proof of sO --> si.

14

THEOREM: mjrty-s0-sl
let sI be stepn (s, mjrty-cand-t (a, n, Ist, cand, i, k))
in
(mjrty-sOp (s, a, n, lst, cand, i, k)
(mjrty-k (n, Ist, cand, i, k) # 0)
A ((n + 2) £ mjrty-k (n, Ist, cand, i, k))
A (cand0 = mjrty-cand (n, Ist, cand, i, k))
A (kO = if mjrty-cand (n, Ist, cand, i, k) = get-nth (0, Ist)
then 1
else 0 endif))
— (mjrty-slp (s1, a, n, lst, cand0, 1, kO)
A (linked-rts-addr (s1) = linked-rts-addr (s))
A (linked-a6 (s1) = linked-a6 (s))
A (read-rn (32, 14, mc-rfile (s1))
= read-rn (32, 14, mc-rfile (s)))
A (movem-saved (s, 4, 16, 4) = movem-saved (s, 4, 16, 4))
A (read-mem (z, mc-mem (s1), I) = read-mem (z, mc-mem(), 1)) endlet

>

THEOREM: mjrty-s0-sl-rfile

let s/ be stepn (s, mjrty-cand-t (a, n, Ist, cand, i, k))
in

(mjrty-sOp (s, a, n, lst, cand, i, k)

A (mjrty-k (n, Ist, cand, i, k) % 0)

A ((n + 2) £ mjrty-k (n, Ist, cand, i, k))

A d6-7a2-5p (rn))

— (read-rn (oplen, rn, me-rfile (s1))

= read-rn (oplen, rn, me-rfile (s))) endlet

; sl —-> exit.
; base case.

THEOREM: mjrty-sl-sn-1

(mjrty-slp (s, a, n, Ist, cand, i, k) A (i £ n) A ((n =+ 2) < k))
— ((me-status (stepn (s, 14)) = ’running)

(me-pe (stepn (s, 14)) = linked-rts-addr (s))
(iread-dn (32, 0, stepn (s, 14)) = cand)

(iread-dn (32, 1, stepn (s, 14)) = 1)

(read-rn (32, 14, mec-rfile (stepn (s, 14))) = linked-a6 (s))
(read-rn (32, 15, me-rfile (stepn (s, 14)))

= add (32, read-an (32, 6, s), 8))

(read-mem (z, mc-mem (stepn (s, 14)), 1)

= read-mem (z, mc-mem (s), 1)))

> > > > >

>

THEOREM: mjrty-sl-sn-rfile-1
(mjrty-slp (s, a, n, lst, cand, i, k)

15

(i £n)
((n+2) <k)
d2-7a2-5p (rn)
(oplen < 32))
(read-rn (oplen, rn, me-rfile (stepn (s, 14)))
= if d6-7a2-5p (rn) then read-rn (oplen, rn, mc-rfile (s))
else get-vlst (oplen,
0,
™,
’(2 3 4 5),
movem-saved (s, 4, 16, 4)) endif)

b>>>>

THEOREM: mjrty-sl-sn-2

(mjrty-slp (s, a, n, Ist, cand, i, k) A (i £ n) A (n +2) £ k))
— ((mec-status (stepn (s, 13)) = ’running)

(me-pe (stepn (s, 13)) = linked-rts-addr (s))
(iread-dn (32, 0, stepn (s, 13)) = cand)

(iread-dn (32, 1, stepn (s, 13)) = 0)

(read-rn (32, 14, mc-rfile (stepn (s, 13))) = linked-a6 (s))
(read-rn (32, 15, mec-rfile (stepn (s, 13)))

= add (32, read-an (32, 6, s), 8))

(read-mem (z, mc-mem (stepn (s, 13)), 1)

= read-mem (z, mc-mem (s), 1)))

>>> > >

>

THEOREM: mjrty-sl-sn-rfile-2
(mjrty-slp (s, a, n, Ist, cand, i, k)
A (i £ n)
A ((n+2) £ k)
A d2-7a2-5p (rn)
A (oplen < 32))
— (read-rn (oplen, rn, mc-rfile (stepn (s, 13)))
= if d6-7a2-5p (rn) then read-rn (oplen, rn, mc-rfile (s))
else get-vlst (oplen,
07
™,
(2 3 4 5),
movem-saved (s, 4, 16, 4)) endif)

; induction case.

THEOREM: mjrty-sl-s1-1
(mjrty-slp (s, a, n, Ist, cand, i, k) A (i < n) A (cand = get-nth (4, Ist)))
— (mjrty-slp (stepn (s, 6), a, n, Ist, cand, 1 + i, 1 + k)

A (linked-rts-addr (stepn (s, 6)) = linked-rts-addr (s))

A (linked-a6 (stepn (s, 6)) = linked-a6 (s))

16

A (read-rn (32, 14, mc-rfile (stepn (s, 6)))

= read-rn (32, 14, mc-rfile (s)))

(movem-saved (stepn (s, 6), 4, 16, 4) = movem-saved (s, 4, 16, 4))
(read-mem (z, mc-mem (stepn (s, 6)), {)

= read-mem (z, mc-mem (s), 1)))

A
A

THEOREM: mjrty-sl-s1-2
(mjrty-slp (s, a, n, Ist, cand, i, k) A (i < n) A (cand # get-nth (3, Ist)))
— (mjrty-slp (stepn (s, 5), a, n, Ist, cand, 1 + i, k)
A (linked-rts-addr (stepn (s, 5)) = linked-rts-addr (s))
A (linked-a6 (stepn (s, 5)) = linked-a6 (s))
A (read-rn (32, 14, mc-rfile (stepn (s, 5)))
= read-rn (32, 14, mc-rfile (s)))
A (movem-saved (stepn (s, 5), 4, 16, 4) = movem-saved (s, 4, 16, 4))
A (read-mem (z, mc-mem (stepn (s, 5)), 1)
= read-mem (z, mc-mem (s),)))

THEOREM: mjrty-sl-sl-rfile-1
(mjrty-slp (s, a, n, Ist, cand, i, k)
A (i <n)
A (cand = get-nth (i, Ist))
A d6-7a2-5p (rn))
— (read-rn (oplen, rn, mc-rfile (stepn (s, 6)))
= read-rn (oplen, rn, mec-rfile (s)))

THEOREM: mjrty-sl-sl-rfile-2
(mjrty-slp (s, a, n, Ist, cand, i, k)
A (i <n)
A (cand # get-nth (i, Ist))
A d6-7a2-5p (rn))
— (read-rn (oplen, rn, mc-rfile (stepn (s, 5)))
= read-rn (oplen, rn, mc-rfile (s)))

THEOREM: mjrty-sl-sn
let sn be stepn (s, cand-cnt-t (a, n, Ist, cand, i, k))
in
mjrty-slp (s, a, n, lst, cand, i, k)
— ((mc-status (sn) = ’running)
A (me-pc (sn) = linked-rts-addr (s))
A (iread-dn (32, 0, sn) = cand)
A (iread-dn (32, 1, sn)
= if (n + 2) < cand-cnt (n, Ist, cand, i, k)
then 1
else 0 endif)
A (read-rn (32, 14, me-rfile (sn)) = linked-a6 (s))

17

A (read-rn (32, 15, mc-rfile (sn))
= add (32, read-an (32, 6, s), 8))
A (read-mem (z, mc-mem (sn), I) = read-mem (z, mc-mem (s), 1))) endlet

THEOREM: mjrty-sl-sn-rfile
let sn be stepn (s, cand-cnt-t (a, n, Ist, cand, i, k))
in
(mjrty-slp (s, a, n, Ist, cand, i, k) A d2-7a2-5p (rn) A (oplen < 32))
— (read-rn (oplen, rn, mc-rfile (sn))
= if d6-7a2-5p (rn) then read-rn (oplen, rn, mc-rfile (s))
else get-vlst (oplen,
07
™,
(2 3 4 5),
movem-saved (s, 4, 16, 4)) endif) endlet

; the correctness of MJRTY.

THEOREM: mjrty-statep-info
mjrty-statep (s, a, n, lst) — (n % 0)

THEOREM: mjrty-correctness
let sn be stepn (s, mjrty-t (a, n, Ist))
in
mjrty-statep (s, a, n, lst)
— ((mec-status (sn) = ’running)
A (mc-pc (sn) = rts-addr (s))
A (read-rn (32, 14, me-rfile (sn))
= read-rn (32, 14, mec-rfile (s)))
A (read-rn (32, 15, me-rfile (sn))
= add (32, read-sp (s), 4))
A ((d2-7a2-5p (rn) A (oplen < 32))
— (read-rn (oplen, rn, mc-rfile (sn))
= read-rn (oplen, rn, me-rfile (s))))
A (disjoint (sub (32, 20, read-sp (s)), 32, z, k)
— (read-mem (z, mc-mem (sn), k)
= read-mem (z, mc-mem (s), k)))
A (iread-dn (32, 0, sn) = mjrty-cand (n, Ist, 0, 0, 0))
A (iread-dn (32, 1, sn)
= if mjrty-p (n, Ist, 0, 0, 0) then 1
else 0 endif)) endlet

EVENT: Disable mjrty-t.

; in the logic, mjrty is expected to have these properties:

18

; 1. mjrty-thm-1: if mjrty-p returns 1, cand wins the majority.
; 2. mjrty-thm-2: if mjrty-p returns O, no one wins the majority.

THEOREM: mjrty-cand-0
mjrty-cand (n, Ist, ¢, n, k) = x

THEOREM: mjrty-cand-1

mjrty-cand (1 + n, Ist, z, n, k)

= if k ~ 0 then get-nth (n, lst)
else z endif

THEOREM: mjrty-k-0
mjrty-k (n, Ist, z, n, k) = k

THEOREM: mjrty-k-1

mjrty-k (1 + n, Ist, z, n, k)

= ifk ~0 then 1
elseif z = get-nth (n, Ist) then 1+ k
else k£ — 1 endif

THEOREM: cand-cnt-0
cand-cent (n, Ist, z, n, k) = k

THEOREM: cand-cnt-1

cand-cnt (1 + n, Ist, z, n, k)

= if z = get-nth (n, lst) then 1 + k
else k endif

THEOREM: mjrty-k-lemma

(i <n)A(<i)A(i €N))

— (mjrty-k (n, Ist, mjrty-cand (¢, Ist, z, j, k), i, mjrty-k (¢, Ist, z, 7, k))
= mjrty-k(n, lst, z, j, k))

THEOREM: mjrty-cand-lemma

((t<n)A(G<i)A (i €EN))

— (mjrty-cand (n, Ist, mjrty-cand (4, Ist, x, j, k), i, mjrty-k (4, Ist, z, j, k))
= mjrty-cand (n, Ist, z, j, k))

THEOREM: cand-cnt-lemma
((t<n)A(G<i)A (i €EN))
— (cand-cnt (n, Ist, x, 4, cand-cnt (4, Ist, z, j, k)) = cand-cnt (n, Ist, x, j, k))

THEOREM: mjrty-cand-rec

(n € N)

— (mjrty-cand (1 + n, Ist, z, 0, 0)
= mjrty-cand (1 + n,

19

lst,

mjrty-cand (n, Ist, z, 0, 0),
n?

mjrty-k (n, Ist, z, 0, 0)))

THEOREM: mjrty-k-rec

(n € N)

— (mjrty-k (1 + n, Ist, z, 0, 0)

= mjrty-k(1 + n,

Ist,
mjrty-cand (n, Ist, z, 0, 0),
n,

mjrty-k (n, Ist, z, 0, 0)))

THEOREM: cand-cnt-rec
(n € N)
— (cand-cnt (1 + n, Ist, z, 0, 0)
= cand-cnt (1 + n, Ist, z, n, cand-cnt (n, Ist, z, 0, 0)))

EVENT: Disable mjrty-cand-lemma.
EVENT: Disable mjrty-k-lemma.
EVENT: Disable cand-cnt-lemma.

THEOREM: mjrty-lemmal
cand-cnt (n, Ist, mjrty-cand (n, Ist, 0, 0, 0), 0, 0) £ mjrty-k (n, Ist, 0, 0, 0)

DEFINITION:
mjrty-lemma2-induct (n, Ist,)
= if n ~0 then t
else mjrty-lemma2-induct (n — 1, Ist,)
A mjrty-lemma2-induct (n — 1, Ist, get-nth (n — 1, Ist)) endif

THEOREM: mjrty-lemmaZ2
((n + mjrty-k (n, Ist, 0, 0, 0))
£ (2 * cand-cnt (n, Ist, mjrty-cand (n, Ist, 0, 0, 0), 0, 0)))
A ((z # mjrty-cand (n, lst, 0, 0, 0))
— (n ¢ (mjrty-k (n, Ist, 0, 0, 0)
+ (2 x cand-cnt (n, Ist, z, 0, 0)))))

EVENT: Disable mjrty-cand-rec.

EVENT: Disable mjrty-k-rec.

20

EVENT: Disable cand-cnt-rec.

THEOREM: mjrty-thml
mjrty-p (n, Ist, 0, 0, 0)
— ((n = 2) < cand-cnt (n, Ist, mjrty-cand (n, Ist, 0, 0, 0), 0, 0))

THEOREM: mjrty-thm?2
(= mjrty-p (n, Ist, 0, 0, 0)) — ((n + 2) £ cand-cnt (n, Ist, z, 0, 0))

; a simple time analysis.

THEOREM: mjrty-t-crock
(zx((z =1) =y) = ((z*(z —y) — 2)

THEOREM: mjrty-cand-t-0
(mjrty-cand-t (a, 0, Ist, cand, i, k)
= if cand = get-nth (0, Ist) then 18
else 17 endif)
A (mjrty-cand-t (a, 1, Ist, cand, 1, k)
= if cand = get-nth (0, Ist) then 18
else 17 endif)

THEOREM: mjrty-cand-t-1
mjrty-cand-t (a, 1, lst, cand, i, k)
= ifi~0
then if £ ~ 0 then 26
elseif cand = get-nth (i, Ist)
then if cand = get-nth (0, Ist) then 27
else 26 endif
elseif cand = get-nth (0, Ist) then 26
else 25 endif
elseif cand = get-nth (0, Ist) then 18
else 17 endif

THEOREM: mjrty-cand-t-ubound
(18 + (9 * (n — 1))) ¢ mjrty-cand-t (a, n, lst, cand, i, k)

THEOREM: mjrty-sn-t-ubound
(17 + (9 % (n — i))) £ mjrty-sn-t (a, n, Ist, cand, i, k)

THEOREM: cand-cnt-t-0
(cand-cnt-t (a, O, Ist, cand, i, k)
= if0 < k then 14
else 13 endif)
A (cand-cnt-t (a, n, lst, cand, n, k)
= if (n +2) <k then 14
else 13 endif)

21

THEOREM: cand-cnt-t-1
cand-cnt-t (a, 1, lst, cand, i, k)
= ifi~0
then if cand = get-nth (3, Ist) then 20
elseif 0 < £ then 19
else 18 endif
elseif 0 < £ then 14
else 13 endif

THEOREM: cand-cnt-t-ubound
(14 + (6 % (n — i))) &£ cand-cut-t (a, n, Ist, cand, i, k)

THEOREM: mjrty-t-ubound
mjrty-t (a, n, Ist) < (46 + (15 * (n — 1)))

22

Index

add, 8, 10, 13, 15, 16, 18
addl-int-rangep, 11
addl-int-rangepxx, 11

cand-cnt, 5, 6, 17, 19-21
cand-cnt-0, 19

cand-cnt-1, 19
cand-cnt-induct, 7, 8
cand-cnt-lemma, 19
cand-cnt-rec, 20

cand-cnt-t, 6, 7, 17, 18, 21, 22
cand-cnt-t-0, 21

cand-cnt-t-1, 22
cand-cnt-t-ubound, 22

d2-7a2-5p, 10, 11, 13, 16, 18
d6-7a2-5p, 9-18
disjoint, 8, 9, 18

evenp, 8, 9

get-nth, 5-9, 11-17, 19-22
get-vlst, 10, 11, 13, 16, 18

int-rangep, 11
iread-dn, 10, 13, 15-18

iread-mem, 8

linked-a6, 9-17
linked-rts-addr, 9-17

mc-mem, 8-18

mce-pe, 8-10, 13, 15-18
mc-rfile, 8-18

mc-status, 8-10, 13, 15-18
mcode-addrp, 8, 9
mem-ilst, 8, 9

mjrty-cand, 5-7, 13, 15, 18-21
mjrty-cand-0, 19
mjrty-cand-1, 19
mjrty-cand-induct, 7
mjrty-cand-lemma, 19

23

mjrty-cand-rec, 19
mjrty-cand-t, 6, 7, 15, 21
mjrty-cand-t-0, 21
mjrty-cand-t-1, 21
mjrty-cand-t-ubound, 21
mjrty-code, 4, 5, 8, 9
mjrty-correctness, 18
mjrty-k, 5-7, 13, 15, 19, 20
mjrty-k-0, 19

mjrty-k-1, 19
mjrty-k-lemma, 19
mjrty-k-rec, 20
mjrty-lemmal, 20
mjrty-lemma2, 20
mjrty-lemma2-induct, 20
mjrty-p, 6, 18, 21
mjrty-s-s0, 9
mjrty-s-s0-mem, 9
mjrty-s-sO-rfile, 9
mjrty-s0-s0-1, 11
mjrty-s0-s0-2, 11
mjrty-s0-s0-3, 12
mjrty-s0-sO-rfile-1, 12
mjrty-s0-s0-rfile-2, 12
mjrty-s0-sO-rfile-3, 12
mjrty-s0-s1, 15
mjrty-s0-sl-basel, 13
mjrty-s0-sl-base2, 14
mjrty-s0-s1-rfile, 15
mjrty-s0-sl-rfile-basel, 14
mjrty-s0-s1-rfile-base2, 14
mjrty-s0-sn, 13
mjrty-s0-sn-base-1, 10
mjrty-s0-sn-base-2, 10
mjrty-sO-sn-rfile, 13
mjrty-s0-sn-rfile-base-1, 10
mjrty-s0-sn-rfile-base-2, 11
mjrty-sOp, 8-15
mjrty-sl-s1-1, 16
mjrty-sl-s1-2, 17
mjrty-sl-sl-rfile-1, 17

mjrty-sl-sl-rfile-2, 17
mjrty-sl-sn, 17
mjrty-sl-sn-1, 15
mjrty-sl-sn-2, 16
mjrty-sl-sn-rfile, 18
mjrty-sl-sn-rfile-1, 15
mjrty-sl-sn-rfile-2, 16
mjrty-slp, 9, 14-18
mjrty-sn-t, 6, 7, 13, 21
mjrty-sn-t-ubound, 21
mjrty-statep, 8, 9, 18
mjrty-statep-info, 18
mjrty-t, 6, 7, 18, 22
mjrty-t-crock, 21
mjrty-t-ubound, 22
mjrty-thm1, 21
mjrty-thm2, 21
movem-saved, 9-18

nat-to-int, 8, 9, 11

ram-addrp, 8, 9

read-an, 810, 13, 15, 16, 18
read-mem, 818

read-rn, 8-18

read-sp, 8, 9, 18

readm-rn, 9

rom-addrp, 8, 9

rts-addr, 9, 18

splus, 6, 7
stepn, 7-18
sub, 8, 9, 18

24

