#]
Copyright (C) 1994 by Yuan Yu. All Rights Reserved.

This script is hereby placed in the public domain, and therefore unlimited
editing and redistribution is permitted.

NO WARRANTY

Yuan Yu PROVIDES ABSOLUTELY NO WARRANTY. THE EVENT SCRIPT IS PROVIDED "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
SCRIPT IS WITH YOU. SHOULD THE SCRIPT PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT WILL Yuan Yu BE LIABLE TO YOU FOR ANY DAMAGES, ANY LOST PROFITS,
LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THIS SCRIPT (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD
PARTIES), EVEN IF YOU HAVE ADVISED US OF THE POSSIBILITY OF SUCH DAMAGES, OR
FOR ANY CLAIM BY ANY OTHER PARTY.

| #

EVENT: Start with the library "mc20-2" using the compiled version.

; Proof of the Correctness of the STRCPY Function

#

This is part of our effort to verify the Berkeley string library. The
Berkeley string library is widely used as part of the Berkeley Unix 0S.

This is the source code of strcpy function in the Berkeley string library.

/* copy char from[] to to[] */
char *
strcpy(to, from)

register char *to, *from;

{

char *save to;

for (; *to = *from; ++from, ++to);
return(save) ;

The MC68020 assembly code of the C function strcpy on SUN-3 is given as

follows. This binary is generated by '"gcc -0".

0x2558
0x255c¢c
0x2560
0x2564
0x2566
0x2568
0x256a
0x256¢
0x256e
0x2570
0x2572
0x2574
0x2576

<strcpy>:
<strcpy+4>:
<strcpy+8>:

<strcpy+12>:
<strcpy+14>:
<strcpy+16>:
<strcpy+18>:
<strcpy+20>:
<strcpy+22>:
<strcpy+24>:
<strcpy+26>:
<strcpy+28>:
<strcpy+30>:

linkw fp,#0

moveal fp@(8),al
moveal fp@(12),al
movel a0,dl

bra 0x256c¢c <strcpy+20>
addqw #1,al

addqw #1,a0

moveb al@,d0

moveb d0,a0@

bne 0x2568 <strcpy+16>
movel di1,dO

unlk fp

rts

The machine code of the above program is:

<strcpy>: 0x4e56 0x0000 0x206e 0x0008 0x226e 0x000c 0x2208
<strcpy+16>: 0x5249 0x5248 0x1011 0x1080 0x66f6 0x2001 Ox4ebe
(78 86 0 0 32 110 0 8

34 110 0 12 34 8 96 4

82 73 82 72 16 17 16 128

102 246 32 1 78 94 78 117)
|#

; in the logic, the above program is defined by (strcpy-code).

DEFINITION:

STRCPY-CODE

= (78 86 0 0 32 110 0 8 34 110 0 12 34 8 96 4 82 73 82
72 16 17 16 128 102 246 32 1 78 94 78 117)

; the computation time of the program.

DEFINITION:
strepyl-t (i, n2, Ist2)
= ifi<n2
then if get-nth (¢, Ist2) = NULL then 6
else splus (5, strepyl-t (1 + ¢, n2, Ist2)) endif
else 0 endif

0x6004
0x4e75

; the computation time for the program (strcpy-code).

DEFINITION: strepy-t (n2, lst2) = splus (5, strepyl-t (0, n2, Ist2))

; an induction hint for the loop.

DEFINITION:
strepy-induct (s, i*, @, Ist1, n2, lst2)
= ifi<n?2
then if get-nth (¢, Ist2) = NULL then t

else strepy-induct (stepn (s, 5),
add (32, i*, 1),
1+,
put-nth (get-nth (3, Ist2), i, lst1),
ne,
Ist2) endif

else t endif

; the pre-conditions of the initial state.

DEFINITION:
strepy-statep (s, str1, nl, Ist1, str2, n2, lst2)
= ((mec-status (s) = ’running)

>>>>>>>>>>>>>>> > > >

evenp (me-pc (s))

rom-addrp (mc-pc (s), me-mem (s), 32)

mcode-addrp (me-pc (s), mc-mem (s), STRCPY-CODE)
ram-addrp (sub (32, 4, read-sp (s)), mc-mem (s), 16)
ram-addrp (str1, me-mem (s), nl)

mem-lIst (1, strl, mc-mem (s), nl, lstl)

ram-addrp (str2, me-mem (s), n2)

mem-lIst (1, str2, mc-mem (s), n2, lst2)

disjoint (sub (32, 4, read-sp (s)), 16, strl, nl)

disjoint (sub (32, 4, read-sp (s)), 16, str2, n2)

disjoint (stri, nl, str2, n2)

(str1 = read-mem (add (32, read-sp (s), 4), mc-mem (s), 4))
(str2 = read-mem (add (32, read-sp (s), 8), mc-mem (s), 4))
(slen (0, n2, Ist2) < n2)

(n2 < nl)
(
(

uint-rangep (n1, 32))

; an intermediate state.

DEFINITION:

strepy-s0p (s, 4%, 4, strl, ni, Istl, str2, n2, lst2)

= ((mec-status (s) = ’running)

evenp (me-pc (s))

rom-addrp (sub (32, 20, me-pc (s)), me-mem (s), 32)
mcode-addrp (sub (32, 20, mc-pc (s)), me-mem (s), STRCPY-CODE)
ram-addrp (read-an (32, 6, s), mc-mem (s), 16)
ram-addrp (str!, me-mem (s), nl)

mem-lst (1, strl, mc-mem (s), nl, lst1)
ram-addrp (str2, me-mem (s), n2)

mem-lIst (1, str2, mc-mem (s), n2, lst2)
disjoint (read-an (32, 6, s), 16, strl, nl)
disjoint (read-an (32, 6, s), 16, str2, n2)
disjoint (str1, n1, str2, n2)

(str! = read-dn (32, 1, s))

equal* (read-an (32, 0, s), add (32, str!, i¥*))
equal* (read-an (32, 1, s), add (32, str2, i*))
(slen (i, n2, Ist2) < n2)

(n2 < nl)

(i < n2)

(i* e N)

nat-rangep (i*, 32)

(i = nat-to-uint (%))

(n1 € N)

(n2 € N)

uint-rangep (n1, 32))

>>>>>>>>>>>>>>>>>>>> > > >

; from the initial state s to sO: s —-> s0.

THEOREM: strcpy-s-s0
strepy-statep (s, str1, n1, lst1, str2, n2, lst2)
— strepy-sOp (stepn (s, 5), 0, 0, strl, nl, lst1, str2, n2, Ist2)

THEOREM: strcpy-s-s0-else
strepy-statep (s, strl, ni, Istl, str2, n2, lst2)
— ((linked-rts-addr (stepn (s, 5)) = rts-addr (s))
A (linked-a6 (stepn (s, 5)) = read-an (32, 6, s))
A (read-rn (32, 14, mc-rfile (stepn (s, 5)))
= sub (32, 4, read-sp(s))))

THEOREM: strcpy-s-s0-rfile
(strepy-statep (s, strl, nl, Istl, str2, n2, lst2) A d2-7a2-5p (rn))
— (read-rn (oplen, rn, mc-rfile (stepn (s, 5)))

= read-rn (oplen, rn, me-rfile (s)))

THEOREM: strcpy-s-s0-mem

(strepy-statep (s, strl, nl, Istl, str2, n2, lst2)
A disjoint (z, k, sub (32, 4, read-sp (s)), 16))
— (read-mem (z, mc-mem (stepn (s, 5)), k) = read-mem (z, mc-mem (s), k))

; from sO to exit (base case), from sO to sO (induction case).
; base case: sO —--> exit.

THEOREM: strcpy-s0-sn-base
(strepy-sOp (s, %, @, strl, nl, Ist1, str2, n2, Ist2) A (get-nth (i, Ist2) = 0))
— ((mec-status (stepn (s, 6)) = ’running)
A (mc-pc (stepn (s, 6)) = linked-rts-addr (s))

(read-rn (32, 0, me-rfile (stepn (s, 6))) = strl)
A mem-lst (1, strl, mc-mem (stepn (s, 6)), nl, put-nth (0, ¢, Ist1))
A (read-rn (32, 14, mc-rfile (stepn (s, 6))) = linked-a6 (s))
A (read-rn (32, 15, me-rfile (stepn (s, 6)))

= add (32, read-an (32, 6, s), 8)))

>

THEOREM: strcpy-sO-sn-rfile-base
(strepy-sOp (s, i*, @, strl, nl, Istl, str2, n2, lst2)
A d2-7a2-5p (rn)
A (get-nth (i, Ist2) = 0))
— (read-rn (oplen, rn, mc-rfile (stepn (s, 6)))
= read-rn (oplen, rn, mc-rfile (s)))

THEOREM: strcpy-sO-sn-mem-base
(strepy-sOp (s, i*, @, strl, nl, Istl, str2, n2, lst2)
A disjoint (z, k, strl, nl)
A (get-nth (3, Ist2) = 0))
— (read-mem (z, mc-mem (stepn (s, 6)), k) = read-mem (z, mc-mem (s), k))

; induction case: sO --> sO0.

THEOREM: strcpy-s0-s0
(strepy-sOp (s, %, 4, strl, nl, Istl, str2, n2, Ist2) A (get-nth (i, lst2) # 0))
— (strepy-sOp (stepn (s, 5),
add (32, i*, 1),
1+ 4,
stri,
nl,
put-nth (get-nth (¢, Ist2), i, Ist1),
str2,
n2,
Ist2)
A (read-rn (32, 14, mc-rfile (stepn (s, 5)))
= read-rn (32, 14, mc-rfile (s)))
(linked-a6 (stepn (s, 5)) = linked-a6 (s))

N
A (linked-rts-addr (stepn (s, 5)) = linked-rts-addr (s)))

THEOREM: strcpy-s0-sO-rfile
(strepy-sOp (s, i*, @, strl, nl, Istl, str2, n2, lst2)
A d2-7a2-5p (rn)
A (get-nth (3, Ist2) # 0))
— (read-rn (oplen, rn, mc-rfile (stepn (s, 5)))
= read-rn (oplen, rn, mc-rfile (s)))

THEOREM: strcpy-s0-s0-mem
(strepy-sOp (s, i*, 4, strl, n1, Istl, str2, n2, lst2)
A disjoint (z, k, strl, nl)
A (get-nth (4, Ist2) # 0))
— (read-mem (z, mc-mem (stepn (s, 5)), k) = read-mem (z, mc-mem (s), k))

; put together (sO --> exit).

THEOREM: strcpy-sOp-info
strepy-sOp (s, i*, i, strl, nl, Ist1, str2, n2, Ist2) — ((i < n2) = t)

THEOREM: strcpy-sO-sn

let sn be stepn (s, strepyl-t (i, n2, lst2))

in

strepy-s0p (s, 4%, 4, strl, ni, Istl, str2, n2, lst2)

— ((mec-status (sn) = ’running)

(me-pe (sn) = linked-rts-addr (s))

(read-dn (32, 0, sn) = strl)

mem-lIst (1, str!, mc-mem (sn), nil, strepy (4, Istl, n2, Ist2))
(read-rn (32, 14, me-rfile (sn)) = linked-a6 (s))
(read-rn (32, 15, me-rfile (sn))

= add (32, read-an (32, 6, s), 8))) endlet

> > > > >

THEOREM: strcpy-s0-sn-rfile
(strepy-sOp (s, i*, @, strl, nl, Istl, str2, n2, Ist2) A d2-Ta2-5p (rn))
— (read-rn (oplen, rn, mc-rfile (stepn (s, strepyl-t (i, n2, Ist2))))
= read-rn (oplen, rn, me-rfile (s)))
THEOREM: strcpy-sO-sn-mem
(strepy-sOp (s, i*, @, strl, nl, Istl, str2, n2, lst2) A disjoint (z, k, strl, nl))
— (read-mem (z, me-mem (stepn (s, strepyl-t (4, n2, Ist2))), k)

= read-mem (z, mc-mem (s), k))

EVENT: Disable strcpy-sOp-info.

; the correctness of the strcpy program.

THEOREM: strcpy-correctness
let sn be stepn (s, strepy-t (n2, Ist2))
in
strepy-statep (s, str1, nl, Ist1, str2, n2, lst2)
— ((me-status (sn) = ’running)
A (me-pc(sn) = rts-addr (s))
A (read-rn (32, 14, mc-rfile (sn))
= read-rn (32, 14, mc-rfile (s)))
A (read-rn (32, 15, mc-rfile (sn))
= add (32, read-an (32, 7, s), 4))
A (d2-7a2-5p (rn)
— (read-rn (oplen, rn, mec-rfile (sn))
= read-rn (oplen, rn, mc-rfile (s))))
A ((disjoint (z, k, strl, nl)
A disjoint (z, k, sub (32, 4, read-sp (s)), 16))
— (read-mem (z, mc-mem (sn), k)
= read-mem (z, mc-mem (s), k)))
A (read-dn (32, 0, sn) = stri)
A mem-lst (1, str!, mc-mem (sn), nl, strepy (0, Istl, n2, Ist2))) endlet

EVENT: Disable strcpy-t.

; some properties of strcpy.
; see file cstring.events.

Index
add, 3-7

d2-7a2-5p, 4-7
disjoint, 3—7

equal*, 4
evenp, 3, 4

get-nth, 2, 3, 5, 6

linked-a6, 4-6

linked-rts-addr, 4-6

mc-mem, 3—7
mc-pc, 3—7
mc-rfile, 4-7
me-status, 3—7
mcode-addrp, 3, 4
mem-lst, 3-7

nat-rangep, 4
nat-to-uint, 4
null, 2, 3

put-nth, 3, 5

ram-addrp, 3, 4
read-an, 4-7
read-dn, 4, 6, 7
read-mem, 3, 5—7
read-rn, 4-7
read-sp, 3-5, 7
rom-addrp, 3, 4
rts-addr, 4, 7

slen, 3, 4

splus, 2, 3
stepn, 3—7
strepy, 6, 7
strepy-code, 2-4

strcpy-correctness, 7

strepy-induct, 3

strcpy-s-s0, 4
strcpy-s-sO-else, 4
strepy-s-s0-mem, 5
strepy-s-s0-rfile, 4
strepy-s0-s0, 5
strepy-s0-s0-mem, 6
strcpy-s0-s0-rfile, 6
strcpy-s0-sn, 6
strcpy-s0-sn-base, 5
strepy-s0-sn-mem, 6
strcpy-s0-sn-mem-base, 5
strcpy-s0-sn-rfile, 6
strepy-s0-sn-rfile-base, 5
strepy-sOp, 3—6
strepy-sOp-info, 6
strcpy-statep, 35, 7
strepy-t, 3, 7

strepyl-t, 2, 3, 6

sub, 3-5, 7

uint-rangep, 3, 4

