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Abstract

Practical formal verification of complex computer
systems requires proof robustness and efficiency to
protect against inevitable mistakes and system spec-
ification and design changes. PVS is a theorem-
proving system based on higher-order logic with
which we demonstrate the kind of robust code proofs
needed for verification of realistic-sized computing
systems.

1 Introduction

Computer system correctness can be difficult to es-
tablish. Formal proofs about formal models of com-
puter systems have the potential to improve the re-
liability of computer system designs, but they have
several drawbacks. Formal proofs about computer
systems are often very complex and hard to get right,
and the social process that is usually counted on
to certify mathematical proofs is ineffective because
particular computer system designs are often propri-
etary and in any case not of general interest. Me-
chanical theorem provers can help overcome both of
these problems with formal proof: proofs generated
with computer programs can be easier to produce and
more reliable.

PVS is a verification system for “specifying and veri-
fying digital systems” [12, 13, 16]. It supports a spec-
ification language that is based on a simply typed
higher-order logic, and provides a large number of
prover commands that allow machine-checked reason-
ing about expressions in the logic. There is support
for automating reasoning in PVS, namely a simple
rewriting system and a facility for constructing new
proof commands, although the emphasis in PVS is
on building clear specifications and supporting user

proof with domain-specific decision procedures.

The Rockwell AAMP5 and AAMP-FV are proces-
sor designs with microcoded instruction sets. Partial
microcode correctness of these processors has been
established using PVS [9, 10]. The hardware that
executes microcode has been formalized in the PVS
logic, and proofs that the microcode correctly im-
plements some of the processor instruction sets have
been constructed. While the application of PVS to
realistic-sized processors in the AAMP5 and AAMP-
FV projects led to a partial verification of their mi-
crocode, the experience of building these proofs led
the developers to the pragmatic realization that prac-
tical computer systems proofs must be robust [9].
That is, computer system proofs must be able to
demonstrate correctness with minimal human assis-
tance despite modest system or specification changes.

Mistakes in proof development and changes to system
design and specification are inevitable for realistic-
sized verifications. For example, during the AAMP-
FV verification effort a change was made in the for-
mal model related to memory address decoding [9].
This change caused every previously-constructed in-
struction correctness proof to fail even though the
change had little to do with the substance of most of
the proofs. Large programming projects use software
engineering techniques to make software robust de-
spite inevitable changes. So too must large machine-
checked proof projects use techniques to develop ro-
bust proofs.

Various projects besides the AAMP5 and AAMP-FV
verifications have established computer system cor-
rectness using mechanical proof. A Piton [11] pro-
gram that plays the puzzle-game Nim is proved to
play optimally [17]. Compiled routines from the C
string library and elsewhere targeted to the Motorola
68020 are proved to meet their specifications [5]. Mi-
crocode for the Motorola CAP processor is proved to



implement several algorithms useful for digital signal
processing [6]. Others verifications involve a stack of
verified systems [2], an operating system kernel [1],
code for simple real-time systems [18], and floating-
point microcode [6, 15]. Each of these projects em-
ployed the theorem proving system Nqthm [3] or its
successor ACL2 [8].

The logics supported by Nqthm and ACL2 are weaker
than that supported by PVS: they do not conve-
niently support higher-order functions and quantifi-
cation. The style of proof encouraged by the the-
orem proving system is also quite different: Nqthm
and ACL2 provide several automatic proof techniques
that are programmed by the user by proving theorems
and adding them to the theorem prover database. A
considerable amount of strategic planning is required
to coopt the Nqthm and ACL2 proof heuristics to
prove interesting theorems. However, the style of
proof of these efforts has an important benefit: proof
robustness. Since the proofs are “automatic” — at
least in the shallow sense that the same proof heuris-
tics are applied for every proof albeit with different
rules databases — even dramatic changes in the system
or the specification typically do not render old proofs
obsolete. For example, when the verified processor
FMS8501 was redesigned to increase its wordsize the
Ngthm proof of the modified processor correctness
theorem worked with minimal human assistance [11].
Theorem provers based on first-order quantifier-free
logic have been successful on larger system correct-
ness problems in part because their mostly-automatic
approach to guiding the theorem prover.

This paper explores how to use PVS to reason about
computer systems in a robust style. We do this by
adapting the computational specification style of the
Nqthm/ACL2 verifications and by developing a speci-
fication and proof methodology that allows relatively
automatic PVS proofs about code execution. The
proofs employ some of the techniques used in the
Nqthm/ACL2 proofs plus some PVS-specific tech-
niques. The use of interpreters to define languages
and the automation to improve proof resilience tran-
scend particular theorem provers. However, this ap-
proach does not require that we forego the use of the
full PVS language and prover in other proofs: we
can use our theorems about code execution to prove
whatever we wish using the full PVS logic and prover.

In the next section we present a formalization of a
simple computing system in order to aid the exposi-
tion of this paper. Section 2 outlines our approach
for proving code in PVS, using a simple computing

system to illustrate our technique. Section 3 gives an
example of how the full PVS language can be used
for specification in concert with our robust proofs.
Section 4 presents some brief conclusions.

2 Reasoning about Program
Execution

We describe in this section how to specify and reason
about code in a robust way. We introduce a simple
machine formalized in the PVS logic with which we
illustrate our approach. Two example programs for
this machine are presented for which we construct
code execution correctness statements. The proofs of
these correctness statements are very simple owing
to the creation of some simple reasoning support we
have built into PVS and some simple conventions we
follow in the expression of code correctness. The style
of proof is similar in some respects to other verifica-
tion projects, particularly [5, 11, 17]. These proofs
are less sensitive to changes and therefore more ro-
bust.

2.1 A Simple Machine Interpreter

In order to make the ideas of this paper concrete we
introduce a PVS computing machine formalization
that supports examples in later sections. We present
sm, a slightly modified version of John Rushby’s
formalization of Bob Boyer’s and J Moore’s simple
machine-level language [4, 14].

An sm state is composed of five elements: a pro-
gram counter, a stack containing subroutine call re-
turn addresses, a data memory that maps natural
number addresses to natural number values, a flag
whose boolean value indicates whether the processor
is halted, and a program memory that maps natu-
ral number addresses to instructions. We fix both
instruction and data memory size at 100 elements
which limits the valid addresses for the memories to
values less than 100, and represent an sm instruction
as a record containing one of 13 opcodes and two ad-
dresses. The instructions are described informally in
Figure 2.1.

The PVS function step defines precisely the effect
of executing the instruction pointed to by the pc,
thereby providing a formal version of the instruction
descriptions of Figure 2.1 with which we can reason



move a b store value at location b in location a

movei a n move value n in location a

movewind a b store value at location b in location
stored at location a

moverind a b store value at the location stored at
location b in location a

add a b store sum of values at locations a and b in
location a

sub a b store in location a the greater of 0 and the
difference of a and b

incr a increment value at location a

decr a decrement value at location a

jump n store value n in pc

jumpz a n store value n in pc if value at location a
is 0.

call n store (incremented) pc on the stack and store
value n in pc

ret store a value popped from the stack in pc

halt set the halt flag

Figure 1: The sm Instructions

about programs. We define a function sm that re-
turns the state resulting from running n instructions
starting in state s.

sm(s: state, n: nat): RECURSIVE state =
IF n = 0 THEN s ELSE sm(step(s), n - 1) ENDIF
MEASURE n

This computing machine is considerably simpler than
formalizations of actual machines but it provides
enough complexity for sufficiently interesting exam-
ples. The specification style of sm is similar to many
Ngthm and ACL2 efforts, but one difference that ex-
ists between sm and those other models illustrates
an important difference between the styles encour-
aged by Nqthm/ACL2 and PVS. While sm memory
is represented by a function, memory in the Nqthm
and ACL2 code proof interpreters is represented by
a particular datastructure implementation. For ex-
ample, memory in the formal model of the FM9001
is represented by a binary tree of memory elements
[7]. This style difference stems from a difference in
proof system functionality. Nqthm/ACL2 provides
execution of definitions and encourages concrete, effi-
cient models. (An ACL2 interpreter for a commercial
processor executes microcode programs faster than
the executable processor model being used for mi-
crocode development [6].) PVS cannot conveniently
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Figure 2: sm min subroutine

simulate machine execution but provides higher-order
logic and encourages specification unburdened by ir-
relevant detail.

2.2 An sm Program and Specification

We mainly use two features of PVS to prove pro-
gram properties: automatic rewrite rules and strate-
gies. We use example sm code to illustrate our ap-
proach to code correctness proofs. Figure 2 presents
a “min” program that returns in register 3 the loca-
tion of a least element of the array whose bounds are
contained in registers 0 and 1.

We specify the behavior of this program using a PVS
function that calculates the result using the same al-
gorithm as the sm program.

least(max, cur, low, mem): RECURSIVE nat =
IF (cur < max)
THEN least(max,cur+i,
IF mem(cur+1)<mem(low)
THEN cur+1 ELSE low ENDIF,mem)
ELSE low ENDIF
MEASURE max(0,max-cur)

For convenience and readability we define functions
to return the value of registers, so for example RO (s)
for sm state s returns the value of mem(s) (0). Also
for convenience we define functions write, goto, and
update_stk which update respectively the memory,
program counter, and call stack of an sm state.

We write a function that calculates the number of
instructions that are processed during execution of



the subroutine. For the min subroutine example, this
function is min_clock. The structure of the “clock”
functions parallels the structure of the blocks of code
in the program and is used to guide the proof. The
function clock_plus is equivalent to natural number
plus and is used in clock function definitions to keep
the PVS prover from simplifying the expressions. The
constant N is the size of sm data memory.

min_loop_once_clock(s):nat =
if R2(s)+1<N AND R3(s)<N AND
mem(s) (R2(s)+1)<mem(s) (R3(s))
THEN 10 ELSE 8 ENDIF

min_loop_clock(s): RECURSIVE nat =

if pc(s) = 2 AND defs(s) = program

AND NOT halted(s)

AND 5<RO(s) AND RO(s)<=R3(s) AND R3(s)<=R2(s)
AND R2(s)<R1(s) AND R1(s)<N

THEN
clock_plus (min_loop_once_clock(s),
min_loop_clock(sm(s,min_loop_once_clock(s))))

ELSE 3 ENDIF

MEASURE max(0,R1(s)-R2(s))

min_clock(s): nat =
clock_plus (3,
clock_plus (min_loop_clock(sm(s,3)), 1))

We have chosen a specification style that relies on
specifying the complete result of a computation be-
cause it simplifies the task of automating proofs in-
volving code. A drawback of this philosophy is that
unimportant but hard-to-describe elements must be
specified too. We specify the value of these irrele-
vant state elements using functions defined with the
interpreter function in a manner that allows us to
specify conveniently the entire state resulting from a
computation.

An example of this kind of state element occurs in the
min subroutine loop. After each iteration register 5
contains the difference between the least element so
far encountered and the current value being checked.
Although we could of course specify the final value
of the loop for register 5, we would prefer to ignore
it since the ultimate value of this temporary register
is unimportant. We define a function that calculates
the final value of the register using the interpreter:

min_loop_unspecified_R5(s):nat =
R5(sm(s,min_loop_clock(s)))

min_correct_unspecified_R5(s):nat =
min_loop_unspecified_R5(sm(s,3))

Using this function to specify the final value of regis-
ter 5 eases the proof of the correctness theorem, since
the final value of that register is specified to be what-
ever the interpreter produces. This is of course not
very helpful, but it allows us to follow the convention
that we specify the entire resulting state while not
bothering very much with irrelevant state elements.

We are now ready to state a theorem about the ef-
fect of executing the min subroutine on an sm state.
The PVS terms defs(s) is the program memory and
halted(s) is the halted flag of state s. The PVS
terms op(i) and argl(i) are the opcode and first
argument of an instruction i. We use the constant
program to represent the programs we wish to exe-
cute — it is an array of instructions that contains the
min program listed in Figure 2.

min_correct: LEMMA
op(defs(s) (pc(s))) = call
AND argl(defs(s)(pc(s)))= 0
AND defs(s) = program AND NOT halted(s)
AND 5 < RO(s) AND RO(s) <= R1(s) AND Ri(s) < N
=>
sm(s, min_clock(s)) =
goto(inc(pc(s)),
write(2,R1(s),
write(3,least(R1(s), RO(s), RO(s), mem(s)),
write(4,0,
write(5, min_correct_unspecified_R5(s),s)))))

2.3 Correctness Theorem Proof

PVS proofs of code correctness theorems like min_
correct are relatively straightforward. We build
the proof by proving lemmas about the constituent
blocks. As suggested in the previous section, the
structure of the clock functions guides the proof.

Straightline code is proved using a PVS strategy.
The strategy expands to a PVS “grind” command
that uses a standard set of lemmas applied as auto-
rewrite rules to execute the code symbolically. Loops
are proved using a second PVS strategy that expands
into a sequence of PVS commands that set up the ap-
propriate inductive argument and simplify as needed.
Some lemmas about specification functions like least
are typically needed for the proof to complete success-
fully. In particular, theorems pertaining to the type
of the specification functions and how the specifica-
tion functions relate to each other must be proved.

The use of PVS rewrite rules and PVS strategies
aids the development of proofs about code execu-



address code
30 move 6 0
31 move 5 1
32 sub 5 6
33 jumpz 5 42
34 move O 6
35 call O
36 moverind 5 3
37 moverind 4 6
38 movewind 3 4
39 movewind 6 5
40 incr 6
41 jump 31
42 ret

Figure 3: sm sort subroutine

tion. By following our restrictive conventions about
how to express code correctness lemmas these sim-
ple PVS strategies work quite well. However, even
more importantly they provide a kind of proof re-
silience. Since the proofs are mostly automatic, mod-
est changes to the code or specifications do not re-
quire that a wholly new proof be constructed.

2.4 A Second Example

We present a second example of an sm subroutine to
emphasize that our approach is indeed largely auto-
matic. Figure 3 presents a subroutine that sorts the
array whose bounds are contained in registers 0 and
1. It is implemented using the min program described
previously, and its proof is an example of how to build
on other subroutine correctness theorems. We auto-
mate reasoning about code that calls subroutines as
much as possible, and a subroutine correctness theo-
rem of the form we have described does just that. By
applying min_correct we can reason about sm code
that calls min just as we reason about code that em-
ploys builtin sm instructions.

In order to specify the behavior of the sort subroutine,
we define a function sort that sorts an array in the
manner of the subroutine.

sort(cur, max, s): RECURSIVE state =
if (cur < max)
THEN let least=least(max, cur, cur, mem(s)) IN
sort (cur+l,max,write(cur,mem(s) (least),
write(least,mem(s) (cur),s)))
ELSE s ENDIF
MEASURE max(0,max-cur)

We prove a theorem about the effect of executing a
sort subroutine call.

sort_correct: LEMMA

op(defs(s) (pc(s))) = call
AND argl(defs(s)(pc(s)))= 30
AND defs(s)=program AND NOT halted(s)
AND 6<RO(s) AND RO(s)<=R1(s) AND R1(s)<N

=>

sm(s, sort_clock(s)) =

goto(inc(pc(s)),

write(0,if RO(s)<R1(s) THEN Ri(s)-1

ELSE RO(s) ENDIF,
write(2,if RO(s)<R1(s) THEN Ri(s)

ELSE R2(s) ENDIF,
write(3,sort_unspecified_R3(s),
write(4,sort_unspecified_R4(s),
write(5,0,
write(6,if RO(s)<R1(s) THEN R1(s)

ELSE RO(s) ENDIF,
sort(RO(s),R1(s),s))))))))

The proof of sort_correct has the same structure as
the proof of min_correct. Each constituent block of
code is specified and proved, and the PVS strategies
for straightline and loop code are employed. The min_
correct theorem is used to reason about the call to the
min program, just as with any builtin sm opcode.

3 Reasoning About Specifica-
tions

Largely automatic proofs of programs as described
in the previous section are robust in the sense we
need them to be. A change to a program or even
to the language semantics defined by the interpreter
would require minimal changes in the proofs. How-
ever, these kinds of specifications are unsatisfactorily
unclear and complex. The specifications reflect the
algorithm used by the code and do not effectively
convey the needed program functionality.

To use our mostly automatic approach in code proofs
we limit ourselves by avoiding existential quantifiers
and using a (primarily) first-order, recursive style.
But our specification need not be so constrained. For
example, what we really want to know about the sort-
ing program is that it produces a sorted permuta-
tion of the original array without disturbing irrele-
vant memory elements. A good specification of the
sorting program is:



sort_works: LEMMA

op(defs(s) (pc(s))) = call
AND argl(defs(s) (pc(s)))= 30
AND defs(s)=program AND NOT halted(s)
AND 6<RO(s) AND RO(s)<=R1(s) AND R1(s)<N
=>

let s2= sm(s, sort_clock(s)) IN

% array is sorted
(FORALL (i, j:subrange(RO(s),R1(s))):
i<j => mem(s2) (i)<=mem(s2)(j)) AND

% array is permutation
(EXISTS (f: (bijective?[subrange(RO(s),R1(s)),
subrange (RO(s) ,R1(s))])):
(FORALL (i:subrange(RO(s),R1(s))):
mem(s2) (£(i)) = mem(s)(i))) AND

% irrelevant memory is unchanged
(FORALL (i: address): i>6 AND (i<RO(s) OR i>R1(s)) =>
mem(s) (i)=mem(s2) (1))

The proof of this lemma is relatively straightforward,
although like most PVS proofs involving the higher-
order language capability of PVS the proofs are less
automatic than the proofs in the last section. By ap-
plying the lemma proved in the previous section sort_
correct, we reduce this theorem to one that does not
involve our program or even — except hidden in the
“unspecified” functions —the sm interpreter. We sat-
isfy the remaining proof obligation involving desired
properties and the specification function in conven-
tional PVS proof style.

4 Conclusion

The automation of proofs about computer systems
increases robustness and aids formal verification of
realistic-sized computer systems. Recursively-defined
interpreters can be used to define computer system
behavior in a clean and simple way. The usefulness
of these techniques transcends the particularities of
different theorem proving systems.

Realistic proofs require robustness and PVS is capa-
ble of a proof style that fosters resilience in proofs
about computer systems. The approach relies in part
on restricting the manner in which we describe code
execution, but the full PVS logic and prover may be
used in concert with our automatic approach.
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