
; From Matt Kaufmann, ICSCA, Univ. of Texas, 2/23/87

Event: Start with the library "arith".

; The first definition is one
; whose only purpose is to specify an induction scheme later.

Definition:
my-ind (x , y)
= if (x ∈ N)

∧ (y ∈ N)
∧ (x 6= 0)
∧ (y 6= 0)
∧ ((x mod 2) = 0)
∧ ((y mod 2) = 0) then my-ind (x ÷ 2, y ÷ 2)

else t endif

; Here’s a lemma that I found useful in a proof below. The
; theorem-prover proves this automatically. I immediately
; disable it because I’m afraid that automatic use of this lemma
; may cause infinite looping by the rewriter.

Theorem: move-consts-to-front
((b ∗ c) ∗ (d ∗ e)) = ((b ∗ d) ∗ (c ∗ e))

Event: Disable move-consts-to-front.

; Here’s a lemma that I found useful in the proof of the main
; result. Though I don’t remember for sure, I think that I
; discovered this lemma and the one above it in the course of
; trying to give an interactive proof of the main result.
; However, the one following it was (I’ll guess) discovered in
; the course of trying to carry out the proof of the main lemma,
; REMAINDER-TIMES-ODDS, below. That lemma, in turn, has an
; immediate corollary the one just below it, namely
; DIVIDES-2-SQUARE, and I’m sure you’ll see why I could use that
; one.

Theorem: times-cancel
(((x ∗ y) = (x ∗ z ))

1



∧ (x ∈ N)
∧ (x 6= 0)
∧ (y ∈ N)
∧ (z ∈ N))
→ ((y = z ) = t)

Theorem: remainder-0-or-1
((x mod 2) 6= 0) → ((x mod 2) = 1)

Theorem: remainder-of-add1
((1 + x ) mod 2)
= if (x mod 2) = 0 then 1

else 0 endif

Theorem: remainder-times-odds
((x ∗ y) mod 2) = ((x mod 2) ∗ (y mod 2))

Theorem: divides-2-square
(((x ∗ x ) mod 2) = 0) → ((x mod 2) = 0)

Theorem: sqrt-2-not-rational
((y ∈ N) ∧ (y 6= 0)) → ((x ∗ x ) 6= (2 ∗ y ∗ y))

2



Index
divides-2-square, 2

move-consts-to-front, 1
my-ind, 1

remainder-0-or-1, 2
remainder-of-add1, 2
remainder-times-odds, 2

sqrt-2-not-rational, 2

times-cancel, 1

3


