
Event: Start with the initial nqthm theory.

;;; The proof in here is based on the hint to exercise (8) on
;;; page 43 of Kunen’s Set Theory book.

;; Imagine sets a and b and corresponding functions fa and fb which
;; map a to b and vice-versa, where both are one-one.

Definition: id (x ) = x

Conservative Axiom: fa-and-fb-are-one-one
((a (x ) ∧ a (y) ∧ (x 6= y)) → (fa (x ) 6= fa (y)))
∧ ((b (x ) ∧ b (y) ∧ (x 6= y)) → (fb (x ) 6= fb (y)))
∧ (a (x ) → b (fa (x )))
∧ (b (x ) → a (fb (x )))
∧ (truep (a (x )) ∨ falsep (a (x )))
∧ (truep (b (x )) ∨ falsep (b (x )))

Simultaneously, we introduce the new function symbols fa, fb, a, and b.

Definition:
in-fa-range (x ) ↔ ∃ fa-1 (a (fa-1 ) ∧ (fa (fa-1 ) = x ))

;; The following 3 events were generated automatically to help with
;; the proof-checker’s application of the macro command SK*.

Event: Disable in-fa-range.

Theorem: in-fa-range-suff
(a (fa-1 ) ∧ (fa (fa-1 ) = x )) → in-fa-range (x )

Theorem: in-fa-range-necc
(¬ (a (fa-1 (x )) ∧ (fa (fa-1 (x )) = x ))) → (¬ in-fa-range (x ))

Definition:
in-fb-range (x ) ↔ ∃ fb-1 (b (fb-1 ) ∧ (fb (fb-1 ) = x ))

;; The following 3 events were generated automatically to help with
;; the proof-checker’s application of the macro command sk*.

Event: Disable in-fb-range.

1



Theorem: in-fb-range-suff
(b (fb-1 ) ∧ (fb (fb-1 ) = x )) → in-fb-range (x )

Theorem: in-fb-range-necc
(¬ (b (fb-1 (x )) ∧ (fb (fb-1 (x )) = x ))) → (¬ in-fb-range (x ))

Definition:
circled (flg , x , n)
= if flg = ’a

then if n ' 0 then a (x )
else in-fb-range (x ) ∧ circled (’b, fb-1 (x ), n − 1) endif

elseif n ' 0 then b (x )
else in-fa-range (x ) ∧ circled (’a, fa-1 (x ), n − 1) endif

Definition:
a-core (x )
↔ (a (x )

∧ ∀ a-level (((a-level ∈ N) ∧ circled (’a, x , a-level))
→ circled (’a, x , 1 + a-level)))

Event: Disable a-core.

Theorem: a-core-necc-base
((n ' 0) ∧ a-core (x )) → circled (’a, x , n)

Theorem: a-core-necc-induction
((n 6' 0) ∧ a-core (x ) ∧ circled (’a, x , n − 1)) → circled (’a, x , n)

Theorem: a-core-necc
(¬ circled (’a, x , n)) → (¬ a-core (x ))

Event: Disable a-core-necc-base.

Event: Disable a-core-necc-induction.

Theorem: a-core-suff
(a (x )
∧ (((a-level (x ) ∈ N) ∧ circled (’a, x , a-level (x )))

→ circled (’a, x , 1 + a-level (x ))))
→ a-core (x )

Definition:
b-core (x )
↔ (b (x )

∧ ∀ b-level (((b-level ∈ N) ∧ circled (’b, x , b-level))
→ circled (’b, x , 1 + b-level)))

2



Event: Disable b-core.

Theorem: b-core-necc-base
((n ' 0) ∧ b-core (x )) → circled (’b, x , n)

Theorem: b-core-necc-induction
((n 6' 0) ∧ b-core (x ) ∧ circled (’b, x , n − 1)) → circled (’b, x , n)

Theorem: b-core-necc
(¬ circled (’b, x , n)) → (¬ b-core (x ))

Event: Disable b-core-necc-base.

Event: Disable b-core-necc-induction.

Theorem: b-core-suff
(b (x )
∧ (((b-level (x ) ∈ N) ∧ circled (’b, x , b-level (x )))

→ circled (’b, x , 1 + b-level (x ))))
→ b-core (x )

Definition:
parity (n)
= if n ' 0 then t

else ¬ parity (n − 1) endif

Definition:
j (x )
= if a-core (x ) ∨ parity (a-level (x )) then fa (x )

else fb-1 (x ) endif

Definition:
j-1 (y)
= if b-core (y) ∨ (¬ parity (b-level (y))) then fa-1 (y)

else fb (y) endif

; Our goals:
;(prove-lemma j-1-j (rewrite)
; (implies (a x)
; (equal (j-1 (j x)) x)))

;(prove-lemma j-j-1 (rewrite)
; (implies (b y)
; (equal (j (j-1 y)) y)))

3



;; We’ll start on the first of these. The theorem-prover output
;; suggests the following lemma:

;(prove-lemma b-core-fa (rewrite)
; (implies (a x)
; (iff (b-core (fa x))
; (a-core x))))

;; A main lemma is that (a-core x) => (b-core (fa x)) for x in a.

Theorem: fa-1-inverts-fa
a (x ) → (fa-1 (fa (x )) = x )

;; The following is useful for proof-checker rewriting:

Theorem: in-fa-range-fa
a (x ) → in-fa-range (fa (x ))

Theorem: b-core-fa
a (x ) → (b-core (fa (x )) ↔ a-core (x ))

;; On to Case 2 of j-1-j. We find there the following contradictory hyps:

;(AND (A X)
; (PARITY (A-LEVEL X))
; (NOT (A-CORE X))
; (PARITY (B-LEVEL (FA X))))

;; We want to prove:

;; B-LEVEL-FA

;(IMPLIES (AND (A X) (NOT (A-CORE X)))
; (EQUAL (B-LEVEL (FA X))
; (ADD1 (A-LEVEL X))))

Theorem: b-fa-equality-rewrite
(a (x ) ∧ (¬ b (y))) → (fa (x ) 6= y)

Theorem: fa-range-contained-in-b
(¬ b (y)) → (¬ in-fa-range (y))

4



Theorem: circled-implies-b
circled (’b, y , n) → b (y)

Theorem: a-fb-equality-rewrite
(b (y) ∧ (¬ a (x ))) → (fb (y) 6= x )

Theorem: fb-range-contained-in-a
(¬ a (x )) → (¬ in-fb-range (x ))

Theorem: circled-implies-a
circled (’a, y , n) → a (y)

Theorem: circled-monotone
(circled (flg , x , j ) ∧ (j 6< i)) → circled (flg , x , i)

Theorem: circled-b-fa
a (x ) → (circled (’b, fa (x ), n) = circled (’a, x , n − 1))

Theorem: b-level-fa-hack-lemma
(b-level (fa (x )) ∈ N)
→ ((b-level (fa (x )) = (1 + a-level (x )))

= (¬ ((b-level (fa (x )) < (1 + a-level (x )))
∨ ((1 + a-level (x )) < b-level (fa (x ))))))

Theorem: b-level-fa
(a (x ) ∧ (¬ a-core (x ))) → (b-level (fa (x )) = (1 + a-level (x )))

;; On to Case 3 of j-1-j. Our first subgoal is:

;(IMPLIES (AND (A X)
; (NOT (A-CORE X))
; (NOT (PARITY (A-LEVEL X)))
; (NOT (B-CORE (FB-1 X)))
; (PARITY (B-LEVEL (FB-1 X))))
; (EQUAL (FB (FB-1 X)) X))

;; and this follows from the following two lemmas.

Theorem: not-parity-a-level-implies-in-fb-range
(a (x ) ∧ (¬ parity (a-level (x )))) → in-fb-range (x )

;; The next subcase of j-1-j is:

;(implies (and (a x)
; (not (a-core x))

5



; (not (parity (a-level x)))
; (not (parity (b-level (fb-1 x)))))
; (equal (fa-1 (fb-1 x)) x))

;; and this follows from:

;(prove-lemma b-level-fb-1 (rewrite)
; (implies (and (a x)
; (not (a-core x))
; (in-fb-range x))
; (equal (b-level (fb-1 x))
; (sub1 (a-level x)))))

;; I’ve proved nearly the analogous thing already for fa. Let’s prove that
;; one for fb and then deduce this from it.

Theorem: fb-1-inverts-fb
b (x ) → (fb-1 (fb (x )) = x )

Theorem: in-fb-range-fb
b (x ) → in-fb-range (fb (x ))

Theorem: circled-a-fb
b (x ) → (circled (’a, fb (x ), n) = circled (’b, x , n − 1))

Theorem: a-level-fb-hack-lemma
(a-level (fb (x )) ∈ N)
→ ((a-level (fb (x )) = (1 + b-level (x )))

= (¬ ((a-level (fb (x )) < (1 + b-level (x )))
∨ ((1 + b-level (x )) < a-level (fb (x ))))))

Theorem: a-core-fb
b (x ) → (a-core (fb (x )) ↔ b-core (x ))

Theorem: a-level-fb
(b (x ) ∧ (¬ b-core (x ))) → (a-level (fb (x )) = (1 + b-level (x )))

Theorem: b-level-fb-1
(a (x ) ∧ (¬ a-core (x )) ∧ in-fb-range (x ))
→ (b-level (fb-1 (x )) = (a-level (x ) − 1))

;; It remains only to prove the following subcase, and then we’re done with j-1-j:

;(implies (and (a x)

6



; (not (a-core x))
; (not (parity (a-level x)))
; (b-core (fb-1 x)))
; (equal (fa-1 (fb-1 x)) x))

;; I’ve already proved a-core-fb, and this should be useful.

Theorem: b-core-implies-b
b-core (x ) → b (x )

Theorem: fb-fb-1
(a (x ) ∧ in-fb-range (x )) → (fb (fb-1 (x )) = x )

Theorem: b-core-fb-1
(a (x ) ∧ (¬ a-core (x )) ∧ (¬ parity (a-level (x ))))
→ (¬ b-core (fb-1 (x )))

;; Now finally for our first main goal:

Theorem: j-1-j
a (x ) → (j-1 (j (x )) = x )

;;;; We’re ready now for the converse. Here’s the first sticking point:

;(implies (and (b-core y)
; (a-core (fa-1 y)))
; (equal (fa (fa-1 y)) y))

;; We need only the following two easy lemmas:

Theorem: b-core-implies-in-fa-range
b-core (y) → in-fa-range (y)

Theorem: fa-fa-1
in-fa-range (y) → (fa (fa-1 (y)) = y)

;; Our next goal is:

;(implies (and (b-core y)
; (not (a-core (fa-1 y)))
; (not (parity (a-level (fa-1 y)))))
; (equal (fb-1 (fa-1 y)) y))

;;; which is taken care of simply by:

7



Theorem: a-core-fa-1
in-fa-range (y) → (a-core (fa-1 (y)) ↔ b-core (y))

;; next we have to prove

;(implies (and (b y)
; (not (parity (b-level y)))
; (a-core (fa-1 y)))
; (equal (fa (fa-1 y)) y))

;; which follows from fa-fa-1 together with an obvious analog of
;; NOT-PARITY-A-LEVEL-IMPLIES-IN-FB-RANGE:

Theorem: not-parity-b-level-implies-in-fa-range
(b (y) ∧ (¬ parity (b-level (y)))) → in-fa-range (y)

;; It remains only to prove:

;(implies (and (b y)
; (not (parity (b-level y)))
; (not (b-core y))
; (not (parity (a-level (fa-1 y)))))
; (equal (fb-1 (fa-1 y)) y))

;; which follows from an analogue of B-LEVEL-FB-1:

Theorem: a-level-fa-1
(b (y) ∧ (¬ b-core (y)) ∧ in-fa-range (y))
→ (a-level (fa-1 (y)) = (b-level (y) − 1))

;;; and we’re done!!!

Theorem: j-j-1
b (y) → (j (j-1 (y)) = y)

;; To summarize:

;; From the axiom saying that fa maps a one-one into b and fb maps b one-one into a,

;(constrain fa-and-fb-are-one-one (rewrite)
; (and (implies (and (a x) (a y) (not (equal x y)))
; (not (equal (fa x) (fa y))))

8



; (implies (and (b x) (b y) (not (equal x y)))
; (not (equal (fb x) (fb y))))
; (implies (a x) (b (fa x)))
; (implies (b x) (a (fb x)))
; (or (truep (a x)) (falsep (a x)))
; (or (truep (b x)) (falsep (b x))))
; ((fa id) (fb id) (a (lambda (x) t)) (b (lambda (x) t))))

;; to finish this off we simply prove the obvious lemmas needed for
;; j-iso below. For the first, j-range,
;; we need a lemma (as seen from observing the failed proof transcript).

Theorem: in-fb-range-implies-b-fb-1
in-fb-range (y) → b (fb-1 (y))

Theorem: j-range
a (x ) → b (j (x ))

Theorem: in-fa-range-implies-a-fa-1
in-fa-range (y) → a (fa-1 (y))

Theorem: j-1-range
b (x ) → a (j-1 (x ))

Event: Disable j.

Event: Disable j-1.

Theorem: j-is-one-one
(a (x1 ) ∧ a (x2 ) ∧ (x1 6= x2 )) → (j (x1 ) 6= j (x2 ))

;; we were able to conservatively extend the theory culminating in
;; definitions of a function j which maps a one-one into b:

Definition:
j-iso
↔ (∀ x (a (x ) → b (j (x )))

∧ ∀ x1 , x2 ((a (x1 ) ∧ a (x2 ) ∧ (j (x1 ) = j (x2 )))
→ (x1 = x2 ))

∧ ∀ y (b (y) → ∃ x (a (x ) ∧ (j (x ) = y))))

Theorem: j-is-an-isomorphism
j-iso

9



Index
a, 1, 2, 4–7, 9
a-core, 2–8
a-core-fa-1, 8
a-core-fb, 6
a-core-necc, 2
a-core-necc-base, 2
a-core-necc-induction, 2
a-core-suff, 2
a-fb-equality-rewrite, 5
a-level, 2, 3, 5–8
a-level-fa-1, 8
a-level-fb, 6
a-level-fb-hack-lemma, 6

b, 1–9
b-core, 2–4, 6–8
b-core-fa, 4
b-core-fb-1, 7
b-core-implies-b, 7
b-core-implies-in-fa-range, 7
b-core-necc, 3
b-core-necc-base, 3
b-core-necc-induction, 3
b-core-suff, 3
b-fa-equality-rewrite, 4
b-level, 3, 5, 6, 8
b-level-fa, 5
b-level-fa-hack-lemma, 5
b-level-fb-1, 6

circled, 2, 3, 5, 6
circled-a-fb, 6
circled-b-fa, 5
circled-implies-a, 5
circled-implies-b, 5
circled-monotone, 5

exists, 1, 9

fa, 1, 3–5, 7
fa-1, 1–4, 7–9
fa-1-inverts-fa, 4

fa-and-fb-are-one-one, 1
fa-fa-1, 7
fa-range-contained-in-b, 4
fb, 1–3, 5–7
fb-1, 2, 3, 6, 7, 9
fb-1-inverts-fb, 6
fb-fb-1, 7
fb-range-contained-in-a, 5
forall, 2, 9

id, 1
in-fa-range, 1, 2, 4, 7–9
in-fa-range-fa, 4
in-fa-range-implies-a-fa-1, 9
in-fa-range-necc, 1
in-fa-range-suff, 1
in-fb-range, 1, 2, 5–7, 9
in-fb-range-fb, 6
in-fb-range-implies-b-fb-1, 9
in-fb-range-necc, 2
in-fb-range-suff, 2

j, 3, 7–9
j-1, 3, 7–9
j-1-j, 7
j-1-range, 9
j-is-an-isomorphism, 9
j-is-one-one, 9
j-iso, 9
j-j-1, 8
j-range, 9

not-parity-a-level-implies-in-f
b-range, 5

not-parity-b-level-implies-in-f
a-range, 8

parity, 3, 5, 7, 8

10


