
;; Koenig’s tree lemma.

;; We use the formulation that says that any finitely
;; branching tree which is infinite has an infinite branch.

;; More precisely, we consider trees whose nodes are finite sequences
;; of natural numbers, such that each node’s successors are a list
;; obtained by tacking on some natural number from 1 to the number of
;; successors. For convenience, I’ll keep each node as a list of
;; numbers where the root is the last element in the list.

Event: Start with the initial nqthm theory.

;; All this initial stuff is just to get the CONSTRAIN below accepted.

Definition:
ones (n)
= if n ' 0 then nil

else cons (1, ones (n − 1)) endif

Definition:
all-ones (s)
= if listp (s) then (car (s) = 1) ∧ all-ones (cdr (s))

else s = nil endif

Definition:
length (s)
= if listp (s) then 1 + length (cdr (s))

else 0 endif

Definition:
subseq (s1 , s2 )
= if s1 = s2 then t

elseif s2 ' nil then f
else subseq (s1 , cdr (s2 )) endif

Theorem: subseq-all-ones
(all-ones (s1 ) ∧ subseq (s2 , s1 )) → all-ones (s2 )

Definition:
plistp (s)
= if listp (s) then plistp (cdr (s))

else s = nil endif

1



Theorem: plistp-all-ones
all-ones (s) → plistp (s)

Theorem: all-ones-ones
all-ones (ones (n))

Theorem: ones-is-injective
((i ∈ N) ∧ (j ∈ N) ∧ (i 6= j )) → (ones (i) 6= ones (j ))

Conservative Axiom: koenig-intro
node-p (nil)
∧ (truep (node-p (s)) ∨ falsep (node-p (s)))
∧ (node-p (s)

→ (node-p (cons (n, s)) = ((0 < n) ∧ (succard (s) 6< n))))
∧ ((node-p (s1 ) ∧ subseq (s, s1 )) → node-p (s))
∧ node-p (s-n (n))
∧ (((i ∈ N) ∧ (j ∈ N) ∧ (i 6= j )) → (s-n (i) 6= s-n (j )))
∧ ((¬ plistp (s)) → (¬ node-p (s)))

Simultaneously, we introduce the new function symbols node-p, succard , and
s-n.

;; We want to define a function s-height which returns an element of a given height.
;; The next several events culminate in the following lemma:

;; (prove-lemma length-s-height (rewrite)
;; (equal (length (s-height n)) (fix n)))

Definition:
succ-aux (s, n)
= if n ' 0 then nil

else cons (cons (n, s), succ-aux (s, n − 1)) endif

Definition: successors (s) = succ-aux (s, succard (s))

Definition:
successors-list (ss)
= if listp (ss)

then append (successors (car (ss)), successors-list (cdr (ss)))
else nil endif

Definition:
level (n)
= if n ' 0 then list (nil)

else successors-list (level (n − 1)) endif

2



Definition:
init-tree (n)
= if n ' 0 then list (nil)

else append (level (n), init-tree (n − 1)) endif

Definition:
remove1 (a, x )
= if listp (x )

then if a = car (x ) then cdr (x )
else cons (car (x ), remove1 (a, cdr (x ))) endif

else x endif

Theorem: length-remove1
(a ∈ x ) → (length (remove1 (a, x )) < length (x ))

Definition:
first-non-member-index (i , x )
= if s-n (i) ∈ x then first-non-member-index (1 + i , remove1 (s-n (i), x ))

else i endif

Definition:
nthcdr (n, s)
= if n ' 0 then s

else nthcdr (n − 1, cdr (s)) endif

Definition:
s-height (n)
= nthcdr (length (s-n (first-non-member-index (0, init-tree (n)))) − n,

s-n (first-non-member-index (0, init-tree (n))))

Theorem: nthcdr-subseq
(length (s) 6< n) → subseq (nthcdr (n, s), s)

Theorem: node-p-nthcdr
(node-p (s) ∧ (length (s) 6< n)) → node-p (nthcdr (n, s))

Theorem: lessp-difference-1
(x < (x − n)) = f

Theorem: node-p-s-height
node-p (s-height (n))

Theorem: length-nthcdr
length (nthcdr (n, s)) = (length (s) − n)

Theorem: first-non-member-index-lessp
first-non-member-index (i , x ) 6< i

3



Theorem: s-n-first-non-member-index-not-equal
(i ∈ N)
→ (s-n (first-non-member-index (1 + i , remove1 (s-n (i), x ))) 6= s-n (i))

Theorem: member-remove1
(a 6= b) → ((a ∈ remove1 (b, x )) = (a ∈ x ))

Theorem: s-n-first-non-member-index
(i ∈ N) → (s-n (first-non-member-index (i , x )) 6∈ x )

Theorem: member-append
(a ∈ append (x , y)) = ((a ∈ x ) ∨ (a ∈ y))

Theorem: member-cons-succ-aux
(cons (z , v) ∈ succ-aux (v , n)) = ((0 < z ) ∧ (n 6< z ))

Theorem: node-p-cons-lemma
(¬ node-p (s)) → (¬ node-p (cons (n, s)))

Theorem: node-p-cons
node-p (cons (n, s)) = (node-p (s) ∧ (0 < n) ∧ (succard (s) 6< n))

Definition:
all-length-n (ss, n)
= if listp (ss) then (length (car (ss)) = n)

∧ all-length-n (cdr (ss), n)
else t endif

Theorem: all-length-n-append
all-length-n (append (ss1 , ss2 ), n)
= (all-length-n (ss1 , n) ∧ all-length-n (ss2 , n))

Theorem: all-length-n-succ-aux
(length (s) = n) → all-length-n (succ-aux (s, k), 1 + n)

Theorem: all-length-n-successors-list
all-length-n (ss, n) → all-length-n (successors-list (ss), 1 + n)

Theorem: length-0
(length (s) = 0) = (s ' nil)

Definition:
member-level-induction (s, n)
= if n ' 0 then t

else member-level-induction (cdr (s), n − 1) endif

4



Theorem: succ-aux-listp
(¬ listp (s)) → (s 6∈ succ-aux (z , n))

Theorem: successors-list-listp
(¬ listp (s)) → (s 6∈ successors-list (ss))

Theorem: member-succ-aux
(s ∈ succ-aux (x , n)) → (cdr (s) = x )

Theorem: member-successors-list-successors-list-witness
(s ∈ successors-list (ss))
= ((cdr (s) ∈ ss) ∧ (s ∈ successors (cdr (s))))

Theorem: member-level
((n ∈ N) ∧ node-p (s)) → ((s ∈ level (n)) = (length (s) = n))

Theorem: member-init-tree
node-p (s) → ((s ∈ init-tree (n)) = (n 6< length (s)))

Theorem: length-s-non-member-index
(i ∈ N) → (n < length (s-n (first-non-member-index (i , init-tree (n)))))

Theorem: length-s-height
length (s-height (n)) = fix (n)

Event: Disable s-height.

;; End of s-height excursion.

;; Our goal:
#|
(prove-lemma konig-tree-lemma nil

(and (node-p (k n))
(implies (not (lessp j i))

(subseq (k i) (k j)))
(equal (length (k n)) (fix n))))

|#

Definition:
inf (s)
↔ ∀ big-h ∃ big-s (subseq (s, big-s)

∧ node-p (big-s)
∧ (big-h < length (big-s)))

5



;; The following three events were generated mechanically. They are
;; useful especially for applying the Skolem axioms for INF inside the
;; proof-checker, via the macro command SK*.

Event: Disable inf.

Theorem: inf-suff
(subseq (s, big-s) ∧ node-p (big-s) ∧ (big-h (s) < length (big-s)))
→ inf (s)

Theorem: inf-necc
(¬ (subseq (s, big-s (big-h, s))

∧ node-p (big-s (big-h, s))
∧ (big-h < length (big-s (big-h, s)))))

→ (¬ inf (s))

Definition:
next (s, max )
= if max ' 0 then cons (0, s)

elseif inf (cons (max , s)) then cons (max , s)
else next (s, max − 1) endif

;; We want to show that NEXT gives us a successor with infinitely many
;; successors.

#| INF-IMPLIES-INF-NEXT:
(implies (and (node-p s)

(inf s))
(inf (next s (succard s))))

|#

;; Note that if some successor of s has infinitely many successors, so
;; does (NEXT S (SUCCARD S)). This is the lemma
;; INF-CONS-IMPLIES-INF-NEXT below. But first note:

Theorem: inf-implies-node-p
inf (s) → node-p (s)

Theorem: not-inf-zerop
(i ' 0) → (¬ inf (cons (i , s)))

Theorem: inf-cons-implies-inf-next
(node-p (s) ∧ inf (cons (i , s)) ∧ (n 6< i)) → inf (next (s, n))

6



;; Our goal now is to apply this lemma by proving that
;; (inf (cons i s)) for some i <= (succard s).

Definition:
all-big-h (s, n)
= if n ' 0 then 1 + length (s)

else big-h (cons (n, s)) + all-big-h (s, n − 1) endif

Theorem: all-big-h-length
length (s) < all-big-h (s, n)

Theorem: all-big-h-lessp
((0 < i) ∧ (n 6< i))
→ ((big-h (cons (i , s)) < all-big-h (s, n)) = t)

;; Here’s a function which tells us which way s first branches on its
;; way to extending to s1.

Definition:
first-branch (s, s1 )
= if s = cdr (s1 ) then car (s1 )

elseif s1 ' nil then 0
else first-branch (s, cdr (s1 )) endif

Theorem: subseq-cons-first-branch
(subseq (s, x ) ∧ (s 6= x )) → subseq (cons (first-branch (s, x ), s), x )

Theorem: length-non-equal
(length (x ) < length (y)) → ((x = y) = f)

Theorem: first-branch-ok-for-succard
(subseq (s, big-s) ∧ node-p (big-s) ∧ (s 6= big-s))
→ ((first-branch (s, big-s) ∈ N)

∧ (0 < first-branch (s, big-s))
∧ (succard (s) 6< first-branch (s, big-s)))

Theorem: all-big-h-lessp-linear
((0 < i) ∧ (succard (s) 6< i))
→ (big-h (cons (i , s)) < all-big-h (s, succard (s)))

Event: Disable all-big-h-lessp.

Theorem: inf-implies-inf-next
(node-p (s) ∧ inf (s)) → inf (next (s, succard (s)))

7



Definition:
k (n)
= if n ' 0 then nil

else next (k (n − 1), succard (k (n − 1))) endif

Theorem: subseq-nil
subseq (nil, x ) = plistp (x )

Theorem: node-p-implies-plistp
node-p (s) → plistp (s)

Theorem: inf-nil
inf (nil)

Event: Disable node-p-implies-plistp.

Theorem: konig-tree-lemma-1
inf (k (n))

Theorem: length-next
inf (x ) → (length (next (s, n)) = (1 + length (s)))

Theorem: konig-tree-lemma-2
length (k (n)) = fix (n)

Theorem: subseq-next
subseq (s1 , s2 ) → subseq (s1 , next (s2 , n))

Theorem: konig-tree-lemma-3
(j 6< i) → subseq (k (i), k (j ))

Theorem: konig-tree-lemma
node-p (k (n))
∧ ((j 6< i) → subseq (k (i), k (j )))
∧ (length (k (n)) = fix (n))

;; or, if one prefers:

Theorem: konig-tree-lemma-again
(n ∈ N)
→ (node-p (k (n))

∧ ((j 6< i) → subseq (k (i), k (j )))
∧ (length (k (n)) = n))

8



Index
all-big-h, 7
all-big-h-length, 7
all-big-h-lessp, 7
all-big-h-lessp-linear, 7
all-length-n, 4
all-length-n-append, 4
all-length-n-succ-aux, 4
all-length-n-successors-list, 4
all-ones, 1, 2
all-ones-ones, 2

big-h, 6, 7
big-s, 6

exists, 5

first-branch, 7
first-branch-ok-for-succard, 7
first-non-member-index, 3–5
first-non-member-index-lessp, 3
forall, 5

inf, 5–8
inf-cons-implies-inf-next, 6
inf-implies-inf-next, 7
inf-implies-node-p, 6
inf-necc, 6
inf-nil, 8
inf-suff, 6
init-tree, 3, 5

k, 8
koenig-intro, 2
konig-tree-lemma, 8
konig-tree-lemma-1, 8
konig-tree-lemma-2, 8
konig-tree-lemma-3, 8
konig-tree-lemma-again, 8

length, 1, 3–8
length-0, 4
length-next, 8

length-non-equal, 7
length-nthcdr, 3
length-remove1, 3
length-s-height, 5
length-s-non-member-index, 5
lessp-difference-1, 3
level, 2, 3, 5

member-append, 4
member-cons-succ-aux, 4
member-init-tree, 5
member-level, 5
member-level-induction, 4
member-remove1, 4
member-succ-aux, 5
member-successors-list-successo

rs-list-witness, 5

next, 6–8
node-p, 2–8
node-p-cons, 4
node-p-cons-lemma, 4
node-p-implies-plistp, 8
node-p-nthcdr, 3
node-p-s-height, 3
not-inf-zerop, 6
nthcdr, 3
nthcdr-subseq, 3

ones, 1, 2
ones-is-injective, 2

plistp, 1, 2, 8
plistp-all-ones, 2

remove1, 3, 4

s-height, 3, 5
s-n, 2–5
s-n-first-non-member-index, 4
s-n-first-non-member-index-not-eq

ual, 4

9



subseq, 1–3, 5–8
subseq-all-ones, 1
subseq-cons-first-branch, 7
subseq-next, 8
subseq-nil, 8
succ-aux, 2, 4, 5
succ-aux-listp, 5
succard, 2, 4, 7, 8
successors, 2, 5
successors-list, 2, 4, 5
successors-list-listp, 5

10


