Event: Start with the initial nqthm theory.

Definition:

delete (x, l)
$=$ if listp (l)
then if $x=\operatorname{car}(l)$ then $\operatorname{cdr}(l)$
else cons $(\operatorname{car}(l)$, delete $(x, \operatorname{cdr}(l)))$ endif
else l endif
Definition:
bagdiff (x, y)
$=$ if listp (y)
then if $\operatorname{car}(y) \in x$ then bagdiff $($ delete $(\operatorname{car}(y), x), \operatorname{cdr}(y))$ else bagdiff $(x, \operatorname{cdr}(y))$ endif
else x endif
Definition:
bagint (x, y)
$=$ if listp (x)
then if $\operatorname{car}(x) \in y$
then cons $(\operatorname{car}(x)$, bagint $(\operatorname{cdr}(x)$, delete $(\operatorname{car}(x), y)))$ else bagint $(\operatorname{cdr}(x), y)$ endif
else nil endif
DEfinition:
occurrences (x, l)
$=$ if listp (l)
then if $x=\operatorname{car}(l)$ then $1+\operatorname{occurrences}(x, \operatorname{cdr}(l))$
else occurrences $(x, \operatorname{cdr}(l))$ endif
else 0 endif
DEFINITION:
$\operatorname{subbagp}(x, y)$
$=$ if listp (x)
then if $\operatorname{car}(x) \in y$ then subbagp $(\operatorname{cdr}(x)$, delete $(\operatorname{car}(x), y))$ else \mathbf{f} endif
else t endif
Theorem: listp-delete
listp $(\operatorname{delete}(x, l))$
$=$ if listp (l) then $(x \neq \operatorname{car}(l)) \vee \operatorname{listp}(\operatorname{cdr}(l))$
else fendif
Event: Disable listp-delete.

Theorem: delete-non-member
$(x \notin y) \rightarrow(\operatorname{delete}(x, y)=y)$
ThEOREM: delete-delete
$\operatorname{delete}(y, \operatorname{delete}(x, z))=\operatorname{delete}(x, \operatorname{delete}(y, z))$
Theorem: equal-occurrences-zero
(occurrences $(x, l)=0)=(x \notin l)$
Theorem: member-non-list
$(\neg \operatorname{listp}(l)) \rightarrow(x \notin l)$
Theorem: member-delete
$(x \in \operatorname{delete}(y, l))$
$=$ if $x \in l$
then if $x=y$ then $1<$ occurrences (x, l) else t endif else fendif

Theorem: member-delete-implies-membership $(x \in \operatorname{delete}(y, l)) \rightarrow(x \in l)$

Theorem: occurrences-delete
occurrences $(x$, delete $(y, l))$
$=\quad$ if $x=y$
then if $x \in l$ then occurrences $(x, l)-1$
else 0 endif
else occurrences (x, l) endif
Theorem: member-bagdiff
$(x \in \operatorname{bagdiff}(a, b))=(\operatorname{occurrences}(x, b)<\operatorname{occurrences}(x, a))$
Theorem: bagdiff-delete $\operatorname{bagdiff}(\operatorname{delete}(e, x), y)=\operatorname{delete}(e, \operatorname{bagdiff}(x, y))$

Theorem: subbagp-delete
$\operatorname{subbagp}(x$, delete $(u, y)) \rightarrow \operatorname{subbagp}(x, y)$
Theorem: subbagp-cdr1
$\operatorname{subbagp}(x, y) \rightarrow \operatorname{subbagp}(\operatorname{cdr}(x), y)$
Theorem: subbagp-cdr2
$\operatorname{subbagp}(x, \operatorname{cdr}(y)) \rightarrow \operatorname{subbagp}(x, y)$
Theorem: subbagp-bagint1
subbagp (bagint $(x, y), x)$

Theorem: subbagp-bagint2
subbagp (bagint $(x, y), y)$
Theorem: occurrences-bagint
occurrences $(x$, bagint $(a, b))$
$=$ if occurrences $(x, a)<\operatorname{occurrences}(x, b)$ then occurrences (x, a)
else occurrences (x, b) endif
ThEOREM: occurrences-bagdiff
$\operatorname{occurrences}(x, \operatorname{bagdiff}(a, b))=(\operatorname{occurrences}(x, a)-\operatorname{occurrences}(x, b))$
Theorem: member-bagint
$(x \in \operatorname{bagint}(a, b))=((x \in a) \wedge(x \in b))$
EvEnt: Let us define the theory bags to consist of the following events: occurrencesbagint, bagdiff-delete, occurrences-bagdiff, member-bagint, member-bagdiff, subbagpbagint2, subbagp-bagint1, subbagp-cdr2, subbagp-cdr1, subbagp-delete.

Event: Make the library "bags".

Index

bagdiff, 1-3
bagdiff-delete, 2
bagint, 1-3
bags, 3
delete, 1,2
delete-delete, 2
delete-non-member, 2
equal-occurrences-zero, 2
listp-delete, 1
member-bagdiff, 2
member-bagint, 3
member-delete, 2
member-delete-implies-membership, 2
member-non-list, 2
occurrences, 1-3
occurrences-bagdiff, 3
occurrences-bagint, 3
occurrences-delete, 2
subbagp, 1-3
subbagp-bagint1, 2
subbagp-bagint2, 3
subbagp-cdr1, 2
subbagp-cdr2, 2
subbagp-delete, 2

