
Event: Start with the library "naturals".

;;; Several Useful Theorems

Theorem: equal-iff
((truep (a) ∨ falsep (a)) ∧ (truep (b) ∨ falsep (b)))
→ ((a = b) = (a ↔ b))

Event: Disable equal-iff.

Definition:
length (list)
= if listp (list) then 1 + length (cdr (list))

else 0 endif

Definition:
nth (list , n)
= if n ' 0 then car (list)

else nth (cdr (list), n − 1) endif

Definition:
position (prg , e)
= if listp (prg)

then if car (prg) = e then 0
else 1 + position (cdr (prg), e) endif

else 0 endif

Theorem: nth-member
(n < length (list)) → (nth (list , n) ∈ list)

Theorem: listp-not-zero-length
(length (list) = 0) = (¬ listp (list))

Theorem: position-zero
(e 6∈ prg) → (position (prg , e) = length (prg))

Theorem: position-lessp
(e ∈ prg) → (position (prg , e) < length (prg))

Theorem: nth-position
nth (prg , position (prg , e))
= if e ∈ prg then e

else 0 endif

1



Theorem: position-nth
((e ∈ list) ∧ (nth (list , n) 6= e)) → ((position (list , e) = n) = f)

Theorem: member-append
(e ∈ append (j , k)) = ((e ∈ j ) ∨ (e ∈ k))

Theorem: append-is-associative
append (append (x , y), z ) = append (x , append (y , z ))

;;; The Witness function for the Computation

Definition: mchoose (prg , i) = nth (prg , i mod length (prg))

Definition:
mnext (prg , e, i)
= (i + if position (prg , e) < (i mod length (prg))

then position (prg , e)
+ (length (prg) − (i mod length (prg)))

else position (prg , e) − (i mod length (prg)) endif)

Theorem: mnext-fixes
((e ∈ prg) ∧ (i 6∈ N)) → (mnext (prg , e, i) = mnext (prg , e, 0))

Theorem: numberp-mnext
(e ∈ prg) → (mnext (prg , e, i) ∈ N)

Theorem: mchoose-chooses
listp (prg) → (mchoose (prg , i) ∈ prg)

Theorem: mchoose-fixes
(listp (prg) ∧ (i 6∈ N)) → (mchoose (prg , i) = mchoose (prg , 0))

Theorem: mnext-choice-1
(e ∈ prg) → (mnext (prg , e, i) 6< i)

Theorem: mnext-choice-2-simplified
(e < n)
→ (((i + if e < (i mod n) then e + (n − (i mod n))

else e − (i mod n) endif)
mod n)

= fix (e))

Theorem: mnext-choice-2
(e ∈ prg) → (mchoose (prg , mnext (prg , e, i)) = e)

2



Theorem: remainder-of-add1
((x < (a mod b)) ∧ (x < ((1 + a) mod b)))
→ (((1 + a) mod b) = (1 + (a mod b)))

Theorem: remainder-of-add1-1
((x 6< (a mod b)) ∧ (x < ((1 + a) mod b))) → ((a mod b) = fix (x ))

Theorem: remainder-of-add1-2
((x < (a mod b)) ∧ (x 6< ((1 + a) mod b)))
→ ((((1 + a) mod b) = 0) ∧ ((a mod b) = (b − 1)))

Theorem: remainder-of-add1-3
((x 6< (a mod b))
∧ (x < b)
∧ (x ∈ N)
∧ (x 6= (a mod b))
∧ (x 6< ((1 + a) mod b)))
→ (((1 + a) mod b) = (1 + (a mod b)))

Theorem: remainder-of-add1-3-1
((position (prg , e) 6< (i mod length (prg)))
∧ (position (prg , e) 6< ((1 + i) mod length (prg)))
∧ (nth (prg , i mod length (prg)) 6= e)
∧ (e ∈ prg))
→ (((1 + i) mod length (prg)) = (1 + (i mod length (prg))))

Event: Disable mchoose.

Event: Disable mnext.

;;; The Statement Interpreter

Definition:
n (old , new , e) = apply$ (car (e), append (list (old , new), cdr (e)))

Definition: exists-successor (old , e) ↔ ∃ new n (old , new , e)

Theorem: exists-successor-implies
exists-successor (old , e) → n (old , newx (e, old), e)

Theorem: prove-exists-successor
n (old , new , e) → exists-successor (old , e)

Event: Disable exists-successor.

3



Definition:
ms (prg , i)
= if i ' 0 then nil

elseif n (ms (prg , i − 1),
newx (mchoose (prg , i − 1), ms (prg , i − 1)),
mchoose (prg , i − 1))

then newx (mchoose (prg , i − 1), ms (prg , i − 1))
else ms (prg , i − 1) endif

Theorem: ms-transition-successful
(listp (prg) ∧ n (ms (prg , i), new , mchoose (prg , i)))
→ n (ms (prg , i), ms (prg , 1 + i), mchoose (prg , i))

Theorem: ms-transition-idle
(listp (prg)
∧ (¬ n (ms (prg , i), newx (mchoose (prg , i), ms (prg , i)), mchoose (prg , i))))
→ (ms (prg , 1 + i) = ms (prg , i))

;;; Characterizing an Arbitrary Computation

Conservative Axiom: computation
(listp (prg) → (choose (prg , i) ∈ prg))
∧ ((e ∈ prg) → (next (prg , e, i) 6< i))
∧ ((e ∈ prg) → (choose (prg , next (prg , e, i)) = e))
∧ ((listp (prg) ∧ n (s (prg , i), new , choose (prg , i)))

→ n (s (prg , i), s (prg , 1 + i), choose (prg , i)))
∧ ((listp (prg)

∧ (¬ n (s (prg , i), newx (choose (prg , i), s (prg , i)), choose (prg , i))))
→ (s (prg , 1 + i) = s (prg , i)))

∧ ((e ∈ prg) → (next (prg , e, i) ∈ N))
∧ ((listp (prg) ∧ (i 6∈ N)) → (s (prg , i) = s (prg , 0)))
∧ ((listp (prg) ∧ (i 6∈ N)) → (choose (prg , i) = choose (prg , 0)))
∧ (((e ∈ prg) ∧ (i 6∈ N)) → (next (prg , e, i) = next (prg , e, 0)))

Simultaneously, we introduce the new function symbols choose, next , and s.
Event: Disable mnext-fixes.

Event: Disable numberp-mnext.

Event: Disable mchoose-chooses.

Event: Disable mchoose-fixes.

4



Event: Disable mnext-choice-1.

Event: Disable mnext-choice-2-simplified.

Event: Disable mnext-choice-2.

Event: Disable remainder-of-add1.

Event: Disable remainder-of-add1-1.

Event: Disable remainder-of-add1-2.

Event: Disable remainder-of-add1-3.

Event: Disable remainder-of-add1-3-1.

Event: Disable exists-successor-implies.

Event: Disable prove-exists-successor.

Event: Disable ms-transition-successful.

Event: Disable ms-transition-idle.

Event: Disable n.

;;; The Predicate Interpreter

Definition:
eval (pred , state) = eval$ (t, pred , list (cons (’state, state)))

Theorem: eval-not
eval (list (’not, p), state) = (¬ eval (p, state))

Theorem: eval-and
eval (list (’and, p, q), state) = (eval (p, state) ∧ eval (q , state))

5



Theorem: eval-or
eval (list (’or, p, q), state) = (eval (p, state) ∨ eval (q , state))

Theorem: eval-implies
eval (list (’implies, p, q), state) = (eval (p, state) → eval (q , state))

Theorem: eval-iff
eval (list (’iff, p, q), state) = (eval (p, state) ↔ eval (q , state))

Theorem: eval-equal
eval (list (’equal, p, q), state) = (eval (p, state) = eval (q , state))

Theorem: eval-true
eval (’(true), state) = t

Theorem: eval-false
eval (’(false), state) = f

Event: Disable eval.

;;; The Stability Operator: Unless

Definition:
unless (p, q , prg)
↔ ∀ old , new , e (((e ∈ prg)

∧ (n (old , new , e)
∧ eval (list (’and, p, list (’not, q)), old)))

→ eval (list (’or, p, q), new))

Event: Disable unless.

Theorem: prove-unless
(((eu (p, prg , q) ∈ prg)
∧ n (oldu (p, prg , q), newu (p, prg , q), eu (p, prg , q))
∧ eval (p, oldu (p, prg , q))
∧ (¬ eval (q , oldu (p, prg , q))))
→ (eval (p, newu (p, prg , q)) ∨ eval (q , newu (p, prg , q))))
→ unless (p, q , prg)

Theorem: unless-implies
(unless (p, q , prg)
∧ (e ∈ prg)
∧ n (old , new , e)
∧ eval (p, old)
∧ (¬ eval (q , old)))
→ eval (list (’or, p, q), new)

6



Event: Disable prove-unless.

Event: Disable unless-implies.

;;; The Progress Operator: Leads-To

Definition:
leads-to (p, q , prg)
↔ ∀ i (eval (p, s (prg , i)) → ∃ j ((j 6< i) ∧ eval (q , s (prg , j ))))

Event: Disable leads-to.

Theorem: prove-leads-to
(eval (p, s (prg , ileads (p, prg , q)))
→ ((j 6< ileads (p, prg , q)) ∧ eval (q , s (prg , j ))))
→ leads-to (p, q , prg)

Theorem: leads-to-implies
(leads-to (p, q , prg) ∧ eval (p, s (prg , i)))
→ ((jleads (i , prg , q) 6< i) ∧ eval (q , s (prg , jleads (i , prg , q))))

Event: Disable prove-leads-to.

Event: Disable leads-to-implies.

;;; The Most Effective Trace

Definition:
schedulable (prg) ↔ ∀ i ∃ new n (s (prg , i), new , choose (prg , i))

Event: Disable schedulable.

Theorem: prove-schedulable
n (s (prg , is (prg)), new , choose (prg , is (prg))) → schedulable (prg)

Theorem: schedulable-implies
schedulable (prg) → n (s (prg , i), news (i , prg), choose (prg , i))

Event: Disable prove-schedulable.

Event: Disable schedulable-implies.

7



Theorem: schedulable-implies-effective-computation
(schedulable (prg) ∧ listp (prg))
→ n (s (prg , i), s (prg , 1 + i), choose (prg , i))

Theorem: computation-n
(schedulable (prg) ∧ (e ∈ prg))
→ n (s (prg , next (prg , e, i)), s (prg , 1 + next (prg , e, i)), e)

Theorem: effective-idle
listp (prg)
→ ((s (prg , 1 + i) = s (prg , i))

∨ n (s (prg , i), s (prg , 1 + i), choose (prg , i)))

Event: Disable effective-idle.

;;; Leads-To Proof Rules

Theorem: leads-to-transitive
(leads-to (p, q , prg) ∧ leads-to (q , r , prg)) → leads-to (p, r , prg)

Event: Disable leads-to-transitive.

Theorem: leads-to-transitive-general
(leads-to (p-1 , q-1 , prg)
∧ leads-to (q-2 , r-1 , prg)
∧ (eval (q-1 , s (prg , jleads (ileads (p, prg , r), prg , q-1 )))

→ eval (q-2 , s (prg , jleads (ileads (p, prg , r), prg , q-1 ))))
∧ (eval (p, s (prg , ileads (p, prg , r))) → eval (p-1 , s (prg , ileads (p, prg , r))))
∧ (eval (r-1 , s (prg , jleads (jleads (ileads (p, prg , r), prg , q-1 ), prg , r-1 )))

→ eval (r ,
s (prg , jleads (jleads (ileads (p, prg , r), prg , q-1 ), prg , r-1 )))))

→ leads-to (p, r , prg)

Event: Disable leads-to-transitive-general.

Theorem: q-leads-to-q
leads-to (q , q , prg)

Event: Disable q-leads-to-q.

Theorem: false-leads-to-anything
leads-to (’(false), p, prg)

8



Event: Disable false-leads-to-anything.

Theorem: p-implies-q-leads-to
(eval (p, s (prg , ileads (p, prg , q))) → eval (q , s (prg , ileads (p, prg , q))))
→ leads-to (p, q , prg)

Event: Disable p-implies-q-leads-to.

Theorem: leads-to-strengthen-left
((eval (q , s (prg , ileads (q , prg , r))) → eval (p, s (prg , ileads (q , prg , r))))
∧ leads-to (p, r , prg))
→ leads-to (q , r , prg)

Event: Disable leads-to-strengthen-left.

Theorem: leads-to-weaken-right
((eval (q , s (prg , jleads (ileads (p, prg , r), prg , q)))
→ eval (r , s (prg , jleads (ileads (p, prg , r), prg , q))))
∧ leads-to (p, q , prg))
→ leads-to (p, r , prg)

Event: Disable leads-to-weaken-right.

Theorem: leads-to-modify-both
((eval (p, s (prg , ileads (p, prg , q))) → eval (p-1 , s (prg , ileads (p, prg , q))))
∧ (eval (q-1 , s (prg , jleads (ileads (p, prg , q), prg , q-1 )))

→ eval (q , s (prg , jleads (ileads (p, prg , q), prg , q-1 ))))
∧ leads-to (p-1 , q-1 , prg))
→ leads-to (p, q , prg)

Event: Disable leads-to-modify-both.

Theorem: disjoin-left
(leads-to (p, r , prg) ∧ leads-to (q , r , prg))
→ leads-to (list (’or, p, q), r , prg)

Event: Disable disjoin-left.

Theorem: disjoin-left-general
(leads-to (p-1 , q-1 , prg)
∧ leads-to (p-2 , q-2 , prg)
∧ (eval (p, s (prg , ileads (p, prg , q)))

9



→ eval (list (’or, p-1 , p-2 ), s (prg , ileads (p, prg , q))))
∧ (eval (q-1 , s (prg , jleads (ileads (p, prg , q), prg , q-1 )))

→ eval (q , s (prg , jleads (ileads (p, prg , q), prg , q-1 ))))
∧ (eval (q-2 , s (prg , jleads (ileads (p, prg , q), prg , q-2 )))

→ eval (q , s (prg , jleads (ileads (p, prg , q), prg , q-2 )))))
→ leads-to (p, q , prg)

Event: Disable disjoin-left-general.

Theorem: cancellation-leads-to
(leads-to (p, list (’or, q , b), prg) ∧ leads-to (b, r , prg))
→ leads-to (p, list (’or, q , r), prg)

Event: Disable cancellation-leads-to.

Theorem: cancellation-leads-to-general
(leads-to (p-1 , d , prg)
∧ leads-to (b, r-1 , prg)
∧ (eval (list (’and, d , list (’not, b)),

s (prg , jleads (ileads (p, prg , r), prg , d)))
→ eval (r , s (prg , jleads (ileads (p, prg , r), prg , d))))

∧ (eval (r-1 , s (prg , jleads (jleads (ileads (p, prg , r), prg , d), prg , r-1 )))
→ eval (r , s (prg , jleads (jleads (ileads (p, prg , r), prg , d), prg , r-1 ))))

∧ (eval (p, s (prg , ileads (p, prg , r))) → eval (p-1 , s (prg , ileads (p, prg , r)))))
→ leads-to (p, r , prg)

Event: Disable cancellation-leads-to-general.

Definition:
ensures-interval (prg , q , top, i)
= if top < i then fix (top)

elseif eval (q , s (prg , i)) then fix (i)
else ensures-interval (prg , q , top, 1 + i) endif

Theorem: ensures-interval-fixes
(listp (prg) ∧ (i 6∈ N))
→ (ensures-interval (prg , q , top, i) = ensures-interval (prg , q , top, 0))

Theorem: ensures-interval-bigger
(ensures-interval (prg , q , top, i) < i) = (top < i)

Theorem: psp-proves-something
(leads-to (p, q , prg)
∧ unless (r , b, prg)

10



∧ listp (prg)
∧ (i ∈ N)
∧ eval (p, s (prg , base))
∧ eval (r , s (prg , i))
∧ (jleads (base, prg , q) < top)
∧ (jleads (base, prg , q) 6< i)
∧ (final = list (’or, q , b)))
→ eval (list (’or, list (’and, q , r), b),

s (prg , ensures-interval (prg , final , top, i)))

Event: Disable psp-proves-something.

Theorem: psp
(leads-to (p, q , prg) ∧ unless (r , b, prg) ∧ listp (prg))
→ leads-to (list (’and, p, r), list (’or, list (’and, q , r), b), prg)

Event: Disable psp.

Theorem: psp-general
(leads-to (p, q , prg)
∧ unless (r , b, prg)
∧ (eval (pr , s (prg , ileads (pr , prg , qb)))

→ eval (list (’and, p, r), s (prg , ileads (pr , prg , qb))))
∧ (eval (list (’or, list (’and, q , r), b),

s (prg ,
jleads (ileads (pr , prg , qb), prg , list (’or, list (’and, q , r), b))))

→ eval (qb,
s (prg ,

jleads (ileads (pr , prg , qb),
prg ,
list (’or, list (’and, q , r), b)))))

∧ listp (prg))
→ leads-to (pr , qb, prg)

Event: Disable psp-general.

Theorem: leads-to-true
leads-to (p, ’(true), prg)

;;; Initial Condition and Invariants

Definition: initial-condition (ic, prg) = eval (ic, s (prg , 0))

11



Event: Disable initial-condition.

Definition: invariant (inv , prg) ↔ ∀ i eval (inv , s (prg , i))

Event: Disable invariant.

Theorem: prove-invariant
eval (inv , s (prg , ii (inv , prg))) → invariant (inv , prg)

Theorem: invariant-implies
invariant (inv , prg) → eval (inv , s (prg , i))

Event: Disable prove-invariant.

Theorem: invariant-consequence
(invariant (p, prg)
∧ (eval (p, s (prg , ii (q , prg))) → eval (q , s (prg , ii (q , prg)))))
→ invariant (q , prg)

Theorem: invariants-persist-general
(unless (p, ’(false), prg) ∧ eval (p, s (prg , i)) ∧ listp (prg) ∧ (j 6< i))
→ eval (p, s (prg , j ))

Event: Disable invariants-persist-general.

Theorem: unless-proves-invariant
(initial-condition (ic, prg)
∧ unless (p, ’(false), prg)
∧ (eval (ic, s (prg , 0)) → eval (p, s (prg , 0)))
∧ listp (prg))
→ invariant (p, prg)

Theorem: leads-to-false-invariant
(leads-to (p, ’(false), prg)
∧ (eval (list (’not, p), s (prg , ii (inv , prg)))

→ eval (inv , s (prg , ii (inv , prg)))))
→ invariant (inv , prg)

;;; Eventual Stability

Definition:
eventually-stable (r , prg) ↔ ∃ i ∀ j ((j 6< i) → eval (r , s (prg , j )))

12



Event: Disable eventually-stable.

Theorem: prove-eventually-stable
((jes (i , prg , r) 6< i) → eval (r , s (prg , jes (i , prg , r))))
→ eventually-stable (r , prg)

Theorem: eventually-stable-implies
(eventually-stable (r , prg) ∧ (j 6< ies (prg , r))) → eval (r , s (prg , j ))

Event: Disable prove-eventually-stable.

Event: Disable eventually-stable-implies.

Theorem: not-leads-to-proves-eventually-stable
((¬ leads-to (p, not-r , prg))
∧ ((¬ eval (not-r , s (prg , jes (ileads (p, prg , not-r), prg , r))))

→ eval (r , s (prg , jes (ileads (p, prg , not-r), prg , r)))))
→ eventually-stable (r , prg)

Event: Disable not-leads-to-proves-eventually-stable.

Theorem: not-eventually-stable-proves-leads-to
((¬ eventually-stable (not-q , prg))
∧ ((¬ eval (not-q , s (prg , jes (ileads (p, prg , q), prg , not-q))))

→ eval (q , s (prg , jes (ileads (p, prg , q), prg , not-q)))))
→ leads-to (p, q , prg)

Event: Disable not-eventually-stable-proves-leads-to.

Theorem: true-leads-to-proves-not-eventually-stable
(leads-to (’(true), not-r , prg)
∧ (eval (not-r , s (prg , jleads (ies (prg , r), prg , not-r)))

→ (¬ eval (r , s (prg , jleads (ies (prg , r), prg , not-r))))))
→ (¬ eventually-stable (r , prg))

Event: Disable true-leads-to-proves-not-eventually-stable.

Theorem: eventually-stable-proves-not-true-leads-to
(eventually-stable (not-q , prg)
∧ (eval (not-q , s (prg , jleads (ies (prg , not-q), prg , q)))

→ (¬ eval (q , s (prg , jleads (ies (prg , not-q), prg , q))))))
→ (¬ leads-to (’(true), q , prg))

13



Event: Disable eventually-stable-proves-not-true-leads-to.

Theorem: eventually-stable-weaken
(eventually-stable (p, prg)
∧ (eval (p, s (prg , jes (ies (prg , p), prg , r)))

→ eval (r , s (prg , jes (ies (prg , p), prg , r)))))
→ eventually-stable (r , prg)

Event: Disable eventually-stable-weaken.

Theorem: eventually-stable-conjunction
(eventually-stable (p, prg)
∧ eventually-stable (q , prg)
∧ (eval (list (’and, p, q),

s (prg ,
jes (if ies (prg , p) < ies (prg , q) then ies (prg , q)

else ies (prg , p) endif,
prg ,
r)))

→ eval (r ,
s (prg ,

jes (if ies (prg , p) < ies (prg , q) then ies (prg , q)
else ies (prg , p) endif,
prg ,
r)))))

→ eventually-stable (r , prg)

Event: Disable eventually-stable-conjunction.

Theorem: eventually-stable-false
(leads-to (p, q , prg)
∧ (eval (q , s (prg , jleads (ies (prg , p), prg , q)))

→ (¬ eval (p, s (prg , jleads (ies (prg , p), prg , q))))))
→ (¬ eventually-stable (p, prg))

Event: Disable eventually-stable-false.

Theorem: stable-occurs-proves-eventually-stable
(listp (prg) ∧ unless (p, ’(false), prg) ∧ leads-to (’(true), p, prg))
→ eventually-stable (p, prg)

Event: Disable stable-occurs-proves-eventually-stable.

14



;;; The Basic Ensures Operator

Definition:
ensures (p, q , prg)
↔ ∃ e ((e ∈ prg)

∧ ∀ old , new ((n (old , new , e)
∧ eval (list (’and, p, list (’not, q)), old))
→ eval (q , new)))

Event: Disable ensures.

Theorem: prove-ensures
((e ∈ prg)
∧ ((n (olde (e, p, q), newe (e, p, q), e)

∧ eval (p, olde (e, p, q))
∧ (¬ eval (q , olde (e, p, q))))
→ eval (q , newe (e, p, q))))

→ ensures (p, q , prg)

Theorem: ensures-implies
(ensures (p, q , prg) → (ee (p, prg , q) ∈ prg))
∧ ((ensures (p, q , prg)

∧ n (old , new , ee (p, prg , q))
∧ eval (p, old)
∧ (¬ eval (q , old)))
→ eval (q , new))

Event: Disable prove-ensures.

Event: Disable ensures-implies.

Theorem: ensures-proves-something
(ensures (p, q , prg)
∧ unless (p, q , prg)
∧ schedulable (prg)
∧ (next (prg , ee (p, prg , q), base) < top)
∧ (next (prg , ee (p, prg , q), base) 6< i)
∧ (i 6< base)
∧ (i ∈ N)
∧ eval (p, s (prg , i)))
→ eval (q , s (prg , ensures-interval (prg , q , top, i)))

15



Theorem: the-interval-of-ensures
(ensures (p, q , prg)
∧ unless (p, q , prg)
∧ schedulable (prg)
∧ eval (p, s (prg , i)))
→ eval (q , s (prg , ensures-interval (prg , q , 1 + next (prg , ee (p, prg , q), i), i)))

Theorem: ensures-proves-leads-to
(schedulable (prg) ∧ unless (p, q , prg) ∧ ensures (p, q , prg))
→ leads-to (p, q , prg)

Event: Disable ensures-proves-something.

Event: Disable the-interval-of-ensures.

Event: Disable ensures-proves-leads-to.

;;; Total Programs, Statements are Assignments

Definition:
total (prg) ↔ ∀ e ((e ∈ prg) → ∀ old ∃ new n (old , new , e))

Event: Disable total.

Theorem: prove-total
((et (prg) ∈ prg) → n (oldt (prg), new , et (prg))) → total (prg)

Theorem: total-implies
(total (prg) ∧ (e ∈ prg)) → n (old , newt (e, old), e)

Event: Disable prove-total.

Event: Disable total-implies.

Theorem: total-implies-schedulable
(total (prg) ∧ listp (prg)) → schedulable (prg)

;;; Enabled Transitions

16



Definition:
enabling-condition (c, e, prg)
↔ ((e ∈ prg)

∧ ∀ old , new (n (old , new , e) → eval (c, old))
∧ ∀ old (eval (c, old) → ∃ new n (old , new , e)))

Event: Disable enabling-condition.

Theorem: prove-enabling-condition
((e ∈ prg)
∧ (n (oldc (c, e), newc (c, e), e) → eval (c, oldc (c, e)))
∧ (eval (c, oldc-1 (c, e)) → n (oldc-1 (c, e), new , e)))
→ enabling-condition (c, e, prg)

Theorem: enabling-condition-implies
(enabling-condition (c, e, prg) → (e ∈ prg))
∧ ((enabling-condition (c, e, prg) ∧ n (old , new , e)) → eval (c, old))
∧ ((enabling-condition (c, e, prg) ∧ eval (c, old))

→ n (old , newc-1 (e, old), e))

Event: Disable prove-enabling-condition.

Event: Disable enabling-condition-implies.

;;; Ensures with Enabling

Definition:
e-ensures (p, q , c, prg)
↔ ∃ e ((e ∈ prg)

∧ enabling-condition (c, e, prg)
∧ ∀ old , new ((n (old , new , e)

∧ eval (list (’and, p, list (’not, q)), old))
→ eval (q , new)))

Event: Disable e-ensures.

Theorem: prove-e-ensures
((e ∈ prg)
∧ enabling-condition (c, e, prg)
∧ ((n (oldee (e, p, q), newee (e, p, q), e)

∧ eval (list (’and, p, list (’not, q)), oldee (e, p, q)))
→ eval (q , newee (e, p, q))))

→ e-ensures (p, q , c, prg)

17



Event: Disable prove-e-ensures.

Definition:
e-ensures-enabling (p, q , c, prg)
↔ ∃ e ((e ∈ prg)

∧ ∀ old , new ((n (old , new , e) → eval (c, old))
∧ ((n (old , new , e)

∧ eval (list (’and,
p,
list (’not, q)),

old))
→ eval (q , new)))

∧ ∀ old (eval (c, old) → ∃ new n (old , new , e)))

Event: Disable e-ensures-enabling.

Theorem: help-prove-e-ensures
((e ∈ prg)
∧ (n (oldeee (c, e, p, q), neweee (c, e, p, q), e)

→ (eval (c, oldeee (c, e, p, q)) ∧ eval (q , neweee (c, e, p, q))))
∧ (eval (c, oldeee-1 (c, e)) → n (oldeee-1 (c, e), new , e))
∧ (eval (c, oldeee (c, e, p, q))

→ eval (list (’and, p, list (’not, q)), oldeee (c, e, p, q))))
→ e-ensures (p, q , c, prg)

Theorem: e-ensures-implies
(e-ensures (p, q , c, prg) → (eee (c, p, prg , q) ∈ prg))
∧ (e-ensures (p, q , c, prg) → enabling-condition (c, eee (c, p, prg , q), prg))
∧ ((e-ensures (p, q , c, prg)

∧ n (old , new , eee (c, p, prg , q))
∧ eval (list (’and, p, list (’not, q)), old))
→ eval (q , new))

Event: Disable e-ensures-implies.

Event: Disable help-prove-e-ensures.

;;; Union Theorems

Theorem: total-union-1
total (append (prg-1 , prg-2 )) → (total (prg-1 ) ∧ total (prg-2 ))

18



Theorem: total-union-2
(total (prg-1 ) ∧ total (prg-2 )) → total (append (prg-1 , prg-2 ))

Theorem: total-union
total (append (prg-1 , prg-2 )) = (total (prg-1 ) ∧ total (prg-2 ))

Event: Disable total-union-1.

Event: Disable total-union-2.

Theorem: unless-union-1
unless (p, q , append (prg-1 , prg-2 ))
→ (unless (p, q , prg-1 ) ∧ unless (p, q , prg-2 ))

Theorem: unless-union-2
(unless (p, q , prg-1 ) ∧ unless (p, q , prg-2 ))
→ unless (p, q , append (prg-1 , prg-2 ))

Theorem: unless-union
unless (p, q , append (prg-1 , prg-2 ))
= (unless (p, q , prg-1 ) ∧ unless (p, q , prg-2 ))

Event: Disable unless-union-1.

Event: Disable unless-union-2.

Theorem: ensures-union-1
ensures (p, q , append (prg-1 , prg-2 ))
→ (ensures (p, q , prg-1 ) ∨ ensures (p, q , prg-2 ))

Theorem: ensures-union-2
(ensures (p, q , prg-1 ) ∨ ensures (p, q , prg-2 ))
→ ensures (p, q , append (prg-1 , prg-2 ))

Event: Disable ensures-union-1.

Event: Disable ensures-union-2.

Theorem: ensures-union
ensures (p, q , append (prg-1 , prg-2 ))
= (ensures (p, q , prg-1 ) ∨ ensures (p, q , prg-2 ))

19



;;; Help Prove Total, Unless, and Ensures.

Definition:
total-sufficient (statement , program, old , new)
= ((statement ∈ program) → n (old , new , statement))

Theorem: help-prove-total
total-sufficient (et (prg), prg , oldt (prg), new) → total (prg)

Definition:
unless-sufficient (statement , program, old , new , p, q)
= (((statement ∈ program)

∧ n (old , new , statement)
∧ eval (p, old)
∧ (¬ eval (q , old)))
→ eval (list (’or, p, q), new))

Theorem: help-prove-unless
unless-sufficient (eu (p, prg , q), prg , oldu (p, prg , q), newu (p, prg , q), p, q)
→ unless (p, q , prg)

Definition:
ensures-key (statement , program, old , new , p, q)
= ((statement ∈ program)

∧ ((n (old , new , statement) ∧ eval (p, old) ∧ (¬ eval (q , old)))
→ eval (q , new)))

Theorem: help-prove-ensures
ensures-key (statement , prg , olde (statement , p, q), newe (statement , p, q), p, q)
→ ensures (p, q , prg)

Definition:
ensures-rest (statement , key , program, old , new , p, q)
= (((statement ∈ program)

∧ (statement 6= key)
∧ n (old , new , statement)
∧ eval (p, old)
∧ (¬ eval (q , old)))
→ eval (p, new))

Theorem: help-prove-unless-ensures
(ensures-key (statement , prg , oldu (p, prg , q), newu (p, prg , q), p, q)
∧ ensures-rest (eu (p, prg , q),

20



statement ,
prg ,
oldu (p, prg , q),
newu (p, prg , q),
p,
q))

→ unless (p, q , prg)

;;; Strengthening and Weakening Unless and Ensures

Definition:
stronger-p (p, q) ↔ ∀ state (eval (p, state) → eval (q , state))

Event: Disable stronger-p.

Theorem: stronger-p-implies
(stronger-p (p, q) ∧ eval (p, state)) → eval (q , state)

Theorem: stronger-p-rewrite
stronger-p (p, q) = (eval (p, states (p, q)) → eval (q , states (p, q)))

Event: Disable stronger-p-implies.

Definition:
equal-p (p, q) ↔ ∀ state (eval (p, state) = eval (q , state))

Event: Disable equal-p.

Theorem: equal-p-implies
equal-p (p, q) → (eval (p, state) = eval (q , state))

Event: Disable equal-p-implies.

Theorem: equal-p-rewrite
equal-p (p, q) = (eval (p, statee (p, q)) = eval (q , statee (p, q)))

Theorem: equal-p-commutative
equal-p (p, q) = equal-p (q , p)

Theorem: ensures-strengthen-left
(ensures (q , r , prg) ∧ stronger-p (p, q)) → ensures (p, r , prg)

Event: Disable ensures-strengthen-left.

21



Theorem: ensures-weaken-right
(ensures (p, q , prg) ∧ stronger-p (q , r)) → ensures (p, r , prg)

Event: Disable ensures-weaken-right.

Theorem: unless-weaken-right
(unless (p, q , prg) ∧ stronger-p (q , r)) → unless (p, r , prg)

Event: Disable unless-weaken-right.

Theorem: unless-equal-p
equal-p (p, q) → (unless (p, r , prg) = unless (q , r , prg))

Theorem: unless-conjunction
(unless (p-1 , q , prg) ∧ unless (p-2 , q , prg) ∧ equal-p (p, list (’and, p-1 , p-2 )))
→ unless (p, q , prg)

Theorem: unless-disjunction
(unless (p-1 , q , prg) ∧ unless (p-2 , q , prg) ∧ equal-p (p, list (’or, p-1 , p-2 )))
→ unless (p, q , prg)

;;; Fairness Theorems

Theorem: unconditional-fairness
(unless (p, q , prg) ∧ ensures (p, q , prg) ∧ total (prg)) → leads-to (p, q , prg)

Event: Disable unconditional-fairness.

Theorem: unconditional-fairness-general
(unless (p-1 , q-1 , prg)
∧ ensures (p-2 , q-2 , prg)
∧ (eval (p, s (prg , ileads (p, prg , q))) → eval (p-1 , s (prg , ileads (p, prg , q))))
∧ stronger-p (p-1 , p-2 )
∧ (eval (q-1 , s (prg , jleads (ileads (p-1 , prg , q), prg , q-1 )))

→ eval (q , s (prg , jleads (ileads (p-1 , prg , q), prg , q-1 ))))
∧ stronger-p (q-2 , q-1 )
∧ total (prg))
→ leads-to (p, q , prg)

Event: Disable unconditional-fairness-general.

22



Conservative Axiom: strong-fairness
(unless (p, q , prg)
∧ e-ensures (p, q , c, prg)
∧ leads-to (p, list (’or, q , c), prg)
∧ strongly-fair (prg))
→ leads-to (p, q , prg)

Simultaneously, we introduce the new function symbol strongly-fair .
Event: Disable strong-fairness.

Theorem: strong-fairness-general
(unless (p-1 , q-1 , prg)
∧ e-ensures (p-2 , q-2 , c, prg)
∧ leads-to (p, list (’or, q , c), prg)
∧ (eval (p, s (prg , ileads (p, prg , q))) → eval (p-1 , s (prg , ileads (p, prg , q))))
∧ (eval (p-1 , s (prg , ileads (p-1 , prg , list (’or, q-1 , c))))

→ eval (p, s (prg , ileads (p-1 , prg , list (’or, q-1 , c)))))
∧ stronger-p (p-1 , p-2 )
∧ (eval (q-1 , s (prg , jleads (ileads (p-1 , prg , q), prg , q-1 )))

→ eval (q , s (prg , jleads (ileads (p-1 , prg , q), prg , q-1 ))))
∧ (eval (list (’or, q , c),

s (prg ,
jleads (ileads (p, prg , list (’or, q-1 , c)), prg , list (’or, q , c))))

→ eval (list (’or, q-1 , c),
s (prg ,

jleads (ileads (p, prg , list (’or, q-1 , c)),
prg ,
list (’or, q , c)))))

∧ stronger-p (q-2 , q-1 )
∧ strongly-fair (prg))
→ leads-to (p, q , prg)

Event: Disable strong-fairness-general.

Definition:
wfw (i , j , p, q , c, prg)
= if i < j

then if eval (q , s (prg , i)) then i
elseif eval (p, s (prg , i))
then if eval (c, s (prg , i)) then wfw (1 + i , j , p, q , c, prg)

else i endif
else i endif

else fix (i) endif

23



Theorem: wfw-bigger
wfw (i , j , p, q , c, prg) 6< i

Theorem: about-wfw
(unless (p, q , prg) ∧ listp (prg) ∧ eval (p, s (prg , i)) ∧ (j 6< i))
→ (eval (q , s (prg , wfw (i , j , p, q , c, prg)))

∨ (eval (p, s (prg , wfw (i , j , p, q , c, prg)))
∧ (¬ eval (q , s (prg , wfw (i , j , p, q , c, prg))))
∧ (¬ eval (c, s (prg , wfw (i , j , p, q , c, prg)))))

∨ ((wfw (i , j , p, q , c, prg) = fix (j ))
∧ (eval (p, s (prg , j )) ∨ eval (q , s (prg , j )))))

Definition:
witness (p, q , c, prg)
= wfw (ileads (p, prg , q),

next (prg , eee (c, p, prg , q), ileads (p, prg , q)),
p,
q ,
c,
prg)

Theorem: weak-fairness
(unless (p, q , prg)
∧ e-ensures (p, q , c, prg)
∧ (eval (list (’and, p, list (’not, q)), s (prg , witness (p, q , c, prg)))

→ eval (c, s (prg , witness (p, q , c, prg)))))
→ leads-to (p, q , prg)

Event: Disable weak-fairness.

Theorem: weak-fairness-general
(unless (p-1 , q-1 , prg)
∧ e-ensures (p-2 , q-2 , c, prg)
∧ (eval (list (’and, p-1 , list (’not, q-1 )), s (prg , witness (p-1 , q-1 , c, prg)))

→ eval (c, s (prg , witness (p-1 , q-1 , c, prg))))
∧ (eval (p, s (prg , ileads (p, prg , q))) → eval (p-1 , s (prg , ileads (p, prg , q))))
∧ stronger-p (p-1 , p-2 )
∧ (eval (q-1 , s (prg , jleads (ileads (p-1 , prg , q), prg , q-1 )))

→ eval (q , s (prg , jleads (ileads (p-1 , prg , q), prg , q-1 ))))
∧ stronger-p (q-2 , q-1 ))
→ leads-to (p, q , prg)

Event: Disable weak-fairness-general.

Event: Disable witness.

24



Theorem: deadlock-freedom-witness
(unless (inv , ’(false), prg)
∧ enabling-condition (c, e, prg)
∧ (eval (inv , s (prg , next (prg , e, ileads (inv , prg , ’(false)))))

→ (¬ eval (c, s (prg , next (prg , e, ileads (inv , prg , ’(false)))))))
∧ schedulable (prg))
→ leads-to (inv , ’(false), prg)

Event: Disable deadlock-freedom-witness.

Conservative Axiom: deadlock-freedom
(unless (inv , ’(false), prg)
∧ enabling-condition (c, e, prg)
∧ (eval (inv , s (prg , next (prg , e, ileads (inv , prg , ’(false)))))

→ (¬ eval (c, s (prg , next (prg , e, ileads (inv , prg , ’(false)))))))
∧ deadlock-free (prg))
→ leads-to (inv , ’(false), prg)

Simultaneously, we introduce the new function symbol deadlock-free.

Theorem: deadlock-freedom-general
(unless (inv , ’(false), prg)
∧ enabling-condition (c, e, prg)
∧ (eval (inv , s (prg , next (prg , e, ileads (inv , prg , ’(false)))))

→ (¬ eval (c, s (prg , next (prg , e, ileads (inv , prg , ’(false)))))))
∧ ((¬ eval (inv , s (prg , ii (p, prg)))) → eval (p, s (prg , ii (p, prg))))
∧ deadlock-free (prg))
→ invariant (p, prg)

Event: Enable eval.

Event: Enable n.

;;; Some Helpful Definitions and Theorems

Definition:
update-assoc (key , value, alist)
= if listp (alist)

then if caar (alist) = key then cons (cons (key , value), cdr (alist))
else cons (car (alist), update-assoc (key , value, cdr (alist))) endif

else list (cons (key , value)) endif

25



Theorem: simplify-assoc
assoc (key-1 , update-assoc (key-2 , value, alist))
= if key-1 = key-2 then cons (key-1 , value)

else assoc (key-1 , alist) endif

Definition:
add1-mod (n, x )
= if (1 + x ) < n then 1 + x

else 0 endif

Definition:
sub1-mod (n, x )
= if x < n

then if x ' 0 then n − 1
else x − 1 endif

else 0 endif

Definition:
uc (old , new , keys, excpt)
= if listp (keys)

then if car (keys) ∈ excpt then uc (old , new , cdr (keys), excpt)
elseif assoc (car (keys), old) = assoc (car (keys), new)
then uc (old , new , cdr (keys), excpt)
else f endif

else t endif

Theorem: uc-basic-property
(uc (old , new , keys, excpt) ∧ (key ∈ keys) ∧ (key 6∈ excpt))
→ ((assoc (key , old) = assoc (key , new)) = t)

Theorem: uc-commutative
uc (old , new , keys, excpt) = uc (new , old , keys, excpt)

Theorem: uc-reflexive
uc (list , list , keys, excpt)

Theorem: uc-of-update-assoc
uc (list-1 , update-assoc (key , value, list-2 ), keys, excpt)
= if key ∈ excpt then uc (list-1 , list-2 , keys, excpt)

elseif key ∈ keys
then (assoc (key , list-1 ) = cons (key , value))

∧ uc (list-1 , list-2 , keys, cons (key , excpt))
else uc (list-1 , list-2 , keys, excpt) endif

Theorem: strip-cars-append
strip-cars (append (a, b)) = append (strip-cars (a), strip-cars (b))

26



Theorem: uc-append
uc (old , new , append (a, b), excpt)
= (uc (old , new , a, excpt) ∧ uc (old , new , b, excpt))

Theorem: uc-commutative-2
uc (old , new , append (a, b), excpt) = uc (old , new , append (b, a), excpt)

Event: Disable uc-append.

Theorem: key-not-member-strip-cars
(key 6∈ strip-cars (alist)) → (assoc (key , alist) = f)

Theorem: uc-property
(uc (old , new , append (strip-cars (old), strip-cars (new)), excpt)
∧ (key 6∈ excpt))
→ ((assoc (key , old) = assoc (key , new)) = t)

Theorem: about-uc
(uc (a, b, append (strip-cars (a), strip-cars (b)), excpt) ∧ (key 6∈ excpt))
→ (assoc (key , a) = assoc (key , b))

Definition:
changed (old , new , excpt) = uc (old , new , strip-cars (append (old , new)), excpt)

Event: Make the library "interpreter".

27



Index
about-uc, 27
about-wfw, 24
add1-mod, 26
append-is-associative, 2

cancellation-leads-to, 10
cancellation-leads-to-general, 10
changed, 27
choose, 4, 7, 8
computation, 4
computation-n, 8

deadlock-free, 25
deadlock-freedom, 25
deadlock-freedom-general, 25
deadlock-freedom-witness, 25
disjoin-left, 9
disjoin-left-general, 9

e-ensures, 17, 18, 23, 24
e-ensures-enabling, 18
e-ensures-implies, 18
ee, 15, 16
eee, 18, 24
effective-idle, 8
enabling-condition, 17, 18, 25
enabling-condition-implies, 17
ensures, 15, 16, 19–22
ensures-implies, 15
ensures-interval, 10, 11, 15, 16
ensures-interval-bigger, 10
ensures-interval-fixes, 10
ensures-key, 20
ensures-proves-leads-to, 16
ensures-proves-something, 15
ensures-rest, 20, 21
ensures-strengthen-left, 21
ensures-union, 19
ensures-union-1, 19
ensures-union-2, 19
ensures-weaken-right, 22

equal-iff, 1
equal-p, 21, 22
equal-p-commutative, 21
equal-p-implies, 21
equal-p-rewrite, 21
et, 16, 20
eu, 6, 20
eval, 5–18, 20–25
eval-and, 5
eval-equal, 6
eval-false, 6
eval-iff, 6
eval-implies, 6
eval-not, 5
eval-or, 6
eval-true, 6
eventually-stable, 12–14
eventually-stable-conjunction, 14
eventually-stable-false, 14
eventually-stable-implies, 13
eventually-stable-proves-not-tr

ue-leads-to, 13
eventually-stable-weaken, 14
exists, 3, 7, 12, 15–18
exists-successor, 3
exists-successor-implies, 3

false-leads-to-anything, 8
forall, 6, 7, 12, 15–18, 21

help-prove-e-ensures, 18
help-prove-ensures, 20
help-prove-total, 20
help-prove-unless, 20
help-prove-unless-ensures, 20

ies, 13, 14
ii, 12, 25
ileads, 7–11, 13, 22–25
initial-condition, 11, 12
invariant, 12, 25

28



invariant-consequence, 12
invariant-implies, 12
invariants-persist-general, 12
is, 7

jes, 13, 14
jleads, 7–11, 13, 14, 22–24

key-not-member-strip-cars, 27

leads-to, 7–14, 16, 22–25
leads-to-false-invariant, 12
leads-to-implies, 7
leads-to-modify-both, 9
leads-to-strengthen-left, 9
leads-to-transitive, 8
leads-to-transitive-general, 8
leads-to-true, 11
leads-to-weaken-right, 9
length, 1–3
listp-not-zero-length, 1

mchoose, 2, 4
mchoose-chooses, 2
mchoose-fixes, 2
member-append, 2
mnext, 2
mnext-choice-1, 2
mnext-choice-2, 2
mnext-choice-2-simplified, 2
mnext-fixes, 2
ms, 4
ms-transition-idle, 4
ms-transition-successful, 4

n, 3, 4, 6–8, 15–18, 20
newc, 17
newc-1, 17
newe, 15, 20
newee, 17
neweee, 18
news, 7
newt, 16
newu, 6, 20, 21
newx, 3, 4

next, 4, 8, 15, 16, 24, 25
not-eventually-stable-proves-le

ads-to, 13
not-leads-to-proves-eventually-

stable, 13
nth, 1–3
nth-member, 1
nth-position, 1
numberp-mnext, 2

oldc, 17
oldc-1, 17
olde, 15, 20
oldee, 17
oldeee, 18
oldeee-1, 18
oldt, 16, 20
oldu, 6, 20, 21

p-implies-q-leads-to, 9
position, 1–3
position-lessp, 1
position-nth, 2
position-zero, 1
prove-e-ensures, 17
prove-enabling-condition, 17
prove-ensures, 15
prove-eventually-stable, 13
prove-exists-successor, 3
prove-invariant, 12
prove-leads-to, 7
prove-schedulable, 7
prove-total, 16
prove-unless, 6
psp, 11
psp-general, 11
psp-proves-something, 10

q-leads-to-q, 8

remainder-of-add1, 3
remainder-of-add1-1, 3
remainder-of-add1-2, 3
remainder-of-add1-3, 3

29



remainder-of-add1-3-1, 3

s, 4, 7–16, 22–25
schedulable, 7, 8, 15, 16, 25
schedulable-implies, 7
schedulable-implies-effective-c

omputation, 8
simplify-assoc, 26
stable-occurs-proves-eventually

-stable, 14
statee, 21
states, 21
strip-cars-append, 26
strong-fairness, 23
strong-fairness-general, 23
stronger-p, 21–24
stronger-p-implies, 21
stronger-p-rewrite, 21
strongly-fair, 23
sub1-mod, 26

the-interval-of-ensures, 16
total, 16, 18–20, 22
total-implies, 16
total-implies-schedulable, 16
total-sufficient, 20
total-union, 19
total-union-1, 18
total-union-2, 19
true-leads-to-proves-not-eventu

ally-stable, 13

uc, 26, 27
uc-append, 27
uc-basic-property, 26
uc-commutative, 26
uc-commutative-2, 27
uc-of-update-assoc, 26
uc-property, 27
uc-reflexive, 26
unconditional-fairness, 22
unconditional-fairness-general, 22
unless, 6, 10–12, 14–16, 19–25
unless-conjunction, 22

unless-disjunction, 22
unless-equal-p, 22
unless-implies, 6
unless-proves-invariant, 12
unless-sufficient, 20
unless-union, 19
unless-union-1, 19
unless-union-2, 19
unless-weaken-right, 22
update-assoc, 25, 26

weak-fairness, 24
weak-fairness-general, 24
wfw, 23, 24
wfw-bigger, 24
witness, 24

30


