EVENT: Start with the library "naturals".

;33 Several Useful Theorems

THEOREM: equal-iff
((truep (a) V falsep (a)) A (truep (b) V falsep (b)))
— ((a=10)=(a=0)

EVENT: Disable equal-iff.

DEFINITION:

length (list)

= if listp (list) then 1 + length (cdr (list))
else 0 endif

DEFINITION:
nth (list, n)
= if n ~ 0 then car (list)
else nth (cdr (list), n — 1) endif

DEFINITION:
position (pry, e)
= if listp (prg)
then if car (prg) = e then 0
else 1 + position (cdr (prg), e) endif
else 0 endif

THEOREM: nth-member
(n < length (list)) — (nth (list, n) € list)

THEOREM: listp-not-zero-length
(length (list) = 0) = (— listp (list))

THEOREM: position-zero
(e & prg) — (position (prg, e) = length (prg))

THEOREM: position-lessp
(e € prg) — (position (prg, e) < length (pryg))

THEOREM: nth-position

nth (prg, position (prg, e))

= if e € prg then e
else 0 endif

THEOREM: position-nth
((e € list) A (nth (list, n) # e)) — ((position (list,) = n) = f)

THEOREM: member-append
(e € append (j, k)) = ((e € j) V (e € k))

THEOREM: append-is-associative
append (append (z, y), z) = append (z, append (y, 2))

;35 The Witness function for the Computation

DEFINITION: mchoose (prg, i) = nth (prg, i mod length (prg))

DEFINITION:
mnext (prg, e, i)
= (i + if position (prg,) < (i mod length (prg))
then position (prg, €)
+ (length (prg) — (i mod length (pryg)))
else position (prg, €¢) — (i mod length (prg)) endif)

THEOREM: mnext-fixes
((e € prg) A (i ¢ N)) — (mnext (pryg, e, i) = mnext (prg, e, 0))

THEOREM: numberp-mnext
(e € prg) — (mnext (pryg, e, i) € N)

THEOREM: mchoose-chooses
listp (prg) — (mchoose (prg, i) € prg)

THEOREM: mchoose-fixes
(listp (prg) A (i € N)) — (mchoose (prg, i) = mchoose (prg, 0))

THEOREM: mnext-choice-1
(e € prg) — (mmext (prg, e, i) £ 1)

THEOREM: mnext-choice-2-simplified
(e < n)
— (((4 +if e < (i mod n) then e + (n — (i mod n))
else ¢ — (¢ mod n) endif)
mod n)
— fix(c))

THEOREM: mnext-choice-2
(e € prg) — (mchoose (prg, mnext (prg, e, i)) = e)

THEOREM: remainder-of-add1
((z < (amod b)) A (z < ((1 + a) mod b)))
— (((1 + a) mod b) = (1 4+ (a mod b)))

THEOREM: remainder-of-add1-1
((z £ (amod b)) A (z < ((1+ @) mod b))) — ((a mod b) = fix (z))

THEOREM: remainder-of-add1-2
((z < (amod b)) A (z £ (1 + a) mod b)))
— (((1+ a) mod b) =0) A ((a mod b) = (b —1)))

THEOREM: remainder-of-add1-3
((x £ (a mod b))

A (z < b)

A (z eN)

A (z # (a mod D))

AN (z £ ((1+ a) mod b)))

— (((1 4+ a) mod b) = (1 + (a mod b)))

THEOREM: remainder-of-add1-3-1
((position (prg, e) £ (i mod length (prg)))
A (position (prg, e) £ ((1 + i) mod length (pryg)))
A (nth (prg, i mod length (prg)) # e)
A (e € pryg))
— (((1 + %) mod length (prg)) = (1 + (¢ mod length (prg))))

EvVENT: Disable mchoose.
EvVENT: Disable mnext.

;55 The Statement Interpreter

DEFINITION:
n(old, new, e) = apply$ (car (e), append (list (old, new), cdr (e)))

DEFINITION: exists-successor (old, €) < 3 new n (old, new, e)

THEOREM: exists-successor-implies
exists-successor (old, ¢) — n (old, newx (e, old), e)

THEOREM: prove-exists-successor
n (old, new, e) — exists-successor (old, e)

EVENT: Disable exists-successor.

DEFINITION:
ms (prg,)
= if ¢ ~ 0 then nil
elseif n (ms (prg, i — 1),
newx (mchoose (prg, i — 1), ms (prg, i — 1)),
mchoose (prg, i — 1))
then newx (mchoose (prg, i — 1), ms (prg, i — 1))
else ms (prg, i — 1) endif

THEOREM: ms-transition-successful
(listp (prg) A n (wms (prg, i), new, mchoose (pryg, 7)))
— n(ms(prg, i), ms (prg, 1 + ¢), mchoose (pry, 7))

THEOREM: ms-transition-idle

(listp (prg)

A (= n(ms(prg, i), newx (mchoose (pryg, ¢), ms (prg, 7)), mchoose (pryg, 7))))
— (ms(prg, 1 +) = ms (pry, 7))

;55 Characterizing an Arbitrary Computation

CONSERVATIVE AXIOM: computation

(listp (prg) — (choose (pry, i) € pryg))

A ((e € prg) — (next (pry, e, i) £ 1))

A ((e € prg) — (choose (prg, next (prg, e, i)) = e))

A ((listp (prg) A n(s(pryg, i), new, choose (pryg, i)))
— n(s(prg, i), s(prg, 1 + 1), choose (pry, i)))

A ((listp (prg)
A (= n(s(prg, 1), newx (choose (pry, i), s (prg, i)), choose (pry, i))))
— (s(prg, 1 + 1) =s(pry, 1))

A ((e € prg) — (next (pry, e, i) € N))

A ((listp (prg) A (i € N)) — (s (prg, i) = s (pry, 0)))

A ((listp (prg) A (i € N)) — (choose (prg, i) = choose (prg, 0)))

A (((e € prg) A (1 € N)) — (next (prg, e, i) = next (prg, €, 0)))

Simultaneously, we introduce the new function symbols choose, next, and s.
EVENT: Disable mnext-fixes.

EVENT: Disable numberp-mnext.

EVENT: Disable mchoose-chooses.

EVENT: Disable mchoose-fixes.

EVENT: Disable mnext-choice-1.

EVENT: Disable mnext-choice-2-simplified.
EVENT: Disable mnext-choice-2.

EvENT: Disable remainder-of-addl.
EVENT: Disable remainder-of-add1-1.
EvVENT: Disable remainder-of-add1-2.
EVENT: Disable remainder-of-add1-3.
EvVENT: Disable remainder-of-add1-3-1.
EVENT: Disable exists-successor-implies.
EVENT: Disable prove-exists-successor.
EVENT: Disable ms-transition-successful.
EVENT: Disable ms-transition-idle.
EvENT: Disable n.

;55 The Predicate Interpreter

DEFINITION:
eval (pred, state) = eval$ (t, pred, list (cons (’state, state)))

THEOREM: eval-not
eval (list (*not, p), state) = (- eval (p, state))

THEOREM: eval-and
eval (list (*and, p, q), state) = (eval (p, state) A eval (g, state))

THEOREM: eval-or
eval (list (’or, p, q), state) = (eval (p, state) V eval (g, state))

THEOREM: eval-implies
eval (list (’implies, p, q), state) = (eval (p, state) — eval(q, state))

THEOREM: eval-iff
eval (list (’if£, p, q), state) = (eval (p, state) < eval(q, state))

THEOREM: eval-equal
eval (list (*equal, p, q), state) = (eval (p, state) = eval (q, state))

THEOREM: eval-true
eval (° (true), state) =t

THEOREM: eval-false
eval (’ (false), state) = f

EVENT: Disable eval.
;55 The Stability Operator: Unless

DEFINITION:
unless (p, q, prg)
— Vold, new, e (((e € prg)
A (n(old, new, e)
A eval (list (’and, p, list (’not, ¢)), old)))
— eval(list (’or, p, q), new))

EVENT: Disable unless.

THEOREM: prove-unless
(((eu(p, prg, q) € prg)

A n(oldu(p, prg, q), newu (p, prg, q), eu(p, prg, q))

A eval(p, oldu (p, prg, q))

A (= eval (g, oldu (p, prg, q))))

— (eval (p, newu (p, prg, q)) V eval (g, newu (p, pry, q))))
— unless (p, ¢, prg)

THEOREM: unless-implies
(unless (p, g, prg)

(e € prg)

n (old, new, e)

eval (p, old)

(= eval (g, old)))

eval (list (’or, p, q), new)

L>>>>

EVENT: Disable prove-unless.
EVENT: Disable unless-implies.

;55 The Progress Operator: Leads-To

DEFINITION:

leads-to (p, q, prg)
< Vi (eval(p, s(prg, i) — 37 ((j £ i) A eval(q, s(pry, 7))))

EVENT: Disable leads-to.

THEOREM: prove-leads-to

(eval (p, s (pryg, ileads (p, prg, q)))

— ((j #£ ileads (p, pry, q)) A eval(q, s(prg, j))))
— leads-to (p, g, prg)

THEOREM: leads-to-implies

(leads-to (p, ¢, prg) A eval(p, s (prg, i)))
— ((jleads (4, prg, q) £ 1) A eval(q, s (pry, jleads (i, prg, q))))

EVENT: Disable prove-leads-to.
EVENT: Disable leads-to-implies.
;33 The Most Effective Trace

DEFINITION:
schedulable (prg) < V i 3 new n (s (pryg, i), new, choose (pryg, 7))

EVENT: Disable schedulable.

THEOREM: prove-schedulable
n (s (pryg, is (prg)), new, choose (prg, is (prg))) — schedulable (prg)

THEOREM: schedulable-implies
schedulable (prg) — n (s (prg, i), news (i, prg), choose (prg, 7))

EVENT: Disable prove-schedulable.

EVENT: Disable schedulable-implies.

THEOREM: schedulable-implies-effective-computation
(schedulable (prg) A listp (prg))
— n(s(pry, 1), s(prg, 1 + i), choose (pry, 1))

THEOREM: computation-n
(schedulable (prg) A (e € prg))

— n(s(prg, next (pry, e, i)), s(prg, 1 + next (pryg, e, 1)), e)

THEOREM: effective-idle
listp (prg)
= ((s(prg, 1+ 1) = s (pry, i)
V' n(s(prg, i), s(prg, 1 + i), choose (prg, 7)))

EVENT: Disable effective-idle.

;53 Leads-To Proof Rules

THEOREM: leads-to-transitive
(leads-to (p, ¢, prg) A leads-to (g, r, prg)) — leads-to (p, 7, prg)

EVENT: Disable leads-to-transitive.

THEOREM: leads-to-transitive-general

(leads-to (p-1, ¢-1, pryg)

A leads-to(¢-2, r-1, prg)

A (eval(g-1, s (pry, jleads (ileads (p, pry, 1), prg, ¢-1)))

— eval(¢-2, s(pry, jleads (ileads (p, prg, r), pry, ¢-1))))
(eval (p, s (prg, ileads (p, prg, r))) — eval (p-1, s (prg, ileads (p, prg, 1))))
(eval (-1, s (pryg, jleads (jleads (ileads (p, prg, T), prg, g-1), prg, r-1)))

— eval(r,

s (prg, jleads (jleads (ileads (p, prg, 7), prg, ¢-1), prg, r-1)))))

— leads-to (p, r, prg)

A\
A\

EVENT: Disable leads-to-transitive-general.

THEOREM: g-leads-to-q
leads-to (¢, ¢, prg)
EvVENT: Disable g-leads-to-q.

THEOREM: false-leads-to-anything
leads-to (’ (false), p, prg)

EVENT: Disable false-leads-to-anything.

THEOREM: p-implies-g-leads-to

(eval (p, s (pryg, ileads (p, prg, q))) — eval(q, s (pryg, ileads (p, pry, ¢))))
— leads-to (p, ¢, prg)

EvVENT: Disable p-implies-q-leads-to.

THEOREM: leads-to-strengthen-left

((eval (g, s (pryg, ileads (g, prg, r))) — eval (p, s (prg, ileads (q, prg, r))))
A leads-to (p, r, prg))

— leads-to (g, r, prg)

EVENT: Disable leads-to-strengthen-left.

THEOREM: leads-to-weaken-right

((eval (g, s (pry, jleads (ileads (p, pry, 7), pry, q)))

— eval(r, s (pry, jleads (ileads (p, pry, r), pry, q))))
A leads-to (p, ¢, prg))
— leads-to (p, 7, prg)

EVENT: Disable leads-to-weaken-right.

THEOREM: leads-to-modify-both
((eval(p, s (prg, lleads (p, pry, q))) — eval(p-1, s (pry, ileads (p, pry, q))))
A (eval(g-1, s (prg, jleads (ileads (p, pryg, q), prg, ¢-1)))
— eval(q, s (prg, jleads (ileads (p, prg, q), prg, ¢-1))))
A leads-to (p-1, ¢-1, prg))
— leads-to (p, g, prg)

EVENT: Disable leads-to-modify-both.

THEOREM: disjoin-left
(leads-to (p, r, prg) A leads-to (g, r, pryg))
— leads-to (list (’or, p, q), r, prg)

EVENT: Disable disjoin-left.

THEOREM: disjoin-left-general
(leads-to (p-1, ¢-1, prg)

A leads-to (p-2, ¢-2, prg)

A (eval(p, s (pryg, ileads (p, prg, q)))

— eval(list (*or, p-1, p-2), s (pryg, ileads (p, pry, q))))
A (eval(g¢-1, s (pryg, jleads (ileads (p, prg, q), prg, ¢-1)))

— eval(q, s (pry, jleads (ileads (p, pry, q), pryg, ¢-1))))
A (eval(g-2, s (pry, jleads (ileads (p, pry, q), prg, ¢-2)))

— eval(q, s (pry, jleads (ileads (p, pry, q), prg, ¢-2)))))
— leads-to (p, ¢, prg)

EVENT: Disable disjoin-left-general.

THEOREM: cancellation-leads-to
(leads-to (p, list (’or, ¢, b), prg) A leads-to (b, r, prg))
— leads-to (p, list oz, q,), pry)

EVENT: Disable cancellation-leads-to.

THEOREM: cancellation-leads-to-general
(leads-to (p-1, d, prg)
A leads-to (b, r-1, prg)
A (eval (list (*and, d, list (’not, b)),
s (pryg, jleads (ileads (p, prg, r), prg, d)))
— eval(r, s(prg, jleads (ileads (p, pryg, r), prg, d))))
A (eval(r-1, s(pryg, jleads (jleads (ileads (p, prg, 7), prg, d), prg, r-1)))
— eval(r, s(pryg, jleads (jleads (ileads (p, prg,), prg, d), prg, r-1))))

A (eval(p, s (pry, ileads (p, prg, r))) — eval (p-1, s (pry, ileads (p, pry, 1)))))
— leads-to (p, r, prg)

EVENT: Disable cancellation-leads-to-general.

DEFINITION:
ensures-interval (pryg, ¢, top, i)
= if top < i then fix (top)
elseif eval (¢, s (prg, i)) then fix (7)
else ensures-interval (pryg, ¢, top, 1 + i) endif

THEOREM: ensures-interval-fixes

(listp (prg) A (i € N))
— (ensures-interval (prg, ¢, top, i) = ensures-interval (prg, ¢, top, 0))

THEOREM: ensures-interval-bigger
(ensures-interval (prg, ¢, top, i) < i) = (top < 1)

THEOREM: psp-proves-something

(leads-to (p, g, prg)
A unless (7, b, prg)

10

listp (prg)
(i € N)
eval (p, s (prg, base))
eval (r, s (pry, i))
(jleads (base, prg, q) < top)
(jleads (base, prg, q) £ i)
(final = list (’or, ¢, b)))
eval (list (*or, list (’and, g,), b),
s (prg, ensures-interval (prg, final, top, i)))

l>>s>>>>>

EVENT: Disable psp-proves-something.

THEOREM: psp
(leads-to (p, g, prg) A unless(r, b, prg) A listp (prg))
— leads-to (list (*and, p, r), list (’or, list (*and, ¢,), b), prg)

EVENT: Disable psp.

THEOREM: psp-general
(leads-to (p, ¢, prg)
A unless (r, b, prg)
(eval (pr, s (prg, ileads (pr, prg, gb)))
— eval(list (*and, p,), s (pryg, ileads (pr, prg, ¢b))))
(eval (list (’or, list (*and, ¢, r), b),
s (pry,
jleads (ileads (pr, pryg, ¢b), prg, list (’or, list (>and, ¢, r), b))))
— eval (g¢b,
s (pry,
jleads (ileads (pr, prg, ¢b),
prg,
list (’or, list (’and, ¢, 7), b)))))

>

>

>

listp (prg))
— leads-to (pr, ¢b, prg)

EVENT: Disable psp-general.

THEOREM: leads-to-true
leads-to (p, ’ (true), prg)
;53 Initial Condition and Invariants

DEFINITION: initial-condition (ic, prg) = eval (ic, s (prg, 0))

11

EVENT: Disable initial-condition.

DEFINITION: invariant (inv, prg) < V¥ i eval (inv, s (prg, 1))

EVENT: Disable invariant.

THEOREM: prove-invariant
eval (inv, s (pryg, ii (inv, prg))) — invariant (inv, prg)

THEOREM: invariant-implies
invariant (inv, prg) — eval (inv, s (pryg, i))

EVENT: Disable prove-invariant.

THEOREM: invariant-consequence
(invariant (p, prg)

A (eval(p, s (pryg, ii(q, prg))) — eval(q, s (pry, ii (g, prg)))))
— invariant (¢, prg)

THEOREM: invariants-persist-general
(unless (p, ’ (false), prg) A eval (p, s(prg, i) A listp (prg) A (§ £ 7))
— eval(p, s(pryg, j))

EVENT: Disable invariants-persist-general.

THEOREM: unless-proves-invariant
(initial-condition (ic, prg)
A unless (p, ’ (false), prg)
A (eval (ic, s (prg, 0)) — eval (p, s(prg, 0)))
A listp (prg))
— invariant (p, prg)

THEOREM: leads-to-false-invariant
(leads-to (p, ’ (false), prg)
A (eval (list (’not, p), s (pryg, ii (inv, prg)))
— eval (inv, s (prg, ii (inv, prg)))))
— invariant (inv, prg)

;35 Eventual Stability

DEFINITION:
eventually-stable (r, prg) < iV j ((j £ i) — eval(r, s(prg, 7)))

12

EVENT: Disable eventually-stable.

THEOREM: prove-eventually-stable

(Ges (4, pry,) # i) — eval(r, s (pry, jes (i, pry, 7))))
— eventually-stable (r, prg)

THEOREM: eventually-stable-implies
(eventually-stable (r, prg) A (j £ ies(prg, r))) — eval(r, s (prg, 7))

EVENT: Disable prove-eventually-stable.
EVENT: Disable eventually-stable-implies.

THEOREM: not-leads-to-proves-eventually-stable
((— leads-to (p, not-r, prg))
A ((— eval (not-r, s (prg, jes (ileads (p, prg, not-r), prg, r))))
— eval(r, s(pryg, jes (ileads (p, prg, not-r), prg, r)))))
— eventually-stable (r, prg)

EVENT: Disable not-leads-to-proves-eventually-stable.

THEOREM: not-eventually-stable-proves-leads-to
((— eventually-stable (not-q, prg))
A ((= eval (not-q, s (prg, jes (ileads (p, pry, q), pry, not-q))))

— eval(q, s(pry, jes (ileads (p, pry, ¢), prg, not-q)))))
— leads-to (p, ¢, prg)

EVENT: Disable not-eventually-stable-proves-leads-to.

THEOREM: true-leads-to-proves-not-eventually-stable
(leads-to (° (true), not-r, prg)
A (eval (not-r, s (prg, jleads (ies (prg,), prg, not-r)))
— (= eval(r, s(prg, jleads (ies (prg, 7), prg, not-r))))))
— (- eventually-stable (r, prg))

EVENT: Disable true-leads-to-proves-not-eventually-stable.

THEOREM: eventually-stable-proves-not-true-leads-to
(eventually-stable (not-q, prq)
A (eval (not-q, s (pry, jleads (ies (prg, not-q), pry, q)))

— (- eval(q, s(prg, jleads (ies (prg, not-q), prg, q))))))
— (— leads-to (* (true), ¢, pryg))

13

EVENT: Disable eventually-stable-proves-not-true-leads-to.

THEOREM: eventually-stable-weaken
(eventually-stable (p, prg)
A (eval (p, s(pry, jes (ies (prg, p), prg, 7))
— eval(r, s(pry, jes (ies (prg, p), prg,)))))
— eventually-stable (r, prg)

EVENT: Disable eventually-stable-weaken.

THEOREM: eventually-stable-conjunction
(eventually-stable (p, prg)
A eventually-stable (g, prg)
A (eval (list (’and, p, q),
s (prg,
jes (if ies (prg, p) < ies(prg, ¢) then ies (prg, q)
else ies (prg, p) endif,
prg,
7))
— eval(r,
s (pry,
jes (if ies (prg, p) < ies(prg, ¢) then ies(pryg, q)
else ies (prg, p) endif,
pry,
™))

— eventually-stable (r, prg)
EVENT: Disable eventually-stable-conjunction.

THEOREM: eventually-stable-false

(leads-to (p, ¢, prg)
A (eval (g, s(pry, jleads (ies (prg, p), pry, q)))

— (= eval(p, s (pry, jleads (ies (pry, p), pry, q))))))
— (= eventually-stable (p, prg))

EVENT: Disable eventually-stable-false.

THEOREM: stable-occurs-proves-eventually-stable
(listp (prg) A unless (p, ’> (false), prg) A leads-to (’ (true), p, prg))
— eventually-stable (p, prg)

EVENT: Disable stable-occurs-proves-eventually-stable.

14

;35 The Basic Ensures Operator

DEFINITION:
ensures (p, ¢, prg)
o Fe((e € pr)
A Y old, new ((n(old, new, e)
A eval (list (’and, p, list (’not, q)), old))
— eval(q, new)))

EvVENT: Disable ensures.

THEOREM: prove-ensures
((e € prg)
A ((n(olde (e, p, q), newe (e, p, q), €)
A eval (p, olde (e, p, q))
A (- eval(g, olde (e, p, q))))

N eval(q7 newe(e, b, Q))))
— ensures (p, q, prg)

THEOREM: ensures-implies

(ensures (p, ¢, prg) — (ee (p, pry, q) € pry))
A ((ensures (p, g, pry)

A n(old, new, ee(p, pry, q))

A eval(p, old)

A (- eval(q, old)))

— eval(q, new))

EVENT: Disable prove-ensures.
EVENT: Disable ensures-implies.

THEOREM: ensures-proves-something

(ensures (p, ¢, prg)

unless (p, q, prg)

schedulable (prg)

(next (prg, ee(p, pry, q), base) < top)

(next (pry, ee (p, prg, q), base) £ i)

(i £ base)

(i €N)

eval (p, s (prg, i)))

eval (¢, s (prg, ensures-interval (prg, g, top, i)))

l>>>>>>>

15

THEOREM: the-interval-of-ensures

(ensures (p, ¢, prg)

unless (p, q, prg)

schedulable (prg)

eval (p, s (pry, 4)))

eval (g, s (prg, ensures-interval (prg, ¢, 1 + next (pryg, ee (p, prg, q), i), i)))

b >>>

THEOREM: ensures-proves-leads-to
(schedulable (prg) A unless (p, ¢, prg) A ensures (p, ¢, prg))
— leads-to (p, g, prg)

EVENT: Disable ensures-proves-something.
EVENT: Disable the-interval-of-ensures.
EVENT: Disable ensures-proves-leads-to.

;;; Total Programs, Statements are Assignments

DEFINITION:
total (prg) < ¥V e ((e € prg) — V¥ old 3 new n (old, new, e))

EVENT: Disable total.
THEOREM: prove-total
((et (prg) € prg) — n (oldt (prg), new, et (prg))) — total (prg)

THEOREM: total-implies
(total (prg) A (e € prg)) — n(old, newt (e, old), e)

EVENT: Disable prove-total.
EVENT: Disable total-implies.

THEOREM: total-implies-schedulable
(total (prg) A listp (prg)) — schedulable (prg)

;33 Enabled Transitions

16

DEFINITION:

enabling-condition (¢, e, prg)

o ((c € pry)
A Y old, new (n(old, new, e) — eval(c, old))
A Y old (eval (¢, old) — 3 new n(old, new, e)))

EVENT: Disable enabling-condition.

THEOREM: prove-enabling-condition
((e € prg)
A (n(oldc (¢, €), newc (¢, e), e) — eval (¢, oldc (¢, €)))
A (eval(c, olde-1 (¢, €)) — n(olde-1 (¢, e), new, €)))
— enabling-condition (¢, e, prg)

THEOREM: enabling-condition-implies

(enabling-condition (¢, e, prg) — (e € prg))

A ((enabling-condition (¢, e, prg) A n(old, new, e)) — eval (¢, old))
A ((enabling-condition (¢, e, prg) A eval (¢, old))

— n(old, newc-1 (e, old), €))

EVENT: Disable prove-enabling-condition.
EVENT: Disable enabling-condition-implies.
;;; Ensures with Enabling

DEFINITION:
e-ensures (p, ¢, ¢, prg)
o Fe((cepry)
A enabling-condition (¢, e, prg)
A Y old, new ((n(old, new, e)
A eval (list (’and, p, list (*not, q)), old))
— eval(q, new)))

EVENT: Disable e-ensures.

THEOREM: prove-e-ensures
((e € pryg)
A enabling-condition (¢, e, prg)
A ((n(oldee (e, p, q), newee (e, p, q), €)
A eval (list (’and, p, list (*not, ¢)), oldee (e, p, q)))
— eval (g, newee (e, p, q))))
— e-ensures (p, ¢, ¢, prg)

17

EVENT: Disable prove-e-ensures.

DEFINITION:
e-ensures-enabling (p, ¢, ¢, prg)
— 3Je((e € prg)
A Y old, new ((n(old, new, e) — eval (¢, old))
A ((n(old, new, e)
A eval (list (’and,
b,
list (’not, q)),
old))
— eval (g, new)))
A Y old (eval (¢, old) — I new n (old, new, e)))

EVENT: Disable e-ensures-enabling.

THEOREM: help-prove-e-ensures
((e € pry)
A (n(oldeee (¢, e, p, q), neweee (¢, e, p, q), €)
— (eval (¢, oldeee (¢, €, p, q)) A eval (g, neweee (¢, e, p, q))))
(eval (¢, oldeee-1 (¢, €)) — n(oldeee-1 (¢, €), new, €))
(eval (¢, oldeee (¢, e, p, q))
— eval (list (*and, p, list (’not, ¢)), oldeee (¢, e, p, q))))
— e-ensures (p, ¢, ¢, pry)

A\
A\

THEOREM: e-ensures-implies

(e-ensures (p, ¢, ¢, prg) — (ece(c, p, pry, q) € pry))
A (e-ensures (p, ¢, ¢, prg) — enabling-condition (¢, eee (¢, p, prg, q), prg))
A ((e-ensures (p, ¢, ¢, prg)

A n(old, new, eee(c, p, prg, q))

A eval (list (’and, p, list (*not, q)), old))

— eval(q, new))

EVENT: Disable e-ensures-implies.
EVENT: Disable help-prove-e-ensures.

;53 Union Theorems

THEOREM: total-union-1
total (append (prg-1, prg-2)) — (total (prg-1) A total (prg-2))

18

THEOREM: total-union-2
(total (prg-1) A total (prg-2)) — total (append (prg-1, prg-2))

THEOREM: total-union
total (append (prg-1, prg-2)) = (total (prg-1) A total (prg-2))

EVENT: Disable total-union-1.
EVENT: Disable total-union-2.

THEOREM: unless-union-1

unless (p, ¢, append (prg-1, prg-2))
— (unless (p, ¢, prg-1) A unless (p, g, prg-2))

THEOREM: unless-union-2

(unless (p, g, prg-1) A unless (p, ¢, prg-2))
— unless (p, ¢, append (prg-1, prg-2))

THEOREM: unless-union
unless (p, ¢, append (prg-1, prg-2))
= (unless(p, ¢, prg-1) A unless (p, ¢, prg-2))

EVENT: Disable unless-union-1.
EVENT: Disable unless-union-2.

THEOREM: ensures-union-1

ensures (p, ¢, append (prg-1, prg-2))
— (ensures (p, q, prg-1) V ensures (p, q, prg-2))

THEOREM: ensures-union-2
(ensures (p, ¢, prg-1) V ensures (p, ¢, prg-2))
— ensures (p, ¢, append (prg-1, prg-2))

EVENT: Disable ensures-union-1.
EVENT: Disable ensures-union-2.

THEOREM: ensures-union

ensures (p, ¢, append (prg-1, prg-2))
= (ensures(p, ¢, prg-1) V ensures (p, q, prg-2))

19

;33 Help Prove Total, Unless, and Ensures.

DEFINITION:
total-sufficient (statement, program, old, new)
= ((statement € program) — n (old, new, statement))

THEOREM: help-prove-total
total-sufficient (et (prg), prg, oldt (prg), new) — total (prg)

DEFINITION:
unless-sufficient (statement, program, old, new, p, q)
= (((statement € program)

A n(old, new, statement)

A eval(p, old)

A (- eval(g, old)))

— eval (list oz, p, q), new))

THEOREM: help-prove-unless
unless-sufficient (eu (p, pryg, q), prg, oldu(p, prg, q), newu (p, prg, q), p, q)
— unless (p, ¢, prg)

DEFINITION:
ensures-key (statement, program, old, new, p, q)
= ((statement € program)
A ((n(old, new, statement) A eval (p, old) A (= eval (g, old)))
— eval(q, new)))

THEOREM: help-prove-ensures
ensures-key (statement, prg, olde (statement, p, q), newe (statement, p, q), p, q)
— ensures (p, ¢, prg)

DEFINITION:

ensures-rest (statement, key, program, old, new, p, q)
= (((statement € program)

(statement # key)

n (old, new, statement)

eval (p, old)

(= eval (g, 0ld)))

eval (p, new))

L>>>>

THEOREM: help-prove-unless-ensures
(ensures-key (statement, prg, oldu (p, prg, q), newu (p, prg, q), p, q)
A ensures-rest (eu (p, prg, q),

20

statement,

prg,

oldu (p, prg, q),
newu (p, prg, q),
p,

7))

— unless (p, ¢, prg)

;55 Strengthening and Weakening Unless and Ensures

DEFINITION:
stronger-p (p, q) < V state (eval (p, state) — eval (g, state))

EVENT: Disable stronger-p.
THEOREM: stronger-p-implies
(stronger-p (p, ¢q) A eval (p, state)) — eval (g, state)

THEOREM: stronger-p-rewrite
stronger-p (p, ¢) = (eval (p, states (p, q)) — eval (g, states (p, q)))

EVENT: Disable stronger-p-implies.

DEFINITION:

equal-p (p, q) < V state (eval (p, state) = eval (g, state))
EvVENT: Disable equal-p.

THEOREM: equal-p-implies

equal-p (p, q) — (eval (p, state) = eval (g, state))

EVENT: Disable equal-p-implies.

THEOREM: equal-p-rewrite

equal-p (p, q) = (eval (p, statee (p, q)) = eval (¢, statee (p, q)))

THEOREM: equal-p-commutative
equal-p (p, ¢) = equal-p (¢, p)

THEOREM: ensures-strengthen-left
(ensures (¢, r, prg) A stronger-p (p, ¢)) — ensures (p, 7, prg)

EVENT: Disable ensures-strengthen-left.

21

THEOREM: ensures-weaken-right
(ensures (p, q, prg) A stronger-p (g, 7)) — ensures (p, T, prg)

EVENT: Disable ensures-weaken-right.

THEOREM: unless-weaken-right
(unless (p, ¢, prg) A stronger-p (g, 7)) — unless (p, r, prg)

EVENT: Disable unless-weaken-right.

THEOREM: unless-equal-p
equal-p (p, ¢) — (unless (p, 7, prg) = unless (¢, r, pryg))

THEOREM: unless-conjunction
(unless (p-1, q, prg) A unless (p-2, ¢, prg) A equal-p (p, list (’and, p-1, p-2)))
— unless (p, ¢, prg)

THEOREM: unless-disjunction
(unless (p-1, ¢, prg) A unless (p-2, ¢, prg) A equal-p (p, list (’or, p-1, p-2)))
— unless (p, ¢, pry)

;33 Fairness Theorems

THEOREM: unconditional-fairness
(unless (p, ¢, prg) A ensures (p, ¢, prg) A total (prg)) — leads-to (p, ¢, prg)

EVENT: Disable unconditional-fairness.

THEOREM: unconditional-fairness-general
(unless (p-1, ¢-1, prg)
A ensures (p-2, ¢-2, prg)
(eval (p, s (prg, ileads (p, pry, q))) — eval (p-1, s(pry, ileads (p, pry, q))))
stronger-p (p-1, p-2)
(eval (¢-1, s (prg, jleads (ileads (p-1, pryg, q), pry, ¢-1)))
— eval(q, s (prg, jleads (ileads (p-1, prg, q), prg, ¢-1))))
stronger-p (¢-2, ¢-1)
total (prg))
leads-to (p, ¢, prg)

> > >

> >

EVENT: Disable unconditional-fairness-general.

22

CONSERVATIVE AXIOM: strong-fairness
(unless (p, g, prg)

A e-ensures (p, ¢, ¢, prg)

A leads-to (p, list (*or, g, c), prg)

A strongly-fair (prg))

— leads-to (p, ¢, prg)

Simultaneously, we introduce the new function symbol strongly-fair.
EVENT: Disable strong-fairness.

THEOREM: strong-fairness-general

(unless (p-1, ¢-1, prg)
A e-ensures (p-2, ¢-2, ¢, prg)

A leads-to (p, list oz, ¢, ¢), prg)
A (eval(p, s (pryg, ileads (p, pryg, q))) — eval(p-1, s (pryg, ileads (p, pry, q))))
A (eval (p-1, s(prg, ileads (p-1, prg, list (’or, ¢-1, ¢))))
— eval(p, s(prg, ileads (p-1, prg, list (’or, ¢-1, ¢)))))
A stronger-p (p-1, p-2)
A (eval(g-1, s (prg, jleads (ileads (p-1, prg, q), pry, g-1)))

— eval(q, s(prg, jleads (ileads (p-1, prg, q), prg, ¢-1))))
A (eval (list (P or, ¢, ¢),
s (prg,
jleads (ileads (p, pryg, list (’or, ¢-1, ¢)), pry, list (’or, ¢, ¢))))
— eval(list (’or, ¢-1, ¢),
s (prg,
jleads (ileads (p, prg, list (*or, ¢-1, ¢)),
prg,
list (o, 4, ¢)))))
A stronger-p (¢-2, ¢-1)
A strongly-fair (prg))
— leads-to(p, ¢, prg)

EVENT: Disable strong-fairness-general.

DEFINITION:
wiw (4, j, p, ¢, ¢, prg)
— ifi<j
then if eval (¢, s(prg, i)) then i
elseif eval (p, s(pryg, 1))
then if eval (¢, s(prg, 7)) then wiw (1 + ¢, j, p, ¢, ¢, prg)
else i endif
else i endif
else fix (i) endif

23

THEOREM: wfw-bigger
wiw (i, j, p, ¢, ¢, prg) £ i

THEOREM: about-wiw
(unless (p, g, prg) A listp (prg) A eval (p, s (prg, i)) A (j £ 4))
— (eval(q, s(prg, wiw (¢, J, p, ¢, ¢, prg)))
vV (eval(p, s (prg, wiw (4, j, p, ¢, ¢, prg)))
A (= eval(q, s(prg, wiw (i, 4, p, ¢, ¢, prg))))
AN (= eval(c, s (prg, wiw (4, j, p, ¢, ¢, prg)))))
vV ((wiw (i, 4, p, ¢, ¢, prg) = fix (j))
A (eval(p, s(prg, j)) V eval(q, s (prg, 5)))))

DEFINITION:
witness (p, g, ¢, prg)
= wiw (ileads (p, pry, q),
next (prg, eee (¢, p, prg, q), ileads (p, pry, q)),
p’
q7
c?

prg)

THEOREM: weak-fairness
(unless (p, g, prg)
A e-ensures (p, ¢, ¢, prg)
A (eval (list (’and, p, list (’not, q)), s (prg, witness (p, q, ¢, prg)))

— eval(c, s(prg, witness (p, ¢, ¢, prg)))))
— leads-to (p, ¢, prg)

EVENT: Disable weak-fairness.

THEOREM: weak-fairness-general
(unless (p-1, ¢-1, prg)
A e-ensures (p-2, ¢-2, ¢, prg)
A (eval (list (?and, p-1, list (*not, ¢-1)), s (prg, witness (p-1, ¢-1, ¢, prg)))
— eval(c, s(prg, witness (p-1, ¢-1, ¢, pryg))))
A (eval(p, s (pry, ileads (p, prg, q))) — eval (p-1, s (prg, ileads (p, pry, q))))
A stronger-p (p-1, p-2)
A (eval(g-1, s (prg, jleads (ileads (p-1, prg, q), pry, ¢-1)))
— eval(q, s (prg, jleads (ileads (p-1, prg, q), prg, ¢-1))))
A stronger-p (¢-2, ¢-1))
— leads-to (p, ¢, pry)

EVENT: Disable weak-fairness-general.

EVENT: Disable witness.

24

THEOREM: deadlock-freedom-witness
(unless (inv, ’ (false), prg)
A enabling-condition (¢, e, prg)
A (eval (inv, s (prg, next (prg, e, ileads (inv, prg, ’ (false)))))
— (- eval(e, s(prg, next (prg, e, ileads (inv, prg, ’> (false)))))))
A schedulable (prg))
— leads-to (inv, ’ (false), pryg)

EVENT: Disable deadlock-freedom-witness.

CONSERVATIVE AXI0M: deadlock-freedom
(unless (inv, ’ (false), prg)
A enabling-condition (¢, e, prg)
A (eval (inv, s (prg, next (pryg, e, ileads (inv, prg, ’ (false)))))
— (= eval(e, s(prg, next (prg, e, ileads (inv, prg, ’> (false)))))))
A deadlock-free (prg))
— leads-to (inv, ’ (false), prg)

Simultaneously, we introduce the new function symbol deadlock-free.

THEOREM: deadlock-freedom-general
(unless (inv, ’ (false), prg)
A enabling-condition (¢, e, prg)
A (eval (inv, s (prg, next (pryg, e, ileads (inv, prg, ’ (false)))))
— (= eval (e, s(prg, next (pryg, e, ileads (inv, prg, ’ (false)))))))
A (= eval (inv, s (pry, ii(p, prg)))) — eval(p, s (pry, ii(p, prg))))
A deadlock-free (prg))
— invariant (p, prg)

EVENT: Enable eval.
EVENT: Enable n.

;35 Some Helpful Definitions and Theorems

DEFINITION:
update-assoc (key, value, alist)
= if listp (alist)
then if caar (alist) = key then cons (cons (key, value), cdr (alist))
else cons (car (alist), update-assoc (key, value, cdr (alist))) endif
else list (cons (key, value)) endif

25

THEOREM: simplify-assoc

assoc (key-1, update-assoc (key-2, value, alist))

= if key-1 = key-2 then cons (key-1, value)
else assoc (key-1, alist) endif

DEFINITION:

addl-mod (n, z)

= if(l+z)<n thenl+z
else 0 endif

DEFINITION:
subl-mod (n, z)
= ifz<n
then if x ~ 0 then n — 1
else z — 1 endif
else 0 endif

DEFINITION:
uc (old, new, keys, excpt)
= if listp (keys)
then if car (keys) € excpt then uc (old, new, cdr (keys), excpt)
elseif assoc (car (keys), old) = assoc (car (keys), new)
then uc (old, new, cdr (keys), excpt)
else f endif
else t endif

THEOREM: uc-basic-property
(uc (old, new, keys, excpt) A (key € keys) A (key & excpt))
— ((assoc (key, old) = assoc (key, new)) = t)

THEOREM: uc-commutative
uc (old, new, keys, excpt) = uc (new, old, keys, excpt)

THEOREM: uc-reflexive
uc (list, list, keys, excpt)

THEOREM: uc-of-update-assoc
uc (list-1, update-assoc (key, value, list-2), keys, excpt)
= if key € excpt then uc (list-1, list-2, keys, excpt)
elseif key € keys
then (assoc (key, list-1) = cons (key, value))
A uc (list-1, list-2, keys, cons (key, excpt))
else uc (list-1, list-2, keys, excpt) endif

THEOREM: strip-cars-append
strip-cars (append (a, b)) = append (strip-cars (a), strip-cars (b))

26

THEOREM: uc-append
uc (old, new, append (a, b), excpt)
= (uc(old, new, a, excpt) A uc(old, new, b, excpt))

THEOREM: uc-commutative-2
uc (old, new, append (a, b), excpt) = uc (old, new, append (b, a), excpt)

EVENT: Disable uc-append.
THEOREM: key-not-member-strip-cars
(key & strip-cars (alist)) — (assoc (key, alist) = f)

THEOREM: uc-property
(uc (old, new, append (strip-cars (old), strip-cars (new)), excpt)
A (key & excpt))
— ((assoc (key, old) = assoc (key, new)) = t)
THEOREM: about-uc
(uc (a, b, append (strip-cars (a), strip-cars (b)), excpt) A (key &€ excpt))
— (assoc (key, a) = assoc (key, b))

DEFINITION:
changed (old, new, excpt) = uc (old, new, strip-cars (append (old, new)), excpt)

EvVENT: Make the library "interpreter".

27

Index

about-uc, 27
about-wfw, 24
add1l-mod, 26
append-is-associative, 2

cancellation-leads-to, 10
cancellation-leads-to-general, 10
changed, 27

choose, 4, 7, 8

computation, 4

computation-n, 8

deadlock-free, 25
deadlock-freedom, 25
deadlock-freedom-general, 25
deadlock-freedom-witness, 25
disjoin-left, 9
disjoin-left-general, 9

e-ensures, 17, 18, 23, 24
e-ensures-enabling, 18
e-ensures-implies, 18

ee, 15, 16

eee, 18, 24

effective-idle, 8
enabling-condition, 17, 18, 25
enabling-condition-implies, 17
ensures, 15, 16, 19-22
ensures-implies, 15
ensures-interval, 10, 11, 15, 16
ensures-interval-bigger, 10
ensures-interval-fixes, 10
ensures-key, 20
ensures-proves-leads-to, 16
ensures-proves-something, 15
ensures-rest, 20, 21
ensures-strengthen-left, 21
ensures-union, 19
ensures-union-1, 19
ensures-union-2, 19
ensures-weaken-right, 22

28

equal-iff, 1

equal-p, 21, 22
equal-p-commutative, 21
equal-p-implies, 21
equal-p-rewrite, 21

et, 16, 20

eu, 6, 20

eval, 5-18, 20-25
eval-and, 5

eval-equal, 6

eval-false, 6

eval-iff, 6

eval-implies, 6

eval-not, 5

eval-or, 6

eval-true, 6
eventually-stable, 12-14

eventually-stable-conjunction, 14

eventually-stable-false, 14
eventually-stable-implies, 13
eventually-stable-proves-not-tr
ue-leads-to, 13
eventually-stable-weaken, 14
exists, 3, 7, 12, 15-18
exists-successor, 3
exists-successor-implies, 3

false-leads-to-anything, 8
forall, 6, 7, 12, 15-18, 21

help-prove-e-ensures, 18
help-prove-ensures, 20
help-prove-total, 20
help-prove-unless, 20
help-prove-unless-ensures, 20

ies, 13, 14

i, 12, 25

ileads, 7-11, 13, 22-25
initial-condition, 11, 12
invariant, 12, 25

invariant-consequence, 12
invariant-implies, 12
invariants-persist-general, 12
is, 7

jes, 13, 14
jleads, 7-11, 13, 14, 22-24

key-not-member-strip-cars, 27

leads-to, 7-14, 16, 22-25
leads-to-false-invariant, 12
leads-to-implies, 7
leads-to-modify-both, 9
leads-to-strengthen-left, 9
leads-to-transitive, 8
leads-to-transitive-general, 8
leads-to-true, 11
leads-to-weaken-right, 9
length, 1-3
listp-not-zero-length, 1

mchoose, 2, 4
mchoose-chooses, 2
mchoose-fixes, 2
member-append, 2
mnext, 2

mnext-choice-1, 2
mnext-choice-2, 2
mnext-choice-2-simplified, 2
mnext-fixes, 2

ms, 4

ms-transition-idle, 4
ms-transition-successful, 4

n, 3, 4, 6-8, 15-18, 20

newc, 17
newc-1, 17
newe, 15, 20
newee, 17
neweee, 18
news, 7

newt, 16
newu, 6, 20, 21
newx, 3, 4

29

next, 4, 8, 15, 16, 24, 25

not-eventually-stable-proves-le
ads-to, 13

not-leads-to-proves-eventually-
stable, 13

nth, 1-3

nth-member, 1

nth-position, 1

numberp-mnext, 2

oldc, 17
olde-1, 17
olde, 15, 20
oldee, 17
oldeee, 18
oldeee-1, 18
oldt, 16, 20
oldu, 6, 20, 21

p-implies-g-leads-to, 9
position, 1-3
position-lessp, 1
position-nth, 2
position-zero, 1
prove-e-ensures, 17
prove-enabling-condition, 17
prove-ensures, 15
prove-eventually-stable, 13
prove-exists-successor, 3
prove-invariant, 12
prove-leads-to, 7
prove-schedulable, 7
prove-total, 16
prove-unless, 6

psp, 11

psp-general, 11
psp-proves-something, 10

g-leads-to-q, 8

remainder-of-add1, 3

remainder-of-add1-1, 3
remainder-of-add1-2, 3
remainder-of-add1-3, 3

remainder-of-add1-3-1, 3 unless-disjunction, 22
unless-equal-p, 22

s, 4, 7-16, 22-25 unless-implies, 6
schedulable, 7, 8, 15, 16, 25 unless-proves-invariant, 12
schedulable-implies, 7 unless-sufficient, 20
schedulable-implies-effective-c unless-union, 19
omputation, 8 unless-union-1, 19
simplify-assoc, 26 unless-union-2, 19
stable-occurs-proves-eventually unless-weaken-right, 22
-stable, 14 update-assoc, 25, 26
statee, 21
states, 21 weak-fairness, 24
strip-cars-append, 26 weak-fairness-general, 24
strong-fairness, 23 wiw, 23, 24
strong-fairness-general, 23 wiw-bigger, 24
stronger-p, 21-24 witness, 24

stronger-p-implies, 21
stronger-p-rewrite, 21
strongly-fair, 23
subl-mod, 26

the-interval-of-ensures, 16

total, 16, 18-20, 22

total-implies, 16

total-implies-schedulable, 16

total-sufficient, 20

total-union, 19

total-union-1, 18

total-union-2, 19

true-leads-to-proves-not-eventu
ally-stable, 13

uc, 26, 27

uc-append, 27
uc-basic-property, 26
uc-commutative, 26
uc-commutative-2, 27
uc-of-update-assoc, 26
uc-property, 27

uc-reflexive, 26
unconditional-fairness, 22
unconditional-fairness-general, 22
unless, 6, 10-12, 14-16, 19-25
unless-conjunction, 22

30

