
Event: Start with the library "interpreter".

;;;List Operations

Theorem: car-append
car (append (a, b))
= if listp (a) then car (a)

else car (b) endif

Theorem: listp-append
listp (append (a, b)) = (listp (a) ∨ listp (b))

Theorem: length-append
length (append (a, b)) = (length (a) + length (b))

Definition:
plistp (list)
= if listp (list) then plistp (cdr (list))

else list = nil endif

Theorem: plistp-append-plistp
plistp (append (a, b)) = plistp (b)

Theorem: append-plistp-nil
(append (a, nil) = a) = plistp (a)

Theorem: not-lessp-count-append
(count (x ) + count (y)) 6< count (append (x , y))

Definition:
all-numberps (list)
= if listp (list)

then if car (list) ∈ N then all-numberps (cdr (list))
else f endif

else t endif

Theorem: all-numberps-implies
(all-numberps (list) ∧ (e ∈ list)) → (e ∈ N)

;;;Set Operations

Definition:
setp (list)
= if listp (list)

then if car (list) ∈ cdr (list) then f
else setp (cdr (list)) endif

else t endif

1



Theorem: setp-append
((¬ setp (a)) ∨ (¬ setp (b))) → (¬ setp (append (a, b)))

Theorem: setp-member
((x ∈ a) ∧ (x ∈ b)) → (¬ setp (append (a, b)))

Theorem: setp-append-cons
setp (append (a, cons (x , b))) = setp (cons (x , append (a, b)))

Theorem: setp-append-not-listp
(¬ listp (b)) → (setp (append (a, b)) = setp (a))

Theorem: setp-append-canonicalize
setp (append (a, b)) = setp (append (b, a))

Theorem: setp-member-1
(setp (append (a, b)) ∧ (x ∈ b)) → (x 6∈ a)

Theorem: setp-member-2
(setp (append (a, b)) ∧ (x ∈ a)) → (x 6∈ b)

;;;Subset Operations

Definition:
sublistp (sub, list)
= if listp (sub) then (car (sub) ∈ list) ∧ sublistp (cdr (sub), list)

else t endif

Theorem: sublistp-append
sublistp (append (a, b), list) = (sublistp (a, list) ∧ sublistp (b, list))

Theorem: member-of-sublistp-is-member
((a ∈ b) ∧ sublistp (b, c)) → (a ∈ c)

Theorem: sublistp-of-sublistp-is-sublistp
(sublistp (a, b) ∧ sublistp (b, c)) → sublistp (a, c)

Theorem: sublistp-normalize
(¬ plistp (b)) → (sublistp (a, b) = sublistp (a, append (b, nil)))

Definition:
sei (a, b)
= if listp (a) then sei (cdr (a), append (b, list (car (a))))

else t endif

2



Theorem: sublistp-easy
sublistp (a, append (b, a))

Theorem: sublistp-reflexive
sublistp (a, a)

Theorem: sublistp-in-append
(sublistp (x , a) ∨ sublistp (x , b)) → sublistp (x , append (a, b))

Theorem: sublistp-in-cons
sublistp (a, y) → sublistp (a, cons (x , y))

;;;Tree Operations

Definition:
nodes-rec (flag , tree)
= if listp (tree)

then if flag = ’tree
then cons (car (tree), nodes-rec (’forest, cdr (tree)))
else append (nodes-rec (’tree, car (tree)),

nodes-rec (’forest, cdr (tree))) endif
else nil endif

Definition: nodes (tree) = nodes-rec (’tree, tree)

Definition:
roots (forest)
= if listp (forest) then cons (caar (forest), roots (cdr (forest)))

else forest endif

Definition:
children-rec (flag , node, tree)
= if listp (tree)

then if flag = ’tree
then if car (tree) = node

then append (roots (cdr (tree)),
children-rec (’forest, node, cdr (tree)))

else children-rec (’forest, node, cdr (tree)) endif
else append (children-rec (’tree, node, car (tree)),

children-rec (’forest, node, cdr (tree))) endif
else nil endif

Definition:
children (node, tree) = children-rec (’tree, node, tree)

3



Definition:
parent-rec (flag , node, tree)
= if listp (tree)

then if flag = ’tree
then if node ∈ roots (cdr (tree))

then cons (car (tree), parent-rec (’forest, node, cdr (tree)))
else parent-rec (’forest, node, cdr (tree)) endif

else append (parent-rec (’tree, node, car (tree)),
parent-rec (’forest, node, cdr (tree))) endif

else nil endif

Definition:
parent (node, tree) = car (parent-rec (’tree, node, tree))

Definition:
proper-tree (flag , tree)
= if flag = ’tree

then if listp (tree) then proper-tree (’forest, cdr (tree))
else f endif

elseif listp (tree)
then proper-tree (’tree, car (tree))

∧ proper-tree (’forest, cdr (tree))
else tree = nil endif

Theorem: canonicalize-nodes-rec-flag
nodes-rec (flag , tree)
= if flag = ’tree then nodes-rec (’tree, tree)

else nodes-rec (’forest, tree) endif

Theorem: canonicalize-proper-tree-flag
proper-tree (flag , tree)
= if flag = ’tree then proper-tree (’tree, tree)

else proper-tree (’forest, tree) endif

Theorem: canonicalize-parent-rec-flag
parent-rec (flag , child , tree)
= if flag = ’tree then parent-rec (’tree, child , tree)

else parent-rec (’forest, child , tree) endif

Theorem: canonicalize-children-rec-flag
children-rec (flag , parent , tree)
= if flag = ’tree then children-rec (’tree, parent , tree)

else children-rec (’forest, parent , tree) endif

Theorem: not-flag-tree

4



((flag 6= ’tree) ∧ (flag 6= ’forest))
→ ((nodes-rec (flag , tree) = nodes-rec (’forest, tree))

∧ (proper-tree (flag , tree) = proper-tree (’forest, tree))
∧ (parent-rec (flag , child , tree)

= parent-rec (’forest, child , tree))
∧ (children-rec (flag , parent , tree)

= children-rec (’forest, parent , tree)))

Theorem: parent-rec-children-rec
(child ∈ children-rec (flag , parent , tree))
= (parent ∈ parent-rec (flag , child , tree))

Event: Disable parent-rec-children-rec.

Theorem: plistp-children-rec
plistp (children-rec (flag , parent , tree))

Theorem: plistp-parent-rec
plistp (parent-rec (flag , child , tree))

Theorem: plistp-roots
proper-tree (’forest, forest) → plistp (roots (forest))

Theorem: member-roots-member-forest
(proper-tree (’forest, forest) ∧ (node ∈ roots (forest)))
→ (node ∈ nodes-rec (’forest, forest))

Theorem: not-member-no-parent
(proper-tree (flag , tree) ∧ (node 6∈ nodes-rec (flag , tree)))
→ (parent-rec (flag , node, tree) = nil)

Theorem: member-child-tree
(proper-tree (flag , tree) ∧ (child ∈ children-rec (flag , node, tree)))
→ (child ∈ nodes-rec (flag , tree))

Theorem: setp-tree-unique-parent
(proper-tree (flag , tree) ∧ setp (nodes-rec (flag , tree)))
→ (parent-rec (flag , child , tree)

= if child ∈ nodes-rec (flag , tree)
then if ((flag = ’tree) ∧ (car (tree) = child))

∨ ((flag 6= ’tree)
∧ (child ∈ roots (tree))) then nil

else list (car (parent-rec (flag , child , tree))) endif
else nil endif)

Event: Disable setp-tree-unique-parent.

5



Theorem: member-parent-parent
(proper-tree (flag , tree)
∧ setp (nodes-rec (flag , tree))
∧ (parent ∈ parent-rec (flag , child , tree)))
→ (parent-rec (flag , child , tree) = list (parent))

Theorem: parent-of-child
(proper-tree (flag , tree)
∧ setp (nodes-rec (flag , tree))
∧ (child ∈ children-rec (flag , parent , tree)))
→ (parent-rec (flag , child , tree) = list (parent))

Theorem: member-parent-member-tree
(parent ∈ parent-rec (flag , child , tree))
→ (parent ∈ nodes-rec (flag , tree))

Theorem: node-that-has-child-is-in-tree
listp (children-rec (flag , parent , tree)) → (parent ∈ nodes-rec (flag , tree))

Theorem: node-that-has-parent-is-in-tree
(proper-tree (flag , tree) ∧ listp (parent-rec (flag , child , tree)))
→ (child ∈ nodes-rec (flag , tree))

Theorem: sublistp-children-generalized
(proper-tree (flag , tree)
∧ sublistp (children, children-rec (flag , parent , tree)))
→ sublistp (children, nodes-rec (flag , tree))

Event: Disable sublistp-children-generalized.

Theorem: sublistp-children
proper-tree (flag , tree)
→ sublistp (children-rec (flag , parent , tree), nodes-rec (flag , tree))

Definition:
subtreep (flag , subtree, tree)
= if listp (tree) ∧ listp (subtree)

then if flag = ’tree
then if subtree = tree then t

else subtreep (’forest, subtree, cdr (tree)) endif
elseif subtreep (’tree, subtree, car (tree)) then t
else subtreep (’forest, subtree, cdr (tree)) endif

else f endif

6



Definition:
subtrees (flag , tree)
= if listp (tree)

then if flag = ’tree
then cons (tree, subtrees (’forest, cdr (tree)))
else append (subtrees (’tree, car (tree)),

subtrees (’forest, cdr (tree))) endif
else nil endif

Theorem: subtreep-subtrees
(subtree ∈ subtrees (flag , tree)) → subtreep (flag , subtree, tree)

Definition:
next-level (subtrees)
= if listp (subtrees)

then append (cdar (subtrees), next-level (cdr (subtrees)))
else subtrees endif

Theorem: nodes-rec-forest-append
nodes-rec (’forest, append (a, b))
= append (nodes-rec (’forest, a), nodes-rec (’forest, b))

Theorem: next-level-reduces-count
listp (subtrees) → (count (next-level (subtrees)) < count (subtrees))

Theorem: next-level-of-tree-in-subtrees
proper-tree (’forest, forest)
→ sublistp (forest , subtrees (’forest, forest))

Theorem: subtrees-of-subtree-in-complete-subtrees
(proper-tree (’tree, subtree) ∧ (subtree ∈ subtrees (flag , tree)))
→ sublistp (subtrees (’tree, subtree), subtrees (flag , tree))

Theorem: subtrees-of-subtrees-in-complete-subtrees
(proper-tree (’forest, subtrees) ∧ sublistp (subtrees, subtrees (flag , tree)))
→ sublistp (subtrees (’forest, subtrees), subtrees (flag , tree))

Theorem: next-level-in-subtrees-forest
proper-tree (’forest, subtrees)
→ sublistp (next-level (subtrees), subtrees (’forest, subtrees))

Theorem: next-level-of-subtrees-in-complete-subtrees
(proper-tree (’forest, subtrees) ∧ sublistp (subtrees, subtrees (flag , tree)))
→ sublistp (next-level (subtrees), subtrees (flag , tree))

7



Theorem: proper-tree-of-append
(proper-tree (’forest, a) ∧ proper-tree (’forest, b))
→ proper-tree (’forest, append (a, b))

Theorem: proper-tree-next-level-of-proper-tree
proper-tree (’forest, subtrees)
→ proper-tree (’forest, next-level (subtrees))

Theorem: not-member-subtrees
(root 6∈ nodes-rec (flag , tree))
→ (cons (root , forest) 6∈ subtrees (flag , tree))

Theorem: not-member-no-children
(parent 6∈ nodes-rec (flag , tree))
→ (children-rec (flag , parent , tree) = nil)

Theorem: no-children-in-rest-of-forest
(setp (append (nodes-rec (’tree, tree), nodes-rec (’forest, forest)))
∧ (parent ∈ nodes-rec (’tree, tree)))
→ (children-rec (’forest, parent , forest) = nil)

Theorem: no-children-in-rest-of-tree
(setp (append (nodes-rec (’tree, tree), nodes-rec (’forest, forest)))
∧ (parent ∈ nodes-rec (’forest, forest)))
→ (children-rec (’tree, parent , tree) = nil)

Theorem: member-subtree-member-tree
(cons (root , forest) ∈ subtrees (flag , tree))
→ (root ∈ nodes-rec (flag , tree))

Theorem: children-of-setp-tree
(setp (nodes-rec (flag , tree))
∧ proper-tree (flag , tree)
∧ (cons (root , forest) ∈ subtrees (flag , tree)))
→ (children-rec (flag , root , tree) = roots (forest))

Theorem: node-has-parent
((node ∈ nodes-rec (flag , tree))
∧ proper-tree (flag , tree)
∧ if flag = ’tree then node 6= car (tree)

else node 6∈ roots (tree) endif)
→ (car (parent-rec (flag , node, tree)) ∈ nodes-rec (flag , tree))

Theorem: parent-is-not-itself-generalized
(setp (nodes-rec (flag , tree))
∧ proper-tree (flag , tree)
∧ listp (parent-rec (flag , child , tree)))
→ (child 6= car (parent-rec (flag , child , tree)))

8



Theorem: parent-is-not-itself
(setp (nodes-rec (’tree, tree))
∧ proper-tree (’tree, tree)
∧ (child ∈ cdr (nodes-rec (’tree, tree))))
→ (child 6= car (parent-rec (’tree, child , tree)))

Theorem: listp-parent-rec-equals
(setp (nodes-rec (flag , tree)) ∧ proper-tree (flag , tree))
→ (listp (parent-rec (flag , child , tree))

= ((child ∈ nodes-rec (flag , tree))
∧ if flag = ’tree then child 6= car (tree)

else child 6∈ roots (tree) endif))

Theorem: parent-is-not-child
(setp (nodes-rec (flag , tree))
∧ proper-tree (flag , tree)
∧ listp (parent-rec (flag , child , tree)))
→ (car (parent-rec (flag , child , tree)) 6∈ children-rec (flag , child , tree))

Theorem: parent-not-in-children
(setp (nodes-rec (’tree, tree))
∧ proper-tree (’tree, tree)
∧ (parent ∈ cdr (nodes-rec (’tree, tree))))
→ (parent 6∈ children-rec (’tree, parent , tree))

;;; Variables and channel operations

Definition: value (key , state) = cdr (assoc (key , state))

Definition: channel (name, state) = value (name, state)

Definition:
empty (name, state) = (¬ listp (channel (name, state)))

Definition: head (name, state) = car (channel (name, state))

Definition:
send (channel , message, state)
= append (channel (channel , state), list (message))

Definition:
receive (channel , state) = cdr (channel (channel , state))

;;; Program Specific

9



Definition:
status (node, state) = value (cons (’status, node), state)

Definition:
found-value (node, state) = value (cons (’found-value, node), state)

Definition:
outstanding (node, state) = value (cons (’outstanding, node), state)

Definition:
node-value (node, state) = value (cons (’node-value, node), state)

Definition:
send-find (to-children, old , new)
= if listp (to-children)

then (channel (car (to-children), new)
= send (car (to-children), ’find, old))
∧ send-find (cdr (to-children), old , new)

else t endif

;;; The four program statements

Definition:
receive-find (old , new , node, from-parent , to-parent , to-children)
= if head (from-parent , old) = ’find

then (channel (from-parent , new) = receive (from-parent , old))
∧ (status (node, new) = ’started)
∧ (found-value (node, new) = node-value (node, old))
∧ (outstanding (node, new) = length (to-children))
∧ send-find (to-children, old , new)
∧ (channel (to-parent , new)

= if length (to-children) ' 0
then send (to-parent , node-value (node, old), old)
else channel (to-parent , old) endif)

∧ changed (old ,
new ,
append (list (from-parent ,

to-parent ,
cons (’status, node),
cons (’found-value, node),
cons (’outstanding, node)),

to-children))
else changed (old , new , nil) endif

10



Definition:
min (x , y)
= if x < y then fix (x )

else fix (y) endif

Definition:
receive-report (old , new , node, from-child , to-parent)
= if empty (from-child , old) then changed (old , new , nil)

else (channel (from-child , new) = receive (from-child , old))
∧ (found-value (node, new)

= min (found-value (node, old),
head (from-child , old)))

∧ (outstanding (node, new)
= (outstanding (node, old) − 1))

∧ (channel (to-parent , new)
= if outstanding (node, new) ' 0

then send (to-parent ,
found-value (node, new),
old)

else channel (to-parent , old) endif)
∧ changed (old ,

new ,
list (from-child ,

to-parent ,
cons (’outstanding, node),
cons (’found-value, node))) endif

Definition:
start (old , new , root , to-children)
= if status (root , old) = ’not-started

then (status (root , new) = ’started)
∧ (found-value (root , new) = node-value (root , old))
∧ (outstanding (root , new) = length (to-children))
∧ send-find (to-children, old , new)
∧ changed (old ,

new ,
append (list (cons (’status, root),

cons (’found-value, root),
cons (’outstanding, root)),

to-children))
else changed (old , new , nil) endif

Definition:
root-receive-report (old , new , root , from-child)
= if empty (from-child , old) then changed (old , new , nil)

11



else (channel (from-child , new) = receive (from-child , old))
∧ (found-value (root , new)

= min (found-value (root , old),
head (from-child , old)))

∧ (outstanding (root , new)
= (outstanding (root , old) − 1))

∧ changed (old ,
new ,
list (from-child ,

cons (’outstanding, root),
cons (’found-value, root))) endif

;;; The Program

Definition:
rfp (node, children)
= if listp (children)

then cons (cons (node, car (children)), rfp (node, cdr (children)))
else nil endif

Definition:
receive-find-prg (nodes, tree)
= if listp (nodes)

then cons (list (’receive-find,
car (nodes),
cons (parent (car (nodes), tree), car (nodes)),
cons (car (nodes), parent (car (nodes), tree)),
rfp (car (nodes), children (car (nodes), tree))),

receive-find-prg (cdr (nodes), tree))
else nil endif

Theorem: member-receive-find-prg
(statement ∈ receive-find-prg (nodes, tree))
= ((car (statement) = ’receive-find)

∧ (cadr (statement) ∈ nodes)
∧ listp (caddr (statement))
∧ (caaddr (statement) = parent (cadr (statement), tree))
∧ (cdaddr (statement) = cadr (statement))
∧ listp (cadddr (statement))
∧ (caadddr (statement) = cadr (statement))
∧ (cdadddr (statement) = parent (cadr (statement), tree))
∧ (caddddr (statement)

= rfp (cadr (statement), children (cadr (statement), tree)))
∧ (cdddddr (statement) = nil))

12



Definition:
rrp (node, children, parent)
= if listp (children)

then cons (list (’receive-report,
node,
cons (car (children), node),
cons (node, parent)),

rrp (node, cdr (children), parent))
else nil endif

Theorem: member-rrp
(statement ∈ rrp (node, children, parent))
= ((car (statement) = ’receive-report)

∧ (cadr (statement) = node)
∧ listp (caddr (statement))
∧ (caaddr (statement) ∈ children)
∧ (cdaddr (statement) = node)
∧ listp (cadddr (statement))
∧ (caadddr (statement) = node)
∧ (cdadddr (statement) = parent)
∧ (cddddr (statement) = nil))

Definition:
receive-report-prg (nodes, tree)
= if listp (nodes)

then append (rrp (car (nodes),
children (car (nodes), tree),
parent (car (nodes), tree)),

receive-report-prg (cdr (nodes), tree))
else nil endif

Theorem: member-receive-report-prg
(statement ∈ receive-report-prg (nodes, tree))
= ((car (statement) = ’receive-report)

∧ (cadr (statement) ∈ nodes)
∧ listp (caddr (statement))
∧ (caaddr (statement) ∈ children (cadr (statement), tree))
∧ (cdaddr (statement) = cadr (statement))
∧ listp (cadddr (statement))
∧ (caadddr (statement) = cadr (statement))
∧ (cdadddr (statement) = parent (cadr (statement), tree))
∧ (cddddr (statement) = nil))

Definition:
start-prg (root , tree)
= list (list (’start, root , rfp (root , children (root , tree))))

13



Theorem: member-start-prg
(statement ∈ start-prg (root , tree))
= ((car (statement) = ’start)

∧ (cadr (statement) = root)
∧ (caddr (statement) = rfp (root , children (root , tree)))
∧ (cdddr (statement) = nil))

Definition:
rrrp (root , children)
= if listp (children)

then cons (list (’root-receive-report,
root ,
cons (car (children), root)),

rrrp (root , cdr (children)))
else nil endif

Theorem: member-rrrp
(statement ∈ rrrp (root , children))
= ((car (statement) = ’root-receive-report)

∧ (cadr (statement) = root)
∧ listp (caddr (statement))
∧ (caaddr (statement) ∈ children)
∧ (cdaddr (statement) = root)
∧ (cdddr (statement) = nil))

Definition:
root-receive-report-prg (root , tree) = rrrp (root , children (root , tree))

Theorem: member-root-receive-report-prg
(statement ∈ root-receive-report-prg (root , tree))
= ((car (statement) = ’root-receive-report)

∧ (cadr (statement) = root)
∧ listp (caddr (statement))
∧ (caaddr (statement) ∈ children (root , tree))
∧ (cdaddr (statement) = root)
∧ (cdddr (statement) = nil))

Definition:
tree-prg (tree)
= append (start-prg (car (tree), tree),

append (root-receive-report-prg (car (tree), tree),
append (receive-find-prg (cdr (nodes (tree)), tree),

receive-report-prg (cdr (nodes (tree)), tree))))

Theorem: equal-if

14



(if test then p1
else p2 endif
= if test then r1

else r2 endif)
= if test then p1 = r1

else p2 = r2 endif

Theorem: member-tree-prg
(statement ∈ tree-prg (tree))
= (((car (statement) = ’start)

∧ (cadr (statement) = car (tree))
∧ (caddr (statement)

= rfp (car (tree), children (car (tree), tree)))
∧ (cdddr (statement) = nil))
∨ ((car (statement) = ’root-receive-report)

∧ (cadr (statement) = car (tree))
∧ listp (caddr (statement))
∧ (caaddr (statement) ∈ children (car (tree), tree))
∧ (cdaddr (statement) = car (tree))
∧ (cdddr (statement) = nil))

∨ ((car (statement) = ’receive-find)
∧ (cadr (statement) ∈ cdr (nodes (tree)))
∧ listp (caddr (statement))
∧ (caaddr (statement) = parent (cadr (statement), tree))
∧ (cdaddr (statement) = cadr (statement))
∧ listp (cadddr (statement))
∧ (caadddr (statement) = cadr (statement))
∧ (cdadddr (statement) = parent (cadr (statement), tree))
∧ (caddddr (statement)

= rfp (cadr (statement),
children (cadr (statement), tree)))

∧ (cdddddr (statement) = nil))
∨ ((car (statement) = ’receive-report)

∧ (cadr (statement) ∈ cdr (nodes (tree)))
∧ listp (caddr (statement))
∧ (caaddr (statement) ∈ children (cadr (statement), tree))
∧ (cdaddr (statement) = cadr (statement))
∧ listp (cadddr (statement))
∧ (caadddr (statement) = cadr (statement))
∧ (cdadddr (statement) = parent (cadr (statement), tree))
∧ (cddddr (statement) = nil)))

;;; Correctness

15



Definition:
treep (tree)
= (setp (nodes (tree))

∧ all-numberps (nodes (tree))
∧ proper-tree (’tree, tree))

Definition:
total-outstanding (nodes, tree, state)
= if listp (nodes)

then total-outstanding (cdr (nodes), tree, state)
+ if status (car (nodes), state) = ’started

then outstanding (car (nodes), state)
else 1 + length (children (car (nodes), tree)) endif

else 0 endif

Definition:
dl (down-links , state)
= if listp (down-links)

then ((empty (car (down-links), state)
∧ (status (caar (down-links), state)

= status (cdar (down-links), state)))
∨ ((channel (car (down-links), state) = list (’find))

∧ (status (caar (down-links), state) = ’started)
∧ (status (cdar (down-links), state)

= ’not-started)))
∧ dl (cdr (down-links), state)

else t endif

Definition:
done (node, state)
= ((status (node, state) = ’started)

∧ (outstanding (node, state) ' 0))

Definition:
ul (up-links, state)
= if listp (up-links)

then (empty (car (up-links), state)
∨ ((channel (car (up-links), state)

= list (found-value (caar (up-links), state)))
∧ done (caar (up-links), state)))

∧ ul (cdr (up-links), state)
else t endif

Definition:
reported (node, parent , state)
= (done (node, state) ∧ empty (cons (node, parent), state))

16



Definition:
number-not-reported (children, parent , state)
= if listp (children)

then if reported (car (children), parent , state)
then number-not-reported (cdr (children), parent , state)
else 1 + number-not-reported (cdr (children), parent , state) endif

else 0 endif

Definition:
min-of-reported (children, parent , state, min)
= if listp (children)

then if reported (car (children), parent , state)
then min (found-value (car (children), state),

min-of-reported (cdr (children), parent , state, min))
else min-of-reported (cdr (children), parent , state, min) endif

else min endif

Definition:
no (nodes, tree, state)
= if listp (nodes)

then if status (car (nodes), state) = ’started
then (outstanding (car (nodes), state)

= number-not-reported (children (car (nodes), tree),
car (nodes),
state))

∧ (found-value (car (nodes), state)
= min-of-reported (children (car (nodes), tree),

car (nodes),
state,
node-value (car (nodes), state)))

else t endif
∧ no (cdr (nodes), tree, state)

else t endif

Definition:
down-links-1 (parent , children)
= if listp (children)

then cons (cons (parent , car (children)),
down-links-1 (parent , cdr (children)))

else nil endif

Definition:
down-links (nodes, tree)
= if listp (nodes)

then append (down-links-1 (car (nodes), children (car (nodes), tree)),

17



down-links (cdr (nodes), tree))
else nil endif

Definition:
up-links (nodes, tree)
= if listp (nodes)

then cons (cons (car (nodes), parent (car (nodes), tree)),
up-links (cdr (nodes), tree))

else nil endif

Definition:
inv (tree, state)
= (dl (down-links (nodes (tree), tree), state)

∧ ul (up-links (cdr (nodes (tree)), tree), state)
∧ no (nodes (tree), tree, state))

Definition:
not-started (nodes, state)
= if listp (nodes)

then (status (car (nodes), state) = ’not-started)
∧ not-started (cdr (nodes), state)

else t endif

Definition:
all-channels (tree)
= append (up-links (cdr (nodes (tree)), tree), down-links (nodes (tree), tree))

Definition:
all-empty (channels, state)
= if listp (channels)

then empty (car (channels), state) ∧ all-empty (cdr (channels), state)
else t endif

Definition:
min-node-value (nodes, state, min)
= if listp (nodes)

then min (node-value (car (nodes), state),
min-node-value (cdr (nodes), state, min))

else min endif

Definition:
correct (tree, state)
= (found-value (car (tree), state)

= min-node-value (cdr (nodes (tree)),
state,
node-value (car (tree), state)))

18



;;; Proof of Correctness

Theorem: all-empty-implies-empty
(all-empty (channels, state) ∧ (channel ∈ channels))
→ (¬ listp (channel (channel , state)))

Theorem: not-started-implies-not-started
(not-started (nodes, state) ∧ (node ∈ nodes))
→ (cdr (assoc (cons (’status, node), state)) = ’not-started)

Theorem: all-empty-append
all-empty (append (a, b), state)
= (all-empty (a, state) ∧ all-empty (b, state))

Theorem: all-empty-implies-ul
all-empty (up-links , state) → ul (up-links, state)

Definition:
nodes-in-channels (channels)
= if listp (channels)

then cons (caar (channels),
cons (cdar (channels), nodes-in-channels (cdr (channels))))

else nil endif

Theorem: all-empty-not-started-implies-dl
(all-empty (down-links, state)
∧ not-started (nodes-in-channels (down-links), state))
→ dl (down-links, state)

Theorem: not-started-implies-no
not-started (nodes, state) → no (nodes, tree, state)

Theorem: nodes-in-down-links-1-in-nodes
(node ∈ nodes-in-channels (down-links-1 (parent , children)))
= if listp (children) then node ∈ cons (parent , children)

else f endif

Theorem: nodes-in-channels-append
nodes-in-channels (append (a, b))
= append (nodes-in-channels (a), nodes-in-channels (b))

Theorem: nodes-in-down-links-in-nodes
(proper-tree (’tree, tree)
∧ (node ∈ nodes-in-channels (down-links (nodes, tree))))
→ (node ∈ nodes (tree))

19



Theorem: sublistp-not-started
(sublistp (sub, list) ∧ not-started (list , state)) → not-started (sub, state)

Theorem: sublistp-down-links-1
(sublistp (children, nodes) ∧ (parent ∈ nodes))
→ sublistp (nodes-in-channels (down-links-1 (parent , children)), nodes)

Theorem: children-of-non-node
(parent 6∈ nodes-rec (flag , tree))
→ (children-rec (flag , parent , tree) = nil)

Theorem: down-links-is-sublistp
proper-tree (’tree, tree)
→ sublistp (nodes-in-channels (down-links (nodes, tree)),

nodes-rec (’tree, tree))

Theorem: initial-conditions-imply-invariant
(proper-tree (’tree, tree)
∧ all-empty (all-channels (tree), state)
∧ not-started (nodes (tree), state))
→ inv (tree, state)

Definition:
found-value-node-value (subtrees, state)
= if listp (subtrees)

then (found-value (caar (subtrees), state)
= min-node-value (cdr (nodes-rec (’tree, car (subtrees))),

state,
node-value (caar (subtrees), state)))

∧ found-value-node-value (cdr (subtrees), state)
else t endif

Definition:
nati (subtrees)
= if listp (subtrees) then nati (next-level (subtrees))

else t endif

Theorem: found-value-node-value-append
found-value-node-value (append (a, b), state)
= (found-value-node-value (a, state) ∧ found-value-node-value (b, state))

;find-value-of-node-value for a subtree is true if
;find-value-of-node-value for the next-level of that subtree is true.

20



Theorem: no-implies
(no (nodes, tree, state)
∧ (node ∈ nodes)
∧ (status (node, state) = ’started))
→ ((number-not-reported (children (node, tree), node, state)

= cdr (assoc (cons (’outstanding, node), state)))
∧ (cdr (assoc (cons (’outstanding, node), state)) ∈ N)
∧ (cdr (assoc (cons (’found-value, node), state))

= min-of-reported (children (node, tree),
node,
state,
node-value (node, state))))

Theorem: total-outstanding-0-implies
(((total-outstanding (nodes, tree, state) = 0)
∧ (node ∈ nodes)
∧ (cdr (assoc (cons (’outstanding, node), state)) ∈ N))
→ (cdr (assoc (cons (’outstanding, node), state)) = 0))
∧ (((total-outstanding (nodes, tree, state) = 0) ∧ (node ∈ nodes))

→ (cdr (assoc (cons (’status, node), state)) = ’started))

Theorem: number-not-reported-0-implies
((number-not-reported (children, parent , state) = 0) ∧ (node ∈ children))
→ reported (node, parent , state)

Theorem: proper-tree-tree-implies-nodes-exists
proper-tree (’tree, tree) → listp (nodes-rec (’tree, tree))

Theorem: min-of-two-nodes-values
min (min-node-value (forest-1 ,

state,
cdr (assoc (cons (’node-value, root), state))),

min-node-value (rest-of-forest , state, min))
= min-node-value (cons (root , append (forest-1 , rest-of-forest)), state, min)

Theorem: found-value-min-value-generalized
(found-value-node-value (forest , state)
∧ (number-not-reported (roots (forest), root , state) = 0)
∧ proper-tree (’forest, forest))
→ (min-of-reported (roots (forest), root , state, min)

= min-node-value (nodes-rec (’forest, forest), state, min))

Theorem: no-at-termination
(proper-tree (’tree, tree)
∧ proper-tree (’forest, subtrees)

21



∧ setp (nodes-rec (’tree, tree))
∧ no (nodes-rec (’tree, tree), tree, state)
∧ (total-outstanding (nodes-rec (’tree, tree), tree, state) = 0)
∧ sublistp (subtrees, subtrees (’tree, tree)))
→ found-value-node-value (subtrees, state)

Theorem: inv-implies-augmented-correctness-condition
(proper-tree (’tree, tree)
∧ setp (nodes-rec (’tree, tree))
∧ inv (tree, state)
∧ (total-outstanding (nodes (tree), tree, state) = 0))
→ correct (tree, state)

Definition:
send-find-func (to-children, old)
= if listp (to-children)

then update-assoc (car (to-children),
send (car (to-children), ’find, old),
send-find-func (cdr (to-children), old))

else old endif

Definition:
receive-find-func (old , node, from-parent , to-parent , to-children)
= if head (from-parent , old) = ’find

then update-assoc (from-parent ,
receive (from-parent , old),
update-assoc (cons (’status, node),

’started,
update-assoc (cons (’found-value,

node),
node-value (node, old),
update-assoc (cons (’outstanding,

node),
length (to-children),
if length (to-children) ' 0
then update-assoc (to-parent ,

send (to-parent ,
node-value (node,

old),
old),

send-find-func (to-children,
old))

else send-find-func (to-children,
old) endif))))

else old endif

22



Theorem: send-find-func-implements-send-find
send-find (to-children, old , send-find-func (to-children, old))

Theorem: nodes-are-not-litatoms
(all-numberps (nodes-rec (flag , tree)) ∧ (node ∈ nodes-rec (flag , tree)))
→ ((pack (x ) = node) = f)

Theorem: parent-is-not-a-litatom
(all-numberps (nodes-rec (’tree, tree))
∧ setp (nodes-rec (’tree, tree))
∧ proper-tree (’tree, tree)
∧ (child ∈ cdr (nodes-rec (’tree, tree))))
→ ((pack (x ) = car (parent-rec (’tree, child , tree))) = f)

Theorem: children-are-not-litatoms
(all-numberps (nodes-rec (flag , tree))
∧ proper-tree (flag , tree)
∧ (child ∈ children-rec (flag , parent , tree)))
→ ((pack (x ) = child) = f)

Theorem: children-are-not-litatoms-member
(all-numberps (nodes-rec (flag , tree)) ∧ proper-tree (flag , tree))
→ ((pack (x ) ∈ children-rec (flag , parent , tree)) = f)

Theorem: send-find-of-update-assoc
(key 6∈ to-children)
→ (send-find (to-children, old , update-assoc (key , value, state))

= send-find (to-children, old , state))

Theorem: assoc-of-send-find-func
(key 6∈ to-children)
→ (assoc (key , send-find-func (to-children, old)) = assoc (key , old))

Theorem: about-rfp
(p 6∈ c) → (cons (v , p) 6∈ rfp (v , c))

Theorem: about-rfp-numberp
(a ∈ N) → (cons (pack (x ), y) 6∈ rfp (a, b))

Theorem: parent-not-in-rfp
(setp (nodes-rec (’tree, tree))
∧ proper-tree (’tree, tree)
∧ (v ∈ cdr (nodes-rec (’tree, tree))))
→ (cons (v , car (parent-rec (’tree, v , tree)))

6∈ rfp (v , children-rec (’tree, v , tree)))

23



Theorem: to-node-not-in-rfp
(node 6∈ children) → (cons (x , node) 6∈ rfp (node, children))

Theorem: uc-of-send-find-func
sublistp (to-children, excpt)
→ (uc (old , send-find-func (to-children, state), keys, excpt)

= uc (old , state, keys, excpt))

Theorem: receive-find-func-implements-receive-find
(treep (tree) ∧ (statement ∈ receive-find-prg (cdr (nodes (tree)), tree)))
→ n (old ,

receive-find-func (old ,
cadr (statement),
caddr (statement),
cadddr (statement),
caddddr (statement)),

statement)

Definition:
receive-report-func (old , node, from-child , to-parent)
= if empty (from-child , old) then old

else update-assoc (from-child ,
receive (from-child , old),
update-assoc (cons (’found-value, node),

min (found-value (node, old),
head (from-child , old)),

update-assoc (cons (’outstanding,
node),

outstanding (node,
old) − 1,

if (outstanding (node,
old) − 1) ' 0

then update-assoc (to-parent ,
send (to-parent ,

min (found-value (node,
old),

head (from-child ,
old)),

old),
old)

else old endif))) endif

Theorem: receive-report-func-implements-receive-report
(treep (tree) ∧ (statement ∈ receive-report-prg (cdr (nodes (tree)), tree)))
→ n (old ,

24



receive-report-func (old ,
cadr (statement),
caddr (statement),
cadddr (statement)),

statement)

Definition:
start-func (old , root , to-children)
= if status (root , old) = ’not-started

then update-assoc (cons (’status, root),
’started,
update-assoc (cons (’found-value, root),

node-value (root , old),
update-assoc (cons (’outstanding,

root),
length (to-children),
send-find-func (to-children,

old))))
else old endif

Theorem: start-func-implements-start
(treep (tree) ∧ (statement ∈ start-prg (car (tree), tree)))
→ n (old , start-func (old , cadr (statement), caddr (statement)), statement)

Definition:
root-receive-report-func (old , root , from-child)
= if empty (from-child , old) then old

else update-assoc (from-child ,
receive (from-child , old),
update-assoc (cons (’found-value, root),

min (found-value (root , old),
head (from-child , old)),

update-assoc (cons (’outstanding,
root),

outstanding (root ,
old) − 1,

old))) endif

Theorem: root-receive-report-func-implements-root-receive-report
(treep (tree) ∧ (statement ∈ root-receive-report-prg (car (tree), tree)))
→ n (old ,

root-receive-report-func (old , cadr (statement), caddr (statement)),
statement)

Theorem: receive-find-prg-is-total

25



treep (tree)
→ total-sufficient (statement ,

receive-find-prg (cdr (nodes (tree)), tree),
old ,
receive-find-func (old ,

cadr (statement),
caddr (statement),
cadddr (statement),
caddddr (statement)))

Theorem: receive-report-prg-is-total
treep (tree)
→ total-sufficient (statement ,

receive-report-prg (cdr (nodes (tree)), tree),
old ,
receive-report-func (old ,

cadr (statement),
caddr (statement),
cadddr (statement)))

Theorem: start-prg-is-total
treep (tree)
→ total-sufficient (statement ,

start-prg (car (tree), tree),
old ,
start-func (old , cadr (statement), caddr (statement)))

Theorem: root-receive-report-prg-is-total
treep (tree)
→ total-sufficient (statement ,

root-receive-report-prg (car (tree), tree),
old ,
root-receive-report-func (old ,

cadr (statement),
caddr (statement)))

Theorem: total-tree-prg
treep (tree) → total (tree-prg (tree))

Theorem: listp-tree-prg
listp (tree-prg (tree))

Theorem: node-values-constant-unless-sufficient
(treep (tree) ∧ (node ∈ nodes (tree)))
→ unless-sufficient (statement ,

26



tree-prg (tree),
old ,
new ,
‘(equal (node-value ’,node state) ’,k),
’(false))

Theorem: node-values-constant-invariant
(initial-condition (‘(and

(all-empty ’,(all-channels tree) state)
(and
(not-started ’,(nodes tree) state)
(equal (node-value ’,node state) ’,k))),

tree-prg (tree))
∧ treep (tree)
∧ (node ∈ nodes (tree)))
→ invariant (‘(equal (node-value ’,node state) ’,k),

tree-prg (tree))

Theorem: dl-implies-instance-of-dl
(dl (down-links , state) ∧ (down-link ∈ down-links))
→ ((empty (down-link , state)

∧ (status (car (down-link), state)
= status (cdr (down-link), state)))

∨ ((channel (down-link , state) = list (’find))
∧ (status (car (down-link), state) = ’started)
∧ (status (cdr (down-link), state) = ’not-started)))

Event: Disable dl-implies-instance-of-dl.

Theorem: ul-implies-instance-of-ul
(ul (uplinks, state) ∧ (uplink ∈ uplinks))
→ (empty (uplink , state)

∨ ((channel (uplink , state)
= list (found-value (car (uplink), state)))
∧ done (car (uplink), state)))

Event: Disable ul-implies-instance-of-ul.

Theorem: ul-implies-instance-of-ul-not-empty-uplink
(ul (uplinks, state) ∧ (uplink ∈ uplinks) ∧ (¬ empty (uplink , state)))
→ ((cdr (assoc (uplink , state)) = list (found-value (car (uplink), state)))

∧ (cdr (assoc (cons (’status, car (uplink)), state))
= ’started)

∧ (cdr (assoc (cons (’outstanding, car (uplink)), state)) ' 0))

27



Theorem: no-implies-instance-of-no
(no (nodes, tree, state)
∧ (node ∈ nodes)
∧ (status (node, state) = ’started))
→ ((cdr (assoc (cons (’outstanding, node), state))

= number-not-reported (children-rec (’tree, node, tree),
node,
state))

∧ (cdr (assoc (cons (’found-value, node), state))
= min-of-reported (children-rec (’tree, node, tree),

node,
state,
node-value (node, state))))

Theorem: member-down-links-1
(down-link ∈ down-links-1 (parent , children))
= ((car (down-link) = parent)

∧ (cdr (down-link) ∈ children)
∧ listp (down-link))

Theorem: member-down-links
(down-link ∈ down-links (nodes, tree))
= ((car (down-link) ∈ nodes)

∧ (cdr (down-link) ∈ children (car (down-link), tree))
∧ listp (down-link))

Theorem: parent-not-child
(proper-tree (flag , tree) ∧ setp (nodes-rec (flag , tree)))
→ (parent 6∈ children-rec (flag , parent , tree))

Theorem: parent-not-grandchild
(proper-tree (flag , tree)
∧ setp (nodes-rec (flag , tree))
∧ (child ∈ children-rec (flag , parent , tree)))
→ (parent 6∈ children-rec (flag , child , tree))

Theorem: parent-of-parent-not-node
(proper-tree (flag , tree)
∧ setp (nodes-rec (flag , tree))
∧ listp (parent-rec (flag , node, tree))
∧ listp (parent-rec (flag , car (parent-rec (flag , node, tree)), tree)))
→ (car (parent-rec (flag , car (parent-rec (flag , node, tree)), tree)) 6= node)

Theorem: member-rfp
(channel ∈ rfp (parent , children))

28



= ((car (channel) = parent)
∧ (cdr (channel) ∈ children)
∧ listp (channel))

Theorem: send-find-implies
(send-find (channels , old , new) ∧ (key ∈ channels))
→ (cdr (assoc (key , new)) = send (key , ’find, old))

Theorem: assoc-of-channel-preserved-root-receive-report
((w 6∈ nodes-rec (’forest, d))
∧ setp (nodes-rec (’forest, d))
∧ (z ∈ nodes-rec (’forest, d))
∧ uc (new ,

old ,
append (strip-cars (new), strip-cars (old)),
list (cons (v , w), cons (’outstanding, w), cons (’found-value, w))))

→ (assoc (cons (x , z ), new) = assoc (cons (x , z ), old))

Theorem: assoc-equal-cons
(assoc (key , alist) = cons (key , value))
= (listp (assoc (key , alist)) ∧ (cdr (assoc (key , alist)) = value))

Theorem: send-find-general
(send-find (channels, old , new) ∧ (key ∈ channels))
→ (assoc (key , new) = cons (key , send (key , ’find, old)))

Theorem: all-numberps-do-not-contain-litatom
all-numberps (list) → (pack (x ) 6∈ list)

Theorem: all-numberps-append
all-numberps (append (x , y)) = (all-numberps (x ) ∧ all-numberps (y))

Theorem: all-numberps-nodes-implies-all-numberps-parent
all-numberps (nodes-rec (flag , tree))
→ all-numberps (parent-rec (flag , child , tree))

Theorem: all-numberps-nodes-implies-all-numberps-car-parent
all-numberps (nodes-rec (flag , tree))
→ (car (parent-rec (flag , child , tree)) ∈ N)

Theorem: parent-not-litatom
all-numberps (nodes-rec (flag , tree))
→ ((pack (x ) = car (parent-rec (flag , child , tree))) = f)

Theorem: all-numberps-forest-implies-all-numberps-roots
all-numberps (nodes-rec (’forest, forest)) → all-numberps (roots (forest))

29



Theorem: all-numberps-nodes-implies-all-numberps-children
all-numberps (nodes-rec (flag , tree))
→ all-numberps (children-rec (flag , parent , tree))

Theorem: dl-preserves-instance-of-dl
(treep (tree)
∧ (down-link ∈ down-links (nodes (tree), tree))
∧ n (old , new , statement)
∧ (statement ∈ tree-prg (tree))
∧ dl (down-links (nodes (tree), tree), old))
→ ((empty (down-link , new)

∧ (status (car (down-link), new) = status (cdr (down-link), new)))
∨ ((channel (down-link , new) = list (’find))

∧ (status (car (down-link), new) = ’started)
∧ (status (cdr (down-link), new) = ’not-started)))

Theorem: dl-preserves-sublist
(dl (down-links (nodes (tree), tree), old)
∧ treep (tree)
∧ n (old , new , statement)
∧ (statement ∈ tree-prg (tree))
∧ sublistp (sublist , down-links (nodes (tree), tree)))
→ dl (sublist , new)

Theorem: dl-preserves-dl
(dl (down-links (nodes (tree), tree), old)
∧ treep (tree)
∧ n (old , new , statement)
∧ (statement ∈ tree-prg (tree)))
→ dl (down-links (nodes (tree), tree), new)

Theorem: member-up-links
(up-link ∈ up-links (nodes, tree))
= ((car (up-link) ∈ nodes)

∧ (cdr (up-link) = parent (car (up-link), tree))
∧ listp (up-link))

Theorem: zero-not-reported-implies-children-reported
((number-not-reported (children, parent , state) ' 0) ∧ (child ∈ children))
→ ((cdr (assoc (cons (’status, child), state)) = ’started)

∧ (outstanding (child , state) ' 0)
∧ (¬ listp (cdr (assoc (cons (child , parent), state)))))

Theorem: dl-ul-no-preserves-instance-of-ul
(treep (tree)

30



∧ (up-link ∈ up-links (cdr (nodes (tree)), tree))
∧ n (old , new , statement)
∧ (statement ∈ tree-prg (tree))
∧ dl (down-links (nodes (tree), tree), old)
∧ ul (up-links (cdr (nodes (tree)), tree), old)
∧ no (nodes (tree), tree, old))
→ (empty (up-link , new)

∨ ((channel (up-link , new)
= list (found-value (car (up-link), new)))
∧ done (car (up-link), new)))

Theorem: dl-ul-no-preserves-ul-sublist
(treep (tree)
∧ n (old , new , statement)
∧ (statement ∈ tree-prg (tree))
∧ dl (down-links (nodes (tree), tree), old)
∧ ul (up-links (cdr (nodes (tree)), tree), old)
∧ no (nodes (tree), tree, old)
∧ sublistp (sublist , up-links (cdr (nodes (tree)), tree)))
→ ul (sublist , new)

Theorem: dl-ul-no-preserves-ul
(treep (tree)
∧ n (old , new , statement)
∧ (statement ∈ tree-prg (tree))
∧ dl (down-links (nodes (tree), tree), old)
∧ ul (up-links (cdr (nodes (tree)), tree), old)
∧ no (nodes (tree), tree, old))
→ ul (up-links (cdr (nodes (tree)), tree), new)

Theorem: parent-not-started-implies-all-empty-and-not-started
((status (parent , state) = ’not-started)
∧ dl (rfp (parent , children), state))
→ (all-empty (rfp (parent , children), state)

∧ not-started (children, state))

Theorem: start-preserves-no-for-parent
((parent ∈ N)
∧ (parent 6∈ children)
∧ not-started (children, old)
∧ sublistp (rfp (parent , children), rfp (parent , excpt))
∧ changed (old ,

new ,
append (list (cons (’status, parent),

cons (’found-value, parent),

31



cons (’outstanding, parent)),
rfp (parent , excpt))))

→ ((number-not-reported (children, parent , new) = length (children))
∧ (min-of-reported (children, parent , new , value) = value))

Theorem: unchanged-preserves-no
changed (old , new , nil)
→ ((number-not-reported (children, parent , new)

= number-not-reported (children, parent , old))
∧ (min-of-reported (children, parent , new , value)

= min-of-reported (children, parent , old , value)))

Theorem: start-preserves-no-for-rest-of-tree
((root ∈ N)
∧ (parent ∈ N)
∧ (parent 6∈ children)
∧ (root 6∈ children)
∧ (root 6= parent)
∧ changed (old ,

new ,
append (list (cons (’status, root),

cons (’found-value, root),
cons (’outstanding, root)),

rfp (root , excpt))))
→ ((number-not-reported (children, parent , new)

= number-not-reported (children, parent , old))
∧ (min-of-reported (children, parent , new , value)

= min-of-reported (children, parent , old , value)))

Theorem: length-rfp
length (rfp (parent , children)) = length (children)

Theorem: start-preserves-instance-of-no
(treep (tree)
∧ start (old , new , car (tree), rfp (car (tree), children (car (tree), tree)))
∧ (node ∈ nodes (tree))
∧ dl (rfp (car (tree), children (car (tree), tree)), old)
∧ (status (node, new) = ’started)
∧ ((status (node, old) = ’started)

→ ((outstanding (node, old)
= number-not-reported (children (node, tree), node, old))
∧ (found-value (node, old)

= min-of-reported (children (node, tree),
node,
old ,

32



node-value (node, old))))))
→ ((outstanding (node, new)

= number-not-reported (children (node, tree), node, new))
∧ (found-value (node, new)

= min-of-reported (children (node, tree),
node,
new ,
node-value (node, new))))

Theorem: min-commutative
min (a, b) = min (b, a)

Theorem: min-associative
min (min (a, b), c) = min (a, min (b, c))

Theorem: min-commutative-1
min (a, min (b, c)) = min (b, min (a, c))

Theorem: min-of-reported-of-min
min-of-reported (children, parent , state, min (value, x ))
= min (min-of-reported (children, parent , state, value), x )

Theorem: update-min-of-reported
((parent ∈ N)
∧ (child ∈ N)
∧ (parent 6= child)
∧ all-numberps (children)
∧ setp (children)
∧ (parent 6∈ children)
∧ (channel (cons (child , parent), old) = list (found-value (child , old)))
∧ done (child , old)
∧ (channel (cons (child , parent), new) = receive (cons (child , parent), old))
∧ changed (old ,

new ,
list (cons (child , parent),

cons (’outstanding, parent),
cons (’found-value, parent))))

→ (min-of-reported (children, parent , new , value)
= if child ∈ children

then min (found-value (child , old),
min-of-reported (children, parent , old , value))

else min-of-reported (children, parent , old , value) endif)

Theorem: min-of-reported-of-non-root
((root ∈ N)

33



∧ (child ∈ N)
∧ (parent ∈ N)
∧ all-numberps (children)
∧ setp (children)
∧ (parent 6∈ children)
∧ (root 6= parent)
∧ (root 6∈ children)
∧ changed (old ,

new ,
list (cons (child , root),

cons (’outstanding, root),
cons (’found-value, root))))

→ (min-of-reported (children, parent , new , value)
= min-of-reported (children, parent , old , value))

Theorem: number-not-reported-of-non-root
((root ∈ N)
∧ (child ∈ N)
∧ (parent ∈ N)
∧ all-numberps (children)
∧ setp (children)
∧ (parent 6∈ children)
∧ (root 6= parent)
∧ (root 6∈ children)
∧ changed (old ,

new ,
list (cons (child , root),

cons (’outstanding, root),
cons (’found-value, root))))

→ (number-not-reported (children, parent , new)
= number-not-reported (children, parent , old))

Theorem: number-not-reported-of-root
((parent ∈ N)
∧ (child ∈ N)
∧ (parent 6= child)
∧ all-numberps (children)
∧ setp (children)
∧ (parent 6∈ children)
∧ (channel (cons (child , parent), old) = list (found-value (child , old)))
∧ done (child , old)
∧ (channel (cons (child , parent), new) = receive (cons (child , parent), old))
∧ changed (old ,

new ,

34



list (cons (child , parent),
cons (’outstanding, parent),
cons (’found-value, parent))))

→ (number-not-reported (children, parent , new)
= if child ∈ children

then number-not-reported (children, parent , old) − 1
else number-not-reported (children, parent , old) endif)

Theorem: setp-nodes-implies-setp-roots
(proper-tree (’forest, forest) ∧ setp (nodes-rec (’forest, forest)))
→ setp (roots (forest))

Theorem: setp-nodes-setp-children
(proper-tree (flag , tree) ∧ setp (nodes-rec (flag , tree)))
→ setp (children-rec (flag , parent , tree))

Theorem: root-receive-report-preserves-instance-of-no
(treep (tree)
∧ (child ∈ children (car (tree), tree))
∧ root-receive-report (old , new , car (tree), cons (child , car (tree)))
∧ ul (up-links (cdr (nodes (tree)), tree), old)
∧ (node ∈ nodes (tree))
∧ (status (node, new) = ’started)
∧ ((status (node, old) = ’started)

→ ((outstanding (node, old)
= number-not-reported (children (node, tree), node, old))
∧ (found-value (node, old)

= min-of-reported (children (node, tree),
node,
old ,
node-value (node, old))))))

→ ((outstanding (node, new)
= number-not-reported (children (node, tree), node, new))
∧ (found-value (node, new)

= min-of-reported (children (node, tree),
node,
new ,
node-value (node, new))))

Theorem: receive-find-preserves-no-for-rest-of-tree
((node ∈ N)
∧ (parent-of-node ∈ N)
∧ (parent ∈ N)
∧ (parent 6= node)
∧ (node 6∈ children)

35



∧ changed (old ,
new ,
append (list (cons (parent-of-node, node),

cons (node, parent-of-node),
cons (’status, node),
cons (’found-value, node),
cons (’outstanding, node)),

rfp (node, excpt))))
→ ((number-not-reported (children, parent , new)

= number-not-reported (children, parent , old))
∧ (min-of-reported (children, parent , new , value)

= min-of-reported (children, parent , old , value)))

Theorem: receive-find-preserves-no-for-node
((node ∈ N)
∧ (parent-of-node ∈ N)
∧ (node 6∈ children)
∧ not-started (children, old)
∧ sublistp (rfp (node, children), rfp (node, excpt))
∧ changed (old ,

new ,
append (list (cons (parent-of-node, node),

cons (node, parent-of-node),
cons (’status, node),
cons (’found-value, node),
cons (’outstanding, node)),

rfp (node, excpt))))
→ ((number-not-reported (children, node, new) = length (children))

∧ (min-of-reported (children, node, new , value)
= min-of-reported (children, node, old , value)))

Theorem: receive-find-preserves-no-for-parent-of-node
((node ∈ N)
∧ (parent-of-node ∈ N)
∧ (node 6= parent-of-node)
∧ (status (node, old) 6= ’started)
∧ ((outstanding (node, new) ' 0)

→ (¬ empty (cons (node, parent-of-node), new)))
∧ changed (old ,

new ,
append (list (cons (parent-of-node, node),

cons (node, parent-of-node),
cons (’status, node),
cons (’found-value, node),

36



cons (’outstanding, node)),
rfp (node, excpt))))

→ ((number-not-reported (children, parent-of-node, new)
= number-not-reported (children, parent-of-node, old))
∧ (min-of-reported (children, parent-of-node, new , value)

= min-of-reported (children, parent-of-node, old , value)))

Theorem: dl-of-append
dl (append (a, b), state) = (dl (a, state) ∧ dl (b, state))

Theorem: down-links-1-rfp
down-links-1 (parent , children) = rfp (parent , children)

Theorem: dl-down-links-implies-dl-rfp
(dl (down-links (nodes, tree), state) ∧ (node ∈ nodes))
→ dl (rfp (node, children (node, tree)), state)

Event: Disable dl-down-links-implies-dl-rfp.

Event: Disable down-links-1-rfp.

Event: Disable dl-of-append.

Theorem: receive-find-preserves-instance-of-no
(treep (tree)
∧ (node ∈ cdr (nodes (tree)))
∧ receive-find (old ,

new ,
node,
cons (parent (node, tree), node),
cons (node, parent (node, tree)),
rfp (node, children (node, tree)))

∧ dl (down-links (nodes (tree), tree), old)
∧ (n ∈ nodes (tree))
∧ (status (n, new) = ’started)
∧ ((status (n, old) = ’started)

→ ((outstanding (n, old)
= number-not-reported (children (n, tree), n, old))
∧ (found-value (n, old)

= min-of-reported (children (n, tree),
n,
old ,
node-value (n, old))))))

37



→ ((outstanding (n, new) = number-not-reported (children (n, tree), n, new))
∧ (found-value (n, new)

= min-of-reported (children (n, tree),
n,
new ,
node-value (n, new))))

Theorem: receive-report-preserves-no-for-rest-of-tree
((node ∈ N)
∧ (parent-of-node ∈ N)
∧ (child-of-node ∈ N)
∧ (parent ∈ N)
∧ (parent 6= node)
∧ (node 6∈ children)
∧ changed (old ,

new ,
list (cons (child-of-node, node),

cons (node, parent-of-node),
cons (’outstanding, node),
cons (’found-value, node))))

→ ((number-not-reported (children, parent , new)
= number-not-reported (children, parent , old))
∧ (min-of-reported (children, parent , new , value)

= min-of-reported (children, parent , old , value)))

Theorem: receive-report-preserves-no-for-node
((node ∈ N)
∧ (parent ∈ N)
∧ (child ∈ N)
∧ (node 6∈ children)
∧ all-numberps (children)
∧ setp (children)
∧ (channel (cons (child , node), old) = list (found-value (child , old)))
∧ done (child , old)
∧ (channel (cons (child , node), new) = receive (cons (child , node), old))
∧ changed (old ,

new ,
list (cons (child , node),

cons (node, parent),
cons (’outstanding, node),
cons (’found-value, node))))

→ ((number-not-reported (children, node, new)
= if child ∈ children

then number-not-reported (children, node, old) − 1

38



else number-not-reported (children, node, old) endif)
∧ (min-of-reported (children, node, new , value)

= if child ∈ children
then min (found-value (child , old),

min-of-reported (children, node, old , value))
else min-of-reported (children, node, old , value) endif))

Theorem: receive-report-preserves-no-for-parent
((node ∈ N)
∧ (parent ∈ N)
∧ (node 6= parent)
∧ ((outstanding (node, new) ' 0) → (¬ empty (cons (node, parent), new)))
∧ (outstanding (node, old) 6' 0)
∧ changed (old ,

new ,
list (cons (child , node),

cons (node, parent),
cons (’outstanding, node),
cons (’found-value, node))))

→ ((number-not-reported (children, parent , new)
= number-not-reported (children, parent , old))
∧ (min-of-reported (children, parent , new , value)

= min-of-reported (children, parent , old , value)))

Theorem: child-member-cdr-nodes
(proper-tree (’tree, tree)
∧ setp (nodes-rec (’tree, tree))
∧ (child ∈ children-rec (’tree, node, tree)))
→ (child ∈ cdr (nodes-rec (’tree, tree)))

Theorem: receive-report-preserves-instance-of-no
(treep (tree)
∧ (node ∈ cdr (nodes (tree)))
∧ (child ∈ children (node, tree))
∧ (n ∈ nodes (tree))
∧ receive-report (old ,

new ,
node,
cons (child , node),
cons (node, parent (node, tree)))

∧ (status (n, new) = ’started)
∧ ul (up-links (cdr (nodes (tree)), tree), old)
∧ no (nodes (tree), tree, old)
∧ dl (down-links (nodes (tree), tree), old))
→ ((outstanding (n, new) = number-not-reported (children (n, tree), n, new))

39



∧ (found-value (n, new)
= min-of-reported (children (n, tree),

n,
new ,
node-value (n, new))))

Theorem: dl-ul-no-preserves-instance-of-no
(treep (tree)
∧ n (old , new , statement)
∧ (statement ∈ tree-prg (tree))
∧ dl (down-links (nodes (tree), tree), old)
∧ ul (up-links (cdr (nodes (tree)), tree), old)
∧ no (nodes (tree), tree, old)
∧ (node ∈ nodes (tree))
∧ (status (node, new) = ’started))
→ ((outstanding (node, new)

= number-not-reported (children (node, tree), node, new))
∧ (found-value (node, new)

= min-of-reported (children (node, tree),
node,
new ,
node-value (node, new))))

Theorem: dl-ul-no-preserves-no-sublist
(treep (tree)
∧ n (old , new , statement)
∧ (statement ∈ tree-prg (tree))
∧ dl (down-links (nodes (tree), tree), old)
∧ ul (up-links (cdr (nodes (tree)), tree), old)
∧ no (nodes (tree), tree, old)
∧ sublistp (sublist , nodes (tree)))
→ no (sublist , tree, new)

Theorem: inv-preserves-inv
(treep (tree)
∧ n (old , new , statement)
∧ (statement ∈ tree-prg (tree))
∧ inv (tree, old))
→ inv (tree, new)

Theorem: inv-is-invariant
(initial-condition (‘(and

(all-empty ’,(all-channels tree) state)
(not-started ’,(nodes tree) state)),

tree-prg (tree))

40



∧ treep (tree))
→ invariant (‘(inv ’,tree state), tree-prg (tree))

Theorem: outstanding-non-increasing
(treep (tree)
∧ (statement ∈ tree-prg (tree))
∧ n (old , new , statement)
∧ dl (down-links (nodes (tree), tree), old)
∧ (node ∈ nodes (tree)))
→ (if status (node, old) = ’started then outstanding (node, old)

else 1 + length (children (node, tree)) endif
6< if status (node, new) = ’started

then outstanding (node, new)
else 1 + length (children (node, tree)) endif)

Theorem: total-outstanding-non-increasing-sublist
(treep (tree)
∧ (statement ∈ tree-prg (tree))
∧ n (old , new , statement)
∧ dl (down-links (nodes (tree), tree), old)
∧ sublistp (sublist , nodes (tree)))
→ (total-outstanding (sublist , tree, old)

6< total-outstanding (sublist , tree, new))

Theorem: total-outstanding-non-increasing
(treep (tree)
∧ (statement ∈ tree-prg (tree))
∧ n (old , new , statement)
∧ dl (down-links (nodes (tree), tree), old))
→ (total-outstanding (nodes (tree), tree, old)

6< total-outstanding (nodes (tree), tree, new))

Theorem: position-append
position (append (a, b), e)
= if e ∈ a then position (a, e)

else length (a) + position (b, e) endif

Theorem: parents-position-decreases
((node ∈ nodes-rec (flag , tree))
∧ setp (nodes-rec (flag , tree))
∧ proper-tree (flag , tree)
∧ if flag = ’tree then car (tree) 6= node

else node 6∈ roots (tree) endif)
→ (position (nodes-rec (flag , tree), car (parent-rec (flag , node, tree)))

< position (nodes-rec (flag , tree), node))

41



Definition:
parent-to-root-induction (node, tree)
= if (node ∈ nodes (tree))

∧ setp (nodes (tree))
∧ proper-tree (’tree, tree)

then if car (tree) = node then t
else parent-to-root-induction (parent (node, tree), tree) endif

else t endif

Theorem: dl-and-all-empty-implies-root-defines-status
(dl (down-links (nodes (tree), tree), state)
∧ all-empty (down-links (nodes (tree), tree), state)
∧ setp (nodes (tree))
∧ proper-tree (’tree, tree)
∧ (node ∈ nodes (tree)))
→ (cdr (assoc (cons (’status, node), state)) = status (car (tree), state))

Definition:
suffix (s, l)
= if listp (l)

then if s = l then t
else suffix (s, cdr (l)) endif

else ¬ listp (s) endif

Theorem: suffix-implies-suffix-cdr
suffix (s, l) → suffix (cdr (s), l)

Theorem: member-suffix-member-list
((e ∈ s) ∧ suffix (s, l)) → (e ∈ l)

Theorem: childs-position-increases
((node ∈ nodes-rec (flag , tree))
∧ setp (nodes-rec (flag , tree))
∧ proper-tree (flag , tree)
∧ (child ∈ children-rec (flag , node, tree)))
→ (position (nodes-rec (flag , tree), node)

< position (nodes-rec (flag , tree), child))

Theorem: setp-list-setp-suffix
(setp (l) ∧ suffix (s, l)) → setp (s)

Theorem: later-positions-are-in-suffix
(setp (l)
∧ suffix (s, l)
∧ (x ∈ s)

42



∧ (y ∈ l)
∧ (position (l , x ) < position (l , y)))
→ (y ∈ s)

Definition:
all-done (nodes, state)
= if listp (nodes)

then if done (car (nodes), state) then all-done (cdr (nodes), state)
else f endif

else t endif

Theorem: all-done-implies-done
(all-done (nodes, state) ∧ (node ∈ nodes)) → done (node, state)

Theorem: all-done-implies-all-done-sublist
(all-done (nodes, state) ∧ sublistp (sublist , nodes))
→ all-done (sublist , state)

Definition:
ulnks (children, parent)
= if listp (children)

then cons (cons (car (children), parent), ulnks (cdr (children), parent))
else nil endif

Theorem: all-done-and-all-empty-implies-number-not-reported-0
(all-done (children, state) ∧ all-empty (ulnks (children, parent), state))
→ (number-not-reported (children, parent , state) = 0)

Theorem: all-empty-implies-all-empty-sublist
(all-empty (channels, state) ∧ sublistp (sublist , channels))
→ all-empty (sublist , state)

Theorem: sublist-ulnks
(proper-tree (’tree, tree)
∧ sublistp (sublist , children (parent , tree))
∧ setp (nodes (tree)))
→ sublistp (ulnks (sublist , parent), up-links (cdr (nodes (tree)), tree))

Theorem: child-of-node-in-suffix-is-in-suffix
(proper-tree (’tree, tree)
∧ setp (nodes (tree))
∧ (child ∈ children (node, tree))
∧ suffix (nodes, nodes (tree))
∧ (node ∈ nodes))
→ (child ∈ cdr (nodes))

43



Theorem: children-are-suffix-of-sublist-generalized
(proper-tree (’tree, tree)
∧ setp (nodes (tree))
∧ suffix (nodes, nodes (tree))
∧ (node ∈ nodes)
∧ sublistp (sublist , children-rec (’tree, node, tree)))
→ sublistp (sublist , cdr (nodes))

Theorem: all-nodes-are-done
(proper-tree (’tree, tree)
∧ setp (nodes (tree))
∧ all-empty (down-links (nodes (tree), tree), state)
∧ all-empty (up-links (cdr (nodes (tree)), tree), state)
∧ dl (down-links (nodes (tree), tree), state)
∧ ul (up-links (cdr (nodes (tree)), tree), state)
∧ no (nodes (tree), tree, state)
∧ (status (car (tree), state) = ’started)
∧ suffix (nodes, nodes (tree)))
→ all-done (nodes, state)

Theorem: all-done-implies-total-outstanding-0
all-done (nodes, state) → (total-outstanding (nodes, tree, state) = 0)

Theorem: all-empty-root-started-implies-total-outstanding-0
(proper-tree (’tree, tree)
∧ setp (nodes (tree))
∧ inv (tree, state)
∧ all-empty (down-links (nodes (tree), tree), state)
∧ all-empty (up-links (cdr (nodes (tree)), tree), state)
∧ (status (car (tree), state) = ’started))
→ (total-outstanding (nodes (tree), tree, state) = 0)

Definition:
full-channel (channels , state)
= if listp (channels)

then if empty (car (channels), state)
then full-channel (cdr (channels), state)
else car (channels) endif

else f endif

Theorem: not-all-empty-implies-full-channel-full
((¬ all-empty (channels, state)) ∧ (f 6∈ channels))
→ (listp (cdr (assoc (full-channel (channels, state), state)))

∧ (full-channel (channels, state) ∈ channels)
∧ full-channel (channels, state))

44



Theorem: not-total-outstanding-0-implies-full-channel
(proper-tree (’tree, tree)
∧ setp (nodes (tree))
∧ inv (tree, state)
∧ ((status (car (tree), state) = ’started)

∨ (status (car (tree), state) = ’not-started))
∧ (total-outstanding (nodes (tree), tree, state) 6= 0))
→ ((status (car (tree), state) = ’not-started)

∨ full-channel (down-links (nodes (tree), tree), state)
∨ full-channel (up-links (cdr (nodes (tree)), tree), state))

Theorem: status-root-becomes-started-or-unchanged
(treep (tree) ∧ (statement ∈ tree-prg (tree)) ∧ n (old , new , statement))
→ ((status (car (tree), new) = ’started)

∨ (status (car (tree), new) = status (car (tree), old)))

Theorem: root-started-or-not-started-is-invariant
(initial-condition (‘(and

(all-empty ’,(all-channels tree) state)
(not-started ’,(nodes tree) state)),

tree-prg (tree))
∧ treep (tree))
→ invariant (‘(or

(equal
(status ’,(car tree) state)
’started)

(equal
(status ’,(car tree) state)
’not-started)),

tree-prg (tree))

Theorem: total-outstanding-decreases-sublist
(treep (tree)
∧ dl (down-links (nodes (tree), tree), old)
∧ n (old , new , statement)
∧ (statement ∈ tree-prg (tree))
∧ sublistp (nodes, nodes (tree))
∧ (node ∈ nodes)
∧ (if status (node, new) = ’started then outstanding (node, new)

else 1 + length (children (node, tree)) endif
< if status (node, old) = ’started

then outstanding (node, old)
else 1 + length (children (node, tree)) endif))

→ (total-outstanding (nodes, tree, new)
< total-outstanding (nodes, tree, old))

45



Definition:
tou (old , new , node, tree)
= (if status (node, new) = ’started then outstanding (node, new)

else 1 + length (children (node, tree)) endif
< if status (node, old) = ’started

then outstanding (node, old)
else 1 + length (children (node, tree)) endif)

Theorem: total-outstanding-decreases
(treep (tree)
∧ dl (down-links (nodes (tree), tree), old)
∧ n (old , new , statement)
∧ (statement ∈ tree-prg (tree))
∧ (node ∈ nodes (tree))
∧ tou (old , new , node, tree))
→ (total-outstanding (nodes (tree), tree, new)

< total-outstanding (nodes (tree), tree, old))

Theorem: start-decreases-tou
(treep (tree)
∧ (status (car (tree), old) = ’not-started)
∧ n (old ,

new ,
list (’start, car (tree), rfp (car (tree), children (car (tree), tree)))))

→ tou (old , new , car (tree), tree)

Theorem: others-preserve-root-not-started
(treep (tree)
∧ n (old , new , statement)
∧ (statement ∈ tree-prg (tree))
∧ (statement 6= list (’start,

car (tree),
rfp (car (tree), children (car (tree), tree)))))

→ (cdr (assoc (cons (’status, car (tree)), new)) = status (car (tree), old))

Theorem: root-receive-report-decreases-tou
(treep (tree)
∧ listp (channel (cons (child , car (tree)), old))
∧ (child ∈ children (car (tree), tree))
∧ n (old ,

new ,
list (’root-receive-report, car (tree), cons (child , car (tree))))

∧ inv (tree, old))
→ tou (old , new , car (tree), tree)

46



Theorem: others-preserve-up-to-root-full
(treep (tree)
∧ listp (channel (cons (child , car (tree)), old))
∧ (child ∈ children (car (tree), tree))
∧ (statement ∈ tree-prg (tree))
∧ (statement 6= list (’root-receive-report,

car (tree),
cons (child , car (tree))))

∧ n (old , new , statement))
→ listp (cdr (assoc (cons (child , car (tree)), new)))

Theorem: receive-find-decreases-tou
(treep (tree)
∧ listp (channel (cons (parent (node, tree), node), old))
∧ (node ∈ cdr (nodes (tree)))
∧ n (old ,

new ,
list (’receive-find,

node,
cons (parent (node, tree), node),
cons (node, parent (node, tree)),
rfp (node, children (node, tree))))

∧ inv (tree, old))
→ tou (old , new , node, tree)

Theorem: others-preserve-down-to-node-full
(treep (tree)
∧ listp (channel (cons (parent (node, tree), node), old))
∧ (node ∈ cdr (nodes (tree)))
∧ (statement ∈ tree-prg (tree))
∧ (statement 6= list (’receive-find,

node,
cons (parent (node, tree), node),
cons (node, parent (node, tree)),
rfp (node, children (node, tree))))

∧ n (old , new , statement))
→ listp (cdr (assoc (cons (car (parent-rec (’tree, node, tree)), node), new)))

Theorem: receive-report-decreases-tou
(treep (tree)
∧ listp (channel (cons (child , node), old))
∧ (node ∈ cdr (nodes (tree)))
∧ (child ∈ children (node, tree))
∧ n (old ,

new ,

47



list (’receive-report,
node,
cons (child , node),
cons (node, parent (node, tree))))

∧ inv (tree, old))
→ tou (old , new , node, tree)

Theorem: others-preserve-up-to-node-full
(treep (tree)
∧ listp (channel (cons (child , node), old))
∧ (node ∈ cdr (nodes (tree)))
∧ (child ∈ children (node, tree))
∧ (statement 6= list (’receive-report,

node,
cons (child , node),
cons (node, parent (node, tree))))

∧ (statement ∈ tree-prg (tree))
∧ n (old , new , statement))
→ listp (cdr (assoc (cons (child , node), new)))

Event: Disable total-outstanding-decreases.

Event: Disable tou.

Event: Disable total-outstanding-decreases-sublist.

Event: Disable status-root-becomes-started-or-unchanged.

Event: Disable not-total-outstanding-0-implies-full-channel.

Event: Disable not-all-empty-implies-full-channel-full.

Event: Disable full-channel.

Event: Disable all-empty-root-started-implies-total-outstanding-0.

Event: Disable all-done-implies-total-outstanding-0.

Event: Disable all-nodes-are-done.

48



Event: Disable children-are-suffix-of-sublist-generalized.

Event: Disable child-of-node-in-suffix-is-in-suffix.

Event: Disable sublist-ulnks.

Event: Disable all-empty-implies-all-empty-sublist.

Event: Disable all-done-and-all-empty-implies-number-not-reported-0.

Event: Disable ulnks.

Event: Disable all-done-implies-all-done-sublist.

Event: Disable all-done-implies-done.

Event: Disable all-done.

Event: Disable later-positions-are-in-suffix.

Event: Disable setp-list-setp-suffix.

Event: Disable childs-position-increases.

Event: Disable member-suffix-member-list.

Event: Disable suffix-implies-suffix-cdr.

Event: Disable suffix.

Event: Disable dl-and-all-empty-implies-root-defines-status.

Event: Disable parent-to-root-induction.

Event: Disable parents-position-decreases.

49



Event: Disable position-append.

Event: Disable total-outstanding-non-increasing.

Event: Disable total-outstanding-non-increasing-sublist.

Event: Disable outstanding-non-increasing.

Event: Disable dl-ul-no-preserves-no-sublist.

Event: Disable dl-ul-no-preserves-instance-of-no.

Event: Disable receive-report-preserves-instance-of-no.

Event: Disable child-member-cdr-nodes.

Event: Disable receive-report-preserves-no-for-parent.

Event: Disable receive-report-preserves-no-for-node.

Event: Disable receive-report-preserves-no-for-rest-of-tree.

Event: Disable receive-find-preserves-instance-of-no.

Event: Disable dl-down-links-implies-dl-rfp.

Event: Disable down-links-1-rfp.

Event: Disable dl-of-append.

Event: Disable receive-find-preserves-no-for-parent-of-node.

Event: Disable receive-find-preserves-no-for-node.

Event: Disable receive-find-preserves-no-for-rest-of-tree.

50



Event: Disable root-receive-report-preserves-instance-of-no.

Event: Disable setp-nodes-setp-children.

Event: Disable setp-nodes-implies-setp-roots.

Event: Disable number-not-reported-of-root.

Event: Disable number-not-reported-of-non-root.

Event: Disable min-of-reported-of-non-root.

Event: Disable update-min-of-reported.

Event: Disable min-of-reported-of-min.

Event: Disable min-commutative-1.

Event: Disable min-associative.

Event: Disable min-commutative.

Event: Disable start-preserves-instance-of-no.

Event: Disable length-rfp.

Event: Disable start-preserves-no-for-rest-of-tree.

Event: Disable unchanged-preserves-no.

Event: Disable start-preserves-no-for-parent.

Event: Disable parent-not-started-implies-all-empty-and-not-started.

Event: Disable dl-ul-no-preserves-ul.

51



Event: Disable dl-ul-no-preserves-ul-sublist.

Event: Disable dl-ul-no-preserves-instance-of-ul.

Event: Disable zero-not-reported-implies-children-reported.

Event: Disable member-up-links.

Event: Disable dl-preserves-dl.

Event: Disable dl-preserves-sublist.

Event: Disable dl-preserves-instance-of-dl.

Event: Disable all-numberps-nodes-implies-all-numberps-children.

Event: Disable all-numberps-forest-implies-all-numberps-roots.

Event: Disable parent-not-litatom.

Event: Disable all-numberps-nodes-implies-all-numberps-car-parent.

Event: Disable all-numberps-nodes-implies-all-numberps-parent.

Event: Disable all-numberps-append.

Event: Disable send-find-general.

Event: Disable assoc-equal-cons.

Event: Disable send-find-implies.

Event: Disable member-rfp.

Event: Disable parent-of-parent-not-node.

52



Event: Disable parent-not-grandchild.

Event: Disable parent-not-child.

Event: Disable member-down-links.

Event: Disable member-down-links-1.

Event: Disable ul-implies-instance-of-ul-not-empty-uplink.

Event: Disable no-implies-instance-of-no.

Event: Disable ul-implies-instance-of-ul.

Event: Disable dl-implies-instance-of-dl.

Event: Disable inv-implies-augmented-correctness-condition.

Event: Disable initial-conditions-imply-invariant.

Event: Disable all-empty-not-started-implies-dl.

Event: Disable inv.

Event: Disable dl.

Event: Disable node-values-constant-invariant.

Event: Disable node-values-constant-unless-sufficient.

Event: Disable listp-tree-prg.

Event: Disable root-receive-report-prg-is-total.

Event: Disable start-prg-is-total.

53



Event: Disable receive-report-prg-is-total.

Event: Disable receive-find-prg-is-total.

Event: Disable root-receive-report-func-implements-root-receive-report.

Event: Disable root-receive-report-func.

Event: Disable start-func-implements-start.

Event: Disable start-func.

Event: Disable receive-report-func-implements-receive-report.

Event: Disable receive-report-func.

Event: Disable receive-find-func-implements-receive-find.

Event: Disable uc-of-send-find-func.

Event: Disable to-node-not-in-rfp.

Event: Disable parent-not-in-rfp.

Event: Disable about-rfp-numberp.

Event: Disable about-rfp.

Event: Disable assoc-of-send-find-func.

Event: Disable send-find-of-update-assoc.

Event: Disable children-are-not-litatoms-member.

Event: Disable children-are-not-litatoms.

54



Event: Disable parent-is-not-a-litatom.

Event: Disable nodes-are-not-litatoms.

Event: Disable send-find-func-implements-send-find.

Event: Disable receive-find-func.

Event: Disable send-find-func.

Event: Disable no-at-termination.

Event: Disable found-value-min-value-generalized.

Event: Disable min-of-two-nodes-values.

Event: Disable proper-tree-tree-implies-nodes-exists.

Event: Disable number-not-reported-0-implies.

Event: Disable total-outstanding-0-implies.

Event: Disable no-implies.

Event: Disable found-value-node-value-append.

Event: Disable nati.

Event: Disable found-value-node-value.

Event: Disable down-links-is-sublistp.

Event: Disable children-of-non-node.

Event: Disable sublistp-down-links-1.

55



Event: Disable sublistp-not-started.

Event: Disable nodes-in-down-links-in-nodes.

Event: Disable nodes-in-channels-append.

Event: Disable nodes-in-down-links-1-in-nodes.

Event: Disable not-started-implies-no.

Event: Disable nodes-in-channels.

Event: Disable all-empty-implies-ul.

Event: Disable all-empty-append.

Event: Disable not-started-implies-not-started.

Event: Disable all-empty-implies-empty.

Event: Disable correct.

Event: Disable min-node-value.

Event: Disable all-empty.

Event: Disable all-channels.

Event: Disable not-started.

Event: Disable up-links.

Event: Disable down-links.

Event: Disable down-links-1.

56



Event: Disable no.

Event: Disable min-of-reported.

Event: Disable number-not-reported.

Event: Disable reported.

Event: Disable ul.

Event: Disable done.

Event: Disable total-outstanding.

Event: Disable treep.

Event: Disable member-tree-prg.

Event: Disable equal-if.

Event: Disable tree-prg.

Event: Disable member-root-receive-report-prg.

Event: Disable root-receive-report-prg.

Event: Disable member-rrrp.

Event: Disable rrrp.

Event: Disable member-start-prg.

Event: Disable start-prg.

Event: Disable member-receive-report-prg.

57



Event: Disable receive-report-prg.

Event: Disable member-rrp.

Event: Disable rrp.

Event: Disable member-receive-find-prg.

Event: Disable receive-find-prg.

Event: Disable rfp.

Event: Disable root-receive-report.

Event: Disable start.

Event: Disable receive-report.

Event: Disable min.

Event: Disable receive-find.

Event: Disable send-find.

Event: Disable node-value.

Event: Disable outstanding.

Event: Disable found-value.

Event: Disable status.

Event: Disable receive.

Event: Disable send.

58



Event: Disable head.

Event: Disable empty.

Event: Disable channel.

Event: Disable value.

Event: Disable parent-not-in-children.

Event: Disable parent-is-not-child.

Event: Disable listp-parent-rec-equals.

Event: Disable parent-is-not-itself.

Event: Disable parent-is-not-itself-generalized.

Event: Disable node-has-parent.

Event: Disable children-of-setp-tree.

Event: Disable member-subtree-member-tree.

Event: Disable no-children-in-rest-of-tree.

Event: Disable no-children-in-rest-of-forest.

Event: Disable not-member-no-children.

Event: Disable not-member-subtrees.

Event: Disable proper-tree-next-level-of-proper-tree.

Event: Disable proper-tree-of-append.

59



Event: Disable next-level-of-subtrees-in-complete-subtrees.

Event: Disable next-level-in-subtrees-forest.

Event: Disable subtrees-of-subtrees-in-complete-subtrees.

Event: Disable subtrees-of-subtree-in-complete-subtrees.

Event: Disable next-level-of-tree-in-subtrees.

Event: Disable next-level-reduces-count.

Event: Disable nodes-rec-forest-append.

Event: Disable next-level.

Event: Disable subtreep-subtrees.

Event: Disable subtrees.

Event: Disable subtreep.

Event: Disable sublistp-children.

Event: Disable sublistp-children-generalized.

Event: Disable node-that-has-parent-is-in-tree.

Event: Disable node-that-has-child-is-in-tree.

Event: Disable member-parent-member-tree.

Event: Disable parent-of-child.

Event: Disable member-parent-parent.

60



Event: Disable member-child-tree.

Event: Disable not-member-no-parent.

Event: Disable plistp-roots.

Event: Disable plistp-parent-rec.

Event: Disable plistp-children-rec.

Event: Disable member-roots-member-forest.

Event: Disable parent-rec-children-rec.

Event: Disable not-flag-tree.

Event: Disable canonicalize-children-rec-flag.

Event: Disable canonicalize-parent-rec-flag.

Event: Disable canonicalize-proper-tree-flag.

Event: Disable canonicalize-nodes-rec-flag.

Event: Disable proper-tree.

Event: Disable parent.

Event: Disable parent-rec.

Event: Disable children.

Event: Disable children-rec.

Event: Disable roots.

61



Event: Disable nodes.

Event: Disable nodes-rec.

Event: Disable sublistp-in-cons.

Event: Disable sublistp-in-append.

Event: Disable sublistp-reflexive.

Event: Disable sublistp-easy.

Event: Disable sei.

Event: Disable sublistp-normalize.

Event: Disable sublistp-of-sublistp-is-sublistp.

Event: Disable member-of-sublistp-is-member.

Event: Disable sublistp-append.

Event: Disable sublistp.

Event: Disable setp-member-2.

Event: Disable setp-member-1.

Event: Disable setp-append-canonicalize.

Event: Disable setp-append-not-listp.

Event: Disable setp-append-cons.

Event: Disable setp-member.

62



Event: Disable setp-append.

Event: Disable setp.

Event: Disable all-numberps-implies.

Event: Disable all-numberps.

Event: Disable not-lessp-count-append.

Event: Disable append-plistp-nil.

Event: Disable plistp-append-plistp.

Event: Disable plistp.

Event: Disable length-append.

Event: Disable listp-append.

Event: Disable car-append.

Event: Disable n.

Theorem: member-cdr-nodes-member-nodes
((node ∈ cdr (nodes (tree))) ∧ treep (tree)) → (node ∈ nodes (tree))

Theorem: total-outstanding-decreases-expanded
(treep (tree)
∧ inv (tree, old)
∧ n (old , new , statement)
∧ (statement ∈ tree-prg (tree))
∧ (node ∈ nodes (tree))
∧ tou (old , new , node, tree))
→ (((total-outstanding (nodes (tree), tree, new)

< total-outstanding (nodes (tree), tree, old))
= t)
∧ (total-outstanding (nodes (tree), tree, new)

63



< total-outstanding (nodes (tree), tree, old)))

Theorem: total-outstanding-decreases-expanded-count
(treep (tree)
∧ inv (tree, old)
∧ n (old , new , statement)
∧ (statement ∈ tree-prg (tree))
∧ (node ∈ nodes (tree))
∧ tou (old , new , node, tree)
∧ (total-outstanding (nodes (tree), tree, old) = (1 + count)))
→ (((total-outstanding (nodes (tree), tree, new) < (1 + count)) = t)

∧ (total-outstanding (nodes (tree), tree, new) < (1 + count)))

Theorem: total-outstanding-non-increasing-expanded
(treep (tree)
∧ (statement ∈ tree-prg (tree))
∧ n (old , new , statement)
∧ inv (tree, old))
→ (((total-outstanding (nodes (tree), tree, old)

< total-outstanding (nodes (tree), tree, new))
= f)
∧ (total-outstanding (nodes (tree), tree, old)

6< total-outstanding (nodes (tree), tree, new)))

Theorem: total-outstanding-non-increasing-expanded-count
(treep (tree)
∧ (statement ∈ tree-prg (tree))
∧ n (old , new , statement)
∧ inv (tree, old)
∧ (total-outstanding (nodes (tree), tree, old) = (1 + count)))
→ ((((1 + count) < total-outstanding (nodes (tree), tree, old)) = f)

∧ ((1 + count) 6< total-outstanding (nodes (tree), tree, new)))

Theorem: key-statements-member-tree-prg
(treep (tree)
→ (list (’start, car (tree), rfp (car (tree), children (car (tree), tree)))

∈ tree-prg (tree)))
∧ ((treep (tree) ∧ (child ∈ children (car (tree), tree)))

→ (list (’root-receive-report,
car (tree),
cons (child , car (tree)))

∈ tree-prg (tree)))
∧ ((treep (tree) ∧ (node ∈ cdr (nodes (tree))))

→ (list (’receive-find,
node,

64



cons (parent (node, tree), node),
cons (node, parent (node, tree)),
rfp (node, children (node, tree)))

∈ tree-prg (tree)))
∧ ((treep (tree)

∧ (node ∈ cdr (nodes (tree)))
∧ (child ∈ children (node, tree)))
→ (list (’receive-report,

node,
cons (child , node),
cons (node, parent (node, tree)))

∈ tree-prg (tree)))

Theorem: down-link-full-decreases-total-outstanding-ensures
(treep (tree)
∧ (node ∈ cdr (nodes (tree)))
∧ inv (tree, old)
∧ listp (channel (cons (parent (node, tree), node), old))
∧ n (old ,

new ,
list (’receive-find,

node,
cons (parent (node, tree), node),
cons (node, parent (node, tree)),
rfp (node, children (node, tree)))))

→ (total-outstanding (nodes (tree), tree, new)
< total-outstanding (nodes (tree), tree, old))

Theorem: down-link-full-unless
(treep (tree)
∧ (node ∈ cdr (nodes (tree)))
∧ listp (channel (cons (parent (node, tree), node), old))
∧ (statement ∈ tree-prg (tree))
∧ (statement 6= list (’receive-find,

node,
cons (parent (node, tree), node),
cons (node, parent (node, tree)),
rfp (node, children (node, tree))))

∧ n (old , new , statement))
→ listp (channel (cons (parent (node, tree), node), new))

Theorem: down-link-full-decreases-total-outstanding
(treep (tree) ∧ (node ∈ cdr (nodes (tree))))
→ leads-to (‘(and

(inv ’,tree state)

65



(and
(listp
(channel
’,(cons (parent node tree) node)
state))

(equal
(total-outstanding
’,(nodes tree)
’,tree
state)

’,(add1 count)))),
‘(lessp

(total-outstanding
’,(nodes tree)
’,tree
state)
’,(add1 count)),

tree-prg (tree))

Theorem: member-car-tree-nodes-tree
treep (tree) → (car (tree) ∈ nodes (tree))

Theorem: root-up-link-full-decreases-total-outstanding-ensures
(treep (tree)
∧ inv (tree, old)
∧ (child ∈ children (car (tree), tree))
∧ listp (channel (cons (child , car (tree)), old))
∧ n (old ,

new ,
list (’root-receive-report, car (tree), cons (child , car (tree)))))

→ (total-outstanding (nodes (tree), tree, new)
< total-outstanding (nodes (tree), tree, old))

Theorem: root-up-link-full-unless
(treep (tree)
∧ (child ∈ children (car (tree), tree))
∧ listp (channel (cons (child , car (tree)), old))
∧ (statement ∈ tree-prg (tree))
∧ (statement 6= list (’root-receive-report,

car (tree),
cons (child , car (tree))))

∧ n (old , new , statement))
→ listp (channel (cons (child , car (tree)), new))

Theorem: up-link-full-decreases-total-outstanding-ensures

66



(treep (tree)
∧ inv (tree, old)
∧ (node ∈ cdr (nodes (tree)))
∧ (child ∈ children (node, tree))
∧ listp (channel (cons (child , node), old))
∧ n (old ,

new ,
list (’receive-report,

node,
cons (child , node),
cons (node, parent (node, tree)))))

→ (total-outstanding (nodes (tree), tree, new)
< total-outstanding (nodes (tree), tree, old))

Theorem: up-link-full-unless
(treep (tree)
∧ (node ∈ cdr (nodes (tree)))
∧ (child ∈ children (node, tree))
∧ listp (channel (cons (child , node), old))
∧ (statement ∈ tree-prg (tree))
∧ (statement 6= list (’receive-report,

node,
cons (child , node),
cons (node, parent (node, tree))))

∧ n (old , new , statement))
→ listp (channel (cons (child , node), new))

Theorem: member-cdr-nodes-equals
(treep (tree) ∧ (node 6= car (tree)))
→ ((node ∈ nodes (tree)) = (node ∈ cdr (nodes (tree))))

Theorem: up-link-full-decreases-total-outstanding
(treep (tree) ∧ (node ∈ nodes (tree)) ∧ (child ∈ children (node, tree)))
→ leads-to (‘(and

(inv ’,tree state)
(and
(listp
(channel ’,(cons child node) state))

(equal
(total-outstanding
’,(nodes tree)
’,tree
state)

’,(add1 count)))),
‘(lessp

67



(total-outstanding
’,(nodes tree)
’,tree
state)

’,(add1 count)),
tree-prg (tree))

Theorem: not-started-root-decreases-total-outstanding-ensures
(treep (tree)
∧ inv (tree, old)
∧ (status (car (tree), old) = ’not-started)
∧ n (old ,

new ,
list (’start, car (tree), rfp (car (tree), children (car (tree), tree)))))

→ (total-outstanding (nodes (tree), tree, new)
< total-outstanding (nodes (tree), tree, old))

Theorem: not-started-root-unless
(treep (tree)
∧ (status (car (tree), old) = ’not-started)
∧ (statement ∈ tree-prg (tree))
∧ (statement 6= list (’start,

car (tree),
rfp (car (tree), children (car (tree), tree))))

∧ n (old , new , statement))
→ (status (car (tree), new) = ’not-started)

Theorem: not-started-root-decreases-total-outstanding
treep (tree)
→ leads-to (‘(and

(inv ’,tree state)
(and
(equal
(status ’,(car tree) state)
’not-started)

(equal
(total-outstanding
’,(nodes tree)
’,tree
state)
’,(add1 count)))),

‘(lessp
(total-outstanding
’,(nodes tree)
’,tree

68



state)
’,(add1 count)),

tree-prg (tree))

Theorem: full-channel-not-f-implies
full-channel (channels, state)
→ ((full-channel (channels, state) ∈ channels)

∧ listp (channel (full-channel (channels, state), state)))

Theorem: total-outstanding-decreases-leads-to
(treep (tree)
∧ initial-condition (‘(and

(all-empty
’,(all-channels tree)
state)
(not-started ’,(nodes tree) state)),

tree-prg (tree)))
→ leads-to (‘(equal

(total-outstanding
’,(nodes tree)
’,tree
state)

’,(add1 count)),
‘(lessp
(total-outstanding
’,(nodes tree)
’,tree
state)

’,(add1 count)),
tree-prg (tree))

Theorem: termination-induction
(treep (tree)
∧ initial-condition (‘(and

(all-empty
’,(all-channels tree)
state)
(not-started ’,(nodes tree) state)),

tree-prg (tree)))
→ leads-to (‘(lessp

(total-outstanding
’,(nodes tree)
’,tree
state)
’,(add1 count)),

69



‘(equal
(total-outstanding
’,(nodes tree)
’,tree
state)

0),
tree-prg (tree))

Theorem: termination
(treep (tree)
∧ initial-condition (‘(and

(all-empty
’,(all-channels tree)
state)
(not-started ’,(nodes tree) state)),

tree-prg (tree)))
→ leads-to (’(true),

‘(equal
(total-outstanding
’,(nodes tree)
’,tree
state)

0),
tree-prg (tree))

Theorem: correctness-condition
(treep (tree)
∧ initial-condition (‘(and

(all-empty
’,(all-channels tree)
state)
(not-started ’,(nodes tree) state)),

tree-prg (tree)))
→ leads-to (’(true), ‘(correct ’,tree state), tree-prg (tree))

70



Index
about-rfp, 23
about-rfp-numberp, 23
all-channels, 18, 20
all-done, 43, 44
all-done-and-all-empty-implies-

number-not-reported-0, 43
all-done-implies-all-done-subli

st, 43
all-done-implies-done, 43
all-done-implies-total-outstandi

ng-0, 44
all-empty, 18–20, 31, 42–44
all-empty-append, 19
all-empty-implies-all-empty-sub

list, 43
all-empty-implies-empty, 19
all-empty-implies-ul, 19
all-empty-not-started-implies-d

l, 19
all-empty-root-started-implies-t

otal-outstanding-0, 44
all-nodes-are-done, 44
all-numberps, 1, 16, 23, 29, 30, 33,

34, 38
all-numberps-append, 29
all-numberps-do-not-contain-lit

atom, 29
all-numberps-forest-implies-all

-numberps-roots, 29
all-numberps-implies, 1
all-numberps-nodes-implies-all-

numberps-car-parent, 29
numberps-children, 30
numberps-parent, 29

append-plistp-nil, 1
assoc-equal-cons, 29
assoc-of-channel-preserved-root

-receive-report, 29
assoc-of-send-find-func, 23

canonicalize-children-rec-flag, 4

canonicalize-nodes-rec-flag, 4
canonicalize-parent-rec-flag, 4
canonicalize-proper-tree-flag, 4
car-append, 1
changed, 10–12, 32–39
channel, 9–12, 16, 19, 27, 30, 31, 33,

34, 38, 46–48, 65–67, 69
child-member-cdr-nodes, 39
child-of-node-in-suffix-is-in-s

uffix, 43
children, 3, 12–17, 21, 28, 32, 33, 35,

37–41, 43, 45–48, 64–68
children-are-not-litatoms, 23
children-are-not-litatoms-membe

r, 23
children-are-suffix-of-sublist-

generalized, 44
children-of-non-node, 20
children-of-setp-tree, 8
children-rec, 3–6, 8, 9, 20, 23, 28,

30, 35, 39, 42, 44
childs-position-increases, 42
correct, 18, 22
correctness-condition, 70

dl, 16, 18, 19, 27, 30–32, 37, 39–42,
44–46

dl-and-all-empty-implies-root-de
fines-status, 42

dl-down-links-implies-dl-rfp, 37
dl-implies-instance-of-dl, 27
dl-of-append, 37
dl-preserves-dl, 30
dl-preserves-instance-of-dl, 30
dl-preserves-sublist, 30
dl-ul-no-preserves-instance-of-

no, 40
ul, 30

dl-ul-no-preserves-no-sublist, 40
dl-ul-no-preserves-ul, 31
dl-ul-no-preserves-ul-sublist, 31

71



done, 16, 27, 31, 33, 34, 38, 43
down-link-full-decreases-total-

outstanding, 65
outstanding-ensures, 65

down-link-full-unless, 65
down-links, 17–20, 28, 30, 31, 37,

39–42, 44–46
down-links-1, 17, 19, 20, 28, 37
down-links-1-rfp, 37
down-links-is-sublistp, 20

empty, 9, 11, 16, 18, 24, 25, 27, 30,
31, 36, 39, 44

equal-if, 15

found-value, 10–12, 16–18, 20, 24,
25, 27, 31–35, 37–40

found-value-min-value-generalize
d, 21

found-value-node-value, 20–22
found-value-node-value-append, 20
full-channel, 44, 45, 69
full-channel-not-f-implies, 69

head, 9–12, 22, 24, 25

initial-condition, 27, 40, 45, 69, 70
initial-conditions-imply-invari

ant, 20
inv, 18, 20, 22, 40, 44–48, 63–68
inv-implies-augmented-correctne

ss-condition, 22
inv-is-invariant, 40
inv-preserves-inv, 40
invariant, 27, 41, 45

key-statements-member-tree-prg, 64

later-positions-are-in-suffix, 42
leads-to, 66, 68–70
length, 1, 10, 11, 16, 22, 25, 32, 36,

41, 45, 46
length-append, 1
length-rfp, 32
listp-append, 1

listp-parent-rec-equals, 9
listp-tree-prg, 26

member-car-tree-nodes-tree, 66
member-cdr-nodes-equals, 67
member-cdr-nodes-member-nodes, 63
member-child-tree, 5
member-down-links, 28
member-down-links-1, 28
member-of-sublistp-is-member, 2
member-parent-member-tree, 6
member-parent-parent, 6
member-receive-find-prg, 12
member-receive-report-prg, 13
member-rfp, 28
member-root-receive-report-prg, 14
member-roots-member-forest, 5
member-rrp, 13
member-rrrp, 14
member-start-prg, 14
member-subtree-member-tree, 8
member-suffix-member-list, 42
member-tree-prg, 15
member-up-links, 30
min, 11, 12, 17, 18, 21, 24, 25, 33,

39
min-associative, 33
min-commutative, 33
min-commutative-1, 33
min-node-value, 18, 20, 21
min-of-reported, 17, 21, 28, 32–40
min-of-reported-of-min, 33
min-of-reported-of-non-root, 33
min-of-two-nodes-values, 21

n, 24, 25, 30, 31, 40, 41, 45–48, 63–
68

nati, 20
next-level, 7, 8, 20
next-level-in-subtrees-forest, 7
next-level-of-subtrees-in-complete

-subtrees, 7
next-level-of-tree-in-subtrees, 7
next-level-reduces-count, 7

72



no, 17–19, 21, 22, 28, 31, 39, 40, 44
no-at-termination, 21
no-children-in-rest-of-forest, 8
no-children-in-rest-of-tree, 8
no-implies, 21
no-implies-instance-of-no, 28
node-has-parent, 8
node-that-has-child-is-in-tree, 6
node-that-has-parent-is-in-tree, 6
node-value, 10, 11, 17, 18, 20–22,

25, 28, 33, 35, 37, 38, 40
node-values-constant-invariant, 27
node-values-constant-unless-suf

ficient, 26
nodes, 3, 14–16, 18–20, 22, 24, 26,

27, 30–32, 35, 37, 39–48,
63–68

nodes-are-not-litatoms, 23
nodes-in-channels, 19, 20
nodes-in-channels-append, 19
nodes-in-down-links-1-in-nodes, 19
nodes-in-down-links-in-nodes, 19
nodes-rec, 3–9, 20–23, 28–30, 35, 39,

41, 42
nodes-rec-forest-append, 7
not-all-empty-implies-full-chan

nel-full, 44
not-flag-tree, 5
not-lessp-count-append, 1
not-member-no-children, 8
not-member-no-parent, 5
not-member-subtrees, 8
not-started, 18–20, 31, 36
not-started-implies-no, 19
not-started-implies-not-started, 19
not-started-root-decreases-tota

l-outstanding, 68
l-outstanding-ensures, 68

not-started-root-unless, 68
not-total-outstanding-0-implies

-full-channel, 45
number-not-reported, 17, 21, 28, 30,

32–40, 43
number-not-reported-0-implies, 21

number-not-reported-of-non-root, 34
number-not-reported-of-root, 34

others-preserve-down-to-node-fu
ll, 47

others-preserve-root-not-starte
d, 46

others-preserve-up-to-node-full, 48
others-preserve-up-to-root-full, 47
outstanding, 10–12, 16, 17, 24, 25,

30, 32, 33, 35–41, 45, 46
outstanding-non-increasing, 41

parent, 4, 12, 13, 15, 18, 30, 37, 39,
42, 47, 48, 65, 67

parent-is-not-a-litatom, 23
parent-is-not-child, 9
parent-is-not-itself, 9
parent-is-not-itself-generalize

d, 8
parent-not-child, 28
parent-not-grandchild, 28
parent-not-in-children, 9
parent-not-in-rfp, 23
parent-not-litatom, 29
parent-not-started-implies-all-e

mpty-and-not-started, 31
parent-of-child, 6
parent-of-parent-not-node, 28
parent-rec, 4–6, 8, 9, 23, 28, 29, 41,

47
parent-rec-children-rec, 5
parent-to-root-induction, 42
parents-position-decreases, 41
plistp, 1, 2, 5
plistp-append-plistp, 1
plistp-children-rec, 5
plistp-parent-rec, 5
plistp-roots, 5
position, 41–43
position-append, 41
proper-tree, 4–9, 16, 19–23, 28, 35,

39, 41–45
proper-tree-next-level-of-prope

73



r-tree, 8
proper-tree-of-append, 8
proper-tree-tree-implies-nodes-e

xists, 21

receive, 9–12, 22, 24, 25, 33, 34, 38
receive-find, 10, 37
receive-find-decreases-tou, 47
receive-find-func, 22, 24, 26
receive-find-func-implements-re

ceive-find, 24
receive-find-preserves-instance

-of-no, 37
receive-find-preserves-no-for-n

ode, 36
receive-find-preserves-no-for-p

arent-of-node, 36
receive-find-preserves-no-for-re

st-of-tree, 35
receive-find-prg, 12, 14, 24, 26
receive-find-prg-is-total, 26
receive-report, 11, 39
receive-report-decreases-tou, 47
receive-report-func, 24–26
receive-report-func-implements-

receive-report, 24
receive-report-preserves-instan

ce-of-no, 39
receive-report-preserves-no-for

-node, 38
-parent, 39
-rest-of-tree, 38

receive-report-prg, 13, 14, 24, 26
receive-report-prg-is-total, 26
reported, 16, 17, 21
rfp, 12–15, 23, 24, 28, 31, 32, 36, 37,

46, 47, 64, 65, 68
root-receive-report, 11, 35
root-receive-report-decreases-t

ou, 46
root-receive-report-func, 25, 26
root-receive-report-func-impleme

nts-root-receive-report, 25
root-receive-report-preserves-i

nstance-of-no, 35
root-receive-report-prg, 14, 25, 26
root-receive-report-prg-is-tota

l, 26
root-started-or-not-started-is-i

nvariant, 45
root-up-link-full-decreases-tot

al-outstanding-ensures, 66
root-up-link-full-unless, 66
roots, 3–5, 8, 9, 21, 29, 35, 41
rrp, 13
rrrp, 14

sei, 2
send, 9–11, 22, 24, 29
send-find, 10, 11, 23, 29
send-find-func, 22–25
send-find-func-implements-send-

find, 23
send-find-general, 29
send-find-implies, 29
send-find-of-update-assoc, 23
setp, 1, 2, 5, 6, 8, 9, 16, 22, 23, 28,

29, 33–35, 38, 39, 41–45
setp-append, 2
setp-append-canonicalize, 2
setp-append-cons, 2
setp-append-not-listp, 2
setp-list-setp-suffix, 42
setp-member, 2
setp-member-1, 2
setp-member-2, 2
setp-nodes-implies-setp-roots, 35
setp-nodes-setp-children, 35
setp-tree-unique-parent, 5
start, 11, 32
start-decreases-tou, 46
start-func, 25, 26
start-func-implements-start, 25
start-preserves-instance-of-no, 32
start-preserves-no-for-parent, 31
start-preserves-no-for-rest-of-t

ree, 32
start-prg, 13, 14, 25, 26

74



start-prg-is-total, 26
status, 10, 11, 16–18, 21, 25, 27, 28,

30–32, 35–37, 39–42, 44–
46, 68

status-root-becomes-started-or-
unchanged, 45

sublist-ulnks, 43
sublistp, 2, 3, 6, 7, 20, 22, 24, 30,

31, 36, 40, 41, 43–45
sublistp-append, 2
sublistp-children, 6
sublistp-children-generalized, 6
sublistp-down-links-1, 20
sublistp-easy, 3
sublistp-in-append, 3
sublistp-in-cons, 3
sublistp-normalize, 2
sublistp-not-started, 20
sublistp-of-sublistp-is-sublistp, 2
sublistp-reflexive, 3
subtreep, 6, 7
subtreep-subtrees, 7
subtrees, 7, 8, 22
subtrees-of-subtree-in-complete

-subtrees, 7
subtrees-of-subtrees-in-complete

-subtrees, 7
suffix, 42–44
suffix-implies-suffix-cdr, 42

termination, 70
termination-induction, 69
to-node-not-in-rfp, 24
total, 26
total-outstanding, 16, 21, 22, 41, 44–

46, 63–68
total-outstanding-0-implies, 21
total-outstanding-decreases, 46
total-outstanding-decreases-exp

anded, 63
anded-count, 64

total-outstanding-decreases-lea
ds-to, 69

total-outstanding-decreases-sub

list, 45
total-outstanding-non-increasin

g, 41
g-expanded, 64
g-expanded-count, 64
g-sublist, 41

total-sufficient, 26
total-tree-prg, 26
tou, 46–48, 63, 64
tree-prg, 14, 15, 26, 27, 30, 31, 40,

41, 45–48, 63–70
treep, 16, 24–27, 30–32, 35, 37, 39–

41, 45–48, 63–70

uc, 24, 29
uc-of-send-find-func, 24
ul, 16, 18, 19, 27, 31, 35, 39, 40, 44
ul-implies-instance-of-ul, 27
ul-implies-instance-of-ul-not-e

mpty-uplink, 27
ulnks, 43
unchanged-preserves-no, 32
unless-sufficient, 27
up-link-full-decreases-total-out

standing, 67
standing-ensures, 67

up-link-full-unless, 67
up-links, 18, 30, 31, 35, 39, 40, 43–

45
update-assoc, 22–25
update-min-of-reported, 33

value, 9, 10

zero-not-reported-implies-child
ren-reported, 30

75


