
;; Requires sets.

Event: Start with the library "sets".

;; Alists, March 1990. Most of the definitions and some of the lemmas
;; were contributed by Bill Bevier; the rest are by Matt Kaufmann.

;; Functions defined here:

;; (deftheory alist-defns
;; (alistp domain range value bind rembind invert mapping
;; restrict co-restrict))

Definition:
alistp (x )
= if listp (x ) then listp (car (x )) ∧ alistp (cdr (x ))

else x = nil endif

Theorem: alistp-implies-properp
alistp (x ) → properp (x )

Theorem: alistp-nlistp
(x ' nil) → (alistp (x ) = (x = nil))

Theorem: alistp-cons
alistp (cons (a, x )) = (listp (a) ∧ alistp (x ))

Event: Disable alistp.

Theorem: alistp-append
alistp (append (x , y)) = (alistp (fix-properp (x )) ∧ alistp (y))

Definition:
domain (map)
= if listp (map)

then if listp (car (map)) then cons (car (car (map)), domain (cdr (map)))
else domain (cdr (map)) endif

else nil endif

Theorem: properp-domain
properp (domain (map))

1



Theorem: domain-append
domain (append (x , y)) = append (domain (x ), domain (y))

Theorem: domain-nlistp
(map ' nil) → (domain (map) = nil)

Theorem: domain-cons
domain (cons (a, map))
= if listp (a) then cons (car (a), domain (map))

else domain (map) endif

Theorem: member-domain-sufficiency
(cons (a, x ) ∈ y) → (a ∈ domain (y))

Theorem: subsetp-domain
subsetp (x , y) → subsetp (domain (x ), domain (y))

Event: Disable domain.

Definition:
range (map)
= if listp (map)

then if listp (car (map)) then cons (cdr (car (map)), range (cdr (map)))
else range (cdr (map)) endif

else nil endif

Theorem: properp-range
properp (range (map))

Theorem: range-append
range (append (s1 , s2 )) = append (range (s1 ), range (s2 ))

Theorem: range-nlistp
(map ' nil) → (range (map) = nil)

Theorem: range-cons
range (cons (a, map))
= if listp (a) then cons (cdr (a), range (map))

else range (map) endif

Event: Disable range.

;; BOUNDP has been eliminated in favor of membership in domain.
;; Notice that I have to talk about things like disjointness of
;; domains anyhow. New definition body would be (member x (domain map)).

2



;(defn boundp (x map)
; (if (listp map)
; (if (listp (car map))
; (if (equal x (caar map))
; t
; (boundp x (cdr map)))
; (boundp x (cdr map)))
; f))

Definition:
value (x , map)
= if listp (map)

then if listp (car (map)) ∧ (x = caar (map)) then cdar (map)
else value (x , cdr (map)) endif

else 0 endif

Theorem: value-nlistp
(map ' nil) → (value (x , map) = 0)

Theorem: value-cons
value (x , cons (pair , map))
= if listp (pair) ∧ (x = car (pair)) then cdr (pair)

else value (x , map) endif

Event: Disable value.

Definition:
bind (x , v , map)
= if listp (map)

then if listp (car (map))
then if x = caar (map) then cons (cons (x , v), cdr (map))

else cons (car (map), bind (x , v , cdr (map))) endif
else cons (car (map), bind (x , v , cdr (map))) endif

else cons (cons (x , v), nil) endif

Definition:
rembind (x , map)
= if listp (map)

then if listp (car (map))
then if x = caar (map) then cdr (map)

else cons (car (map), rembind (x , cdr (map))) endif
else cons (car (map), rembind (x , cdr (map))) endif

else nil endif

3



Definition:
invert (map)
= if listp (map)

then if listp (car (map))
then cons (cons (cdr (car (map)), car (car (map))), invert (cdr (map)))
else invert (cdr (map)) endif

else nil endif

Theorem: properp-invert
properp (invert (map))

Theorem: invert-nlistp
(map ' nil) → (invert (map) = nil)

Theorem: invert-cons
invert (cons (pair , map))
= if listp (pair) then cons (cons (cdr (pair), car (pair)), invert (map))

else invert (map) endif

Theorem: value-invert-not-member-of-domain
((g ∈ range (sg)) ∧ disjoint (domain (s), domain (sg)))
→ (value (g , invert (sg)) 6∈ domain (s))

Event: Disable invert.

Definition: mapping (map) = (alistp (map) ∧ setp (domain (map)))

;; For when we disable mapping:

Theorem: mapping-implies-alistp
mapping (map) → alistp (map)

Theorem: mapping-implies-setp-domain
mapping (map) → setp (domain (map))

Definition:
restrict (s, new-domain)
= if listp (s)

then if listp (car (s)) ∧ (caar (s) ∈ new-domain)
then cons (car (s), restrict (cdr (s), new-domain))
else restrict (cdr (s), new-domain) endif

else nil endif

Definition:
co-restrict (s, new-domain)

4



= if listp (s)
then if listp (car (s)) ∧ (caar (s) 6∈ new-domain)

then cons (car (s), co-restrict (cdr (s), new-domain))
else co-restrict (cdr (s), new-domain) endif

else nil endif

Event: Let us define the theory alist-defns to consist of the following events: al-
istp, domain, range, value, bind, rembind, invert, mapping, restrict, co-restrict.

;;;;; alist lemmas

; DOMAIN

;; The following was proved in the course of the final run through
;; the generalization proof. The one after it isn’t needed but
;; seems like it’s worth proving too. Actually now I see that
;; some other lemmas are now obsolete, so I’ll put these both
;; early in the file and delete the others.

Theorem: domain-restrict
domain (restrict (s, dom)) = intersection (domain (s), dom)

Theorem: domain-co-restrict
domain (co-restrict (s, dom)) = set-diff (domain (s), dom)

Theorem: domain-bind
domain (bind (x , v , map))
= if x ∈ domain (map) then domain (map)

else append (domain (map), list (x )) endif

Theorem: domain-rembind
domain (rembind (x , map)) = delete (x , domain (map))

Theorem: domain-invert
domain (invert (map)) = range (map)

; RANGE

Theorem: range-invert
range (invert (map)) = domain (map)

; BOUNDP

5



Theorem: boundp-bind
(x ∈ domain (bind (y , v , map))) = ((x = y) ∨ (x ∈ domain (map)))

Theorem: boundp-rembind
mapping (map)
→ ((x ∈ domain (rembind (y , map)))

= if x = y then f
else x ∈ domain (map) endif)

Theorem: boundp-subsetp
(subsetp (map1 , map2 ) ∧ (name ∈ domain (map1 )))
→ (name ∈ domain (map2 ))

Theorem: disjoint-domain-singleton
(disjoint (domain (s), list (x )) = (x 6∈ domain (s)))
∧ (disjoint (list (x ), domain (s)) = (x 6∈ domain (s)))

Theorem: boundp-value-invert
(x ∈ range (map)) → (value (x , invert (map)) ∈ domain (map))

; VALUE

Theorem: value-when-not-bound
(name 6∈ domain (map)) → (value (name, map) = 0)

Theorem: value-bind
value (x , bind (y , v , map))
= if x = y then v

else value (x , map) endif

Theorem: value-rembind
mapping (map)
→ (value (x , rembind (y , map))

= if x = y then 0
else value (x , map) endif)

Theorem: value-append
value (x , append (s1 , s2 ))
= if x ∈ domain (s1 ) then value (x , s1 )

else value (x , s2 ) endif

Theorem: value-value-invert
((x ∈ range (s)) ∧ mapping (s)) → (value (value (x , invert (s)), s) = x )

; MAPPING

6



Theorem: mapping-append
mapping (append (s1 , s2 ))
= (disjoint (domain (s1 ), domain (s2 ))

∧ mapping (fix-properp (s1 ))
∧ mapping (s2 ))

Event: Disable mapping.

;; RESTRICT and CO-RESTRICT

Theorem: alistp-restrict
alistp (restrict (s, r))

Theorem: alistp-co-restrict
alistp (co-restrict (s, r))

Theorem: value-restrict
((a ∈ r) ∧ (a ∈ domain (s)))
→ (value (a, restrict (s, r)) = value (a, s))

Theorem: value-co-restrict
((a 6∈ r) ∧ (a ∈ domain (s)))
→ (value (a, co-restrict (s, r)) = value (a, s))

Theorem: mapping-restrict
mapping (s) → mapping (restrict (s, x ))

Theorem: mapping-co-restrict
mapping (s) → mapping (co-restrict (s, x ))

Event: Disable restrict.

Event: Disable co-restrict.

Event: Make the library "alists".

7



Index
alist-defns, 5
alistp, 1, 4, 7
alistp-append, 1
alistp-co-restrict, 7
alistp-cons, 1
alistp-implies-properp, 1
alistp-nlistp, 1
alistp-restrict, 7

bind, 3, 5, 6
boundp-bind, 6
boundp-rembind, 6
boundp-subsetp, 6
boundp-value-invert, 6

co-restrict, 4, 5, 7

delete, 5
disjoint, 4, 6, 7
disjoint-domain-singleton, 6
domain, 1, 2, 4–7
domain-append, 2
domain-bind, 5
domain-co-restrict, 5
domain-cons, 2
domain-invert, 5
domain-nlistp, 2
domain-rembind, 5
domain-restrict, 5

fix-properp, 1, 7

intersection, 5
invert, 4–6
invert-cons, 4
invert-nlistp, 4

mapping, 4, 6, 7
mapping-append, 7
mapping-co-restrict, 7
mapping-implies-alistp, 4
mapping-implies-setp-domain, 4

mapping-restrict, 7
member-domain-sufficiency, 2

properp, 1, 2, 4
properp-domain, 1
properp-invert, 4
properp-range, 2

range, 2, 4–6
range-append, 2
range-cons, 2
range-invert, 5
range-nlistp, 2
rembind, 3, 5, 6
restrict, 4, 5, 7

set-diff, 5
setp, 4
subsetp, 2, 6
subsetp-domain, 2

value, 3, 4, 6, 7
value-append, 6
value-bind, 6
value-co-restrict, 7
value-cons, 3
value-invert-not-member-of-domai

n, 4
value-nlistp, 3
value-rembind, 6
value-restrict, 7
value-value-invert, 6
value-when-not-bound, 6

8


