
;; Requires sets, alists, and terms, which currently contain a number
;; of rules that aren’t really needed here, even indirectly.

;; This is a proof soundness of a slight abstraction of the GENERALIZE
;; command of PC-NQTHM.

Event: Start with the library "terms".

#| Here’s what I want to prove.

(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))

(valid-state state))

I also prove the much simpler fact, GENERALIZE-STATEP:

(implies (generalize-okp sg state)
(statep (generalize sg state)))

|#

;; << 1 >>

Conservative Axiom: theorem-intro
((theorem (x ) ∧ flg) → termp (flg , x ))
∧ ((theorem (x ) ∧ flg ∧ var-substp (s)) → theorem (subst (flg , s, x )))

Simultaneously, we introduce the new function symbol theorem.

;; << 2 >>

Definition:
theorem-list (x )
= if listp (x ) then theorem (car (x )) ∧ theorem-list (cdr (x ))

else x = nil endif

;; << 3 >>

Theorem: theorem-list-properties
(theorem-list (x ) → termp (f, x ))
∧ ((theorem-list (x ) ∧ var-substp (s)) → theorem-list (subst (f, s, x )))

;; << 4 >>

1



Definition:
statep (state)
= (listp (state) ∧ termp (f, car (state)) ∧ variable-listp (cdr (state)))

;; << 5 >>

Definition:
valid-state (state)
↔ (statep (state)

∧ ∃ witnessing-instantiation (var-substp (witnessing-instantiation)
∧ subsetp (domain (witnessing-instantiation),

cdr (state))
∧ theorem-list (subst (f,

witnessing-instantiation,
car (state)))))

;; << 6 >>

Definition:
new-gen-vars (goals, free, vars)
= if listp (goals)

then let current-free-vars be intersection (free,
all-vars (t, car (goals)))

in
if disjoint (current-free-vars, vars)
then new-gen-vars (cdr (goals), free, vars)
else append (current-free-vars,

new-gen-vars (cdr (goals), free, vars)) endif endlet
else nil endif

;; << 7 >>

Definition: cardinality (x ) = length (make-set (x ))

;; Next goal: get the definition of GEN-CLOSURE accepted. In fact,
;; the lemma GEN-CLOSURE-ACCEPT below suffices, taking NEW to be
;; (NEW-GEN-VARS GOALS FREE FREE-VARS-SO-FAR), as long as we prove the
;; following lemma, NEW-GEN-VARS-SUBSET.

;; << 8 >>

Theorem: new-gen-vars-subset
subsetp (new-gen-vars (goals, free, vars), free)

2



;; It is interesting to note that the exact form of the following
;; lemma changed while polishing the proof, since rewrite rules
;; applied to the old version so as to make it irrelevant.

;; << 9 >>

Theorem: gen-closure-accept
((¬ subsetp (new , free-vars-so-far)) ∧ subsetp (new , free))
→ (((length (make-set (free))

− length (intersection (make-set (free), free-vars-so-far)))
− length (intersection (set-diff (make-set (free), free-vars-so-far),

new)))
< (length (make-set (free))

− length (intersection (make-set (free), free-vars-so-far))))

;; Here I have a choice: I could intersect the accumulator with free
;; at the end, or I could assume that it’s intersected with free
;; before it’s input. I’ll choose the former approach, so that I’ll
;; have a simpler rewrite rule and so that I can call gen-closure more
;; simply. I may wish to commute the arguments to intersection in the
;; exit below, but probably that won’t matter because I’ll only be
;; talking about membership.

;; << 10 >>

Definition:
gen-closure (goals, free, free-vars-so-far)
= let new-free-vars be new-gen-vars (goals, free, free-vars-so-far)

in
if subsetp (new-free-vars , free-vars-so-far)
then intersection (free-vars-so-far , free)
else gen-closure (goals,

free,
append (new-free-vars, free-vars-so-far)) endif endlet

;; << 11 >>

Definition:
generalize-okp (sg , state)
= (var-substp (sg)

∧ statep (state)
∧ disjoint (domain (sg), all-vars (f, car (state)))
∧ listp (car (state))
∧ disjoint (domain (sg), cdr (state)))

3



;; << 12 >>

Definition:
generalize (sg , state)
= let g be caar (state),

p be cdar (state),
free be cdr (state),
sg-vars be all-vars (f, range (sg))

in
let new-g be subst (t, invert (sg), g)
in
let new-free be set-diff (free,

intersection (gen-closure (cons (new-g ,
p),

free,
all-vars (t,

new-g)),
all-vars (f,

range (sg))))
in
cons (cons (new-g , p), new-free) endlet endlet endlet

;; Here is a fact, not needed elsewhere, that is worth noticing, in
;; case we wish to extend the current theorem to a sequence of commands.

;; << 13 >>

Theorem: generalize-statep
generalize-okp (sg , state) → statep (generalize (sg , state))

;; << 14 >>

Definition:
gen-inst (sg , state)
= let s be witnessing-instantiation (generalize (sg , state)),

domain-1 be gen-closure (cons (subst (t, invert (sg), caar (state)),
cdar (state)),

cdr (state),
all-vars (t,

subst (t,
invert (sg),
caar (state))))

in
let s1 be restrict (s, domain-1 ),

s2 be apply-to-subst (nullify-subst (sg),

4



co-restrict (s, domain-1 ))
in
apply-to-subst (apply-to-subst (s2 , sg), append (s1 , s2 )) endlet endlet

;; Let’s see that it suffices to prove the result of opening up the
;; conclusion of the main theorem with a particular witness.

#|

(add-axiom main-theorem-1 (rewrite)
(let ((wit (gen-inst sg state)))

(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))

(and (statep state)
(var-substp wit)
(subsetp (domain wit) (cdr state))
(theorem-list (subst f wit (car state)))))))

(prove-lemma generalize-is-correct (rewrite)
(implies (and (generalize-okp sg state)

(valid-state (generalize sg state)))
(valid-state state))

((disable-theory t)
(enable-theory ground-zero)
(enable main-theorem-1)
(use (valid-state

(witnessing-instantiation (gen-inst sg state))))))

|#

;; So, it suffices to prove main-theorem-1. The first three conjuncts
;; of the conclusion are quite trivial.

;; << 15 >>

Theorem: main-theorem-1-case-1
generalize-okp (sg , state) → statep (state)

;; We put one direction of the definition of valid-state here, for
;; efficiency in proofs.

;; << 16 >>

Theorem: valid-state-opener
valid-state (state)

5



= (statep (state)
∧ let witnessing-instantiation be witnessing-instantiation (state)

in
var-substp (witnessing-instantiation)
∧ subsetp (domain (witnessing-instantiation),

cdr (state))
∧ theorem-list (subst (f,

witnessing-instantiation,
car (state))) endlet)

;; << 17 >>

Theorem: main-theorem-1-case-2
let wit be gen-inst (sg , state)
in
(generalize-okp (sg , state) ∧ valid-state (generalize (sg , state)))
→ var-substp (wit) endlet

;; << 18 >>

Theorem: subsetp-cdr-generalize
subsetp (cdr (generalize (sg , state)), cdr (state))

;; At this point I had to prove SUBSETP-SET-DIFF-SUFFICIENCY because
;; of some lemma that was created during the polishing process
;; (perhaps DOMAIN-RESTRICT).

;; << 19 >>

Theorem: main-theorem-1-case-3
let wit be gen-inst (sg , state)
in
valid-state (generalize (sg , state))
→ subsetp (domain (wit), cdr (state)) endlet

;; So now we only have to prove MAIN-THEOREM-1-CASE-4 (written here
;; without use of LET):

#|

(add-axiom main-theorem-1-case-4 (rewrite)
(implies (and (generalize-okp sg state)

(valid-state (generalize sg state)))
(theorem-list (subst f (gen-inst sg state) (car state)))))

6



(prove-lemma main-theorem-1 (rewrite)
(let ((wit (gen-inst sg state)))

(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))

(and (statep state)
(var-substp wit)
(subsetp (domain wit) (cdr state))
(theorem-list (subst f wit (car state))))))
((disable-theory t)
(enable-theory ground-zero)
(enable main-theorem-1-case-1 main-theorem-1-case-2
main-theorem-1-case-3 main-theorem-1-case-4)))

|#

;; << 20 >>

Definition:
gen-setting-substitutions (s1 , s2 , sg)
= (var-substp (s1 )

∧ var-substp (s2 )
∧ var-substp (sg)
∧ disjoint (domain (s1 ), domain (s2 ))
∧ disjoint (domain (s1 ), domain (sg))
∧ disjoint (domain (s2 ), domain (sg))
∧ disjoint (all-vars (f, range (sg)), domain (s1 ))
∧ disjoint (all-vars (f, range (s2 )), domain (sg)))

;; << 21 >>

Definition:
main-hyps (s1 , s2 , sg , g , p)
= (termp (t, g)

∧ disjoint (all-vars (t, g), domain (sg))
∧ termp (f, p)
∧ disjoint (all-vars (f, p), domain (sg))
∧ gen-setting-substitutions (s1 , s2 , sg)
∧ theorem-list (subst (f,

append (s1 , s2 ),
cons (subst (t, invert (sg), g), p))))

;; The goal above, MAIN-THEOREM-1-CASE-4, should follow from the
;; following two lemmas.

#|

7



(add-axiom main-hyps-suffice (rewrite)
(implies (and (listp goals)

(main-hyps s1 s2 sg (car goals) (cdr goals)))
(theorem-list (subst f

(apply-to-subst (apply-to-subst s2 sg)
(append s1 s2))
goals))))

(add-axiom main-hyps-relieved (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1

(gen-closure (cons new-g p) free (all-vars t new-g))))
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))
(implies (and (generalize-okp sg state)

(valid-state (generalize sg state)))
(main-hyps s1 s2 sg g p)))))))

(prove-lemma main-theorem-1-case-4 (rewrite)
(implies (and (generalize-okp sg state)

(valid-state (generalize sg state)))
(theorem-list (subst f (gen-inst sg state) (car state))))
((disable-theory t)
(enable-theory ground-zero)
(enable gen-inst main-hyps-suffice generalize-okp main-hyps-relieved)))

|#

;; So, now let us start with MAIN-HYPS-SUFFICE. It should follow from
;; two subgoals, as shown:

#|

(add-axiom main-hyps-suffice-first (rewrite)
(implies (main-hyps s1 s2 sg g p)
(theorem (subst t
(apply-to-subst (apply-to-subst s2 sg)
(append s1 s2))

8



g))))

(add-axiom main-hyps-suffice-rest (rewrite)
(implies (main-hyps s1 s2 sg g p)
(theorem-list (subst f

(apply-to-subst (apply-to-subst s2 sg)
(append s1 s2))
p))))

(prove-lemma main-hyps-suffice (rewrite)
(implies (and (listp goals)

(main-hyps s1 s2 sg (car goals) (cdr goals)))
(theorem-list (subst f

(apply-to-subst (apply-to-subst s2 sg)
(append s1 s2))
goals)))

((disable-theory t)
(enable-theory ground-zero)
(enable theorem-list subst main-hyps-suffice-first main-hyps-suffice-rest)))

|#

;; Consider the first of these. Although COMPOSE-PROPERTY-REVERSED is
;; used in the proof (because it’s enabled), it’s actually not
;; necessary. A proof took slightly over 10 minutes with the rule
;; enabled, and roughly 9 minutes without.

;; << 22 >>

Theorem: main-hyps-suffice-first-lemma-general
(termp (flg , g)
∧ disjoint (all-vars (flg , g), domain (sg))
∧ gen-setting-substitutions (s1 , s2 , sg)
∧ (sg-1 = invert (sg)))
→ (subst (flg , apply-to-subst (apply-to-subst (s2 , sg), append (s1 , s2 )), g)

= subst (flg ,
apply-to-subst (s2 , sg),
subst (flg , append (s1 , s2 ), subst (flg , sg-1 , g))))

;; << 23 >>

Theorem: main-hyps-suffice-first-lemma
(termp (t, g)
∧ disjoint (all-vars (t, g), domain (sg))
∧ gen-setting-substitutions (s1 , s2 , sg))

9



→ (subst (t, apply-to-subst (apply-to-subst (s2 , sg), append (s1 , s2 )), g)
= subst (t,

apply-to-subst (s2 , sg),
subst (t, append (s1 , s2 ), subst (t, invert (sg), g))))

;; << 24 >>

Theorem: main-hyps-suffice-first
main-hyps (s1 , s2 , sg , g , p)
→ theorem (subst (t, apply-to-subst (apply-to-subst (s2 , sg), append (s1 , s2 )), g))

;; The following is useful with s = (append s1 s2).

;; << 25 >>

Theorem: main-hyps-suffice-rest-lemma
(termp (flg , p)
∧ variable-listp (domain (sg))
∧ disjoint (all-vars (flg , p), domain (sg)))
→ (subst (flg , apply-to-subst (apply-to-subst (s2 , sg), s), p)

= subst (flg , apply-to-subst (s2 , sg), subst (flg , s, p)))

;; << 26 >>

Theorem: main-hyps-suffice-rest
main-hyps (s1 , s2 , sg , g , p)
→ theorem-list (subst (f,

apply-to-subst (apply-to-subst (s2 , sg), append (s1 , s2 )),
p))

;; << 27 >>

Theorem: main-hyps-suffice
(listp (goals) ∧ main-hyps (s1 , s2 , sg , car (goals), cdr (goals)))
→ theorem-list (subst (f,

apply-to-subst (apply-to-subst (s2 , sg), append (s1 , s2 )),
goals))

;; I’ll disable the two lemmas used above so that I avoid the possibility
;; of looping with COMPOSE-PROPERTY-REVERSED.

;; << 28 >>

Event: Disable main-hyps-suffice-first-lemma.

;; << 29 >>

10



Event: Disable main-hyps-suffice-rest-lemma.

;; All that remains now is to prove MAIN-HYPS-RELIEVED. If we open up
;; MAIN-HYPS we see what the necessary subgoals are. Recall the
;; definition of MAIN-HYPS:

#|
(defn main-hyps (s1 s2 sg g p)
(and (termp t g)

(disjoint (all-vars t g) (domain sg))
(termp f p)
(disjoint (all-vars f p) (domain sg))
(gen-setting-substitutions s1 s2 sg)
(theorem-list (subst f (append s1 s2)

(cons (subst t (invert sg) g) p)))))
|#

;; << 30 >>

Theorem: main-hyps-relieved-1
let g be caar (state)
in
generalize-okp (sg , state) → termp (t, g) endlet

;; << 31 >>

Theorem: main-hyps-relieved-2
let g be caar (state)
in
generalize-okp (sg , state) → disjoint (all-vars (t, g), domain (sg)) endlet

;; << 32 >>

Theorem: main-hyps-relieved-3
let p be cdar (state)
in
generalize-okp (sg , state) → termp (f, p) endlet

;; << 33 >>

Theorem: main-hyps-relieved-4
let p be cdar (state)
in
generalize-okp (sg , state) → disjoint (all-vars (f, p), domain (sg)) endlet

11



#|

(add-axiom main-hyps-relieved-5 (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1

(gen-closure (cons new-g p) free (all-vars t new-g))))
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))
(implies (and (generalize-okp sg state)

(valid-state (generalize sg state)))
(gen-setting-substitutions s1 s2 sg)))))))

(add-axiom main-hyps-relieved-6 (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1
(gen-closure (cons new-g p) free (all-vars t new-g))))

(let ((s1 (restrict s domain-1))
(s2 (apply-to-subst (nullify-subst sg)

(co-restrict s domain-1))))
(implies (and (generalize-okp sg state)

(valid-state (generalize sg state)))
(theorem-list (subst f (append s1 s2)

(cons (subst t (invert sg) g) p)))))))))

(prove-lemma main-hyps-relieved (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1

(gen-closure (cons new-g p) free (all-vars t new-g))))
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))

12



(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))

(main-hyps s1 s2 sg g p))))))
((disable-theory t)
(enable-theory ground-zero)
(enable main-hyps main-hyps-relieved-1 main-hyps-relieved-2 main-hyps-relieved-3
main-hyps-relieved-4 main-hyps-relieved-5 main-hyps-relieved-6)))

|#

;; So, we have left the goals MAIN-HYPS-RELIEVED-5 and
;; MAIN-HYPS-RELIEVED-6. Let us start with the first. Opening up
;; GEN-SETTING-SUBSTITUTIONS gives us a number of subgoals.

;; The first two cases below do not require knowledge about DOMAIN-1
;; (or G, P, FREE, or NEW-G), but simply following from the validity
;; of the state (GENERALIZE SG STATE). Disabling GENERALIZE is very
;; useful (probably not necessary, though I didn’t let the prover run
;; long enough to find out).

;; << 34 >>

Theorem: main-hyps-relieved-5-lemma-1
let s be witnessing-instantiation (generalize (sg , state))
in
let s1 be restrict (s, domain-1 ),

s2 be apply-to-subst (nullify-subst (sg), co-restrict (s, domain-1 ))
in
valid-state (generalize (sg , state))
→ (var-substp (s1 ) ∧ var-substp (s2 )) endlet endlet

;; The next case is trivial.

;; << 35 >>

Theorem: main-hyps-relieved-5-lemma-2
generalize-okp (sg , state) → var-substp (sg)

;; The next case is also quite trivial; notice how abstracted it is.

;; << 36 >>

Theorem: main-hyps-relieved-5-lemma-3
let s1 be restrict (s, domain-1 ),

s2 be apply-to-subst (nullify-subst (sg), co-restrict (s, domain-1 ))

13



in
disjoint (domain (s1 ), domain (s2 )) endlet

;; For the next two cases we first observe that (DOMAIN S) is disjoint
;; from (DOMAIN SG), and then we use SUBSETP-DISJOINT-1 where X is the
;; domain of S1 or S2, Y is the domain of S, and Z is the domain of
;; SG:
;; (IMPLIES (AND (SUBSETP X Y) (DISJOINT Y Z))
;; (DISJOINT X Z))

;; << 37 >>

Theorem: witnessing-instantiation-is-disjoint-from-generalizing-substitution
let s be witnessing-instantiation (generalize (sg , state))
in
(generalize-okp (sg , state) ∧ valid-state (generalize (sg , state)))
→ disjoint (domain (s), domain (sg)) endlet

;; In the next case we abstract away DOMAIN-1 (and hence G, P, FREE,
;; and NEW-G). Incidentally, a similar phenomenon occurred here to
;; the one reported just above the statement above of MAIN-THEOREM-1-CASE-3:
;; final polishing resulted in the need for another lemma. That extra
;; lemma is DISJOINT-SET-DIFF-SUFFICIENCY in this case, to be found
;; in "sets.events".

;; << 38 >>

Theorem: main-hyps-relieved-5-lemma-4
let s be witnessing-instantiation (generalize (sg , state))
in
let s1 be restrict (s, domain-1 ),

s2 be apply-to-subst (nullify-subst (sg), co-restrict (s, domain-1 ))
in
(generalize-okp (sg , state)
∧ valid-state (generalize (sg , state)))
→ (disjoint (domain (s1 ), domain (sg))

∧ disjoint (domain (s2 ), domain (sg))) endlet endlet

;; The lemma MAIN-HYPS-RELIEVED-5-LEMMA-5-WIT is true because the
;; domain of s is contained in the free variables of the generalized
;; state (by choice, i.e. definition, of witnessing-instantiation),
;; which is disjoint from the intersection of the indicated
;; GEN-CLOSURE with the variables in the range of sg. I’ll use a
;; trick that I learned from Ken Kunen (definable Skolem function is
;; all, really) to reduce disjointness considerations to membership

14



;; considerations.

;; << 39 >>

Theorem: main-hyps-relieved-5-lemma-5-wit
let g be caar (state),

p be cdar (state),
free be cdr (state),
s be witnessing-instantiation (generalize (sg , state))

in
let new-g be subst (t, invert (sg), g)
in
let domain-1 be gen-closure (cons (new-g , p),

free,
all-vars (t, new-g))

in
let s1 be restrict (s, domain-1 )
in
(generalize-okp (sg , state)
∧ valid-state (generalize (sg , state))
∧ (wit ∈ all-vars (f, range (sg)))
∧ (wit ∈ domain (s)))
→ (wit 6∈ domain-1 ) endlet endlet endlet endlet

;; << 40 >>

Theorem: main-hyps-relieved-5-lemma-5
let g be caar (state),

p be cdar (state),
free be cdr (state),
s be witnessing-instantiation (generalize (sg , state))

in
let new-g be subst (t, invert (sg), g)
in
let domain-1 be gen-closure (cons (new-g , p),

free,
all-vars (t, new-g))

in
let s1 be restrict (s, domain-1 )
in
(generalize-okp (sg , state)
∧ valid-state (generalize (sg , state)))
→ disjoint (all-vars (f, range (sg)), domain (s1 )) endlet endlet endlet endlet

;; << 41 >>

15



Theorem: main-hyps-relieved-5-lemma-6
let g be caar (state),

p be cdar (state),
free be cdr (state),
s be witnessing-instantiation (generalize (sg , state))

in
let new-g be subst (t, invert (sg), g)
in
let domain-1 be gen-closure (cons (new-g , p),

free,
all-vars (t, new-g))

in
let s2 be apply-to-subst (nullify-subst (sg),

co-restrict (s, domain-1 ))
in
(generalize-okp (sg , state)
∧ valid-state (generalize (sg , state)))
→ disjoint (all-vars (f, range (s2 )), domain (sg)) endlet endlet endlet endlet

;; << 42 >>

Theorem: main-hyps-relieved-5
let g be caar (state),

p be cdar (state),
free be cdr (state),
s be witnessing-instantiation (generalize (sg , state))

in
let new-g be subst (t, invert (sg), g)
in
let domain-1 be gen-closure (cons (new-g , p),

free,
all-vars (t, new-g))

in
let s1 be restrict (s, domain-1 ),

s2 be apply-to-subst (nullify-subst (sg),
co-restrict (s, domain-1 ))

in
(generalize-okp (sg , state)
∧ valid-state (generalize (sg , state)))
→ gen-setting-substitutions (s1 , s2 , sg) endlet endlet endlet endlet

;; Now all that is left is MAIN-HYPS-RELIEVED-6. Actually, this lemma
;; doesn’t have anything to do with inverse substitutions or even with
;; generalization, really. The idea is simply that one takes a valid
;; state and wishes to split its witnessing substitution into two

16



;; parts. The parts are the respective restriction and co-restriction
;; of the original substitution to some set that is ‘‘closed’’ in the
;; appropriate sense. Actually, the co-restriction is allowed to have
;; a substitution applied to it, whose domain is disjoint from the
;; goals ‘‘outside’’ that closure. Below we give the lemmas and the
;; proof of MAIN-HYPS-RELIEVED-6 from those lemmas. But first let us
;; introduce the necessary notions.

;; << 43 >>

Definition:
all-vars-disjoint-or-subsetp (goals, free, x )
= if listp (goals)

then (subsetp (intersection (free, all-vars (t, car (goals))), x )
∨ disjoint (intersection (free, all-vars (t, car (goals))), x ))
∧ all-vars-disjoint-or-subsetp (cdr (goals), free, x )

else t endif

;; Our plan will be to show that (CDR STATE) has the above property
;; with respect to the free variables of the generalized state and the
;; appropriate gen-closure. In cases where one applies a substitution
;; of the form (append s1 s2) to such a list of goals, where the
;; domain of s1 is contained in the intersection of those free
;; variables with that closure and the domain of s2 is disjoint from
;; that intersection, we’ll show that the result is a theorem-list iff
;; each of the following are theorem-lists: apply s1 to the goals
;; whose vars intersect its domain, and apply s2 to the rest.
;; Reduction rules about applying restrictions etc. will then finish
;; the job.

;; Notice the similarity of the following definition with new-gen-vars.
;; Think of vars as the closure variables, and free as the free variable
;; set within which this all "takes place".

;; << 44 >>

Definition:
goals-intersecting-vars (goals, free, vars)
= if listp (goals)

then let current-free-vars be intersection (free,
all-vars (t, car (goals)))

in
if disjoint (current-free-vars , vars)
then goals-intersecting-vars (cdr (goals), free, vars)
else cons (car (goals),

17



goals-intersecting-vars (cdr (goals),
free,
vars)) endif endlet

else nil endif

;; << 45 >>

Definition:
goals-disjoint-from-vars (goals, free, vars)
= if listp (goals)

then let current-free-vars be intersection (free,
all-vars (t, car (goals)))

in
if disjoint (current-free-vars, vars)
then cons (car (goals),

goals-disjoint-from-vars (cdr (goals), free, vars))
else goals-disjoint-from-vars (cdr (goals), free, vars) endif endlet

else nil endif

;; Now we begin the remaining goal, MAIN-HYPS-RELIEVED-6. The idea is
;; to show that the appropriate goal list is a theorem-list by showing
;; separately that the first and the rest are theorems, since the
;; reasons are slightly different. The first is a theorem because its
;; free vars are all in domain-1, hence in the domain of s1; so, s2
;; can be dropped from the APPEND. The rest all have the property
;; that their free vars are contained in or disjoint from domain-1,
;; and for those disjoint from it, they do not contain variables from
;; the domain of sg. Notice that the new current goal may violate the
;; latter requirement, since it may have no free vars at all but
;; contain vars from the domain of sg, and that’s why we have to make
;; a special case out of it.

#|

(add-axiom main-hyps-relieved-6-first (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1

(gen-closure (cons new-g p) free (all-vars t new-g))))
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))

18



(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))

(theorem (subst t (append s1 s2)
(subst t (invert sg) g)))))))))

(add-axiom main-hyps-relieved-6-rest (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1

(gen-closure (cons new-g p) free (all-vars t new-g))))
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))
(implies (and (generalize-okp sg state)

(valid-state (generalize sg state)))
(theorem-list (subst f (append s1 s2) p))))))))

(prove-lemma main-hyps-relieved-6 (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1

(gen-closure (cons new-g p) free (all-vars t new-g))))
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))
(implies (and (generalize-okp sg state)

(valid-state (generalize sg state)))
(theorem-list (subst f (append s1 s2)

(cons (subst t (invert sg) g) p))))))))
((disable-theory t)
(enable-theory ground-zero)
(enable main-hyps-relieved-6-first main-hyps-relieved-6-rest subst theorem-list)))

|#

;; The first is true because the free vars in new-g are all in the
;; domain of s1, since they are all in domain-1. By the way, the
;; proof-checker was useful here; I dove to the subst term (after

19



;; adding abbreviations and promoting hypotheses) and saw that I
;; wanted to rewrite with SUBST-APPEND-NOT-OCCUR-2. I also notice the
;; need for GEN-CLOSURE-CONTAINS-THIRD-ARG during the attempt to prove
;; a goal.

;; First, we only want to open up GENERALIZE when we are looking at
;; goals, not when we are simply asking about the witnessing
;; substitution.

;; << 46 >>

Theorem: car-generalize
car (generalize (sg , state))
= cons (subst (t, invert (sg), caar (state)), cdar (state))

;; << 47 >>

Event: Disable generalize.

;; Inspection of the proof of a subgoal of MAIN-HYPS-RELIEVED-6-FIRST
;; suggests that we need the following lemma. Actually, before the
;; final polishing it was the case that the following version sufficed.
;; But final polishing led me to prove a "better" version, as well
;; as the lemma DISJOINT-SET-DIFF-GENERAL in "sets.events".

#|
(prove-lemma gen-closure-contains-third-arg (rewrite)
(implies (subsetp domain free)
(subsetp (intersection domain free-vars-so-far)
(gen-closure goals free free-vars-so-far))))

|#

;; << 48 >>

Theorem: gen-closure-contains-third-arg
subsetp (x , intersection (free, free-vars-so-far))
→ subsetp (x , gen-closure (goals, free, free-vars-so-far))

;; << 49 >>

Theorem: main-hyps-relieved-6-first
let g be caar (state),

p be cdar (state),
free be cdr (state),
s be witnessing-instantiation (generalize (sg , state))

20



in
let new-g be subst (t, invert (sg), g)
in
let domain-1 be gen-closure (cons (new-g , p),

free,
all-vars (t, new-g))

in
let s1 be restrict (s, domain-1 ),

s2 be apply-to-subst (nullify-subst (sg),
co-restrict (s, domain-1 ))

in
(generalize-okp (sg , state)
∧ valid-state (generalize (sg , state)))
→ theorem (subst (t, append (s1 , s2 ), new-g)) endlet endlet endlet endlet

;; Now all that remains is MAIN-HYPS-RELIEVED-6-REST.

#|

;; I originally forgot the (TERMP F P) hypothesis below, but it wasn’t
;; very hard to back up and fix this.

(add-axiom main-hyps-relieved-6-rest-generalization (rewrite)
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))
(implies (and (var-substp sg)

(var-substp s)
(subsetp (domain s) new-free)
(termp f p)
(theorem-list (subst f s p))
(disjoint (domain sg)
(all-vars f (goals-disjoint-from-vars

p new-free domain-1)))
(all-vars-disjoint-or-subsetp p new-free domain-1))

(theorem-list (subst f (append s1 s2) p)))))

(add-axiom main-hyps-relieved-6-rest-lemma-1 (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1

21



(gen-closure (cons new-g p) free (all-vars t new-g))))
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))
(implies (and (generalize-okp sg state)

(valid-state (generalize sg state)))
(disjoint (domain sg)

(all-vars f (goals-disjoint-from-vars
p (cdr (generalize sg state)) domain-1)))))))))

;; Minor note: I used the BREAK-LEMMA feature of NQTHM to realize
;; that I needed the following lemma.

(add-axiom main-hyps-relieved-6-rest-lemma-2 (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1

(gen-closure (cons new-g p) free (all-vars t new-g))))
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))
(implies (and (generalize-okp sg state)

(valid-state (generalize sg state)))
(all-vars-disjoint-or-subsetp p (cdr (generalize sg state)) domain-1)))))))

(prove-lemma main-hyps-relieved-6-rest (rewrite)
(let ((g (caar state))

(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))

(let ((new-g (subst t (invert sg) g)))
(let ((domain-1

(gen-closure (cons new-g p) free (all-vars t new-g))))
(let ((s1 (restrict s domain-1))

(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))
(implies (and (generalize-okp sg state)

(valid-state (generalize sg state)))
(theorem-list (subst f (append s1 s2) p)))))))

((disable-theory t)
(enable-theory ground-zero)

22



(enable theorem-list subst car-generalize ;; so that we can get at p from (car state)
;; relieving hyps of main-hyps-relieved-6-rest-generalization:
main-hyps-relieved-6-rest-lemma-1 main-hyps-relieved-6-rest-lemma-2
;; to relieve the (termp f p) hypothesis in main-hyps-relieved-6-rest-generalization:
statep termp-list-cons
generalize-okp valid-state-opener main-hyps-relieved-6-rest-generalization)))

;; At this point I did a sanity check and sure enough, the pushed
;; lemmas all go through at this point: main-hyps-relieved-6,
;; main-hyps-relieved, main-theorem-1-case-4, main-theorem-1, and
;; generalize-is-correct.

|#

;; It remains to prove MAIN-HYPS-RELIEVED-6-REST-LEMMA-1,
;; MAIN-HYPS-RELIEVED-6-REST-LEMMA-2, and
;; MAIN-HYPS-RELIEVED-6-REST-GENERALIZATION.

;; For the first of these we need the following trivial observation.

;; << 50 >>

Theorem: goals-disjoint-from-vars-subsetp
subsetp (goals-disjoint-from-vars (goals, free, vars), goals)

;; Unfortunately the observation above doesn’t quite suffice, because
;; of a technical problem with free variables in hypotheses. The
;; following consequence does, though.

;; << 51 >>

Theorem: disjoint-all-vars-goals-disjoint-from-vars
disjoint (x , all-vars (f, goals))
→ disjoint (x , all-vars (f, goals-disjoint-from-vars (goals, free, vars)))

;; << 52 >>

Theorem: main-hyps-relieved-6-rest-lemma-1
let g be caar (state),

p be cdar (state),
free be cdr (state),
s be witnessing-instantiation (generalize (sg , state))

in
let new-g be subst (t, invert (sg), g)
in

23



let domain-1 be gen-closure (cons (new-g , p),
free,
all-vars (t, new-g))

in
let s1 be restrict (s, domain-1 ),

s2 be apply-to-subst (nullify-subst (sg),
co-restrict (s, domain-1 ))

in
(generalize-okp (sg , state)
∧ valid-state (generalize (sg , state)))
→ disjoint (domain (sg),

all-vars (f,
goals-disjoint-from-vars (p,

cdr (generalize (sg ,
state)),

domain-1 ))) endlet endlet endlet endlet

;; The next goal, MAIN-HYPS-RELIEVED-6-REST-LEMMA-2, needs the lemma
;; ALL-VARS-DISJOINT-OR-SUBSETP-GEN-CLOSURE below. That lemma’s
;; mechanical proof depends on the trivial observation
;; DISJOINT-INTERSECTION3-MIDDLE in file sets.events.

;; << 53 >>

Theorem: all-vars-disjoint-or-subsetp-gen-closure
subsetp (domain, free)
→ all-vars-disjoint-or-subsetp (goals,

domain,
gen-closure (cons (g , goals), free, vars))

;; << 54 >>

Theorem: main-hyps-relieved-6-rest-lemma-2
let g be caar (state),

p be cdar (state),
free be cdr (state),
s be witnessing-instantiation (generalize (sg , state))

in
let new-g be subst (t, invert (sg), g)
in
let domain-1 be gen-closure (cons (new-g , p),

free,
all-vars (t, new-g))

in
let s1 be restrict (s, domain-1 ),

24



s2 be apply-to-subst (nullify-subst (sg),
co-restrict (s, domain-1 ))

in
(generalize-okp (sg , state)
∧ valid-state (generalize (sg , state)))
→ all-vars-disjoint-or-subsetp (p,

cdr (generalize (sg ,
state)),

domain-1 ) endlet endlet endlet endlet

;; Finally, all that’s left is
;; MAIN-HYPS-RELIEVED-6-REST-GENERALIZATION. An attempted proof by
;; induction of that theorem results in 11 goals, all but one of which
;; goes through automatically. The remaining one is as follows.

#|

(IMPLIES
(AND
(DISJOINT NEW-FREE

(INTERSECTION DOMAIN-1
(ALL-VARS T X)))
(THEOREM-LIST
(SUBST F

(APPEND (RESTRICT S DOMAIN-1)
(APPLY-TO-SUBST (NULLIFY-SUBST SG)
(CO-RESTRICT S DOMAIN-1)))
Z))
(MAPPING SG)
(VARIABLE-LISTP (DOMAIN SG))
(TERMP F (RANGE SG))
(MAPPING S)
(VARIABLE-LISTP (DOMAIN S))
(TERMP F (RANGE S))
(SUBSETP (DOMAIN S) NEW-FREE)
(TERMP T X)
(TERMP F Z)
(THEOREM (SUBST T S X))
(THEOREM-LIST (SUBST F S Z))
(DISJOINT (DOMAIN SG) (ALL-VARS T X))
(DISJOINT (DOMAIN SG)

(ALL-VARS F
(GOALS-DISJOINT-FROM-VARS Z NEW-FREE DOMAIN-1)))

(ALL-VARS-DISJOINT-OR-SUBSETP Z NEW-FREE DOMAIN-1))

25



(THEOREM (SUBST T
(APPEND (RESTRICT S DOMAIN-1)
(APPLY-TO-SUBST (NULLIFY-SUBST SG)
(CO-RESTRICT S DOMAIN-1)))
X)))

|#

;; Let us attempt to prove this goal with the proof-checker, thus
;; seeing why the rewriter can’t handle it automatically. We would
;; like to rewrite with SUBST-APPEND-NOT-OCCUR-1 to replace the
;; conclusion with:

#|
(THEOREM (SUBST T
(APPLY-TO-SUBST (NULLIFY-SUBST SG)
(CO-RESTRICT S DOMAIN-1))
X))
|#

;; However, in order to do that we need to observe that under the
;; hypotheses, the following holds.

#|
(DISJOINT (ALL-VARS F

(DOMAIN (RESTRICT S DOMAIN-1)))
(ALL-VARS T X))

|#

;; This is one of those cases of a problem with free variables in
;; hypotheses that are so annoying. The lemma DOMAIN-RESTRICT has
;; been put in alists.events to help with this. But then we lose the
;; fact that the first ALL-VARS in the goal above may be removed. The
;; lemma VARIABLE-LISTP-INTERSECTION has been added to terms.events to
;; take care of that.

;; Now it looks like the rewrite using SUBST-APPEND-NOT-OCCUR-1 should
;; succeed, since all hypotheses are relieved by rewriting alone.
;; Just to make sure, we back up in the proof checker and see if BASH
;; uses this rule on our original goal. Sure enough, it does.

;; Now our conclusion is the one displayed above, i.e.

#|

26



(THEOREM (SUBST T
(APPLY-TO-SUBST (NULLIFY-SUBST SG)
(CO-RESTRICT S DOMAIN-1))
X))
|#

;; Since (as we already know) (NULLIFY-SUBST SG) has the same domain
;; as does SG, and since the hypotheses imply that (DOMAIN SG) is
;; disjoint from the variables of X, the SUBST expression in this
;; conclusion should simplify to:

#|
(SUBST T (NULLIFY-SUBST SG)

(SUBST T (CO-RESTRICT S DOMAIN-1)
X))

|#

;; We therefore need the lemma SUBST-APPLY-TO-SUBST-ELIMINATOR below
;; (which is used under the substitution where S gets (CO-RESTRICT S
;; DOMAIN-1) and SG gets (NULLIFY-SUBST SG)). However, we’ll
;; immediately derive the desired consequence and then disable this
;; lemma, since it appears that it would loop with
;; COMPOSE-PROPERTY-REVERSED.

;; << 55 >>

Theorem: subst-apply-to-subst-eliminator
(variable-listp (domain (sg))
∧ variable-listp (domain (s))
∧ termp (t, x )
∧ disjoint (domain (sg), all-vars (t, x )))
→ (subst (t, apply-to-subst (sg , s), x ) = subst (t, sg , subst (t, s, x )))

;; << 56 >>

Theorem: theorem-subst-apply-to-subst-with-disjoint-domain
(var-substp (sg)
∧ var-substp (s)
∧ termp (t, x )
∧ disjoint (domain (sg), all-vars (t, x ))
∧ theorem (subst (t, s, x )))
→ theorem (subst (t, apply-to-subst (sg , s), x ))

;; << 57 >>

27



Event: Disable subst-apply-to-subst-eliminator.

;; The proof of the remaining goal should go through now, one might
;; think. However, we need one more observation first, because we
;; need to apply the following lemma.

#|
(PROVE-LEMMA SUBST-CO-RESTRICT

(REWRITE)
(IMPLIES (AND (DISJOINT X

(INTERSECTION (DOMAIN S)
(ALL-VARS FLG TERM)))

(VARIABLE-LISTP (DOMAIN S))
(TERMP FLG TERM))

(EQUAL (SUBST FLG (CO-RESTRICT S X) TERM)
(SUBST FLG S TERM))))

|#

;; but the first hypothesis of this lemma needs special handling because of
;; free variables. The lemma DISJOINT-SUBSETP-HACK was proved at this point,
;; and appears now in sets.events.

;; And finally, we finish. During polishing I suddenly needed the
;; lemma SUBSETP-INTERSECTION-MONOTONE-2, which is now included in
;; "sets.events", and which in turn suggested
;; SUBSETP-INTERSECTION-COMMUTER there.

;; << 58 >>

Theorem: main-hyps-relieved-6-rest-generalization
let s1 be restrict (s, domain-1 ),

s2 be apply-to-subst (nullify-subst (sg), co-restrict (s, domain-1 ))
in
(var-substp (sg)
∧ var-substp (s)
∧ subsetp (domain (s), new-free)
∧ termp (f, p)
∧ theorem-list (subst (f, s, p))
∧ disjoint (domain (sg),

all-vars (f,
goals-disjoint-from-vars (p,

new-free,
domain-1 )))

∧ all-vars-disjoint-or-subsetp (p, new-free, domain-1 ))

28



→ theorem-list (subst (f, append (s1 , s2 ), p)) endlet

;; Now to clean up the goals that have been pushed above:

;; << 59 >>

Theorem: main-hyps-relieved-6-rest
let g be caar (state),

p be cdar (state),
free be cdr (state),
s be witnessing-instantiation (generalize (sg , state))

in
let new-g be subst (t, invert (sg), g)
in
let domain-1 be gen-closure (cons (new-g , p),

free,
all-vars (t, new-g))

in
let s1 be restrict (s, domain-1 ),

s2 be apply-to-subst (nullify-subst (sg),
co-restrict (s, domain-1 ))

in
(generalize-okp (sg , state)
∧ valid-state (generalize (sg , state)))
→ theorem-list (subst (f, append (s1 , s2 ), p)) endlet endlet endlet endlet

;; << 60 >>

Theorem: main-hyps-relieved-6
(generalize-okp (sg , state) ∧ valid-state (generalize (sg , state)))
→ theorem-list (subst (f,

append (restrict (witnessing-instantiation (generalize (sg ,
state)),

gen-closure (cons (subst (t,
invert (sg),
caar (state)),

cdar (state)),
cdr (state),
all-vars (t,

subst (t,
invert (sg),
caar (state))))),

apply-to-subst (nullify-subst (sg),
co-restrict (witnessing-instantiation (generalize (sg ,

state)),

29



gen-closure (cons (subst (t,
invert (sg),
caar (state)),

cdar (state)),
cdr (state),
all-vars (t,

subst (t,
invert (sg),
caar (state))))))),

cons (subst (t, invert (sg), caar (state)), cdar (state))))

;; << 61 >>

Theorem: main-hyps-relieved
(generalize-okp (sg , state) ∧ valid-state (generalize (sg , state)))
→ main-hyps (restrict (witnessing-instantiation (generalize (sg , state)),

gen-closure (cons (subst (t, invert (sg), caar (state)),
cdar (state)),

cdr (state),
all-vars (t,

subst (t,
invert (sg),
caar (state))))),

apply-to-subst (nullify-subst (sg),
co-restrict (witnessing-instantiation (generalize (sg ,

state)),
gen-closure (cons (subst (t,

invert (sg),
caar (state)),

cdar (state)),
cdr (state),
all-vars (t,

subst (t,
invert (sg),
caar (state)))))),

sg ,
caar (state),
cdar (state))

;; << 62 >>

Theorem: main-theorem-1-case-4
(generalize-okp (sg , state) ∧ valid-state (generalize (sg , state)))
→ theorem-list (subst (f, gen-inst (sg , state), car (state)))

30



;; << 63 >>

Theorem: main-theorem-1
let wit be gen-inst (sg , state)
in
(generalize-okp (sg , state) ∧ valid-state (generalize (sg , state)))
→ (statep (state)

∧ var-substp (wit)
∧ subsetp (domain (wit), cdr (state))
∧ theorem-list (subst (f, wit , car (state)))) endlet

;; << 64 >>

Theorem: generalize-is-correct
(generalize-okp (sg , state) ∧ valid-state (generalize (sg , state)))
→ valid-state (state)

Event: Make the library "generalize".

31



Index
all-vars, 2–4, 7, 9–11, 15–18, 21, 23,

24, 27–30
all-vars-disjoint-or-subsetp, 17, 24,

25, 28
all-vars-disjoint-or-subsetp-ge

n-closure, 24
apply-to-subst, 5, 9, 10, 13, 14, 16,

21, 24, 25, 27–30

car-generalize, 20
cardinality, 2
co-restrict, 5, 13, 14, 16, 21, 24, 25,

28–30

disjoint, 2, 3, 7, 9–11, 14–18, 23, 24,
27, 28

disjoint-all-vars-goals-disjoint
-from-vars, 23

domain, 2, 3, 6, 7, 9–11, 14–16, 24,
27, 28, 31

exists, 2

gen-closure, 3, 4, 15, 16, 20, 21, 24,
29, 30

gen-closure-accept, 3
gen-closure-contains-third-arg, 20
gen-inst, 4, 6, 30, 31
gen-setting-substitutions, 7, 9, 16
generalize, 4, 6, 13–16, 20, 21, 23–

25, 29–31
generalize-is-correct, 31
generalize-okp, 3–6, 11, 13–16, 21,

24, 25, 29–31
generalize-statep, 4
goals-disjoint-from-vars, 18, 23, 24,

28
goals-disjoint-from-vars-subsetp, 23
goals-intersecting-vars, 17, 18

intersection, 2–4, 17, 18, 20

invert, 4, 7, 9, 10, 15, 16, 20, 21, 23,
24, 29, 30

length, 2, 3

main-hyps, 7, 10, 30
main-hyps-relieved, 30
main-hyps-relieved-1, 11
main-hyps-relieved-2, 11
main-hyps-relieved-3, 11
main-hyps-relieved-4, 11
main-hyps-relieved-5, 16
main-hyps-relieved-5-lemma-1, 13
main-hyps-relieved-5-lemma-2, 13
main-hyps-relieved-5-lemma-3, 13
main-hyps-relieved-5-lemma-4, 14
main-hyps-relieved-5-lemma-5, 15
main-hyps-relieved-5-lemma-5-wit, 15
main-hyps-relieved-5-lemma-6, 16
main-hyps-relieved-6, 29
main-hyps-relieved-6-first, 20
main-hyps-relieved-6-rest, 29
main-hyps-relieved-6-rest-gener

alization, 28
main-hyps-relieved-6-rest-lemma

-1, 23
-2, 24

main-hyps-suffice, 10
main-hyps-suffice-first, 10
main-hyps-suffice-first-lemma, 9
main-hyps-suffice-first-lemma-ge

neral, 9
main-hyps-suffice-rest, 10
main-hyps-suffice-rest-lemma, 10
main-theorem-1, 31
main-theorem-1-case-1, 5
main-theorem-1-case-2, 6
main-theorem-1-case-3, 6
main-theorem-1-case-4, 30
make-set, 2, 3

new-gen-vars, 2, 3

32



new-gen-vars-subset, 2
nullify-subst, 4, 13, 14, 16, 21, 24,

25, 28–30

range, 4, 7, 15, 16
restrict, 4, 13–16, 21, 24, 28–30

set-diff, 3, 4
statep, 2–6, 31
subsetp, 2, 3, 6, 17, 20, 23, 24, 28,

31
subsetp-cdr-generalize, 6
subst, 1, 2, 4, 6, 7, 9, 10, 15, 16, 20,

21, 23, 24, 27–31
subst-apply-to-subst-eliminator, 27

termp, 1, 2, 7, 9–11, 27, 28
theorem, 1, 10, 21, 27
theorem-intro, 1
theorem-list, 1, 2, 6, 7, 10, 28–31
theorem-list-properties, 1
theorem-subst-apply-to-subst-wit

h-disjoint-domain, 27

valid-state, 2, 5, 6, 13–16, 21, 24,
25, 29–31

valid-state-opener, 5
var-substp, 1–3, 6, 7, 13, 27, 28, 31
variable-listp, 2, 10, 27

witnessing-instantiation, 4, 6, 13–
16, 20, 23, 24, 29, 30

witnessing-instantiation-is-dis
joint-from-generalizing-substitution,

14

33


