
Event: Start with the initial nqthm theory.

;; Sets; Matt Kaufmann, Dec. 1989, revised March 1990. The first few events
;; are some basic events about lists. I’ll take the approach that all these
;; basic functions will be disabled once enough algebraic properties have
;; been proved.

;; Theories:

;; (deftheory set-defns
;; (length properp fix-properp member append subsetp delete
;; disjoint intersection set-diff setp))

Definition:
length (x )
= if listp (x ) then 1 + length (cdr (x ))

else 0 endif

Theorem: length-nlistp
(x ' nil) → (length (x ) = 0)

Theorem: length-cons
length (cons (a, x )) = (1 + length (x ))

Theorem: length-append
length (append (x , y)) = (length (x ) + length (y))

Event: Disable length.

Theorem: append-assoc
append (append (x , y), z ) = append (x , append (y , z ))

Theorem: member-cons
(a ∈ cons (x , l)) = ((a = x ) ∨ (a ∈ l))

Theorem: member-nlistp
(l ' nil) → (a 6∈ l)

Event: Disable member.

Definition:
subsetp (x , y)
= if x ' nil then t

else (car (x ) ∈ y) ∧ subsetp (cdr (x ), y) endif

1



Definition:
subsetp-wit (x , y)
= if x ' nil then t

elseif car (x ) ∈ y then subsetp-wit (cdr (x ), y)
else car (x ) endif

Theorem: subsetp-wit-witnesses
subsetp (x , y)
= (¬ ((subsetp-wit (x , y) ∈ x ) ∧ (subsetp-wit (x , y) 6∈ y)))

Theorem: subsetp-wit-witnesses-general-1
((subsetp-wit (x , y) 6∈ x ) ∧ (a ∈ x )) → (a ∈ y)

Theorem: subsetp-wit-witnesses-general-2
((subsetp-wit (x , y) ∈ y) ∧ (a ∈ x )) → (a ∈ y)

Event: Disable subsetp-wit-witnesses.

Event: Disable subsetp-wit-witnesses-general-1.

Event: Disable subsetp-wit-witnesses-general-2.

Theorem: subsetp-cons-1
subsetp (cons (a, x ), y) = ((a ∈ y) ∧ subsetp (x , y))

Theorem: subsetp-cons-2
subsetp (l , m) → subsetp (l , cons (a, m))

Theorem: subsetp-reflexivity
subsetp (x , x )

Theorem: cdr-subsetp
subsetp (cdr (x ), x )

Theorem: member-subsetp
((x ∈ y) ∧ subsetp (y , z )) → (x ∈ z )

Theorem: subsetp-is-transitive
(subsetp (x , y) ∧ subsetp (y , z )) → subsetp (x , z )

Theorem: member-append
(a ∈ append (x , y)) = ((a ∈ x ) ∨ (a ∈ y))

Theorem: subsetp-append
subsetp (append (x , y), z ) = (subsetp (x , z ) ∧ subsetp (y , z ))

2



Theorem: subsetp-of-append-sufficiency
(subsetp (a, b) ∨ subsetp (a, c)) → subsetp (a, append (b, c))

Theorem: subsetp-nlistp
(x ' nil) → (subsetp (x , y) ∧ (subsetp (y , x ) = (y ' nil)))

Theorem: subsetp-cons-not-member
(z 6∈ x ) → (subsetp (x , cons (z , v)) = subsetp (x , v))

Event: Disable subsetp.

;;;;; Other set-theoretic and list-theoretic definitions, and properp observations.

Definition:
properp (x )
= if listp (x ) then properp (cdr (x ))

else x = nil endif

Definition:
fix-properp (x )
= if listp (x ) then cons (car (x ), fix-properp (cdr (x )))

else nil endif

Theorem: properp-fix-properp
properp (fix-properp (x ))

Theorem: fix-properp-properp
properp (x ) → (fix-properp (x ) = x )

Theorem: properp-cons
properp (cons (x , y)) = properp (y)

Theorem: properp-nlistp
(x ' nil) → (properp (x ) = (x = nil))

Theorem: fix-properp-cons
fix-properp (cons (x , y)) = cons (x , fix-properp (y))

Theorem: fix-properp-nlistp
(x ' nil) → (fix-properp (x ) = nil)

Theorem: properp-append
properp (append (x , y)) = properp (y)

Theorem: fix-properp-append
fix-properp (append (x , y)) = append (x , fix-properp (y))

3



Theorem: append-nil
append (x , nil) = fix-properp (x )

Definition:
delete (x , l)
= if listp (l)

then if x = car (l) then cdr (l)
else cons (car (l), delete (x , cdr (l))) endif

else l endif

Theorem: properp-delete
properp (delete (x , l)) = properp (l)

Definition:
disjoint (x , y)
= if listp (x ) then (car (x ) 6∈ y) ∧ disjoint (cdr (x ), y)

else t endif

Definition:
disjoint-wit (x , y)
= if listp (x )

then if car (x ) ∈ y then car (x )
else disjoint-wit (cdr (x ), y) endif

else t endif

Theorem: disjoint-wit-witnesses
disjoint (x , y)
= (¬ ((disjoint-wit (x , y) ∈ x ) ∧ (disjoint-wit (x , y) ∈ y)))

Event: Disable disjoint-wit.

Event: Disable disjoint-wit-witnesses.

Definition:
intersection (x , y)
= if listp (x )

then if car (x ) ∈ y then cons (car (x ), intersection (cdr (x ), y))
else intersection (cdr (x ), y) endif

else nil endif

Theorem: properp-intersection
properp (intersection (x , y))

4



Definition:
set-diff (x , y)
= if listp (x )

then if car (x ) ∈ y then set-diff (cdr (x ), y)
else cons (car (x ), set-diff (cdr (x ), y)) endif

else nil endif

Theorem: properp-set-diff
properp (set-diff (x , y))

Definition:
setp (x )
= if ¬ listp (x ) then x = nil

else (car (x ) 6∈ cdr (x )) ∧ setp (cdr (x )) endif

Theorem: setp-implies-properp
setp (x ) → properp (x )

Event: Disable properp.

Event: Let us define the theory set-defns to consist of the following events:
length, properp, fix-properp, member, append, subsetp, delete, disjoint, inter-
section, set-diff, setp, properp.

;; Set theory lemmas

Theorem: delete-cons
delete (a, cons (b, x ))
= if a = b then x

else cons (b, delete (a, x )) endif

Theorem: delete-nlistp
(x ' nil) → (delete (a, x ) = x )

Theorem: listp-delete
listp (delete (x , l))
= if listp (l) then (x 6= car (l)) ∨ listp (cdr (l))

else f endif

Theorem: delete-non-member
(x 6∈ y) → (delete (x , y) = y)

Theorem: delete-delete
delete (y , delete (x , z )) = delete (x , delete (y , z ))

5



Theorem: member-delete
setp (x ) → ((a ∈ delete (b, x )) = ((a 6= b) ∧ (a ∈ x )))

Theorem: setp-delete
setp (x ) → setp (delete (a, x ))

Event: Disable delete.

Theorem: disjoint-cons-1
disjoint (cons (a, x ), y) = ((a 6∈ y) ∧ disjoint (x , y))

Theorem: disjoint-cons-2
disjoint (x , cons (a, y)) = ((a 6∈ x ) ∧ disjoint (x , y))

Theorem: disjoint-nlistp
((x ' nil) ∨ (y ' nil)) → disjoint (x , y)

Theorem: disjoint-symmetry
disjoint (x , y) = disjoint (y , x )

Theorem: disjoint-append-right
disjoint (u, append (y , z )) = (disjoint (u, y) ∧ disjoint (u, z ))

Theorem: disjoint-append-left
disjoint (append (y , z ), u) = (disjoint (y , u) ∧ disjoint (z , u))

Theorem: disjoint-non-member
((a ∈ x ) ∧ (a ∈ y)) → (¬ disjoint (x , y))

Theorem: disjoint-subsetp-monotone-second
(subsetp (y , z ) ∧ disjoint (x , z )) → disjoint (x , y)

Theorem: subsetp-disjoint-2
(subsetp (x , y) ∧ disjoint (y , z )) → disjoint (z , x )

Theorem: subsetp-disjoint-1
(subsetp (x , y) ∧ disjoint (y , z )) → disjoint (x , z )

Theorem: subsetp-disjoint-3
(subsetp (x , y) ∧ disjoint (z , y)) → disjoint (x , z )

Event: Disable disjoint.

Theorem: intersection-disjoint
(intersection (x , y) = nil) = disjoint (x , y)

6



Theorem: intersection-nlistp
((x ' nil) ∨ (y ' nil)) → (intersection (x , y) = nil)

Theorem: member-intersection
(a ∈ intersection (x , y)) = ((a ∈ x ) ∧ (a ∈ y))

Theorem: subsetp-intersection
subsetp (x , intersection (y , z )) = (subsetp (x , y) ∧ subsetp (x , z ))

Theorem: intersection-symmetry
subsetp (intersection (x , y), intersection (y , x ))

Theorem: intersection-cons-1
intersection (cons (a, x ), y)
= if a ∈ y then cons (a, intersection (x , y))

else intersection (x , y) endif

Theorem: intersection-cons-2
(a 6∈ y) → (intersection (y , cons (a, x )) = intersection (y , x ))

;; The following is needed because DISJOINT-INTERSECTION-COMMUTER,
;; added during polishing, caused the proof of
;; DISJOINT-DOMAIN-CO-RESTRICT (in "alists.events") to fail.

Theorem: intersection-cons-3
(w ∈ x )
→ (subsetp (intersection (y , cons (w , z )), x )

= subsetp (intersection (y , z ), x ))

Theorem: intersection-cons-subsetp
subsetp (intersection (x , y), intersection (x , cons (a, y)))

Theorem: subsetp-intersection-left-1
subsetp (intersection (x , y), x )

Theorem: subsetp-intersection-left-2
subsetp (intersection (x , y), y)

Theorem: subsetp-intersection-sufficiency-1
subsetp (y , z ) → subsetp (intersection (x , y), z )

Theorem: subsetp-intersection-sufficiency-2
subsetp (y , z ) → subsetp (intersection (y , x ), z )

Theorem: intersection-associative
intersection (intersection (x , y), z ) = intersection (x , intersection (y , z ))

7



Theorem: intersection-elimination
subsetp (x , y) → (intersection (x , y) = fix-properp (x ))

Theorem: length-intersection
length (x ) 6< length (intersection (x , y))

Theorem: subsetp-intersection-member
(subsetp (intersection (x , y), z ) ∧ (a 6∈ z ))
→ (((a ∈ x ) → (a 6∈ y)) ∧ ((a ∈ y) → (a 6∈ x )))

;; The following wasn’t needed in the proof about generalization, but it’s a nice rule.

Theorem: intersection-append
intersection (append (x , y), z ) = append (intersection (x , z ), intersection (y , z ))

;; I’d rather just prove that intersection distributes over append on
;; the right but that isn’t true. Congruence relations would probably
;; help a lot with that problem. In the meantime, I content myself
;; with the following.

Theorem: disjoint-intersection-append
disjoint (x , intersection (y , append (z1 , z2 )))
= (disjoint (x , intersection (y , z1 )) ∧ disjoint (x , intersection (y , z2 )))

;; See comment just above DISJOINT-INTERSECTION-APPEND

Theorem: subsetp-intersection-append
subsetp (intersection (u, append (x , y)), z )
= (subsetp (intersection (u, x ), z ) ∧ subsetp (intersection (u, y), z ))

Theorem: subsetp-intersection-elimination-lemma
(subsetp (y , x ) ∧ (¬ subsetp (y , z )))
→ (¬ subsetp (intersection (x , y), z ))

Theorem: subsetp-intersection-elimination
subsetp (y , x ) → (subsetp (intersection (x , y), z ) ↔ subsetp (y , z ))

Theorem: disjoint-intersection
disjoint (intersection (x , y), z ) = disjoint (x , intersection (y , z ))

Theorem: subsetp-intersection-monotone-1
(subsetp (intersection (x , y), z ) ∧ subsetp (x1 , x ))
→ subsetp (intersection (x1 , y), z )

8



;; The lemma SUBSETP-INTERSECTION-MONOTONE-2 below was added during
;; polishing of the final proof in "generalize.events", since the
;; lemma immediately above wasn’t enough at that point. Actually
;; I realized at this point that intersection commutes from the point
;; of view of subsetp:

Theorem: subsetp-intersection-commuter
subsetp (intersection (x , y), z ) = subsetp (intersection (y , x ), z )

Theorem: subsetp-intersection-monotone-2
(subsetp (intersection (y , x ), z ) ∧ subsetp (x1 , x ))
→ subsetp (intersection (x1 , y), z )

Theorem: disjoint-intersection-commuter
disjoint (x , intersection (y , z )) = disjoint (x , intersection (z , y))

Theorem: disjoint-intersection3
disjoint (free, intersection (vars, x ))
→ (intersection (x , intersection (vars, free)) = nil)

Event: Disable intersection.

Theorem: member-set-diff
(a ∈ set-diff (y , z )) = ((a ∈ y) ∧ (a 6∈ z ))

Theorem: subsetp-set-diff-1
subsetp (set-diff (x , y), x )

Theorem: disjointp-set-diff
disjoint (set-diff (x , y), y)

Theorem: subsetp-set-diff-2
subsetp (x , set-diff (y , z )) = (subsetp (x , y) ∧ disjoint (x , z ))

Theorem: set-diff-cons
set-diff (cons (a, x ), y)
= if a ∈ y then set-diff (x , y)

else cons (a, set-diff (x , y)) endif

Theorem: set-diff-nlistp
(x ' nil) → (set-diff (x , y) = nil)

;; The following was discovered during final polishing, for the
;; proof of MAIN-HYPS-RELIEVED-6-FIRST.

9



Theorem: disjoint-set-diff-general
disjoint (x , set-diff (y , z )) = subsetp (intersection (x , y), z )

;; No longer relevant:
;(prove-lemma disjoint-set-diff-subsetp (rewrite)
; (implies (and (disjoint x (set-diff y z))
; (subsetp z z1))
; (disjoint x (set-diff y z1)))
; ((use (disjoint-wit-witnesses (y (set-diff y z1))))
; (disable member-set-diff set-diff)))

;; Instead of the following I’ll prove the corresponding (in light of
;; DISJOINT-SET-DIFF-GENERAL) fact INTERSECTION-X-X about intersection.
;(prove-lemma disjoint-set-diff (rewrite)
; (disjoint x (set-diff y x)))

Theorem: intersection-subsetp-identity
(properp (x ) ∧ subsetp (x , y)) → (intersection (x , y) = x )

Theorem: intersection-x-x
properp (x ) → (intersection (x , x ) = x )

Theorem: subsetp-set-diff-mononone-2
subsetp (set-diff (x , append (y , z )), set-diff (x , z ))

Theorem: subsetp-set-diff-monotone-second
subsetp (set-diff (x , y), set-diff (x , z )) = subsetp (intersection (x , z ), y)

Theorem: set-diff-nil
set-diff (x , nil) = fix-properp (x )

Theorem: set-diff-cons-non-member-1
(a 6∈ x ) → (set-diff (x , cons (a, y)) = set-diff (x , y))

Theorem: length-intersection-set-diff
length (x ) = (length (set-diff (x , y)) + length (intersection (x , y)))

Theorem: length-set-diff-opener
length (set-diff (x , y)) = (length (x ) − length (intersection (x , y)))

Theorem: listp-set-diff
listp (set-diff (x , y)) = (¬ subsetp (x , y))

;; Here is a messy lemma about disjoint and such

10



Theorem: disjoint-intersection-set-diff-intersection
disjoint (x , intersection (y , set-diff (z , intersection (y , x ))))

Event: Disable set-diff.

Theorem: member-fix-properp
(a ∈ fix-properp (x )) = (a ∈ x )

Theorem: setp-append
setp (append (x , y)) = (disjoint (x , y) ∧ setp (fix-properp (x )) ∧ setp (y))

Theorem: setp-cons
setp (cons (a, x )) = ((a 6∈ x ) ∧ setp (x ))

Theorem: setp-nlistp
(x ' nil) → (setp (x ) = (x = nil))

Definition:
make-set (l)
= if ¬ listp (l) then nil

elseif car (l) ∈ cdr (l) then make-set (cdr (l))
else cons (car (l), make-set (cdr (l))) endif

Theorem: make-set-preserves-member
(x ∈ make-set (l)) = (x ∈ l)

Theorem: make-set-preserves-subsetp-1
subsetp (make-set (x ), make-set (y)) = subsetp (x , y)

Theorem: make-set-preserves-subsetp-2
subsetp (x , make-set (y)) = subsetp (x , y)

Theorem: make-set-preserves-subsetp-3
subsetp (make-set (x ), y) = subsetp (x , y)

Theorem: make-set-gives-setp
setp (make-set (x ))

Theorem: make-set-set-diff
make-set (set-diff (x , y)) = set-diff (make-set (x ), make-set (y))

Theorem: set-diff-make-set
set-diff (x , make-set (y)) = set-diff (x , y)

Theorem: listp-make-set
listp (make-set (x )) = listp (x )

11



Event: Disable setp.

;;;;;; The following were proved in the course of the final run
;;;;;; through the generalization proof. There are a couple or
;;;;;; so noted above here, too.

Theorem: set-diff-append
set-diff (x , append (y , z )) = set-diff (set-diff (x , z ), y)

Theorem: length-set-diff-leq
length (x ) 6< length (set-diff (x , y))

Theorem: lessp-length
listp (x ) → (0 < length (x ))

Theorem: listp-intersection
listp (intersection (x , y)) = (¬ disjoint (x , y))

Theorem: length-set-diff-lessp
(¬ disjoint (x , new)) → (length (set-diff (x , new)) < length (x ))

Theorem: disjoint-implies-empty-intersection
disjoint (x , y) → (intersection (x , y) = nil)

;; The following lemma DISJOINT-INTERSECTION3-MIDDLE is needed for the
;; proof of ALL-VARS-DISJOINT-OR-SUBSETP-GEN-CLOSURE in
;; generalize.events. I think I could avoid lemmas like this one
;; INTERSECTION were actually commutative-associative (in which case
;; I’d get rid of disjoint and rely on normalization).

Theorem: disjoint-intersection3-middle
disjoint (y , intersection (x , z ))
→ (intersection (x , intersection (y , z )) = nil)

;; Maybe I should redo the notion of disjoint sometime, perhaps using
;; the fact that intersection is commutative and associative when it’s
;; equated with nil.

Theorem: disjoint-subsetp-hack
(disjoint (x , intersection (u, v)) ∧ subsetp (w , x ))
→ disjoint (u, intersection (w , v))

12



Theorem: subsetp-set-diff-sufficiency
subsetp (x , y) → subsetp (set-diff (x , z ), y)

;; The following lemma SETP-INTERSECTION-SUFFICIENCY is needed for
;; MAPPING-RESTRICT from "alists.events", because (I believe)
;; DOMAIN-RESTRICT, which was added during polishing, changed the
;; course of the previous proof. Similarly for
;; SETP-SET-DIFF-SUFFICIENCY and the lemma MAPPING-CO-RESTRICT.

Theorem: setp-intersection-sufficiency
setp (x ) → setp (intersection (x , y))

Theorem: setp-set-diff-sufficiency
setp (x ) → setp (set-diff (x , y))

;; The definition of FIX-PROPERP was also added in polishing because
;; of a problem with the proof of GEN-CLOSURE-ACCEPT in
;; "generalize.events". Here are a couple of lemmas about it that
;; might or might not be useful; all other lemmas about it above, and
;; the definition, were added during polishing.

Event: Disable fix-properp.

Theorem: subsetp-fix-properp-1
subsetp (fix-properp (x ), y) = subsetp (x , y)

Theorem: subsetp-fix-properp-2
subsetp (x , fix-properp (y)) = subsetp (x , y)

Event: Make the library "sets".

13



Index
append-assoc, 1
append-nil, 4

cdr-subsetp, 2

delete, 4–6
delete-cons, 5
delete-delete, 5
delete-nlistp, 5
delete-non-member, 5
disjoint, 4, 6, 8–12
disjoint-append-left, 6
disjoint-append-right, 6
disjoint-cons-1, 6
disjoint-cons-2, 6
disjoint-implies-empty-intersecti

on, 12
disjoint-intersection, 8
disjoint-intersection-append, 8
disjoint-intersection-commuter, 9
disjoint-intersection-set-diff-i

ntersection, 11
disjoint-intersection3, 9
disjoint-intersection3-middle, 12
disjoint-nlistp, 6
disjoint-non-member, 6
disjoint-set-diff-general, 10
disjoint-subsetp-hack, 12
disjoint-subsetp-monotone-secon

d, 6
disjoint-symmetry, 6
disjoint-wit, 4
disjoint-wit-witnesses, 4
disjointp-set-diff, 9

fix-properp, 3, 4, 8, 10, 11, 13
fix-properp-append, 3
fix-properp-cons, 3
fix-properp-nlistp, 3
fix-properp-properp, 3

intersection, 4, 6–13

intersection-append, 8
intersection-associative, 7
intersection-cons-1, 7
intersection-cons-2, 7
intersection-cons-3, 7
intersection-cons-subsetp, 7
intersection-disjoint, 6
intersection-elimination, 8
intersection-nlistp, 7
intersection-subsetp-identity, 10
intersection-symmetry, 7
intersection-x-x, 10

length, 1, 8, 10, 12
length-append, 1
length-cons, 1
length-intersection, 8
length-intersection-set-diff, 10
length-nlistp, 1
length-set-diff-leq, 12
length-set-diff-lessp, 12
length-set-diff-opener, 10
lessp-length, 12
listp-delete, 5
listp-intersection, 12
listp-make-set, 11
listp-set-diff, 10

make-set, 11
make-set-gives-setp, 11
make-set-preserves-member, 11
make-set-preserves-subsetp-1, 11
make-set-preserves-subsetp-2, 11
make-set-preserves-subsetp-3, 11
make-set-set-diff, 11
member-append, 2
member-cons, 1
member-delete, 6
member-fix-properp, 11
member-intersection, 7
member-nlistp, 1

14



member-set-diff, 9
member-subsetp, 2

properp, 3–5, 10
properp-append, 3
properp-cons, 3
properp-delete, 4
properp-fix-properp, 3
properp-intersection, 4
properp-nlistp, 3
properp-set-diff, 5

set-defns, 5
set-diff, 5, 9–13
set-diff-append, 12
set-diff-cons, 9
set-diff-cons-non-member-1, 10
set-diff-make-set, 11
set-diff-nil, 10
set-diff-nlistp, 9
setp, 5, 6, 11, 13
setp-append, 11
setp-cons, 11
setp-delete, 6
setp-implies-properp, 5
setp-intersection-sufficiency, 13
setp-nlistp, 11
setp-set-diff-sufficiency, 13
subsetp, 1–3, 6–13
subsetp-append, 2
subsetp-cons-1, 2
subsetp-cons-2, 2
subsetp-cons-not-member, 3
subsetp-disjoint-1, 6
subsetp-disjoint-2, 6
subsetp-disjoint-3, 6
subsetp-fix-properp-1, 13
subsetp-fix-properp-2, 13
subsetp-intersection, 7
subsetp-intersection-append, 8
subsetp-intersection-commuter, 9
subsetp-intersection-eliminatio

n, 8
n-lemma, 8

subsetp-intersection-left-1, 7
subsetp-intersection-left-2, 7
subsetp-intersection-member, 8
subsetp-intersection-monotone-1, 8
subsetp-intersection-monotone-2, 9
subsetp-intersection-sufficienc

y-1, 7
y-2, 7

subsetp-is-transitive, 2
subsetp-nlistp, 3
subsetp-of-append-sufficiency, 3
subsetp-reflexivity, 2
subsetp-set-diff-1, 9
subsetp-set-diff-2, 9
subsetp-set-diff-mononone-2, 10
subsetp-set-diff-monotone-secon

d, 10
subsetp-set-diff-sufficiency, 13
subsetp-wit, 2
subsetp-wit-witnesses, 2
subsetp-wit-witnesses-general-1, 2
subsetp-wit-witnesses-general-2, 2

15


