
Event: Start with the library "c-predefined1".

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; EXACT-TIME LEMMA MG-INTEGER-LE ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Theorem: mg-integer-le-args-have-simple-mg-type-refps
((car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ signatures-match (mg-alist (mg-state), name-alist))
→ (boolean-identifierp (car (call-actuals (stmt)), mg-alist (mg-state))

∧ int-identifierp (cadr (call-actuals (stmt)), mg-alist (mg-state))
∧ int-identifierp (caddr (call-actuals (stmt)), mg-alist (mg-state)))

Theorem: mg-integer-le-args-definedp
((car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ signatures-match (mg-alist (mg-state), name-alist))
→ (definedp (car (call-actuals (stmt)), mg-alist (mg-state))

∧ definedp (cadr (call-actuals (stmt)), mg-alist (mg-state))
∧ definedp (caddr (call-actuals (stmt)), mg-alist (mg-state)))

Theorem: mg-integer-le-steps-1-3
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
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∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-step (p-step (map-down (mg-state,

proc-list ,
ctrl-stk ,
temp-stk ,
tag (’pc,

cons (subr , length (code (cinfo)))),
t-cond-list))))

= p-state (tag (’pc, cons (subr , length (code (cinfo)) + 3)),
ctrl-stk ,
push (value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))),
push (value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk))),
push (value (car (call-actuals (stmt)),

bindings (top (ctrl-stk))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-4
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
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∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, cons (subr , length (code (cinfo)) + 3)),

ctrl-stk ,
push (value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))),
push (value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk))),
push (value (car (call-actuals (stmt)),

bindings (top (ctrl-stk))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, ’(mg-integer-le . 0)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’y,

value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk))))),

tag (’pc,
cons (subr , length (code (cinfo))

+ 4))),
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ctrl-stk),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-5
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 0)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),
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bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, ’(mg-integer-le . 1)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’y,

value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk))))),

tag (’pc,
cons (subr , length (code (cinfo))

+ 4))),
ctrl-stk),

push (value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-6
((n 6' 0)
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∧ (¬ resources-inadequatep (stmt ,
proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 1)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
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mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, ’(mg-integer-le . 2)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’y,

value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk))))),

tag (’pc,
cons (subr , length (code (cinfo))

+ 4))),
ctrl-stk),

push (rget (untag (value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-7
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
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∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))
= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),

code2 ))
∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 2)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (rget (untag (value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, ’(mg-integer-le . 3)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),

8



bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk))),
push (rget (untag (value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-8
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
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∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 3)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk))),
push (rget (untag (value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, ’(mg-integer-le . 4)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
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value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (rget (untag (value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

push (rget (untag (value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-9
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))
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∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 4)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (rget (untag (value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

push (rget (untag (value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, ’(mg-integer-le . 5)),
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push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (tag (’bool,

if ilessp (untag (mg-to-p-simple-literal (caddr (assoc (caddr (call-actuals (stmt)),
mg-alist (mg-state))))),

untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),
mg-alist (mg-state))))))

then ’t
else ’f endif),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-10
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
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code2 ))
∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state)
∧ (lt-value ∈ ’(t f)))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 5)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (tag (’bool, lt-value),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, ’(mg-integer-le . 6)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’y,
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value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk))))),

tag (’pc,
cons (subr , length (code (cinfo))

+ 4))),
ctrl-stk),

push (tag (’bool, not-bool (lt-value)),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-11
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 6)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),
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bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (tag (’bool, not-bool (lt-value)),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, ’(mg-integer-le . 7)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’y,

value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk))))),

tag (’pc,
cons (subr , length (code (cinfo))

+ 4))),
ctrl-stk),

push (value (car (call-actuals (stmt)),
bindings (top (ctrl-stk))),

push (tag (’bool, not-bool (lt-value)),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,
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mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-12
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 7)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (value (car (call-actuals (stmt)),
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bindings (top (ctrl-stk))),
push (tag (’bool, not-bool (lt-value)),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, ’(mg-integer-le . 8)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’y,

value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk))))),

tag (’pc,
cons (subr , length (code (cinfo))

+ 4))),
ctrl-stk),

rput (tag (’bool, not-bool (lt-value)),
untag (value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-13-true-case
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
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list (length (temp-stk),
p-ctrl-stk-size (ctrl-stk))))

∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state)
∧ ilessp (untag (mg-to-p-simple-literal (caddr (assoc (caddr (call-actuals (stmt)),

mg-alist (mg-state))))),
untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 8)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
rput (tag (’bool, not-bool (’t)),

untag (value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
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list (list (’c-c,
mg-cond-to-p-nat (cc (mg-state), t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc,
cons (subr ,

if normal (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
then length (code (translate (cinfo,

t-cond-list ,
stmt ,
proc-list)))

else find-label (fetch-label (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
label-alist (translate (cinfo,

t-cond-list ,
stmt ,
proc-list))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2 )) endif)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,
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mg-cond-to-p-nat (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-13-false-case
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state)
∧ (¬ ilessp (untag (mg-to-p-simple-literal (caddr (assoc (caddr (call-actuals (stmt)),

mg-alist (mg-state))))),
untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state))))))))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 8)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,
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value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
rput (tag (’bool, not-bool (’f)),

untag (value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc,
cons (subr ,

if normal (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
then length (code (translate (cinfo,

t-cond-list ,
stmt ,
proc-list)))

else find-label (fetch-label (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
label-alist (translate (cinfo,

t-cond-list ,
stmt ,
proc-list))),
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append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2 )) endif)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-exact-time-lemma
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
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∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p (map-down (mg-state,

proc-list ,
ctrl-stk ,
temp-stk ,
tag (’pc, cons (subr , length (code (cinfo)))),
t-cond-list),

clock (stmt , proc-list , mg-state, n))
= p-state (tag (’pc,

cons (subr ,
if normal (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
then length (code (translate (cinfo,

t-cond-list ,
stmt ,
proc-list)))

else find-label (fetch-label (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
label-alist (translate (cinfo,

t-cond-list ,
stmt ,
proc-list))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2 )) endif)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning-r (stmt ,

proc-list ,
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mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; EXACT-TIME LEMMA MG-INTEGER-UNARY-MINUS ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Theorem: min-int-only-non-negatable-small-int
(small-integerp (x , n) ∧ (x 6= (− exp (2, n − 1))))
→ small-integerp (inegate (x ), n)

Theorem: mg-integer-unary-minus-args-have-simple-mg-type-refps
((car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ signatures-match (mg-alist (mg-state), name-alist))
→ (int-identifierp (car (call-actuals (stmt)), mg-alist (mg-state))

∧ int-identifierp (cadr (call-actuals (stmt)), mg-alist (mg-state)))

Theorem: mg-integer-unary-minus-args-definedp
((car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
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∧ signatures-match (mg-alist (mg-state), name-alist))
→ (definedp (car (call-actuals (stmt)), mg-alist (mg-state))

∧ definedp (cadr (call-actuals (stmt)), mg-alist (mg-state)))

Theorem: mg-integer-unary-minus-steps-1-2
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-step (map-down (mg-state,

proc-list ,
ctrl-stk ,
temp-stk ,
tag (’pc, cons (subr , length (code (cinfo)))),
t-cond-list)))

= p-state (tag (’pc, cons (subr , length (code (cinfo)) + 2)),
ctrl-stk ,
push (value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk))),
push (value (car (call-actuals (stmt)),

bindings (top (ctrl-stk))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,
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mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-unary-minus-step-3
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, cons (subr , length (code (cinfo)) + 2)),

ctrl-stk ,
push (value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk))),
push (value (car (call-actuals (stmt)),

bindings (top (ctrl-stk))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
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’run))
= p-state (tag (’pc, ’(mg-integer-unary-minus . 0)),

push (p-frame (cons (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

’((min-int int -2147483648)
(temp-x int 0)))),

tag (’pc,
cons (subr , length (code (cinfo))

+ 3))),
ctrl-stk),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-unary-minus-steps-4-8
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),
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bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-step (p-step (p-step (p-step (p-state (tag (’pc,

’(mg-integer-unary-minus
. 0)),

push (p-frame (cons (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

’((min-int
int
-2147483648)

(temp-x
int
0)))),

tag (’pc,
cons (subr ,

length (code (cinfo))
+ 3))),

ctrl-stk),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))))))

= p-state (tag (’pc, ’(mg-integer-unary-minus . 5)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
’(min-int int -2147483648),
cons (’temp-x,
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mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),
mg-alist (mg-state)))))),

tag (’pc,
cons (subr , length (code (cinfo))

+ 3))),
ctrl-stk),

push (tag (’bool,
if untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))
= untag (’(int -2147483648))

then ’t
else ’f endif),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

;; (test-bool-and-jump f 0)
;; (push-constant (nat 1))
;; (pop-global c-c)
;; (jump 1)
;; (dl 1 nil (ret))

Theorem: mg-integer-unary-minus-steps-9-13-error-case
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))
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∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state)
∧ (untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))
= untag (’(int -2147483648))))

→ (p-step (p-step (p-step (p-step (p-step (p-state (tag (’pc,
’(mg-integer-unary-minus

. 5)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
’(min-int

int
-2147483648),

cons (’temp-x,
mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))),
tag (’pc,

cons (subr ,
length (code (cinfo))
+ 3))),

ctrl-stk),
push (tag (’bool, ’t),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))))))
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= p-state (tag (’pc, cons (subr , length (code (cinfo)) + 3)),
ctrl-stk ,
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c, ’(nat 1))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-unary-minus-steps-9-12-nonerror-case
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state)
∧ (untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))
6= untag (’(int -2147483648))))

→ (p-step (p-step (p-step (p-step (p-state (tag (’pc,
’(mg-integer-unary-minus

. 5)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),
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cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
’(min-int

int
-2147483648),

cons (’temp-x,
mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))),
tag (’pc,

cons (subr ,
length (code (cinfo))
+ 3))),

ctrl-stk),
push (tag (’bool, ’f),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run)))))

= p-state (tag (’pc, ’(mg-integer-unary-minus . 12)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
’(min-int int -2147483648),
cons (’temp-x,

mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),
mg-alist (mg-state)))))),

tag (’pc,
cons (subr , length (code (cinfo))

+ 3))),
ctrl-stk),

push (value (car (call-actuals (stmt)),
bindings (top (ctrl-stk))),

push (tag (’int,
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inegate (untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),
mg-alist (mg-state))))))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

;; (deposit-temp-stk)
;; (dl 1 nil (ret))

Theorem: mg-integer-unary-minus-steps-13-14-nonerror-case
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state)
∧ (untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))
6= untag (’(int -2147483648))))

→ (p-step (p-step (p-state (tag (’pc,
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’(mg-integer-unary-minus . 12)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
’(min-int int
-2147483648),

cons (’temp-x,
mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))),
tag (’pc,

cons (subr ,
length (code (cinfo))
+ 3))),

ctrl-stk),
push (value (car (call-actuals (stmt)),

bindings (top (ctrl-stk))),
push (tag (’int,

inegate (untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),
mg-alist (mg-state))))))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run)))

= p-state (tag (’pc, cons (subr , length (code (cinfo)) + 3)),
ctrl-stk ,
rput (tag (’int,

inegate (untag (caddr (assoc (cadr (call-actuals (stmt)),
mg-alist (mg-state)))))),

untag (value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
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list (list (’c-c,
mg-cond-to-p-nat (cc (mg-state), t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-unary-minus-push-c-c-effect
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, cons (subr , length (code (cinfo)) + 3)),

ctrl-stk ,
temp-stk ,
translate-proc-list (proc-list),
list (list (’c-c, cc-value)),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, cons (subr , length (code (cinfo)) + 4)),
ctrl-stk ,
push (cc-value, temp-stk),
translate-proc-list (proc-list),
list (list (’c-c, cc-value)),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
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’run))

Theorem: mg-integer-unary-minus-sub1-nat-effect
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ (cc-value ∈ list (’(nat 1), ’(nat 2))))
→ (p-step (p-state (tag (’pc, cons (subr , length (code (cinfo)) + 4)),

ctrl-stk ,
push (cc-value, temp-stk),
translate-proc-list (proc-list),
list (list (’c-c, cc-value)),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, cons (subr , length (code (cinfo)) + 5)),
ctrl-stk ,
push (tag (’nat, untag (cc-value) − 1), temp-stk),
translate-proc-list (proc-list),
list (list (’c-c, cc-value)),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-unary-minus-step-16-error
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,
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proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state)
∧ (untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))
= untag (’(int -2147483648))))

→ (p-step (p-state (tag (’pc, cons (subr , length (code (cinfo)) + 5)),
ctrl-stk ,
push (tag (’nat, untag (’(nat 1)) − 1),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
’((c-c (nat 1))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc,
cons (subr ,

if normal (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
then length (code (translate (cinfo,
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t-cond-list ,
stmt ,
proc-list)))

else find-label (fetch-label (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
label-alist (translate (cinfo,

t-cond-list ,
stmt ,
proc-list))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2 )) endif)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-unary-minus-step-17-nonerror
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,
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proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state)
∧ (untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))
6= untag (’(int -2147483648))))

→ (p-step (p-state (tag (’pc, cons (subr , length (code (cinfo)) + 5)),
ctrl-stk ,
push (tag (’nat,

untag (mg-cond-to-p-nat (cc (mg-state),
t-cond-list)) − 1),

rput (tag (’int,
inegate (untag (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))),
untag (value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc,
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cons (subr ,
if normal (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
then length (code (translate (cinfo,

t-cond-list ,
stmt ,
proc-list)))

else find-label (fetch-label (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
label-alist (translate (cinfo,

t-cond-list ,
stmt ,
proc-list))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2 )) endif)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
t-cond-list))),
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mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-unary-minus-exact-time-lemma
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p (map-down (mg-state,

proc-list ,
ctrl-stk ,
temp-stk ,
tag (’pc, cons (subr , length (code (cinfo)))),
t-cond-list),

clock (stmt , proc-list , mg-state, n))
= p-state (tag (’pc,

cons (subr ,
if normal (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
then length (code (translate (cinfo,
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t-cond-list ,
stmt ,
proc-list)))

else find-label (fetch-label (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
label-alist (translate (cinfo,

t-cond-list ,
stmt ,
proc-list))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2 )) endif)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Event: Make the library "c-predefined2".
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