
Event: Start with the library "c-predefined1".

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; EXACT-TIME LEMMA MG-INTEGER-LE ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Theorem: mg-integer-le-args-have-simple-mg-type-refps
((car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ signatures-match (mg-alist (mg-state), name-alist))
→ (boolean-identifierp (car (call-actuals (stmt)), mg-alist (mg-state))

∧ int-identifierp (cadr (call-actuals (stmt)), mg-alist (mg-state))
∧ int-identifierp (caddr (call-actuals (stmt)), mg-alist (mg-state)))

Theorem: mg-integer-le-args-definedp
((car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ signatures-match (mg-alist (mg-state), name-alist))
→ (definedp (car (call-actuals (stmt)), mg-alist (mg-state))

∧ definedp (cadr (call-actuals (stmt)), mg-alist (mg-state))
∧ definedp (caddr (call-actuals (stmt)), mg-alist (mg-state)))

Theorem: mg-integer-le-steps-1-3
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)

1



∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-step (p-step (map-down (mg-state,

proc-list ,
ctrl-stk ,
temp-stk ,
tag (’pc,

cons (subr , length (code (cinfo)))),
t-cond-list))))

= p-state (tag (’pc, cons (subr , length (code (cinfo)) + 3)),
ctrl-stk ,
push (value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))),
push (value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk))),
push (value (car (call-actuals (stmt)),

bindings (top (ctrl-stk))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-4
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)

2



∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, cons (subr , length (code (cinfo)) + 3)),

ctrl-stk ,
push (value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))),
push (value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk))),
push (value (car (call-actuals (stmt)),

bindings (top (ctrl-stk))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, ’(mg-integer-le . 0)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’y,

value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk))))),

tag (’pc,
cons (subr , length (code (cinfo))

+ 4))),

3



ctrl-stk),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-5
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 0)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

4



bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, ’(mg-integer-le . 1)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’y,

value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk))))),

tag (’pc,
cons (subr , length (code (cinfo))

+ 4))),
ctrl-stk),

push (value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-6
((n 6' 0)

5



∧ (¬ resources-inadequatep (stmt ,
proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 1)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,

6



mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, ’(mg-integer-le . 2)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’y,

value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk))))),

tag (’pc,
cons (subr , length (code (cinfo))

+ 4))),
ctrl-stk),

push (rget (untag (value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-7
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)

7



∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))
= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),

code2 ))
∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 2)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (rget (untag (value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, ’(mg-integer-le . 3)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),

8



bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk))),
push (rget (untag (value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-8
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)

9



∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 3)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk))),
push (rget (untag (value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, ’(mg-integer-le . 4)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,

10



value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (rget (untag (value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

push (rget (untag (value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-9
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

11



∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 4)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (rget (untag (value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

push (rget (untag (value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, ’(mg-integer-le . 5)),

12



push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (tag (’bool,

if ilessp (untag (mg-to-p-simple-literal (caddr (assoc (caddr (call-actuals (stmt)),
mg-alist (mg-state))))),

untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),
mg-alist (mg-state))))))

then ’t
else ’f endif),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-10
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),

13



code2 ))
∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state)
∧ (lt-value ∈ ’(t f)))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 5)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (tag (’bool, lt-value),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, ’(mg-integer-le . 6)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’y,

14



value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk))))),

tag (’pc,
cons (subr , length (code (cinfo))

+ 4))),
ctrl-stk),

push (tag (’bool, not-bool (lt-value)),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-11
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 6)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

15



bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (tag (’bool, not-bool (lt-value)),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, ’(mg-integer-le . 7)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’y,

value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk))))),

tag (’pc,
cons (subr , length (code (cinfo))

+ 4))),
ctrl-stk),

push (value (car (call-actuals (stmt)),
bindings (top (ctrl-stk))),

push (tag (’bool, not-bool (lt-value)),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

16



mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-12
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 7)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
push (value (car (call-actuals (stmt)),

17



bindings (top (ctrl-stk))),
push (tag (’bool, not-bool (lt-value)),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, ’(mg-integer-le . 8)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’y,

value (caddr (call-actuals (stmt)),
bindings (top (ctrl-stk))))),

tag (’pc,
cons (subr , length (code (cinfo))

+ 4))),
ctrl-stk),

rput (tag (’bool, not-bool (lt-value)),
untag (value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-13-true-case
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,

18



list (length (temp-stk),
p-ctrl-stk-size (ctrl-stk))))

∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state)
∧ ilessp (untag (mg-to-p-simple-literal (caddr (assoc (caddr (call-actuals (stmt)),

mg-alist (mg-state))))),
untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 8)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
rput (tag (’bool, not-bool (’t)),

untag (value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),

19



list (list (’c-c,
mg-cond-to-p-nat (cc (mg-state), t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc,
cons (subr ,

if normal (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
then length (code (translate (cinfo,

t-cond-list ,
stmt ,
proc-list)))

else find-label (fetch-label (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
label-alist (translate (cinfo,

t-cond-list ,
stmt ,
proc-list))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2 )) endif)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

20



mg-cond-to-p-nat (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-step-13-false-case
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state)
∧ (¬ ilessp (untag (mg-to-p-simple-literal (caddr (assoc (caddr (call-actuals (stmt)),

mg-alist (mg-state))))),
untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state))))))))
→ (p-step (p-state (tag (’pc, ’(mg-integer-le . 8)),

push (p-frame (list (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (’x,

21



value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’y,
value (caddr (call-actuals (stmt)),

bindings (top (ctrl-stk))))),
tag (’pc,

cons (subr , length (code (cinfo))
+ 4))),

ctrl-stk),
rput (tag (’bool, not-bool (’f)),

untag (value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc,
cons (subr ,

if normal (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
then length (code (translate (cinfo,

t-cond-list ,
stmt ,
proc-list)))

else find-label (fetch-label (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
label-alist (translate (cinfo,

t-cond-list ,
stmt ,
proc-list))),

22



append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2 )) endif)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-le-exact-time-lemma
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-le)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)

23



∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p (map-down (mg-state,

proc-list ,
ctrl-stk ,
temp-stk ,
tag (’pc, cons (subr , length (code (cinfo)))),
t-cond-list),

clock (stmt , proc-list , mg-state, n))
= p-state (tag (’pc,

cons (subr ,
if normal (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
then length (code (translate (cinfo,

t-cond-list ,
stmt ,
proc-list)))

else find-label (fetch-label (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
label-alist (translate (cinfo,

t-cond-list ,
stmt ,
proc-list))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2 )) endif)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning-r (stmt ,

proc-list ,

24



mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; EXACT-TIME LEMMA MG-INTEGER-UNARY-MINUS ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Theorem: min-int-only-non-negatable-small-int
(small-integerp (x , n) ∧ (x 6= (− exp (2, n − 1))))
→ small-integerp (inegate (x ), n)

Theorem: mg-integer-unary-minus-args-have-simple-mg-type-refps
((car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ signatures-match (mg-alist (mg-state), name-alist))
→ (int-identifierp (car (call-actuals (stmt)), mg-alist (mg-state))

∧ int-identifierp (cadr (call-actuals (stmt)), mg-alist (mg-state)))

Theorem: mg-integer-unary-minus-args-definedp
((car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)

25



∧ signatures-match (mg-alist (mg-state), name-alist))
→ (definedp (car (call-actuals (stmt)), mg-alist (mg-state))

∧ definedp (cadr (call-actuals (stmt)), mg-alist (mg-state)))

Theorem: mg-integer-unary-minus-steps-1-2
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-step (map-down (mg-state,

proc-list ,
ctrl-stk ,
temp-stk ,
tag (’pc, cons (subr , length (code (cinfo)))),
t-cond-list)))

= p-state (tag (’pc, cons (subr , length (code (cinfo)) + 2)),
ctrl-stk ,
push (value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk))),
push (value (car (call-actuals (stmt)),

bindings (top (ctrl-stk))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

26



mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-unary-minus-step-3
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, cons (subr , length (code (cinfo)) + 2)),

ctrl-stk ,
push (value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk))),
push (value (car (call-actuals (stmt)),

bindings (top (ctrl-stk))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,

27



’run))
= p-state (tag (’pc, ’(mg-integer-unary-minus . 0)),

push (p-frame (cons (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

’((min-int int -2147483648)
(temp-x int 0)))),

tag (’pc,
cons (subr , length (code (cinfo))

+ 3))),
ctrl-stk),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-unary-minus-steps-4-8
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

28



bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-step (p-step (p-step (p-step (p-state (tag (’pc,

’(mg-integer-unary-minus
. 0)),

push (p-frame (cons (cons (’ans,
value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
cons (cons (’x,

value (cadr (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

’((min-int
int
-2147483648)

(temp-x
int
0)))),

tag (’pc,
cons (subr ,

length (code (cinfo))
+ 3))),

ctrl-stk),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))))))

= p-state (tag (’pc, ’(mg-integer-unary-minus . 5)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
’(min-int int -2147483648),
cons (’temp-x,

29



mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),
mg-alist (mg-state)))))),

tag (’pc,
cons (subr , length (code (cinfo))

+ 3))),
ctrl-stk),

push (tag (’bool,
if untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))
= untag (’(int -2147483648))

then ’t
else ’f endif),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

;; (test-bool-and-jump f 0)
;; (push-constant (nat 1))
;; (pop-global c-c)
;; (jump 1)
;; (dl 1 nil (ret))

Theorem: mg-integer-unary-minus-steps-9-13-error-case
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

30



∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state)
∧ (untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))
= untag (’(int -2147483648))))

→ (p-step (p-step (p-step (p-step (p-step (p-state (tag (’pc,
’(mg-integer-unary-minus

. 5)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
’(min-int

int
-2147483648),

cons (’temp-x,
mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))),
tag (’pc,

cons (subr ,
length (code (cinfo))
+ 3))),

ctrl-stk),
push (tag (’bool, ’t),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))))))

31



= p-state (tag (’pc, cons (subr , length (code (cinfo)) + 3)),
ctrl-stk ,
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c, ’(nat 1))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-unary-minus-steps-9-12-nonerror-case
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state)
∧ (untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))
6= untag (’(int -2147483648))))

→ (p-step (p-step (p-step (p-step (p-state (tag (’pc,
’(mg-integer-unary-minus

. 5)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

32



cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
’(min-int

int
-2147483648),

cons (’temp-x,
mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))),
tag (’pc,

cons (subr ,
length (code (cinfo))
+ 3))),

ctrl-stk),
push (tag (’bool, ’f),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run)))))

= p-state (tag (’pc, ’(mg-integer-unary-minus . 12)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
’(min-int int -2147483648),
cons (’temp-x,

mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),
mg-alist (mg-state)))))),

tag (’pc,
cons (subr , length (code (cinfo))

+ 3))),
ctrl-stk),

push (value (car (call-actuals (stmt)),
bindings (top (ctrl-stk))),

push (tag (’int,

33



inegate (untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),
mg-alist (mg-state))))))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

;; (deposit-temp-stk)
;; (dl 1 nil (ret))

Theorem: mg-integer-unary-minus-steps-13-14-nonerror-case
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state)
∧ (untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))
6= untag (’(int -2147483648))))

→ (p-step (p-step (p-state (tag (’pc,

34



’(mg-integer-unary-minus . 12)),
push (p-frame (list (cons (’ans,

value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

cons (’x,
value (cadr (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
’(min-int int
-2147483648),

cons (’temp-x,
mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))),
tag (’pc,

cons (subr ,
length (code (cinfo))
+ 3))),

ctrl-stk),
push (value (car (call-actuals (stmt)),

bindings (top (ctrl-stk))),
push (tag (’int,

inegate (untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),
mg-alist (mg-state))))))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run)))

= p-state (tag (’pc, cons (subr , length (code (cinfo)) + 3)),
ctrl-stk ,
rput (tag (’int,

inegate (untag (caddr (assoc (cadr (call-actuals (stmt)),
mg-alist (mg-state)))))),

untag (value (car (call-actuals (stmt)),
bindings (top (ctrl-stk)))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),

35



list (list (’c-c,
mg-cond-to-p-nat (cc (mg-state), t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-unary-minus-push-c-c-effect
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p-step (p-state (tag (’pc, cons (subr , length (code (cinfo)) + 3)),

ctrl-stk ,
temp-stk ,
translate-proc-list (proc-list),
list (list (’c-c, cc-value)),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, cons (subr , length (code (cinfo)) + 4)),
ctrl-stk ,
push (cc-value, temp-stk),
translate-proc-list (proc-list),
list (list (’c-c, cc-value)),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,

36



’run))

Theorem: mg-integer-unary-minus-sub1-nat-effect
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ (cc-value ∈ list (’(nat 1), ’(nat 2))))
→ (p-step (p-state (tag (’pc, cons (subr , length (code (cinfo)) + 4)),

ctrl-stk ,
push (cc-value, temp-stk),
translate-proc-list (proc-list),
list (list (’c-c, cc-value)),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, cons (subr , length (code (cinfo)) + 5)),
ctrl-stk ,
push (tag (’nat, untag (cc-value) − 1), temp-stk),
translate-proc-list (proc-list),
list (list (’c-c, cc-value)),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-unary-minus-step-16-error
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

37



proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state)
∧ (untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))
= untag (’(int -2147483648))))

→ (p-step (p-state (tag (’pc, cons (subr , length (code (cinfo)) + 5)),
ctrl-stk ,
push (tag (’nat, untag (’(nat 1)) − 1),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
’((c-c (nat 1))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc,
cons (subr ,

if normal (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
then length (code (translate (cinfo,

38



t-cond-list ,
stmt ,
proc-list)))

else find-label (fetch-label (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
label-alist (translate (cinfo,

t-cond-list ,
stmt ,
proc-list))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2 )) endif)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-unary-minus-step-17-nonerror
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

39



proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state)
∧ (untag (mg-to-p-simple-literal (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))
6= untag (’(int -2147483648))))

→ (p-step (p-state (tag (’pc, cons (subr , length (code (cinfo)) + 5)),
ctrl-stk ,
push (tag (’nat,

untag (mg-cond-to-p-nat (cc (mg-state),
t-cond-list)) − 1),

rput (tag (’int,
inegate (untag (caddr (assoc (cadr (call-actuals (stmt)),

mg-alist (mg-state)))))),
untag (value (car (call-actuals (stmt)),

bindings (top (ctrl-stk)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc,

40



cons (subr ,
if normal (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
then length (code (translate (cinfo,

t-cond-list ,
stmt ,
proc-list)))

else find-label (fetch-label (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
label-alist (translate (cinfo,

t-cond-list ,
stmt ,
proc-list))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2 )) endif)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
t-cond-list))),

41



mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: mg-integer-unary-minus-exact-time-lemma
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’predefined-proc-call-mg)
∧ (call-name (stmt) = ’mg-integer-unary-minus)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ listp (ctrl-stk)
∧ all-cars-unique (mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ normal (mg-state))
→ (p (map-down (mg-state,

proc-list ,
ctrl-stk ,
temp-stk ,
tag (’pc, cons (subr , length (code (cinfo)))),
t-cond-list),

clock (stmt , proc-list , mg-state, n))
= p-state (tag (’pc,

cons (subr ,
if normal (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
then length (code (translate (cinfo,

42



t-cond-list ,
stmt ,
proc-list)))

else find-label (fetch-label (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
label-alist (translate (cinfo,

t-cond-list ,
stmt ,
proc-list))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2 )) endif)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Event: Make the library "c-predefined2".

43



Index
all-cars-unique, 2–4, 6, 8, 10, 12, 14,

15, 17, 19, 21, 24, 26–28,
31, 32, 34, 36–38, 40, 42

bindings, 2–36, 38–43
boolean-identifierp, 1

call-actuals, 1–19, 21, 22, 25–35, 38,
40

call-name, 1, 2, 4, 6, 7, 9, 11, 13,
15, 17, 19, 21, 23, 25–28,
30, 32, 34, 36–38, 40, 42

cc, 2–18, 20–25, 27–31, 33–36, 39–
41, 43

clock, 24, 42
code, 1–24, 26–43

definedp, 1, 26

exp, 25

fetch-label, 20, 22, 24, 39, 41, 43
find-label, 20, 23, 24, 39, 41, 43

ilessp, 13, 19, 21
inegate, 25, 34, 35, 40
int-identifierp, 1, 25

label-alist, 20, 22, 24, 39, 41, 43
length, 1–43

map-down, 2, 24, 26, 42
map-down-values, 2–16, 18–20, 22,

23, 25–35, 38–41, 43
mg-alist, 1–43
mg-cond-to-p-nat, 2–18, 20–23, 25,

27–31, 33–36, 39–41, 43
mg-integer-le-args-definedp, 1
mg-integer-le-args-have-simple-

mg-type-refps, 1
mg-integer-le-exact-time-lemma, 23
mg-integer-le-step-10, 13

mg-integer-le-step-11, 15
mg-integer-le-step-12, 17
mg-integer-le-step-13-false-case, 21
mg-integer-le-step-13-true-case, 18
mg-integer-le-step-4, 2
mg-integer-le-step-5, 4
mg-integer-le-step-6, 5
mg-integer-le-step-7, 7
mg-integer-le-step-8, 9
mg-integer-le-step-9, 11
mg-integer-le-steps-1-3, 1
mg-integer-unary-minus-args-defi

nedp, 25
mg-integer-unary-minus-args-have

-simple-mg-type-refps, 25
mg-integer-unary-minus-exact-ti

me-lemma, 42
mg-integer-unary-minus-push-c-c

-effect, 36
mg-integer-unary-minus-step-16-e

rror, 37
mg-integer-unary-minus-step-17-

nonerror, 39
mg-integer-unary-minus-step-3, 27
mg-integer-unary-minus-steps-1-

2, 26
mg-integer-unary-minus-steps-13

-14-nonerror-case, 34
mg-integer-unary-minus-steps-4-

8, 28
mg-integer-unary-minus-steps-9-

12-nonerror-case, 32
13-error-case, 30

mg-integer-unary-minus-sub1-nat
-effect, 37

mg-max-ctrl-stk-size, 2–18, 20–23, 25,
27–40, 42, 43

mg-max-temp-stk-size, 2–5, 7–18, 20–
23, 25, 27–40, 42, 43

mg-meaning-r, 20–25, 38, 39, 41–43

44



mg-to-p-simple-literal, 13, 19, 21, 30–
35, 38, 40

mg-vars-list-ok-in-p-state, 2–4, 6, 8,
10, 12, 14, 15, 17, 19, 21,
24, 26, 27, 29, 31, 32, 34,
38, 40, 42

mg-word-size, 2–5, 7–18, 20–23, 25,
27–40, 42, 43

min-int-only-non-negatable-smal
l-int, 25

no-p-aliasing, 2–4, 6, 8, 10, 12, 14,
15, 17, 19, 21, 24, 26, 27,
29, 31, 32, 34, 36, 38, 40,
42

normal, 2–4, 6, 8, 10, 12, 14, 15, 17,
19–22, 24, 26, 27, 29, 31,
32, 34, 36–38, 40–42

not-bool, 15, 16, 18, 19, 22

ok-mg-def-plistp, 1, 2, 4, 6, 7, 9, 11,
13, 15, 17, 19, 21, 23, 26–
28, 30, 32, 34, 36–38, 40,
42

ok-mg-statement, 1, 2, 4, 6, 7, 9, 11,
13, 15, 17, 19, 21, 23, 25–
28, 30, 32, 34, 36–38, 40,
42

ok-mg-statep, 1, 3, 4, 6, 7, 9, 11,
13, 15, 17, 19, 21, 23, 25–
28, 30, 32, 34, 36–38, 40,
42

p, 24, 42
p-ctrl-stk-size, 1, 2, 4, 6, 7, 9, 11,

13, 15, 17, 19–28, 30, 32,
34, 36–43

p-frame, 3, 5–19, 22, 28–31, 33, 35
p-state, 2–5, 7–18, 20–23, 25, 27–40,

42, 43
p-step, 2, 3, 5, 7, 8, 10, 12, 14, 16,

18, 20, 22, 26, 28, 29, 31,
33, 35–38, 40

push, 2–19, 22, 26–31, 33–38, 40

resources-inadequatep, 1, 2, 4, 6, 7,
9, 11, 13, 15, 17, 19, 21,
23, 26–28, 30, 32, 34, 36–
38, 40, 42

rget, 7–12
rput, 18, 19, 22, 35, 40

signatures-match, 1–4, 6, 8, 10, 12,
14, 15, 17, 19, 21, 24–28,
31, 32, 34, 36–38, 40, 42

small-integerp, 25

tag, 2–24, 26–43
top, 2–36, 38–43
translate, 1, 3, 4, 6, 8, 9, 11, 13, 15,

17, 19–24, 26–28, 30, 32,
34, 36–43

translate-def-body, 1, 3, 4, 6, 8, 9,
11, 13, 15, 17, 19, 21, 23,
26–28, 30, 32, 34, 36–38,
40, 42

translate-proc-list, 2–16, 18–20, 22,
23, 25–41, 43

untag, 7–13, 18, 19, 21, 22, 30–32,
34, 35, 37, 38, 40

user-defined-procp, 1, 3, 4, 6, 8, 9,
12, 14, 15, 17, 19, 21, 23,
26–28, 31, 32, 34, 36–38,
40, 42

value, 2–19, 21, 22, 26–29, 31–33,
35, 40

45


