
Event: Start with the library "c-predefined4".

Theorem: fetch-label-0-case-2
cdr (assoc (cc, cons (’(routineerror . 0), make-label-alist (lst , 0))))
= 0

Event: Disable fetch-label-0-case-2.

Theorem: mg-cond-to-p-nat-p-objectp-type-nat
((length (cond-list) < (((exp (2, mg-word-size) − 1) − 1) − 1))
∧ (p-word-size (state) = mg-word-size))
→ p-objectp-type (’nat, mg-cond-to-p-nat (cc, cond-list), state)

Event: Disable mg-cond-to-p-nat-p-objectp-type-nat.

Theorem: mg-cond-to-p-nat-index-lessp
(length (lst) < n)
→ ((untag (mg-cond-to-p-nat (c, lst)) < (1 + (1 + n))) = t)

Event: Disable mg-cond-to-p-nat-index-lessp.

Theorem: set-alist-value-map-down-values-length-doesnt-shrink
(mg-vars-list-ok-in-p-state (x , bindings, temp-stk) ∧ mg-alistp (x))
→ ((length (map-down-values (set-alist-value (name, value, x),

bindings,
temp-stk))

< length (map-down-values (x , bindings , temp-stk)))
= f)

Event: Disable set-alist-value-map-down-values-length-doesnt-shrink.

Theorem: extra-bindings-doesnt-affect-formal-types-preserved
(car (x) 6∈ listcars (y))
→ (formal-types-preserved (y , cons (x , z)) = formal-types-preserved (y , z))

Theorem: not-simple-identifiers-array-identifiers
(definedp (x , alist)
∧ mg-alistp (alist)
∧ (¬ simple-identifierp (x , alist)))
→ array-identifierp (x , alist)

Theorem: mg-meaning-preserves-signatures-match2
plistp (alist)

1

→ signatures-match (alist ,
mg-alist (mg-meaning (stmt ,

proc-list ,
mg-state (cc, alist , psw),
n)))

;;;
;; ;;
;; PROCEDURE CALLS ;;
;; ;;
;;;

Event: Disable make-cond-list.

Event: Disable make-call-var-alist.

Event: Disable mg-var-ok-in-p-state.

Event: Enable proc-call-code.

Theorem: proc-call-meaning-r-2
(car (stmt) = ’proc-call-mg)
→ (mg-meaning-r (stmt , proc-list , mg-state, n, sizes)

= if n ' 0 then signal-system-error (mg-state, ’timed-out)
elseif ¬ normal (mg-state) then mg-state
elseif resources-inadequatep (stmt , proc-list , sizes)
then signal-system-error (mg-state, ’resource-error)
else map-call-effects (mg-meaning-r (def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
make-call-environment (mg-state,

stmt ,
fetch-called-def (stmt ,

proc-list)),
n − 1,
list (t-size (sizes)

+ data-length (def-locals (fetch-called-def (stmt ,
proc-list))),

c-size (sizes)
+ (2

+ length (def-locals (fetch-called-def (stmt ,

2

proc-list)))
+ length (def-formals (fetch-called-def (stmt ,

proc-list)))))),
fetch-called-def (stmt , proc-list),
stmt ,
mg-state) endif)

Theorem: call-translation-2
(car (stmt) = ’proc-call-mg)
→ (translate (cinfo, cond-list , stmt , proc-list)

= make-cinfo (append (code (cinfo),
proc-call-code (cinfo,

stmt ,
cond-list ,
def-locals (fetch-called-def (stmt ,

proc-list)),
length (def-cond-locals (fetch-called-def (stmt ,

proc-list))))),
label-alist (cinfo),
label-cnt (cinfo)
+ (1 + (1 + length (call-conds (stmt))))))

Theorem: locals-pointers-bigger0
all-cars-unique (locals)
→ all-pointers-bigger (collect-pointers (map-call-locals (locals, n), locals),

n)

Theorem: no-p-aliasing-locals
((n ∈ N) ∧ all-cars-unique (locals))
→ no-p-aliasing (map-call-locals (locals, n), locals)

Theorem: map-call-formals-all-pointers-smaller3
(ok-actual-params-list (actuals, mg-vars)
∧ data-param-lists-match (actuals , formals, mg-vars)
∧ all-cars-unique (formals)
∧ mg-alistp (mg-vars)
∧ mg-vars-list-ok-in-p-state (mg-vars, bindings , temp-stk))
→ all-pointers-smaller (collect-pointers (map-call-formals (formals,

actuals ,
bindings),

make-call-param-alist (formals ,
actuals,
mg-vars)),

length (temp-stk))

3

;; These got lost somewhere

Theorem: array-alist-element-lengths-match
(mg-alistp (mg-vars)
∧ definedp (x , mg-vars)
∧ (¬ simple-mg-type-refp (cadr (assoc (x , mg-vars)))))
→ (length (caddr (assoc (x , mg-vars)))

= array-length (cadr (assoc (x , mg-vars))))

Event: Disable array-alist-element-lengths-match.

Event: Enable no-p-aliasing.

Theorem: extra-bindings-dont-affect-no-p-aliasing
no-duplicates (listcars (append (bindings1 , lst)))
→ (no-p-aliasing (append (bindings1 , bindings2), lst)

= no-p-aliasing (bindings2 , lst))

Theorem: extra-bindings-dont-affect-no-p-aliasing2
no-duplicates (listcars (append (bindings2 , lst)))
→ (no-p-aliasing (append (bindings1 , bindings2), lst)

= no-p-aliasing (bindings1 , lst))

Theorem: actual-pointers-distinct
(ok-actual-params-list (actuals , mg-vars)
∧ defined-identifierp (x , mg-vars)
∧ data-param-lists-match (actuals, formals , mg-vars)
∧ ok-mg-formal-data-params-plistp (formals)
∧ all-cars-unique (mg-vars)
∧ no-duplicates (cons (x , actuals))
∧ no-p-aliasing (bindings, mg-vars)
∧ all-cars-unique (formals)
∧ mg-alistp (mg-vars))
→ (untag (cdr (assoc (x , bindings)))

6∈ collect-pointers (map-call-formals (formals, actuals, bindings),
make-call-param-alist (formals,

actuals,
mg-vars)))

Theorem: actual-pointers-distinct2
(ok-actual-params-list (actuals, mg-vars)
∧ defined-identifierp (x , mg-vars)
∧ data-param-lists-match (actuals, formals , mg-vars)

4

∧ ok-mg-formal-data-params-plistp (formals)
∧ mg-vars-list-ok-in-p-state (mg-vars, bindings, temp-stk)
∧ all-cars-unique (mg-vars)
∧ no-duplicates (cons (x , actuals))
∧ no-p-aliasing (bindings, mg-vars)
∧ all-cars-unique (formals)
∧ mg-alistp (mg-vars)
∧ (¬ simple-mg-type-refp (cadr (assoc (x , mg-vars)))))
→ disjoint (n-successive-pointers (cdr (assoc (x , bindings)),

array-length (cadr (assoc (x , mg-vars)))),
collect-pointers (map-call-formals (formals, actuals, bindings),

make-call-param-alist (formals ,
actuals,
mg-vars)))

Theorem: no-p-aliasing-formals
(ok-actual-params-list (actuals , mg-vars)
∧ data-param-lists-match (actuals, formals , mg-vars)
∧ ok-mg-formal-data-params-plistp (formals)
∧ mg-vars-list-ok-in-p-state (mg-vars , bindings , temp-stk)
∧ all-cars-unique (mg-vars)
∧ no-duplicates (actuals)
∧ no-p-aliasing (bindings, mg-vars)
∧ all-cars-unique (formals)
∧ mg-alistp (mg-vars))
→ no-p-aliasing (map-call-formals (formals , actuals , bindings),

make-call-param-alist (formals, actuals , mg-vars))

Theorem: actual-params-list-ok-in-mg-alist
((car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ signatures-match (mg-alist (mg-state), name-alist))
→ ok-actual-params-list (call-actuals (stmt), mg-alist (mg-state))

Theorem: data-param-lists-match-in-mg-alist
((car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ signatures-match (mg-alist (mg-state), name-alist))
→ data-param-lists-match (call-actuals (stmt),

def-formals (fetch-called-def (stmt , proc-list)),
mg-alist (mg-state))

Theorem: call-local-names-unique

5

((car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list))
→ no-duplicates (append (listcars (def-locals (fetch-called-def (stmt ,

proc-list))),
listcars (def-formals (fetch-called-def (stmt ,

proc-list)))))

Theorem: no-p-aliasing-in-call-environment
((car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ all-cars-unique (mg-alist (mg-state)))
→ no-p-aliasing (make-frame-alist (fetch-called-def (stmt , proc-list),

stmt ,
ctrl-stk ,
temp-stk),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt , proc-list)))

Theorem: call-exact-time-translation-parameters-ok
((car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list))
→ ok-translation-parameters (make-cinfo (nil,

cons (’(routineerror . 0),
make-label-alist (make-cond-list (fetch-called-def (stmt ,

proc-list)),
0)),

1),
make-cond-list (fetch-called-def (stmt ,

proc-list)),

6

def-body (fetch-called-def (stmt , proc-list)),
proc-list ,
cons (’(dl 0 nil (no-op)),

cons (list (’pop*,
data-length (def-locals (fetch-called-def (stmt ,

proc-list)))),
’((ret)))))

Theorem: call-body-rewrite
code (translate-def-body (assoc (call-name (stmt), proc-list), proc-list))
= append (code (translate (make-cinfo (nil,

cons (’(routineerror . 0),
make-label-alist (make-cond-list (fetch-called-def (stmt ,

proc-list)),
0)),

1),
make-cond-list (fetch-called-def (stmt , proc-list)),
def-body (fetch-called-def (stmt , proc-list)),
proc-list)),

cons (’(dl 0 nil (no-op)),
cons (list (’pop*,

data-length (def-locals (fetch-called-def (stmt ,
proc-list)))),

’((ret)))))

Definition:
mg-locals-list-ok-induction-hint (locals, temp-stk)
= if locals ' nil then t

elseif simple-mg-type-refp (cadar (locals))
then mg-locals-list-ok-induction-hint (cdr (locals),

cons (mg-to-p-simple-literal (caddar (locals)),
temp-stk))

else mg-locals-list-ok-induction-hint (cdr (locals),
append (reverse (mg-to-p-simple-literal-list (caddar (locals))),

temp-stk)) endif

Theorem: definedp-caar
definedp (x , cons (cons (x , y), z))

Theorem: tag-length-plistp-2
length-plistp (tag (x , y), 2)

Theorem: mg-locals-list-ok-in-call-environment
(all-cars-unique (locals) ∧ ok-mg-local-data-plistp (locals))
→ mg-vars-list-ok-in-p-state (locals,

7

append (map-call-locals (locals,
length (temp-stk)),

lst),
append (reverse (mg-to-p-local-values (locals)),

temp-stk))

Theorem: simple-formal-ok-for-actual2
(definedp (actual , mg-alist)
∧ data-params-match (actual , formal , mg-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist , bindings, temp-stk)
∧ simple-mg-type-refp (cadr (formal)))
→ ok-temp-stk-index (cdr (assoc (actual , bindings)), temp-stk)

Definition:
mg-formals-list-ok-induction-hint (formals, actuals)
= if formals ' nil then t

else mg-formals-list-ok-induction-hint (cdr (formals),
cdr (actuals)) endif

Theorem: array-formal-ok-for-actual
(defined-identifierp (actual , mg-alist)
∧ data-params-match (actual , formal , mg-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist , bindings, temp-stk)
∧ (¬ simple-mg-type-refp (cadr (formal))))
→ ok-temp-stk-array-index (cdr (assoc (actual , bindings)),

append (local-values , temp-stk),
array-length (cadr (formal)))

Theorem: mg-formals-list-ok-in-call-environment0
(all-cars-unique (formals)
∧ ok-actual-params-list (actuals, mg-alist)
∧ data-param-lists-match (actuals, formals , mg-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist , bindings , temp-stk))
→ mg-vars-list-ok-in-p-state (make-call-param-alist (formals ,

actuals ,
mg-alist),

map-call-formals (formals, actuals, bindings),
append (local-values, temp-stk))

Theorem: mg-formals-list-ok-in-call-environment1
(all-cars-unique (formals)
∧ mg-alistp (mg-alist)
∧ ok-actual-params-list (actuals , mg-alist)
∧ ok-mg-formal-data-params-plistp (formals)
∧ data-param-lists-match (actuals, formals , mg-alist)

8

∧ mg-vars-list-ok-in-p-state (mg-alist , bindings, temp-stk))
→ mg-vars-list-ok-in-p-state (make-call-param-alist (formals,

actuals,
mg-alist),

map-call-formals (formals, actuals, bindings),
append (local-values,

map-down-values (mg-alist ,
bindings,
temp-stk)))

Theorem: mg-vars-list-ok-in-call-environment
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2))

∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state)))
→ mg-vars-list-ok-in-p-state (make-call-var-alist (mg-alist (mg-state),

stmt ,
fetch-called-def (stmt ,

proc-list)),
append (map-call-locals (def-locals (fetch-called-def (stmt ,

proc-list)),
length (temp-stk)),

map-call-formals (def-formals (fetch-called-def (stmt ,
proc-list)),

9

call-actuals (stmt),
bindings (top (ctrl-stk)))),

append (reverse (mg-to-p-local-values (def-locals (fetch-called-def (stmt ,
proc-list)))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)))

Theorem: proc-call-doesnt-halt
((car (stmt) = ’proc-call-mg)
∧ normal (mg-state)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ (¬ resource-errorp (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))))
→ (¬ resource-errorp (mg-meaning-r (def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
make-call-environment (mg-state,

stmt ,
fetch-called-def (stmt ,

proc-list)),
n − 1,
list (length (append (reverse (mg-to-p-local-values (def-locals (fetch-called-def (stmt ,

proc-list)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk))),

p-ctrl-stk-size (cons (p-frame (make-frame-alist (fetch-called-def (stmt ,
proc-list),

stmt ,
ctrl-stk ,
temp-stk),

tag (’pc,
cons (subr ,

1 + (length (code (cinfo))

10

+ data-length (def-locals (fetch-called-def (stmt ,
proc-list)))

+ length (def-locals (fetch-called-def (stmt ,
proc-list)))

+ length (call-actuals (stmt)))))),
ctrl-stk))))))

Theorem: proc-call-doesnt-halt2
((car (stmt) = ’proc-call-mg)
∧ normal (mg-state)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ (¬ resource-errorp (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))))
→ (¬ resource-errorp (mg-meaning-r (def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
make-call-environment (mg-state,

stmt ,
fetch-called-def (stmt ,

proc-list)),
n − 1,
list (length (temp-stk)

+ data-length (def-locals (fetch-called-def (stmt ,
proc-list))),

p-ctrl-stk-size (ctrl-stk)
+ 2
+ length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (def-formals (fetch-called-def (stmt ,

proc-list)))))))

Theorem: proc-call-exact-time-hyps
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,

11

list (length (temp-stk),
p-ctrl-stk-size (ctrl-stk))))

∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2))

∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))))
→ (ok-mg-statement (def-body (fetch-called-def (stmt , proc-list)),

make-cond-list (fetch-called-def (stmt , proc-list)),
make-name-alist (fetch-called-def (stmt , proc-list)),
proc-list)

∧ ok-translation-parameters (make-cinfo (nil,
cons (’(routineerror

. 0),
make-label-alist (make-cond-list (fetch-called-def (stmt ,

proc-list)),
0)),

1),
make-cond-list (fetch-called-def (stmt ,

proc-list)),
def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
cons (’(dl 0 nil (no-op)),

12

cons (list (’pop*,
data-length (def-locals (fetch-called-def (stmt ,

proc-list)))),
’((ret)))))

∧ ok-mg-statep (make-call-environment (mg-state,
stmt ,
fetch-called-def (stmt ,

proc-list)),
make-cond-list (fetch-called-def (stmt , proc-list)))

∧ cond-subsetp (make-cond-list (fetch-called-def (stmt , proc-list)),
make-cond-list (fetch-called-def (stmt , proc-list)))

∧ (code (translate-def-body (assoc (call-name (stmt), proc-list),
proc-list))

= append (code (translate (make-cinfo (nil,
cons (’(routineerror

. 0),
make-label-alist (make-cond-list (fetch-called-def (stmt ,

proc-list)),
0)),

1),
make-cond-list (fetch-called-def (stmt ,

proc-list)),
def-body (fetch-called-def (stmt ,

proc-list)),
proc-list)),

cons (’(dl 0 nil (no-op)),
cons (list (’pop*,

data-length (def-locals (fetch-called-def (stmt ,
proc-list)))),

’((ret))))))
∧ user-defined-procp (call-name (stmt), proc-list)
∧ plistp (append (reverse (mg-to-p-local-values (def-locals (fetch-called-def (stmt ,

proc-list)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)))

∧ listp (cons (p-frame (make-frame-alist (fetch-called-def (stmt ,
proc-list),

stmt ,
ctrl-stk ,
temp-stk),

tag (’pc,
cons (subr ,

1 + (length (code (cinfo))

13

+ data-length (def-locals (fetch-called-def (stmt ,
proc-list)))

+ length (def-locals (fetch-called-def (stmt ,
proc-list)))

+ length (call-actuals (stmt)))))),
ctrl-stk))

∧ mg-vars-list-ok-in-p-state (mg-alist (make-call-environment (mg-state,
stmt ,
fetch-called-def (stmt ,

proc-list))),
bindings (top (cons (p-frame (make-frame-alist (fetch-called-def (stmt ,

proc-list),
stmt ,
ctrl-stk ,
temp-stk),

tag (’pc,
cons (subr ,

1 + (length (code (cinfo))
+ data-length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (call-actuals (stmt)))))),

ctrl-stk))),
append (reverse (mg-to-p-local-values (def-locals (fetch-called-def (stmt ,

proc-list)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)))

∧ no-p-aliasing (bindings (top (cons (p-frame (make-frame-alist (fetch-called-def (stmt ,
proc-list),

stmt ,
ctrl-stk ,
temp-stk),

tag (’pc,
cons (subr ,

1 + (length (code (cinfo))
+ data-length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (call-actuals (stmt)))))),

ctrl-stk))),
mg-alist (make-call-environment (mg-state,

14

stmt ,
fetch-called-def (stmt ,

proc-list))))
∧ signatures-match (mg-alist (make-call-environment (mg-state,

stmt ,
fetch-called-def (stmt ,

proc-list))),
make-name-alist (fetch-called-def (stmt ,

proc-list)))
∧ normal (make-call-environment (mg-state,

stmt ,
fetch-called-def (stmt , proc-list)))

∧ all-cars-unique (mg-alist (make-call-environment (mg-state,
stmt ,
fetch-called-def (stmt ,

proc-list))))
∧ (¬ resource-errorp (mg-meaning-r (def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
make-call-environment (mg-state,

stmt ,
fetch-called-def (stmt ,

proc-list)),
n − 1,
list (length (append (reverse (mg-to-p-local-values (def-locals (fetch-called-def (stmt ,

proc-list)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk))),

p-ctrl-stk-size (cons (p-frame (make-frame-alist (fetch-called-def (stmt ,
proc-list),

stmt ,
ctrl-stk ,
temp-stk),

tag (’pc,
cons (subr ,

1 + (length (code (cinfo))
+ data-length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (call-actuals (stmt)))))),

ctrl-stk)))))))

15

Theorem: simple-typed-literal-listp
simple-typed-literalp (exp, type) → listp (mg-to-p-simple-literal (exp))

Definition:
push-array-value-induction-hint (array-value, code, temp-stk)
= if array-value ' nil then t

else push-array-value-induction-hint (cdr (array-value),
append (code,

list (list (’push-constant,
mg-to-p-simple-literal (car (array-value))))),

push (mg-to-p-simple-literal (car (array-value)),
temp-stk)) endif

Theorem: push-local-array-values-code-effect
(((length (temp-stk) + length (array-value)) < mg-max-temp-stk-size)
∧ simple-mg-type-refp (array-elemtype)
∧ simple-typed-literal-plistp (array-value, array-elemtype)
∧ (cdddr (assoc (subr , proc-list-code))

= append (code,
append (push-local-array-values-code (array-value),

code2))))
→ (p (p-state (tag (’pc, cons (subr , length (code))),

ctrl-stk ,
temp-stk ,
proc-list-code,
data-segment ,
max-ctrl ,
mg-max-temp-stk-size,
word-size,
’run),

length (array-value))
= p-state (tag (’pc,

cons (subr , length (code) + length (array-value))),
ctrl-stk ,
append (reverse (mg-to-p-simple-literal-list (array-value)),

temp-stk),
proc-list-code,
data-segment ,
max-ctrl ,
mg-max-temp-stk-size,
word-size,
’run))

Event: Enable length-cons.

16

Definition:
locals-values-induction-hint (locals, code, temp-stk)
= if locals ' nil then t

elseif simple-mg-type-refp (cadr (car (locals)))
then locals-values-induction-hint (cdr (locals),

append (code,
list (list (’push-constant,

mg-to-p-simple-literal (caddar (locals))))),
push (mg-to-p-simple-literal (caddr (car (locals))),

temp-stk))
else locals-values-induction-hint (cdr (locals),

append (code,
push-local-array-values-code (caddr (car (locals)))),

append (reverse (mg-to-p-simple-literal-list (caddr (car (locals)))),
temp-stk)) endif

Theorem: call-push-locals-values-effect
(((length (temp-stk) + data-length (locals)) < mg-max-temp-stk-size)
∧ ok-mg-local-data-plistp (locals)
∧ (cdddr (assoc (subr , proc-list-code))

= append (code, append (push-locals-values-code (locals), code2))))
→ (p (p-state (tag (’pc, cons (subr , length (code))),

ctrl-stk ,
temp-stk ,
proc-list-code,
data-segment ,
max-ctrl ,
mg-max-temp-stk-size,
word-size,
’run),

data-length (locals))
= p-state (tag (’pc,

cons (subr , data-length (locals) + length (code))),
ctrl-stk ,
append (reverse (mg-to-p-local-values (locals)), temp-stk),
proc-list-code,
data-segment ,
max-ctrl ,
mg-max-temp-stk-size,
word-size,
’run))

Definition:
locals-addresses-induction-hint (locals, code, temp-stk , n)

17

= if locals ' nil then t
elseif simple-mg-type-refp (cadr (car (locals)))
then locals-addresses-induction-hint (cdr (locals),

append (code,
list (list (’push-temp-stk-index,

n))),
push (tag (’nat,

(length (temp-stk) − n) − 1),
temp-stk),

n)
else locals-addresses-induction-hint (cdr (locals),

append (code,
list (list (’push-temp-stk-index,

n))),
push (tag (’nat,

(length (temp-stk)
− n)− 1),

temp-stk),
1 + (n − array-length (cadr (car (locals))))) endif

Theorem: call-push-locals-addresses-effect
(((length (temp-stk) + length (locals)) < mg-max-temp-stk-size)
∧ ok-mg-local-data-plistp (locals)
∧ (cdddr (assoc (subr , proc-list-code))

= append (code,
append (push-locals-addresses-code (locals, n), code2)))

∧ (n < length (temp-stk))
∧ (n 6< (data-length (locals) − 1)))
→ (p (p-state (tag (’pc, cons (subr , length (code))),

ctrl-stk ,
temp-stk ,
proc-list-code,
data-segment ,
max-ctrl ,
mg-max-temp-stk-size,
word-size,
’run),

length (locals))
= p-state (tag (’pc, cons (subr , length (code) + length (locals))),

ctrl-stk ,
append (reverse (ascending-local-address-sequence (locals,

(length (temp-stk)
− n)− 1)),

temp-stk),

18

proc-list-code,
data-segment ,
max-ctrl ,
mg-max-temp-stk-size,
word-size,
’run))

Definition:
call-push-actuals-induction-hint (actuals , code, temp-stk , ctrl-stk)
= if actuals ' nil then t

else call-push-actuals-induction-hint (cdr (actuals),
append (code,

list (list (’push-local,
car (actuals)))),

cons (cdr (assoc (car (actuals),
bindings (top (ctrl-stk)))),

temp-stk),
ctrl-stk) endif

Theorem: call-push-actuals-effect
(((length (temp-stk) + length (actuals)) < mg-max-temp-stk-size)
∧ (cdddr (assoc (subr , proc-list-code))

= append (code, append (push-actuals-code (actuals), code2))))
→ (p (p-state (tag (’pc, cons (subr , length (code))),

ctrl-stk ,
temp-stk ,
proc-list-code,
data-segment ,
max-ctrl ,
mg-max-temp-stk-size,
word-size,
’run),

length (actuals))
= p-state (tag (’pc, cons (subr , length (code) + length (actuals))),

ctrl-stk ,
append (reverse (mg-actuals-to-p-actuals (actuals,

bindings (top (ctrl-stk)))),
temp-stk),

proc-list-code,
data-segment ,
max-ctrl ,
mg-max-temp-stk-size,
word-size,
’run))

19

Theorem: call-push-parameters-effect1
(((length (temp-stk)

+ data-length (locals)
+ length (locals)
+ length (actuals))

< mg-max-temp-stk-size)
∧ ok-mg-local-data-plistp (locals)
∧ (cdddr (assoc (subr , proc-list-code))

= append (code,
append (push-parameters-code (locals, actuals), code2))))

→ (p (p-state (tag (’pc, cons (subr , length (code))),
ctrl-stk ,
temp-stk ,
proc-list-code,
data-segment ,
max-ctrl ,
mg-max-temp-stk-size,
word-size,
’run),

data-length (locals) + length (locals) + length (actuals))
= p-state (tag (’pc,

cons (subr ,
length (code)
+ data-length (locals)
+ length (locals)
+ length (actuals))),

ctrl-stk ,
append (reverse (mg-actuals-to-p-actuals (actuals,

bindings (top (ctrl-stk)))),
append (reverse (ascending-local-address-sequence (locals,

length (temp-stk))),
append (reverse (mg-to-p-local-values (locals)),

temp-stk))),
proc-list-code,
data-segment ,
max-ctrl ,
mg-max-temp-stk-size,
word-size,
’run))

Theorem: call-push-parameters-effect
((car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)

20

∧ ok-mg-statep (mg-state, r-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2))

∧ user-defined-procp (subr , proc-list)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ (¬ resources-inadequatep (stmt ,
proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))))
→ (p (map-down (mg-state,

proc-list ,
ctrl-stk ,
temp-stk ,
tag (’pc, cons (subr , length (code (cinfo)))),
t-cond-list),

data-length (def-locals (fetch-called-def (stmt , proc-list)))
+ length (def-locals (fetch-called-def (stmt , proc-list)))
+ length (call-actuals (stmt)))

= p-state (tag (’pc,
cons (subr ,

length (code (cinfo))
+ data-length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (call-actuals (stmt)))),

ctrl-stk ,
append (reverse (mg-actuals-to-p-actuals (call-actuals (stmt),

bindings (top (ctrl-stk)))),
append (reverse (ascending-local-address-sequence (def-locals (fetch-called-def (stmt ,

proc-list)),
length (temp-stk))),

append (reverse (mg-to-p-local-values (def-locals (fetch-called-def (stmt ,
proc-list)))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,

21

mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: call-call-step
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2))

∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))))
→ (p-step (p-state (tag (’pc,

cons (subr ,
length (code (cinfo))
+ data-length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (call-actuals (stmt)))),

ctrl-stk ,

22

append (reverse (mg-actuals-to-p-actuals (call-actuals (stmt),
bindings (top (ctrl-stk)))),

append (reverse (ascending-local-address-sequence (def-locals (fetch-called-def (stmt ,
proc-list)),

length (temp-stk))),
append (reverse (mg-to-p-local-values (def-locals (fetch-called-def (stmt ,

proc-list)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)))),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc, cons (call-name (stmt), 0)),
push (p-frame (append (pairlist (cadr (assoc (call-name (stmt),

translate-proc-list (proc-list))),
append (ascending-local-address-sequence (def-locals (fetch-called-def (stmt ,

proc-list)),
length (temp-stk)),

mg-actuals-to-p-actuals (call-actuals (stmt),
bindings (top (ctrl-stk))))),

pair-temps-with-initial-values (caddr (assoc (call-name (stmt),
translate-proc-list (proc-list))))),

tag (’pc,
cons (subr ,

length (code (cinfo))
+ data-length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (call-actuals (stmt))
+ 1))),

ctrl-stk),
append (reverse (mg-to-p-local-values (def-locals (fetch-called-def (stmt ,

proc-list)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

23

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: call-steps-to-body
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2))

∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))))
→ (p (map-down (mg-state,

proc-list ,
ctrl-stk ,
temp-stk ,
tag (’pc, cons (subr , length (code (cinfo)))),
t-cond-list),

data-length (def-locals (fetch-called-def (stmt , proc-list)))

24

+ length (def-locals (fetch-called-def (stmt , proc-list)))
+ length (call-actuals (stmt))
+ 1)

= p-state (tag (’pc, cons (call-name (stmt), 0)),
push (p-frame (append (pairlist (cadr (assoc (call-name (stmt),

translate-proc-list (proc-list))),
append (ascending-local-address-sequence (def-locals (fetch-called-def (stmt ,

proc-list)),
length (temp-stk)),

mg-actuals-to-p-actuals (call-actuals (stmt),
bindings (top (ctrl-stk))))),

pair-temps-with-initial-values (caddr (assoc (call-name (stmt),
translate-proc-list (proc-list))))),

tag (’pc,
cons (subr ,

length (code (cinfo))
+ data-length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (call-actuals (stmt))
+ 1))),

ctrl-stk),
append (reverse (mg-to-p-local-values (def-locals (fetch-called-def (stmt ,

proc-list)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Event: Disable deposit-alist-value.

Theorem: call-local-var-lists-match1
(k ∈ N)
→ (pairlist (listcars (locals), ascending-local-address-sequence (locals, k))

= map-call-locals (locals, k))

Theorem: call-formal-var-lists-match

25

data-param-lists-match (actuals , formals, alist)
→ (pairlist (listcars (formals), mg-actuals-to-p-actuals (actuals, bindings))

= map-call-formals (formals, actuals , bindings))

Definition:
map-down-locals-doesnt-affect-formals-induction-hint (formals,

actuals,
temp-stk ,
mg-alist ,
bindings)

= if formals ' nil then t
else map-down-locals-doesnt-affect-formals-induction-hint (cdr (formals),

cdr (actuals),
deposit-alist-value (list (caar (formals),

cadar (formals),
caddr (assoc (car (actuals),

mg-alist))),
cons (cons (car (car (formals)),

cdr (assoc (car (actuals),
bindings))),

map-call-formals (cdr (formals),
cdr (actuals),
bindings)),

temp-stk),
mg-alist ,
bindings) endif

Theorem: map-down-locals-doesnt-affect-formals
all-cars-unique (append (formals , locals))
→ (map-down-values (make-call-param-alist (formals, actuals, mg-alist),

append (map-call-locals (locals, n),
map-call-formals (formals, actuals , bindings)),

temp-stk)
= map-down-values (make-call-param-alist (formals,

actuals ,
mg-alist),

map-call-formals (formals , actuals, bindings),
temp-stk))

Definition:
map-down-formals-doesnt-affect-locals-induction-hint (locals, temp-stk , n, lst)
= if locals ' nil then t

elseif simple-mg-type-refp (cadr (car (locals)))
then map-down-formals-doesnt-affect-locals-induction-hint (cdr (locals),

deposit-alist-value (car (locals),

26

append (map-call-locals (locals,
n),

lst),
temp-stk),

1 + n,
lst)

else map-down-formals-doesnt-affect-locals-induction-hint (cdr (locals),
deposit-alist-value (car (locals),

append (map-call-locals (locals,
n),

lst),
temp-stk),

array-length (cadr (car (locals)))
+ n,
lst) endif

Theorem: map-down-formals-doesnt-affect-locals
all-cars-unique (locals)
→ (map-down-values (locals,

append (map-call-locals (locals, n), lst),
temp-stk)

= map-down-values (locals, map-call-locals (locals, n), temp-stk))

Theorem: map-down-skips-non-referenced-segment
(mg-alistp (vars) ∧ mg-vars-list-ok-in-p-state (vars, bindings, temp-stk))
→ (map-down-values (vars, bindings , append (lst , temp-stk))

= append (lst , map-down-values (vars, bindings, temp-stk)))

Definition:
map-down-locals-induction-hint (locals, n, temp-stk)
= if locals ' nil then t

elseif simple-mg-type-refp (cadr (car (locals)))
then map-down-locals-induction-hint (cdr (locals),

1 + n,
cons (mg-to-p-simple-literal (caddar (locals)),

temp-stk))
else map-down-locals-induction-hint (cdr (locals),

array-length (cadr (car (locals)))
+ n,
append (reverse (mg-to-p-simple-literal-list (caddr (car (locals)))),

temp-stk)) endif

Theorem: map-down-locals-equals-reverse-values
((n = length (temp-stk))
∧ all-cars-unique (locals)

27

∧ ok-mg-local-data-plistp (locals)
∧ plistp (temp-stk))
→ (map-down-values (locals,

map-call-locals (locals, n),
append (reverse (mg-to-p-local-values (locals)),

temp-stk))
= append (reverse (mg-to-p-local-values (locals)), temp-stk))

Theorem: map-down-again-preserves-values
(mg-vars-list-ok-in-p-state (mg-vars, bindings, temp-stk)
∧ ok-actual-params-list (actuals, mg-vars)
∧ data-param-lists-match (actuals, formals, mg-vars)
∧ all-cars-unique (mg-vars)
∧ plistp (temp-stk)
∧ no-p-aliasing (bindings , mg-vars)
∧ all-cars-unique (formals)
∧ mg-alistp (mg-vars))
→ (map-down-values (make-call-param-alist (formals, actuals, mg-vars),

map-call-formals (formals , actuals , bindings),
map-down-values (mg-vars, bindings , temp-stk))

= map-down-values (mg-vars , bindings, temp-stk))

Event: Enable deposit-temp.

Theorem: array-formal-ok-for-actual2
(definedp (actual , mg-alist)
∧ data-params-match (actual , formal , mg-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist , bindings, temp-stk)
∧ (¬ simple-mg-type-refp (cadr (formal))))
→ ok-temp-stk-array-index (cdr (assoc (actual , bindings)),

map-down-values (mg-alist , bindings, temp-stk),
array-length (cadr (formal)))

Event: Disable array-formal-ok-for-actual2.

Theorem: call-environment-mg-vars-list-ok1
(no-p-aliasing (bindings, mg-vars)
∧ mg-alistp (mg-vars)
∧ all-cars-unique (formals)
∧ ok-actual-params-list (actuals, mg-vars)
∧ ok-mg-formal-data-params-plistp (formals)
∧ data-param-lists-match (actuals , formals, mg-vars)
∧ mg-vars-list-ok-in-p-state (mg-vars , bindings , temp-stk))
→ mg-vars-list-ok-in-p-state (make-call-param-alist (formals ,

28

actuals,
mg-vars),

map-call-formals (formals, actuals, bindings),
map-down-values (mg-vars , bindings, temp-stk))

Theorem: map-down-preserves-references
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2))

∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))))
→ (append (reverse (mg-to-p-local-values (def-locals (fetch-called-def (stmt ,

proc-list)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk))

= map-down-values (make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

29

proc-list)),
make-frame-alist (fetch-called-def (stmt ,

proc-list),
stmt ,
ctrl-stk ,
temp-stk),

append (reverse (mg-to-p-local-values (def-locals (fetch-called-def (stmt ,
proc-list)))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk))))

Theorem: call-step-initial-equals-state1
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2))

∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))))
→ (p-state (tag (’pc, cons (call-name (stmt), 0)),

30

push (p-frame (append (pairlist (cadr (assoc (call-name (stmt),
translate-proc-list (proc-list))),

append (ascending-local-address-sequence (def-locals (fetch-called-def (stmt ,
proc-list)),

length (temp-stk)),
mg-actuals-to-p-actuals (call-actuals (stmt),

bindings (top (ctrl-stk))))),
pair-temps-with-initial-values (caddr (assoc (call-name (stmt),

translate-proc-list (proc-list))))),
tag (’pc,

cons (subr ,
length (code (cinfo))
+ data-length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (call-actuals (stmt))
+ 1))),

ctrl-stk),
append (reverse (mg-to-p-local-values (def-locals (fetch-called-def (stmt ,

proc-list)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c, mg-cond-to-p-nat (cc (mg-state), t-cond-list))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run)

= map-down (make-call-environment (mg-state,
stmt ,
fetch-called-def (stmt ,

proc-list)),
proc-list ,
cons (p-frame (make-frame-alist (fetch-called-def (stmt ,

proc-list),
stmt ,
ctrl-stk ,
temp-stk),

tag (’pc,
cons (subr ,

1 + (length (code (cinfo))
+ data-length (def-locals (fetch-called-def (stmt ,

31

proc-list)))
+ length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (call-actuals (stmt)))))),

ctrl-stk),
append (reverse (mg-to-p-local-values (def-locals (fetch-called-def (stmt ,

proc-list)))),
map-down-values (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)),

tag (’pc,
cons (call-name (stmt),

length (code (make-cinfo (nil,
cons (’(routineerror

. 0),
make-label-alist (make-cond-list (fetch-called-def (stmt ,

proc-list)),
0)),

1))))),
make-cond-list (fetch-called-def (stmt , proc-list))))

;; This lemma characterizes the bevavior all of the way through the call-body

;; This lemma characterizes the bevavior all of the way through the call-body

(prove-lemma call-step-initial-to-state2 (rewrite)
(IMPLIES
(AND (NOT (ZEROP N))

(NOT (RESOURCES-INADEQUATEP STMT PROC-LIST
(LIST (LENGTH TEMP-STK)

(P-CTRL-STK-SIZE CTRL-STK))))
(EQUAL (CAR STMT) ’PROC-CALL-MG)
(OK-MG-STATEMENT STMT R-COND-LIST NAME-ALIST PROC-LIST)
(OK-MG-DEF-PLISTP PROC-LIST)
(OK-TRANSLATION-PARAMETERS CINFO T-COND-LIST STMT PROC-LIST CODE2)
(OK-MG-STATEP MG-STATE R-COND-LIST)
(COND-SUBSETP R-COND-LIST T-COND-LIST)
(EQUAL (CODE (TRANSLATE-DEF-BODY (ASSOC SUBR PROC-LIST)
PROC-LIST))

(APPEND (CODE (TRANSLATE CINFO T-COND-LIST STMT PROC-LIST))
CODE2))

32

(USER-DEFINED-PROCP SUBR PROC-LIST)
(PLISTP TEMP-STK)
(LISTP CTRL-STK)
(MG-VARS-LIST-OK-IN-P-STATE (MG-ALIST MG-STATE)

(BINDINGS (TOP CTRL-STK))
TEMP-STK)

(NO-P-ALIASING (BINDINGS (TOP CTRL-STK))
(MG-ALIST MG-STATE))
(SIGNATURES-MATCH (MG-ALIST MG-STATE)

NAME-ALIST)
(NORMAL MG-STATE)
(ALL-CARS-UNIQUE (MG-ALIST MG-STATE))
(NOT (RESOURCE-ERRORP (MG-MEANING-R STMT PROC-LIST MG-STATE N

(LIST (LENGTH TEMP-STK)
(P-CTRL-STK-SIZE CTRL-STK)))))

(EQUAL
(P
(MAP-DOWN ;; state1

(MAKE-CALL-ENVIRONMENT MG-STATE STMT
(FETCH-CALLED-DEF STMT PROC-LIST))

PROC-LIST
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1
(PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK))

(TAG ’PC
(CONS
(CALL-NAME STMT)
(LENGTH
(CODE

33

(MAKE-CINFO NIL
(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)))))
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))

(CLOCK (DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)))
(P-STATE ;; state2
(TAG ’PC

(CONS
(CALL-NAME STMT)
(IF
(NORMAL
(MG-MEANING-R

(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)
STMT CTRL-STK TEMP-STK)

(TAG ’PC
(CONS SUBR

(ADD1
(PLUS
(LENGTH (CODE CINFO))

34

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(LENGTH
(CODE

(TRANSLATE
(MAKE-CINFO NIL

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST)))

(FIND-LABEL
(FETCH-LABEL

(CC
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT
(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES

(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1
(PLUS

35

(LENGTH (CODE CINFO))
(DATA-LENGTH
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))

(LENGTH (CALL-ACTUALS STMT)))))))
CTRL-STK)))))

(LABEL-ALIST
(TRANSLATE
(MAKE-CINFO NIL

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST)))

(APPEND
(CODE
(TRANSLATE
(MAKE-CINFO NIL

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST))

(CONS
’(DL 0 NIL (NO-OP))
(CONS
(LIST ’POP* (DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
’((RET)))))))))

(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1

36

(PLUS (LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)
(MAP-DOWN-VALUES

(MG-ALIST
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1
(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))
CTRL-STK)))))

(BINDINGS
(TOP
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR

37

(ADD1
(PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(TRANSLATE-PROC-LIST PROC-LIST)
(LIST

(LIST ’C-C
(MG-COND-TO-P-NAT
(CC

(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1
(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))

38

(LENGTH (CALL-ACTUALS STMT)))))))
CTRL-STK)))))

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))))
(MG-MAX-CTRL-STK-SIZE) (MG-MAX-TEMP-STK-SIZE) (MG-WORD-SIZE)
’RUN)))
(EQUAL

(P (MAP-DOWN MG-STATE PROC-LIST CTRL-STK TEMP-STK
(TAG ’PC

(CONS SUBR (LENGTH (CODE CINFO))))
T-COND-LIST)

(plus (data-length (def-locals (fetch-called-def stmt proc-list)))
(length (def-locals (fetch-called-def stmt proc-list)))
(length (call-actuals stmt))
1
(CLOCK (DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))

PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N))))

(P-STATE ;; state2
(TAG ’PC

(CONS
(CALL-NAME STMT)
(IF
(NORMAL
(MG-MEANING-R

(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

39

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1

(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(LENGTH
(CODE

(TRANSLATE
(MAKE-CINFO NIL

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST)))

(FIND-LABEL
(FETCH-LABEL

(CC
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT
(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES

(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME

40

(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)
STMT CTRL-STK TEMP-STK)

(TAG ’PC
(CONS SUBR

(ADD1
(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(LABEL-ALIST
(TRANSLATE
(MAKE-CINFO NIL

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST)))

(APPEND
(CODE
(TRANSLATE
(MAKE-CINFO NIL

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST))

(CONS
’(DL 0 NIL (NO-OP))
(CONS
(LIST ’POP* (DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
’((RET)))))))))

(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

41

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1
(PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)
(MAP-DOWN-VALUES

(MG-ALIST
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1
(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))
CTRL-STK)))))

(BINDINGS
(TOP
(CONS
(P-FRAME

42

(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)
STMT CTRL-STK TEMP-STK)

(TAG ’PC
(CONS SUBR

(ADD1
(PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(TRANSLATE-PROC-LIST PROC-LIST)
(LIST

(LIST ’C-C
(MG-COND-TO-P-NAT
(CC

(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1

43

(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))))
(MG-MAX-CTRL-STK-SIZE) (MG-MAX-TEMP-STK-SIZE) (MG-WORD-SIZE)
’RUN)))

((INSTRUCTIONS
(ADD-ABBREVIATION @INITIAL

(MAP-DOWN MG-STATE PROC-LIST CTRL-STK TEMP-STK
(TAG ’PC

(CONS SUBR (LENGTH (CODE CINFO))))
T-COND-LIST))

(ADD-ABBREVIATION @STATE1
(MAP-DOWN
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC
(CONS SUBR
(ADD1

(PLUS (LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)
(APPEND
(REVERSE

(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)

(BINDINGS (TOP CTRL-STK))
TEMP-STK))

(TAG ’PC
(CONS
(CALL-NAME STMT)
(LENGTH
(CODE
(MAKE-CINFO NIL

44

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST (MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))

0))
1)))))

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))))
(ADD-ABBREVIATION @STATE2
(P-STATE
(TAG ’PC
(CONS
(CALL-NAME STMT)
(IF
(NORMAL
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES

(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)

(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC
(CONS SUBR
(ADD1
(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(LENGTH
(CODE

45

(TRANSLATE
(MAKE-CINFO NIL
(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST)))

(FIND-LABEL
(FETCH-LABEL
(CC
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES

(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)

(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC
(CONS SUBR
(ADD1
(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(LABEL-ALIST

46

(TRANSLATE
(MAKE-CINFO NIL
(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST)))

(APPEND
(CODE
(TRANSLATE
(MAKE-CINFO NIL
(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST))

(CONS
’(DL 0 NIL (NO-OP))
(CONS
(LIST ’POP* (DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
’((RET)))))))))

(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC
(CONS SUBR
(ADD1

(PLUS (LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)
(MAP-DOWN-VALUES
(MG-ALIST
(MG-MEANING-R

47

(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES

(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)

(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC
(CONS SUBR
(ADD1
(PLUS

(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(BINDINGS
(TOP
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC
(CONS SUBR
(ADD1
(PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))
(APPEND
(REVERSE

48

(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)

(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(TRANSLATE-PROC-LIST PROC-LIST)
(LIST
(LIST ’C-C
(MG-COND-TO-P-NAT
(CC
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES

(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)

(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC
(CONS SUBR
(ADD1
(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))))

(MG-MAX-CTRL-STK-SIZE) (MG-MAX-TEMP-STK-SIZE) (MG-WORD-SIZE)
’RUN))

(ADD-ABBREVIATION @BODY-TIME
(CLOCK (DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))

PROC-LIST

49

(MAKE-CALL-ENVIRONMENT MG-STATE STMT
(FETCH-CALLED-DEF STMT PROC-LIST))

(SUB1 N)))
(ADD-ABBREVIATION @TIME-TO-STATE1

(PLUS (DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT))
1))

PROMOTE
(DIVE 1 2)
(= (PLUS (PLUS (DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))

(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT))
1)

@BODY-TIME))
UP
(REWRITE P-PLUS-LEMMA)
(DIVE 1)
(REWRITE CALL-STEPS-TO-BODY)
(REWRITE CALL-STEP-INITIAL-EQUALS-STATE1)
UP UP
(DEMOTE 19)
S-PROP)))

Event: Enable make-call-environment.

(prove-lemma call-state2-step1-effect (rewrite)
(IMPLIES
(AND (NOT (ZEROP N))

(NOT (RESOURCES-INADEQUATEP STMT PROC-LIST
(LIST (LENGTH TEMP-STK)

(P-CTRL-STK-SIZE CTRL-STK))))
(EQUAL (CAR STMT) ’PROC-CALL-MG)
(OK-MG-STATEMENT STMT R-COND-LIST NAME-ALIST PROC-LIST)
(OK-MG-DEF-PLISTP PROC-LIST)
(OK-TRANSLATION-PARAMETERS CINFO T-COND-LIST STMT PROC-LIST CODE2)
(OK-MG-STATEP MG-STATE R-COND-LIST)
(COND-SUBSETP R-COND-LIST T-COND-LIST)
(EQUAL (CODE (TRANSLATE-DEF-BODY (ASSOC SUBR PROC-LIST)
PROC-LIST))

(APPEND (CODE (TRANSLATE CINFO T-COND-LIST STMT PROC-LIST))
CODE2))

50

(USER-DEFINED-PROCP SUBR PROC-LIST)
(PLISTP TEMP-STK)
(LISTP CTRL-STK)
(MG-VARS-LIST-OK-IN-P-STATE (MG-ALIST MG-STATE)

(BINDINGS (TOP CTRL-STK))
TEMP-STK)

(NO-P-ALIASING (BINDINGS (TOP CTRL-STK))
(MG-ALIST MG-STATE))
(SIGNATURES-MATCH (MG-ALIST MG-STATE)

NAME-ALIST)
(NORMAL MG-STATE)
(ALL-CARS-UNIQUE (MG-ALIST MG-STATE))
(NOT (RESOURCE-ERRORP (MG-MEANING-R STMT PROC-LIST MG-STATE N

(LIST (LENGTH TEMP-STK)
(P-CTRL-STK-SIZE CTRL-STK))))))

(equal
(p-step

(P-STATE ;; state2
(TAG ’PC

(CONS
(CALL-NAME STMT)
(IF
(NORMAL
(MG-MEANING-R

(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

51

(CONS SUBR
(ADD1

(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(LENGTH
(CODE

(TRANSLATE
(MAKE-CINFO NIL

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST)))

(FIND-LABEL
(FETCH-LABEL

(CC
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES

(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)

52

(TAG ’PC
(CONS SUBR

(ADD1
(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))

(LENGTH
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(LABEL-ALIST
(TRANSLATE
(MAKE-CINFO NIL

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST)))

(APPEND
(CODE
(TRANSLATE
(MAKE-CINFO NIL

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST))

(CONS
’(DL 0 NIL (NO-OP))
(CONS
(LIST ’POP* (Data-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
’((RET)))))))))

(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

53

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1
(PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)
(MAP-DOWN-VALUES

(MG-ALIST
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1
(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))
CTRL-STK)))))

(BINDINGS
(TOP
(CONS
(P-FRAME

54

(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)
STMT CTRL-STK TEMP-STK)

(TAG ’PC
(CONS SUBR

(ADD1
(PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(TRANSLATE-PROC-LIST PROC-LIST)
(LIST

(LIST ’C-C
(MG-COND-TO-P-NAT
(CC

(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1

55

(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))))
(MG-MAX-CTRL-STK-SIZE) (MG-MAX-TEMP-STK-SIZE) (MG-WORD-SIZE)
’RUN))
(P-STATE (TAG ’PC

(CONS
(CALL-NAME STMT)
(PLUS
(LENGTH

(CODE
(TRANSLATE
(MAKE-CINFO NIL

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST (MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))

0))
1)

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST)))

1)))
(CONS
(P-FRAME
(APPEND (MAP-CALL-LOCALS (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))
(LENGTH TEMP-STK))

(MAP-CALL-FORMALS (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST))
(CALL-ACTUALS STMT)
(BINDINGS (TOP CTRL-STK))))

(TAG ’PC
(CONS SUBR

(ADD1 (PLUS (LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))
CTRL-STK)

(MAP-DOWN-VALUES
(MG-ALIST
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))

56

PROC-LIST
(MG-STATE (CC MG-STATE)

(MAKE-CALL-VAR-ALIST (MG-ALIST MG-STATE)
STMT
(FETCH-CALLED-DEF STMT PROC-LIST))

(MG-PSW MG-STATE))
(SUB1 N)
(LIST (PLUS (DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))

(LENGTH TEMP-STK))
(PLUS 2

(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(P-CTRL-STK-SIZE CTRL-STK)))))

(APPEND (MAP-CALL-LOCALS (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))
(LENGTH TEMP-STK))

(MAP-CALL-FORMALS (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST))
(CALL-ACTUALS STMT)
(BINDINGS (TOP CTRL-STK))))

(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(TRANSLATE-PROC-LIST PROC-LIST)
(LIST
(LIST ’C-C

(MG-COND-TO-P-NAT
(CC
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MG-STATE (CC MG-STATE)

(MAKE-CALL-VAR-ALIST (MG-ALIST MG-STATE)
STMT
(FETCH-CALLED-DEF STMT PROC-LIST))

(MG-PSW MG-STATE))
(SUB1 N)
(LIST
(PLUS
(LENGTH
(MG-TO-P-LOCAL-VALUES
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(LENGTH (MAP-DOWN-VALUES (MG-ALIST MG-STATE)

57

(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(APPEND
(MAP-CALL-LOCALS (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))

(LENGTH TEMP-STK))
(MAP-CALL-FORMALS (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST))

(CALL-ACTUALS STMT)
(BINDINGS (TOP CTRL-STK))))

(TAG ’PC
(CONS SUBR

(ADD1
(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))
CTRL-STK)))))

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))))
(MG-MAX-CTRL-STK-SIZE) (MG-MAX-TEMP-STK-SIZE) (MG-WORD-SIZE)

’RUN)))
((INSTRUCTIONS

(ENABLE LENGTH-CONS)
PROMOTE
(DIVE 1)
X
(S LEMMAS)
(DIVE 1 1 1)
(= *
(LENGTH
(CODE
(TRANSLATE
(MAKE-CINFO NIL
(CONS

’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST (MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))

0))
1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST)))

0)

58

UP
(DIVE 2)
(REWRITE TRANSLATE-DEF-BODY-REWRITE
(($CINFO
(MAKE-CINFO NIL
(CONS

(CONS ’ROUTINEERROR 0)
(MAKE-LABEL-ALIST (MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))

0))
1))

($T-COND-LIST (MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))
($CODE2
(LIST ’(DL 0 NIL (NO-OP))

(LIST ’POP*
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

’(RET)))
($STMT (DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST)))))

UP
(REWRITE GET-LENGTH-CAR)
(S LEMMAS)
UP X UP X
(S LEMMAS)
X
(S LEMMAS)
(DIVE 1 2 2 1)
(= *
(LENGTH
(CODE
(TRANSLATE
(MAKE-CINFO NIL
(CONS

’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST (MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))

0))
1)

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST)))

0)
UP UP UP UP
(DIVE 3 1 1 5 1 1)
(REWRITE LENGTH-MG-TO-P-LOCAL-VALUES)
NX
(REWRITE MAP-DOWN-VALUES-PRESERVES-LENGTH)

59

UP NX
(DIVE 1)
X
(S LEMMAS)
(S-PROP P-FRAME-SIZE)
(S LEMMAS)
TOP S SPLIT PROVE PROVE
(REWRITE OK-MG-STATEP-MG-ALIST-MG-ALISTP)
(REWRITE CALLED-DEF-FORMALS-OK)
S-PROP SPLIT
(DIVE 1 1)
(REWRITE FETCH-LABEL-0-CASE-2)
UP
(REWRITE FIND-LABEL-APPEND)
UP DROP
(PROVE (ENABLE UNLABEL))
(DIVE 1)
(REWRITE FIND-LABELP-MONOTONIC-LESSP)
TOP S
(S LEMMAS)
(S LEMMAS)
(PROVE (ENABLE OK-MG-STATEMENT OK-PROC-CALL))
(DIVE 1 1)
X UP
(S LEMMAS)
UP
(PROVE (ENABLE FETCH-CALLED-DEF FETCH-DEF))
S-PROP SPLIT
(DIVE 1 1)
(REWRITE FETCH-LABEL-0-CASE-2)
UP
(REWRITE FIND-LABEL-APPEND)
TOP DROP
(PROVE (ENABLE UNLABEL))
(DIVE 1)
(REWRITE FIND-LABELP-MONOTONIC-LESSP)
UP S
(S LEMMAS)
(S LEMMAS))))

Theorem: call-body-mg-vars-list-ok1
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,

60

list (length (temp-stk),
p-ctrl-stk-size (ctrl-stk))))

∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2))

∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))))
→ mg-vars-list-ok-in-p-state (mg-alist (mg-meaning-r (def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1,
list (data-length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (temp-stk),
2
+ length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (def-formals (fetch-called-def (stmt ,

61

proc-list)))
+ p-ctrl-stk-size (ctrl-stk)))),

append (map-call-locals (def-locals (fetch-called-def (stmt ,
proc-list)),

length (temp-stk)),
map-call-formals (def-formals (fetch-called-def (stmt ,

proc-list)),
call-actuals (stmt),
bindings (top (ctrl-stk)))),

append (reverse (mg-to-p-local-values (def-locals (fetch-called-def (stmt ,
proc-list)))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)))

;; (pop* (data-length locals))

;; (pop* (data-length locals))

(prove-lemma call-state2-step2-effect (rewrite)
(IMPLIES
(AND (NOT (ZEROP N))

(NOT (RESOURCES-INADEQUATEP STMT PROC-LIST
(LIST (LENGTH TEMP-STK)

(P-CTRL-STK-SIZE CTRL-STK))))
(EQUAL (CAR STMT) ’PROC-CALL-MG)
(OK-MG-STATEMENT STMT R-COND-LIST NAME-ALIST PROC-LIST)
(OK-MG-DEF-PLISTP PROC-LIST)
(OK-TRANSLATION-PARAMETERS CINFO T-COND-LIST STMT PROC-LIST CODE2)
(OK-MG-STATEP MG-STATE R-COND-LIST)
(COND-SUBSETP R-COND-LIST T-COND-LIST)
(EQUAL (CODE (TRANSLATE-DEF-BODY (ASSOC SUBR PROC-LIST)
PROC-LIST))

(APPEND (CODE (TRANSLATE CINFO T-COND-LIST STMT PROC-LIST))
CODE2))
(USER-DEFINED-PROCP SUBR PROC-LIST)
(PLISTP TEMP-STK)
(LISTP CTRL-STK)
(MG-VARS-LIST-OK-IN-P-STATE (MG-ALIST MG-STATE)

(BINDINGS (TOP CTRL-STK))
TEMP-STK)

62

(NO-P-ALIASING (BINDINGS (TOP CTRL-STK))
(MG-ALIST MG-STATE))
(SIGNATURES-MATCH (MG-ALIST MG-STATE)

NAME-ALIST)
(NORMAL MG-STATE)
(ALL-CARS-UNIQUE (MG-ALIST MG-STATE))
(NOT (RESOURCE-ERRORP (MG-MEANING-R STMT PROC-LIST MG-STATE N

(LIST (LENGTH TEMP-STK)
(P-CTRL-STK-SIZE CTRL-STK))))))
(equal

(p-step
(P-STATE (TAG ’PC

(CONS
(CALL-NAME STMT)
(PLUS
(LENGTH

(CODE
(TRANSLATE
(MAKE-CINFO NIL

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST (MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))

0))
1)

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST)))

1)))
(CONS
(P-FRAME
(APPEND (MAP-CALL-LOCALS (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))
(LENGTH TEMP-STK))

(MAP-CALL-FORMALS (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST))
(CALL-ACTUALS STMT)
(BINDINGS (TOP CTRL-STK))))

(TAG ’PC
(CONS SUBR

(ADD1 (PLUS (LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))
CTRL-STK)

(MAP-DOWN-VALUES
(MG-ALIST

63

(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MG-STATE (CC MG-STATE)

(MAKE-CALL-VAR-ALIST (MG-ALIST MG-STATE)
STMT
(FETCH-CALLED-DEF STMT PROC-LIST))

(MG-PSW MG-STATE))
(SUB1 N)
(LIST (PLUS (DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))

(LENGTH TEMP-STK))
(PLUS 2

(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(P-CTRL-STK-SIZE CTRL-STK)))))

(APPEND (MAP-CALL-LOCALS (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))
(LENGTH TEMP-STK))

(MAP-CALL-FORMALS (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST))
(CALL-ACTUALS STMT)
(BINDINGS (TOP CTRL-STK))))

(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(TRANSLATE-PROC-LIST PROC-LIST)
(LIST
(LIST ’C-C

(MG-COND-TO-P-NAT
(CC
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MG-STATE (CC MG-STATE)

(MAKE-CALL-VAR-ALIST (MG-ALIST MG-STATE)
STMT
(FETCH-CALLED-DEF STMT PROC-LIST))

(MG-PSW MG-STATE))
(SUB1 N)
(LIST
(PLUS
(LENGTH
(MG-TO-P-LOCAL-VALUES

64

(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(LENGTH (MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(APPEND
(MAP-CALL-LOCALS (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))

(LENGTH TEMP-STK))
(MAP-CALL-FORMALS (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST))

(CALL-ACTUALS STMT)
(BINDINGS (TOP CTRL-STK))))

(TAG ’PC
(CONS SUBR

(ADD1
(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))))
(MG-MAX-CTRL-STK-SIZE) (MG-MAX-TEMP-STK-SIZE) (MG-WORD-SIZE)
’RUN))

(P-STATE
(TAG ’PC

(CONS
(CALL-NAME STMT)
(PLUS

(LENGTH
(CODE
(TRANSLATE
(MAKE-CINFO NIL

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST (MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST)))

2)))
(CONS

65

(P-FRAME
(APPEND (MAP-CALL-LOCALS (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))
(LENGTH TEMP-STK))

(MAP-CALL-FORMALS (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST))
(CALL-ACTUALS STMT)
(BINDINGS (TOP CTRL-STK))))

(TAG ’PC
(CONS SUBR

(ADD1 (PLUS (LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))
CTRL-STK)

(POPN (DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(MAP-DOWN-VALUES
(MG-ALIST
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MG-STATE (CC MG-STATE)

(MAKE-CALL-VAR-ALIST (MG-ALIST MG-STATE)
STMT
(FETCH-CALLED-DEF STMT PROC-LIST))

(MG-PSW MG-STATE))
(SUB1 N)
(LIST (PLUS (DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))

(LENGTH TEMP-STK))
(PLUS 2

(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(P-CTRL-STK-SIZE CTRL-STK)))))
(APPEND (MAP-CALL-LOCALS (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))
(LENGTH TEMP-STK))

(MAP-CALL-FORMALS (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST))
(CALL-ACTUALS STMT)
(BINDINGS (TOP CTRL-STK))))

(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK))))

(TRANSLATE-PROC-LIST PROC-LIST)
(LIST

66

(LIST ’C-C
(MG-COND-TO-P-NAT
(CC
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MG-STATE (CC MG-STATE)

(MAKE-CALL-VAR-ALIST (MG-ALIST MG-STATE)
STMT
(FETCH-CALLED-DEF STMT PROC-LIST))

(MG-PSW MG-STATE))
(SUB1 N)
(LIST
(PLUS
(LENGTH
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(LENGTH (MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(APPEND

(MAP-CALL-LOCALS (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))
(LENGTH TEMP-STK))

(MAP-CALL-FORMALS (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST))
(CALL-ACTUALS STMT)
(BINDINGS (TOP CTRL-STK))))

(TAG ’PC
(CONS SUBR

(ADD1
(PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))))

(MG-MAX-CTRL-STK-SIZE) (MG-MAX-TEMP-STK-SIZE) (MG-WORD-SIZE)
’RUN)))
((INSTRUCTIONS PROMOTE

(DIVE 1)
X
(S LEMMAS)
(DIVE 1 1 2)

67

(REWRITE TRANSLATE-DEF-BODY-REWRITE
(($CINFO

(MAKE-CINFO NIL
(CONS

(CONS ’ROUTINEERROR 0)
(MAKE-LABEL-ALIST (MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))

0))
1))

($T-COND-LIST (MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))
($CODE2
(LIST ’(DL 0 NIL (NO-OP))

(LIST ’POP*
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

’(RET)))
($STMT (DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST)))))

UP
(REWRITE GET-LENGTH-PLUS)
(S LEMMAS)
UP X UP X
(S LEMMAS)
(DIVE 1)
X UP S
(S LEMMAS)
UP S-PROP
(DIVE 1)
(DIVE 1)
(REWRITE MAP-DOWN-VALUES-PRESERVES-LENGTH)
(S LEMMAS)
(DIVE 1)
(REWRITE LENGTH-MG-TO-P-LOCAL-VALUES)
UP UP
(= * F)
UP S
(REWRITE CALLED-DEF-FORMALS-OK)
(REWRITE CALL-BODY-MG-VARS-LIST-OK1)
(DIVE 1 1)
(REWRITE MG-MEANING-EQUIVALENCE)
UP UP
(REWRITE MG-MEANING-PRESERVES-MG-ALISTP

(($R-COND-LIST (MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))
($NAME-ALIST (MAKE-NAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)))))

(DIVE 1)
(= *

(MAKE-CALL-ENVIRONMENT MG-STATE STMT

68

(FETCH-CALLED-DEF STMT PROC-LIST))
0)

UP
(REWRITE PROC-CALL-EXACT-TIME-HYPS)
S PROVE
(REWRITE CALL-EXACT-TIME-HYPS1)
(DIVE 1)
S UP
(REWRITE CALL-SIGNATURES-MATCH2)
(DIVE 1)
(REWRITE MORE-RESOURCES-PRESERVES-NOT-RESOURCE-ERRORP
(($T-SIZE1

(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK))))

($C-SIZE1
(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC
(CONS SUBR
(ADD1

(PLUS (LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
UP S
(S LEMMAS)
(DIVE 1 1 1)
(REWRITE LENGTH-MG-TO-P-LOCAL-VALUES)
NX
(REWRITE MAP-DOWN-VALUES-PRESERVES-LENGTH)
TOP DROP PROVE
(REWRITE OK-MG-STATEP-MG-ALIST-MG-ALISTP)
(REWRITE CALLED-DEF-FORMALS-OK)
(DIVE 1 1)
X

69

(S LEMMAS)
(S-PROP P-FRAME-SIZE)
(S LEMMAS)
UP TOP DROP PROVE
(DIVE 1 1 3)
(= *

(MAKE-CALL-ENVIRONMENT MG-STATE STMT
(FETCH-CALLED-DEF STMT PROC-LIST))

0)
TOP
(DIVE 1)
(REWRITE PROC-CALL-DOESNT-HALT)
TOP S
(S-PROP MAKE-CALL-ENVIRONMENT)
(PROVE (ENABLE OK-MG-STATEMENT OK-PROC-CALL))
(REWRITE PROC-CALL-EXACT-TIME-HYPS)
(DIVE 1 1)
X TOP
(PROVE (ENABLE FETCH-CALLED-DEF FETCH-DEF)))))

;; (ret)

;; (ret)

(prove-lemma call-state2-step3-effect (rewrite)
(IMPLIES
(AND (NOT (ZEROP N))

(NOT (RESOURCES-INADEQUATEP STMT PROC-LIST
(LIST (LENGTH TEMP-STK)

(P-CTRL-STK-SIZE CTRL-STK))))
(EQUAL (CAR STMT) ’PROC-CALL-MG)
(OK-MG-STATEMENT STMT R-COND-LIST NAME-ALIST PROC-LIST)
(OK-MG-DEF-PLISTP PROC-LIST)
(OK-TRANSLATION-PARAMETERS CINFO T-COND-LIST STMT PROC-LIST CODE2)
(OK-MG-STATEP MG-STATE R-COND-LIST)
(COND-SUBSETP R-COND-LIST T-COND-LIST)
(EQUAL (CODE (TRANSLATE-DEF-BODY (ASSOC SUBR PROC-LIST)
PROC-LIST))

(APPEND (CODE (TRANSLATE CINFO T-COND-LIST STMT PROC-LIST))
CODE2))
(USER-DEFINED-PROCP SUBR PROC-LIST)

70

(PLISTP TEMP-STK)
(LISTP CTRL-STK)
(MG-VARS-LIST-OK-IN-P-STATE (MG-ALIST MG-STATE)

(BINDINGS (TOP CTRL-STK))
TEMP-STK)

(NO-P-ALIASING (BINDINGS (TOP CTRL-STK))
(MG-ALIST MG-STATE))
(SIGNATURES-MATCH (MG-ALIST MG-STATE)

NAME-ALIST)
(NORMAL MG-STATE)
(ALL-CARS-UNIQUE (MG-ALIST MG-STATE))
(NOT (RESOURCE-ERRORP (MG-MEANING-R STMT PROC-LIST MG-STATE N

(LIST (LENGTH TEMP-STK)
(P-CTRL-STK-SIZE CTRL-STK))))))

(equal
(p-step
(P-STATE

(TAG ’PC
(CONS
(CALL-NAME STMT)
(PLUS

(LENGTH
(CODE
(TRANSLATE
(MAKE-CINFO NIL

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST (MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))

0))
1)

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST)))

2)))
(CONS
(P-FRAME
(APPEND (MAP-CALL-LOCALS (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))
(LENGTH TEMP-STK))

(MAP-CALL-FORMALS (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST))
(CALL-ACTUALS STMT)
(BINDINGS (TOP CTRL-STK))))

(TAG ’PC
(CONS SUBR

(ADD1 (PLUS (LENGTH (CODE CINFO))

71

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))
CTRL-STK)

(POPN (DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(MAP-DOWN-VALUES
(MG-ALIST
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MG-STATE (CC MG-STATE)
(MAKE-CALL-VAR-ALIST (MG-ALIST MG-STATE)

STMT
(FETCH-CALLED-DEF STMT PROC-LIST))

(MG-PSW MG-STATE))
(SUB1 N)
(LIST (PLUS (DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))

(LENGTH TEMP-STK))
(PLUS 2

(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(P-CTRL-STK-SIZE CTRL-STK)))))
(APPEND (MAP-CALL-LOCALS (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))
(LENGTH TEMP-STK))
(MAP-CALL-FORMALS (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST))

(CALL-ACTUALS STMT)
(BINDINGS (TOP CTRL-STK))))

(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK))))

(TRANSLATE-PROC-LIST PROC-LIST)
(LIST
(LIST ’C-C

(MG-COND-TO-P-NAT
(CC
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MG-STATE (CC MG-STATE)

(MAKE-CALL-VAR-ALIST (MG-ALIST MG-STATE)
STMT

72

(FETCH-CALLED-DEF STMT PROC-LIST))
(MG-PSW MG-STATE))

(SUB1 N)
(LIST
(PLUS
(LENGTH
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(LENGTH (MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(APPEND

(MAP-CALL-LOCALS (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))
(LENGTH TEMP-STK))
(MAP-CALL-FORMALS (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST))

(CALL-ACTUALS STMT)
(BINDINGS (TOP CTRL-STK))))

(TAG ’PC
(CONS SUBR

(ADD1
(PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))))
(MG-MAX-CTRL-STK-SIZE) (MG-MAX-TEMP-STK-SIZE) (MG-WORD-SIZE)
’RUN))

(P-STATE
(TAG ’PC

(CONS SUBR
(ADD1 (PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT))))))

ctrl-stk
(POPN (DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(MAP-DOWN-VALUES
(MG-ALIST
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST

73

(MG-STATE (CC MG-STATE)
(MAKE-CALL-VAR-ALIST (MG-ALIST MG-STATE)

STMT
(FETCH-CALLED-DEF STMT PROC-LIST))

(MG-PSW MG-STATE))
(SUB1 N)
(LIST (PLUS (DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))

(LENGTH TEMP-STK))
(PLUS 2

(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(P-CTRL-STK-SIZE CTRL-STK)))))
(APPEND (MAP-CALL-LOCALS (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))
(LENGTH TEMP-STK))
(MAP-CALL-FORMALS (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST))

(CALL-ACTUALS STMT)
(BINDINGS (TOP CTRL-STK))))

(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK))))

(TRANSLATE-PROC-LIST PROC-LIST)
(LIST
(LIST ’C-C

(MG-COND-TO-P-NAT
(CC
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MG-STATE (CC MG-STATE)

(MAKE-CALL-VAR-ALIST (MG-ALIST MG-STATE)
STMT
(FETCH-CALLED-DEF STMT PROC-LIST))

(MG-PSW MG-STATE))
(SUB1 N)
(LIST
(PLUS
(LENGTH
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(LENGTH (MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

74

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(APPEND

(MAP-CALL-LOCALS (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))
(LENGTH TEMP-STK))

(MAP-CALL-FORMALS (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST))
(CALL-ACTUALS STMT)
(BINDINGS (TOP CTRL-STK))))

(TAG ’PC
(CONS SUBR

(ADD1
(PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))))
(MG-MAX-CTRL-STK-SIZE) (MG-MAX-TEMP-STK-SIZE) (MG-WORD-SIZE)
’RUN)))
((INSTRUCTIONS PROMOTE
(DIVE 1)
X
(S LEMMAS)
(DIVE 1 1 2)
(REWRITE TRANSLATE-DEF-BODY-REWRITE
(($CINFO

(MAKE-CINFO NIL
(CONS

(CONS ’ROUTINEERROR 0)
(MAKE-LABEL-ALIST (MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))

0))
1))

($T-COND-LIST (MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))
($CODE2
(LIST
’(DL 0 NIL (NO-OP))
(LIST ’POP* (DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
’(RET)))

($STMT (DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST)))))
UP
(REWRITE GET-LENGTH-PLUS)
(S LEMMAS)
UP X UP X

75

(S LEMMAS)
X
(S LEMMAS)
UP prove
(PROVE (ENABLE OK-MG-STATEMENT OK-PROC-CALL))
(DIVE 1 1)
X TOP
(PROVE (ENABLE FETCH-CALLED-DEF FETCH-DEF)))))

Event: Make the library "c-proc-call1".

76

Index
actual-params-list-ok-in-mg-ali

st, 5
actual-pointers-distinct, 4
actual-pointers-distinct2, 4
all-cars-unique, 3–9, 12, 15, 22, 24,

26–30, 61
all-pointers-bigger, 3
all-pointers-smaller, 3
array-alist-element-lengths-mat

ch, 4
array-formal-ok-for-actual, 8
array-formal-ok-for-actual2, 28
array-identifierp, 1
array-length, 4, 5, 8, 18, 27, 28
ascending-local-address-sequence, 18,

20, 21, 23, 25, 31

bindings, 6, 9–15, 19–25, 29–32, 61,
62

c-size, 2
call-actuals, 5, 10, 11, 14, 15, 21–23,

25, 31, 32, 62
call-body-mg-vars-list-ok1, 60
call-body-rewrite, 7
call-call-step, 22
call-conds, 3
call-environment-mg-vars-list-o

k1, 28
call-exact-time-translation-par

ameters-ok, 6
call-formal-var-lists-match, 26
call-local-names-unique, 6
call-local-var-lists-match1, 25
call-name, 7, 13, 23, 25, 30–32
call-push-actuals-effect, 19
call-push-actuals-induction-hint, 19
call-push-locals-addresses-effe

ct, 18
call-push-locals-values-effect, 17
call-push-parameters-effect, 20

call-push-parameters-effect1, 20
call-step-initial-equals-state1, 30
call-steps-to-body, 24
call-translation-2, 3
cc, 21, 23–25, 31, 61
code, 3, 7, 9, 10, 12–15, 21–25, 29–

32, 61
collect-pointers, 3–5
cond-subsetp, 9, 12, 13, 22, 24, 29,

30, 61

data-length, 2, 7, 11, 13–15, 17, 18,
20–25, 31, 32, 61

data-param-lists-match, 3–5, 8, 26,
28

data-param-lists-match-in-mg-ali
st, 5

data-params-match, 8, 28
def-body, 2, 7, 10–13, 15, 61
def-cond-locals, 3
def-formals, 3, 5, 6, 9, 11, 62
def-locals, 2, 3, 6, 7, 9–11, 13–15,

21–25, 29–32, 61, 62
defined-identifierp, 4, 8
definedp, 1, 4, 7, 8, 28
definedp-caar, 7
deposit-alist-value, 26, 27
disjoint, 5

exp, 1
extra-bindings-doesnt-affect-fo

rmal-types-preserved, 1
extra-bindings-dont-affect-no-p

-aliasing, 4
-aliasing2, 4

fetch-called-def, 2, 3, 5–7, 9–15, 21–
25, 29–32, 61, 62

fetch-label-0-case-2, 1
formal-types-preserved, 1

label-alist, 3

77

label-cnt, 3
length, 1, 3, 4, 8–25, 27, 29–32, 61,

62
length-plistp, 7
listcars, 1, 4, 6, 25, 26
locals-addresses-induction-hint, 17,

18
locals-pointers-bigger0, 3
locals-values-induction-hint, 17

make-call-environment, 2, 10, 11, 13–
15, 31

make-call-param-alist, 3–5, 8, 9, 26,
28, 29

make-call-var-alist, 6, 9, 30, 61
make-cinfo, 3, 6, 7, 12, 13, 32
make-cond-list, 6, 7, 12, 13, 32
make-frame-alist, 6, 10, 13–15, 30,

31
make-label-alist, 1, 6, 7, 12, 13, 32
make-name-alist, 12, 15
map-call-effects, 3
map-call-formals, 3–5, 8–10, 26, 28,

29, 62
map-call-formals-all-pointers-s

maller3, 3
map-call-locals, 3, 8, 9, 25–28, 62
map-down, 21, 24, 32
map-down-again-preserves-values, 28
map-down-formals-doesnt-affect-

locals, 27
locals-induction-hint, 26, 27

map-down-locals-doesnt-affect-f
ormals, 26
ormals-induction-hint, 26

map-down-locals-equals-reverse-v
alues, 27

map-down-locals-induction-hint, 27
map-down-preserves-references, 29
map-down-skips-non-referenced-se

gment, 27
map-down-values, 1, 9, 10, 13–15,

21, 23, 25–32, 62

mg-actuals-to-p-actuals, 19–21, 23,
25, 26, 31

mg-alist, 2, 5, 6, 9–15, 21–25, 29–32,
61, 62

mg-alistp, 1, 3–5, 8, 27, 28
mg-cond-to-p-nat, 1, 21, 23–25, 31
mg-cond-to-p-nat-index-lessp, 1
mg-cond-to-p-nat-p-objectp-type

-nat, 1
mg-formals-list-ok-in-call-envi

ronment0, 8
ronment1, 8

mg-formals-list-ok-induction-hi
nt, 8

mg-locals-list-ok-in-call-envir
onment, 7

mg-locals-list-ok-induction-hint, 7
mg-max-ctrl-stk-size, 21, 23–25, 31
mg-max-temp-stk-size, 16–20, 22–25,

31
mg-meaning, 2
mg-meaning-preserves-signatures

-match2, 1
mg-meaning-r, 2, 3, 10–12, 15, 22,

24, 29, 30, 61, 62
mg-psw, 61
mg-state, 2, 61
mg-to-p-local-values, 8, 10, 13–15,

17, 20, 21, 23, 25, 28–32,
62

mg-to-p-simple-literal, 7, 16, 17, 27
mg-to-p-simple-literal-list, 7, 16, 17,

27
mg-vars-list-ok-in-call-environ

ment, 9
mg-vars-list-ok-in-p-state, 1, 3, 5, 6,

8–12, 14, 21, 22, 24, 27–30,
61, 62

mg-word-size, 1, 22–25, 31

n-successive-pointers, 5
no-duplicates, 4–6
no-p-aliasing, 3–6, 9, 12, 15, 22, 24,

28–30, 61

78

no-p-aliasing-formals, 5
no-p-aliasing-in-call-environme

nt, 6
no-p-aliasing-locals, 3
normal, 2, 9–12, 15, 22, 24, 29, 30,

61
not-simple-identifiers-array-ide

ntifiers, 1

ok-actual-params-list, 3–5, 8, 28
ok-mg-def-plistp, 6, 9–12, 20, 22, 24,

29, 30, 61
ok-mg-formal-data-params-plistp, 4,

5, 8, 28
ok-mg-local-data-plistp, 7, 17, 18,

20, 28
ok-mg-statement, 5, 6, 9–12, 20, 22,

24, 29, 30, 61
ok-mg-statep, 5, 6, 9–13, 21, 22, 24,

29, 30, 61
ok-temp-stk-array-index, 8, 28
ok-temp-stk-index, 8
ok-translation-parameters, 6, 7, 9,

12, 13, 22, 24, 29, 30, 61

p, 16–21, 25
p-ctrl-stk-size, 9–12, 15, 21, 22, 24,

29, 30, 61, 62
p-frame, 11, 14, 15, 23, 25, 31, 32
p-objectp-type, 1
p-state, 16–20, 22–25, 31
p-step, 23
p-word-size, 1
pair-temps-with-initial-values, 23, 25,

31
plistp, 1, 6, 9, 12, 13, 22, 24, 28–30,

61
proc-call-code, 3
proc-call-doesnt-halt, 10
proc-call-doesnt-halt2, 11
proc-call-exact-time-hyps, 11
proc-call-meaning-r-2, 2
push, 16–18, 23, 25, 31
push-actuals-code, 19

push-array-value-induction-hint, 16
push-local-array-values-code, 16, 17
push-local-array-values-code-ef

fect, 16
push-locals-addresses-code, 18
push-locals-values-code, 17
push-parameters-code, 20

resource-errorp, 10–12, 15, 22, 24,
29, 30, 61

resources-inadequatep, 2, 9, 12, 21,
22, 24, 29, 30, 61

reverse, 7, 8, 10, 13–21, 23, 25, 27–
32, 62

set-alist-value, 1
set-alist-value-map-down-values

-length-doesnt-shrink, 1
signal-system-error, 2
signatures-match, 2, 5, 6, 9, 12, 15,

22, 24, 29, 30, 61
simple-formal-ok-for-actual2, 8
simple-identifierp, 1
simple-mg-type-refp, 4, 5, 7, 8, 16–

18, 26–28
simple-typed-literal-listp, 16
simple-typed-literal-plistp, 16
simple-typed-literalp, 16

t-size, 2
tag, 7, 11, 14–25, 30–32
tag-length-plistp-2, 7
top, 6, 9–15, 19–25, 29–32, 61, 62
translate, 3, 7, 9, 12, 13, 21, 22, 24,

29, 30, 61
translate-def-body, 7, 9, 12, 13, 21,

22, 24, 29, 30, 61
translate-proc-list, 21, 23, 25, 31

untag, 1, 4
user-defined-procp, 6, 9, 12, 13, 21,

22, 24, 29, 30, 61

79

