
Event: Start with the library "c-proc-call1".

;; We now devote some effort to showing that the temp-stk at this
;; point (following the return) is the final temp-stk. This is
;; perhaps the most difficult section of the proof.

Definition:
popn-deposit-induction-hint (temp-stk , n)
= if length (temp-stk) ' 0 then t

elseif n ' 0 then t
else popn-deposit-induction-hint (cdr (temp-stk), n − 1) endif

Theorem: popn-rput
((untag (x) 6< (length (temp-stk) − n)) ∧ ok-temp-stk-index (x , temp-stk))
→ (popn (n, rput (value, untag (x), temp-stk)) = popn (n, temp-stk))

Event: Enable deposit-temp.

Theorem: popn-deposit-array-value
((untag (x) 6< (length (temp-stk) − n))
∧ ok-temp-stk-array-index (x , temp-stk , length (array-value)))
→ (popn (n, deposit-array-value (array-value, x , temp-stk))

= popn (n, temp-stk))

Theorem: popn-locals1
(all-pointers-bigger (collect-pointers (bindings, alist),

length (temp-stk1) − n)
∧ mg-alistp (alist)
∧ mg-vars-list-ok-in-p-state (alist , bindings, temp-stk1))
→ (popn (n, map-down-values (alist , bindings, temp-stk1))

= popn (n, temp-stk1))

Theorem: popn-locals
(all-pointers-bigger (collect-pointers (bindings , alist), length (temp-stk))
∧ mg-alistp (alist)
∧ (n = length (lst))
∧ mg-vars-list-ok-in-p-state (alist , bindings , append (lst , temp-stk)))
→ (popn (n, map-down-values (alist , bindings, append (lst , temp-stk)))

= temp-stk)

Definition:
drop-formals-induction-hint (alist , locals, temp-stk , n)
= if alist ' nil then t

1

elseif caar (alist) ∈ listcars (locals)
then drop-formals-induction-hint (cdr (alist),

locals,
deposit-alist-value (car (alist),

map-call-locals (locals,
n),

temp-stk),
n)

else drop-formals-induction-hint (cdr (alist), locals, temp-stk , n) endif

Theorem: map-down-values-drop-formals-restriction
(all-cars-unique (alist)
∧ mg-vars-list-ok-in-p-state (restrict (alist , listcars (locals)),

map-call-locals (locals, n),
temp-stk))

→ (map-down-values (restrict (alist , listcars (locals)),
append (map-call-locals (locals, n), lst),
temp-stk)

= map-down-values (restrict (alist , listcars (locals)),
map-call-locals (locals, n),
temp-stk))

Definition:
drop-locals-induction-hint (alist , formals, temp-stk , actuals, bindings)
= if alist ' nil then t

elseif caar (alist) ∈ listcars (formals)
then drop-locals-induction-hint (cdr (alist),

formals ,
deposit-alist-value (car (alist),

map-call-formals (formals ,
actuals,
bindings),

temp-stk),
actuals,
bindings)

else drop-locals-induction-hint (cdr (alist),
formals ,
temp-stk ,
actuals ,
bindings) endif

Theorem: map-down-drop-locals-restriction
(all-cars-unique (alist)
∧ no-duplicates (append (listcars (formals), listcars (locals))))
→ (map-down-values (restrict (alist , listcars (formals)),

2

append (map-call-locals (locals, n),
map-call-formals (formals, actuals , bindings)),

temp-stk)
= map-down-values (restrict (alist , listcars (formals)),

map-call-formals (formals, actuals , bindings),
temp-stk))

Theorem: restrict-cons
(x 6= y)
→ (assoc (x , restrict (lst , cons (y , z))) = assoc (x , restrict (lst , z)))

Theorem: copy-out-params-restriction-cons
(x 6∈ listcars (lst1))
→ (copy-out-params (lst1 , lst2 , restrict (new-alist , cons (x , z)), old-alist)

= copy-out-params (lst1 , lst2 , restrict (new-alist , z), old-alist))

Theorem: copy-out-params-restriction
all-cars-unique (formals)
→ (copy-out-params (formals, actuals , new-alist , old-alist)

= copy-out-params (formals ,
actuals,
restrict (new-alist , listcars (formals)),
old-alist))

Event: Disable deposit-temp.

Theorem: deposit-temp-deposit-array-value-commute6
(mg-vars-list-ok-in-p-state (lst , bindings, temp-stk)
∧ no-p-aliasing (bindings, lst)
∧ mg-alistp (lst)
∧ all-cars-unique (lst)
∧ (x ∈ lst)
∧ (y ∈ lst)
∧ (car (x) 6= car (y))
∧ (¬ simple-mg-type-refp (cadr (y)))
∧ (length (value) = array-length (cadr (y))))
→ (deposit-temp (z ,

cdr (assoc (car (x), bindings)),
deposit-array-value (value,

cdr (assoc (car (y), bindings)),
temp-stk))

= deposit-array-value (value,
cdr (assoc (car (y), bindings)),
deposit-temp (z ,

3

cdr (assoc (car (x), bindings)),
temp-stk)))

Theorem: deposit-array-value-deposit-alist-value-commute2
(mg-vars-list-ok-in-p-state (lst , bindings , temp-stk)
∧ no-p-aliasing (bindings, lst)
∧ mg-alistp (lst)
∧ all-cars-unique (lst)
∧ (x ∈ lst)
∧ (y ∈ lst)
∧ (¬ simple-mg-type-refp (cadr (x)))
∧ (length (value) = array-length (cadr (x)))
∧ (car (x) 6= car (y)))
→ (deposit-array-value (value,

cdr (assoc (car (x), bindings)),
deposit-alist-value (y , bindings, temp-stk))

= deposit-alist-value (y ,
bindings,
deposit-array-value (value,

cdr (assoc (car (x),
bindings)),

temp-stk)))

Theorem: deposit-array-value-doesnt-affect-map-down-values
(mg-alistp (cons (x , mg-vars))
∧ all-cars-unique (cons (x , mg-vars))
∧ no-p-aliasing (bindings, cons (x , mg-vars))
∧ mg-vars-list-ok-in-p-state (cons (x , mg-vars), bindings, temp-stk)
∧ (¬ simple-mg-type-refp (cadr (x)))
∧ (length (value) = array-length (cadr (x))))
→ (map-down-values (mg-vars ,

bindings,
deposit-array-value (value,

cdr (assoc (car (x), bindings)),
temp-stk))

= deposit-array-value (value,
cdr (assoc (car (x), bindings)),
map-down-values (mg-vars, bindings, temp-stk)))

Theorem: extra-binding-doesnt-affect-copy-out-params
(car (x) 6∈ listcars (formals))
→ (copy-out-params (formals, actuals, cons (x , new-alist), old-alist)

= copy-out-params (formals, actuals, new-alist , old-alist))

Definition:

4

map-down-copy-out-params-induction-hint (formals, old-alist , actuals, new-alist)
= if formals ' nil then t

else map-down-copy-out-params-induction-hint (cdr (formals),
set-alist-value (car (actuals),

caddr (assoc (caar (formals),
restrict (new-alist ,

listcars (formals)))),
old-alist),

cdr (actuals),
cdr (new-alist)) endif

Theorem: map-down-copy-facts
(listp (formals) ∧ (listcars (alist) = append (listcars (formals), locals)))
→ (listp (alist)

∧ (caar (alist) = caar (formals))
∧ (caar (alist) ∈ listcars (formals)))

Event: Disable map-down-copy-facts.

Theorem: map-down-copy-facts2
(listp (formals)
∧ (listcars (alist) = append (listcars (formals), locals))
∧ formal-types-preserved (formals, restrict (alist , listcars (formals))))
→ (cadar (formals) = cadar (alist))

Event: Disable map-down-copy-facts2.

Theorem: map-down-copy-facts3
(listp (formals)
∧ (listcars (alist) = append (listcars (formals), locals))
∧ all-cars-unique (alist))
→ (restrict (alist , listcars (formals))

= cons (car (alist), restrict (cdr (alist), listcars (cdr (formals)))))

Event: Disable map-down-copy-facts3.

;; This one gives the looping problem when interrupted during the base case.
;; This occurs only when I have the (maintain-rewrite-path)

Theorem: map-down-copy-out-params-relation-new
(ok-actual-params-list (actuals , old-alist)
∧ data-param-lists-match (actuals , formals, old-alist)

5

∧ ok-mg-formal-data-params-plistp (formals)
∧ (listcars (new-alist) = append (listcars (formals), locals))
∧ all-cars-unique (old-alist)
∧ no-p-aliasing (bindings , old-alist)
∧ mg-vars-list-ok-in-p-state (old-alist , bindings , temp-stk)
∧ mg-vars-list-ok-in-p-state (restrict (new-alist , listcars (formals)),

map-call-formals (formals , actuals, bindings),
map-down-values (old-alist ,

bindings ,
temp-stk))

∧ no-duplicates (actuals)
∧ all-cars-unique (formals)
∧ all-cars-unique (new-alist)
∧ mg-alistp (old-alist)
∧ mg-alistp (new-alist)
∧ formal-types-preserved (formals , restrict (new-alist , listcars (formals))))
→ (map-down-values (restrict (new-alist , listcars (formals)),

map-call-formals (formals, actuals, bindings),
map-down-values (old-alist , bindings, temp-stk))

= map-down-values (copy-out-params (formals ,
actuals ,
restrict (new-alist ,

listcars (formals)),
old-alist),

bindings ,
temp-stk))

Theorem: formals-meaning-signature
((car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list))
→ signatures-match (make-call-param-alist (def-formals (fetch-called-def (stmt ,

proc-list)),
call-actuals (stmt),
mg-alist (mg-state)),

restrict (mg-alist (mg-meaning (def-body (fetch-called-def (stmt ,
proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

6

n − 1)),
listcars (def-formals (fetch-called-def (stmt ,

proc-list)))))

Event: Disable formals-meaning-signature.

Theorem: locals-meaning-signature
((car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list))
→ signatures-match (def-locals (fetch-called-def (stmt , proc-list)),

restrict (mg-alist (mg-meaning (def-body (fetch-called-def (stmt ,
proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
listcars (def-locals (fetch-called-def (stmt ,

proc-list)))))

Theorem: param-alist-mg-vars-ok0
(ok-actual-params-list (actuals , mg-vars)
∧ data-param-lists-match (actuals , formals, mg-vars)
∧ ok-mg-formal-data-params-plistp (formals)
∧ mg-alistp (mg-vars)
∧ all-cars-unique (formals)
∧ mg-vars-list-ok-in-p-state (mg-vars , bindings , temp-stk))
→ mg-vars-list-ok-in-p-state (make-call-param-alist (formals ,

actuals,
mg-vars),

map-call-formals (formals , actuals, bindings),
temp-stk)

Theorem: param-alist-mg-vars-ok
((car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),

7

temp-stk)
∧ signatures-match (mg-alist (mg-state), name-alist))
→ mg-vars-list-ok-in-p-state (make-call-param-alist (def-formals (fetch-called-def (stmt ,

proc-list)),
call-actuals (stmt),
mg-alist (mg-state)),

map-call-formals (def-formals (fetch-called-def (stmt ,
proc-list)),

call-actuals (stmt),
bindings (top (ctrl-stk))),

temp-stk)

Event: Disable param-alist-mg-vars-ok.

Theorem: locals-alist-mg-vars-ok0
(all-cars-unique (locals) ∧ ok-mg-local-data-plistp (locals))
→ mg-vars-list-ok-in-p-state (locals,

map-call-locals (locals, length (temp-stk)),
append (reverse (mg-to-p-local-values (locals)),

temp-stk))

Theorem: locals-alist-mg-vars-ok
((car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list))
→ mg-vars-list-ok-in-p-state (def-locals (fetch-called-def (stmt , proc-list)),

map-call-locals (def-locals (fetch-called-def (stmt ,
proc-list)),

length (temp-stk)),
append (reverse (mg-to-p-local-values (def-locals (fetch-called-def (stmt ,

proc-list)))),
temp-stk))

Theorem: no-p-aliasing-in-call-alists-new
((car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

8

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ all-cars-unique (mg-alist (mg-state)))
→ no-p-aliasing (append (map-call-formals (def-formals (fetch-called-def (stmt ,

proc-list)),
call-actuals (stmt),
bindings (top (ctrl-stk))),

map-call-locals (def-locals (fetch-called-def (stmt ,
proc-list)),

length (temp-stk))),
append (restrict (mg-alist (mg-meaning (def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
listcars (def-formals (fetch-called-def (stmt ,

proc-list)))),
restrict (mg-alist (mg-meaning (def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
listcars (def-locals (fetch-called-def (stmt ,

proc-list))))))

;; The proof of this is incredible. This is a prime candidate for
;; cleaning up the proof.

;; At this point, we have exitted from the call.

Theorem: ret-temp-stk-equals-final-temp-stk
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

9

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2))

∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))))
→ (popn (data-length (def-locals (fetch-called-def (stmt , proc-list))),

map-down-values (mg-alist (mg-meaning-r (def-body (fetch-called-def (stmt ,
proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1,
list (data-length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (temp-stk),
2
+ length (def-locals (fetch-called-def (stmt ,

10

proc-list)))
+ length (def-formals (fetch-called-def (stmt ,

proc-list)))
+ p-ctrl-stk-size (ctrl-stk)))),

append (map-call-locals (def-locals (fetch-called-def (stmt ,
proc-list)),

length (temp-stk)),
map-call-formals (def-formals (fetch-called-def (stmt ,

proc-list)),
call-actuals (stmt),
bindings (top (ctrl-stk)))),

append (reverse (mg-to-p-local-values (def-locals (fetch-called-def (stmt ,
proc-list)))),

map-down-values (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk))))

= map-down-values (mg-alist (mg-meaning (stmt , proc-list , mg-state, n)),
bindings (top (ctrl-stk)),
temp-stk))

Event: Disable proc-call-meaning-2.

;; (push-global c-c)

;; (push-global c-c)

(prove-lemma call-state2-step4-effect (rewrite)
(IMPLIES
(AND (NOT (ZEROP N))

(NOT (RESOURCES-INADEQUATEP STMT PROC-LIST
(LIST (LENGTH TEMP-STK)

(P-CTRL-STK-SIZE CTRL-STK))))
(EQUAL (CAR STMT) ’PROC-CALL-MG)
(OK-MG-STATEMENT STMT R-COND-LIST NAME-ALIST PROC-LIST)
(OK-MG-DEF-PLISTP PROC-LIST)
(OK-TRANSLATION-PARAMETERS CINFO T-COND-LIST STMT PROC-LIST CODE2)
(OK-MG-STATEP MG-STATE R-COND-LIST)
(COND-SUBSETP R-COND-LIST T-COND-LIST)
(EQUAL (CODE (TRANSLATE-DEF-BODY (ASSOC SUBR PROC-LIST)
PROC-LIST))

(APPEND (CODE (TRANSLATE CINFO T-COND-LIST STMT PROC-LIST))

11

CODE2))
(USER-DEFINED-PROCP SUBR PROC-LIST)
(PLISTP TEMP-STK)
(LISTP CTRL-STK)
(MG-VARS-LIST-OK-IN-P-STATE (MG-ALIST MG-STATE)

(BINDINGS (TOP CTRL-STK))
TEMP-STK)

(NO-P-ALIASING (BINDINGS (TOP CTRL-STK))
(MG-ALIST MG-STATE))
(SIGNATURES-MATCH (MG-ALIST MG-STATE)

NAME-ALIST)
(NORMAL MG-STATE)
(ALL-CARS-UNIQUE (MG-ALIST MG-STATE))
(NOT (RESOURCE-ERRORP (MG-MEANING-R STMT PROC-LIST MG-STATE N

(LIST (LENGTH TEMP-STK)
(P-CTRL-STK-SIZE CTRL-STK))))))

(equal
(p-step

(P-STATE
(TAG ’PC

(CONS SUBR
(ADD1 (PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT))))))

ctrl-stk
(POPN

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(MAP-DOWN-VALUES
(MG-ALIST
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MG-STATE (CC MG-STATE)

(MAKE-CALL-VAR-ALIST (MG-ALIST MG-STATE)
STMT
(FETCH-CALLED-DEF STMT PROC-LIST))

(MG-PSW MG-STATE))
(SUB1 N)
(LIST (PLUS (DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))

(LENGTH TEMP-STK))
(PLUS 2

(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST)))

12

(P-CTRL-STK-SIZE CTRL-STK)))))
(APPEND (MAP-CALL-LOCALS (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))
(LENGTH TEMP-STK))

(MAP-CALL-FORMALS (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST))
(CALL-ACTUALS STMT)
(BINDINGS (TOP CTRL-STK))))

(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK))))

(TRANSLATE-PROC-LIST PROC-LIST)
(LIST
(LIST ’C-C

(MG-COND-TO-P-NAT
(CC
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MG-STATE (CC MG-STATE)

(MAKE-CALL-VAR-ALIST (MG-ALIST MG-STATE)
STMT
(FETCH-CALLED-DEF STMT PROC-LIST))

(MG-PSW MG-STATE))
(SUB1 N)
(LIST
(PLUS
(LENGTH
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(LENGTH (MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(APPEND

(MAP-CALL-LOCALS (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))
(LENGTH TEMP-STK))
(MAP-CALL-FORMALS (DEF-FORMALS (FETCH-CALLED-DEF STMT PROC-LIST))

(CALL-ACTUALS STMT)
(BINDINGS (TOP CTRL-STK))))

(TAG ’PC
(CONS SUBR

13

(ADD1
(PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))))

(MG-MAX-CTRL-STK-SIZE) (MG-MAX-TEMP-STK-SIZE) (MG-WORD-SIZE)
’RUN))

(P-STATE
(TAG ’PC

(CONS SUBR
(PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)) 2)))

CTRL-STK
(PUSH

(MG-COND-TO-P-NAT
(CC
(MG-MEANING
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MG-STATE (CC MG-STATE)

(MAKE-CALL-VAR-ALIST (MG-ALIST MG-STATE)
STMT
(FETCH-CALLED-DEF STMT PROC-LIST))

(MG-PSW MG-STATE))
(SUB1 N)))

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))
(MAP-DOWN-VALUES (MG-ALIST (MG-MEANING STMT PROC-LIST MG-STATE N))
(BINDINGS (TOP CTRL-STK))
TEMP-STK))

(TRANSLATE-PROC-LIST PROC-LIST)
(LIST

(LIST ’C-C
(MG-COND-TO-P-NAT
(CC

(MG-MEANING
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MG-STATE (CC MG-STATE)

(MAKE-CALL-VAR-ALIST (MG-ALIST MG-STATE)
STMT

14

(FETCH-CALLED-DEF STMT PROC-LIST))
(MG-PSW MG-STATE))

(SUB1 N)))
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))))
(MG-MAX-CTRL-STK-SIZE) (MG-MAX-TEMP-STK-SIZE) (MG-WORD-SIZE)
’RUN)))

((INSTRUCTIONS PROMOTE
(DIVE 1 1 3)
(REWRITE RET-TEMP-STK-EQUALS-FINAL-TEMP-STK)
UP
(DIVE 5 1 2 1 1 1)
(REWRITE MG-MEANING-EQUIVALENCE2
(($T-SIZE1
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK))))

($C-SIZE1
(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC
(CONS SUBR
(ADD1

(PLUS (LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
TOP
(DIVE 1)
X
(S LEMMAS)
(DIVE 1 1 2)
(REWRITE TRANSLATE-DEF-BODY-REWRITE)
(DIVE 1 1)
(REWRITE CALL-TRANSLATION-2)
UP UP UP S
(DIVE 1)

15

(= (PLUS (LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT))
1))

UP
(S LEMMAS)
(REWRITE GET-LENGTH-PLUS)
(REWRITE GET-LENGTH-PLUS)
(REWRITE GET-LENGTH-PLUS)
(REWRITE GET-LENGTH-PLUS)
(S LEMMAS)
UP X UP X
(S LEMMAS)
(DIVE 1)
X
(DIVE 1)
(REWRITE MAP-DOWN-VALUES-PRESERVES-LENGTH)
UP
(REWRITE RESOURCES-ADEQUATE-TEMP-STK-NOT-MAX)
UP
(S LEMMAS)
X
(S LEMMAS)
TOP S DROP
(PROVE (ENABLE TAG))
(REWRITE SIGNATURES-MATCH-PRESERVES-MG-VARS-LIST-OK

(($X (MG-ALIST MG-STATE))))
(REWRITE MG-MEANING-PRESERVES-SIGNATURES-MATCH)
(REWRITE OK-MG-STATEP-ALIST-PLISTP)
(REWRITE MG-MEANING-PRESERVES-MG-ALISTP)
(S LEMMAS)
(S LEMMAS)
(DIVE 2)
(REWRITE LENGTH-PUSH-LOCALS-VALUES-CODE)
TOP S
(REWRITE CALLED-DEF-FORMALS-OK)
(USE-LEMMA PROC-CALL-DOESNT-HALT)
(DEMOTE 19)
(DIVE 1 1)
S TOP
(S-PROP MAKE-CALL-ENVIRONMENT)
S
(S LEMMAS)

16

SPLIT PROVE
(S LEMMAS)
PROVE PROVE)))

;; (jump-case)

Theorem: call-state2-step5-effect
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2))

∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))))
→ (p-step (p-state (tag (’pc,

cons (subr ,
length (code (cinfo))
+ data-length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (def-locals (fetch-called-def (stmt ,

17

proc-list)))
+ length (call-actuals (stmt))
+ 2)),

ctrl-stk ,
push (mg-cond-to-p-nat (cc (mg-meaning (def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
make-cond-list (fetch-called-def (stmt ,

proc-list))),
map-down-values (mg-alist (mg-meaning (stmt ,

proc-list ,
mg-state,
n)),

bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning (def-body (fetch-called-def (stmt ,
proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
make-cond-list (fetch-called-def (stmt ,

proc-list))))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc,
cons (subr ,

find-label (get (untag (mg-cond-to-p-nat (cc (mg-meaning (def-body (fetch-called-def (stmt ,
proc-list)),

18

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
make-cond-list (fetch-called-def (stmt ,

proc-list)))),
cons (label-cnt (cinfo),

cons (label-cnt (cinfo),
append (cond-case-jump-label-list (1 + label-cnt (cinfo),

1 + length (call-conds (stmt))),
label-cnt-list (label-cnt (cinfo),

length (def-cond-locals (fetch-called-def (stmt ,
proc-list)))))))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2)))),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning (stmt ,

proc-list ,
mg-state,
n)),

bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning (def-body (fetch-called-def (stmt ,
proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
make-cond-list (fetch-called-def (stmt ,

proc-list))))),
mg-max-ctrl-stk-size,

19

mg-max-temp-stk-size,
mg-word-size,
’run))

;;;;;;;;;;;;;;;;;;;;;; The Normal Return Case ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; In the schema for normal return, n = 1;

Theorem: call-add1-lc-not-in-code
((car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2))
→ (¬ find-labelp (1 + label-cnt (cinfo), code (cinfo)))

Theorem: mg-cond-to-p-nat-normal
mg-cond-to-p-nat (’normal, state) = ’(nat 2)

Theorem: call-state2-step6-effect-normal-body-equals-final
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2))

∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

20

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))))
∧ normal (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)))
→ (p-step (p-state (tag (’pc,

cons (subr ,
find-label (get (untag (mg-cond-to-p-nat (cc (mg-meaning (def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
make-cond-list (fetch-called-def (stmt ,

proc-list)))),
cons (label-cnt (cinfo),

cons (label-cnt (cinfo),
append (cond-case-jump-label-list (1 + label-cnt (cinfo),

1 + length (call-conds (stmt))),
label-cnt-list (label-cnt (cinfo),

length (def-cond-locals (fetch-called-def (stmt ,
proc-list)))))))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2)))),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning (stmt ,

proc-list ,
mg-state,

21

n)),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning (def-body (fetch-called-def (stmt ,
proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
make-cond-list (fetch-called-def (stmt ,

proc-list))))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc,
cons (subr ,

if normal (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
then length (code (translate (cinfo,

t-cond-list ,
stmt ,
proc-list)))

else find-label (fetch-label (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
label-alist (translate (cinfo,

t-cond-list ,
stmt ,
proc-list))),

append (code (translate (cinfo,

22

t-cond-list ,
stmt ,
proc-list)),

code2)) endif)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

;;;;;;;;;;;;;;;;;;;;;; The Non-Normal Return Cases ;;;;;;;;;;;;;;;;;;;;;;;;;

Theorem: call-lc-not-in-code
((car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2))
→ (¬ find-labelp (label-cnt (cinfo), code (cinfo)))

Event: Disable call-lc-not-in-code.

;; The ’routineerror case

Theorem: mg-cond-to-p-nat-routineerror
mg-cond-to-p-nat (’routineerror, state) = ’(nat 1)

23

;; (push-constant (nat 1))

Theorem: call-state2-step6-effect-routineerror-body
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2))

∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))))
∧ (cc (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1))
= ’routineerror))

24

→ (p-step (p-state (tag (’pc,
cons (subr ,

find-label (get (untag (mg-cond-to-p-nat (cc (mg-meaning (def-body (fetch-called-def (stmt ,
proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
make-cond-list (fetch-called-def (stmt ,

proc-list)))),
cons (label-cnt (cinfo),

cons (label-cnt (cinfo),
append (cond-case-jump-label-list (1 + label-cnt (cinfo),

1 + length (call-conds (stmt))),
label-cnt-list (label-cnt (cinfo),

length (def-cond-locals (fetch-called-def (stmt ,
proc-list)))))))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2)))),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning (stmt ,

proc-list ,
mg-state,
n)),

bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning (def-body (fetch-called-def (stmt ,
proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

25

n − 1)),
make-cond-list (fetch-called-def (stmt ,

proc-list))))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc,
cons (subr ,

length (code (cinfo))
+ length (push-parameters-code (def-locals (fetch-called-def (stmt ,

proc-list)),
call-actuals (stmt)))

+ 4)),
ctrl-stk ,
push (’(nat 1),

map-down-values (mg-alist (mg-meaning (stmt ,
proc-list ,
mg-state,
n)),

bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
’((c-c (nat 1))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

;; (pop-global c-c)

Theorem: call-state2-step7-effect-routineerror-body
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)

26

∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))
= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),

code2))
∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))))
∧ (cc (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1))
= ’routineerror))

→ (p-step (p-state (tag (’pc,
cons (subr ,

length (code (cinfo))
+ length (push-parameters-code (def-locals (fetch-called-def (stmt ,

proc-list)),
call-actuals (stmt)))

+ 4)),
ctrl-stk ,
push (’(nat 1),

map-down-values (mg-alist (mg-meaning (stmt ,
proc-list ,
mg-state,
n)),

bindings (top (ctrl-stk)),
temp-stk)),

27

translate-proc-list (proc-list),
’((c-c (nat 1))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc,
cons (subr ,

length (code (cinfo))
+ length (push-locals-values-code (def-locals (fetch-called-def (stmt ,

proc-list))))
+ length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (call-actuals (stmt))
+ 5)),

ctrl-stk ,
map-down-values (mg-alist (mg-meaning (stmt ,

proc-list ,
mg-state,
n)),

bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
’((c-c (nat 1))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

;; (jump "routineerror")

Theorem: call-state2-step8-effect-routineerror-body-equals-final
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)

28

∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))
= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),

code2))
∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))))
∧ (cc (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1))
= ’routineerror))

→ (p-step (p-state (tag (’pc,
cons (subr ,

length (code (cinfo))
+ length (push-locals-values-code (def-locals (fetch-called-def (stmt ,

proc-list))))
+ length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (call-actuals (stmt))
+ 5)),

ctrl-stk ,
map-down-values (mg-alist (mg-meaning (stmt ,

proc-list ,
mg-state,
n)),

bindings (top (ctrl-stk)),

29

temp-stk),
translate-proc-list (proc-list),
’((c-c (nat 1))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc,
cons (subr ,

if normal (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
then length (code (translate (cinfo,

t-cond-list ,
stmt ,
proc-list)))

else find-label (fetch-label (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
label-alist (translate (cinfo,

t-cond-list ,
stmt ,
proc-list))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2)) endif)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),

30

list (list (’c-c,
mg-cond-to-p-nat (cc (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

;;;;;;;;;;;;;; The Non-Normal/Non-Routineerror Exit Case ;;;;;;;;;;;;;;;

Theorem: body-condition-member-make-cond-list
((n 6' 0)
∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ normal (mg-state)
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))))
→ (cc (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1))
∈ cons (’normal,

cons (’routineerror,
make-cond-list (fetch-called-def (stmt , proc-list)))))

31

Theorem: leave-not-in-make-cond-list
((car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list))
→ (’leave 6∈ make-cond-list (fetch-called-def (stmt , proc-list)))

Theorem: body-condition-not-leave
((n 6' 0)
∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ normal (mg-state)
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))))
→ (cc (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1))
6= ’leave)

;; checkpoint

Definition:
find-def-conds-induction-hint (index , call-conds, lc)
= if call-conds ' nil then t

else find-def-conds-induction-hint (index − 1,
cdr (call-conds),
1 + lc) endif

32

Theorem: get-indexed-push-constant-instruction
((k 6' 0) ∧ (k < (1 + length (call-conds))))
→ (get ((k − 1) ∗ 3,

append (cond-conversion (call-conds, 1 + lc, cond-list , label-alist),
code))

= list (’dl,
k + lc,
nil,
list (’push-constant,

mg-cond-to-p-nat (get (k − 1, call-conds), cond-list))))

Theorem: find-def-conds-label1
((index < (1 + length (call-conds))) ∧ (index 6' 0) ∧ (lc 6' 0))
→ (find-label (index + lc,

append (cond-conversion (call-conds,
1 + lc,
t-cond-list ,
label-alist),

code))
= ((index − 1) ∗ 3))

Theorem: find-labelp-def-conds
((index < (1 + length (call-conds))) ∧ (index 6' 0) ∧ (lc 6' 0))
→ find-labelp (index + lc,

append (cond-conversion (call-conds,
1 + lc,
t-cond-list ,
label-alist),

code))

Theorem: call-conds-index-lessp
((car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ (x ∈ def-conds (fetch-called-def (stmt , proc-list))))
→ ((index (x , def-conds (fetch-called-def (stmt , proc-list)))

< (1 + length (call-conds (stmt))))
= t)

Theorem: call-def-cond-label-find-labelp
((car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ (x ∈ def-conds (fetch-called-def (stmt , proc-list))))

33

→ (¬ find-labelp (index (x , def-conds (fetch-called-def (stmt , proc-list)))
+ (1 + label-cnt (cinfo)),
code (cinfo)))

;; Because of the above lemma, we know that the body-condition is either in the
;; def-conds or in the def-local-conds. We consider each case separately.

;; (push-constant (list ’nat condition-index))

Theorem: call-state2-step6-effect-call-conds-body
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2))

∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))))
∧ (¬ normal (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
mg-state (cc (mg-state),

34

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)))
∧ (cc (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1))
6= ’routineerror)

∧ (cc (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),
proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1))
∈ def-conds (fetch-called-def (stmt , proc-list))))

→ (p-step (p-state (tag (’pc,
cons (subr ,

find-label (get (untag (mg-cond-to-p-nat (cc (mg-meaning (def-body (fetch-called-def (stmt ,
proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
make-cond-list (fetch-called-def (stmt ,

proc-list)))),
cons (label-cnt (cinfo),

cons (label-cnt (cinfo),
append (cond-case-jump-label-list (1 + label-cnt (cinfo),

1 + length (call-conds (stmt))),

35

label-cnt-list (label-cnt (cinfo),
length (def-cond-locals (fetch-called-def (stmt ,

proc-list)))))))),
append (code (translate (cinfo,

t-cond-list ,
stmt ,
proc-list)),

code2)))),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning (stmt ,

proc-list ,
mg-state,
n)),

bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning (def-body (fetch-called-def (stmt ,
proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
make-cond-list (fetch-called-def (stmt ,

proc-list))))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc,
cons (subr ,

length (code (cinfo))
+ length (push-parameters-code (def-locals (fetch-called-def (stmt ,

proc-list)),
call-actuals (stmt)))

+ 6
+ ((index (cc (mg-meaning (def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
mg-state (cc (mg-state),

36

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
def-conds (fetch-called-def (stmt ,

proc-list))) − 1)
∗ 3)

+ 1)),
ctrl-stk ,
push (mg-cond-to-p-nat (get (index (cc (mg-meaning (def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
def-conds (fetch-called-def (stmt ,

proc-list))) − 1,
call-conds (stmt)),

t-cond-list),
map-down-values (mg-alist (mg-meaning (stmt ,

proc-list ,
mg-state,
n)),

bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning (def-body (fetch-called-def (stmt ,
proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
make-cond-list (fetch-called-def (stmt ,

37

proc-list))))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: get-indexed-pop-global-instruction
((k 6' 0) ∧ (k < (1 + length (call-conds))))
→ (get (((k − 1) ∗ 3) + 1,

append (cond-conversion (call-conds, 1 + lc, cond-list , label-alist),
code))

= ’(pop-global c-c))

Theorem: call-state2-step7-effect-call-conds-body
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2))

∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))))

38

∧ (¬ normal (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),
proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)))
∧ (cc (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1))
6= ’routineerror)

∧ (cc (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),
proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1))
∈ def-conds (fetch-called-def (stmt , proc-list))))

→ (p-step (p-state (tag (’pc,
cons (subr ,

length (code (cinfo))
+ length (push-parameters-code (def-locals (fetch-called-def (stmt ,

proc-list)),
call-actuals (stmt)))

+ 6
+ ((index (cc (mg-meaning (def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),

39

mg-psw (mg-state)),
n − 1)),

def-conds (fetch-called-def (stmt ,
proc-list))) − 1)

∗ 3)
+ 1)),

ctrl-stk ,
push (mg-cond-to-p-nat (get (index (cc (mg-meaning (def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
def-conds (fetch-called-def (stmt ,

proc-list))) − 1,
call-conds (stmt)),

t-cond-list),
map-down-values (mg-alist (mg-meaning (stmt ,

proc-list ,
mg-state,
n)),

bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning (def-body (fetch-called-def (stmt ,
proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
make-cond-list (fetch-called-def (stmt ,

proc-list))))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,

40

’run))
= p-state (tag (’pc,

cons (subr ,
length (code (cinfo))
+ length (push-locals-values-code (def-locals (fetch-called-def (stmt ,

proc-list))))
+ length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (call-actuals (stmt))
+ 6
+ ((index (cc (mg-meaning (def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
def-conds (fetch-called-def (stmt ,

proc-list))) − 1)
∗ 3)

+ 2)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning (stmt ,

proc-list ,
mg-state,
n)),

bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (cons (’c-c,

put (mg-cond-to-p-nat (get (index (cc (mg-meaning (def-body (fetch-called-def (stmt ,
proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
def-conds (fetch-called-def (stmt ,

41

proc-list))) − 1,
call-conds (stmt)),

t-cond-list),
0,
list (mg-cond-to-p-nat (cc (mg-meaning (def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
make-cond-list (fetch-called-def (stmt ,

proc-list))))))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: get-indexed-jump-instruction
((k 6' 0) ∧ (k < (1 + length (call-conds))))
→ (get (((k − 1) ∗ 3) + 2,

append (cond-conversion (call-conds, 1 + lc, cond-list , label-alist),
code))

= list (’jump, fetch-label (get (k − 1, call-conds), label-alist)))

Theorem: convert-condition1-index-equivalence
((length (def-conds) = length (call-conds)) ∧ (x ∈ def-conds))
→ (convert-condition1 (x , def-conds, call-conds)

= get (index (x , def-conds) − 1, call-conds))

Theorem: nonnormal-cond-conversion-not-normal
(’normal 6∈ call-conds)
→ (convert-condition1 (cc, def-conds , call-conds) 6= ’normal)

Theorem: call-state2-step8-effect-call-conds-body-equals-final
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)

42

∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2))

∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))))
∧ (¬ normal (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)))
∧ (cc (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1))
6= ’routineerror)

∧ (cc (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),
proc-list ,

43

mg-state (cc (mg-state),
make-call-var-alist (mg-alist (mg-state),

stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1))
∈ def-conds (fetch-called-def (stmt , proc-list))))

→ (p-step (p-state (tag (’pc,
cons (subr ,

length (code (cinfo))
+ length (push-locals-values-code (def-locals (fetch-called-def (stmt ,

proc-list))))
+ length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (call-actuals (stmt))
+ 6
+ ((index (cc (mg-meaning (def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
def-conds (fetch-called-def (stmt ,

proc-list))) − 1)
∗ 3)

+ 2)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning (stmt ,

proc-list ,
mg-state,
n)),

bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (cons (’c-c,

put (mg-cond-to-p-nat (get (index (cc (mg-meaning (def-body (fetch-called-def (stmt ,
proc-list)),

proc-list ,
mg-state (cc (mg-state),

44

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
def-conds (fetch-called-def (stmt ,

proc-list))) − 1,
call-conds (stmt)),

t-cond-list),
0,
list (mg-cond-to-p-nat (cc (mg-meaning (def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
make-cond-list (fetch-called-def (stmt ,

proc-list))))))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc,
cons (subr ,

if normal (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
then length (code (translate (cinfo,

t-cond-list ,
stmt ,
proc-list)))

else find-label (fetch-label (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

45

p-ctrl-stk-size (ctrl-stk)))),
label-alist (translate (cinfo,

t-cond-list ,
stmt ,
proc-list))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2)) endif)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: get-member-label-cnt-list
(cc ∈ lst)
→ (get (index (cc, lst) − 1, label-cnt-list (lc, length (lst))) = lc)

;; This is the case where the condition returned by the call is not in the
;; def-conds list. It must therefore be in the def-cond-locals list and we
;; return routineerror.
;;
;; (push-constant (list ’nat condition-index))

Theorem: call-state2-step6-effect-local-conds-body

46

((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2))

∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))))
∧ (¬ normal (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)))
∧ (cc (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,

47

fetch-called-def (stmt ,
proc-list)),

mg-psw (mg-state)),
n − 1))

6= ’routineerror)
∧ (cc (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1))
6∈ def-conds (fetch-called-def (stmt , proc-list))))

→ (p-step (p-state (tag (’pc,
cons (subr ,

find-label (get (untag (mg-cond-to-p-nat (cc (mg-meaning (def-body (fetch-called-def (stmt ,
proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
make-cond-list (fetch-called-def (stmt ,

proc-list)))),
cons (label-cnt (cinfo),

cons (label-cnt (cinfo),
append (cond-case-jump-label-list (1 + label-cnt (cinfo),

1 + length (call-conds (stmt))),
label-cnt-list (label-cnt (cinfo),

length (def-cond-locals (fetch-called-def (stmt ,
proc-list)))))))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2)))),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning (stmt ,

proc-list ,

48

mg-state,
n)),

bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning (def-body (fetch-called-def (stmt ,
proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
make-cond-list (fetch-called-def (stmt ,

proc-list))))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc,
cons (subr ,

length (code (cinfo))
+ length (push-parameters-code (def-locals (fetch-called-def (stmt ,

proc-list)),
call-actuals (stmt)))

+ 4)),
ctrl-stk ,
push (’(nat 1),

map-down-values (mg-alist (mg-meaning (stmt ,
proc-list ,
mg-state,
n)),

bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning (def-body (fetch-called-def (stmt ,
proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),

49

stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
make-cond-list (fetch-called-def (stmt ,

proc-list))))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: call-state2-step7-effect-local-conds-body
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2))

∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))))
∧ (¬ normal (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

50

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)))
∧ (cc (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1))
6= ’routineerror)

∧ (cc (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),
proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1))
6∈ def-conds (fetch-called-def (stmt , proc-list))))

→ (p-step (p-state (tag (’pc,
cons (subr ,

length (code (cinfo))
+ length (push-parameters-code (def-locals (fetch-called-def (stmt ,

proc-list)),
call-actuals (stmt)))

+ 4)),
ctrl-stk ,
push (’(nat 1),

map-down-values (mg-alist (mg-meaning (stmt ,
proc-list ,
mg-state,
n)),

bindings (top (ctrl-stk)),
temp-stk)),

translate-proc-list (proc-list),

51

list (list (’c-c,
mg-cond-to-p-nat (cc (mg-meaning (def-body (fetch-called-def (stmt ,

proc-list)),
proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)),
make-cond-list (fetch-called-def (stmt ,

proc-list))))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc,
cons (subr ,

length (code (cinfo))
+ length (push-locals-values-code (def-locals (fetch-called-def (stmt ,

proc-list))))
+ length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (call-actuals (stmt))
+ 5)),

ctrl-stk ,
map-down-values (mg-alist (mg-meaning (stmt ,

proc-list ,
mg-state,
n)),

bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
’((c-c (nat 1))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Theorem: call-state2-step8-effect-local-conds-body-equals-final
((n 6' 0)
∧ (¬ resources-inadequatep (stmt ,

proc-list ,

52

list (length (temp-stk),
p-ctrl-stk-size (ctrl-stk))))

∧ (car (stmt) = ’proc-call-mg)
∧ ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2)
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2))

∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))))
∧ (¬ normal (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1)))
∧ (cc (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

53

n − 1))
6= ’routineerror)

∧ (cc (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),
proc-list ,
mg-state (cc (mg-state),

make-call-var-alist (mg-alist (mg-state),
stmt ,
fetch-called-def (stmt ,

proc-list)),
mg-psw (mg-state)),

n − 1))
6∈ def-conds (fetch-called-def (stmt , proc-list))))

→ (p-step (p-state (tag (’pc,
cons (subr ,

length (code (cinfo))
+ length (push-locals-values-code (def-locals (fetch-called-def (stmt ,

proc-list))))
+ length (def-locals (fetch-called-def (stmt ,

proc-list)))
+ length (call-actuals (stmt))
+ 5)),

ctrl-stk ,
map-down-values (mg-alist (mg-meaning (stmt ,

proc-list ,
mg-state,
n)),

bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
’((c-c (nat 1))),
mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

= p-state (tag (’pc,
cons (subr ,

if normal (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
then length (code (translate (cinfo,

t-cond-list ,

54

stmt ,
proc-list)))

else find-label (fetch-label (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
label-alist (translate (cinfo,

t-cond-list ,
stmt ,
proc-list))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2)) endif)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

;; Time for the final proc-call lemma

Theorem: call-exact-time-schema-normal-case

55

((stmt-time = (locals-data-length
+ locals-length
+ actuals-length
+ 1
+ body-time
+ 5
+ 1))

∧ (p (initial ,
locals-data-length
+ locals-length
+ actuals-length
+ 1
+ body-time)

= state2)
∧ (p (state2 , 6) = final))
→ (p (initial , stmt-time) = final)

Theorem: call-exact-time-schema-nonnormal-case
((stmt-time = (locals-data-length

+ locals-length
+ actuals-length
+ 1
+ body-time
+ 5
+ 3))

∧ (p (initial ,
locals-data-length
+ locals-length
+ actuals-length
+ 1
+ body-time)

= state2)
∧ (p (state2 , 8) = final))
→ (p (initial , stmt-time) = final)

(prove-lemma proc-call-exact-time-lemma (rewrite)
(IMPLIES
(AND (NOT (ZEROP N))

(NOT (RESOURCES-INADEQUATEP STMT PROC-LIST
(LIST (LENGTH TEMP-STK)

(P-CTRL-STK-SIZE CTRL-STK))))
(EQUAL (CAR STMT) ’PROC-CALL-MG)

56

(OK-MG-STATEMENT STMT R-COND-LIST NAME-ALIST PROC-LIST)
(OK-MG-DEF-PLISTP PROC-LIST)
(OK-TRANSLATION-PARAMETERS CINFO T-COND-LIST STMT PROC-LIST CODE2)
(OK-MG-STATEP MG-STATE R-COND-LIST)
(COND-SUBSETP R-COND-LIST T-COND-LIST)
(EQUAL (CODE (TRANSLATE-DEF-BODY (ASSOC SUBR PROC-LIST)
PROC-LIST))

(APPEND (CODE (TRANSLATE CINFO T-COND-LIST STMT PROC-LIST))
CODE2))
(USER-DEFINED-PROCP SUBR PROC-LIST)
(PLISTP TEMP-STK)
(LISTP CTRL-STK)
(MG-VARS-LIST-OK-IN-P-STATE (MG-ALIST MG-STATE)

(BINDINGS (TOP CTRL-STK))
TEMP-STK)

(NO-P-ALIASING (BINDINGS (TOP CTRL-STK))
(MG-ALIST MG-STATE))
(SIGNATURES-MATCH (MG-ALIST MG-STATE)

NAME-ALIST)
(NORMAL MG-STATE)
(ALL-CARS-UNIQUE (MG-ALIST MG-STATE))
(NOT (RESOURCE-ERRORP (MG-MEANING-R STMT PROC-LIST MG-STATE N

(LIST (LENGTH TEMP-STK)
(P-CTRL-STK-SIZE CTRL-STK)))))

(IMPLIES
(AND
(OK-MG-STATEMENT (DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(MAKE-NAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST)

(OK-MG-DEF-PLISTP PROC-LIST)
(OK-TRANSLATION-PARAMETERS
(MAKE-CINFO NIL

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST (MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))

0))
1)

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(CONS

’(DL 0 NIL (NO-OP))
(CONS

57

(LIST ’POP* (DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
’((RET)))))

(OK-MG-STATEP (MAKE-CALL-ENVIRONMENT MG-STATE STMT
(FETCH-CALLED-DEF STMT PROC-LIST))
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))

(COND-SUBSETP (MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))

(EQUAL
(CODE (TRANSLATE-DEF-BODY (ASSOC (CALL-NAME STMT) PROC-LIST)

PROC-LIST))
(APPEND

(CODE
(TRANSLATE
(MAKE-CINFO NIL

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST (MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))

0))
1)

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST))

(CONS
’(DL 0 NIL (NO-OP))
(CONS
(LIST ’POP* (DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
’((RET))))))

(USER-DEFINED-PROCP (CALL-NAME STMT)
PROC-LIST)

(PLISTP
(APPEND

(REVERSE
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(LISTP
(CONS

(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1

58

(PLUS (LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK))
(MG-VARS-LIST-OK-IN-P-STATE
(MG-ALIST (MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST)))
(BINDINGS

(TOP
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1
(PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))
(APPEND

(REVERSE
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(NO-P-ALIASING
(BINDINGS

(TOP
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1
(PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))
(MG-ALIST (MAKE-CALL-ENVIRONMENT MG-STATE STMT

59

(FETCH-CALLED-DEF STMT PROC-LIST))))
(SIGNATURES-MATCH
(MG-ALIST (MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST)))
(MAKE-NAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)))

(NORMAL (MAKE-CALL-ENVIRONMENT MG-STATE STMT
(FETCH-CALLED-DEF STMT PROC-LIST)))
(ALL-CARS-UNIQUE
(MG-ALIST (MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))))
(NOT
(RESOURCE-ERRORP

(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1
(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))))
(EQUAL
(P
(MAP-DOWN ;; state1

60

(MAKE-CALL-ENVIRONMENT MG-STATE STMT
(FETCH-CALLED-DEF STMT PROC-LIST))

PROC-LIST
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1
(PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK))

(TAG ’PC
(CONS
(CALL-NAME STMT)
(LENGTH
(CODE

(MAKE-CINFO NIL
(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)))))
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))

(CLOCK (DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)))
(P-STATE ;; state2
(TAG ’PC

(CONS
(CALL-NAME STMT)
(IF

61

(NORMAL
(MG-MEANING-R

(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1

(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(LENGTH
(CODE

(TRANSLATE
(MAKE-CINFO NIL

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST)))

(FIND-LABEL

62

(FETCH-LABEL
(CC
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES

(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1
(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))

(LENGTH
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))

(LENGTH (CALL-ACTUALS STMT)))))))
CTRL-STK)))))

(LABEL-ALIST
(TRANSLATE
(MAKE-CINFO NIL

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))

63

PROC-LIST)))
(APPEND

(CODE
(TRANSLATE
(MAKE-CINFO NIL

(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST))

(CONS
’(DL 0 NIL (NO-OP))
(CONS
(LIST ’POP* (DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
’((RET)))))))))

(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1
(PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)
(MAP-DOWN-VALUES

(MG-ALIST
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES

64

(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1
(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(BINDINGS
(TOP
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)
STMT CTRL-STK TEMP-STK)

(TAG ’PC
(CONS SUBR

(ADD1
(PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(TRANSLATE-PROC-LIST PROC-LIST)
(LIST

(LIST ’C-C
(MG-COND-TO-P-NAT
(CC

(MG-MEANING-R

65

(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES
(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

(CONS SUBR
(ADD1
(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))))
(MG-MAX-CTRL-STK-SIZE) (MG-MAX-TEMP-STK-SIZE) (MG-WORD-SIZE)
’RUN))))
(EQUAL

(P (MAP-DOWN MG-STATE PROC-LIST CTRL-STK TEMP-STK
(TAG ’PC

(CONS SUBR (LENGTH (CODE CINFO))))
T-COND-LIST)

(CLOCK STMT PROC-LIST MG-STATE N))
(P-STATE
(TAG ’PC

(CONS SUBR
(IF
(NORMAL (MG-MEANING-R STMT PROC-LIST MG-STATE N

(LIST (LENGTH TEMP-STK)
(P-CTRL-STK-SIZE CTRL-STK))))

66

(LENGTH (CODE (TRANSLATE CINFO T-COND-LIST STMT PROC-LIST)))
(FIND-LABEL
(FETCH-LABEL (CC (MG-MEANING-R STMT PROC-LIST MG-STATE N

(LIST (LENGTH TEMP-STK)
(P-CTRL-STK-SIZE CTRL-STK))))
(LABEL-ALIST (TRANSLATE CINFO T-COND-LIST STMT
PROC-LIST)))

(APPEND (CODE (TRANSLATE CINFO T-COND-LIST STMT PROC-LIST))
CODE2)))))

CTRL-STK
(MAP-DOWN-VALUES (MG-ALIST (MG-MEANING-R STMT PROC-LIST MG-STATE N
(LIST (LENGTH TEMP-STK)

(P-CTRL-STK-SIZE CTRL-STK))))
(BINDINGS (TOP CTRL-STK))
TEMP-STK)

(TRANSLATE-PROC-LIST PROC-LIST)
(LIST
(LIST ’C-C

(MG-COND-TO-P-NAT (CC (MG-MEANING-R STMT PROC-LIST MG-STATE N
(LIST (LENGTH TEMP-STK)

(P-CTRL-STK-SIZE CTRL-STK))))
T-COND-LIST)))

(MG-MAX-CTRL-STK-SIZE) (MG-MAX-TEMP-STK-SIZE) (MG-WORD-SIZE)
’RUN)))
((INSTRUCTIONS

(ADD-ABBREVIATION @INITIAL
(MAP-DOWN MG-STATE PROC-LIST CTRL-STK TEMP-STK

(TAG ’PC
(CONS SUBR (LENGTH (CODE CINFO))))

T-COND-LIST))
(ADD-ABBREVIATION @FINAL
(P-STATE
(TAG ’PC
(CONS SUBR
(IF
(NORMAL (MG-MEANING-R STMT PROC-LIST MG-STATE N

(LIST (LENGTH TEMP-STK)
(P-CTRL-STK-SIZE CTRL-STK))))

(LENGTH (CODE (TRANSLATE CINFO T-COND-LIST STMT PROC-LIST)))
(FIND-LABEL

(FETCH-LABEL (CC (MG-MEANING-R STMT PROC-LIST MG-STATE N
(LIST (LENGTH TEMP-STK)

(P-CTRL-STK-SIZE CTRL-STK))))
(LABEL-ALIST (TRANSLATE CINFO T-COND-LIST STMT

67

PROC-LIST)))
(APPEND (CODE (TRANSLATE CINFO T-COND-LIST STMT PROC-LIST))

CODE2)))))
CTRL-STK
(MAP-DOWN-VALUES

(MG-ALIST (MG-MEANING-R STMT PROC-LIST MG-STATE N
(LIST (LENGTH TEMP-STK)

(P-CTRL-STK-SIZE CTRL-STK))))
(BINDINGS (TOP CTRL-STK))
TEMP-STK)

(TRANSLATE-PROC-LIST PROC-LIST)
(LIST
(LIST ’C-C

(MG-COND-TO-P-NAT (CC (MG-MEANING-R STMT PROC-LIST MG-STATE N
(LIST (LENGTH TEMP-STK)

(P-CTRL-STK-SIZE CTRL-STK))))
T-COND-LIST)))

(MG-MAX-CTRL-STK-SIZE) (MG-MAX-TEMP-STK-SIZE) (MG-WORD-SIZE)
’RUN))

(ADD-ABBREVIATION @STMT-TIME
(CLOCK STMT PROC-LIST MG-STATE N))

(ADD-ABBREVIATION @BODY-TIME
(CLOCK (DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))

PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)))

(ADD-ABBREVIATION @STATE1
(MAP-DOWN
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC
(CONS SUBR
(ADD1

(PLUS (LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)

68

(APPEND
(REVERSE

(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)

(BINDINGS (TOP CTRL-STK))
TEMP-STK))

(TAG ’PC
(CONS
(CALL-NAME STMT)
(LENGTH
(CODE
(MAKE-CINFO NIL
(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST (MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))

0))
1)))))

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))))
(ADD-ABBREVIATION @STATE2
(P-STATE
(TAG ’PC
(CONS
(CALL-NAME STMT)
(IF
(NORMAL
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES

(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)

(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

69

STMT CTRL-STK TEMP-STK)
(TAG ’PC
(CONS SUBR
(ADD1
(PLUS

(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(LENGTH
(CODE
(TRANSLATE
(MAKE-CINFO NIL
(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST)))

(FIND-LABEL
(FETCH-LABEL
(CC
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES

(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)

(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME

70

(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)
STMT CTRL-STK TEMP-STK)

(TAG ’PC
(CONS SUBR
(ADD1
(PLUS
(LENGTH (CODE CINFO))
(DATA-LENGTH

(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(LABEL-ALIST
(TRANSLATE
(MAKE-CINFO NIL
(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST)))

(APPEND
(CODE
(TRANSLATE
(MAKE-CINFO NIL
(CONS
’(ROUTINEERROR . 0)
(MAKE-LABEL-ALIST

(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
0))

1)
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST))
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST))

(CONS
’(DL 0 NIL (NO-OP))
(CONS
(LIST ’POP*

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
’((RET)))))))))

(CONS

71

(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC
(CONS SUBR
(ADD1

(PLUS (LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)
(MAP-DOWN-VALUES
(MG-ALIST
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES

(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)

(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC
(CONS SUBR
(ADD1
(PLUS

(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(BINDINGS
(TOP

72

(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC
(CONS SUBR
(ADD1
(PLUS (LENGTH (CODE CINFO))

(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(MAP-DOWN-VALUES (MG-ALIST MG-STATE)
(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(TRANSLATE-PROC-LIST PROC-LIST)
(LIST
(LIST ’C-C
(MG-COND-TO-P-NAT
(CC
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST
(LENGTH
(APPEND
(REVERSE
(MG-TO-P-LOCAL-VALUES

(DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))
(MAP-DOWN-VALUES (MG-ALIST MG-STATE)

(BINDINGS (TOP CTRL-STK))
TEMP-STK)))

(P-CTRL-STK-SIZE
(CONS
(P-FRAME
(MAKE-FRAME-ALIST (FETCH-CALLED-DEF STMT PROC-LIST)

STMT CTRL-STK TEMP-STK)
(TAG ’PC

73

(CONS SUBR
(ADD1
(PLUS

(LENGTH (CODE CINFO))
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

CTRL-STK)))))
(MAKE-COND-LIST (FETCH-CALLED-DEF STMT PROC-LIST)))))

(MG-MAX-CTRL-STK-SIZE) (MG-MAX-TEMP-STK-SIZE) (MG-WORD-SIZE)
’RUN))

(ADD-ABBREVIATION @LOCALS-DATA-LENGTH
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(ADD-ABBREVIATION @LOCALS-LENGTH
(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(ADD-ABBREVIATION @ACTUALS-LENGTH
(LENGTH (CALL-ACTUALS STMT)))

PROMOTE
(DEMOTE 19)
(DIVE 1 1)
PUSH TOP PROMOTE
(CLAIM (EQUAL (P @INITIAL

(PLUS @LOCALS-DATA-LENGTH @LOCALS-LENGTH @ACTUALS-LENGTH
1 @BODY-TIME))

@STATE2)
0)

(CLAIM
(NORMAL
(MG-MEANING-R
(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MAKE-CALL-ENVIRONMENT MG-STATE STMT

(FETCH-CALLED-DEF STMT PROC-LIST))
(SUB1 N)
(LIST

(PLUS (LENGTH TEMP-STK)
(DATA-LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST))))

(PLUS (P-CTRL-STK-SIZE CTRL-STK)
(PLUS 2

(LENGTH (DEF-LOCALS (FETCH-CALLED-DEF STMT PROC-LIST)))
(LENGTH (DEF-FORMALS (FETCH-CALLED-DEF STMT

PROC-LIST))))))))
0)

(CLAIM (EQUAL @STMT-TIME

74

(PLUS @LOCALS-DATA-LENGTH @LOCALS-LENGTH @ACTUALS-LENGTH 1
@BODY-TIME 5 1))

0)
(CLAIM (EQUAL (P @STATE2 6) @FINAL) 0)
(DEMOTE 20 22 23)
(GENERALIZE ((@ACTUALS-LENGTH ACTUALS-LENGTH)

(@LOCALS-LENGTH LOCALS-LENGTH)
(@LOCALS-DATA-LENGTH LOCALS-DATA-LENGTH)
(@STATE2 STATE2)
(@STATE1 STATE1)
(@BODY-TIME BODY-TIME)
(@STMT-TIME STMT-TIME)
(@FINAL FINAL)
(@INITIAL INITIAL)))

DROP
(USE-LEMMA CALL-EXACT-TIME-SCHEMA-NORMAL-CASE)
DEMOTE
(S-PROP AND OR NOT IMPLIES FIX ZEROP IFF NLISTP)
(CONTRADICT 23)
(DIVE 1)
(REWRITE P-ADD1-3)
(REWRITE P-ADD1-3)
(REWRITE P-ADD1-3)
(REWRITE P-ADD1-3)
(REWRITE P-ADD1-3)
(REWRITE P-ADD1-3)
(REWRITE P-0-UNWINDING-LEMMA)
(DIVE 1 1 1 1 1)
(REWRITE CALL-STATE2-STEP1-EFFECT)
UP
(REWRITE CALL-STATE2-STEP2-EFFECT)
UP
(REWRITE CALL-STATE2-STEP3-EFFECT)
UP
(REWRITE CALL-STATE2-STEP4-EFFECT)
UP
(REWRITE CALL-STATE2-STEP5-EFFECT)
UP
(REWRITE CALL-STATE2-STEP6-EFFECT-NORMAL-BODY-EQUALS-FINAL)
TOP S-PROP
(DEMOTE 21)
(DIVE 1 1)
(REWRITE MG-MEANING-EQUIVALENCE)
TOP S

75

(DEMOTE 16)
DROP PROVE
(DIVE 1)
(REWRITE PROC-CALL-DOESNT-HALT2)
TOP S S
(CONTRADICT 22)
(DIVE 1)
X
(= (CAR STMT) ’PROC-CALL-MG 0)
S
(DIVE 2 2 2 2 2 2 1)
(= * T 0)
TOP DROP PROVE
(DEMOTE 21)
(DIVE 1 1)
(REWRITE MG-MEANING-EQUIVALENCE)
TOP S
(DIVE 1)
(REWRITE PROC-CALL-DOESNT-HALT2)
TOP S
(CLAIM (EQUAL @STMT-TIME

(PLUS @LOCALS-DATA-LENGTH @LOCALS-LENGTH @ACTUALS-LENGTH 1
@BODY-TIME 5 3))

0)
(DEMOTE 21)
(DIVE 1 1 1)
(REWRITE MG-MEANING-EQUIVALENCE)
TOP PROMOTE
(CLAIM (EQUAL (P @STATE2 8) @FINAL) 0)
(DEMOTE 20 21 23)
(GENERALIZE ((@ACTUALS-LENGTH ACTUALS-LENGTH)

(@LOCALS-LENGTH LOCALS-LENGTH)
(@LOCALS-DATA-LENGTH LOCALS-DATA-LENGTH)
(@STATE2 STATE2)
(@STATE1 STATE1)
(@BODY-TIME BODY-TIME)
(@STMT-TIME STMT-TIME)
(@FINAL FINAL)
(@INITIAL INITIAL)))

DROP
(USE-LEMMA CALL-EXACT-TIME-SCHEMA-NONNORMAL-CASE)
DEMOTE
(S-PROP AND OR NOT IMPLIES FIX ZEROP IFF NLISTP)
(CONTRADICT 23)

76

(DROP 19 20 21 23)
(DIVE 1)
(REWRITE P-ADD1-3)
(REWRITE P-ADD1-3)
(REWRITE P-ADD1-3)
(REWRITE P-ADD1-3)
(REWRITE P-ADD1-3)
(REWRITE P-ADD1-3)
(REWRITE P-ADD1-3)
(REWRITE P-ADD1-3)
(REWRITE P-0-UNWINDING-LEMMA)
(DIVE 1 1 1 1 1 1 1)
(REWRITE CALL-STATE2-STEP1-EFFECT)
UP
(REWRITE CALL-STATE2-STEP2-EFFECT)
UP
(REWRITE CALL-STATE2-STEP3-EFFECT)
UP
(REWRITE CALL-STATE2-STEP4-EFFECT)
UP
(REWRITE CALL-STATE2-STEP5-EFFECT)
UP
(CLAIM
(EQUAL
(CC
(MG-MEANING

(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MG-STATE (CC MG-STATE)

(MAKE-CALL-VAR-ALIST (MG-ALIST MG-STATE)
STMT
(FETCH-CALLED-DEF STMT PROC-LIST))

(MG-PSW MG-STATE))
(SUB1 N)))

’ROUTINEERROR)
0)

(REWRITE CALL-STATE2-STEP6-EFFECT-ROUTINEERROR-BODY)
UP
(REWRITE CALL-STATE2-STEP7-EFFECT-ROUTINEERROR-BODY)
UP
(REWRITE CALL-STATE2-STEP8-EFFECT-ROUTINEERROR-BODY-EQUALS-FINAL)
UP S-PROP
(CLAIM
(MEMBER

77

(CC
(MG-MEANING

(DEF-BODY (FETCH-CALLED-DEF STMT PROC-LIST))
PROC-LIST
(MG-STATE (CC MG-STATE)

(MAKE-CALL-VAR-ALIST (MG-ALIST MG-STATE)
STMT
(FETCH-CALLED-DEF STMT PROC-LIST))

(MG-PSW MG-STATE))
(SUB1 N)))

(DEF-CONDS (FETCH-CALLED-DEF STMT PROC-LIST)))
0)

(REWRITE CALL-STATE2-STEP6-EFFECT-CALL-CONDS-BODY)
UP
(REWRITE CALL-STATE2-STEP7-EFFECT-CALL-CONDS-BODY)
UP
(REWRITE CALL-STATE2-STEP8-EFFECT-CALL-CONDS-BODY-EQUALS-FINAL)
UP S-PROP PROVE PROVE
(DEMOTE 16 19)
DROP PROVE
(REWRITE CALL-STATE2-STEP6-EFFECT-LOCAL-CONDS-BODY)
UP
(REWRITE CALL-STATE2-STEP7-EFFECT-LOCAL-CONDS-BODY)
UP
(REWRITE CALL-STATE2-STEP8-EFFECT-LOCAL-CONDS-BODY-EQUALS-FINAL)
TOP S-PROP
(DEMOTE 16 19)
DROP PROVE
(DEMOTE 16 19)
DROP PROVE
(DEMOTE 16 19)
DROP PROVE
(DIVE 1)
(REWRITE PROC-CALL-DOESNT-HALT2)
TOP S
(CONTRADICT 22)
(DROP 19 20 22)
(DIVE 1)
X
(= (CAR STMT) ’PROC-CALL-MG 0)
S
(DIVE 2 2 2 2 2 2 1)
(= * F 0)
TOP S

78

(DEMOTE 19)
(DIVE 1 1 1)
(REWRITE MG-MEANING-EQUIVALENCE)
TOP S
(DIVE 1)
(REWRITE PROC-CALL-DOESNT-HALT2)
TOP S
(CONTRADICT 20)
(DROP 20)
(DIVE 1)
(REWRITE CALL-STEP-INITIAL-TO-STATE2)
TOP S-PROP
(DEMOTE 19)
S-PROP SPLIT
(REWRITE PROC-CALL-EXACT-TIME-HYPS)
(REWRITE PROC-CALL-EXACT-TIME-HYPS)
(REWRITE PROC-CALL-EXACT-TIME-HYPS)
(REWRITE PROC-CALL-EXACT-TIME-HYPS)
(DIVE 1)
(REWRITE PROC-CALL-EXACT-TIME-HYPS)
TOP S
(REWRITE PROC-CALL-EXACT-TIME-HYPS)
(REWRITE PROC-CALL-EXACT-TIME-HYPS)
(REWRITE PROC-CALL-EXACT-TIME-HYPS)
(REWRITE PROC-CALL-EXACT-TIME-HYPS)
(REWRITE PROC-CALL-EXACT-TIME-HYPS)
(REWRITE PROC-CALL-EXACT-TIME-HYPS)
(REWRITE PROC-CALL-EXACT-TIME-HYPS)
(REWRITE PROC-CALL-EXACT-TIME-HYPS)
(DIVE 1)
(REWRITE PROC-CALL-EXACT-TIME-HYPS)
TOP S)))

Event: Make the library "c-proc-call2".

79

Index
all-cars-unique, 2–10, 17, 20, 24, 27,

29, 34, 38, 43, 47, 50, 53
all-pointers-bigger, 1
array-length, 3, 4

bindings, 7–11, 17–20, 22–32, 34, 36–
38, 40, 41, 43, 44, 46, 47,
49–55

body-condition-member-make-cond
-list, 31

body-condition-not-leave, 32

call-actuals, 6, 8, 9, 11, 18, 26–29,
36, 39, 41, 44, 49, 51, 52,
54

call-add1-lc-not-in-code, 20
call-conds, 19, 21, 25, 33, 35, 37, 40,

42, 45, 48
call-conds-index-lessp, 33
call-def-cond-label-find-labelp, 33
call-exact-time-schema-nonnorma

l-case, 56
call-exact-time-schema-normal-c

ase, 56
call-lc-not-in-code, 23
call-state2-step5-effect, 17
call-state2-step6-effect-call-c

onds-body, 34
call-state2-step6-effect-local-

conds-body, 47
call-state2-step6-effect-normal

-body-equals-final, 20
call-state2-step6-effect-routinee

rror-body, 24
call-state2-step7-effect-call-c

onds-body, 38
call-state2-step7-effect-local-

conds-body, 50
call-state2-step7-effect-routinee

rror-body, 26
call-state2-step8-effect-call-c

onds-body-equals-final, 42
call-state2-step8-effect-local-

conds-body-equals-final, 52
call-state2-step8-effect-routinee

rror-body-equals-final, 28
cc, 6, 7, 9, 10, 18, 19, 21–27, 29–32,

34–37, 39–55
code, 10, 17, 19–30, 34, 36, 38, 39,

41, 43–55
collect-pointers, 1
cond-case-jump-label-list, 19, 21, 25,

35, 48
cond-conversion, 33, 38, 42
cond-subsetp, 10, 17, 20, 24, 26, 28,

34, 38, 43, 47, 50, 53
convert-condition1, 42
convert-condition1-index-equiva

lence, 42
copy-out-params, 3, 4, 6
copy-out-params-restriction, 3
copy-out-params-restriction-con

s, 3

data-length, 10, 17
data-param-lists-match, 5, 7
def-body, 6, 7, 9, 10, 18, 19, 21, 22,

24, 25, 27, 29, 31, 32, 34–
37, 39–45, 47–54

def-cond-locals, 19, 21, 25, 36, 48
def-conds, 33–35, 37, 39–42, 44, 45,

48, 51, 54
def-formals, 6–9, 11
def-locals, 7–11, 17, 18, 26–29, 36,

39, 41, 44, 49, 51, 52, 54
deposit-alist-value, 2, 4
deposit-array-value, 1, 3, 4
deposit-array-value-deposit-ali

st-value-commute2, 4
deposit-array-value-doesnt-affe

ct-map-down-values, 4
deposit-temp, 3, 4

80

deposit-temp-deposit-array-value
-commute6, 3

drop-formals-induction-hint, 1, 2
drop-locals-induction-hint, 2

extra-binding-doesnt-affect-cop
y-out-params, 4

fetch-called-def, 6–11, 17–19, 21, 22,
24–29, 31–45, 47–54

fetch-label, 22, 30, 42, 46, 55
find-def-conds-induction-hint, 32
find-def-conds-label1, 33
find-label, 19, 21, 23, 25, 30, 33, 36,

46, 48, 55
find-labelp, 20, 23, 33, 34
find-labelp-def-conds, 33
formal-types-preserved, 5, 6
formals-meaning-signature, 6

get, 19, 21, 25, 33, 36–38, 40, 42, 45,
46, 48

get-indexed-jump-instruction, 42
get-indexed-pop-global-instructi

on, 38
get-indexed-push-constant-instr

uction, 33
get-member-label-cnt-list, 46

index, 33, 34, 37, 40–42, 44–46

label-alist, 22, 30, 46, 55
label-cnt, 19–21, 23, 25, 34–36, 48
label-cnt-list, 19, 21, 25, 36, 46, 48
leave-not-in-make-cond-list, 32
length, 1, 3, 4, 8–11, 17–36, 38, 39,

41–55
listcars, 2–7, 9
locals-alist-mg-vars-ok, 8
locals-alist-mg-vars-ok0, 8
locals-meaning-signature, 7

make-call-param-alist, 6–8
make-call-var-alist, 6, 7, 9, 10, 18,

19, 21, 22, 24, 25, 27, 29,

31, 32, 35–37, 39–45, 47–
54

make-cond-list, 18, 19, 21, 22, 25,
26, 31, 32, 35, 36, 38, 40,
42, 45, 48–50, 52

map-call-formals, 2, 3, 6–9, 11
map-call-locals, 2, 3, 8, 9, 11
map-down-copy-facts, 5
map-down-copy-facts2, 5
map-down-copy-facts3, 5
map-down-copy-out-params-inducti

on-hint, 4, 5
map-down-copy-out-params-relati

on-new, 5
map-down-drop-locals-restrictio

n, 2
map-down-values, 1–4, 6, 11, 18, 19,

22, 23, 25–28, 30, 36, 37,
40, 41, 44, 46, 49, 51, 52,
54, 55

map-down-values-drop-formals-re
striction, 2

mg-alist, 6–11, 17–32, 34–55
mg-alistp, 1, 3, 4, 6, 7
mg-cond-to-p-nat, 18–23, 25, 26, 31,

33, 35–38, 40, 42, 45, 46,
48–50, 52, 55

mg-cond-to-p-nat-normal, 20
mg-cond-to-p-nat-routineerror, 23
mg-max-ctrl-stk-size, 18, 19, 22, 23,

26, 28, 30, 31, 36, 38, 40,
42, 45, 46, 49, 50, 52, 54,
55

mg-max-temp-stk-size, 18, 20, 22,
23, 26, 28, 30, 31, 36, 38,
40, 42, 45, 46, 49, 50, 52,
54, 55

mg-meaning, 7, 9, 11, 18, 19, 21,
22, 24–29, 31, 32, 35–37,
39–45, 47–54

mg-meaning-r, 10, 11, 17, 21–24, 27,
29–32, 34, 38, 43, 45–47,
50, 53–55

mg-psw, 6, 7, 9, 10, 18, 19, 21, 22,

81

24, 25, 27, 29, 31, 32, 35–
37, 39–45, 47–54

mg-state, 6, 7, 9, 10, 18, 19, 21, 22,
24, 25, 27, 29, 31, 32, 35–
37, 39–45, 47–54

mg-to-p-local-values, 8, 11
mg-vars-list-ok-in-p-state, 1–4, 6–8,

10, 17, 20, 24, 27, 29, 31,
32, 34, 38, 43, 47, 50, 53

mg-word-size, 18, 20, 22, 23, 26, 28,
30, 31, 36, 38, 40, 42, 45,
46, 49, 50, 52, 54, 55

no-duplicates, 2, 6
no-p-aliasing, 3, 4, 6, 9, 10, 17, 20,

24, 27, 29, 34, 38, 43, 47,
50, 53

no-p-aliasing-in-call-alists-ne
w, 8

nonnormal-cond-conversion-not-n
ormal, 42

normal, 10, 17, 20–22, 24, 27, 29–
32, 34, 35, 38, 39, 43, 45,
47, 50, 51, 53, 54

ok-actual-params-list, 5, 7
ok-mg-def-plistp, 6–8, 10, 17, 20, 23,

24, 26, 28, 31–34, 38, 43,
47, 50, 53

ok-mg-formal-data-params-plistp, 6,
7

ok-mg-local-data-plistp, 8
ok-mg-statement, 6–8, 10, 17, 20,

23, 24, 26, 28, 31–34, 38,
42, 47, 50, 53

ok-mg-statep, 7, 8, 10, 17, 20, 24,
26, 28, 31–34, 38, 43, 47,
50, 53

ok-temp-stk-array-index, 1
ok-temp-stk-index, 1
ok-translation-parameters, 10, 17, 20,

23, 24, 26, 28, 33, 34, 38,
43, 47, 50, 53

p, 56

p-ctrl-stk-size, 10, 11, 17, 20–24, 26–
32, 34, 38, 42, 43, 45–47,
50, 53–55

p-state, 18, 20, 22, 23, 26, 28, 30,
31, 36, 38, 41, 42, 45, 46,
49, 50, 52, 54, 55

p-step, 18, 22, 26, 28, 30, 36, 41, 45,
49, 52, 54

param-alist-mg-vars-ok, 7
param-alist-mg-vars-ok0, 7
plistp, 8, 10, 17, 20, 24, 27, 29, 34,

38, 43, 47, 50, 53
popn, 1, 11
popn-deposit-array-value, 1
popn-deposit-induction-hint, 1
popn-locals, 1
popn-locals1, 1
popn-rput, 1
push, 18, 26, 27, 37, 40, 49, 51
push-locals-values-code, 28, 29, 41,

44, 52, 54
push-parameters-code, 26, 27, 36, 39,

49, 51
put, 42, 45

resource-errorp, 10, 17, 21, 24, 27,
29, 31, 32, 34, 38, 43, 47,
50, 53

resources-inadequatep, 10, 17, 20,
24, 26, 28, 34, 38, 42, 47,
50, 53

restrict, 2, 3, 5–7, 9
restrict-cons, 3
ret-temp-stk-equals-final-temp-

stk, 9
reverse, 8, 11
rput, 1

set-alist-value, 5
signatures-match, 7–10, 17, 20, 24,

27, 29, 31, 32, 34, 38, 43,
47, 50, 53

simple-mg-type-refp, 3, 4

82

tag, 18, 19, 21, 23, 25–30, 36, 37,
40, 41, 44, 46, 48, 49, 51,
52, 54, 55

top, 7–11, 17–20, 22–32, 34, 36–38,
40, 41, 43, 44, 46, 47, 49–
55

translate, 10, 17, 19–25, 27, 29, 30,
34, 36, 38, 43, 45–48, 50,
53, 55

translate-def-body, 10, 17, 20, 24,
27, 29, 34, 38, 43, 47, 50,
53

translate-proc-list, 18, 19, 22, 23,
25, 26, 28, 30, 36, 37, 40,
41, 44, 46, 49, 51, 52, 54,
55

untag, 1, 19, 21, 25, 35, 48
user-defined-procp, 10, 17, 20, 24,

27, 29, 34, 38, 43, 47, 50,
53

83

