EVENT: Start with the library "c4".

3993993993993 3 3333333333333 333333333333333333333333333333)

DEFINITION:
mg-to-p-local-values (locals)
= if locals ~ nil then nil
elseif simple-mg-type-refp (cadr (car (locals)))
then cons (mg-to-p-simple-literal (caddr (car (locals))),
meg-to-p-local-values (cdr (locals)))
else append (mg-to-p-simple-literal-list (caddr (car ({ocals))),
mg-to-p-local-values (cdr (locals))) endif

THEOREM: mg-to-p-local-values-plistp
plistp (mg-to-p-local-values (Ist))

;5 Given a list of formals with the call site actuals, this gives the list for the new stacl
;; frame. Each of the actuals is guaranteed to be an identifier and each of these is in

;; the previous frame with the address of the value in my-stack. Thus, I need only copy

;; these addresses into the current frame.

DEFINITION:
map-call-formals (formals, actuals, bindings)
= if formals ~ nil then nil
else cons (cons (car (car (formals)),
cdr (assoc (car (actuals), bindings))),
map-call-formals (cdr (formals), cdr (actuals), bindings)) endif

THEOREM: length-map-call-formals
length (map-call-formals (formals, actuals, bindings)) = length (formals)

THEOREM: map-call-formals-plistp
plistp (map-call-formals (z, y, z))

THEOREM: listcars-map-call-formals
listcars (map-call-formals (formals, actuals, bindings)) = listcars (formals)

;; Each of the local values is placed onto the temp-stk, then the indexes into
;3 the stack are placed there as well. The distance of the value from the index

;; depends on the size of the elements between.

;; The initial value of n is (length temp-stk)

DEFINITION:
map-call-locals (locals, n)
= if locals ~ nil then nil
elseif simple-mg-type-refp (cadr (car (locals)))
then couns (cons (car (car (locals)), tag (*nat, n)),
map-call-locals (cdr (locals), 1 + n))
else cons (cons (car (car (locals)), tag (’nat, n)),
map-call-locals (cdr (locals),
array-length (cadr (car (locals)))
+ n)) endif

THEOREM: length-map-call-locals
length (map-call-locals (locals, n)) = length (locals)

THEOREM: map-call-locals-plistp
plistp (map-call-locals (locals, n))

THEOREM: map-call-locals-preserves-listcars
listcars (map-call-locals (locals, m)) = listcars (locals)

;3 The topmost frame on the ctrl-stk at the beginning of the body of the proc-call

;; contains the p-formals which represent both the formals and locals of the mg

;; subroutine. The formals have the values of the actuals in the previous frame

;; and these are guaranteed to be addresses into the temp-stk. The locals have been

; placed on the temp-stk as well and the address computed for this frame are those

;; locations. Thus, upon entry the following invariant is established: every local
(in the frame) contains an index into the temp-stk which contains the corresponding
;3 value.

DEFINITION:
make-frame-alist (def, stmt, ctri-stk, temp-stk)
= append (map-call-locals (def-locals (def), length (temp-stk)),
map-call-formals (def-formals (def),
call-actuals (stmt),
bindings (top (ctri-stk))))

DEFINITION:
mg-actuals-to-p-actuals (mg-actuals, bindings)
= if mg-actuals ~ nil then nil
else cons (cdr (assoc (car (mg-actuals), bindings)),
mg-actuals-to-p-actuals (edr (mg-actuals), bindings)) endif

THEOREM: length-mg-actuals-to-p-actuals
length (mg-actuals-to-p-actuals (mg-actuals, bindings)) = length (mg-actuals)

THEOREM: mg-actuals-to-p-actuals-plistp
plistp (mg-actuals-to-p-actuals (actuals, bindings))

;; /mapping call parameters

2999999999999 9999993933333

EVENT: Add the shell make-cinfo, with recognizer function symbol cinfop and
3 accessors: code, with type restriction (none-of) and default value zero; label-
alist, with type restriction (none-of) and default value zero; label-cnt, with type
restriction (one-of numberp) and default value zero.

DEFINITION:
nullify (cinfo) = make-cinfo (nil, label-alist (cinfo), label-cnt (cinfo))

DEFINITION:

add-code (cinfo, code)

= make-cinfo (append (code (cinfo), code),
label-alist (cinfo),
label-cnt (cinfo))

DEFINITION:
discard-label (cinfo)
= make-cinfo (code (cinfo), cdr (label-alist (cinfo)), label-cnt (cinfo))

DEFINITION:
set-label-alist (cinfo, new-label-alist)

= make-cinfo (code (cinfo), new-label-alist, label-cnt (cinfo))

;; Notice that I could simply use the VALUE function directly.

DEFINITION:
fetch-label (condition, label-alist) = cdr (assoc (condition, label-alist))

;3 If this definition stays unchanged, I can eliminate it entirely in favor of the
;; simpler hyp on code.

DEFINITION: ok-cinfop (cinfo) = plistp (code (cinfo))

;5 Given a list (x1 ... xn) and a label 1, this generated the list
s ((x1 1) (x2.1) ... (xn . 1)). Notice that this allows that use
;3 of the VALUE function for accessing the label.

DEFINITION:
make-label-alist (name-list, label)
= if name-list ~ nil then nil
else cons (cons (car (name-list), label),
make-label-alist (cdr (name-list), label)) endif

DEFINITION:
push-local-array-values-code (array-value)
= if array-value ~ nil then nil
else cons (list (’push-constant,
mg-to-p-simple-literal (car (array-value))),
push-local-array-values-code (cdr (array-value))) endif

THEOREM: length-push-local-array-values-code
length (push-local-array-values-code (array-value)) = length (array-value)

THEOREM: length-push-local-array-values-code2
(ok-mg-local-data-decl (local) A (= simple-mg-type-refp (cadr (local))))
— (array-length (cadr (local)) = length (caddr (local)))

EVENT: Disable length-push-local-array-values-code2.

DEFINITION:
push-locals-values-code (locals)
= if locals ~ nil then nil

elseif simple-mg-type-refp (cadr (car (locals)))

then cons (list (’push-constant,

mg-to-p-simple-literal (caddr (car (locals)))),
push-locals-values-code (cdr (locals)))
else append (push-local-array-values-code (caddr (car (locals))),
push-locals-values-code (cdr (locals))) endif

THEOREM: length-push-locals-values-code
ok-mg-local-data-plistp (locals)
— (length (push-locals-values-code (locals)) = data-length (locals))

THEOREM: length-mg-to-p-local-values
ok-mg-local-data-plistp (locals)
— (length (mg-to-p-local-values (locals)) = data-length (locals))

THEOREM: no-labels-in-push-local-array-values-code
find-labelp (n, push-local-array-values-code (value)) = f

THEOREM: no-labels-in-push-locals-values-code
find-labelp (n, push-locals-values-code (actuals)) = £

DEFINITION:
push-locals-addresses-code (locals, n)
= if locals ~ nil then nil

elseif simple-mg-type-refp (cadr (car (locals)))

then couns (list (’ push-temp-stk-index, n),

push-locals-addresses-code (cdr (locals), n))
else cons (list (’push-temp-stk-index, n),
push-locals-addresses-code (cdr (locals),
1 4+ (n — array-length (cadr (car (locals)))))) endif

THEOREM: length-push-locals-addresses-code
length (push-locals-addresses-code (locals, n)) = length (locals)

THEOREM: no-labels-in-push-locals-addresses-code
find-labelp (n, push-locals-addresses-code (actuals, m)) = £

DEFINITION:
push-actuals-code (actuals)
= if actuals ~ nil then nil
else cons (list (*push-local, car (actuals)),
push-actuals-code (cdr (actuals))) endif

THEOREM: no-labels-in-push-actuals-code
find-labelp (n, push-actuals-code (actuals)) = £

THEOREM: length-push-actuals-code
length (push-actuals-code (actuals)) = length (actuals)

DEFINITION:
push-parameters-code (locals, actuals)
= append (push-locals-values-code (locals),
append (push-locals-addresses-code (locals,
data-length (locals) — 1),
push-actuals-code (actuals)))

THEOREM: length-push-parameters-code
ok-mg-local-data-plistp (locals)
— (length (push-parameters-code (locals, actuals))
= (data-length (locals) + length (locals) + length (actuals)))

;; COMPILING THE CONDITION MAPPING
;; Generate the list ’(lc lc+1 1lc+2 ... lc+n-1). These are the labels
;; necessary for the condition computation jumps.

DEFINITION:
cond-case-jump-label-list (Ic, n)
= if n ~ 0 then nil
else cons (lc, cond-case-jump-label-list (1 4+ lc, n — 1)) endif

THEOREM: length-cond-case-jump-label-list
length (cond-case-jump-label-list (Ic, n)) = fix (n)

DEFINITION:
index-cond-case-induction-hint (7, j, k)
= if k>0 thent
else index-cond-case-induction-hint (i — 1, 1 + j, £ — 1) endif

THEOREM: get-cond-case-jump-label-list
((i <k)A (G €N))
— (get (i, cond-case-jump-label-list (7, k)) = (i + j))

EVENT: Disable get-cond-case-jump-label-list.

DEFINITION:
cond-conversion (actual-conds, lc, cond-list, label-alist)
= if actual-conds ~ nil then nil
else cons (list (*d1,
le,
nil,
list (’ push-constant,
mg-cond-to-p-nat (car (actual-conds),
cond-list))),
cons (’ (pop-global c-c),
cons (list (? jump,
fetch-label (car (actual-conds),
label-alist)),
cond-conversion (cdr (actual-conds),
1+ I,
cond-list,

label-alist)))) endif

THEOREM: length-cond-conversion
length (cond-conversion (call-conds, lc, cond-list, label-alist))
= (3 x length (call-conds))

DEFINITION:
label-cnt-list (I, n)
= if n ~ 0 then nil
else cons (lc, label-cnt-list (e, n — 1)) endif

THEOREM: length-label-cnt-list
length (label-cnt-list (lc, n)) = fix (n)

;3 I must make sure that the condition index is in-range. I can do this by using the def-c
;; the list to index rather than the make-cond-list.

;; This was changed slightly to add two additional condition onto the front of the list. TI
;; because the condition index for ’normal is not zero any longer, but is now two. Consequ
;3 I’m going to use the condition index as an index into the cond-case-jump-label-list, I m
;; decrement it twice or kludge the list structure. I simply add the label for ’routineerr
;; at the beginning.

DEFINITION:
condition-map-code (actual-conds, le, cond-list, label-alist, proc-locals-Ingth)
= append (list (list (’push-global, ’c-c),
append (cons (’ jump-case,
couns (lc,
cons (lc,
cond-case-jump-label-list (1 + Ic,
1 + length (actual-conds))))),
label-cnt-list (Ic, proc-locals-Ingth)),
list (*d1, lc, nil, ’ (push-constant (nat 1))),
’> (pop-global c-c),
list (? jump, fetch-label (’routineerror, label-alist))),
append (cond-conversion (actual-conds,
1+ 1+ le),
cond-list,
label-alist),
list (list (°d1, 1 + le, nil, ’ (no-op)))))

DEFINITION:
proc-call-code (cinfo, stmt, cond-list, locals, cond-locals-Ingth)
= append (push-parameters-code (locals, call-actuals (stmt)),
cons (list (?call, call-name (stmt)),
condition-map-code (call-conds (stmt),
label-cnt (cinfo),
cond-list,
label-alist (cinfo),
cond-locals-Ingth)))

2999999999999 9999999993393

;; The following functions define the sequence of statements laid
;; down for a call to a predefined procedure.

DEFINITION:

mg-simple-variable-assignment-call-sequence (stmt)

= list (list (’push-local, car (call-actuals (stmt))),
list (’push-local, cadr (call-actuals (stmt))),
> (call mg-simple-variable-assignment))

DEFINITION:
mg-simple-constant-assignment-call-sequence (stmt)
= list (list (*push-local, car (call-actuals (stmt))),
list (’push-constant,
mg-to-p-simple-literal (cadr (call-actuals (stmt)))),
’(call mg-simple-constant-assignment))

DEFINITION:

mg-simple-variable-eq-call-sequence (stmt)

= list (list (’push-local, car (call-actuals (stmt))),
list (’push-local, cadr (call-actuals (stmt))),
list (?push-local, caddr (call-actuals (stmt))),
’(call mg-simple-variable-eq))

DEFINITION:
mg-simple-constant-eq-call-sequence (stmt)
= list (list (> push-local, car (call-actuals (stmt))),
list (*push-local, cadr (call-actuals (stmt))),
list (’push-constant,
mg-to-p-simple-literal (caddr (call-actuals (stmt)))),
> (call mg-simple-constant-eq))

DEFINITION:

mg-integer-le-call-sequence (stmt)

= list (list (’push-local, car (call-actuals (stmt))),
list (* push-local, cadr (call-actuals (stmt))),
list (*push-local, caddr (call-actuals (stmt))),
’(call mg-integer-le))

DEFINITION:
mg-integer-unary-minus-call-sequence (stmt, label-alist)
= list (list (’push-local, car (call-actuals (stmt))),
list (*push-local, cadr (call-actuals (stmt))),
’(call mg-integer-unary-minus),
> (push-global c-c),
> (subl-nat),
list (*test-nat-and-jump,
’zero,
fetch-label (’routineerror, label-alist)))

DEFINITION:
mg-integer-add-call-sequence (stmt, label-alist)
= list (list (* push-local, car (call-actuals (stmt))),
list (?push-local, cadr (call-actuals (stmt))),
list (* push-local, caddr (call-actuals (stmt))),
’(call mg-integer-add),
’ (push-global c-c),
> (subl-nat),
list (’test-nat-and-jump,
’zero,
fetch-label (’routineerror, label-alist)))

DEFINITION:
mg-integer-subtract-call-sequence (stmt, label-alist)
= list (list (’push-local, car (call-actuals (stmt))),
list (’push-local, cadr (call-actuals (stmt))),
list (’push-local, caddr (call-actuals (stmt))),
’(call mg-integer-subtract),
> (push-global c-c),
> (subl-nat),
list (*test-nat-and-jump,
’zero,
fetch-label (’routineerror, label-alist)))

DEFINITION:

mg-boolean-or-call-sequence (stmt)

= list (list (> push-local, car (call-actuals (stmt))),
list (> push-local, cadr (call-actuals (stmt))),
list (*push-local, caddr (call-actuals (stmt))),
’(call mg-boolean-or))

DEFINITION:
mg-boolean-and-call-sequence (stmt)
= list (list (*push-local, car (call-actuals (stmt))),

list (’push-local, cadr (call-actuals (stmt))),
list (’push-local, caddr (call-actuals (stmt))),
> (call mg-boolean-and))

DEFINITION:

mg-boolean-not-call-sequence (stmt)

= list (list (’push-local, car (call-actuals (stmt))),
list (*push-local, cadr (call-actuals (stmt))),
> (call mg-boolean-not))

;; The 4th argument is a numberp supplied by the pre-processor which is
;; the size of the array. This is necessary for bounds checking.
;3 >> Do I need to guarantee that it is a small-integerp?

DEFINITION:
mg-index-array-call-sequence (stmt, label-alist)
= list (list (? push-local, car (call-actuals (stmt))),
list (*push-local, cadr (call-actuals (stmt))),
list (*push-local, caddr (call-actuals (stmt))),
list (’push-constant, tag (’int, cadddr (call-actuals (stmt)))),
’(call mg-index-array),
> (push-global c-c),
> (subl-nat),
list (*test-nat-and-jump,
’zero,
fetch-label (’routineerror, label-alist)))

DEFINITION:
mg-array-element-assignment-call-sequence (stmt, label-alist)
= list (list (’push-local, car (call-actuals (stmt))),
list (> push-local, cadr (call-actuals (stmt))),
list (’push-local, caddr (call-actuals (stmt))),
list (* push-constant, tag (’int, cadddr (call-actuals (stmt)))),
’(call mg-array-element-assignment),
’ (push-global c-c),
> (subl-nat),
list (’test-nat-and-jump,
’zero,
fetch-label (’ routineerror, label-alist)))

DEFINITION:

predefined-proc-call-sequence (stmt, label-alist)
= case on call-name (stmt):
case = mg-simple-variable-assignment

10

then mg-simple-variable-assignment-call-sequence (stmt)
case = mg-simple-constant-assignment

then mg-simple-constant-assignment-call-sequence (stmt)
case = mg-simple-variable-eq

then mg-simple-variable-eq-call-sequence (stmt)
case = mg-simple-constant-eq

then mg-simple-constant-eq-call-sequence (stmt)
case = mg-integer-le

then mg-integer-le-call-sequence (stmt)
case = mg-integer-unary-minus

then mg-integer-unary-minus-call-sequence (stmt, label-alist)
case = mg-integer-add

then mg-integer-add-call-sequence (stmt, label-alist)
case = mg-integer-subtract

then mg-integer-subtract-call-sequence (stmt, label-alist)
case = mg-boolean-or

then mg-boolean-or-call-sequence (stmt)
case = mg-boolean-and

then mg-boolean-and-call-sequence (stmt)
case = mg-boolean-not

then mg-boolean-not-call-sequence (stmt)
case = mg-indez-array

then mg-index-array-call-sequence (stmt, label-alist)
case = mg-array-element-assignment

then mg-array-element-assignment-call-sequence (stmt, label-alist)
otherwise nil endcase

EVENT: Disable predefined-proc-call-sequence.

;; We now consider the bodies of the predefined routines.

DEFINITION:
MG-SIMPLE-VARIABLE-ASSIGNMENT-TRANSLATION

’(mg-simple-variable-assignment
(dest source)
nil
(push-local source)
(fetch-temp-stk)
(push-local dest)
(deposit-temp-stk)
(ret))

DEFINITION:

11

MG-SIMPLE-CONSTANT-ASSIGNMENT-TRANSLATION
= ’(mg-simple-constant-assignment

(dest source)

nil

(push-local source)

(push-local dest)

(deposit-temp-stk)

(ret))

;5 >>> Notice that deposit-temp-stk is different from my old deposit-temp
M in the order of args on the stack. THESE WILL ALL HAVE TO CHANGE.

DEFINITION:
MG-SIMPLE-VARIABLE-EQ-TRANSLATION
= ’(mg-simple-variable-eq
(ans x y)
nil
(push-local x)
(fetch-temp-stk)
(push-local y)
(fetch-temp-stk)
(eq)
(push-local ans)
(deposit-temp-stk)
(ret))

DEFINITION:
MG-SIMPLE-CONSTANT-EQ-TRANSLATION
= ’(mg-simple-constant-eq
(ans x y)
nil
(push-local x)
(fetch-temp-stk)
(push-local y)
(eq)
(push-local ans)
(deposit-temp-stk)
(ret))

DEFINITION:
MG-INTEGER-LE-TRANSLATION
= ’(mg-integer-le

(ans x y)

nil

12

(push-local y)
(fetch-temp-stk)
(push-local x)
(fetch-temp-stk)
(1t-int)
(not-bool)
(push-local ans)
(deposit-temp-stk)
(ret))

;; Since the representable positives and negatives are not
;; exactly complementary, I must check that the integer in question
;; 1s not that exact negative which would cause a problem.

DEFINITION:
MG-INTEGER-UNARY-MINUS-TRANSLATION
= ’(mg-integer-unary-minus
(ans x)
((min-int (int -2147483648)) (temp-x (int 0)))
(push-local x)
(fetch-temp-stk)
(set-local temp-x)
(push-local min-int)
(eq)
(test-bool-and-jump f 0)
(push-constant (nat 1))
(pop-global c-c)
(jump 1)
(dl 0 nil (push-local temp-x))
(neg-int)
(push-local ans)
(deposit-temp-stk)
(dl 1 nil (ret)))

DEFINITION:

MG-INTEGER-ADD-TRANSLATION

= ’(mg-integer-add
(ans y 2z)
((t1 (int 0)))
(push-constant (bool f))
(push-local y)
(fetch-temp-stk)
(push-local z)
(fetch-temp-stk)

13

(add-int-with-carry)

(pop-local t1)

(test-bool-and-jump t 0)
(push-local t1)

(push-local ans)
(deposit-temp-stk)

(jump 1)

(dl 0 nil (push-constant (nat 1)))
(pop-global c-c)

(dl 1 nil (ret)))

DEFINITION:
MG-INTEGER-SUBTRACT-TRANSLATION
= ’(mg-integer-subtract
(ans y 2z)
((t1 (int 0)))
(push-constant (bool f))
(push-local y)
(fetch-temp-stk)
(push-local z)
(fetch-temp-stk)
(sub-int-with-carry)
(pop-local t1)
(test-bool-and-jump t 0)
(push-local t1)
(push-local ans)
(deposit-temp-stk)
(jump 1)
(d1 0 nil (push-constant (nat 1)))
(pop-global c-c)
(dl 1 nil (ret)))

DEFINITION:
MG-BOOLEAN-OR-TRANSLATION
= ’(mg-boolean-or
(ans bl b2)
nil
(push-local b1l)
(fetch-temp-stk)
(push-local b2)
(fetch-temp-stk)
(or-bool)
(push-local ans)
(deposit-temp-stk)
(ret))

14

DEFINITION:
MG-BOOLEAN-AND-TRANSLATION
= ’(mg-boolean-and
(ans bl b2)
nil
(push-local bl)
(fetch-temp-stk)
(push-local b2)
(fetch-temp-stk)
(and-bool)
(push-local ans)
(deposit-temp-stk)
(ret))

DEFINITION:
MG-BOOLEAN-NOT-TRANSLATION
= ’(mg-boolean-not
(ans bl)
nil
(push-local b1l)
(fetch-temp-stk)
(not-bool)
(push-local ans)
(deposit-temp-stk)
(ret))

;3 ans := A[i] of size
;; How do I know that the sub-nat to compute the index doesn’t give an error?

DEFINITION:

MG-INDEX-ARRAY-TRANSLATION

= ’(mg-index-array
(ans a i array-size)
((temp-i (nat 0)))
(push-local i)
(fetch-temp-stk)
(set-local temp-i)
(test-int-and-jump neg 0)
(push-local array-size)
(push-local temp-i)
(sub-int)
(test-int-and-jump not-pos 0)
(push-local a)
(push-local temp-i)

15

(int-to-nat)

(add-nat)

(fetch-temp-stk)

(push-local ans)
(deposit-temp-stk)

(jump 1)

(d1 0 nil (push-constant (nat 1)))
(pop-global c-c)

(dl 1 nil (ret)))

;3 (mg-array-element-assignment A i value size)

DEFINITION:
MG-ARRAY-ELEMENT-ASSIGNMENT-TRANSLATION
’ (mg-array-element-assignment

(a i value array-size)
((temp-i (nat 0)))
(push-local i)
(fetch-temp-stk)
(set-local temp-i)
(test-int-and-jump neg 0)
(push-local array-size)
(push-local temp-i)
(sub-int)
(test-int-and-jump not-pos 0)
(push-local value)
(fetch-temp-stk)
(push-local a)
(push-local temp-i)
(int-to-nat)

(add-nat)
(deposit-temp-stk)

(jump 1)

(dl 0 nil (push-constant (nat 1)))
(pop-global c-c)

(dl 1 nil (ret)))

;3 The list of translations of the predefined routines is appended
to the list of translations of the user-defined routines and
;; becomes the program segment of the Piton program.

DEFINITION:
PREDEFINED-PROCEDURE-TRANSLATIONS-LIST

16

list (MG-SIMPLE-VARIABLE-ASSIGNMENT-TRANSLATION,
MG-SIMPLE-CONSTANT-ASSIGNMENT-TRANSLATION,
MG-SIMPLE-VARIABLE-EQ-TRANSLATION,
MG-SIMPLE-CONSTANT-EQ-TRANSLATION,
MG-INTEGER-LE-TRANSLATION,
MG-INTEGER-UNARY-MINUS-TRANSLATION,
MG-INTEGER-ADD-TRANSLATION,
MG-INTEGER-SUBTRACT-TRANSLATION,
MG-BOOLEAN-OR-TRANSLATION,
MG-BOOLEAN-AND-TRANSLATION,
MG-BOOLEAN-NOT-TRANSLATION,
MG-INDEX-ARRAY-TRANSLATION,
MG-ARRAY-ELEMENT-ASSIGNMENT-TRANSLATION)

EVENT: Disable predefined-procedure-translations-list.

Insist that the condition on an IF statement is a variable. This means that
it cannot be a boolean literal. Hence the code for computing it is always.
(push-local b)
(fetch-temp-stk)
Otherwise, the number of statements would vary and I don’t want to deal with that
now. This is consistent with the convention for proc-calls.

Condition on an IF statement is either a boolean literal or the address of a
boolean in the my-stack array.

SIGNAL
(push-constant (nat n)) n is the index of condition in cond-list
(pop-global c-c)
(jump label) label is associated label of condition in lab
PROG2
"code for left branch"
"code for right branch"
LOOP

(d1 10 nil (mo-op))

"code for loop-body"

(jump LO)

(d1 11 nil (push-constant (nat 2)))

17

HH (pop-global c-c)

HH (push-local b)

s (fetch-temp-stk)

33 (test-bool-and-jump false LO)
HH "code for true branch"

HH (jump L1)

HH (d1 10 nil (no-op))

HH "code for false branch"

H (d1 11 nil (no-op))

;3 BEGIN-WHEN

HH "code for begin-body"

HH (jump L1)

HE (dl 10 nil (push-constant (nat 2)))
i (pop-global c-c)

HH "code for when-arm-body"

H (d1 11 nil (no-op))

;3 PROC-CALL

;; For the statement

;5 (PROC-CALL-MG name (actl act2 ... actj) (condl cond2 ... condn))
;; we make the following code.

M push-locals-values-code

HN push-locals-addresses-code

H push actuals-code

S (call name)

3 (push-global c-c)

HH (case-jump (LO L1 L2 ... Ln))

HF (push-constant (nat 1))

i (pop-global c-c)

33 (jump "label-for-routineerror")

HH (dl 11 nil (push-constant "condition-number for condi"))
HH (pop-global c-c)

i (jump "label for condl")

M (dl 12 nil (push-constant "condition-number for cond2"))
33 (pop-global c-c)

33 (jump "label for cond2")

33 (dl 1n nil (push-constant "condition-number for condn"))
M (pop-global c-c)

18

)
LI
)

b

(jump "label for condn")
(d1 10 nil (no-op))

PREDEFINED-PROC-CALL

DEFINITION:
translate (cinfo, cond-list, stmt, proc-list)

case on car (stmt):
case = no-op-mg
then cinfo
case = signal-mg
then make-cinfo (append (code (cinfo),
list (list (’ push-constant,
mg-cond-to-p-nat (signalled-condition (stmt),
cond-list)),
list (*pop-global, ’c-c),
list (? jump,
fetch-label (signalled-condition (stmt),
label-alist (cinfo))))),
label-alist (cinfo),
label-cnt (cinfo))
case = prog2-mg
then translate (translate (cinfo,
cond-list,
prog2-left-branch (stmt),
proc-list),
cond-list,
prog2-right-branch (stmt),
proc-list)
case = loop-mg
then discard-label (add-code (translate (make-cinfo (append (code (cinfo),
list (list (°d1,
label-cnt (cinfo),
nil,
’ (no-op)))),
cons (cons (’ Leave,
1 4 label-cnt (cinfo)),
label-alist (cinfo)),
1+ (1 + label-cnt (cinfo))),
cond-list,
loop-body (stmt),
proc-list),
list (list (? jump, label-cnt (cinfo)),

19

list (*d1,
1 + label-cnt (cinfo),
nil,
> (push-constant
(nat 2))),
’ (pop-global c-c))))
case = if-mg
then add-code (translate (add-code (translate (make-cinfo (append (code (cinfo),
list (list (> push-local,
if-condition (stmt)),
’ (fetch-temp-stk),
list (’ test-bool-and-jump,
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo))),

cond-list,

if-true-branch (stmt),

proc-list),

list (list (? jump,
1 4 label-cnt (cinfo)),

list (*d1,
label-cnt (cinfo),
nil,
> (no-op)))),
cond-list,
if-false-branch (stmt),
proc-list),

list (list (°d1, 1 + label-cnt (cinfo), nil, ’ (no-op))))

case = begin-mg
then add-code (translate (add-code (set-label-alist (translate (make-cinfo (code (cinfo),
append (make-label-alist (when

label-
label-alist (cinfo)),
1+ (1 + label-cnt (cinfo))),
cond-list,
begin-body (stmt),
proc-list),
label-alist (cinfo)),
list (list (* jump,
1 + label-cnt (cinfo)),
list (*d1,
label-cnt (cinfo),
nil,

20

> (push-constant
(nat 2))),
’ (pop-global c-c))),
cond-list,
when-handler (stmt),
proc-list),
list (list (°d1, 1 + label-cnt (cinfo), nil, ’ (no-op))))
case = proc-call-mg
then make-cinfo (append (code (cinfo),
proc-call-code (cinfo,
stmt,
cond-list,
def-locals (fetch-called-def (stmt,
proc-list)),
length (def-cond-locals (fetch-called-def (stmt,
proc-list))))),
label-alist (cinfo),
label-cnt (cinfo)
+ (1 + (1 + length (call-conds (stmt)))))
case = predefined-proc-call-mg
then add-code (cinfo,
predefined-proc-call-sequence (stmt, label-alist (cinfo)))
otherwise cinfo endcase

THEOREM: signal-translation
(car (stmt) = ’signal-mg)
— (translate (cinfo, cond-list, stmt, proc-list)
= make-cinfo (append (code (cinfo),
list (list (’ push-constant,
mg-cond-to-p-nat (signalled-condition (stmt),
cond-list)),
list (? pop-global, ’c-c),
list (* jump,
fetch-label (signalled-condition (stmt),
label-alist (cinfo))))),
label-alist (cinfo),
label-cnt (cinfo)))

THEOREM: prog2-translation
(car (stmt) = ’prog2-mg)
— (translate (cinfo, cond-list, stmt, proc-list)
= translate (translate (cinfo,
cond-list,
prog2-left-branch (stmt),

21

proc-list),
cond-list,
prog2-right-branch (stmt),
proc-list))

THEOREM: loop-translation
(car (stmt) = ’loop-mg)
(translate (cinfo, cond-list, stmt, proc-list)
= discard-label (add-code (translate (make-cinfo (append (code (cinfo),
list (list (°d1,
label-cnt (cinfo),
nil,
? (no-op)))),
cons (cons (’ Lleave,
1 4 label-cnt (cinfo)),
label-alist (cinfo)),
1+ (1 + label-cnt (cinfo))),

—

cond-list,

loop-body (stmt),
proc-list),

list (list (? jump, label-cnt (cinfo)),
list (*d1,

1 + label-cnt (cinfo),

nil,

> (push-constant

(nat 2))),
’ (pop-global c-c)))))

THEOREM: if-translation

(car (stmt) = ’if-mg)
(translate (cinfo, cond-list, stmt, proc-list)

= add-code (translate (add-code (translate (make-cinfo (append (code (cinfo),
list (list (’ push-local,

if-condition (stmt)),
> (fetch-temp-stk),
list (*test-bool-and-jump,
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
14 (1 + label-cnt (cinfo))),

—

cond-list,
if-true-branch (stmt),
proc-list),

list (list (* jump,

22

1 + label-cnt (cinfo)),
list (*d1,
label-cnt (cinfo),
nil,
’ (no-op)))),
cond-list,
if-false-branch (stmt),

proc-list),
list (list (*d1, 1 + label-cnt (cinfo), nil, ’ (no-op)))))

THEOREM: begin-translation
(car (stmt) = ’begin-mg)
(translate (cinfo, cond-list, stmt, proc-list)
add-code (translate (add-code (set-label-alist (translate (make-cinfo (code (cinfo),
append (make-label-alist (when-
label-
label-alist (cinfo)),
1+ (1 + label-cnt (cinfo))),

—

cond-list,
begin-body (stmt),
proc-list),
label-alist (cinfo)),
list (list (* jump,
1 + label-cnt (cinfo)),

list (*d1,
label-cnt (cinfo),
nil,
> (push-constant
(nat 2))),
> (pop-global c-c))),
cond-list,
when-handler (stmt),
proc-list),

list (list (*d1, 1 + label-cnt (cinfo), nil, > (no-op)))))

THEOREM: call-translation
(car (stmt) = ’proc-call-mg)
(translate (cinfo, cond-list, stmt, proc-list)
= make-cinfo (append (code (cinfo),
proc-call-code (cinfo,
stmt,
cond-list,
def-locals (fetch-called-def (stmit,
proc-list)),

—

23

length (def-cond-locals (fetch-called-def (stmit,
proc-list))))),
label-alist (cinfo),
label-cnt (cinfo)
+ (14 (1 + length (call-conds (stmt))))))

THEOREM: predefined-call-translation
(car (stmt) = ’predefined-proc-call-mg)
— (translate (cinfo, cond-list, stmt, proc-list)
= add-code (cinfo,
predefined-proc-call-sequence (stmt,
label-alist (cinfo))))

EVENT: Disable translate.

THEOREM: predefined-proc-call-code-plistp
plistp (predefined-proc-call-sequence (stmt, label-alist))

THEOREM: not-find-labelp-predefined-proc-call-code
find-labelp (n, predefined-proc-call-sequence (stmt, label-alist)) =

;3 COMPILATION OF A PROCEDURE

;; Given a procedure def of the form

;5 (procedure-defn-mg name (paraml ... paramn) (condl ... condi) (locall ... localj)
e (local-condl ... local-condk) body)

;3 I make the code for the body in the context of the cinfo

M code: nil

53 label-alist: ((condl . 0) (cond2 . 0) (local-condl . 0) ...)

H label-cnt: 1

;; The new scheme of transforming each of the MG locals into a formal of the Piton
;; subroutine eliminates the need to convert them within the code. I hope it also
;; eliminates the need to store the stack pointer anywhere in the data-segment.

DEFINITION:
translate-def-body (proc-def, proc-list)
= add-code (translate (make-cinfo (nil,

cons (cons (’routineerror, 0),

make-label-alist (make-cond-list (proc-def),
0)),
1)7
make-cond-list (proc-def),

24

def-body (proc-def),
proc-list),
list (*(d1 0 nil (no-op)),
list (’ pop*, data-length (def-locals (proc-def))),
’(ret)))

EVENT: Disable translate-def-body.

;; Both the MG formals and locals become formals in the Piton world. This is a better
;3 approach because it allows for structured locals just as for structured formals.

DEFINITION:
translate-def (def, proc-list)
= append (list (def-name (def),
append (listcars (def-locals (def)),
listcars (def-formals (def))),
nil),
code (translate-def-body (def, proc-list)))

DEFINITION:
translate-proc-list1 (proc-list1, proc-list2)
= if proc-list] ~ nil then nil
else cons (translate-def (car (proc-list1), proc-list2),
translate-proc-list1 (cdr (proc-list1), proc-list2)) endif

DEFINITION:

translate-proc-list (proc-list)

= append (PREDEFINED-PROCEDURE-TRANSLATIONS-LIST,
translate-proc-list1 (proc-list, proc-list))

EVENT: Disable translate-proc-list.
THEOREM: translate-preserves-fields

label-alist (translate (cinfo, cond-list, stmt, proc-list))
= label-alist (cinfo)

THEOREM: code-always-plistp
plistp (code (cinfo))
— plistp (code (translate (cinfo, cond-list, stmt, proc-list)))

THEOREM: translate-preserves-ok-cinfop
ok-cinfop (cinfo) — ok-cinfop (translate (cinfo, cond-list, stmt, proc-list))

EVENT: Disable translate-preserves-ok-cinfop.

25

DEFINITION:
nearly-equal-cinfos (z, y)
= ((label-alist (z) = label-alist (y))
A (label-cnt (z) = label-cnt (y)))

THEOREM: nearly-equal-cinfos-translate

(cinfop (cinfol) A cinfop (cinfo2) A nearly-equal-cinfos (cinfol, cinfo2))

— nearly-equal-cinfos (translate (cinfol, cond-list, stmt, proc-list),
translate (cinfo2, cond-list, stmt, proc-list))

EVENT: Disable nearly-equal-cinfos-translate.

THEOREM: nullify-translate-leaves-nearly-equal

cinfop (cinfo)

— nearly-equal-cinfos (translate (cinfo, cond-list, stmt, proc-list),
translate (nullify (cinfo), cond-list, stmt, proc-list))

EVENT: Disable nullify-translate-leaves-nearly-equal.

THEOREM: nullify-translate-idempotence

cinfop (cinfo)

— (nullify (translate (nullify (cinfo), cond-list, stmt, proc-list))
= nullify (translate (cinfo, cond-list, stmt, proc-list)))

EVENT: Disable nullify-translate-idempotence.

THEOREM: nullify-translate-idempotence2
cinfop (cinfo)
— (nullify (translate (cinfo, cond-list, stmt, proc-list))
= nullify (translate (nullify (cinfo), cond-list, stmt, proc-list)))

EVENT: Disable nullify-translate-idempotence2.

THEOREM: code-doesnt-affect-other-fields
cinfop (cinfo)
— ((label-alist (translate (cinfo, cond-list, stmt, proc-list))
= label-alist (translate (nullify (cinfo),
cond-list,
stmt,
proc-list)))
A (label-cnt (translate (cinfo, cond-list, stmt, proc-list))
= label-cnt (translate (nullify (cinfo),
cond-list,

26

stmt,
proc-list))))

EVENT: Disable code-doesnt-affect-other-fields.

THEOREM: add-code-doesnt-affect-other-fields
(label-alist (add-code (cinfo, code)) = label-alist (cinfo))
A (label-cnt (add-code (cinfo, code)) = label-cnt (cinfo))

THEOREM: set-label-alist-doesnt-affect-other-fields
(code (set-label-alist (cinfo, label-alist)) = code (cinfo))
A (label-cnt (set-label-alist (cinfo, label-alist)) = label-cnt (cinfo))

THEOREM: discard-label-doesnt-affect-other-fields
(code (discard-label (cinfo)) = code (cinfo))
A (label-cnt (discard-label (cinfo)) = label-cnt (cinfo))

THEOREM: nullify-cancels-add-code
nullify (add-code (cinfo, code)) = nullify (cinfo)

THEOREM: code-add-code-commute
code (add-code (cinfo, c¢d)) = append (code (cinfo), cd)

THEOREM: label-alist-set-label-alist
label-alist (set-label-alist (state, label-alist)) = label-alist

THEOREM: nullify-doesnt-affect-proc-call-code
proc-call-code (nullify (cinfo), stmt, cond-list, locals, k)
= proc-call-code (cinfo, stmt, cond-list, locals, k)

THEOREM: nullify-code-nil
code (nullify (cinfo)) = nil

DEFINITION:
nullify-induction-hint (cinfo, cond-list, stmt, proc-list)
= case on car (stmt):
case = no-op-myg
then t
case = signal-mg
then t
case = prog2-mg
then nullify-induction-hint (cinfo,
cond-list,
prog2-left-branch (stmt),
proc-list)

27

A nullify-induction-hint (translate (cinfo,
cond-list,
prog2-left-branch (stmt),
proc-list),
cond-list,
prog2-right-branch (stmt),
proc-list)
A nullify-induction-hint (translate (nullify (cinfo),
cond-list,
prog2-left-branch (stmt),
proc-list),
cond-list,
prog2-right-branch (stmt),
proc-list)
case = loop-mg
then nullify-induction-hint (make-cinfo (append (code (cinfo),
list (list (*d1,
label-cnt (cinfo),
nil,
> (no-op)))),
cons (cons (’ leave,
1 + label-cnt (cinfo)),
label-alist (cinfo)),
1+ (1 + label-cnt (cinfo))),
cond-list,
loop-body (stmt),
proc-list)
A nullify-induction-hint (make-cinfo (list (list (>d1,
label-cnt (cinfo),
nil,
? (no-op))),
cons (cons (’ leave,

1 4 label-cnt (cinfo)),

label-alist (cinfo)),
14+ (1 + label-cnt (cinfo))),
cond-list,
loop-body (stmt),
proc-list)
case = if-mg
then nullify-induction-hint (make-cinfo (list (list (> push-local,
if-condition (stmt)),
’ (fetch-temp-stk),
list (’ test-bool-and-jump,
’false,

28

label-cnt (cinfo))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list)
A nullify-induction-hint (make-cinfo (append (code (cinfo),
list (list (’ push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (’test-bool-and-jump,
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list)

A nullify-induction-hint (add-code (translate (make-cinfo (append (code (cinfo),
list (list (’push-local,

if-condition (stmt)),
> (fetch-temp-stk),
list (’test-bool-and-jum
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
14 (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list),
list (list (* jump,
1 + label-cnt (cinfo)),
list (*d1,
label-cnt (cinfo),
nil,
> (no-op)))),
cond-list,
if-false-branch (stmt),
proc-list)

A nullify-induction-hint (add-code (translate (make-cinfo (list (list (’ push-local,
if-condition (stmt)),

> (fetch-temp-stk),
list (*test-bool-and-jump,
’false,

29

label-cnt (cinfo))),

label-alist (cinfo),
1+ (1 + label-cnt (cinfo))),

cond-list,

if-true-branch (stmt),

proc-list),

list (list (? jump,
1 + label-cnt (cinfo)),

list (*d1,
label-cnt (cinfo),
nil,
’ (no-0p)))),
cond-list,
if-false-branch (stmt),
proc-list)

case = begin-mg
then nullify-induction-hint (add-code (set-label-alist (translate (make-cinfo (code (cinfo),

append (make-label-alist (wh
lab

label-alist (cinfo)),
1+ (1 + label-ent (cinfo))),
cond-list,
begin-body (stmt),
proc-list),
label-alist (cinfo)),
list (list (? jump,
1 4 label-cnt (cinfo)),

list (*d1,
label-cnt (cinfo),
nil,
’ (push-constant
(nat 2))),
’ (pop-global c-c))),
cond-list,
when-handler (stmt),
proc-list)

nullify-induction-hint (make-cinfo (code (cinfo),
append (make-label-alist (when-labels (stmt),

label-cnt (cinfo)),
label-alist (cinfo)),
1+ (1 + label-ent (cinfo))),

cond-list,
begin-body (stmt),
proc-list)

30

nullify-induction-hint (add-code (set-label-alist (translate (nullify (make-cinfo (code (cinfo),
append (make-lal

label-alis
1+ (1 + label-cr
cond-list,
begin-body (stmt),
proc-list),
label-alist (cinfo)),
list (list (* jump,
1 + label-cnt (cinfo)),

list (*d1,
label-cnt (cinfo),
nil,
> (push-constant
(nat 2))),
’ (pop-global
C_C)))7
cond-list,
when-handler (stmt),
proc-list)

case = proc-call-mg

case = predefined-proc-call-mg

otherwise f endcase

THEOREM: new-code-prog2-case-induction-hyps
((car (stmt) = ’prog2-mg) A ok-cinfop (cinfo))
(ok-cinfop (translate (nullify (cinfo),

cond-list,
prog2-left-branch (stmt),
proc-list))

ok-cinfop (translate (cinfo,

cond-list,
prog2-left-branch (stmt),
proc-list)))

EVENT: Disable nullify.

THEOREM: new-code-prog2-case

((car (stmt) = ’prog2-mg)

ok-cinfop (cinfo)

(ok-cinfop (translate (nullify (cinfo),

31

cond-list,
prog2-left-branch (stmt),
proc-list))
— (append (code (translate (nullify (cinfo),
cond-list,
prog2-left-branch (stmit),
proc-list)),
code (translate (nullify (translate (nullify (cinfo),
cond-list,
prog2-left-branch (stmt),
proc-list)),
cond-list,
prog2-right-branch (stmt),
proc-list)))
= code (translate (translate (nullify (cinfo),
cond-list,
prog2-left-branch (stmt),
proc-list),
cond-list,
prog2-right-branch (stmt),
proc-list))))
A (ok-cinfop (translate (cinfo,
cond-list,
prog2-left-branch (stmt),
proc-list))
— (append (code (translate (cinfo,
cond-list,
prog2-left-branch (stmt),
proc-list)),
code (translate (nullify (translate (cinfo,
cond-list,
prog2-left-branch (stmt),
proc-list)),
cond-list,
prog2-right-branch (stmt),
proc-list)))
= code (translate (translate (cinfo,
cond-list,
prog2-left-branch (stmt),
proc-list),
cond-list,
prog2-right-branch (stmt),
proc-list))))
A (ok-cinfop (cinfo)

32

— (append (code (cinfo),
code (translate (nullify (cinfo),
cond-list,
prog2-left-branch (stmt),
proc-list)))
= code (translate (cinfo,
cond-list,
prog2-left-branch (stmt),
proc-list)))))
— (append (code (cinfo),
code (translate (nullify (cinfo), cond-list, stmt, proc-list)))
= code (translate (cinfo, cond-list, stmt, proc-list)))

THEOREM: new-code-loop-case-induction-hyps
ok-cinfop (cinfo)
— (ok-cinfop (make-cinfo (list (cons (> d1,
cons (label-cnt (cinfo),
’(nil (no-op))))),
cons (cons (’leave, 1 + label-cnt (cinfo)),
label-alist (cinfo)),
1+ (1 + label-cnt (cinfo))))
A ok-cinfop (make-cinfo (append (code (cinfo),
list (cons (’d1,
cons (label-cnt (cinfo),
’(nil
(no-0p)))))),
cons (cons (’ leave, 1 + label-cnt (cinfo)),
label-alist (cinfo)),
14+ (1 + label-cnt (cinfo)))))

THEOREM: new-code-loop-case
((car (stmt) = ’loop-mg)
A ok-cinfop (cinfo)
A (ok-cinfop (make-cinfo (list (cons (*d1,
cons (label-cnt (cinfo),
’(nil (mo-op))))),
cons (cons (’leave, 1 + label-cnt (cinfo)),
label-alist (cinfo)),
14 (1 + label-cnt (cinfo))))
— (append (code (make-cinfo (list (cons (’d1,
cons (label-cnt (cinfo),
’(nil (mo-op))))),
cons (cons (’leave,
1 + label-cnt (cinfo)),

33

label-alist (cinfo)),
1+ (1 + label-cnt (cinfo)))),
code (translate (nullify (make-cinfo (list (cons (>d1,
cons (label-cnt (cinfo),
’(nil
(no-op))))),
cons (cons (’ leave,
1 + label-cnt (cinfo)),
label-alist (cinfo)),
14 (1 + label-cnt (cinfo)))),
cond-list,
loop-body (stmt),
proc-list)))
= code (translate (make-cinfo (list (cons (’d1,
cons (label-cnt (cinfo),
’(nil
(no-op))))),
cons (cons (’ leave,
1 + label-cnt (cinfo)),
label-alist (cinfo)),
1+ (1 + label-cnt (cinfo))),
cond-list,
loop-body (stmt),
proc-list))))
A (ok-cinfop (make-cinfo (append (code (cinfo),
list (cons (’d1,
cons (label-cnt (cinfo),
’(nil (no-op)))))),
cons (cons (’Lleave, 1 + label-cnt (cinfo)),
label-alist (cinfo)),
1+ (1 + label-cnt (cinfo))))
— (append (code (make-cinfo (append (code (cinfo),
list (cons (*d1,
cons (label-cnt (cinfo),
’(nil
(no-0p)))))),
cons (cons (’ Leave,
1 + label-cnt (cinfo)),
label-alist (cinfo)),
14 (1 + label-cnt (cinfo)))),
code (translate (nullify (make-cinfo (append (code (cinfo),
list (cons (*d1,
cons (label-cnt (cinfo),
’(nil

34

(no-0p)))))),
cons (cons (’ leave,
1 + label-cnt (cinfo)),
label-alist (cinfo)),
14 (1 + label-cnt (cinfo)))),

cond-list,
loop-body (stmt),
proc-list)))
= code (translate (make-cinfo (append (code (cinfo),
list (cons (’d1,
cons (label-cnt (cinfo),
’(nil
(no-0p)))))),
cons (cons (’leave,
1 + label-cnt (cinfo)),
label-alist (cinfo)),
1+ (1 + label-cnt (cinfo))),

cond-list,
loop-body (stmit),
proc-list)))))
— (append (code (cinfo),
code (translate (nullify (cinfo), cond-list, stmt, proc-list)))
code (translate (cinfo, cond-list, stmt, proc-list)))

THEOREM: new-code-if-case-induction-hyps

ok-cinfop (cinfo)
— (ok-cinfop (add-code (translate (make-cinfo (list (list (’ push-local,
if-condition (stmt)),

’ (fetch-temp-stk),
list (’ test-bool-and-jump,
’false,
label-cnt (cinfo))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list),
list (list (° jump, 1 + label-cnt (cinfo)),
cons (’d1,
cons (label-cnt (cinfo),
(@il (no-op)))))))

A ok-cinfop (add-code (translate (make-cinfo (append (code (cinfo),
list (list (’push-local,

if-condition (stmt)),

35

> (fetch-temp-stk),
list (’test-bool-and-jump,
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
1+ (1 + label-cent (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list),
list (list (? jump, 1 + label-cnt (cinfo)),
cons (°d1,
cous (label-cnt (cinfo),
(nil (no-0p))))))
A ok-cinfop (make-cinfo (append (code (cinfo),
list (list (’ push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (’test-bool-and-jump,
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo))))
A ok-cinfop (make-cinfo (list (list (’ push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (*test-bool-and-jump,
’false,
label-cnt (cinfo))),
label-alist (cinfo),
14+ (1 + label-cnt (cinfo)))))

THEOREM: new-code-if-case
((car (stmt) = ’if-mg)
A ok-cinfop (cinfo)
A (ok-cinfop (add-code (translate (make-cinfo (list (list (> push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (’test-bool-and-jump,
’false,
label-cnt (cinfo))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),

36

proc-list),
list (list (? jump, 1 + label-cnt (cinfo)),
cons (’dl,
cons (label-cnt (cinfo),
’(nil (no-op)))))))

— (append (code (add-code (translate (make-cinfo (list (list (’ push-local,
if-condition (stmt)),

> (fetch-temp-stk),
list (*test-bool-and-jump,
’false,
label-cnt (cinfo))),
label-alist (cinfo),
14+ (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list),
list (list (° jump, 1 4 label-cnt (cinfo)),
cons (’d1,
cons (label-cnt (cinfo),
(nil (no-0p)))))),

code (translate (nullify (add-code (translate (make-cinfo (list (list (’ push-local,
if-condition (stmt)),

> (fetch-temp-stk),
list (*test-bool-and-jump,
’false,
label-cent (cinfo))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list),
list (list (’ jump,
1 + label-cnt (cinfo)),
cons (’d1,
cons (label-cnt (cinfo),
’(nil
(no-op))))))),
cond-list,
if-false-branch (stmt),
proc-list)))

= code (translate (add-code (translate (make-cinfo (list (list (* push-local,
if-condition (stmt)),

’ (fetch-temp-stk),
list (’ test-bool-and-jump,

37

’false,
label-cnt (cinfo))),
label-alist (cinfo),
1 4+ (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list),
list (list (* jump,
1 4 label-cnt (cinfo)),
cons (’d1,
cons (label-ent (cinfo),
’(nil
(no-0p)))))),
cond-list,
if-false-branch (stmt),
proc-list))))

A (ok-cinfop (add-code (translate (make-cinfo (append (code (cinfo),
list (list (’ push-local,

if-condition (stmt)),
> (fetch-temp-stk),
list (’ test-bool-and-jump,
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
14 (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list),
list (list (? jump, 1 + label-cnt (cinfo)),
cons (’dl,
cons (label-cnt (cinfo),
’(nil (no-op)))))))

— (append (code (add-code (translate (make-cinfo (append (code (cinfo),
list (list (’ push-local,

if-condition (stmt)),
> (fetch-temp-stk),
list (’ test-bool-and-jump,
’false,
label-cnt (cingfo)))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list),

38

list (list (° jump, 1 4 label-cnt (cinfo)),
cons (°d1,
cons (label-cnt (cinfo),
(ail (no-0p))))))),
code (translate (nullify (add-code (translate (make-cinfo (append (code (cinfo),
list (list (’push-local,
if-condition (stn
> (fetch-temp-stk)
list (*test-bool-an
’false,
label-cnt (cinfo)
label-alist (cinfo),
1+ (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list),
list (list (* jump,
1 + label-cnt (cinfo)),
cons (’d1,
cons (label-cnt (cinfo),
’(nil
(no-op))))))),
cond-list,
if-false-branch (stmt),
proc-list)))
code (translate (add-code (translate (make-cinfo (append (code (cinfo),
list (list (’ push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (*test-bool-and-jump,
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list),
list (list (? jump,
1 + label-cnt (cinfo)),
cons (’d1,
cons (label-cnt (cinfo),
’(nil
(no-0p)))))),

cond-list,

39

if-false-branch (stmt),
proc-list))))
A (ok-cinfop (make-cinfo (append (code (cinfo),
list (list (’push-local,
if-condition (stmt)),
’ (fetch-temp-stk),
list (’test-bool-and-jump,
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
14 (1 + label-cnt (cinfo))))
— (append (code (make-cinfo (append (code (cinfo),
list (list (’push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (’ test-bool-and-jump,
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo)))),
code (translate (nullify (make-cinfo (append (code (cinfo),
list (list (? push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (*test-bool-and-jump,
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo)))),
cond-list,
if-true-branch (stmt),
proc-list)))
= code (translate (make-cinfo (append (code (cinfo),
list (list (’ push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (’test-bool-and-jump,
’false,
label-cnt (cingfo)))),
label-alist (cinfo),
1 4+ (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list))))

40

A (ok-cinfop (make-cinfo (list (list (’ push-local, if-condition (stmt)),
> (fetch-temp-stk),
list (*test-bool-and-jump,
’false,
label-cnt (cinfo))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo))))
— (append (code (make-cinfo (list (list (’ push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (*test-bool-and-jump,
’false,
label-cnt (cingfo))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo)))),
code (translate (nullify (make-cinfo (list (list (’ push-local,
if-condition (stmt)),
’ (fetch-temp-stk),
list (’ test-bool-and-jump,
’false,
label-cnt (cinfo))),
label-alist (cinfo),
14 (1 + label-cnt (cinfo)))),
cond-list,
if-true-branch (stmt),
proc-list)))
= code (translate (make-cinfo (list (list (’ push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (*test-bool-and-jump,
’false,
label-cnt (cinfo))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list)))))
— (append (code (cinfo),
code (translate (nullify (cinfo), cond-list, stmt, proc-list)))
= code (translate (cinfo, cond-list, stmt, proc-list)))

THEOREM: new-code-begin-case-induction-hyps

ok-cinfop (cinfo)
— (ok-cinfop (add-code (set-label-alist (translate (nullify (make-cinfo (code (cinfo),

41

append (make-label-alist (when-labels (
label-cnt (cir
label-alist (cinfo)),
14+ (1 + label-cnt (cinfo)))),
cond-list,
begin-body (stmt),
proc-list),
label-alist (cinfo)),
cons (list (* jump, 1 + label-cnt (cinfo)),
cons (cons (’d1,
cons (label-cnt (cinfo),
’(nil
(push-constant
(nat 2))))),
» ((pop-global c-c))))))
ok-cinfop (make-cinfo (code (cinfo),
append (make-label-alist (when-labels (stmt),
label-cnt (cinfo)),
label-alist (cinfo)),
1+ (1 + label-cent (cinfo))))
ok-cinfop (add-code (set-label-alist (translate (make-cinfo (code (cinfo),
append (make-label-alist (when-labels (stm
label-cnt (cinfo)
label-alist (cinfo)),
1+ (1 + label-cnt (cinfo))),
cond-list,
begin-body (stmt),
proc-list),
label-alist (cinfo)),
cons (list (* jump, 1 + label-cnt (cinfo)),
cons (cons (’d1,
cons (label-cnt (cinfo),
’(nil
(push-constant
(nat 2))))),
> ((pop-global c-c)))))))

(prove-lemma new-code-begin-case (rewrite)

(AND

(IMPLIES

(equal (car STMT) ’BEGIN-MG)
(OK-CINFOP CINFO)

42

(IMPLIES
(0K-CINFOP
(ADD-CODE
(SET-LABEL-ALIST
(TRANSLATE
(NULLIFY (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT) (LABEL-CNT CINFO))
(LABEL-ALIST CINF0))
(ADD1 (ADD1 (LABEL-CNT CINF0)))))
COND-LIST (BEGIN-BODY STMT) PROC-LIST)
(LABEL-ALIST CINFO))
(CONS (LIST ’JUMP (ADD1 (LABEL-CNT CINFO0)))
(CONS (CONS ’DL (CONS (LABEL-CNT CINFO0) ’(NIL (PUSH-CONSTANT (NAT 2)))))
> ((POP-GLOBAL C-C))))))
(EQUAL
(APPEND
(CODE
(ADD-CODE
(SET-LABEL-ALIST
(TRANSLATE
(NULLIFY (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT)
(LABEL-CNT CINFO))
(LABEL-ALIST CINF0))
(ADD1 (ADD1 (LABEL-CNT CINF0)))))
COND-LIST
(BEGIN-BODY STMT)
PROC-LIST)
(LABEL-ALIST CINFQ))
(CONS (LIST ’JUMP (ADD1 (LABEL-CNT CINF0)))
(CONS (CONS DL
(CONS (LABEL-CNT CINFQ)
> (NIL (PUSH-CONSTANT (NAT 2)))))
> ((POP-GLOBAL C-C))))))
(CODE
(TRANSLATE
(NULLIFY
(ADD-CODE
(SET-LABEL-ALIST
(TRANSLATE
(NULLIFY (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT)
(LABEL-CNT CINFO))
(LABEL-ALIST CINF0))

43

(ADD1 (ADD1 (LABEL-CNT CINF0)))))
COND-LIST
(BEGIN-BODY STMT)
PROC-LIST)
(LABEL-ALIST CINFO0))
(CONS (LIST ’JUMP (ADD1 (LABEL-CNT CINF0)))
(CONS (CONS DL
(CONS (LABEL-CNT CINFO)
> (NIL (PUSH-CONSTANT (NAT 2)))))
> ((POP-GLOBAL C-C))))))
COND-LIST
(WHEN-HANDLER STMT)
PROC-LIST)))
(CODE
(TRANSLATE
(ADD-CODE
(SET-LABEL-ALIST
(TRANSLATE
(NULLIFY (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT)
(LABEL-CNT CINFO))
(LABEL-ALIST CINF0))
(ADD1 (ADD1 (LABEL-CNT CINF0)))))
COND-LIST
(BEGIN-BODY STMT)
PROC-LIST)
(LABEL-ALIST CINFO))
(CONS (LIST ’JUMP (ADD1 (LABEL-CNT CINF0)))
(CONS (CONS ’DL
(CONS (LABEL-CNT CINFO)
> (NIL (PUSH-CONSTANT (NAT 2)))))
> ((POP-GLOBAL C-C)))))
COND-LIST
(WHEN-HANDLER STMT)
PROC-LIST))))
(IMPLIES
(OK-CINFOP (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT) (LABEL-CNT CINFO))
(LABEL-ALIST CINFO))
(ADD1 (ADD1 (LABEL-CNT CINF0)))))
(EQUAL
(APPEND
(CODE (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT) (LABEL-CNT CINFO))

44

(LABEL-ALIST CINF0))
(ADD1 (ADD1 (LABEL-CNT CINF0)))))
(CODE
(TRANSLATE
(NULLIFY (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT) (LABEL-CNT CINFOQ))
(LABEL-ALIST CINFQ))
(ADD1 (ADD1 (LABEL-CNT CINF0)))))
COND-LIST (BEGIN-BODY STMT) PROC-LIST)))
(CODE (TRANSLATE (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT) (LABEL-CNT CINFO))
(LABEL-ALIST CINFO0))
(ADD1 (ADD1 (LABEL-CNT CINF0))))
COND-LIST (BEGIN-BODY STMT) PROC-LIST))))
(IMPLIES
(OK-CINFOP
(ADD-CODE
(SET-LABEL-ALIST
(TRANSLATE (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT) (LABEL-CNT CINFO0))
(LABEL-ALIST CINFO0))
(ADD1 (ADD1 (LABEL-CNT CINFO0))))
COND-LIST (BEGIN-BODY STMT) PROC-LIST)
(LABEL-ALIST CINF0))
(CONS (LIST ’JUMP (ADD1 (LABEL-CNT CINF0)))
(CONS (CONS °’DL (CONS (LABEL-CNT CINFO) ’(NIL (PUSH-CONSTANT (NAT 2)))))
> ((POP-GLOBAL C-C))))))
(EQUAL
(APPEND
(CODE
(ADD-CODE
(SET-LABEL-ALIST
(TRANSLATE (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT)
(LABEL-CNT CINFO0))
(LABEL-ALIST CINF0))
(ADD1 (ADD1 (LABEL-CNT CINFQ))))
COND-LIST
(BEGIN-BODY STMT)
PROC-LIST)
(LABEL-ALIST CINFO0))
(CONS (LIST ’JUMP (ADD1 (LABEL-CNT CINF0)))
(coNs (CONS ’DL
(CONS (LABEL-CNT CINFOQ)

45

> (NIL (PUSH-CONSTANT (NAT 2)))))
> ((POP-GLOBAL C-C))))))
(CODE
(TRANSLATE
(NULLIFY
(ADD-CODE
(SET-LABEL-ALIST
(TRANSLATE (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT)
(LABEL-CNT CINFO0))
(LABEL-ALIST CINFO))
(ADD1 (ADD1 (LABEL-CNT CINFO0))))
COND-LIST
(BEGIN-BODY STMT)
PROC-LIST)
(LABEL-ALIST CINFO0))
(CONS (LIST ’JUMP (ADD1 (LABEL-CNT CINF0)))
(CoNS (CONS DL
(CONS (LABEL-CNT CINFO)
> (NIL (PUSH-CONSTANT (NAT 2)))))
> ((POP-GLOBAL C-C))))))
COND-LIST
(WHEN-HANDLER STMT)
PROC-LIST)))
(CODE
(TRANSLATE
(ADD-CODE
(SET-LABEL-ALIST
(TRANSLATE (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT)
(LABEL-CNT CINFO))
(LABEL-ALIST CINF0))
(ADD1 (ADD1 (LABEL-CNT CINF0))))
COND-LIST
(BEGIN-BODY STMT)
PROC-LIST)
(LABEL-ALIST CINFO0))
(CONS (LIST ’JUMP (ADD1 (LABEL-CNT CINF0)))
(coNs (CONS ’DL
(CONS (LABEL-CNT CINFO)
> (NIL (PUSH-CONSTANT (NAT 2)))))
> ((POP-GLOBAL C-C)))))
COND-LIST
(WHEN-HANDLER STMT)

46

PROC-LIST)))))

(EQUAL (APPEND (CODE CINFO)
(CODE (TRANSLATE (NULLIFY CINFO)

COND-LIST STMT PROC-LIST)))
(CODE (TRANSLATE CINFO COND-LIST STMT PROC-LIST))))

((INSTRUCTIONS (disable add-code set-label-alist)

PROMOTE (DEMOTE 3) (DIVE 1 1) (REWRITE NEW-CODE-BEGIN-CASE-INDUCTION-HYPS) UP S TOP
(DEMOTE 3) (DIVE 1 1) (REWRITE NEW-CODE-BEGIN-CASE-INDUCTION-HYPS) UP S TOP PROMOTE
(DEMOTE 3) (DIVE 1 1) (REWRITE NEW-CODE-BEGIN-CASE-INDUCTION-HYPS) UP S TOP PROMOTE
(DIVE 2 1) (REWRITE BEGIN-TRANSLATION) UP (REWRITE CODE-ADD-CODE-COMMUTE) (DIVE 1) =
UP (REWRITE ASSOCIATIVITY-OF-APPEND) (DIVE 1) (REWRITE CODE-ADD-CODE-COMMUTE) (DIVE
(REWRITE SET-LABEL-ALIST-DOESNT-AFFECT-OTHER-FIELDS) = (DROP 4) UP
(REWRITE ASSOCIATIVITY-OF-APPEND) UP (REWRITE ASSOCIATIVITY-OF-APPEND) TOP (REWRITE .
(DIVE 1 1) (REWRITE BEGIN-TRANSLATION) UP (REWRITE CODE-ADD-CODE-COMMUTE) (DIVE 1) (.
S TOP (DEMOTE 3) (DIVE 1 2) (S-PROP NULLIFY) S TOP PROMOTE (DIVE 1 1) = (DROP 3) TOP
(BASH (ENABLE NULLIFY ADD-CODE TRANSLATE-PRESERVES-FIELDS APPEND-REWRITE2 SET-LABEL-.
PROMOTE (DIVE 2 1 1) (DIVE 1 3) (REWRITE CODE-DOESNT-AFFECT-OTHER-FIELDS)
TOP (PROVE (ENABLE NULLIFY)))))

THEOREM: new-code-appended-to-old
ok-cinfop (cinfo)
— (append (code (cinfo),
code (translate (nullify (cinfo), cond-list, stmt, proc-list)))
= code (translate (cinfo, cond-list, stmt, proc-list)))

EVENT: Disable new-code-appended-to-old.

THEOREM: new-code-appended-to-old1
ok-cinfop (cinfo)
— (code (translate (cinfo, cond-list, stmt, proc-list))
= append (code (cinfo),
code (translate (nullify (cinfo), cond-list, stmt, proc-list))))

EVENT: Disable new-code-appended-to-old1.

DEFINITION:

collect-labels (codelist)

= if codelist ~ nil then nil
elseif caar (codelist) = *dl
then cons (cadar (codelist), collect-labels (cdr (codelist)))
else collect-labels (cdr (codelist)) endif

THEOREM: collect-labels-plistp
plistp (collect-labels (Ist))

47

THEOREM: collect-labels-distributes
collect-labels (append (codel, code2))
= append (collect-labels (code1), collect-labels (code2))

DEFINITION:
all-labels-unique (codelist) = no-duplicates (collect-labels (codelist))

EVENT: Disable all-labels-unique.

THEOREM: all-labels-unique-append
all-labels-unique (append (z, y))
— (all-labels-unique (z) A all-labels-unique (y))

THEOREM: all-labels-unique-reduction
(= all-labels-unique (y)) — (- all-labels-unique (append (z, y)))

EVENT: Disable all-labels-unique-reduction.

THEOREM: all-labels-unique-reduction?2
(= all-labels-unique (y)) — (= all-labels-unique (cons (z, y)))

EVENT: Disable all-labels-unique-reduction2.

THEOREM: find-labelp-rewrites-to-member
find-labelp (lab, code) = (lab € collect-labels (code))

EVENT: Disable find-labelp-rewrites-to-member.

THEOREM: all-labels-unique-reduction3
(find-labelp (lab, codel) A find-labelp (lab, code2))
— (- all-labels-unique (append (codel, code2)))

EvVENT: Disable all-labels-unique-reduction3.
THEOREM: no-duplicates-append-list
no-duplicates (append (Ist, cons (z, cons (y, Ist2))))

— no-duplicates (append (Ist, list (y)))

THEOREM: no-duplicates-append-list2
no-duplicates (append (Ist, cons (y, Ist2)))
— no-duplicates (append (Ist, list (y)))

48

THEOREM: labels-unique-append?2
all-labels-unique (append (Ist!, cons (z, cons (y, Ist2))))
— all-labels-unique (append (Ist1, list (y)))

THEOREM: find-labelp-member-collect-labels
find-labelp (z, code) — (z € collect-labels (code))

DEFINITION:

label-hole-big-enough (cinfo, cond-list, stmt, proc-list, y)

= all-labels-unique (append (code (translate (cinfo,
cond-list,
stmt,
proc-list)),

y))

THEOREM: labels-unique-not-find-labelp
(all-labels-unique (append (codel, code2)) A find-labelp (label, code2))
— (= find-labelp (label, codel))

THEOREM: labels-unique-not-find-labelp1
all-labels-unique (append (Ist, list (list (>dl, label, nil, w))))
— (find-labelp (label, Ist) = f)

DEFINITION:
ok-cond-list (Ist)
= if Ist ~ nil then Ist = nil
else (ok-mg-namep (car (Ist))
V (car (Ist) € > (leave routineerror)))
A ok-cond-list (cdr (Ist)) endif

THEOREM: identifier-plistp-make-cond-list-ok
identifier-plistp (Ist) — ok-cond-list (Ist)

THEOREM: make-cond-list-ok
((car (stmt) = ’proc-call-mg)
A ok-mg-statement (stmt, cond-list, name-alist, proc-list)
A ok-mg-def-plistp (proc-list))
— ok-cond-list (make-cond-list (fetch-called-def (stmt, proc-list)))

THEOREM: cond-subsetp-preserves-ok-mg-statep
(cond-subsetp (r-cond-list, t-cond-list)

A (cc(mg-state) # *leave)

A ok-mg-statep (mg-state, r-cond-list))

— ok-mg-statep (mg-state, t-cond-list)

49

DEFINITION:
ok-translation-parameters (cinfo, cond-list, stmt, proc-list, y)
= (ok-cinfop (cinfo)
A ok-cond-list (cond-list)
A label-hole-big-enough (cinfo, cond-list, stmt, proc-list, y))

THEOREM: label-cnt-monotonic
label-cnt (translate (cinfo, cond-list, stmt, proc-list)) £ label-cnt (cinfo)

THEOREM: label-cnt-monotonic2
(n < label-cnt (cinfo))
— (n < label-cnt (translate (cinfo, cond-list, stmt, proc-list)))

THEOREM: label-cnt-monotonic3
(n < label-cnt (cinfo))
— ((n < label-cnt (translate (cinfo, cond-list, stmt, proc-list))) = t)

THEOREM: label-cnt-add1-add1-monotonic
((n < le) A (label-cnt (cinfo) = (1 + (1 + Ic))))
— ((n < label-cnt (translate (cinfo, cond-list, stmt, proc-list))) = t)

THEOREM: label-cnt-monotonic-cond-conversion
(n < le)
— (find-labelp (n, cond-conversion (actual-conds, le, cond-list, label-alist))

THEOREM: not-find-labelp-push-parameters-code
find-labelp (n, push-parameters-code (locals, actuals)) = £

EVENT: Disable not-find-labelp-push-parameters-code.

THEOREM: find-labelp-monotonic-lessp
((n < label-cnt (cinfo)) A (= find-labelp (n, code (cinfo))))
— (find-labelp (n, code (translate (cinfo, cond-list, stmt, proc-list))) = f)

;; The following definition is used only in the proof of procedure-calls.

DEFINITION:

label-cnt-big-enough (lc, code)

= if code ~ nil then t
elseif caar (code) = ’dl
then (cadar (code) < lc) A label-ent-big-enough (le, edr (code))
else label-cnt-big-enough (le, cdr (code)) endif

50

DEFINITION:
cond-conversion-induction-hint (Ist, n)
= if Ist ~ nil then t
else cond-conversion-induction-hint (cdr (Ist), 1 + n) endif

THEOREM: label-count-big-enough-not-find-labelp
label-cnt-big-enough (Ic, code) — (find-labelp (lc, code) = f)

THEOREM: greater-label-count-big-enough
(label-cnt-big-enough (n, code) A (n < m))
— label-cnt-big-enough (m, code)

THEOREM: label-cnt-big-enough-distributes
label-cnt-big-enough (Ic, append (Ist1, Ist2))
= (label-cnt-big-enough (lc, Ist1) A label-cnt-big-enough (ic, [st2))

THEOREM: label-cnt-lesspl
(n < label-cnt (cinfo))
— ((n < label-cnt (translate (cinfo, cond-list, stmt, proc-list))) = t)

THEOREM: label-cnt-big-enough-distributes2
(label-cnt-big-enough (n, Ist1) A label-cnt-big-enough (n, Ist2))
— label-cnt-big-enough (n, append (Ist1, Ist2))

THEOREM: label-cnt-big-enough-for-push-actuals-code
label-cnt-big-enough (n, push-actuals-code (actuals))

THEOREM: label-cnt-big-enough-for-push-local-array-values-code
label-cnt-big-enough (n, push-local-array-values-code (array-value))

THEOREM: label-cnt-big-enough-for-push-locals-values-code
label-cnt-big-enough (n, push-locals-values-code (actuals))

THEOREM: label-cnt-big-enough-for-push-locals-addresses-code
label-cnt-big-enough (n, push-locals-addresses-code (actuals, m))

THEOREM: label-cnt-big-enough-for-cond-conversion
label-cnt-big-enough (lc + (1 + (1 + length (Ist))),
cond-conversion (Ist, 1 + (1 + Ic), cond-list, label-alist))

THEOREM: label-cnt-big-enough-for-proc-call-code

label-cnt-big-enough (label-cnt (cinfo), code (cinfo))

— label-cnt-big-enough (label-cnt (cinfo)
+ (1 + (14 length (call-conds (stmt)))),
proc-call-code (cinfo, stmt, cond-list, locals, k))

o1

THEOREM: label-cnt-big-enough-for-predefined-proc-call-code
label-cnt-big-enough (n, predefined-proc-call-sequence (stmt, label-alist))

THEOREM: label-cnt-stays-big-enough
label-cnt-big-enough (label-cnt (cinfo), code (cinfo))
— label-cnt-big-enough (label-cnt (translate (cinfo,
cond-list,
stmt,
proc-list)),
code (translate (cinfo, cond-list, stmt, proc-list)))

THEOREM: label-cnt-big-enough-add1
label-cnt-big-enough (z, y) — label-cnt-big-enough (1 + z, y)

THEOREM: lesser-label-doesnt-disturb-no-duplicates
(no-duplicates (Ist) A (z & Ist)) — no-duplicates (append (Ist, list (x)))

THEOREM: find-labelp-reduces-to-member
find-labelp (z, Ist) = (z € collect-labels (ist))

THEOREM: member-labels-unique-not-find-labelp
(all-labels-unique (append (code, code2)) A find-labelp (label, code?2))
— (- find-labelp (label, code))

THEOREM: no-duplicates-right-cons-reduction

no-duplicates (collect-labels (Ist))

— (no-duplicates (append (collect-labels (Ist), list (z)))
= (- find-labelp (z, Ist)))

THEOREM: label-cnt-big-enough-not-find-labelp
label-cnt-big-enough (lc, code) — (find-labelp (ic, code) = f)

THEOREM: not-member-cond-conversion

(n < le)

— ((n € collect-labels (cond-conversion (conds, lc, cond-list, label-alist)))
= f)

THEOREM: no-duplicates-cond-conversion
no-duplicates (collect-labels (cond-conversion (conds, lc, cond-list, label-alist)))

THEOREM: no-duplicates-cond-conversion-base-case
no-duplicates (append (collect-labels (cond-conversion (conds,
14+ (1+ le),
cond-list,
label-alist)),
list (1 4 Ic)))

92

THEOREM: no-duplicates-proc-call
(no-duplicates (collect-labels (code)) A label-cnt-big-enough (le, code))
— no-duplicates (append (collect-labels (code),

cons (lc,
append (collect-labels (cond-conversion (conds,
1+ (1+ le),
cond-list,

label-alist)),
list (1 4 Ic)))))

THEOREM: collect-labels-push-actuals-code-nil
collect-labels (push-actuals-code (actuals)) = nil

THEOREM: collect-labels-push-local-array-values-code-nil
collect-labels (push-local-array-values-code (array-value)) = nil

THEOREM: collect-labels-push-locals-values-code-nil
collect-labels (push-locals-values-code (actuals)) = nil

THEOREM: collect-labels-push-locals-addresses-code-nil
collect-labels (push-locals-addresses-code (actuals, m)) = nil

THEOREM: collect-labels-predefined-proc-call-code-nil
collect-labels (predefined-proc-call-sequence (stmt, label-alist)) = nil

THEOREM: collect-labels-strip-label
collect-labels (cons (cons (’d1, cons (label, x)), y))
= cons (label, collect-labels (y))

THEOREM: labels-unique-loop-case
((car (stmt) = ?loop-mg)
A no-duplicates (collect-labels (code (cinfo)))
A label-cnt-big-enough (label-cnt (cinfo), code (cinfo))
A ((no-duplicates (collect-labels (code (make-cinfo (append (code (cinfo),
list (cons (’d1,
cons (label-cnt (cinfo),
’(nil
(no-0p))))),
cons (cons (’ Leave,
1 + label-cnt (cinfo)),
label-alist (cinfo)),
1+ (1 + label-cnt (cinfo))))))
A label-cnt-big-enough (label-cnt (make-cinfo (append (code (cinfo),
list (cons (*d1,
cons (label-cnt (cinfo),

53

’(nil
(mo-0p)))))),
cous (cons (’ Lleave,
1 + label-cnt (cinfo)),
label-alist (cinfo)),
1+ (1 + label-cnt (cinfo)))),
code (make-cinfo (append (code (cinfo),
list (cons (*d1,
cons (label-cnt (cinfo),
> (nil
(no-0p))))),
cons (cons (’ leave,
1 + label-cnt (cinfo)),
label-alist (cinfo)),
1+ (1 + label-cnt (cinfo))))))
— mno-duplicates (collect-labels (code (translate (make-cinfo (append (code (cinfo),
list (cons (’d1,
cons (label-cnt (cinfo),
’(nil
(no-0p)))))),
cons (cons (’ Leave,
1 + label-cnt (cinfo)),
label-alist (cinfo)),
1+ (1 + label-cnt (cinfo))),
cond-list,
loop-body (stmt),
proc-list))))))
— mno-duplicates (collect-labels (code (translate (cinfo,
cond-list,
stmt,
proc-list))))

EVENT: Disable labels-unique-loop-case.

THEOREM: labels-unique-if-case-hypsl
((car (stmt) = ’if-mg)
A no-duplicates (collect-labels (code (cinfo)))
A label-cnt-big-enough (label-ent (cinfo), code (cinfo)))
— (no-duplicates (collect-labels (code (make-cinfo (append (code (cinfo),
list (list (’push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (*test-bool-and-jump,
’false,

o4

label-cnt (cinfo)))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo))))))
A label-cnt-big-enough (label-cnt (make-cinfo (append (code (cinfo),
list (list (’push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (*test-bool-and-jump,
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo)))),
code (make-cinfo (append (code (cinfo),
list (list (’ push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (*test-bool-and-jump,
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
1+ (1 + label-ent (cinfo))))))

EVENT: Disable labels-unique-if-case-hypsl.

THEOREM: label-cnt-big-enough-not-member
label-cnt-big-enough (I¢, code) — (le & collect-labels (code))

THEOREM: labels-unique-if-case-hyps2
((car (stmt) = ’if-mg)
A no-duplicates (collect-labels (code (cinfo)))
A label-cnt-big-enough (label-cnt (cinfo), code (cinfo))
A no-duplicates (collect-labels (code (translate (make-cinfo (append (code (cinfo),
list (list (’push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (*test-bool-and-jump,
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
14 (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),

proc-list)))))
— (no-duplicates (collect-labels (code (add-code (translate (make-cinfo (append (code (cinfo),

95

list (list (? push-local,
if-condition (stmt))
> (fetch-temp-stk),
list (*test-bool-and-j
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list),
list (list (? jump,
1 + label-cnt (cinfo)),
cons (’d1,
cons (label-cnt (cinfo),
’(nil
(mo-0p)))))))))

A label-cnt-big-enough (label-cnt (add-code (translate (make-cinfo (append (code (cinfo),
list (list (’ push-local,

if-condition (stmt)
> (fetch-temp-stk),
list (’test-bool-and-
’false,
label-cnt (cinfo)))
label-alist (cinfo),
1+ (1 + label-cent (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list),
list (list (* jump,
1 4 label-cnt (cinfo)),
cons (°d1,
cons (label-cnt (cinfo),
’(nil
(mo-0p)))))),

code (add-code (translate (make-cinfo (append (code (cinfo),
list (list (’ push-local,

if-condition (stmt)),
> (fetch-temp-stk),
list (*test-bool-and-jumj
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
14 (1 + label-cnt (cinfo))),

96

cond-list,
if-true-branch (stmt),
proc-list),
list (list (* jump,
1 + label-cnt (cinfo)),
cons (’d1,
cons (label-cnt (cinfo),
’(nil

(no-0p)))))))))
EVENT: Disable labels-unique-if-case-hyps2.

EVENT: Disable label-cnt-big-enough-not-member.

THEOREM: labels-unique-if-case
((car (stmt) = ’if-mg)
A no-duplicates (collect-labels (code (cinfo)))
A label-cnt-big-enough (label-cnt (cinfo), code (cinfo))
A ((no-duplicates (collect-labels (code (add-code (translate (make-cinfo (append (code (cinfo),
list (list (? push-local,
if-condition (stmt)
> (fetch-temp-stk),
list (*test-bool-and—
’false,
label-cnt (cinfo)))’
label-alist (cinfo),
1+ (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list),
list (list (* jump,
1 + label-cnt (cinfo)),
cons (’dl,
cons (label-cnt (cinfo),
’(nil
(mo-0p)))))))))

A label-cnt-big-enough (label-cnt (add-code (translate (make-cinfo (append (code (cinfo),
list (list (’ push-local,

if-condition (stmi
> (fetch-temp-stk),
list (’test-bool-and
’false,

label-cnt (cinfo))

o7

label-alist (cinfo),
1+ (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list),
list (list (* jump,
1 + label-cnt (cinfo)),
cons (’d1,
cons (label-cnt (cinfo),
> (nil
(no-0p))))))),
code (add-code (translate (make-cinfo (append (code (cinfo),
list (list (’push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (’test-bool-and-jun
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),
proc-list),
list (list (? jump,
1 + label-cnt (cinfo)),
cons (°d1,
cons (label-cnt (cinfo),
> (nil
(no-0p)))))))))
— no-duplicates (collect-labels (code (translate (add-code (translate (make-cinfo (append (code (cinfo),
list (list (’pus
if-co
> (fetch
list (*tes
’fal
labe
label-alist (cinfo),
1+ (1 + label-cnt (ci
cond-list,
if-true-branch (stmt),
proc-list),
list (list (* jump,
1 + label-cnt (cinfo)),
cons (’dl,

o8

cons (label-cnt (cinfo),
’(nil
(no-0p))))),
cond-list,
if-false-branch (stmt),
proc-list)))))
((no-duplicates (collect-labels (code (make-cinfo (append (code (cinfo),
list (list (’push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (’ test-bool-and-jump,
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
14+ (1 + label-cnt (cinfo))))))
A label-cnt-big-enough (label-cnt (make-cinfo (append (code (cinfo),
list (list (’push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (*test-bool-and-jump,
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo)))),
code (make-cinfo (append (code (cinfo),
list (list (’ push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (*test-bool-and-jump,
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
14 (1 + label-cnt (cinfo))))))
— no-duplicates (collect-labels (code (translate (make-cinfo (append (code (cinfo),
list (list (’ push-local,
if-condition (stmt)),
> (fetch-temp-stk),
list (’ test-bool-and-jump,
’false,
label-cnt (cinfo)))),
label-alist (cinfo),
1+ (1 + label-cnt (cinfo))),
cond-list,
if-true-branch (stmt),

99

proc-list)))))

— no-duplicates (collect-labels (code (translate (cinfo,
cond-list,
stmt,
proc-list))))

EVENT: Disable labels-unique-if-case.

THEOREM: labels-unique-begin-case-hyps
((car (stmt) = ’begin-mg)
A no-duplicates (collect-labels (code (cinfo)))
A label-cnt-big-enough (label-cnt (cinfo), code (cinfo))
A no-duplicates (collect-labels (code (translate (make-cinfo (code (cinfo),
append (make-label-alist (when-labels (stmt),
label-cnt (cinfo)),
label-alist (cinfo)),
1+ (1 + label-cnt (cinfo))),
cond-list,
begin-body (stmt),
proc-list)))))
— (no-duplicates (collect-labels (code (add-code (set-label-alist (translate (make-cinfo (code (cinfo),
append (make-label-al

label-alist (ci
14 (1 + label-cnt (cir
cond-list,
begin-body (stmt),
proc-list),
label-alist (cinfo)),
cons (list (? jump,
1 + label-cnt (cinfo)),
cons (cons (’d1,
cons (label-cnt (cinfo),
’(nil
(push-constant
(nat
2))))),
> ((pop-global
c-c1)))))
A label-cnt-big-enough (label-cnt (add-code (set-label-alist (translate (make-cinfo (code (cinfo),
append (make-label-:

label-alist (¢
14 (1 + label-cnt (¢

60

cond-list,
begin-body (stmt),
proc-list),

label-alist (cinfo)),

cons (list (* jump,
1 4 label-cnt (cinfo)),
cons (cons (’d1,
cons (label-cnt (cinfo),
’(nil
(push-constant
(nat
2))))),
? ((pop-global
c-c1))))).
code (add-code (set-label-alist (translate (make-cinfo (code (cinfo),
append (make-label-alist

label-alist (cinfo
1+ (1 + label-cnt (cinfo
cond-list,
begin-body (stmt),
proc-list),
label-alist (cinfo)),
cons (list (? jump,
1 4 label-cnt (cinfo)),
cons (cons (*d1,
cons (label-cnt (cinfo),
’(nil
(push-constant
(nat
2))))),
? ((pop-global

c=e))))))))

EVENT: Disable labels-unique-begin-case-hyps.

(prove-lemma labels-unique-begin-case (rewrite)

(AND (equal (car STMT) ’BEGIN-MG)
(NO-DUPLICATES (COLLECT-LABELS (CODE CINFQ)))
(LABEL-CNT-BIG-ENOUGH (LABEL-CNT CINFO) (CODE CINFO))

61

(AND
(NO-DUPLICATES
(COLLECT-LABELS
(CODE
(ADD-CODE
(SET-LABEL-ALIST
(TRANSLATE (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT)
(LABEL-CNT CINFO))
(LABEL-ALIST CINFO0))
(ADD1 (ADD1 (LABEL-CNT CINF0))))
COND-LIST
(BEGIN-BODY STMT)
PROC-LIST)
(LABEL-ALIST CINF0))
(CONS (LIST ’JUMP (ADD1 (LABEL-CNT CINF0)))
(CONS (CONS °’DL
(CONS (LABEL-CNT CINFO)
> (NIL (PUSH-CONSTANT (NAT 2)))))
> ((POP-GLOBAL C-C))))))))
(LABEL-CNT-BIG-ENOUGH
(LABEL-CNT
(ADD-CODE
(SET-LABEL-ALIST
(TRANSLATE (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT)
(LABEL-CNT CINFO))
(LABEL-ALIST CINF0))
(ADD1 (ADD1 (LABEL-CNT CINF0))))
COND-LIST
(BEGIN-BODY STMT)
PROC-LIST)
(LABEL-ALIST CINFO))
(CONS (LIST ’JUMP (ADD1 (LABEL-CNT CINFO0)))
(CONS (CONS ’DL
(CONS (LABEL-CNT CINFO)
> (NIL (PUSH-CONSTANT (NAT 2)))))
> ((POP-GLOBAL C-C))))))
(CODE
(ADD-CODE
(SET-LABEL-ALIST
(TRANSLATE (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT)
(LABEL-CNT CINFO))

62

(LABEL-ALIST CINFOQ))
(ADD1 (ADD1 (LABEL-CNT CINF0))))
COND-LIST
(BEGIN-BODY STMT)
PROC-LIST)
(LABEL-ALIST CINF0))
(CONS (LIST ’JUMP (ADD1 (LABEL-CNT CINFO0)))
(CONS (CONS ’DL
(CONS (LABEL-CNT CINFO)
> (NIL (PUSH-CONSTANT (NAT 2)))))
> ((POP-GLOBAL C-C))))N)N)
(NO-DUPLICATES
(COLLECT-LABELS
(CODE
(TRANSLATE
(ADD-CODE
(SET-LABEL-ALIST
(TRANSLATE (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT)
(LABEL-CNT CINF0))
(LABEL-ALIST CINFO0))
(ADD1 (ADD1 (LABEL-CNT CINF0))))
COND-LIST
(BEGIN-BODY STMT)
PROC-LIST)
(LABEL-ALIST CINF0))
(CONS (LIST ’JUMP (ADD1 (LABEL-CNT CINFO)))
(CONS (CONS °’DL
(CONS (LABEL-CNT CINFO)
> (NIL (PUSH-CONSTANT (NAT 2)))))
» ((POP-GLOBAL C-C)))))
COND-LIST
(WHEN-HANDLER STMT)
PROC-LIST)))))
(IMPLIES
(AND
(NO-DUPLICATES
(COLLECT-LABELS
(CODE (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT)
(LABEL-CNT CINFO))
(LABEL-ALIST CINF0))
(ADD1 (ADD1 (LABEL-CNT CINF0)))))))
(LABEL-CNT-BIG-ENOUGH

63

(LABEL-CNT (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT)
(LABEL-CNT CINFO))
(LABEL-ALIST CINFO0))
(ADD1 (ADD1 (LABEL-CNT CINFO0)))))
(CODE (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT)
(LABEL-CNT CINFO))
(LABEL-ALIST CINFO0))
(ADD1 (ADD1 (LABEL-CNT CINF0)))))))
(NO-DUPLICATES
(COLLECT-LABELS
(CODE (TRANSLATE (MAKE-CINFO (CODE CINFO)
(APPEND (MAKE-LABEL-ALIST (WHEN-LABELS STMT)
(LABEL-CNT CINFO0))
(LABEL-ALIST CINFO0))
(ADD1 (ADD1 (LABEL-CNT CINFO0))))
COND-LIST
(BEGIN-BODY STMT)
PROC-LIST))))))
(NO-DUPLICATES (COLLECT-LABELS (CODE (TRANSLATE CINFO COND-LIST STMT PROC-LIST)))))
((INSTRUCTIONS PROMOTE
(DEMOTE 5)
(DIVE 1 1)
S
(REWRITE LABEL-CNT-BIG-ENOUGH-ADD1)
UP S TOP PROMOTE
(DEMOTE 4)
(DIVE 1 1 1)
(REWRITE LABELS-UNIQUE-BEGIN-CASE-HYPS)
NX
(REWRITE LABELS-UNIQUE-BEGIN-CASE-HYPS)
UP UP S TOP PROMOTE

(DIVE 1 1 1)

(REWRITE BEGIN-TRANSLATION)

UP

(REWRITE CODE-ADD-CODE-COMMUTE)

UP

(REWRITE COLLECT-LABELS-DISTRIBUTES)
(DIVE 2)

(= %

(LIST (ADD1 (LABEL-CNT CINF0)))
((ENABLE COLLECT-LABELS)))
UP UP

64

(REWRITE NO-DUPLICATES-RIGHT-CONS-REDUCTION)
(DIVE 1)

(REWRITE FIND-LABELP-MONOTONIC-LESSP)

UP S

(DIVE 2)

(REWRITE ADD-CODE-DOESNT-AFFECT-OTHER-FIELDS)
(REWRITE SET-LABEL-ALIST-DOESNT-AFFECT-OTHER-FIELDS)
UP

(REWRITE LABEL-CNT-LESSP1)

PROVE

(DIVE 1 2)

(REWRITE CODE-ADD-CODE-COMMUTE)

(DIVE 1)

(REWRITE SET-LABEL-ALIST-DOESNT-AFFECT-OTHER-FIELDS)
UP UP

(REWRITE FIND-LABELP-APPEND2)

(DIVE 3)

(=F

TOP S

(DIVE 1)

(REWRITE FIND-LABELP-MONOTONIC-LESSP)

TOP S PROVE S

(DIVE 1)

(REWRITE LABEL-CNT-BIG-ENOUGH-NOT-FIND-LABELP)
TOP S

(REWRITE LABEL-CNT-BIG-ENOUGH-ADD1)

(DEMOTE 5)

S

(REWRITE LABEL-CNT-BIG-ENOUGH-ADD1))))

EVENT: Disable labels-unique-begin-case.
EVENT: Disable find-labelp-rewrites-to-member.

THEOREM: translate-leaves-labels-unique

(no-duplicates (collect-labels (code (cinfo)))

A label-cnt-big-enough (label-cnt (cinfo), code (cinfo)))

— no-duplicates (collect-labels (code (translate (cinfo,
cond-list,
stmt,
proc-list))))

;; Note: many of the following lemmas may never be used, particularly the ones

65

;; involving assoc in the hyps.

THEOREM: translate-proc-list-assocl
(definedp (subr, proc-list) A ok-mg-def-plistpl (proc-list, proc-list2))
— (translate-def (assoc (subr, proc-list), proc-list2)

= assoc (subr, translate-proc-list1 (proc-list, proc-list2)))

EVENT: Disable translate-proc-list-assocl.

THEOREM: translate-proc-list-assoc
(user-defined-procp (subr, proc-list) A ok-mg-def-plistp (proc-list))
— (translate-def (assoc (subr, proc-list), proc-list)

= assoc (subr, translate-proc-list (proc-list)))

EVENT: Disable translate-proc-list-assoc.

THEOREM: translate-proc-list-assoc2
(user-defined-procp (subr, proc-list) A ok-mg-def-plistp (proc-list))
— (assoc (subr, translate-proc-list (proc-list))

= translate-def (assoc (subr, proc-list), proc-list))

EVENT: Disable translate-proc-list-assoc2.

THEOREM: translate-definedpl
(ok-mg-def-plistpl (Ist1, Ist2) A definedp (z, Ist1))
— definedp (z, translate-proc-list1 (Ist1, Ist2))

EVENT: Disable translate-definedpl.

THEOREM: assoc-mg-simple-variable-assignment-translate-proc-list
assoc (’mg-simple-variable-assignment, translate-proc-list (proc-list))
= MG-SIMPLE-VARIABLE-ASSIGNMENT-TRANSLATION

THEOREM: assoc-mg-simple-constant-assignment-translate-proc-list
assoc (’mg-simple-constant-assignment, translate-proc-list (proc-list))
= MG-SIMPLE-CONSTANT-ASSIGNMENT-TRANSLATION

THEOREM: assoc-mg-simple-variable-eq-translate-proc-list
assoc (’mg-simple-variable-eq, translate-proc-list (proc-list))
= MG-SIMPLE-VARIABLE-EQ-TRANSLATION

THEOREM: assoc-mg-simple-constant-eq-translate-proc-list
assoc (’mg-simple-constant-eq, translate-proc-list (proc-list))
= MG-SIMPLE-CONSTANT-EQ-TRANSLATION

66

THEOREM: assoc-mg-integer-le-translate-proc-list
assoc (’mg-integer-1le, translate-proc-list (proc-list))
= MG-INTEGER-LE-TRANSLATION

THEOREM: assoc-mg-integer-unary-minus-translate-proc-list
assoc (’mg-integer-unary-minus, translate-proc-list (proc-list))
= MG-INTEGER-UNARY-MINUS-TRANSLATION

THEOREM: assoc-mg-integer-add-translate-proc-list
assoc (’mg-integer-add, translate-proc-list (proc-list))
= MG-INTEGER-ADD-TRANSLATION

THEOREM: assoc-mg-integer-subtract-translate-proc-list
assoc (’mg-integer-subtract, translate-proc-list (proc-list))
= MG-INTEGER-SUBTRACT-TRANSLATION

THEOREM: assoc-mg-boolean-or-translate-proc-list
assoc (’mg-boolean-or, translate-proc-list (proc-list))
= MG-BOOLEAN-OR-TRANSLATION

THEOREM: assoc-mg-boolean-and-translate-proc-list
assoc (’mg-boolean-and, translate-proc-list (proc-list))
= MG-BOOLEAN-AND-TRANSLATION

THEOREM: assoc-mg-boolean-not-translate-proc-list
assoc (’mg-boolean-not, translate-proc-list (proc-list))
= MG-BOOLEAN-NOT-TRANSLATION

THEOREM: assoc-mg-index-array-translate-proc-list
assoc (’mg-index-array, translate-proc-list (proc-list))
= MGC-INDEX-ARRAY-TRANSLATION

THEOREM: assoc-mg-array-element-assignment-translate-proc-list
assoc (’mg-array-element-assignment, translate-proc-list (proc-list))
= MG-ARRAY-ELEMENT-ASSIGNMENT-TRANSLATION

THEOREM: assoc-user-defined-proc2
(— predefined-procp (subr))
— (assoc (subr, translate-proc-list (proc-list))
= assoc (subr, translate-proc-list1 (proc-list, proc-list)))

THEOREM: translate-def-body-rewrite
(ok-mg-def-plistp (proc-list)
A user-defined-procp (subr, proc-list)
A (code (translate-def-body (assoc (subr, proc-list), proc-list))
= append (code (translate (cinfo, t-cond-list, stmt, proc-list)),

67

code2)))
— (cdddr (assoc (subr, translate-proc-list (proc-list)))
= append (code (translate (cinfo, t-cond-list, stmt, proc-list)),
code2))

EVENT: Disable translate-def-body-rewrite.

THEOREM: car-definedp-defined-procpl
(user-defined-procp (subr, proc-list)
A ok-mg-def-plistpl (proc-list, proc-list2))
— definedp (subr, translate-proc-list1 (proc-list, proc-list2))

EVENT: Disable car-definedp-defined-procpl.

THEOREM: car-definedp-defined-procp
(user-defined-procp (subr, proc-list) A ok-mg-def-plistp (proc-list))
— definedp (subr, translate-proc-list (proc-list))

EVENT: Disable car-definedp-defined-procp.

H CLOCK 3

2999999999999 9999933393393 33393333339333333333IIIIIII)

;3 The time required for a call to a predefined procedure is the sum of
;; the time for the call sequence and that spent in the body. The call
;; sequence is fixed but the body may have various paths.

DEFINITION:
clock-predefined-proc-call-sequence (name)
= case on name:
case = mg-simple-variable-assignment
then 3
case = mg-simple-constant-assignment
then 3
case = mg-simple-variable-eq
then 4
case = mg-simple-constant-eq
then 4
case = mg-integer-le

68

then 4

case = mg-integer-unary-minus
then 6

case = mg-integer-add
then 7

case = mg-integer-subtract
then 7

case = mg-boolean-or
then 4

case = mg-boolean-and
then 4

case = mg-boolean-not
then 3

case = mg-index-array
then 8

case = mg-array-element-assignment
then 8

otherwise 0 endcase

EVENT: Disable clock-predefined-proc-call-sequence.

DEFINITION:
clock-predefined-proc-call-body-translation (stmt, mg-state)
= case on call-name (stmt):
case = mg-simple-variable-assignment
then 5
case = mg-simple-constant-assignment
then 4
case = mg-simple-variable-eq
then 8
case = mg-simple-constant-eq
then 7
case = mg-integer-le
then 9
case = mg-integer-unary-minus
then if small-integerp (inegate (untag (caddr (assoc (cadr (call-actuals (stmt)),
mg-alist (mg-state))))),
MG-WORD-SIZE) then 11
else 10 endif
case = mg-integer-add
then if small-integerp (iplus (untag (caddr (assoc (cadr (call-actuals (stmt)),
mg-alist (mg-state)))),
untag (caddr (assoc (caddr (call-actuals (stmt)),
mg-alist (mg-state))))),

69

MG-WORD-SIZE) then 13
else 11 endif
case = mg-integer-subtract
then if small-integerp (idifference (untag (caddr (assoc (cadr (call-actuals (stmt)),
mg-alist (mg-state)))),
untag (caddr (assoc (caddr (call-actuals (stmt)),
mg-alist (mg-state))))),
MG-WORD-SIZE) then 13
else 11 endif
case = mg-boolean-or
then 8
case = mg-boolean-and
then 8
case = mg-boolean-not
then 6
case = mg-indez-array
then if negativep (cadaddr (assoc (caddr (call-actuals (stmt)),
mg-alist (mg-state)))) then 7
elseif (idifference (cadddr (call-actuals (stmt)),
cadaddr (assoc (caddr (call-actuals (stmt)),
mg-alist (mg-state))))
_—
V' negativep (idifference (cadddr (call-actuals (stmt)),
cadaddr (assoc (caddr (call-actuals (stmt)),
mg-alist (mg-state)))))
then 11
else 17 endif
case = mg-array-element-assignment
then if negativep (cadaddr (assoc (cadr (call-actuals (stmt)),
mg-alist (mg-state)))) then 7
elseif (idifference (cadddr (call-actuals (stmt)),
cadaddr (assoc (cadr (call-actuals (stmt)),
mg-alist (mg-state))))
_
V' negativep (idifference (cadddr (call-actuals (stmt)),
cadaddr (assoc (cadr (call-actuals (stmt)),
mg-alist (mg-state)))))
then 11
else 17 endif
otherwise 0 endcase

EVENT: Disable clock-predefined-proc-call-body-translation.

DEFINITION:

70

predefined-proc-call-clock (stmt, mg-state)
= (clock-predefined-proc-call-sequence (call-name (stmt))
+ clock-predefined-proc-call-body-translation (stmt, mg-state))

EVENT: Disable predefined-proc-call-clock.

;; Removed the definition of clock-r

DEFINITION:
clock (stmt, proc-list, mg-state, n)
= if (n = 0) V (- normal (mg-state)) then 0
else case on car (stmt):
case = no-op-mg
then 0
case = signal-mg
then 3
case = prog2-mg
then clock (prog2-left-branch (stmt),

proc-list,
mg-state,
n—1)
+ clock (prog2-right-branch (stmt),
proc-list,
mg-meaning (prog2-left-branch (stmt),
proc-list,
mg-state,
n-1),
n —1)

case = loop-mg
then if — normal (mg-meaning (loop-body (stmt),
proc-list,
mg-state,
n—1))
then if cc (mg-meaning (loop-body (stmt),
proc-list,
mg-state,
n—1))
= ’leave
then 3 + clock (loop-body (stmt),
proc-list,
mg-state,
n—1)
else 1 + clock (loop-body (stmt),

71

proc-list,

mg-state,
n — 1) endif
else 1 + ((1 + clock (loop-body (stmit),
proc-list,
mg-state,
n— 1))
+ clock (stmt,
proc-list,
mg-meaning (loop-body (stmt),
proc-list,
mg-state,
n- 1),
n — 1)) endif

case = if-mg
then if mg-expression-falsep (if-condition (stmt), mg-state)
then if normal (mg-meaning (if-false-branch (stmt),
proc-list,
mg-state,
n—1)
then 5 + clock (if-false-branch (stmt),
proc-list,
mg-state,
n—1)
else 4 + clock (if-false-branch (stmt),
proc-list,
mg-state,
n — 1) endif
elseif normal (mg-meaning (if-true-branch (stmt),
proc-list,
mg-state,
n —1))
then 5 + clock (if-true-branch (stmt),
proc-list,
mg-state,
n —1)
else 3 + clock (if-true-branch (stmt),
proc-list,
mg-state,
n — 1) endif
case = begin-mg
then if cc (mg-meaning (begin-body (stmt),
proc-list,
mg-state,

72

n —1))
€ when-labels (stmt)
then if normal (mg-meaning (when-handler (stmt),

proc-list,
set-condition (mg-meaning (begin-body (stmt),
proc-list,
mg-state,
n—1),
’normal),
)
then clock (begin-body (stmt),
proc-list,
mg-state,
n —1)
+ (3 + clock (when-handler (stmt),
proc-list,
set-condition (mg-meaning (begin-body (stmt),
proc-list,
mg-state,
n-1),
’normal),
n-1)
else clock (begin-body (stmt),
proc-list,
mg-state,
n—1)
+ (2 + clock (when-handler (stmt),
proc-list,
set-condition (mg-meaning (begin-body (stmt),
proc-list,
mg-state,
n—1),
’normal),
n — 1)) endif
elseif normal (mg-meaning (begin-body (stmt),
proc-list,
mg-state,
n—1)
then 2 + clock (begin-body (stmt),
proc-list,
mg-state,
n—1)
else clock (begin-body (stmt),
proc-list,

73

mg-state,
n — 1) endif
case = proc-call-mg
then data-length (def-locals (fetch-called-def (stmt,
proc-list)))
+ length (def-locals (fetch-called-def (stmt,
proc-list)))
+ length (call-actuals (stmt))
+ 1
+ clock (def-body (fetch-called-def (stmt,
proc-list)),

proc-list,
make-call-environment (mg-state,
stmt,
fetch-called-def (stmit,
proc-list)),
n—1)

+ 5
+ if normal (mg-meaning (def-body (fetch-called-def (stmi,
proc-list)),
proc-list,
make-call-environment (mg-state,
stmt,
fetch-called-def (stmt,
proc-list)),
n — 1)) then 1
else 3 endif
case = predefined-proc-call-mg
then predefined-proc-call-clock (stmt, mg-state)
otherwise 0 endcase endif

THEOREM: clock-prog2
(car (stmt) = ’prog2-mg)
— (clock (stmt, proc-list, mg-state, n)
= if (n % 0) A normal (mg-state)
then clock (prog2-left-branch (stmt), proc-list, mg-state, n — 1)
+ clock (prog2-right-branch (stmt),

proc-list,

mg-meaning (prog2-left-branch (stmt),
proc-list,
mg-state,
n— 1)5

n—1)

else 0 endif)

74

THEOREM: clock-loop
(car (stmt) = ’loop-mg)
— (clock (stmt, proc-list, mg-state, n)
= if (n % 0) A normal (mg-state)
then if — normal (mg-meaning (loop-body (stmt),
proc-list,
mg-state,
n—1))
then if cc (mg-meaning (loop-body (stmt),
proc-list,
mg-state,

n—1))
= ’leave
then 3 + clock (loop-body (stmt),
proc-list,
mg-state,
n—1)
else 1 + clock (loop-body (stmt),
proc-list,
mg-state,
n — 1) endif
else 1 + ((1 + clock (loop-body (stmt),
proc-list,
mg-state,
n - 1)
+ clock (stmt,
proc-list,
mg-meaning (loop-body (stmt),
proc-list,
mg-state,
n—1),
n — 1)) endif
else 0 endif)

EVENT: Disable clock-loop.

THEOREM: clock-if

(car (stmt) = ’if-mg)

— (clock (stmt, proc-list, mg-state, n)

= if (n % 0) A normal (mg-state)
then if mg-expression-falsep (if-condition (stmt), mg-state)
then if normal (mg-meaning (if-false-branch (stmt),

proc-list,
mg-state,

75

n 1))
then 5 + clock (if-false-branch (stmt),
proc-list,
mg-state,
n—1)
else 4 + clock (if-false-branch (stmt),
proc-list,
mg-state,
n — 1) endif
elseif normal (mg-meaning (if-true-branch (stmt),
proc-list,
mg-state,
n—1))
then 5 + clock (if-true-branch (stmt),
proc-list,
mg-state,
n—1)
else 3 + clock (if-true-branch (stmt),
proc-list,
mg-state,
n — 1) endif
else 0 endif)

THEOREM: clock-begin
(car (stmt) = ’begin-mg)
— (clock (stmt, proc-list, mg-state, n)
= if (n % 0) A normal (mg-state)
then if cc (mg-meaning (begin-body (stmt),
proc-list,
mg-state,
n—1)
€ when-labels (stmt)
then if normal (mg-meaning (when-handler (stmt),

proc-list,
set-condition (mg-meaning (begin-body (stmt),
proc-list,
mg-state,
n-1),
’normal),
n-1))
then clock (begin-body (stmt),
proc-list,
mg-state,
n—1)

76

+ (3 + clock (when-handler (stmt),

proc-list,
set-condition (mg-meaning (begin-body (stmt),
proc-list,
mg-state,
n — 1))
’normal),
n - 1)
else clock (begin-body (stmt),
proc-list,
mg-state,
n —1)
+ (2 + clock (when-handler (stmt),
proc-list,
set-condition (mg-meaning (begin-body (stmt),
proc-list,
mg-state,
n-1),
’normal),
n — 1)) endif
elseif normal (mg-meaning (begin-body (stmt),
proc-list,
mg-state,
n - 1))
then 2 + clock (begin-body (stmt),
proc-list,
mg-state,
n—1)
else clock (begin-body (stmt),
proc-list,
mg-state,
n — 1) endif

else 0 endif)

THEOREM: clock-proc-call
(car (stmt) = ’proc-call-mg)
— (clock (stmt, proc-list, mg-state, n)
= if (n % 0) A normal (mg-state)
then data-length (def-locals (fetch-called-def (stmt, proc-list)))
+ length (def-locals (fetch-called-def (stmt, proc-list)))
+ length (call-actuals (stmt))
+ 1
+ clock (def-body (fetch-called-def (stmt, proc-list)),
proc-list,

T

make-call-environment (mg-state,
stmt,
fetch-called-def (stmit,
proc-list)),
n—1)
+ b5
+ if normal (ng-meaning (def-body (fetch-called-def (stmit,
proc-list)),
proc-list,
make-call-environment (mg-state,
stmt,
fetch-called-def (stmit,
proc-list)),
n — 1)) then 1
else 3 endif
else 0 endif)

THEOREM: clock-predefined-proc-call
(car (stmt) = ’predefined-proc-call-mg)
— (clock (stmt, proc-list, mg-state, n)
= if (n % 0) A normal (mg-state)
then predefined-proc-call-clock (stmt, mg-state)
else 0 endif)

DEFINITION:
map-down (mg-state, proc-list, ctri-stk, temp-stk, addr, cond-list)
= p-state (addr,
ctrl-stk,
map-down-values (mg-alist (mg-state),
bindings (top (ctri-stk)),
temp-stk),
translate-proc-list (proc-list),
list (list (? c-c, mg-cond-to-p-nat (cc (mg-state), cond-list))),
MG-MAX-CTRL-STK-SIZE,
MG-MAX-TEMP-STK-SIZE,
MG-WORD-SIZE,
’run)

;; I need the hyp that cc is not ’leave for this theorem because cond-subsetp does not
;; preserves ok-cc unless cond is not ’leave, but I can prove that meaning never
;; returns leave anyway.

THEOREM: map-up-vars-inverts-map-down
(all-cars-unique (mg-vars)

78

mg-alistp (mg-vars)
no-p-aliasing (bindings, mg-vars)
mg-vars-list-ok-in-p-state (mg-vars, bindings, temp-stk))
(map-up-vars-list (bindings,
map-down-values (mg-vars, bindings, temp-stk),
signature (mg-vars))

I >>>

= mg-vars)

THEOREM: cond-subset-preserves-ok-cc
((cc # ’leave)
A cond-subsetp (r-cond-list, t-cond-list)
A ok-cc (cc, r-cond-list))
— ok-cc(cc, t-cond-list)

THEOREM: map-up-inverts-map-down
(all-cars-unique (mg-alist (mg-state))

A ok-mg-statep (mg-state, r-cond-list)

A cond-subsetp (r-cond-list, t-cond-list)

A mg-vars-list-ok-in-p-state (mg-alist (mg-state),
bindings (top (ctri-stk)),
temp-stk)

no-p-aliasing (bindings (top (ctri-stk)), mg-alist (mg-state))
(cc (mg-state) # *leave)
(— resource-errorp (mg-state)))
(map-up (map-down (mg-state,
proc-list,
ctrl-stk,
temp-stk,
addr,
t-cond-list),
signature (mg-alist (mg-state)),
t-cond-list)
= mg-state)

l>>>

;; These are used in the proofs which follow!

THEOREM: call-exact-time-hypsl

((car (stmt) = ’proc-call-mg)

A ok-mg-statement (stmt, r-cond-list, name-alist, proc-list)
A ok-mg-def-plistp (proc-list))

— ok-mg-statement (def-body (fetch-called-def (stmt, proc-list)),
make-cond-list (fetch-called-def (stmt, proc-list)),
make-name-alist (fetch-called-def (stm¢, proc-list)),
proc-list)

79

THEOREM: resources-adequate-temp-stk-not-max
(— resources-inadequatep (stmt,

proc-list,

list (length (temp-stk), p-ctrl-stk-size (ctri-stk))))
— ((length (temp-stk) < MG-MAX-TEMP-STK-SIZE) = t)

THEOREM: plus-difference-cancellation

((z —y) #0) = (((z = y) + y) = fix(x))

THEOREM: lessp-difference-lemmal
((n<(r+0)A(r<(m=1)) = ((n<m)=t)

THEOREM: resources-adequate-temp-stk-not-max2
((— resources-inadequatep (stmt,
proc-list,
list (length (temp-stk), p-ctrl-stk-size (ctri-stk))))
(car (stmt) = ’predefined-proc-call-mg)
(n < (predefined-proc-call-temp-stk-requirement (call-name (stmt))
+ length (temp-stk))))
— ((n < MG-MAX-TEMP-STK-SIZE) = t)

A
A

THEOREM: lessp-difference-lemmas3
((n<p)A(p<(m=c)) = ((m<(n+c)=1

EVENT: Disable lessp-difference-lemma3.

THEOREM: resources-adequate-ctrl-stk-not-max
((— resources-inadequatep (stmt,
proc-list,
list (length (temp-stk), p-ctrl-stk-size (ctri-stk))))
A (car (stmt) = ’predefined-proc-call-mg)
A (n < predefined-proc-call-p-frame-size (call-name (stmt))))
— ((MG-MAX-CTRL-STK-SIZE < (n + p-ctrl-stk-size (ctri-stk))) = f)

THEOREM: lessp-transitive3
((y <n) A(n < (m—=z) = (((z+y) <m)=1t)

THEOREM: lessp-difference
(y <(m—2)) = (((z +y) <m) =t)

THEOREM: resources-proc-call-temp-stk-ok
((car (stmt) = ’proc-call-mg)
A (= resources-inadequatep (stmt,
proc-list,
list (length (temp-stk),

80

p-ctrl-stk-size (ctri-stk)))))
— (((length (temp-stk)
+ data-length (def-locals (fetch-called-def (stmt, proc-list)))
+ length (def-locals (fetch-called-def (stmt, proc-list)))
+ length (call-actuals (stmt)))
< MG-MAX-TEMP-STK-SIZE)
- 1)

EVENT: Disable resources-proc-call-temp-stk-ok.

THEOREM: user-defined-def-locals-nil
(ok-mg-def-plistp (proc-list)
A (car (stmt) = ’proc-call-mg)
A ok-mg-statement (stmt, r-cond-list, name-alist, proc-list))
— (length (caddr (assoc (call-name (stmt), translate-proc-list (proc-list))))
= 0)

EVENT: Disable user-defined-def-locals-nil.

THEOREM: user-defined-def-formals-rewrite
(ok-mg-def-plistp (proc-list)
A (car (stmt) = ’proc-call-mg)
A ok-mg-statement (stmt, r-cond-list, name-alist, proc-list))
— (length (cadr (assoc (call-name (stmt), translate-proc-list (proc-list))))
= (length (def-locals (assoc (call-name (stmt), proc-list)))
+ length (def-formals (assoc (call-name (stmt), proc-list)))))

EVENT: Disable user-defined-def-formals-rewrite.

THEOREM: difference-preserves-lessp2
(n<m) = (((n — k) <m) =t)

THEOREM: plus-lessp
(n+m+z)<(m+n)=*f

THEOREM: resources-proc-call-ctrl-stk-ok
((car (stmt) = ’proc-call-mg)
A (— resources-inadequatep (stmt,
proc-list,
list (length (temp-stk),
p-ctrl-stk-size (ctri-stk))))
A ok-mg-statement (stmt, r-cond-list, name-alist, proc-list)
A ok-mg-def-plistp (proc-list)

81

A user-defined-procp (subr, proc-list))
— ((MG-MAX-CTRL-STK-SIZE
< (2
+ length (cadr (assoc (call-name (stmt),
translate-proc-list (proc-list))))
+ length (caddr (assoc (call-name (stmt),
translate-proc-list (proc-list))))
+ p-ctrl-stk-size (ctri-stk)))
= 9

EVENT: Disable resources-proc-call-ctrl-stk-ok.

EVENT: Make the library "c5".

82

Index

add-code, 3, 20-25, 27, 29-31, 35—
39, 42, 56-61
add-code-doesnt-affect-other-fie
lds, 27
all-cars-unique, 78, 79
all-labels-unique, 48, 49, 52
all-labels-unique-append, 48
all-labels-unique-reduction, 48
all-labels-unique-reduction2, 48
all-labels-unique-reduction3, 48
array-length, 2, 4, 5
assoc-mg-array-element-assignme
nt-translate-proc-list, 67
assoc-mg-boolean-and-translate-p
roc-list, 67
assoc-mg-boolean-not-translate-p
roc-list, 67
assoc-mg-boolean-or-translate-p
roc-list, 67
assoc-mg-index-array-translate-p
roc-list, 67
assoc-mg-integer-add-translate-p
roc-list, 67
assoc-mg-integer-le-translate-p
roc-list, 67
assoc-mg-integer-subtract-trans
late-proc-list, 67
assoc-mg-integer-unary-minus-tr
anslate-proc-list, 67
assoc-mg-simple-constant-assign
ment-translate-proc-list, 66
assoc-mg-simple-constant-eq-tra
nslate-proc-list, 66
assoc-mg-simple-variable-assign
ment-translate-proc-list, 66
assoc-mg-simple-variable-eg-tra
nslate-proc-list, 66
assoc-user-defined-proc2, 67

begin-body, 20, 23, 30, 31, 42, 60,
61, 72, 73, 76, 77

83

begin-translation, 23
bindings, 2, 78, 79

call-actuals, 2, 7-10, 69, 70, 74, 77,
81
call-conds, 7, 21, 24, 51
call-exact-time-hyps1, 79
call-name, 7, 10, 69, 71, 80-82
call-translation, 23
car-definedp-defined-procp, 68
car-definedp-defined-procpl, 68
cc, 49, 71, 73, 75, 76, 78, 79
cinfop, 26
clock, 71-78
clock-begin, 76
clock-if, 75
clock-loop, 75
clock-predefined-proc-call, 78
clock-predefined-proc-call-body
-translation, 69, 71
clock-predefined-proc-call-seque
nce, 68, 71
clock-proc-call, 77
clock-prog2, 74
code, 3, 4, 19-23, 25, 27-42, 47, 49—
61, 65, 67, 68
code-add-code-commute, 27
code-always-plistp, 25
code-doesnt-affect-other-fields, 26
collect-labels, 47-49, 52-57, 59, 60,
65
collect-labels-distributes, 48
collect-labels-plistp, 47
collect-labels-predefined-proc-
call-code-nil, 53
collect-labels-push-actuals-code
-nil, 53
collect-labels-push-local-array
-values-code-nil, 53
collect-labels-push-locals-addre
sses-code-nil, 53

collect-labels-push-locals-value
s-code-nil, 53
collect-labels-strip-label, 53
cond-case-jump-label-list, 6, 7
cond-conversion, 6, 7, 50-53
cond-conversion-induction-hint, 51
cond-subset-preserves-ok-cc, 79
cond-subsetp, 49, 79
cond-subsetp-preserves-ok-mg-st
atep, 49
condition-map-code, 7

data-length, 4, 5, 25, 74, 77, 81
def-body, 25, 74, 77-79
def-cond-locals, 21, 24
def-formals, 2, 25, 81
def-locals, 2, 21, 23, 25, 74, 77, 81
def-name, 25
definedp, 66, 68
difference-preserves-lessp2, 81
discard-label, 3, 20, 22, 27
discard-label-doesnt-affect-othe
r-fields, 27

fetch-called-def, 21, 23, 24, 49, 74,
77-79, 81

fetch-label, 3, 6, 7, 9, 10, 19, 21
find-labelp, 5, 24, 48-52
find-labelp-member-collect-labe

Is, 49
find-labelp-monotonic-lessp, 50
find-labelp-reduces-to-member, 52
find-labelp-rewrites-to-member, 48

get, 6
get-cond-case-jump-label-list, 6
greater-label-count-big-enough, 51

identifier-plistp, 49
identifier-plistp-make-cond-list
-ok, 49
idifference, 70
if-condition, 20, 22, 28, 29, 3541,
54-59, 72, 75

84

if-false-branch, 20, 23, 29, 30, 37—
40, 59, 72, 75, 76

if-translation, 22

if-true-branch, 20, 22, 29, 30, 3541,
55—59, 72, 76

index-cond-case-induction-hint, 6

inegate, 69

iplus, 69

label-alist, 3, 7, 19-31, 33-42, 53-61
label-alist-set-label-alist, 27
label-cnt, 3, 7, 19-24, 26-31, 33-42,
50-61, 65
label-cnt-add1-add1-monotonic, 50
label-cnt-big-enough, 50-55, 57-61,
65
label-cnt-big-enough-add1, 52
label-cnt-big-enough-distribute
s, 51
s2, 51
label-cnt-big-enough-for-cond-c
onversion, 51
label-cnt-big-enough-for-predefi
ned-proc-call-code, 52
label-cnt-big-enough-for-proc-c
all-code, 51
label-cnt-big-enough-for-push-a
ctuals-code, 51
label-cnt-big-enough-for-push-1
ocal-array-values-code, 51
ocals-addresses-code, 51
ocals-values-code, 51
label-cnt-big-enough-not-find-1
abelp, 52
label-cnt-big-enough-not-member, 55
label-cnt-lesspl, 51
label-cnt-list, 7
label-cnt-monotonic, 50
label-cnt-monotonic-cond-conver
sion, 50
label-cnt-monotonic2, 50
label-cnt-monotonic3, 50
label-cnt-stays-big-enough, 52
label-count-big-enough-not-find

-labelp, 51
label-hole-big-enough, 49, 50
labels-unique-append2, 49
labels-unique-begin-case-hyps, 60
labels-unique-if-case, 57
labels-unique-if-case-hyps1, 54
labels-unique-if-case-hyps2, 55
labels-unique-loop-case, 53
labels-unique-not-find-labelp, 49
labels-unique-not-find-labelp1, 49
length, 1-7, 21, 24, 51, 74, 77, 80-82
length-cond-case-jump-label-list, 6
length-cond-conversion, 6
length-label-cnt-list, 7
length-map-call-formals, 1
length-map-call-locals, 2
length-mg-actuals-to-p-actuals, 3
length-mg-to-p-local-values, 4
length-push-actuals-code, 5
length-push-local-array-values-

code, 4

code2, 4
length-push-locals-addresses-co

de, 5
length-push-locals-values-code, 4
length-push-parameters-code, 5
lesser-label-doesnt-disturb-no-

duplicates, 52
lessp-difference, 80
lessp-difference-lemmal, 80
lessp-difference-lemma3, 80
lessp-transitive3, 80
listcars, 1, 2, 25
listcars-map-call-formals, 1
loop-body, 19, 22, 28, 34, 35, 54, 71,

72, 75
loop-translation, 22

make-call-environment, 74, 78

make-cinfo, 3, 19-24, 28-31, 33-42,
53-61

make-cond-list, 24, 49, 79

make-cond-list-ok, 49

make-frame-alist, 2

85

make-label-alist, 4, 20, 23, 24, 30,
31, 42, 60, 61
make-name-alist, 79
map-call-formals, 1, 2
map-call-formals-plistp, 1
map-call-locals, 2
map-call-locals-plistp, 2
map-call-locals-preserves-listc
ars, 2
map-down, 78, 79
map-down-values, 78, 79
map-up, 79
map-up-inverts-map-down, 79
map-up-vars-inverts-map-down, 78
map-up-vars-list, 79
member-labels-unique-not-find-1
abelp, 52
mg-actuals-to-p-actuals, 2, 3
mg-actuals-to-p-actuals-plistp, 3
mg-alist, 69, 70, 78, 79
mg-alistp, 79
mg-array-element-assignment-cal
l-sequence, 10, 11
mg-array-element-assignment-tra
nslation, 16, 17, 67
mg-boolean-and-call-sequence, 9, 11
mg-boolean-and-translation, 15, 17,
67
mg-boolean-not-call-sequence, 10, 11
mg-boolean-not-translation, 15, 17,
67
mg-boolean-or-call-sequence, 9, 11
mg-boolean-or-translation, 14, 17, 67
mg-cond-to-p-nat, 6, 19, 21, 78
mg-expression-falsep, 72, 75
mg-index-array-call-sequence, 10, 11
mg-index-array-translation, 15, 17,
67
mg-integer-add-call-sequence, 9, 11
mg-integer-add-translation, 13, 17,
67
mg-integer-le-call-sequence, 8, 11
mg-integer-le-translation, 12, 17, 67
mg-integer-subtract-call-sequen

ce, 9, 11
mg-integer-subtract-translation, 14,
17, 67
mg-integer-unary-minus-call-seq
uence, 9, 11
mg-integer-unary-minus-translati
on, 13, 17, 67
mg-max-ctrl-stk-size, 78, 80, 82
mg-max-temp-stk-size, 78, 80, 81
mg-meaning, 71-78
mg-simple-constant-assignment-c
all-sequence, 8, 11
mg-simple-constant-assignment-t
ranslation, 11, 12, 17, 66
mg-simple-constant-eq-call-seque
nce, 8, 11
mg-simple-constant-eq-translati
on, 12, 17, 66
mg-simple-variable-assignment-c
all-sequence, 8, 11
mg-simple-variable-assignment-t
ranslation, 11, 17, 66
mg-simple-variable-eq-call-seque
nce, 8, 11
mg-simple-variable-eq-translati
on, 12, 17, 66
mg-to-p-local-values, 1, 4
mg-to-p-local-values-plistp, 1
mg-to-p-simple-literal, 1, 4, 8
mg-to-p-simple-literal-list, 1
mg-vars-list-ok-in-p-state, 79
mg-word-size, 69, 70, 78

nearly-equal-cinfos, 26
nearly-equal-cinfos-translate, 26
new-code-appended-to-old, 47
new-code-appended-to-old1, 47
new-code-begin-case-induction-h
yps, 41
new-code-if-case, 36
new-code-if-case-induction-hyps, 35
new-code-loop-case, 33
new-code-loop-case-induction-hyp
s, 33

86

new-code-prog2-case, 31
new-code-prog2-case-induction-h
yps, 31
no-duplicates, 48, 52-57, 59, 60, 65
no-duplicates-append-list, 48
no-duplicates-append-list2, 48
no-duplicates-cond-conversion, 52
no-duplicates-cond-conversion-b
ase-case, 52
no-duplicates-proc-call, 53
no-duplicates-right-cons-reducti
on, 52
no-labels-in-push-actuals-code, 5
no-labels-in-push-local-array-v
alues-code, 5
no-labels-in-push-locals-addres
ses-code, 5
no-labels-in-push-locals-values
-code, 5
no-p-aliasing, 79
normal, 71-78
not-find-labelp-predefined-proc
-call-code, 24
not-find-labelp-push-parameters
-code, 50
not-member-cond-conversion, 52
nullify, 3, 26-28, 31-35, 37, 3942,
47
nullify-cancels-add-code, 27
nullify-code-nil, 27
nullify-doesnt-affect-proc-call
-code, 27
nullify-induction-hint, 27-31
nullify-translate-idempotence, 26
nullify-translate-idempotence2, 26
nullify-translate-leaves-nearly

-equal, 26
ok-cc, 79
ok-cinfop, 4, 25, 31-38, 4042, 47,
50

ok-cond-list, 49, 50
ok-mg-def-plistp, 49, 66-68, 79, 81
ok-mg-def-plistpl, 66, 68

ok-mg-local-data-decl, 4
ok-mg-local-data-plistp, 4, 5
ok-mg-namep, 49
ok-mg-statement, 49, 79, 81
ok-mg-statep, 49, 79
ok-translation-parameters, 50

p-ctrl-stk-size, 80-82
p-state, 78
plistp, 1-4, 24, 25, 47
plus-difference-cancellation, 80
plus-lessp, 81
predefined-call-translation, 24
predefined-proc-call-clock, 70, 71, 74,
78
predefined-proc-call-code-plistp, 24
predefined-proc-call-p-frame-si
ze, 80
predefined-proc-call-sequence, 10, 21,
24, 52, 53
predefined-proc-call-temp-stk-req
uirement, 80
predefined-procedure-translatio
ns-list, 16, 25
predefined-procp, 67
proc-call-code, 7, 21, 24, 27, 51
prog2-left-branch, 19, 21, 27, 28, 31—
33, 71, 74
prog2-right-branch, 19, 22, 28, 32,
71, 74
prog2-translation, 21
push-actuals-code, 5, 51, 53
push-local-array-values-code, 4, 5, 51,
53
push-locals-addresses-code, 5, 51, 53
push-locals-values-code, 4, 5, 51, 53
push-parameters-code, 5, 7, 50

resource-errorp, 79
resources-adequate-ctrl-stk-not
-max, 80
resources-adequate-temp-stk-not
-max, 80
-max2, 80

87

resources-inadequatep, 80, 81
resources-proc-call-ctrl-stk-ok, 81
resources-proc-call-temp-stk-ok, 80

set-condition, 73, 76, 77
set-label-alist, 3, 20, 23, 27, 30, 31,
42, 60, 61
set-label-alist-doesnt-affect-ot
her-fields, 27
signal-translation, 21
signalled-condition, 19, 21
signature, 79
simple-mg-type-refp, 1, 2, 4, 5
small-integerp, 69, 70

tag, 2, 10

top, 2, 78, 79

translate, 19-42, 47, 49-52, 5461,
65, 67, 68

translate-def, 25, 66
translate-def-body, 24, 25, 67
translate-def-body-rewrite, 67
translate-definedpl, 66
translate-leaves-labels-unique, 65
translate-preserves-fields, 25
translate-preserves-ok-cinfop, 25
translate-proc-list, 25, 6668, 78, 81,
82
translate-proc-list-assoc, 66
translate-proc-list-assocl, 66
translate-proc-list-assoc2, 66
translate-proc-list1, 25, 66-68

untag, 69, 70
user-defined-def-formals-rewrite, 81
user-defined-def-locals-nil, 81
user-defined-procp, 6668, 82

when-handler, 21, 23, 30, 31, 73, 76,
77

when-labels, 20, 23, 30, 31, 42, 60,
61, 73, 76

