
Event: Start with the library "c-proc-call2".

;; I know that in the absence of resource-errors the two MG interpreters
;; and the two clocks are the same. Therefore, after I have proved everything
;; with the resource-error versions, I automatically gain the non-resource-error
;; versions.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; EXACT TIME LEMMA ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Theorem: not-resource-errorp-not-zerop-n
(ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))))
→ (n 6' 0)

(defn exact-time-induction-hint (cinfo r-cond-list t-cond-list stmt
proc-list mg-state n code2 subr

ctrl-stk temp-stk name-alist)
(if (zerop n)

t
(if (resources-inadequatep stmt proc-list

(list (length temp-stk) (p-ctrl-stk-size ctrl-stk)))
t

(if (equal (car stmt) ’no-op-mg)
t

(if (equal (car stmt) ’signal-mg)
t

(if (equal (car stmt) ’prog2-mg)
(and (exact-time-induction-hint

cinfo
r-cond-list
t-cond-list

1



(prog2-left-branch stmt)
proc-list
mg-state
(sub1 n)
(append (code (translate (nullify (translate (nullify cinfo)

t-cond-list
(prog2-left-branch stmt)
proc-list))

t-cond-list
(prog2-right-branch stmt)
proc-list))

code2)
subr ctrl-stk temp-stk name-alist)

(exact-time-induction-hint
(translate cinfo t-cond-list (prog2-left-branch stmt) proc-list)

r-cond-list
t-cond-list
(prog2-right-branch stmt)
proc-list
(mg-meaning-r (prog2-left-branch stmt) proc-list mg-state (sub1 n)

(list (length temp-stk) (p-ctrl-stk-size ctrl-stk)))
(sub1 n)
code2
subr ctrl-stk temp-stk name-alist))

(if (equal (car stmt) ’loop-mg)
(and (exact-time-induction-hint

(make-cinfo (append (code cinfo)
(list (list ’dl (label-cnt cinfo) nil ’(no-op))))
(cons (cons ’leave (add1 (label-cnt cinfo)))

(label-alist cinfo))
(add1 (add1 (label-cnt cinfo))))

(cons ’leave r-cond-list) t-cond-list
(loop-body stmt)
proc-list
mg-state
(sub1 n)
(cons (list ’jump (label-cnt cinfo))

(cons (list ’dl (add1 (label-cnt cinfo)) nil ’(push-constant (nat 2)))
(cons ’(pop-global c-c)

code2)))
subr ctrl-stk temp-stk name-alist)

(exact-time-induction-hint
cinfo

(cons ’leave r-cond-list) t-cond-list

2



stmt
proc-list
(mg-meaning-r (loop-body stmt) proc-list mg-state (sub1 n)

(list (length temp-stk) (p-ctrl-stk-size ctrl-stk)))
(sub1 n)
code2
subr ctrl-stk temp-stk name-alist))

(if (equal (car stmt) ’if-mg)
(and (exact-time-induction-hint

(make-cinfo
(append (code cinfo)

(list (list ’push-local (if-condition stmt))
’(fetch-temp-stk)

(list ’test-bool-and-jump ’false (label-cnt cinfo))))
(label-alist cinfo)
(add1 (add1 (label-cnt cinfo))))

r-cond-list t-cond-list
(if-true-branch stmt)

proc-list
mg-state
(sub1 n)
(cons (list ’jump (add1 (label-cnt cinfo)))

(cons (list ’dl (label-cnt cinfo) nil ’(no-op))
(append (code (translate
(nullify

(translate
(make-cinfo

nil
(label-alist cinfo)
(add1 (add1 (label-cnt cinfo))))

t-cond-list
(if-true-branch stmt)
proc-list))

t-cond-list
(if-false-branch stmt)
proc-list))
(cons (list ’dl (add1 (label-cnt cinfo)) nil ’(no-op))

code2))))
subr ctrl-stk temp-stk name-alist)

(exact-time-induction-hint
(add-code

(translate
(make-cinfo

(append (code cinfo)

3



(list (list ’push-local (if-condition stmt))
’(fetch-temp-stk)

(list ’test-bool-and-jump ’false (label-cnt cinfo))))
(label-alist cinfo)
(add1 (add1 (label-cnt cinfo))))

t-cond-list
(if-true-branch stmt)
proc-list)

(list (list ’jump (add1 (label-cnt cinfo)))
(list ’dl (label-cnt cinfo) nil ’(no-op))))

r-cond-list t-cond-list
(if-false-branch stmt)

proc-list
mg-state
(sub1 n)
(cons (list ’dl (add1 (label-cnt cinfo)) nil ’(no-op))

code2)
subr ctrl-stk temp-stk name-alist))

(if (equal (car stmt) ’begin-mg)
(and

(exact-time-induction-hint
(make-cinfo (code cinfo)

(append (make-label-alist (when-labels stmt)
(label-cnt cinfo))

(label-alist cinfo))
(add1 (add1 (label-cnt cinfo))))

(append (when-labels stmt) r-cond-list)
t-cond-list

(begin-body stmt)
proc-list
mg-state
(sub1 n)
(cons (list ’jump (add1 (label-cnt cinfo)))

(cons (list ’dl (label-cnt cinfo) nil ’(push-constant (nat 2)))
(cons ’(pop-global c-c)

(append
(code (translate
(nullify

(set-label-alist
(translate
(make-cinfo (code cinfo)

(append (make-label-alist (when-labels stmt)
(label-cnt cinfo))

(label-alist cinfo))

4



(add1 (add1 (label-cnt cinfo))))
t-cond-list
(begin-body stmt)
proc-list)

(label-alist cinfo)))
t-cond-list

(when-handler stmt)
proc-list))
(cons (list ’dl (add1 (label-cnt cinfo)) nil ’(no-op))

code2)))))
subr ctrl-stk temp-stk name-alist)

(exact-time-induction-hint
(add-code

(set-label-alist
(translate

(make-cinfo (code cinfo)
(append (make-label-alist (when-labels stmt)

(label-cnt cinfo))
(label-alist cinfo))
(add1 (add1 (label-cnt cinfo))))

t-cond-list
(begin-body stmt)
proc-list)

(label-alist cinfo))
(list (list ’jump (add1 (label-cnt cinfo)))

(list ’dl (label-cnt cinfo) nil ’(push-constant (nat 2)))
’(pop-global c-c)))

r-cond-list
t-cond-list
(when-handler stmt) proc-list
(set-condition (mg-meaning-r (begin-body stmt) proc-list mg-state (sub1 n)

(list (length temp-stk) (p-ctrl-stk-size ctrl-stk)))
’normal)

(sub1 n)
(cons (list ’dl (add1 (label-cnt cinfo)) nil ’(no-op))

code2)
subr ctrl-stk temp-stk name-alist))

(if (equal (car stmt) ’proc-call-mg)
(exact-time-induction-hint
(make-cinfo nil

(cons (cons ’routineerror 0)
(make-label-alist (make-cond-list (fetch-called-def stmt proc-list)) 0))

1)
(make-cond-list (fetch-called-def stmt proc-list))

5



(make-cond-list (fetch-called-def stmt proc-list))
(def-body (fetch-called-def stmt proc-list))

proc-list
(make-call-environment mg-state stmt (fetch-called-def stmt proc-list))
(sub1 n)
(cons ’(dl 0 nil (no-op))

(cons (list ’pop* (data-length (def-locals (fetch-called-def stmt proc-list))))
’((ret))))

(call-name stmt)
(cons (p-frame

(make-frame-alist (fetch-called-def stmt proc-list) stmt ctrl-stk temp-stk)
(tag ’pc (cons subr

(add1 (PLUS (LENGTH (CODE CINFO))
(data-length (DEF-LOCALS (FETCH-CALLED-DEF

STMT PROC-LIST)))
(length (DEF-LOCALS (FETCH-CALLED-DEF

STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))

ctrl-stk)
(append (reverse (mg-to-p-local-values (def-locals (fetch-called-def stmt proc-list))))

(map-down-values (mg-alist mg-state)
(bindings (top ctrl-stk))
temp-stk))

(make-name-alist (fetch-called-def stmt proc-list)))
(if (equal (car stmt) ’predefined-proc-call-mg)

t
f))))))))))

((lessp (COUNT n)))
(INSTRUCTIONS (BASH (ENABLE WHEN-HANDLER BEGIN-BODY IF-TRUE-BRANCH

IF-FALSE-BRANCH LOOP-BODY PROG2-RIGHT-BRANCH
PROG2-LEFT-BRANCH))))

;; The cond-list is required in the translation so that
;; I can convert between MG and Piton conditions; in the recognizer it is only
;; required that I have some set of conditions which could be signalled. It had better
;; be that any signalled are on the translator cond-list or I won’t be able to do the
;; mapping. However, I can sometimes signal ’leave and ’routineerror even though
;; these are not on the translator cond-list. This is because their map functions are
;; computed independently of the list. Therefore the appropriate relation between the
;; recognizer-cond-alist and translator-cond-alist is that (cond-subsetp rec-list trans-list).

Theorem: exact-time-lemma
(ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)

6



∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2 )
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),
code2 ))

∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))))
→ (p (map-down (mg-state,

proc-list ,
ctrl-stk ,
temp-stk ,
tag (’pc, cons (subr , length (code (cinfo)))),
t-cond-list),

clock (stmt , proc-list , mg-state, n))
= p-state (tag (’pc,

cons (subr ,
if normal (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
then length (code (translate (cinfo,

t-cond-list ,
stmt ,
proc-list)))

else find-label (fetch-label (cc (mg-meaning-r (stmt ,
proc-list ,

7



mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
label-alist (translate (cinfo,

t-cond-list ,
stmt ,
proc-list))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2 )) endif)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Event: Disable exact-time-lemma.

Theorem: exact-time-lemma2
(ok-mg-statement (stmt , r-cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, t-cond-list , stmt , proc-list , code2 )
∧ ok-mg-statep (mg-state, r-cond-list)
∧ cond-subsetp (r-cond-list , t-cond-list)

8



∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))
= append (code (translate (cinfo, t-cond-list , stmt , proc-list)),

code2 ))
∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ normal (mg-state)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))))
∧ (offset = length (code (cinfo))))
→ (p (map-down (mg-state,

proc-list ,
ctrl-stk ,
temp-stk ,
tag (’pc, cons (subr , offset)),
t-cond-list),

clock (stmt , proc-list , mg-state, n))
= p-state (tag (’pc,

cons (subr ,
if normal (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk))))
then length (code (translate (cinfo,

t-cond-list ,
stmt ,
proc-list)))

else find-label (fetch-label (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

9



p-ctrl-stk-size (ctrl-stk)))),
label-alist (translate (cinfo,

t-cond-list ,
stmt ,
proc-list))),

append (code (translate (cinfo,
t-cond-list ,
stmt ,
proc-list)),

code2 )) endif)),
ctrl-stk ,
map-down-values (mg-alist (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
bindings (top (ctrl-stk)),
temp-stk),

translate-proc-list (proc-list),
list (list (’c-c,

mg-cond-to-p-nat (cc (mg-meaning-r (stmt ,
proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))),
t-cond-list))),

mg-max-ctrl-stk-size,
mg-max-temp-stk-size,
mg-word-size,
’run))

Event: Disable exact-time-lemma2.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; TRANSLATION CORRECTNESS ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Notice that exact-time-hyps refers to two cond-lists (which are related by
;; the function cond-subsetp) while translation-is-correct only refers to a
;; single list. The two lists are necessary in exact-time-hyps to make the

10



;; induction work. The user supplies only a single list with his input statement.
;; That list must be an identifier-plistp and hence may not contain ’leave.
;;

;; The hypotheses of this theorem guarantee the following:
;; 1. mg-state is of the form <alist current-condition>
;; a. the alist is of the form < <name type value> ... >
;; b. the condition is ’normal, ’routineerror, ’timed-out, or
;; is in cond-list
;; 2. proc-list is a syntactically legal list of micro-gypsy procedures (which may
;; be mutually recursive)
;; 3. stmt is a syntactically legal micro-Gypsy statement with respect to proc-list
;; with conditions from cond-list and variables from (mg-alist mg-state)
;; 4. the translation environment described by cinfo is legitimate
;; a. cinfo is of the form <code label-alist label-cnt cond-list>, where
;; cond-list and code are proper lists
;; b. cond-list is a proper list containing only legal identifiers, ’leave, or
;; ’routineerror
;; c. translation stmt with cinfo does not generate any labels which would
;; duplicate labels in (code cinfo) or code2
;; 5. subr is the name of some procedure in proc-list
;; 6. the body of procedure subr is the context in which stmt "lives"; that is
;; the translation of the body of subr is equal to the append of the
;; the translation of stmt with code2
;; 7. execution of stmt does not yield the condition timed-out.

Theorem: cons-preserves-cond-subsetp
cond-subsetp (y , z ) → cond-subsetp (y , cons (x , z ))

Theorem: cond-subsetp-reflexive
ok-cond-list (cond-list) → cond-subsetp (cond-list , cond-list)

Theorem: mg-meaning-preserves-signatures-match3
(ok-mg-statement (stmt , cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, cond-list)
∧ signatures-match (mg-alist (mg-state), name-alist))
→ signatures-match (mg-alist (mg-state),

mg-alist (mg-meaning (stmt , proc-list , mg-state, n)))

Theorem: mg-state-decomposition
(¬ resource-errorp (state))
→ (mg-state (cc (state), mg-alist (state), ’run) = state)

11



Theorem: signatures-match-implies-signatures-equal
signatures-match (alist1 , alist2 )
→ (signature (alist1 ) = signature (alist2 ))

Event: Disable signatures-match-implies-signatures-equal.

Theorem: translation-is-correct2
(ok-mg-statement (stmt , cond-list , name-alist , proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-translation-parameters (cinfo, cond-list , stmt , proc-list , code2 )
∧ ok-mg-statep (mg-state, cond-list)
∧ (code (translate-def-body (assoc (subr , proc-list), proc-list))

= append (code (translate (cinfo, cond-list , stmt , proc-list)), code2 ))
∧ user-defined-procp (subr , proc-list)
∧ plistp (temp-stk)
∧ listp (ctrl-stk)
∧ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

bindings (top (ctrl-stk)),
temp-stk)

∧ no-p-aliasing (bindings (top (ctrl-stk)), mg-alist (mg-state))
∧ signatures-match (mg-alist (mg-state), name-alist)
∧ all-cars-unique (mg-alist (mg-state))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (temp-stk),

p-ctrl-stk-size (ctrl-stk)))))
∧ (pc-offset = length (code (cinfo)))
∧ (cc (mg-state) 6= ’leave))
→ (map-up (p (map-down (mg-state,

proc-list ,
ctrl-stk ,
temp-stk ,
tag (’pc, cons (subr , pc-offset)),
cond-list),

clock (stmt , proc-list , mg-state, n)),
signature (mg-alist (mg-state)),
cond-list)

= mg-meaning (stmt , proc-list , mg-state, n))

;; The following few functions are for making the "initial story" about how you invoke the
;; MG compiler at the highest level. That is, we want to be able to compute the meaning of
;; an MG statement. To do so, I build a procedure around it and show by the lemma

12



;; translation-is-correct2 that the meaning of the statement is the execution of that
;; procedure.
;;
;; This takes an alist from the mg-state and turns it into
;; a list of local-var-decls as might appear in a Micro-Gypsy
;; procedure.

;; Does this do anything; the alist is already in the right form.

Definition:
make-mg-locals-list (mg-alist)
= if mg-alist ' nil then nil

else cons (list (name (car (mg-alist)),
m-type (car (mg-alist)),
m-value (car (mg-alist))),

make-mg-locals-list (cdr (mg-alist))) endif

Theorem: make-mg-local-list-preserves-listcars
listcars (make-mg-locals-list (lst)) = listcars (lst)

Theorem: make-mg-locals-list-ok-mg-local-data-plistp
mg-alistp (mg-alist)
→ ok-mg-local-data-plistp (make-mg-locals-list (mg-alist))

;; The point of this is to cons up a new user-defined-procedure
;; definition from the following components:
;; alist: the Micro-Gypsy variable alist in which the statement is
;; to be interpreted.
;; subr: a user-supplied name;
;; stmt: the statement which we are interpreting
;; cond-list: a list of conditions which we will allow
;; to be raised.

Definition:
make-mg-proc (alist , subr , stmt , cond-list)
= list (subr , nil, cond-list , make-mg-locals-list (alist), nil, stmt)

;; Initial-temp-stk places the values of the mg-alist variables onto the temp-stk;
;; initial-bindings creates the Piton bindings corresponding to that initial
;; temp-stk.

Definition:

13



initial-temp-stk-reversed (mg-alist)
= if mg-alist ' nil then nil

elseif simple-mg-type-refp (cadr (car (mg-alist)))
then cons (mg-to-p-simple-literal (caddr (car (mg-alist))),

initial-temp-stk-reversed (cdr (mg-alist)))
else append (mg-to-p-simple-literal-list (caddr (car (mg-alist))),

initial-temp-stk-reversed (cdr (mg-alist))) endif

Theorem: initial-temp-stk-reversed-plistp
plistp (initial-temp-stk-reversed (x ))

Definition:
initial-temp-stk (mg-alist) = reverse (initial-temp-stk-reversed (mg-alist))

Definition:
initial-bindings (mg-alist , n)
= if mg-alist ' nil then nil

elseif simple-mg-type-refp (cadr (car (mg-alist)))
then cons (cons (caar (mg-alist), tag (’nat, n)),

initial-bindings (cdr (mg-alist), 1 + n))
else cons (cons (caar (mg-alist), tag (’nat, n)),

initial-bindings (cdr (mg-alist),
n + array-length (cadr (car (mg-alist))))) endif

Theorem: length-initial-bindings
length (initial-bindings (alist , n)) = length (alist)

;; 10/4/88 changing the final return pc from nil to (pc (subr . 0))
;; It is ignored but must be a legal pc value.

Definition:
map-down1 (mg-state, proc-list , cond-list , subr , stmt)
= map-down (mg-state,

cons (make-mg-proc (mg-alist (mg-state), subr , stmt , cond-list),
proc-list),

list (cons (initial-bindings (mg-alist (mg-state), 0),
list (tag (’pc, cons (subr , 0))))),

initial-temp-stk (mg-alist (mg-state)),
tag (’pc, cons (subr , 0)),
cond-list)

;; This theorem shows that I can compute the meaning of a statement if you will give me
;; the following and guarantee the following:
;; proc-list: must be a legitimate MG procedure list;

14



;; cond-list: a list of conditions you will allow to be raised;
;; mg-state: a legitimate MG state with current condition constrained by cond-list,
;; names on the alist must all be unique;
;; stmt: must be a legal statement with respect to proc-list and cond-list;
;; n: the clock parameter saying how long to let the thing run;
;; : an integer telling me the size of the implementation ;
;; subr: a litatom which is not the name of any procedure on proc-list;
;;
;; Supplied with these things, I can show you the meaning of a statement (provided that
;; the computation does not run out of time or space.

;;(defn ok-cond-list1 (cond-list)
;; (and (ok-cond-list cond-list)
;; (not (member ’leave cond-list))))

Definition:
new-proc-name (x , proc-list)
= (ok-mg-namep (x ) ∧ (¬ defined-procp (x , proc-list)))

Theorem: new-proc-doesnt-affect-fetch-called-def
((car (stmt) = ’proc-call-mg)
∧ new-proc-name (car (new-proc), proc-list)
∧ ok-mg-statement (stmt , cond-list , name-alist , proc-list))
→ (fetch-called-def (stmt , cons (new-proc, proc-list))

= fetch-called-def (stmt , proc-list))

Theorem: new-proc-doesnt-affect-mg-meaning-proc-call-case
((n 6' 0)
∧ normal (mg-state)
∧ (car (stmt) = ’proc-call-mg)
∧ ((ok-mg-def-plistp (proc-list)

∧ ok-mg-statement (def-body (fetch-called-def (stmt , proc-list)),
make-cond-list (fetch-called-def (stmt ,

proc-list)),
make-name-alist (fetch-called-def (stmt ,

proc-list)),
proc-list)

∧ new-proc-name (car (new-proc), proc-list))
→ (mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
make-call-environment (mg-state,

stmt ,
fetch-called-def (stmt ,

proc-list)),

15



n − 1)
= mg-meaning (def-body (fetch-called-def (stmt , proc-list)),

cons (new-proc, proc-list),
make-call-environment (mg-state,

stmt ,
fetch-called-def (stmt ,

proc-list)),
n − 1)))

∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statement (stmt , cond-list , name-alist , proc-list)
∧ new-proc-name (car (new-proc), proc-list))
→ (mg-meaning (stmt , proc-list , mg-state, n)

= mg-meaning (stmt , cons (new-proc, proc-list), mg-state, n))

Definition:
meaning-induction-hint3 (stmt ,

proc-list ,
mg-state,
n,
name-alist ,
cond-list ,
new-proc)

= if n ' 0 then t
elseif ¬ normal (mg-state) then t
elseif car (stmt) = ’no-op-mg then t
elseif car (stmt) = ’signal-mg then t
elseif car (stmt) = ’prog2-mg
then meaning-induction-hint3 (prog2-left-branch (stmt),

proc-list ,
mg-state,
n − 1,
name-alist ,
cond-list ,
new-proc)

∧ meaning-induction-hint3 (prog2-right-branch (stmt),
proc-list ,
mg-meaning (prog2-left-branch (stmt),

cons (new-proc,
proc-list),

mg-state,
n − 1),

n − 1,
name-alist ,
cond-list ,

16



new-proc)
elseif car (stmt) = ’loop-mg
then meaning-induction-hint3 (loop-body (stmt),

proc-list ,
mg-state,
n − 1,
name-alist ,
cons (’leave, cond-list),
new-proc)

∧ meaning-induction-hint3 (stmt ,
proc-list ,
mg-meaning (loop-body (stmt),

cons (new-proc,
proc-list),

mg-state,
n − 1),

n − 1,
name-alist ,
cond-list ,
new-proc)

elseif car (stmt) = ’if-mg
then meaning-induction-hint3 (if-false-branch (stmt),

proc-list ,
mg-state,
n − 1,
name-alist ,
cond-list ,
new-proc)

∧ meaning-induction-hint3 (if-true-branch (stmt),
proc-list ,
mg-state,
n − 1,
name-alist ,
cond-list ,
new-proc)

elseif car (stmt) = ’begin-mg
then meaning-induction-hint3 (begin-body (stmt),

proc-list ,
mg-state,
n − 1,
name-alist ,
append (when-labels (stmt), cond-list),
new-proc)

∧ meaning-induction-hint3 (when-handler (stmt),

17



proc-list ,
set-condition (mg-meaning (begin-body (stmt),

cons (new-proc,
proc-list),

mg-state,
n − 1),

’normal),
n − 1,
name-alist ,
cond-list ,
new-proc)

elseif car (stmt) = ’proc-call-mg
then meaning-induction-hint3 (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
make-call-environment (mg-state,

stmt ,
fetch-called-def (stmt ,

proc-list)),
n − 1,
make-name-alist (fetch-called-def (stmt ,

proc-list)),
make-cond-list (fetch-called-def (stmt ,

proc-list)),
new-proc)

elseif car (stmt) = ’predefined-proc-call-mg then t
else f endif

;; >>> For an automatic proof, these rules should be oriented in the other direction. Otherwise,
;; they could cause looping.

Theorem: new-proc-doesnt-affect-mg-meaning
(ok-mg-def-plistp (proc-list)
∧ ok-mg-statement (stmt , cond-list , name-alist , proc-list)
∧ new-proc-name (car (new-proc), proc-list))
→ (mg-meaning (stmt , proc-list , mg-state, n)

= mg-meaning (stmt , cons (new-proc, proc-list), mg-state, n))

Definition:
meaning-induction-hint4 (stmt ,

proc-list ,
mg-state,
n,
name-alist ,
cond-list ,

18



new-proc,
sizes)

= if n ' 0 then t
elseif ¬ normal (mg-state) then t
elseif resources-inadequatep (stmt , proc-list , sizes) then t
elseif car (stmt) = ’no-op-mg then t
elseif car (stmt) = ’signal-mg then t
elseif car (stmt) = ’prog2-mg
then meaning-induction-hint4 (prog2-left-branch (stmt),

proc-list ,
mg-state,
n − 1,
name-alist ,
cond-list ,
new-proc,
sizes)

∧ meaning-induction-hint4 (prog2-right-branch (stmt),
proc-list ,
mg-meaning-r (prog2-left-branch (stmt),

cons (new-proc,
proc-list),

mg-state,
n − 1,
sizes),

n − 1,
name-alist ,
cond-list ,
new-proc,
sizes)

elseif car (stmt) = ’loop-mg
then meaning-induction-hint4 (loop-body (stmt),

proc-list ,
mg-state,
n − 1,
name-alist ,
cons (’leave, cond-list),
new-proc,
sizes)

∧ meaning-induction-hint4 (stmt ,
proc-list ,
mg-meaning-r (loop-body (stmt),

cons (new-proc,
proc-list),

mg-state,

19



n − 1,
sizes),

n − 1,
name-alist ,
cond-list ,
new-proc,
sizes)

elseif car (stmt) = ’if-mg
then meaning-induction-hint4 (if-false-branch (stmt),

proc-list ,
mg-state,
n − 1,
name-alist ,
cond-list ,
new-proc,
sizes)

∧ meaning-induction-hint4 (if-true-branch (stmt),
proc-list ,
mg-state,
n − 1,
name-alist ,
cond-list ,
new-proc,
sizes)

elseif car (stmt) = ’begin-mg
then meaning-induction-hint4 (begin-body (stmt),

proc-list ,
mg-state,
n − 1,
name-alist ,
append (when-labels (stmt), cond-list),
new-proc,
sizes)

∧ meaning-induction-hint4 (when-handler (stmt),
proc-list ,
set-condition (mg-meaning-r (begin-body (stmt),

cons (new-proc,
proc-list),

mg-state,
n − 1,
sizes),

’normal),
n − 1,
name-alist ,

20



cond-list ,
new-proc,
sizes)

elseif car (stmt) = ’proc-call-mg
then meaning-induction-hint4 (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
make-call-environment (mg-state,

stmt ,
fetch-called-def (stmt ,

proc-list)),
n − 1,
make-name-alist (fetch-called-def (stmt ,

proc-list)),
make-cond-list (fetch-called-def (stmt ,

proc-list)),
new-proc,
list (t-size (sizes)

+ data-length (def-locals (fetch-called-def (stmt ,
proc-list))),

c-size (sizes)
+ (2

+ length (def-locals (fetch-called-def (stmt ,
proc-list)))

+ length (def-formals (fetch-called-def (stmt ,
proc-list))))))

elseif car (stmt) = ’predefined-proc-call-mg then t
else f endif

Theorem: new-proc-doesnt-affect-resources-inadequatep
(ok-mg-def-plistp (proc-list)
∧ ok-mg-statement (stmt , cond-list , name-alist , proc-list)
∧ new-proc-name (car (new-proc), proc-list))
→ (resources-inadequatep (stmt , cons (new-proc, proc-list), sizes)

= resources-inadequatep (stmt , proc-list , sizes))

Theorem: new-proc-doesnt-affect-mg-meaning-r
(ok-mg-def-plistp (proc-list)
∧ ok-mg-statement (stmt , cond-list , name-alist , proc-list)
∧ new-proc-name (car (new-proc), proc-list))
→ (mg-meaning-r (stmt , proc-list , mg-state, n, sizes)

= mg-meaning-r (stmt , cons (new-proc, proc-list), mg-state, n, sizes))

Theorem: new-proc-doesnt-affect-mg-meaning-r-2
(ok-mg-def-plistp (proc-list)
∧ ok-mg-statement (stmt , cond-list , name-alist , proc-list)

21



∧ new-proc-name (car (new-proc), proc-list))
→ (mg-meaning-r (stmt , cons (new-proc, proc-list), mg-state, n, sizes)

= mg-meaning-r (stmt , proc-list , mg-state, n, sizes))

Theorem: new-proc-doesnt-affect-clock-prog2-case
((n 6' 0)
∧ normal (mg-state)
∧ (car (stmt) = ’prog2-mg)
∧ ((ok-mg-def-plistp (proc-list)

∧ ok-mg-statement (prog2-right-branch (stmt),
cond-list ,
name-alist ,
proc-list)

∧ new-proc-name (car (new-proc), proc-list))
→ (clock (prog2-right-branch (stmt),

proc-list ,
mg-meaning (prog2-left-branch (stmt),

cons (new-proc, proc-list),
mg-state,
n − 1),

n − 1)
= clock (prog2-right-branch (stmt),

cons (new-proc, proc-list),
mg-meaning (prog2-left-branch (stmt),

cons (new-proc, proc-list),
mg-state,
n − 1),

n − 1)))
∧ ((ok-mg-def-plistp (proc-list)

∧ ok-mg-statement (prog2-left-branch (stmt),
cond-list ,
name-alist ,
proc-list)

∧ new-proc-name (car (new-proc), proc-list))
→ (clock (prog2-left-branch (stmt), proc-list , mg-state, n − 1)

= clock (prog2-left-branch (stmt),
cons (new-proc, proc-list),
mg-state,
n − 1)))

∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statement (stmt , cond-list , name-alist , proc-list)
∧ new-proc-name (car (new-proc), proc-list))
→ (clock (stmt , proc-list , mg-state, n)

= clock (stmt , cons (new-proc, proc-list), mg-state, n))

22



Theorem: new-proc-doesnt-affect-clock-loop-case
((n 6' 0)
∧ normal (mg-state)
∧ (car (stmt) = ’loop-mg)
∧ ((ok-mg-def-plistp (proc-list)

∧ ok-mg-statement (stmt , cond-list , name-alist , proc-list)
∧ new-proc-name (car (new-proc), proc-list))
→ (clock (stmt ,

proc-list ,
mg-meaning (loop-body (stmt),

cons (new-proc, proc-list),
mg-state,
n − 1),

n − 1)
= clock (stmt ,

cons (new-proc, proc-list),
mg-meaning (loop-body (stmt),

cons (new-proc, proc-list),
mg-state,
n − 1),

n − 1)))
∧ ((ok-mg-def-plistp (proc-list)

∧ ok-mg-statement (loop-body (stmt),
cons (’leave, cond-list),
name-alist ,
proc-list)

∧ new-proc-name (car (new-proc), proc-list))
→ (clock (loop-body (stmt), proc-list , mg-state, n − 1)

= clock (loop-body (stmt),
cons (new-proc, proc-list),
mg-state,
n − 1)))

∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statement (stmt , cond-list , name-alist , proc-list)
∧ new-proc-name (car (new-proc), proc-list))
→ (clock (stmt , proc-list , mg-state, n)

= clock (stmt , cons (new-proc, proc-list), mg-state, n))

Theorem: new-proc-doesnt-affect-clock-if-case
((n 6' 0)
∧ normal (mg-state)
∧ (car (stmt) = ’if-mg)
∧ ((ok-mg-def-plistp (proc-list)

∧ ok-mg-statement (if-true-branch (stmt),

23



cond-list ,
name-alist ,
proc-list)

∧ new-proc-name (car (new-proc), proc-list))
→ (clock (if-true-branch (stmt), proc-list , mg-state, n − 1)

= clock (if-true-branch (stmt),
cons (new-proc, proc-list),
mg-state,
n − 1)))

∧ ((ok-mg-def-plistp (proc-list)
∧ ok-mg-statement (if-false-branch (stmt),

cond-list ,
name-alist ,
proc-list)

∧ new-proc-name (car (new-proc), proc-list))
→ (clock (if-false-branch (stmt), proc-list , mg-state, n − 1)

= clock (if-false-branch (stmt),
cons (new-proc, proc-list),
mg-state,
n − 1)))

∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statement (stmt , cond-list , name-alist , proc-list)
∧ new-proc-name (car (new-proc), proc-list))
→ (clock (stmt , proc-list , mg-state, n)

= clock (stmt , cons (new-proc, proc-list), mg-state, n))

Theorem: new-proc-doesnt-affect-clock-begin-case
((n 6' 0)
∧ normal (mg-state)
∧ (car (stmt) = ’begin-mg)
∧ ((ok-mg-def-plistp (proc-list)

∧ ok-mg-statement (when-handler (stmt),
cond-list ,
name-alist ,
proc-list)

∧ new-proc-name (car (new-proc), proc-list))
→ (clock (when-handler (stmt),

proc-list ,
set-condition (mg-meaning (begin-body (stmt),

cons (new-proc, proc-list),
mg-state,
n − 1),

’normal),
n − 1)

24



= clock (when-handler (stmt),
cons (new-proc, proc-list),
set-condition (mg-meaning (begin-body (stmt),

cons (new-proc,
proc-list),

mg-state,
n − 1),

’normal),
n − 1)))

∧ ((ok-mg-def-plistp (proc-list)
∧ ok-mg-statement (begin-body (stmt),

append (when-labels (stmt), cond-list),
name-alist ,
proc-list)

∧ new-proc-name (car (new-proc), proc-list))
→ (clock (begin-body (stmt), proc-list , mg-state, n − 1)

= clock (begin-body (stmt),
cons (new-proc, proc-list),
mg-state,
n − 1)))

∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statement (stmt , cond-list , name-alist , proc-list)
∧ new-proc-name (car (new-proc), proc-list))
→ (clock (stmt , proc-list , mg-state, n)

= clock (stmt , cons (new-proc, proc-list), mg-state, n))

Theorem: new-proc-doesnt-affect-clock-proc-call-case
((n 6' 0)
∧ normal (mg-state)
∧ (car (stmt) = ’proc-call-mg)
∧ ((ok-mg-def-plistp (proc-list)

∧ ok-mg-statement (def-body (fetch-called-def (stmt , proc-list)),
make-cond-list (fetch-called-def (stmt ,

proc-list)),
make-name-alist (fetch-called-def (stmt ,

proc-list)),
proc-list)

∧ new-proc-name (car (new-proc), proc-list))
→ (clock (def-body (fetch-called-def (stmt , proc-list)),

proc-list ,
make-call-environment (mg-state,

stmt ,
fetch-called-def (stmt , proc-list)),

n − 1)

25



= clock (def-body (fetch-called-def (stmt , proc-list)),
cons (new-proc, proc-list),
make-call-environment (mg-state,

stmt ,
fetch-called-def (stmt ,

proc-list)),
n − 1)))

∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statement (stmt , cond-list , name-alist , proc-list)
∧ new-proc-name (car (new-proc), proc-list))
→ (clock (stmt , proc-list , mg-state, n)

= clock (stmt , cons (new-proc, proc-list), mg-state, n))

Theorem: new-proc-doesnt-affect-clock
(ok-mg-def-plistp (proc-list)
∧ ok-mg-statement (stmt , cond-list , name-alist , proc-list)
∧ new-proc-name (car (new-proc), proc-list))
→ (clock (stmt , proc-list , mg-state, n)

= clock (stmt , cons (new-proc, proc-list), mg-state, n))

Theorem: new-proc-doesnt-affect-ok-mg-statement-proc-call-case
((car (stmt) = ’proc-call-mg)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statement (stmt , cond-list , name-alist , proc-list)
∧ new-proc-name (car (new-proc), proc-list))
→ ok-mg-statement (stmt , cond-list , name-alist , cons (new-proc, proc-list))

Event: Enable ok-mg-statement.

Theorem: new-proc-doesnt-affect-ok-mg-statement
(ok-mg-def-plistp (proc-list)
∧ ok-mg-statement (stmt , cond-list , name-alist , proc-list)
∧ new-proc-name (car (new-proc), proc-list))
→ ok-mg-statement (stmt , cond-list , name-alist , cons (new-proc, proc-list))

Theorem: new-proc-preserves-ok-mg-def
(new-proc-name (car (new-proc), pl)
∧ ok-mg-def-plistp (pl)
∧ ok-mg-def (def , pl))
→ ok-mg-def (def , cons (new-proc, pl))

Theorem: new-proc-preserves-ok-mg-def-plistp1
(new-proc-name (car (new-proc), pl2 )
∧ ok-mg-def-plistp (pl2 )
∧ ok-mg-def-plistp1 (pl1 , pl2 ))
→ ok-mg-def-plistp1 (pl1 , cons (new-proc, pl2 ))

26



Theorem: make-alist-make-locals-list-preserves-signatures-match
mg-alistp (mg-alist)
→ signatures-match (mg-alist ,

make-alist-from-formals (make-mg-locals-list (mg-alist)))

;; To do this one I needed to change the hyp the cond-list is a cond-identifierp-plistp
;; to an identifier plistp.

Theorem: new-proc-preserves-ok-mg-def-plistp
(ok-mg-statement (stmt , cond-list , mg-alist (mg-state), proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, cond-list)
∧ identifier-plistp (cond-list)
∧ all-cars-unique (mg-alist (mg-state))
∧ new-proc-name (subr , proc-list)
∧ (length (cond-list) < (((exp (2, mg-word-size) − 1) − 1) − 1)))
→ ok-mg-def-plistp (cons (make-mg-proc (mg-alist (mg-state),

subr ,
stmt ,
cond-list),

proc-list))

Theorem: mg-to-p-simple-literal-list-listp
listp (mg-to-p-simple-literal-list (x )) = listp (x )

Theorem: initial-temp-stk-reversed-listp
(mg-alistp (x ) ∧ listp (x )) → listp (initial-temp-stk-reversed (x ))

Theorem: length-initial-temp-stk-reversed
mg-alistp (alist)
→ (length (initial-temp-stk-reversed (alist)) = data-length (alist))

Definition:
initial-bindings-induction-hint (mg-alist , n, lst)
= if mg-alist ' nil then t

elseif simple-mg-type-refp (cadar (mg-alist))
then initial-bindings-induction-hint (cdr (mg-alist),

1 + n,
cons (mg-to-p-simple-literal (caddar (mg-alist)),

lst))
else initial-bindings-induction-hint (cdr (mg-alist),

n + array-length (cadar (mg-alist)),
append (reverse (mg-to-p-simple-literal-list (caddar (mg-alist))),

lst)) endif

27



Theorem: initial-bindings-ok-in-initial-temp-stk1
(mg-alistp (mg-alist) ∧ (n = length (lst)) ∧ all-cars-unique (mg-alist))
→ mg-vars-list-ok-in-p-state (mg-alist ,

initial-bindings (mg-alist , n),
append (initial-temp-stk (mg-alist), lst))

Theorem: initial-bindings-ok-in-initial-temp-stk
(ok-mg-statep (mg-state, cond-list) ∧ all-cars-unique (mg-alist (mg-state)))
→ mg-vars-list-ok-in-p-state (mg-alist (mg-state),

initial-bindings (mg-alist (mg-state), 0),
initial-temp-stk (mg-alist (mg-state)))

Theorem: initial-bindings-all-pointers-bigger
all-cars-unique (alist)
→ all-pointers-bigger (collect-pointers (initial-bindings (alist , n), alist),

n)

Theorem: no-p-aliasing-in-initial-bindings
(all-cars-unique (mg-alist) ∧ mg-alistp (mg-alist) ∧ (n ∈ N))
→ no-p-aliasing (initial-bindings (mg-alist , n), mg-alist)

Theorem: leave-not-state-cc
(ok-mg-statep (mg-state, cond-list) ∧ identifier-plistp (cond-list))
→ (cc (mg-state) 6= ’leave)

Theorem: translation-is-correct3
(ok-mg-statement (stmt , cond-list , mg-alist (mg-state), proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, cond-list)
∧ identifier-plistp (cond-list)
∧ all-cars-unique (mg-alist (mg-state))
∧ new-proc-name (subr , proc-list)
∧ (length (cond-list) < (((exp (2, mg-word-size) − 1) − 1) − 1))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (length (initial-temp-stk (mg-alist (mg-state))),

p-ctrl-stk-size (list (cons (initial-bindings (mg-alist (mg-state),
0),

list (tag (’pc,
cons (subr ,

0)))))))))))
→ (map-up (p (map-down1 (mg-state, proc-list , cond-list , subr , stmt),

clock (stmt , proc-list , mg-state, n)),

28



signature (mg-alist (mg-state)),
cond-list)

= mg-meaning (stmt , proc-list , mg-state, n))

;; This is just a slightly cleaned up version of the previous lemma.

Theorem: translation-is-correct4
(ok-mg-statement (stmt , cond-list , mg-alist (mg-state), proc-list)
∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, cond-list)
∧ identifier-plistp (cond-list)
∧ all-cars-unique (mg-alist (mg-state))
∧ new-proc-name (subr , proc-list)
∧ (length (cond-list) < (((exp (2, mg-word-size) − 1) − 1) − 1))
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (data-length (mg-alist (mg-state)),

2 + length (mg-alist (mg-state)))))))
→ (map-up (p (map-down1 (mg-state, proc-list , cond-list , subr , stmt),

clock (stmt , proc-list , mg-state, n)),
signature (mg-alist (mg-state)),
cond-list)

= mg-meaning (stmt , proc-list , mg-state, n))

Definition:
ok-execution-environment (stmt , cond-list , proc-list , mg-state, subr , n)
= (ok-mg-statement (stmt , cond-list , mg-alist (mg-state), proc-list)

∧ ok-mg-def-plistp (proc-list)
∧ ok-mg-statep (mg-state, cond-list)
∧ identifier-plistp (cond-list)
∧ all-cars-unique (mg-alist (mg-state))
∧ new-proc-name (subr , proc-list)
∧ (length (cond-list) < (((exp (2, mg-word-size) − 1) − 1) − 1)))

Theorem: translation-is-correct5
(ok-execution-environment (stmt , cond-list , proc-list , mg-state, subr , n)
∧ (¬ resource-errorp (mg-meaning-r (stmt ,

proc-list ,
mg-state,
n,
list (data-length (mg-alist (mg-state)),

2 + length (mg-alist (mg-state)))))))

29



→ (map-up (p (map-down1 (mg-state, proc-list , cond-list , subr , stmt),
clock (stmt , proc-list , mg-state, n)),

signature (mg-alist (mg-state)),
cond-list)

= mg-meaning (stmt , proc-list , mg-state, n))

Event: Make the library "ca10".

30



Index
all-cars-unique, 7, 9, 12, 27–29
all-pointers-bigger, 28
array-length, 14, 27

begin-body, 17, 18, 20, 24, 25
bindings, 7–10, 12

c-size, 21
cc, 8, 10–12, 28
clock, 7, 9, 12, 22–26, 28–30
code, 7–10, 12
collect-pointers, 28
cond-subsetp, 7, 8, 11
cond-subsetp-reflexive, 11
cons-preserves-cond-subsetp, 11

data-length, 21, 27, 29
def-body, 15, 16, 18, 21, 25, 26
def-formals, 21
def-locals, 21
defined-procp, 15

exact-time-lemma, 6
exact-time-lemma2, 8
exp, 27–29

fetch-called-def, 15, 16, 18, 21, 25,
26

fetch-label, 8, 10
find-label, 8, 10

identifier-plistp, 27–29
if-false-branch, 17, 20, 24
if-true-branch, 17, 20, 23, 24
initial-bindings, 14, 28
initial-bindings-all-pointers-bi

gger, 28
initial-bindings-induction-hint, 27
initial-bindings-ok-in-initial-te

mp-stk, 28
mp-stk1, 28

initial-temp-stk, 14, 28

initial-temp-stk-reversed, 13, 14, 27
initial-temp-stk-reversed-listp, 27
initial-temp-stk-reversed-plistp, 14

label-alist, 8, 10
leave-not-state-cc, 28
length, 1, 7–10, 12, 14, 21, 27–29
length-initial-bindings, 14
length-initial-temp-stk-reverse

d, 27
listcars, 13
loop-body, 17, 19, 23

m-type, 13
m-value, 13
make-alist-from-formals, 27
make-alist-make-locals-list-pre

serves-signatures-match, 27
make-call-environment, 15, 16, 18,

21, 25, 26
make-cond-list, 15, 18, 21, 25
make-mg-local-list-preserves-li

stcars, 13
make-mg-locals-list, 13, 27
make-mg-locals-list-ok-mg-local

-data-plistp, 13
make-mg-proc, 13, 14, 27
make-name-alist, 15, 18, 21, 25
map-down, 7, 9, 12, 14
map-down-values, 8, 10
map-down1, 14, 28–30
map-up, 12, 29, 30
meaning-induction-hint3, 16–18
meaning-induction-hint4, 18–21
mg-alist, 7–12, 14, 27–30
mg-alistp, 13, 27, 28
mg-cond-to-p-nat, 8, 10
mg-max-ctrl-stk-size, 8, 10
mg-max-temp-stk-size, 8, 10
mg-meaning, 11, 12, 16–18, 22–25,

29, 30

31



mg-meaning-preserves-signatures
-match3, 11

mg-meaning-r, 1, 7–10, 12, 19–22,
28, 29

mg-state, 11
mg-state-decomposition, 11
mg-to-p-simple-literal, 14, 27
mg-to-p-simple-literal-list, 14, 27
mg-to-p-simple-literal-list-listp, 27
mg-vars-list-ok-in-p-state, 7, 9, 12,

28
mg-word-size, 8, 10, 27–29

name, 13
new-proc-doesnt-affect-clock, 26
new-proc-doesnt-affect-clock-be

gin-case, 24
new-proc-doesnt-affect-clock-if

-case, 23
new-proc-doesnt-affect-clock-lo

op-case, 23
new-proc-doesnt-affect-clock-pr

oc-call-case, 25
og2-case, 22

new-proc-doesnt-affect-fetch-ca
lled-def, 15

new-proc-doesnt-affect-mg-meani
ng, 18
ng-proc-call-case, 15
ng-r, 21
ng-r-2, 21

new-proc-doesnt-affect-ok-mg-st
atement, 26
atement-proc-call-case, 26

new-proc-doesnt-affect-resource
s-inadequatep, 21

new-proc-name, 15, 16, 18, 21–29
new-proc-preserves-ok-mg-def, 26
new-proc-preserves-ok-mg-def-pli

stp, 27
stp1, 26

no-p-aliasing, 7, 9, 12, 28
no-p-aliasing-in-initial-bindin

gs, 28

normal, 7, 9, 15, 16, 19, 22–25
not-resource-errorp-not-zerop-n, 1

ok-cond-list, 11
ok-execution-environment, 29
ok-mg-def, 26
ok-mg-def-plistp, 7, 8, 11, 12, 15,

16, 18, 21–29
ok-mg-def-plistp1, 26
ok-mg-local-data-plistp, 13
ok-mg-namep, 15
ok-mg-statement, 1, 6, 8, 11, 12, 15,

16, 18, 21–29
ok-mg-statep, 7, 8, 11, 12, 27–29
ok-translation-parameters, 7, 8, 12

p, 7, 9, 12, 28–30
p-ctrl-stk-size, 1, 7–10, 12, 28
p-state, 8, 10
plistp, 7, 9, 12, 14
prog2-left-branch, 16, 19, 22
prog2-right-branch, 16, 19, 22

resource-errorp, 1, 7, 9, 11, 12, 28,
29

resources-inadequatep, 19, 21
reverse, 14, 27

set-condition, 18, 20, 24, 25
signature, 12, 29, 30
signatures-match, 7, 9, 11, 12, 27
signatures-match-implies-signat

ures-equal, 12
simple-mg-type-refp, 14, 27

t-size, 21
tag, 7–10, 12, 14, 28
top, 7–10, 12
translate, 7–10, 12
translate-def-body, 7, 9, 12
translate-proc-list, 8, 10
translation-is-correct2, 12
translation-is-correct3, 28
translation-is-correct4, 29
translation-is-correct5, 29

32



user-defined-procp, 7, 9, 12

when-handler, 17, 20, 24, 25
when-labels, 17, 20, 25

33


