EVENT: Start with the library "c-proc-call2".

;3 I know that in the absence of resource-errors the two MG interpreters

;; and the two clocks are the same. Therefore, after I have proved everything
;; with the resource-error versions, I automatically gain the non-resource-error
;; versioms.

2993999999993 9999939333333 3333339333333 3333333333333933333333333IIIIII)

THEOREM: not-resource-errorp-not-zerop-n
(ok-mg-statement (stmt, r-cond-list, name-alist, proc-list)
A (= resource-errorp (mg-meaning-r (stmt,
proc-list,
mg-state,
n,
list (length (temp-stk),
p-ctrl-stk-size (ctri-stk))))))
~ (n#0)

(defn exact-time-induction-hint (cinfo r-cond-list t-cond-list stmt
proc-list mg-state n code2 subr
ctrl-stk temp-stk name-alist)
(if (zerop n)
t
(if (resources-inadequatep stmt proc-list
(list (length temp-stk) (p-ctrl-stk-size ctrl-stk)))
t
(if (equal (car stmt) ’no-op-mg)
t
(if (equal (car stmt) ’signal-mg)
t
(if (equal (car stmt) ’prog2-mg)
(and (exact-time-induction-hint
cinfo
r-cond-list
t-cond-list



(prog2-left-branch stmt)
proc-list
mg-state
(subl n)
(append (code (translate (nullify (translate (nullify cinfo)
t-cond-list
(prog2-left-branch stmt)
proc-list))
t-cond-list
(prog2-right-branch stmt)
proc-list))
code2)
subr ctrl-stk temp-stk name-alist)
(exact-time-induction-hint
(translate cinfo t-cond-list (prog2-left-branch stmt) proc-list)
r-cond-list
t-cond-list
(prog2-right-branch stmt)
proc-list
(mg-meaning-r (prog2-left-branch stmt) proc-list mg-state (subl n)
(l1ist (length temp-stk) (p-ctrl-stk-size ctrl-stk)))
(subl n)
code2
subr ctrl-stk temp-stk name-alist))
(if (equal (car stmt) ’loop-mg)
(and (exact-time-induction-hint
(make-cinfo (append (code cinfo)
(list (1ist ’dl (label-cnt cinfo) nil ’(no-op))))
(cons (cons ’leave (addl (label-cnt cinfo)))
(label-alist cinfo))
(addl (addl (label-cnt cinfo))))
(cons ’leave r-cond-list) t-cond-list
(loop-body stmt)
proc-list
mg-state
(subl n)
(cons (list ’jump (label-cnt cinfo))
(cons (1list ’dl (addl (label-cnt cinfo)) nil ’(push-constant (nat 2)))
(cons ’(pop-global c-c)
code2)))
subr ctrl-stk temp-stk name-alist)
(exact-time-induction-hint
cinfo
(cons ’leave r-cond-list) t-cond-list



stmt
proc-list
(mg-meaning-r (loop-body stmt) proc-list mg-state (subl n)
(list (length temp-stk) (p-ctrl-stk-size ctrl-stk)))
(subl n)
code2
subr ctrl-stk temp-stk name-alist))
(if (equal (car stmt) ’if-mg)
(and (exact-time-induction-hint
(make-cinfo
(append (code cinfo)
(list (list ’push-local (if-condition stmt))
> (fetch-temp-stk)
(list ’test-bool-and-jump ’false (label-cnt cinfo))))
(label-alist cinfo)
(addl (addl (label-cnt cinfo))))
r-cond-list t-cond-list
(if-true-branch stmt)
proc-list
mg-state
(subl n)
(cons (1list ’jump (addl (label-cnt cinfo)))
(cons (list ’dl (label-cnt cinfo) nil ’(no-op))
(append (code (translate
(nullify
(translate
(make-cinfo
nil
(label-alist cinfo)
(addl (addl (label-cnt cinfo))))
t-cond-list
(if-true-branch stmt)
proc-list))
t-cond-list
(if-false-branch stmt)
proc-list))
(cons (list ’dl (addl (label-cnt cinfo)) nil ’(no-op))
code2))))
subr ctrl-stk temp-stk name-alist)
(exact-time-induction-hint
(add-code
(translate
(make-cinfo
(append (code cinfo)



(1ist (1ist ’push-local (if-condition stmt))
> (fetch-temp-stk)
(list ’test-bool-and-jump ’false (label-cnt cinfo))))
(label-alist cinfo)
(addl (addl (label-cnt cinfo))))
t-cond-list
(if-true-branch stmt)
proc-list)
(1ist (1ist ’jump (addl (label-cnt cinfo)))
(1ist ’dl (label-cnt cinfo) nil ’(no-op))))
r-cond-list t-cond-list
(if-false-branch stmt)
proc-list
mg-state
(subl n)
(cons (1list ’dl (addl (label-cnt cinfo)) nil ’(no-op))
code?2)
subr ctrl-stk temp-stk name-alist))
(if (equal (car stmt) ’begin-mg)
(and
(exact-time-induction-hint
(make-cinfo (code cinfo)
(append (make-label-alist (when-labels stmt)
(label-cnt cinfo))
(label-alist cinfo))
(addl (addl (label-cnt cinfo))))
(append (when-labels stmt) r-cond-list)
t-cond-list
(begin-body stmt)
proc-list
mg-state
(subl n)
(cons (1list ’jump (addl (label-cnt cinfo)))
(cons (1list ’dl (label-cnt cinfo) nil ’(push-constant (nat 2)))
(cons ’ (pop-global c-c)
(append
(code (translate
(nullify
(set-label-alist
(translate
(make-cinfo (code cinfo)
(append (make-label-alist (when-labels stmt)
(label-cnt cinfo))
(label-alist cinfo))



(add1l (addl (label-cnt cinfo))))
t-cond-list
(begin-body stmt)
proc-list)
(label-alist cinfo)))
t-cond-list
(when-handler stmt)
proc-list))
(cons (1list ’dl (addl (label-cnt cinfo)) nil ’(no-op))
code2)))))
subr ctrl-stk temp-stk name-alist)
(exact-time-induction-hint
(add-code
(set-label-alist
(translate
(make-cinfo (code cinfo)
(append (make-label-alist (when-labels stmt)
(label-cnt cinfo))
(label-alist cinfo))
(addl (addl (label-cnt cinfo))))
t-cond-list
(begin-body stmt)
proc-list)
(label-alist cinfo))
(1ist (list ’jump (addl (label-cnt cinfo)))
(l1ist ’dl (label-cnt cinfo) nil ’(push-constant (nat 2)))
?> (pop-global c-c)))
r-cond-list
t-cond-list
(when-handler stmt) proc-list
(set-condition (mg-meaning-r (begin-body stmt) proc-list mg-state (subl n)
(list (length temp-stk) (p-ctrl-stk-size ctrl-stk)))
’normal)
(subl n)
(cons (1list ’dl (addl (label-cnt cinfo)) nil ’(no-op))
code?2)
subr ctrl-stk temp-stk name-alist))
(if (equal (car stmt) ’proc-call-mg)
(exact-time-induction-hint
(make-cinfo nil
(cons (cons ’routineerror 0)
(make-label-alist (make-cond-list (fetch-called-def stmt proc-list)) 0))
i)
(make-cond-list (fetch-called-def stmt proc-list))



(make-cond-list (fetch-called-def stmt proc-list))
(def-body (fetch-called-def stmt proc-list))
proc-list
(make-call-environment mg-state stmt (fetch-called-def stmt proc-list))
(subl n)
(cons ’(dl 0 nil (no-op))
(cons (1list ’popx* (data-length (def-locals (fetch-called-def stmt proc-list))))
> ((ret))))
(call-name stmt)
(cons (p-frame
(make-frame-alist (fetch-called-def stmt proc-list) stmt ctrl-stk temp-stk)
(tag ’pc (cons subr
(add1 (PLUS (LENGTH (CODE CINFO))
(data-length (DEF-LOCALS (FETCH-CALLED-DEF
STMT PROC-LIST)))
(length (DEF-LOCALS (FETCH-CALLED-DEF
STMT PROC-LIST)))
(LENGTH (CALL-ACTUALS STMT)))))))
ctrl-stk)
(append (reverse (mg-to-p-local-values (def-locals (fetch-called-def stmt
(map-down-values (mg-alist mg-state)
(bindings (top ctrl-stk))
temp-stk))
(make-name-alist (fetch-called-def stmt proc-list)))
(if (equal (car stmt) ’predefined-proc-call-mg)
t
3333330
((lessp (COUNT n)))
(INSTRUCTIONS (BASH (ENABLE WHEN-HANDLER BEGIN-BODY IF-TRUE-BRANCH
IF-FALSE-BRANCH LOOP-BODY PROG2-RIGHT-BRANCH
PROG2-LEFT-BRANCH))))

;3 The cond-list is required in the translation so that

;3 I can convert between MG and Piton conditions; in the recognizer it is only

;3 Trequired that I have some set of conditions which could be signalled. It had better

;; be that any signalled are on the translator cond-list or I won’t be able to do the

;; mapping. However, I can sometimes signal ’leave and ’routineerror even though

;; these are not on the translator cond-list. This is because their map functions are

;; computed independently of the list. Therefore the appropriate relation between the

;; recognizer-cond-alist and translator-cond-alist is that (cond-subsetp rec-list trans-1i

THEOREM: exact-time-lemma
(ok-mg-statement (stmt, r-cond-list, name-alist, proc-list)



> > > > > > > > >

> > > > >

ok-mg-def-plistp (proc-list)
ok-translation-parameters (cinfo, t-cond-list, stmt, proc-list, code2)
ok-mg-statep (mg-state, r-cond-list)
cond-subsetp (r-cond-list, t-cond-list)
(code (translate-def-body (assoc (subr, proc-list), proc-list))
= append (code (translate (cinfo, t-cond-list, stmt, proc-list)),
code2))
user-defined-procp (subr, proc-list)
plistp (temp-stk)
listp (ctri-stk)
mg-vars-list-ok-in-p-state (mg-alist (mg-state),
bindings (top (ctri-stk)),
temp-stk)
no-p-aliasing (bindings (top (ctri-stk)), mg-alist (mg-state))
signatures-match (mg-alist (mg-state), name-alist)
normal (mg-state)
all-cars-unique (mg-alist (mg-state))
(= resource-errorp (mg-meaning-r (stmt,
proc-list,
mg-state,
n,
list (length (temp-stk),
p-ctrl-stk-size (ctri-stk))))))
(p (map-down (mg-state,
proc-list,
ctrl-stk,
temp-stk,
tag (?pc, cons (subr, length (code (cinfo)))),
t-cond-list),
clock (stmt, proc-list, mg-state, n))
= p-state (tag (’pc,

cons (subr,
if normal (mg-meaning-r (stmt,
proc-list,
mg-state,
n

list (length (temp-stk),
p-ctrl-stk-size (ctri-stk))))

then length (code (translate (cinfo,

t-cond-list,

stmt,

proc-list)))
else find-label (fetch-label (cc (mg-meaning-r (stmt,
proc-list,



mg-state,
n7
list (length (temp-stk),
p-ctrl-stk-size ( ctri-stk)))),
label-alist (translate (cinfo,
t-cond-list,
stmt,
proc-list))),
append (code (translate ( cinfo,
t-cond-list,
stmt,
proc-list)),
code?2)) endif)),

ctrl-stk,

map-down-values (mg-alist (mg-meaning-r (stmt,
proc-list,
mg-state,
n

list (length (temp-stk),
p-ctrl-stk-size (ctri-stk)))),
bindings (top (ctri-stk)),
temp-stk),
translate-proc-list (proc-list),
list (list (’ c-c,
mg-cond-to-p-nat (cc (mg-meaning-r (stmt,
proc-list,
mg-state,
n,
list (length (temp-stk),
p-ctrl-stk-size ( ctri-stk)))),
t-cond-list))),
MG-MAX-CTRL-STK-SIZE,
MG-MAX-TEMP-STK-SIZE,
MG-WORD-SIZE,
’run))

EVENT: Disable exact-time-lemma.

THEOREM: exact-time-lemma2
(ok-mg-statement (stmt, r-cond-list, name-alist, proc-list)
A ok-mg-def-plistp (proc-list)
ok-translation-parameters (cinfo, t-cond-list, stmt, proc-list, code2)
ok-mg-statep (mg-state, r-cond-list)
cond-subsetp (r-cond-list, t-cond-list)

> > >



> > > >

> > > > >

b >

(code (translate-def-body (assoc (subr, proc-list), proc-list))
= append (code (translate (cinfo, t-cond-list, stmt, proc-list)),
code2))
user-defined-procp (subr, proc-list)
plistp (temp-stk)
listp (ctri-stk)
mg-vars-list-ok-in-p-state (mg-alist (mg-state),
bindings (top (ctri-stk)),
temp-stk)
no-p-aliasing (bindings (top (ctri-stk)), mg-alist (mg-state))
signatures-match (mg-alist (mg-state), name-alist)
normal (mg-state)
all-cars-unique (mg-alist (mg-state))
(— resource-errorp (mg-meaning-r ( stmt,
proc-list,
mg-state,
n,
list (length (temp-stk),
p-ctrl-stk-size (ctri-stk)))))
(offset = length (code (cinfo))))
(p (map-down (mg-state,
proc-list,
ctrl-stk,
temp-stk,
tag (’pc, cons (subr, offset)),
t-cond-list),
clock (stmt, proc-list, mg-state, n))
= p-state (tag (’pc,

cons (subr,
if normal (mg-meaning-r (stmt,
proc-list,
mg-state,
n

list (length (temp-stk),
p-ctrl-stk-size (ctri-stk))))
then length (code (translate (cinfo,
t-cond-list,
stmt,
proc-list)))
else find-label (fetch-label (cc (mg-meaning-r (stmt,
proc-list,
mg-state,
n,
list (length (temp-stk),



p-ctrl-stk-size ( ctri-stk)))),
label-alist (translate (cinfo,
t-cond-list,
stmt,
proc-list))),
append (code (translate ( cinfo,
t-cond-list,
stmt,
proc-list)),
code?2)) endif)),

ctrl-stk,

map-down-values (mg-alist (mg-meaning-r (stmt,
proc-list,
mg-state,

n,
list (length (temp-stk),
p-ctrl-stk-size (ctri-stk)))),
bindings (top (ctri-stk)),
temp-stk),
translate-proc-list (proc-list),
list (list (*c-c,
mg-cond-to-p-nat (cc (mg-meaning-r (stmt,
proc-list,
mg-state,
n?
list (length (temp-stk),
p-ctrl-stk-size (ctri-stk)))),
t-cond-list))),
MG-MAX-CTRL-STK-SIZE,
MG-MAX-TEMP-STK-SIZE,
MG-WORD-SIZE,
’run))

EVENT: Disable exact-time-lemma?2.

3993999999993 3933333333333 9333333333333 333333333333333IIIIIIIII)

;; Notice that exact-time-hyps refers to two cond-lists (which are related by
;; the function cond-subsetp) while translation-is-correct only refers to a
;; single list. The two lists are necessary in exact-time-hyps to make the

10



)

LI

)

induction work. The user supplies only a single list with his input statement.
; That list must be an identifier-plistp and hence may not contain ’leave.

; The hypotheses of this theorem guarantee the following:
. mg-state is of the form <alist current-condition>

a. the alist is of the form < <name type value> ... >
b. the condition is ’normal, ’routineerror, ’timed-out, or
is in cond-list

. proc-list is a syntactically legal list of micro-gypsy procedures (which may

be mutually recursive)
stmt is a syntactically legal micro-Gypsy statement with respect to proc-list
with conditions from cond-list and variables from (mg-alist mg-state)
the translation environment described by cinfo is legitimate
a. cinfo is of the form <code label-alist label-cnt cond-list>, where
cond-list and code are proper lists
b. cond-list is a proper list containing only legal identifiers, ’leave, or
’routineerror
c. translation stmt with cinfo does not generate any labels which would
duplicate labels in (code cinfo) or code2
subr is the name of some procedure in proc-list
the body of procedure subr is the context in which stmt "lives"; that is
the translation of the body of subr is equal to the append of the
the translation of stmt with code2
execution of stmt does not yield the condition timed-out.

THEOREM: cons-preserves-cond-subsetp
cond-subsetp (y, z) — cond-subsetp (y, cons (z, z))

THEOREM: cond-subsetp-reflexive
ok-cond-list (cond-list) — cond-subsetp (cond-list, cond-list)

THEOREM: mg-meaning-preserves-signatures-match3
(ok-mg-statement (stmt, cond-list, name-alist, proc-list)

b>>>

ok-mg-def-plistp (proc-list)

ok-mg-statep (mg-state, cond-list)
signatures-match (mg-alist (mg-state), name-alist))
signatures-match (mg-alist (mg-state),

mg-alist (mg-meaning (stmt, proc-list, mg-state, n)))

THEOREM: mg-state-decomposition
(= resource-errorp (state))

—

(mg-state (cc (state), mg-alist (state), >run) = state)

11



THEOREM: signatures-match-implies-signatures-equal
signatures-match (alist1, alist2)
—  (signature (alist!) = signature (alist2))

EVENT: Disable signatures-match-implies-signatures-equal.
THEOREM: translation-is-correct2

(ok-mg-statement (stmt, cond-list, name-alist, proc-list)
A ok-mg-def-plistp (proc-list)

A ok-translation-parameters ( cinfo, cond-list, stmt, proc-list, code2)
A ok-mg-statep (mg-state, cond-list)
A (code (translate-def-body (assoc (subr, proc-list), proc-list))
= append (code (translate (cinfo, cond-list, stmt, proc-list)), code2))
A user-defined-procp (subr, proc-list)
A plistp (temp-stk)
A listp (ctri-stk)
A mg-vars-list-ok-in-p-state (mg-alist (mg-state),
bindings (top (ctrl-stk)),
temp-stk)
A mno-p-aliasing (bindings (top (ctri-stk)), mg-alist (mg-state))
A signatures-match (mg-alist (mg-state), name-alist)
A all-cars-unique (mg-alist (mg-state))
A (— resource-errorp (mg-meaning-r ( stmt,
proc-list,
mg-state,
n7
list (length (temp-stk),
p-ctrl-stk-size ( ctri-stk)))))
A (pc-offset = length (code (cinfo)))
A (cc(mg-state) # ’leave))
—  (map-up (p (map-down (mg-state,
proc-list,
ctrl-stk,
temp-stk,
tag (’pc, cons (subr, pc-offset)),
cond-list),

clock (stmt, proc-list, mg-state, n)),
signature (mg-alist (mg-state)),
cond-list)

= mg-meaning (stmt, proc-list, mg-state, n))

;3 The following few functions are for making the "initial story" about how you invoke the
;5 MG compiler at the highest level. That is, we want to be able to compute the meaning of
;; an MG statement. To do so, I build a procedure around it and show by the lemma

12



;; translation-is-correct2 that the meaning of the statement is the execution of that
;3 procedure.

;; This takes an alist from the mg-state and turns it into
;; a list of local-var-decls as might appear in a Micro-Gypsy
;3 procedure.

;; Does this do anything; the alist is already in the right form.

DEFINITION:
make-mg-locals-list (mg-alist)
= if mg-alist ~ nil then nil
else cons (list (name (car (mg-alist)),
m-type (car (mg-alist)),
m-value (car (mg-alist))),
make-mg-locals-list (cdr (mg-alist))) endif

THEOREM: make-mg-local-list-preserves-listcars
listcars (make-mg-locals-list (Ist)) = listcars (Ist)

THEOREM: make-mg-locals-list-ok-mg-local-data-plistp
mg-alistp (mg-alist)
—  ok-mg-local-data-plistp (make-mg-locals-list (mg-alist))

;3 The point of this is to cons up a new user-defined-procedure

;; definition from the following components:

MK alist: the Micro-Gypsy variable alist in which the statement is
M to be interpreted.

HN subr: a user-supplied name;

HS stmt: the statement which we are interpreting

HN cond-list: a list of conditions which we will allow

H to be raised.

DEFINITION:
make-mg-proc (alist, subr, stmt, cond-list)
= list (subr, nil, cond-list, make-mg-locals-list (alist), nil, stmt)

;; Initial-temp-stk places the values of the mg-alist variables onto the temp-stk;
;3 initial-bindings creates the Piton bindings corresponding to that initial
;; temp-stk.

DEFINITION:

13



initial-temp-stk-reversed (mg-alist)
= if mg-alist ~ nil then nil
elseif simple-mg-type-refp (cadr (car (mg-alist)))
then cons (mg-to-p-simple-literal (caddr (car (mg-alist))),
initial-temp-stk-reversed (cdr (mg-alist)))
else append (mg-to-p-simple-literal-list (caddr (car (mg-alist))),
initial-temp-stk-reversed (cdr (mg-alist))) endif

THEOREM: initial-temp-stk-reversed-plistp
plistp (initial-temp-stk-reversed (z))

DEFINITION:
initial-temp-stk (mg-alist) = reverse (initial-temp-stk-reversed (mg-alist))

DEFINITION:
initial-bindings (mg-alist, n)
= if mg-alist ~ nil then nil
elseif simple-mg-type-refp (cadr (car (mg-alist)))
then couns (cons (caar (mg-alist), tag (’nat, n)),
initial-bindings (cdr (mg-alist), 1 + n))
else cons (cons (caar (mg-alist), tag (*nat, n)),
initial-bindings (cdr (mg-alist),
n + array-length (cadr (car (mg-alist))))) endif

THEOREM: length-initial-bindings
length (initial-bindings (alist, n)) = length (alist)

;5 10/4/88 changing the final return pc from nil to (pc (subr . 0))
M It is ignored but must be a legal pc value.

DEFINITION:
map-downl (mg-state, proc-list, cond-list, subr, stmt)
= map-down (mg-state,
cons (make-mg-proc (mg-alist (mg-state), subr, stmt, cond-list),
proc-list),
list (cons (initial-bindings (mg-alist (mg-state), 0),
list (tag (’pc, cons (subr, 0))))),
initial-temp-stk (mg-alist (mg-state)),
tag (’pc, cons (subr, 0)),
cond-list)

;3 This theorem shows that I can compute the meaning of a statement if you will give me

;; the following and guarantee the following:
HK proc-list: must be a legitimate MG procedure list;

14



i cond-list: a list of conditions you will allow to be raised;

H mg-state: a legitimate MG state with current condition constrained by cond-list,
HH names on the alist must all be unique;

HN stmt: must be a legal statement with respect to proc-list and cond-list;

MK n: the clock parameter saying how long to let the thing run;

HS : an integer telling me the size of the implementation ;

H subr: a litatom which is not the name of any procedure on proc-list;

;3 Supplied with these things, I can show you the meaning of a statement (provided that
;; the computation does not run out of time or space.

;; (defn ok-cond-listl (cond-1list)
S (and (ok-cond-list cond-list)
S (not (member ’leave cond-list))))

DEFINITION:
new-proc-name (z, proc-list)
= (ok-mg-namep (z) A (— defined-procp (z, proc-list)))

THEOREM: new-proc-doesnt-affect-fetch-called-def
((car (stmt) = ’proc-call-mg)
A mnew-proc-name (car (new-proc), proc-list)
A ok-mg-statement (stmt, cond-list, name-alist, proc-list))
—  (fetch-called-def (stmt, cons (new-proc, proc-list))
= fetch-called-def (stmt, proc-list))

THEOREM: new-proc-doesnt-affect-mg-meaning-proc-call-case
((n 20)
A normal (mg-state)
A (car (stmt) = ’proc-call-mg)
A ((ok-mg-def-plistp (proc-list)
A ok-mg-statement (def-body (fetch-called-def (stmt, proc-list)),
make-cond-list (fetch-called-def (stmt,
proc-list)),
make-name-alist (fetch-called-def (stmit,
proc-list)),
proc-list)
new-proc-name (car (new-proc), proc-list))
(mg-meaning (def-body (fetch-called-def (stmt, proc-list)),
proc-list,
make-call-environment (mg-state,
stmit,
fetch-called-def ( stmt,
proc-list)),

b >

15



n—1)
= mg-meaning (def-body (fetch-called-def (stmt, proc-list)),
cons (new-proc, proc-list),
make-call-environment (mg-state,
stmt,
fetch-called-def (stmit,
proc-list)),
5 - 1))
ok-mg-def-plistp (proc-list)
ok-mg-statement (stmt, cond-list, name-alist, proc-list)
new-proc-name (car (new-proc), proc-list))
(mg-meaning (stmt, proc-list, mg-state, n)
= mg-meaning (stmt, cons (new-proc, proc-list), mg-state, n))

b>>>

DEFINITION:
meaning-induction-hint3 ( stmt,
proc-list,
mg-state,
n,
name-alist,
cond-list,
new-proc)
= ifn~0 thent
elseif — normal (mg-state) then t
elseif car (stmt) = ’no-op-mg then t
elseif car (stmt) = ’signal-mg then t
elseif car (stmt) = ’prog2-mg
then meaning-induction-hint3 (prog2-left-branch (stmt),
proc-list,
mg-state,
n—1,
name-alist,
cond-list,
new-proc)
A meaning-induction-hint3 (prog2-right-branch (stmt),
proc-list,
mg-meaning (prog2-left-branch (stmt),
cons (new-proc,

proc-list),
mg-state,
n -1,
n—1,
name-alist,
cond-list,

16



new-proc)
elseif car (stmt) = ’loop-mg
then meaning-induction-hint3 (loop-body (stmt),
proc-list,
mg-state,
n—1,
name-alist,
cons (’leave, cond-list),
new-proc)
A meaning-induction-hint3 (stmt,
proc-list,
mg-meaning (loop-body (stmt),
cons (new-proc,
proc-list),
mg-state,
n-1),
n—1,
name-alist,
cond-list,
new-proc)
elseif car (stmt) = ’if-mg
then meaning-induction-hint3 (if-false-branch (stmt),
proc-list,
mg-state,
n—1,
name-alist,
cond-list,
new-proc)
A meaning-induction-hint3 (if-true-branch (stmt),
proc-list,
mg-state,
n—1,
name-alist,
cond-list,
new-proc)
elseif car (stmt) = *begin-mg
then meaning-induction-hint3 (begin-body (stmt),
proc-list,
mg-state,
n—1,
name-alist,
append (when-labels (stmt), cond-list),
new-proc)
A meaning-induction-hint3 (when-handler (stmt),

17



proc-list,
set-condition (mg-meaning (begin-body (stmt),
cons (new-proc,

proc-list),
mg-state,
" 1),
’normal),
n—1,
name-alist,
cond-list,
new-proc)

elseif car (stmt) = ’proc-call-mg
then meaning-induction-hint3 (def-body (fetch-called-def (stmt, proc-list)),

proc-list,
make-call-environment (mg-state,
stmt,
fetch-called-def (stmit,
proc-list)),
n—1,

make-name-alist (fetch-called-def (stmt,
proc-list)),
make-cond-list (fetch-called-def (stmt,
proc-list)),
new-proc)
elseif car (stmt) = ’predefined-proc-call-mg then t
else f endif

;3 >>> For an automatic proof, these rules should be oriented in the other direction.

i they could cause looping.

THEOREM: new-proc-doesnt-affect-mg-meaning
(ok-mg-def-plistp (proc-list)
A ok-mg-statement (stmt, cond-list, name-alist, proc-list)
A new-proc-name (car (new-proc), proc-list))
—  (mg-meaning (stmt, proc-list, mg-state, n)
= mg-meaning (stmt, cons (new-proc, proc-list), mg-state, n))

DEFINITION:

meaning-induction-hint4 ( stmt,
proc-list,
mg-state,
n,
name-alist,
cond-list,

18

Othe:



new-proc,

sizes)
if n ~ 0 then t

elseif — normal (mg-state) then t

elseif resources-inadequatep (stmt, proc-list, sizes) then t
elseif car (stmt¢) = *no-op-mg then t

elseif car (stmt) = ’signal-mg then t

elseif car (stmt) = ’prog2-mg

then meaning-induction-hint4 (prog2-left-branch (stmt),

proc-list,
mg-state,
n—1,
name-alist,
cond-list,
new-proc,
sizes)

A meaning-induction-hint4 (prog2-right-branch (stmt),

elseif car (stmt) = ’loop-mg

proc-list,
mg-meaning-r (prog2-left-branch (stmt),
cons (new-proc,

proc-list),
mg-state,
n —1,
sizes),
n—1,
name-alist,
cond-list,
new-proc,
sizes)

then meaning-induction-hint4 (loop-body (stmt),

proc-list,

mg-state,

n—1,

name-alist,

cons (’leave, cond-list),
new-proc,

sizes)

A meaning-induction-hint4 ( stmit,

proc-list,
mg-meaning-1 (loop-body (stmt),
cons (new-proc,
proc-list),
mg-state,

19



elseif car (stmt) = >if-mg

n —1,
sizes),
n—1,
name-alist,
cond-list,
new-proc,
sizes)

then meaning-induction-hint4 (if-false-branch (stmt),

proc-list,
mg-state,
n—1,
name-alist,
cond-list,
new-proc,
sizes)

A meaning-induction-hint4 (if-true-branch (stmt),

elseif car (stmt) = *begin-mg

proc-list,
mg-state,
n—1,
name-alist,
cond-list,
new-proc,
sizes)

then meaning-induction-hint4 (begin-body (stmt),

proc-list,

mg-state,

n—1,

name-alist,

append (when-labels (stmt), cond-list),
new-proc,

sizes)

A meaning-induction-hint4 (when-handler (stmt),

proc-list,
set-condition (mg-meaning-r (begin-body (stmt),
cons (new-proc,

proc-list),
mg-state,
n—1,
sizes),
’normal),
n—1,
name-alist,

20



cond-list,
new-proc,
sizes)
elseif car (stmt) = ’proc-call-mg
then meaning-induction-hint4 (def-body (fetch-called-def (stmt, proc-list)),

proc-list,
make-call-environment (mg-state,
stmt,
fetch-called-def (stmit,
proc-list)),
n—1,

make-name-alist (fetch-called-def (stmit,
proc-list)),
make-cond-list (fetch-called-def (stmt,
proc-list)),
new-proc,
list (t-size (sizes)
+ data-length (def-locals (fetch-called-def (stmt,
proc-list))),
c-size (sizes)
+ (2
+ length (def-locals (fetch-called-def (stmt,
proc-list)))
+ length (def-formals (fetch-called-def (stmt,
proc-list))))))
elseif car (stmt) = ’predefined-proc-call-mg then t
else f endif

THEOREM: new-proc-doesnt-affect-resources-inadequatep
(ok-mg-def-plistp (proc-list)
A ok-mg-statement (stmt, cond-list, name-alist, proc-list)
A new-proc-name (car (new-proc), proc-list))
—  (resources-inadequatep (stmt, cons (new-proc, proc-list), sizes)
= resources-inadequatep (stmt, proc-list, sizes))

THEOREM: new-proc-doesnt-affect-mg-meaning-r
(ok-mg-def-plistp (proc-list)
A ok-mg-statement (stmt, cond-list, name-alist, proc-list)
A new-proc-name (car (new-proc), proc-list))
—  (mg-meaning-r (stmt, proc-list, mg-state, n, sizes)
= mg-meaning-r (stm¢, cons (new-proc, proc-list), mg-state, n, sizes))

THEOREM: new-proc-doesnt-affect-mg-meaning-r-2
(ok-mg-def-plistp (proc-list)
A ok-mg-statement (stmt, cond-list, name-alist, proc-list)

21



A new-proc-name (car (new-proc), proc-list))
—  (mg-meaning-r (stmt, cons (new-proc, proc-list), mg-state, n, sizes)
= mg-meaning-r (stmt, proc-list, mg-state, n, sizes))

THEOREM: new-proc-doesnt-affect-clock-prog2-case
((n #£0)
A normal (mg-state)
A (car (stmt) = ’prog2-mg)
A ((ok-mg-def-plistp (proc-list)
A ok-mg-statement (prog2-right-branch (stmt),
cond-list,
name-alist,
proc-list)
A new-proc-name (car (new-proc), proc-list))
—  (clock (prog2-right-branch (stmt),
proc-list,
mg-meaning (prog2-left-branch (stmt),
cons (new-proc, proc-list),
mg-state,
n — 1)3
n—1)
= clock (prog2-right-branch (stmt),
cons (new-proc, proc-list),
mg-meaning (prog2-left-branch (stmt),
cons (new-proc, proc-list),
mg-state,
n-1),
0 - 1))
A ((ok-mg-def-plistp (proc-list)
A ok-mg-statement (prog2-left-branch (stmt),
cond-list,
name-alist,
proc-list)
A new-proc-name (car (new-proc), proc-list))
—  (clock (prog2-left-branch (stmt), proc-list, mg-state, n — 1)
= clock (prog2-left-branch (stmt),
cons (new-proc, proc-list),
mg-state,
n—1))
ok-mg-def-plistp (proc-list)
ok-mg-statement (stmt, cond-list, name-alist, proc-list)
new-proc-name (car (new-proc), proc-list))
(clock (stmt, proc-list, mg-state, n)
= clock (stmt, cons (new-proc, proc-list), mg-state, n))

b >>>

22



THEOREM: new-proc-doesnt-affect-clock-loop-case
((n #0)
A normal (mg-state)
A (car (stmt) = >loop-mg)
A ((ok-mg-def-plistp (proc-list)
A ok-mg-statement (stmt, cond-list, name-alist, proc-list)
A new-proc-name (car (new-proc), proc-list))
—  (clock (stmt,
proc-list,
mg-meaning (loop-body (stmt),
cons (new-proc, proc-list),
mg-state,
n— 1)5
n —1)
= clock (stmt,
cons (new-proc, proc-list),
mg-meaning (loop-body (stmt),
cous (new-proc, proc-list),
mg-state,
n—1),
n 1)
A ((ok-mg-def-plistp (proc-list)
A ok-mg-statement (loop-body (stmt),
cons (’leave, cond-list),
name-alist,
proc-list)
A new-proc-name (car (new-proc), proc-list))
—  (clock (loop-body (stmt), proc-list, mg-state, n — 1)
= clock (loop-body (stmt),
cons (new-proc, proc-list),
mg-state,
n—1)
ok-mg-def-plistp (proc-list)
ok-mg-statement (stmt, cond-list, name-alist, proc-list)
new-proc-name (car (new-proc), proc-list))
(clock (stmt, proc-list, mg-state, n)
= clock (stmt, cons (new-proc, proc-list), mg-state, n))

b >>>

THEOREM: new-proc-doesnt-affect-clock-if-case
((n#0)
A mnormal (mg-state)
A (car (stmt) = ’if-mg)
A ((ok-mg-def-plistp (proc-list)
A ok-mg-statement (if-true-branch (stmt),

23



cond-list,
name-alist,
proc-list)
A new-proc-name (car (new-proc), proc-list))
—  (clock (if-true-branch (stmt), proc-list, mg-state, n — 1)
= clock (if-true-branch (stmt),
cons (new-proc, proc-list),
mg-state,
n—1)))
A ((ok-mg-def-plistp (proc-list)
A ok-mg-statement (if-false-branch (stmt),
cond-list,
name-alist,
proc-list)
A new-proc-name (car (new-proc), proc-list))
—  (clock (if-false-branch (stmt), proc-list, mg-state, n — 1)
= clock (if-false-branch (stmt),
cons (new-proc, proc-list),
mg-state,
n—1)))
ok-mg-def-plistp (proc-list)
ok-mg-statement (stmt, cond-list, name-alist, proc-list)
new-proc-name (car (new-proc), proc-list))
(clock (stmt, proc-list, mg-state, n)
= clock (stmt, cons (new-proc, proc-list), mg-state, n))

b>>>

THEOREM: new-proc-doesnt-affect-clock-begin-case
((n #0)
A normal (mg-state)
A (car (stmt) = *begin-mg)
A ((ok-mg-def-plistp (proc-list)
A ok-mg-statement (when-handler (stmt),
cond-list,
name-alist,
proc-list)
A mnew-proc-name (car (new-proc), proc-list))
—  (clock (when-handler (stmt),
proc-list,
set-condition (mg-meaning (begin-body (stmt),
cons (new-proc, proc-list),
mg-state,
n-1),
’normal),
n —1)

24



= clock (when-handler (stmt),
cons (new-proc, proc-list),
set-condition (mg-meaning (begin-body (stmt),
cons (new-proc,

proc-list),
mg-state,
n — 1) )

’normal),
n 1))
A ((ok-mg-def-plistp (proc-list)
A ok-mg-statement (begin-body (stmt),
append (when-labels (stmt), cond-list),
name-alist,
proc-list)
A new-proc-name (car (new-proc), proc-list))
—  (clock (begin-body (stmt), proc-list, mg-state, n — 1)
= clock (begin-body (stmt),
cons (new-proc, proc-list),
mg-state,
n—1)))
ok-mg-def-plistp (proc-list)
ok-mg-statement (stmt, cond-list, name-alist, proc-list)
new-proc-name (car (new-proc), proc-list))
(clock (stmt, proc-list, mg-state, n)
= clock (stmt, cons (new-proc, proc-list), mg-state, n))

>>>

THEOREM: new-proc-doesnt-affect-clock-proc-call-case
((n #0)
A normal (mg-state)
A (car (stmt) = ’proc-call-mg)
A ((ok-mg-def-plistp (proc-list)
A ok-mg-statement (def-body (fetch-called-def (stmt, proc-list)),
make-cond-list (fetch-called-def (stmt,
proc-list)),
make-name-alist (fetch-called-def (stm,
proc-list)),
proc-list)
new-proc-name (car (new-proc), proc-list))
(clock (def-body (fetch-called-def (stmt, proc-list)),
proc-list,
make-call-environment (mg-state,
stmt,
fetch-called-def (stmt, proc-list)),

b >

n —1)

25



= clock (def-body (fetch-called-def (stmt, proc-list)),
cons (new-proc, proc-list),
make-call-environment (mg-state,
stmit,
fetch-called-def ( stmt,
proc-list)),
n - 1))
ok-mg-def-plistp (proc-list)
ok-mg-statement (stmt, cond-list, name-alist, proc-list)
new-proc-name (car (new-proc), proc-list))
(clock (stmt, proc-list, mg-state, n)
= clock (stmt, cons (new-proc, proc-list), mg-state, n))

b >>>

THEOREM: new-proc-doesnt-affect-clock
(ok-mg-def-plistp (proc-list)
A ok-mg-statement (stmt, cond-list, name-alist, proc-list)
A mnew-proc-name (car (new-proc), proc-list))
—  (clock (stmt, proc-list, mg-state, n)
= clock (stmt, cons (new-proc, proc-list), mg-state, n))

THEOREM: new-proc-doesnt-affect-ok-mg-statement-proc-call-case

((car (stmt) = ’proc-call-mg)

ok-mg-def-plistp (proc-list)

ok-mg-statement (stmt, cond-list, name-alist, proc-list)

new-proc-name (car (new-proc), proc-list))

ok-mg-statement (stmt, cond-list, name-alist, cons (new-proc, proc-list))

b>>>

EVENT: Enable ok-mg-statement.

THEOREM: new-proc-doesnt-affect-ok-mg-statement
(ok-mg-def-plistp (proc-list)
A ok-mg-statement (stmt, cond-list, name-alist, proc-list)
A mnew-proc-name (car (new-proc), proc-list))
—  ok-mg-statement (stmt, cond-list, name-alist, cons (new-proc, proc-list))

THEOREM: new-proc-preserves-ok-mg-def
(new-proc-name (car (new-proc), pl)

A ok-mg-def-plistp (pl)

A ok-mg-def (def, pl))

—  ok-mg-def (def, cons (new-proc, pl))

THEOREM: new-proc-preserves-ok-mg-def-plistpl
(new-proc-name (car (new-proc), pl2)

A ok-mg-def-plistp (pi2)

A ok-mg-def-plistpl (pl1, pl2))

—  ok-mg-def-plistpl (pl!, cons (new-proc, pl2))

26



THEOREM: make-alist-make-locals-list-preserves-signatures-match
mg-alistp (mg-alist)
—  signatures-match (mg-alist,
make-alist-from-formals (make-mg-locals-list (mg-alist)))

;; To do this one I needed to change the hyp the cond-list is a cond-identifierp-plistp

;; to an identifier plistp.

THEOREM: new-proc-preserves-ok-mg-def-plistp
(ok-mg-statement (stmt, cond-list, mg-alist (mg-state), proc-list)

A ok-mg-def-plistp (proc-list)
A ok-mg-statep (mg-state, cond-list)
A identifier-plistp (cond-list)
A all-cars-unique (mg-alist (mg-state))
A new-proc-name (subr, proc-list)
A (length (cond-list) < (((exp (2, MG-WORD-SIZE) — 1) — 1) — 1)))
—  ok-mg-def-plistp (cons (make-mg-proc (mg-alist (mg-state),
subr,
stmt,
cond-list),

proc-list))

THEOREM: mg-to-p-simple-literal-list-listp
listp (mg-to-p-simple-literal-list (z)) = listp (z)

THEOREM: initial-temp-stk-reversed-listp
(mg-alistp (z) A listp (z)) — listp (initial-temp-stk-reversed (z))

THEOREM: length-initial-temp-stk-reversed
mg-alistp (alist)
—  (length (initial-temp-stk-reversed (alist)) = data-length (alist))

DEFINITION:
initial-bindings-induction-hint (mg-alist, n, lst)
= if mg-alist ~ nil then t
elseif simple-mg-type-refp (cadar (mg-alist))
then initial-bindings-induction-hint (cdr (mg-alist),
1+ n,
cons (mg-to-p-simple-literal (caddar (mg-alist)),
Ist))
else initial-bindings-induction-hint (cdr (mg-alist),
n + array-length (cadar (mg-alist)),
append (reverse (mg-to-p-simple-literal-list (caddar (mg-alist))),
Ist)) endif

27



THEOREM: initial-bindings-ok-in-initial-temp-stk1
(mg-alistp (mg-alist) A (n = length (Ist)) A all-cars-unique (mg-alist))
—  mg-vars-list-ok-in-p-state (mg-alist,

initial-bindings (mg-alist, n),

append (initial-temp-stk (mg-alist), Ist))

THEOREM: initial-bindings-ok-in-initial-temp-stk
(ok-mg-statep (mg-state, cond-list) A all-cars-unique (mg-alist (mg-state)))
—  mg-vars-list-ok-in-p-state (mg-alist (mg-state),
initial-bindings (mg-alist (mg-state), 0),
initial-temp-stk (mg-alist (mg-state)))

THEOREM: initial-bindings-all-pointers-bigger
all-cars-unique (alist)
—  all-pointers-bigger (collect-pointers (initial-bindings (alist, n), alist),

n)

THEOREM: no-p-aliasing-in-initial-bindings
(all-cars-unique (mg-alist) A mg-alistp (mg-alist) A (n € N))
—  no-p-aliasing (initial-bindings (mg-alist, n), mg-alist)

THEOREM: leave-not-state-cc
(ok-mg-statep (mg-state, cond-list) A identifier-plistp (cond-list))
—  (cc(mg-state) # ’Lleave)

THEOREM: translation-is-correct3
(ok-mg-statement (stmt, cond-list, mg-alist (mg-state), proc-list)
A ok-mg-def-plistp (proc-list)
ok-mg-statep (mg-state, cond-list)
identifier-plistp (cond-list)
all-cars-unique (mg-alist (mg-state))
new-proc-name (subr, proc-list)
(length (cond-list) < (((exp (2, MG-WORD-SIZE) — 1) — 1) — 1))
(= resource-errorp (mg-meaning-r ( stmt,
proc-list,
mg-state,
n,
list (length (initial-temp-stk (mg-alist (mg-state))),
p-ctrl-stk-size (list (cons (initial-bindings (mg-alist (mg-state),
0),

>>> > > >

list (tag (’ pc,
cons (subr,

0)))))))))

—  (map-up (p (map-downl (mg-state, proc-list, cond-list, subr, stmt),
clock (stmt, proc-list, mg-state, n)),

28



signature (mg-alist (mg-state)),
cond-list)
= mg-meaning (stmt, proc-list, mg-state, n))

;; This is just a slightly cleaned up version of the previous lemma.

THEOREM: translation-is-correct4
(ok-mg-statement (stmt, cond-list, mg-alist (mg-state), proc-list)

A ok-mg-def-plistp (proc-list)
A ok-mg-statep (mg-state, cond-list)
A identifier-plistp (cond-list)
A all-cars-unique (mg-alist (mg-state))
A new-proc-name (subr, proc-list)
A (length (cond-list) < (((exp (2, MG-WORD-SIZE) — 1) — 1) — 1))
A (— resource-errorp (mg-meaning-r ( stmt,
proc-list,
mg-state,
n’
list (data-length (mg-alist (mg-state)),
2 + length (mg-alist (mg-state)))))))
—  (map-up (p (map-downl (mg-state, proc-list, cond-list, subr, stmt),
clock (stmt, proc-list, mg-state, n)),
signature (mg-alist (mg-state)),
cond-list)
= mg-meaning (stmt, proc-list, mg-state, n))
DEFINITION:

ok-execution-environment (stmt, cond-list, proc-list, mg-state, subr, n)

(ok-mg-statement (stmt, cond-list, mg-alist (mg-state), proc-list)

A ok-mg-def-plistp (proc-list)

ok-mg-statep (mg-state, cond-list)

identifier-plistp (cond-list)

all-cars-unique (mg-alist (mg-state))

new-proc-name (subr, proc-list)

(length (cond-list) < (((exp (2, MG-WORD-SIZE) — 1) — 1) — 1)))

> > > > >

THEOREM: translation-is-correctb
(ok-execution-environment (stmt, cond-list, proc-list, mg-state, subr, n)

A

(— resource-errorp (mg-meaning-r ( stmt,
proc-list,
mg-state,
n,
list (data-length (mg-alist (mg-state)),
2 + length (mg-alist (mg-state)))))))

29



—  (map-up (p (map-downl (mg-state, proc-list, cond-list, subr, stmt),
clock (stmt, proc-list, mg-state, n)),
signature (mg-alist (mg-state)),
cond-list)
= mg-meaning (stmt, proc-list, mg-state, n))

EVENT: Make the library "cal10".

30



Index

all-cars-unique, 7, 9, 12, 27-29
all-pointers-bigger, 28
array-length, 14, 27

begin-body, 17, 18, 20, 24, 25
bindings, 7-10, 12

c-size, 21

cc, 8, 10-12, 28

clock, 7,9, 12, 22-26, 28-30
code, 7-10, 12

collect-pointers, 28
cond-subsetp, 7, 8, 11
cond-subsetp-reflexive, 11
cons-preserves-cond-subsetp, 11

data-length, 21, 27, 29
def-body, 15, 16, 18, 21, 25, 26
def-formals, 21

def-locals, 21

defined-procp, 15

exact-time-lemma, 6
exact-time-lemma?2, 8
exp, 27-29

fetch-called-def, 15, 16, 18, 21, 25,
26

fetch-label, 8, 10

find-label, 8, 10

identifier-plistp, 27-29
if-false-branch, 17, 20, 24
if-true-branch, 17, 20, 23, 24
initial-bindings, 14, 28
initial-bindings-all-pointers-bi

gger, 28
initial-bindings-induction-hint, 27
initial-bindings-ok-in-initial-te

mp-stk, 28

mp-stkl, 28
initial-temp-stk, 14, 28

31

initial-temp-stk-reversed, 13, 14, 27
initial-temp-stk-reversed-listp, 27
initial-temp-stk-reversed-plistp, 14

label-alist, 8, 10

leave-not-state-cc, 28

length, 1, 7-10, 12, 14, 21, 27-29

length-initial-bindings, 14

length-initial-temp-stk-reverse
d, 27

listcars, 13

loop-body, 17, 19, 23

m-type, 13
m-value, 13
make-alist-from-formals, 27
make-alist-make-locals-list-pre
serves-signatures-match, 27
make-call-environment, 15, 16, 18,
21, 25, 26
make-cond-list, 15, 18, 21, 25
make-mg-local-list-preserves-li
stcars, 13
make-mg-locals-list, 13, 27
make-mg-locals-list-ok-mg-local
-data-plistp, 13
make-mg-proc, 13, 14, 27
make-name-alist, 15, 18, 21, 25
map-down, 7, 9, 12, 14
map-down-values, 8, 10
map-downl, 14, 28-30
map-up, 12, 29, 30
meaning-induction-hint3, 16-18
meaning-induction-hint4, 18-21
mg-alist, 7-12, 14, 27-30
mg-alistp, 13, 27, 28
mg-cond-to-p-nat, 8, 10
mg-max-ctrl-stk-size, 8, 10
mg-max-temp-stk-size, 8, 10
mg-meaning, 11, 12, 16-18, 22-25,
29, 30



mg-meaning-preserves-signatures
-match3, 11

mg-meaning-r, 1, 7-10, 12, 19-22,
28, 29

mg-state, 11

mg-state-decomposition, 11

mg-to-p-simple-literal, 14, 27

mg-to-p-simple-literal-list, 14, 27

mg-to-p-simple-literal-list-listp, 27

mg-vars-list-ok-in-p-state, 7, 9, 12,
28

mg-word-size, 8, 10, 27-29

name, 13
new-proc-doesnt-affect-clock, 26
new-proc-doesnt-affect-clock-be

gin-case, 24
new-proc-doesnt-affect-clock-if

-case, 23
new-proc-doesnt-affect-clock-lo

op-case, 23
new-proc-doesnt-affect-clock-pr

oc-call-case, 25

og2-case, 22
new-proc-doesnt-affect-fetch-ca

lled-def, 15
new-proc-doesnt-affect-mg-meani

ng, 18

ng-proc-call-case, 15

ng-r, 21

ng-r-2, 21
new-proc-doesnt-affect-ok-mg-st

atement, 26

atement-proc-call-case, 26
new-proc-doesnt-affect-resource

s-inadequatep, 21
new-proc-name, 15, 16, 18, 21-29
new-proc-preserves-ok-mg-def, 26
new-proc-preserves-ok-mg-def-pli

stp, 27

stpl, 26
no-p-aliasing, 7, 9, 12, 28
no-p-aliasing-in-initial-bindin

gs, 28

32

normal, 7, 9, 15, 16, 19, 22-25
not-resource-errorp-not-zerop-n, 1

ok-cond-list, 11
ok-execution-environment, 29

ok-mg-def, 26
ok-mg-def-plistp, 7, 8, 11, 12, 15,
16, 18, 21-29

ok-mg-def-plistpl, 26
ok-mg-local-data-plistp, 13
ok-mg-namep, 15
ok-mg-statement, 1, 6, 8, 11, 12, 15,
16, 18, 21-29
ok-mg-statep, 7, 8, 11, 12, 27-29
ok-translation-parameters, 7, 8, 12

p, 7,9, 12, 28-30
p-ctrl-stk-size, 1, 7-10, 12, 28
p-state, 8, 10

plistp, 7, 9, 12, 14
prog2-left-branch, 16, 19, 22
prog2-right-branch, 16, 19, 22

resource-errorp, 1, 7, 9, 11, 12, 28,
29

resources-inadequatep, 19, 21

reverse, 14, 27

set-condition, 18, 20, 24, 25
signature, 12, 29, 30
signatures-match, 7, 9, 11, 12, 27
signatures-match-implies-signat
ures-equal, 12
simple-mg-type-refp, 14, 27

t-size, 21

tag, 7-10, 12, 14, 28

top, 7-10, 12

translate, 7-10, 12
translate-def-body, 7, 9, 12
translate-proc-list, 8, 10
translation-is-correct2, 12
translation-is-correct3, 28
translation-is-correct4, 29
translation-is-correct, 29



user-defined-procp, 7, 9, 12

when-handler, 17, 20, 24, 25
when-labels, 17, 20, 25

33



