;3 Modified to remove the calls of DO-MUTUAL, which are now commented out.
;; The forms below them in capital letters are presumably the ones that DO-MUTUAL
;5 generated.

;3 See also the comment below the DEFN-SK event.

EVENT: Start with the library "gf".

s kskskskokokokok
; Errors
ok Kok ok ok oK

’

DEFINITION:
entry_not_boolean_error (e, sn)
= mk_ error (list (’ the,
’entry,
’specification,

’in,
’scope,
sn,
’is,
’not
7a7
’boolean-valued,
’expression))

)

DEFINITION:

exit_label_error (e, sn)

= mk_ error (list (’ the,
’exit,
’specification,
€,
’in,
’scope,
sn,
’has,
’duplicate,
or,
’unknown,
’exit,
’labels))

DEFINITION:

exit_not_boolean_error (e, sn)

= mk error (list (’ the,
‘exit,
’specification,

’not,

’boolean-valued,
’expression))
s kskokskokokokskokskok koo ok kokok sk sk sk sk ok ok ok
; Parse Tree Constructors

5 Rkskokokokokokokokskok ok ok osk ok ok kok ok kkok ok

DEFINITION:

mk_opt_condition_handlers (z)

= mk_tree (’opt_condition_handlers,
if £ = nil then MK_EMPTY
else z endif)

DEFINITION:
mk_signal stmt (¢)
= mk tree (’signal_statement,
list (mk_reserved _word (’signal), mk_identifier (¢)))

DEFINITION:
mk_elif_into_if_statement ()
= mk_tree (’if_composition,
list (mk_reserved_word (’if),
subtree (z, ’expression),
mk _reserved_word (’then),
subtree (z, ’opt_internal _statements),
subtree (z, ’if _composition_else part),
mk_opt_condition_handlers (nil),
mk reserved_word (’end)))

DEFINITION:
component_selectors (m)
= if rule(m,

prodn (tag (’value modifiers, ’m),
tag (’ component_selectors, ’s)))
then subtree (m, ’component_selectors)
else nil endif

DEFINITION:
extend_name_selectors (ne, cs)
= if root (¢s) # ’component_selectors then nil
elseif rule (ne,
prodn (tag (’name_expression, ’e),
tag (’identifier, ’1i)))
then mk_tree (’name_expression,
list (subtree (ne, ’identifier),
mk_tree (*selector_list, cs)))
elseif rule (ne,
prodn (tag (’name_expression, ’e),
list (tag (*identifier, ’1i),
tag (’selector_list, ’ss))))
then mk_tree (’name_expression,
list (subtree (ne, *identifier),
mk_tree (*selector_list,
list (subtree (ne, ’selector_list), cs))))
else nil endif

DEFINITION:
mk _name_expression (e)
= if root (e) = ’name_expression then e

elseif rule (e,
prodn (tag (’expression, ’e),
tag (’modified_primary_value, ’m)))
then mk name_expression (subtree (e, *modified primary value))
elseif rule (e,
prodn (tag (’modified_primary_value, ’m),
tag (’primary_value, ’p)))
then mk_name_expression (subtree (e, ’primary_value))
elseif rule (e,
prodn (tag (’modified primary value, ’m),
list (tag (’modified _primary_value, ’‘m2),
tag (’value modifiers, ’vm))))
then extend_name_selectors (mk_name_expression (subtree (e,

’modified primary_value)),

component_selectors (subtree (e,
’value modifiers)))
elseif rule (e,

prodn (tag (’primary_value, ’p),
tag (’identifier, ’on)))
then mk name_expression (subtree (e, >identifier))
elseif identifierp (¢) then mk tree (’name_expression, ¢)
else nil endif
3R AR AR KK KKK KA K KKK KKK KK KKK KKK K
; Parse Tree Extraction and Recognizer Functions
SRR A KKK AR KKK KKK AR KKK KKK KKK Kok KKK oo

)

DEFINITION:
case_labels (m)
= if rule(m,
prodn (tag (’ case_composition, ’s),
list (’ case,
tag (’expression, ’e),
tag (> case_composition_body, ’b),
tag (’opt_condition handlers, ’c),
rend))
then case_labels (subtree (m, ’case_composition_body))
elseif rule (m, prodn (tag (’case_composition_body, ’b), ’empty))
then nil
elseif rule (m,
prodn (tag (’ case_composition_body, ’b),
list (’else,
’colon,
tag (’opt_internal _statements, ’ss))))
then nil
elseif rule (m,
prodn (tag (’ case_composition_ body, ’b),
list (*is,
tag (’case_labels, ’cs),
’colon,
tag (’opt_internal _statements, ’ss),
tag (> case_composition_body, ’b2))))
then append (case_labels (subtree (m, ’case_labels)),
case_labels (subtree (m, ’case_composition_body)))
elseif rule (m,
prodn (tag (’ case_labels, ’cs),
tag (’pre_computable_label_expression, ’e)))
then rcons (nil, subtree (m, ’pre_computable_label _expression))
elseif rule (m,
prodn (tag (’ case_labels, ’cs),

list (tag (’ case_labels, ’cs2),
’comma,
tag (’pre_computable_label_expression,
’e))))
then rcons (case_labels (subtree (m, ’case_labels)),
subtree (m, ’pre_computable_label_expression))
else nil endif

DEFINITION:
constant_body (u)
= if rule (u,
prodn (tag (’ constant_declaration, ’d),
list (’ const,
tag (’identifier, ’cn),
’colon,
tag (’type-specification, ’rt),
’colon_equal,
tag (> constant_body, ’b))))
then subtree (u, ’constant_body)
else nil endif

DEFINITION:
id list (d)
= if rule(d,
prodn (tag (’identifier_list, ’is),
list (tag (*identifier_list, ’is2),
’comma,
tag (’identifier, ’1i))))
then rcons (id_list (subtree (d, ’identifier_list)),
id_list (subtree (d, *identifier)))
elseif rule (d,
prodn (tag (’identifier list, ’is),
tag (’identifier, ’1i)))
then rcons (nil, id_list (subtree (d, ’identifier)))
elseif identifierp (d) then gname (d)
else nil endif

DEFINITION:
actual_cargs (m)
= if rule(m,
prodn (tag (’procedure_statement, ’s),
list (tag (*identifier, ’pn),
tag (’arg_list, ’dp),
tag (’opt_actual_condition parameters,

’cp))))

then actual_cargs (subtree (m,
’opt_actual _condition parameters))
elseif rule (m,
prodn (tag (’modified_primary_value, ’m),
list (tag (*modified primary_value, ’m2),
tag (’actual_condition_parameters, ’cp))))
then actual_cargs (subtree (m, ’actual_condition parameters))
elseif rule (m,
prodn (tag (’opt_actual_condition_parameters, ’cp),
’empty)) then nil
elseif rule (m,
prodn (tag (’opt_actual _condition parameters, ’cp),
tag (’actual_condition parameters, ’cp2)))
then actual_cargs (subtree (m, >actual_condition parameters))
elseif rule (m,
prodn (tag (’actual_condition_parameters, ’cp),
list (*unless,
’open_paren,
tag (’ opt_group-name, ’g),
tag (’identifier_list, ’is),
’close_paren)))
then id_list (subtree (m, ’identifier_list))
else nil endif

DEFINITION:
actual_dargs (m)
= if rule (m,
prodn (tag (’procedure_statement, ’s),
list (tag (*identifier, ’pn),
tag (’arg_list, ’dp),
tag (’opt_actual _condition parameters,
ep))))
then actual _dargs (subtree (m, ’arg list))
elseif rule (m,
prodn (tag (’arg-list, ’as),
list (> open_paren,
tag (’value_list, ’vs),
’close_paren)))
then actual_dargs (subtree (m, ’value_list))
elseif rule (m,
prodn (tag (’value_list, ’vs), tag (’expression, ’e)))
then rcons (nil, subtree (m, ’expression))
elseif rule (m,
prodn (tag (’value_list, ’vs),

list (tag (’value_list, ’vs2),
’comma,
tag (’expression, ’e))))
then rcons (actual_dargs (subtree (m, ’value_list)),
subtree (m, ’expression))
else nil endif

DEFINITION:
formal _cargs (u)
= if rule (u,
prodn (tag (’procedure_declaration, ’d),
list (*procedure,
tag (’identifier, ’pn),
tag (’external_data_objects, ’a),
tag (’opt_external conditions, ’c),
’equal,
tag (’ procedure_body, ’b))))
then formal_cargs (subtree (u, ’opt_external_conditions))
elseif rule (u,
prodn (tag (’function_declaration, ’d),
list (’ function,
tag (’identifier, ’fn),
tag (’opt_external_data_objects, ’a),
’colon,
tag (’type-specification, ’rt),
tag (’opt_external conditions, ’c),
’equal,
tag (’ procedure_body, ’b))))
then formal _cargs (subtree (u, ’opt_external_conditions))
elseif rule (u,
prodn (tag (’ opt_external_conditions, ’c), ’empty))
then nil
elseif rule (u,
prodn (tag (’opt_external_conditions, ’c),
list (*unless,
’open_paren,
’cond,
tag (’identifier_list, ’is),
’close_paren)))
then id_list (subtree (u, ’identifier_list))
else nil endif

DEFINITION:
exit_labels (e)

if rule (e, prodn (tag (’opt_exit_specification, ’e), ’empty))
then nil
elseif rule (e,
prodn (tag (’opt_exit_specification, ’e),
list (’exit,
tag (’non_validated specification expression,
'se),
’semi_colon))) then nil
elseif rule (e,
prodn (tag (’opt_exit_specification, ’e),
list (’exit,
tag (’conditional exit_specification,
)
’semi_colon)))
then exit_labels (subtree (e, ’conditional_exit_specification))
elseif rule (e,
prodn (tag (’ conditional _exit_specification, ’c),
list (’ case,
’open_paren,
tag (’case_exit_body, ’e),
’close_paren)))
then exit_labels (subtree (e, ’case_exit_body))
elseif rule (e,
prodn (tag (’ case_exit_body, ’b), tag (’case_exit, ’c)))
then exit_labels (subtree (e, ’case_exit))
elseif rule (e,
prodn (tag (’ case_exit_body, ’b),
list (tag (’ case_exit_body, ’b2),
’semi_colon,
tag (’case_exit, ’c))))
then append (exit_labels (subtree (e, ’case_exit_body)),
exit_labels (subtree (e, ’case_exit)))
elseif rule (e,
prodn (tag (’ case_exit, ’ce),
list (*is,
tag (’case_exit_labels, ’1),
’colon,
tag (’non_validated specification expression,
'¢))))
then exit_labels (subtree (e, ’case_exit_labels))
elseif rule (e,
prodn (tag (’ case_exit_labels, ’1s),
list (tag (*case_exit_labels, ’1s2),
’comma,

tag (’exit_label, ’1))))
then append (exit_labels (subtree (e, ’case_exit_labels)),
exit_labels (subtree (e, ’exit_label)))
elseif rule (e,
prodn (tag (’ case_exit_labels, ’1s),

tag (’exit_label, ’1)))
then exit_labels (subtree (e, ’exit_label))
elseif rule (e, prodn (tag (’exit_label, ’1), tag (’identifier, ’n)))
then exit_labels (subtree (e, ’identifier))
elseif rule (e, prodn (tag (’exit_label, ’1), normal))
then list (’normal)
elseif identifierp (¢) then list (gname (e))
else nil endif

DEFINITION:
exit_spec (u)
= if rule (u,
prodn (tag (’procedure_declaration, ’d),
list (*procedure,
tag (’identifier, ’pn),
tag (’external _data objects, ’a),
tag (’opt_external conditions, ’c),
’equal,
tag (’procedure_body, ’b))))
then exit_spec (subtree (u, >procedure_body))
elseif rule (u,
prodn (tag (’function_declaration, ’d),
list (*function,
tag (’identifier, ’fn),
tag (’opt_external data objects, ’a),
’colon,
tag (’type_specification, ’rt),
tag (’opt_external conditions, ’c),
’equal,
tag (’procedure_body, ’b))))
then exit_spec (subtree (u, >procedure_body))
elseif rule (u, prodn (tag (’procedure_body, ’b), ’pending))
then nil
elseif rule (u,
prodn (tag (’ procedure_body, ’b),
list (*begin,
tag (’external operational specification,
res),
tag (’opt_internal _environment, ’iv),

tag (> opt_keep_specification, ’k),
tag (’opt_internal_statements, ’st),
rend))
then exit_spec (subtree (u,
’external operational_specification))
elseif rule (u,
prodn (tag (’external operational specification,
's),
list (tag (’opt_entry_specification, ’e),
tag (’opt_exit_specification, ’x))))
then subtree (u, ’opt_exit_specification)
elseif rule (u, prodn (tag (’opt_exit_specification, ’e), ’empty))
then u
elseif rule (u,
prodn (tag (’opt_exit_specification, ’e),
list (’exit,
tag (’non_validated specification expression,
'se),
’semi_colon))) then u
elseif rule (u,
prodn (tag (’opt_exit_specification, ’e),
list (?exit,
tag (’conditional exit_specification,
<),
’semi_colon))) then u
else nil endif

DEFINITION:
handler (m, c¢)
= if rule (m, prodn (tag (’opt_condition_handlers, ’c), ’empty))
then nil
elseif rule (m,
prodn (tag (’opt_condition handlers, ’c),
list (*when, tag (’opt_handler_list, ’hs))))
then handler (subtree (m, ’opt_handler_list), ¢)
elseif rule (m, prodn (tag (’opt_handler_list, ’hs), ’empty))
then nil
elseif rule (m,
prodn (tag (’opt-handler_list, ’hs),
tag (*handler_list, *hs2)))
then handler (subtree (m, *handler_list), ¢)
elseif rule (m, prodn (tag (’handler_list, ’hs), tag (*handler, ’h)))
then handler (subtree (m, *handler), c)
elseif rule (m,

10

prodn (tag (*handler_list, ’hs),
list (tag (*handler_list, ’hs2),
tag (*handler, ’h))))
then let » be handler (subtree (m, *handler_list), c)
in
if » = nil then handler (subtree (m, *handler), c)
else r endif endlet
elseif rule (m,
prodn (tag (’handler, ’h),
list (*is,
tag (’identifier_list, ’cs),
’colon,
tag (’opt_internal statements, ’s))))
then if ¢ € id_list (subtree (m, *identifier_list))
then subtree (m, ’opt_internal_statements)
else nil endif
else nil endif

DEFINITION:
handler_labels (m)
= if rule (m, prodn (tag (’opt_condition_handlers, ’c), ’empty))
then nil
elseif rule (m,
prodn (tag (’opt_condition_handlers, ’c),
list (’when, tag (’opt_handler_list, ’hs))))
then handler_labels (subtree (m, ’opt_handler_list))
elseif rule (m, prodn (tag (’ opt_handler_list, ’hs), ’empty))
then nil
elseif rule (m,
prodn (tag (’opt_handler_list, ’hs),
tag (*handler_list, ’hs2)))
then handler_labels (subtree (m, *handler_list))
elseif rule (m, prodn (tag (*handler_list, ’hs), tag (’handler,
then handler_labels (subtree (m, *handler))
elseif rule (m,
prodn (tag (*handler_list, ’hs),
list (tag (*handler_list, ’hs2),
tag (*handler, ’h))))
then append (handler_labels (subtree (m, *handler_list)),
handler_labels (subtree (m, *handler)))
elseif rule (m,
prodn (tag (’handler, ’h),
list (?1s,
tag (’identifier_list, ’cs),

11

’colon,

tag (’opt_internal_statements, ’s))))
then id_list (subtree (m, >identifier_list))
else nil endif

DEFINITION:
internal_initial _value_exp (m)

if rule (m,
prodn (tag (’ internal_data or_condition_objects, ’iv),
list (tag (’access_specification, ’a),
tag (’identifier list, ’is),
’colon,
tag (’type_specification, ’ts),
tag (’opt_internal_initial_value, ’v),
’semi_colon)))
then internal initial_value_exp (subtree (m,
’opt_internal initial value))
elseif rule (m,
prodn (tag (’opt_internal_initial_value, ’v),
’empty)) then nil
elseif rule (m,
prodn (tag (’opt_internal _initial value, ’v),
list (*colon_equal, tag (’expression, ’e))))
then subtree (m, ’expression)
else nil endif

DEFINITION:
keep_spec (u)

if rule (u,
prodn (tag (’procedure_declaration, ’d),
list (*procedure,
tag (’identifier, ’pn),
tag (’external_data_objects, ’a),
tag (’opt_external conditions, ’c),
’equal,
tag (’procedure_body, ’b))))
then keep_spec (subtree (u, ’procedure_body))
elseif rule (u,
prodn (tag (’function_declaration, ’d),
list (’ function,
tag (’identifier, ’fn),
tag (’opt_external data objects, ’a),
’colon,
tag (’type_specification, ’rt),

12

tag (’opt_external conditions, ’c),
’equal,
tag (’procedure_body, ’b))))
then keep_spec (subtree (u, *procedure_body))
elseif rule (u,
prodn (tag (’procedure_body, ’b),
list (’begin,
tag (’external operational specification,
Yes),
tag (’opt_internal_environment, ’iv),
tag (> opt_keep_specification, ’k),
tag (’opt_internal _statements, ’st),
»end)))
then keep_spec (subtree (u, ’opt_keep_specification))
elseif rule (u, prodn (tag (’opt_keep_specification, ’k), ’empty))
then MK_TRUE_EXPRESSION
elseif rule (u,
prodn (tag (’ opt _keep_specification, k),
list (’keep,
tag (’non_validated_specification_expression,
’se),
’semi_colon)))
then keep_spec (subtree (u,
’non validated_specification_expression))
elseif rule (u,
prodn (tag (’non_validated_specification_expression,
’se),
list (> open_paren,
tag (’proof directive, ’d),
tag (’expression, ’e),
’close_paren)))

Vv rule (u,
prodn (tag (’non_validated_specification_expression,
’se),
list (tag (’proof_directive, ’d),
tag (’expression, ’e))))
Vv rule (u,
prodn (tag (’non_validated _specification_expression,

’se),
tag (’expression, ’e)))
then subtree (u, ’expression)
else nil endif

DEFINITION:

13

if_statement_else_part (s)

= if rule(s,
prodn (tag (’if composition, ’s),
list (°if,
tag (’expression, ’b),
’then,

tag (’opt_internal_statements, ’ss),
tag (’if _composition_else part, ’ep),
tag (’opt_condition handlers, ’cs),
rend))
then if_statement_else_part (subtree (s,
’if composition_else part))
elseif rule (s,
prodn (tag (’if composition_else_part, ’ep),
’empty)) then nil
elseif rule (s,
prodn (tag (’if _composition_else_part, ’ep),
list (’else,
tag (’opt_internal_statements, ’ss))))
then subtree (s, ’opt_internal_statements)
elseif rule (s,
prodn (tag (’if _composition_else_part, ’ep),
list (? elif,
tag (’expression, ’b),
’then,
tag (’opt_internal _statements, ’ss),
tag (’if_composition_else part, ’ep2))))
then mk elif_into_if_statement (s)
else nil endif

DEFINITION:
new_name_arg (m)
= if rule(m,
prodn (tag (’move_statement, ’s),
list (*move,
tag (’removable_component, ’c),
tag (> component_destination, ’d))))
then new_name_arg (subtree (m, ’ component_destination))
elseif rule (m,
prodn (tag (’ component_destination, ’d),
tag (’new_dynamic_variable_component, ’dc)))
then new_name_arg (subtree (m, ’new_dynamic_variable_component))
elseif rule (m,
prodn (tag (’ component_destination, ’d),

14

list (’to, tag (’name_expression, ’ne))))
then subtree (m, ’name_expression)
elseif rule (m,
prodn (tag (’new_statement, ’s),
list (’new,
tag (’expression, ’e),
tag (’new_dynamic_variable_component,
'dc)))
then new_name_arg (subtree (m, ’new_dynamic_variable_component))
elseif rule (m,
prodn (tag (’new_dynamic_variable_component, ’dc),
list (’into, tag (’name_expression, ’ne))))

vV rule (m,
prodn (tag (’new_dynamic_variable_component,
’dc),
list (* into,
’set,
tag (’name_expression, ’ne))))
vV rule (m,
prodn (tag (’new_dynamic_variable_component,
’dc),
list (*before,
tag (’name_expression, ’ne))))
vV rule (m,
prodn (tag (’new_dynamic_variable_component,
’dc),
list (*before,
’seq,
tag (’name_expression, ’ne))))
vV rule (m,
prodn (tag (’new_dynamic_variable_component,
’dc),
list (’behind,
tag (’name_expression, ’ne))))
vV rule (m,
prodn (tag (’new_dynamic_variable_component,
’dc),
list (*behind,
’seq,

tag (’name_expression, ’ne))))
then subtree (m, ’name_expression)
else nil endif

DEFINITION:

15

remove_exp_arg (m)
= if rule (m,
prodn (tag (’move_statement, ’s),
list (*move,
tag (’removable_component, ’c),
tag (> component_destination, ’d))))
then remove_exp_arg (subtree (m, ’removable_component))
elseif rule (m,
prodn (tag (’remove_statement, ’s),
list (’remove, tag (’removable_component, ’c))))
then remove_exp_arg (subtree (m, ’removable_component))
elseif rule (m,
prodn (tag (’removable_component, ’c),
list (*element,
tag (’expression, ’e),
’from,
’set,
tag (’name_expression, ’ne))))
then subtree (m, ’expression)
elseif rule (m,
prodn (tag (’removable_component, ’c),
tag (’name_expression, ’e))) then nil
else nil endif

DEFINITION:
remove_name_arg (m)
= if rule (m,
prodn (tag (’move_statement, ’s),
list (*move,
tag (’removable_component, ’c),
tag (> component_destination, ’d))))
then remove_name_arg (subtree (m, ’removable_component))
elseif rule (m,
prodn (tag (’remove_statement, ’s),
list (’remove, tag (’removable_component, ’c))))
then remove_name_arg (subtree (m, ’removable_component))
elseif rule (m,
prodn (tag (’removable_component, ’c),
list (’element,
tag (’expression, ’e),
’from,
’set,
tag (’name_expression, ’ne))))
then subtree (m, ’name_expression)

16

elseif rule (m,
prodn (tag (’removable_component, ’c),
tag (’name_expression, ’e)))
then subtree (m, ’name_expression)
else nil endif

DEFINITION:
procedure_body (d)
= if rule(d,
prodn (tag (’procedure_declaration, ’d),
list (’procedure,
tag (’identifier, ’pn),
tag (’external_data_objects, ’a),
tag (’opt_external conditions, ’c),
’equal,
tag (’procedure_body, ’b))))
vV rule(d,
prodn (tag (’function_declaration, ’d),
list (*function,
tag (’identifier, ’fn),
tag (’opt_external data objects, ’a),
’colon,
tag (’type_specification, ’rt),
tag (’opt_external_conditions, ’c),
’equal,
tag (’procedure_body, ’b))))
then subtree (d, ’procedure_body)
else nil endif

3k 3k 3k sk ok >k 3k Sk ok sk >k >k >k Sk sk ok >k >k 3k 3k sk ok ok >k 3k Sk ok sk >k >k 3k Sk Sk ok >k >k 3k K sk ok >k 5k 3k Sk ok sk >k >k 3k Sk 3k ok %k 3k Sk 5k 5k >k >k >k k 5k 5k >k %k >k 3k 3k >k ok %k %k k >k >k k

; THE STATE

>k >k >k 3k 5k ok 5k ok 5k 5k >k >k >k >k %k >k >k >k 5k 5k 5k 5k 5k >k >k %k >k %k >k >k >k >k 5k 5k 5k 5k %k >k >k %k %k >k >k >k >k 5k 5k 5k %k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k %k >k >k >k >k >k >k >k >k

; The state is a marked object <mark , map>. The mark is either NIL or ’IND,
; which indicates an indeterminate state. The map is a name-value mapping.

; It maps variables (and constants) to their (marked typed) values. In

; addition, it contains the special components:

; entry - the (marked typed) value resulting from evaluation of the
; entry specification on the initial state

; exit - the (marked typed) value resulting from evaluation of the
; exit specification on the final state

17

5 keep - the (marked typed) value that is the conjunction of results

; from all evaluations of the keep specification

; assert - the (marked typed) value that is the conjunction of results
; from all evaluations of assert specifications

; keep™ - the parse tree for the keep specification
; cond™ - the currently active condition
s result™ - the (marked typed) value resulting from expression evaluation

; var - a name-value mapping from variable names, arguments and locals,

; to locall|formal

; const - a name-value mapping from constant names, arguments and locals,
; to local|formal

; cond - a name-value mapping from condition names, arguments and locals,
; to locall|formal

DEFINITION:
DEFAULT_STATE
= marked (nil,

’cond”, ’normal),
’result”, GIZERO),

(
(
(
(
cons (’keep”, MK_TRUE_EXPRESSION),
(
(
(’var, nil),

(

(

>((routineerror . formal)
(spaceerror . formal)))))

)

; Extraction of Components from the State

)

DEFINITION: map (s) = object (s)

DEFINITION: state_componentp (k, s) = in_map (map (s), k)
DEFINITION: state_component (k, s) = mapped_value (map (s), k)
DEFINITION: entry (s) = mapped_value (map (s), ’entry)

DEFINITION: exit (s) = mapped_value (map (s), ’exit)

18

DEFINITION: keep (s) = mapped_value (map (s), *keep)
DEFINITION: assert (s) = mapped_value (map (s), *assert)
DEFINITION: keep™ (s) = mapped_value (map (s), *keep™)
DEFINITION: cond” (s) = mapped_value (map (s), >cond™)
DEFINITION: condition_normal (s) = (cond™ (s) = ’normal)
DEFINITION: condition_non_normal (s) = (- condition_normal (s))

DEFINITION:
normal_state (s) = (determinate (s) A condition_normal (s))

DEFINITION: result™ (s) = mapped_value (map (s), *result”™)

DEFINITION:
result”_list (ss)
= if ss ~ nil then nil
else cons (result™ (car (ss)), result™ _list (cdr (ss))) endif

DEFINITION: var (s) = mapped_value (map (s), ’var)
DEFINITION: const (s) = mapped_value (map (s), ’const)
DEFINITION: cond+ (s) = mapped_value (map (s), ’cond)

DEFINITION:
variablep (id, s) = (state_.componentp (id, s) A in_map (var (s), id))

DEFINITION: conditionp (id, s) = in_map (cond+ (s), id)

DEFINITION:
all_conditionsp (ids, s)
= if ids ~ nil then t
else conditionp (car (ids), s) A all_conditionsp (cdr (ids), s) endif

DEFINITION: type_of (n, s) = type (state_.component (n, s))
DEFINITION: mode (td) = root (¢d)

DEFINITION:

locals (cs)

= if ¢s ~nil then nil
elseif cdar (¢s) = >Llocal then cons (car (¢s), locals (cdr (¢s)))
else locals (cdr (¢s)) endif

19

DEFINITION: local_vars (s) = locals (var (s))
DEFINITION: local_consts (s) = locals (const (s))

DEFINITION: local_conds (s) = locals (cond+ (s))

; Setting Components of the State

>

DEFINITION: mark_state_indeterminate (s) = marked (’ ind, map (s))

DEFINITION:
store_value (k, v, s) = marked (mark (s), add_to_map (map (s), k, v))

DEFINITION: set_condition (s, ¢) = store_value (’cond”, ¢, s)

DEFINITION:

store_result”™ (v, s)

= if determinate (v) then store_value (’result~, v, s)
else set_condition (s, >routineerror) endif

DEFINITION:
all_determinate (vs)
= if vs ~ nil then vs = nil
else determinate (car (vs)) A all_determinate (cdr (vs)) endif

DEFINITION:
reset_leave_to_normal (s)
= if cond” (s) = ’leave then set_condition (s, normal)

else s endif

DEFINITION:
record_assertion (a, s) = store_value (’assert, gand (assert (s), a), s)

DEFINITION:
store_cond (id, sc, s) = store_value (’cond, cons (cons (id, sc), cond+ (s)), s)

DEFINITION:
note_conds (cs, sc, $)
= if ¢s ~nil then s
else store_cond (car (¢s), sc, note_conds (cdr (¢s), sc, s)) endif

DEFINITION:
store_const (id, v, sc,)
= store_value (’ const, cons (cons (id, sc), const (s)), store_value (id, v, s))

20

DEFINITION:
store_var (id, v, sc, s)
= store_value (’var, cons (cons (id, sc), var (s)), store_value (id, v, $))

>

; Deleting Components from the State

)

DEFINITION:
deallocate (k, s) = marked (mark (s), remove (assoc (k, map (s)), map (s)))

DEFINITION:
deallocate_vars (vs, s)
= if vs ~ nil then s
else deallocate_vars (cdr (vs),
deallocate (caar (vs),
store_value (’var,
remove (car (vs)
var (s))
s))) endif

)
)

DEFINITION:
deallocate_consts (cs, s)
= if ¢s ~nil then s
else deallocate_consts (cdr (cs),
deallocate (caar (cs),
store_value (’ const,
remove (car (cs),
const (s)),
s))) endif

DEFINITION:
deallocate_conds (cs, s)
= if ¢s ~ nil then s
else deallocate_conds (cdr (¢s),
store_value (’ cond,
remove (car (cs), cond+ (s)),
s)) endif

>

; State Equality

)

21

DEFINITION:
scomp_equal (k, v1, v2)
= if k € ’(var const cond) then set_equal (v, v2)
elseif k = ’cond™ then vl = v2
elseif k = ’keep” then tree_equal (v1, v2)
else gtruep (gequal (v1, v2)) A (type (v1) = type (v2)) endif

DEFINITION:
ssubmap (m1, m2)
= if mI ~nil then t
else in_map (m2, caar (m1))
A scomp_equal (caar (m1),
cdar (m1),
mapped_value (m2, caar (m1)))
A ssubmap (cdr (m1), m2) endif

DEFINITION:
smap_equal (m1, m2) = (ssubmap (m1, m2) A ssubmap (m2, m1))

DEFINITION:
sequal (s1, s2)
= if s1 =s2 thent
else (mark (s1) = mark (s2)) A smap_equal (map (s1), map (s2)) endif

5 RKRKOK K %k %k %k %k %k %k Xk K K K 3k 5k 5k %k k

I
; Constraint Support
3 kRskskokokokskskok ok ok sk sk ok sk ok sk ok

;; The following was a DEFN-SK+ form, but the three events that
;; would presumably be generated after the DEFN-SK have been
;; inserted below in capital letters.

DEFINITION:
implementation_constrained (s, s0)
— Vk((k# ’cond”)
— (mapped_value (map (s1), k) = mapped_value (map (s0), k)))

EVENT: Enable implementation_constrained; name this event ‘implementation_constrained-
off’.

THEOREM: implementation_constrained-suff

((k(s0, s1) # ’cond™)

— (mapped_value (map (s1), k (s0, s1)) = mapped_value (map (s0), k (s0, s1))))
— implementation_constrained (s1, s0)

22

THEOREM: implementation_constrained-necc
(= ((k # >cond”)

— (mapped_value (map (s1), k) = mapped_value (map (s0), k))))
— (= implementation_constrained (s1, s0))

DEFINITION:
state_check (ss, s0)
= if (ss = nil) V (- normal state (s0)) then s0
elseif normal_state (car (ss)) then state_check (cdr (ss), s0)
else set_condition (marked (mark (car (ss)), map (s0)), cond™ (car (ss))) endif

EVENT: Disable sequal.
EVENT: Disable store_value.
EvENT: Disable cond-
EVENT: Enable determinate.

5 KKKk Ok %k %k %k ok ok k kK kK k

’

; Literal Values

5 Rokskokokokokok ok ok ok ok ok ok k ok

CONSERVATIVE AXIOM: p_gfalse_intro
let s1 be p_gfalse (s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result™, GFALSE, s0))
A determinate (GFALSE)))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gfalse.

DEFINITION:

gpf_false (s0)

= if normal_state (s0) then p_gfalse (s0)
else s0 endif

23

CONSERVATIVE AXIOM: p_gtrue_intro
let s be p_gtrue (s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s!, store_value (*result”™, GTRUE, s0))
A determinate (GTRUE)))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gtrue.

DEFINITION:

gpf_true (s0)

= if normal state (s0) then p_gtrue (s0)
else s0 endif

CONSERVATIVE AXIOM: p_minteger_intro
let sI be p-_minteger (e, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result™, minteger (e), s0))
A determinate (minteger (¢))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_minteger.

DEFINITION:

gpf_minteger (e, s)

= if normal_state (s) then p_minteger (e, s)
else s endif

CONSERVATIVE AXIOM: p_gchar_intro
let s1 be p_gchar (e, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (’result”, gchar (e), s0))
A determinate (gchar (e))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

24

Simultaneously, we introduce the new function symbol p_gchar.

DEFINITION:

gpf_gchar (e, s)

= if normal state (s) then p_gchar (e, s)
else s endif

CONSERVATIVE AXIOM: p_gstring_seq-intro
let sI be p_gstring_seq (e, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result”, gstring_seq(e), s0))
A determinate (gstring_seq (e))))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gstring_seq.

DEFINITION:

gpf_gstring_seq (e, $)

= if normal state (s) then p_gstring seq (e, s)
else s endif

s kokskskokokokokskokokokok sk ok ok ok ok
; Gypsy Operations
s kkokskskokkokskoskok ko sk sk ok ko

EVENT: Disable array_get.

CONSERVATIVE AXIOM: p_array_get_intro
let sI be p.array_get (a, i, td, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (’result”, array_get (a, i, td), s0))
A determinate (array_get (a, i, td))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

25

Simultaneously, we introduce the new function symbol p_array_get.

DEFINITION:
gpf_array_get (sa, si, s0)
= let r be state_check (list (sa, si), s0)
in
if normal state (r)
then p_array_get (result”™ (sa), result™ (si), type (result™ (sa)), s0)
else r endif endlet

EvVENT: Disable mapping_get.

CONSERVATIVE AXIOM: p_mapping_get_intro
let sI be p_mapping get (m, d, td, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (’result™, mapping_get (m, d, td), s0))
A determinate (mapping_get (m, d, td))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_mapping_get.

DEFINITION:
gpf_mapping_get (sm, sd, s0)
= let r be state_check (list (sm, sd), s0)
in
if normal state (r)
then p_mapping_get (result™ (sm),
result” (sd),
type (result™ (sm)),
s0)
else r endif endlet

EVENT: Disable record_get.

CONSERVATIVE AXIOM: p_record_get_intro
let sI be p.record_get (r, fn, td, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result”, record_get (r, fn, td), s0))
A determinate (record_get (r, fn, td))))

26

A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_record_get.

DEFINITION:
gpf record_get (s, sfn, s0)
let r be state_check (list (sr, sfn), s0)
in
if normal state (1)
then p_record_get (result™ (sr),
result”™ (sfn),
type (result”™ (sr)),
s0)
else r endif endlet

EvVENT: Disable sequence_get.

CONSERVATIVE AXIOM: p_sequence_get_intro
let s be p_sequence_get (s, i, td, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result”, sequence_get (s, i, td), s0))
A determinate (sequence_get (s, i, td))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_sequence_get.

DEFINITION:
gpf sequence_get (ss, si, s0)
= let r be state check (list (ss, si), s0)
in
if normal state (r)
then p_sequence_get (result™ (ss),
result” (si),
type (result”™ (ss)),
s0)
else r endif endlet

27

EVENT: Disable state_check.
EvENT: Disable normal_state.
EVENT: Disable mode.

EVENT: Disable type.

EVENT: Disable result~

EvENT: Disable gpf_array_get.
EVENT: Disable gpf_record_get.
EvENT: Disable gpf_mapping_get.
EVENT: Disable gpf_sequence_get.
EVENT: Disable store_result:
EVENT: Disable not_selectable_error.
EVENT: Disable default_value.
EVENT: Disable integer_desc.
EVENT: Disable *1*integer_desc.

;5 >> It might be better to just constrain this and forget the four defn’s
;3 above.

DEFINITION:

gpf_select_op (sv, ss, s0)

= let r be state_check (cons (sv, ss), s0)
in
if - normal state (r) then r

28

elseif ss ~ nil then sv
else case on mode (type (result™ (sv))):
case = array
then gpf_select_op (gpf_array_get (sv, car (ss), s0),
cdr (ss),
s0)
case = record
then gpf_select_op (gpf_record get (sv, car (ss), s0),
cdr (ss),
s0)
case = mapping
then gpf_select_op (gpf_mapping_get (sv, car (ss), s0),
cdr (ss),
s0)
case = sequence
then gpf_select_op (gpf_sequence_get (sv, car (ss), s0),
cdr (ss),
s0)
otherwise store_result™ (marked (not_selectable_error (result™ (sv)),
default_value (INTEGER_-DESC)),
s0) endcase endif endlet

EVENT: Disable subsequence_get.

CONSERVATIVE AXIOM: p_subsequence_get_intro
let sI be p_subsequence_get (s, lo, hi, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1,
store_value (’result”, subsequence_get (s, lo, hi), s0))
A determinate (subsequence_get (s, lo, hi))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_subsequence_get.

DEFINITION:

29

pf subsequence_get (ss, slo, shi, s0)
= let r be state_check (hst (ss slo, shi), s0)

in

if normal state (r)

then p_subsequence_get (result™ (ss),
result” (slo),
result™ (shi),
s0)

else r endif endlet

EvVENT: Disable array_put.

CONSERVATIVE AXIOM: p_array_put_intro
let sI be p.array_put (a, i, v, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s!, store_value (*result”, array_put (a, i, v), s0))
A determinate (array_put (a, i, v))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_array_put.

DEFINITION:
gpf_array_put (sa, si, sv, s0)
= let r be state_check (list (sa, si, sv), s0)
in
if normal state (r)
then p_array_put (result”™ (sa), result™ (si), result™ (sv), s0)
else r endif endlet

EVENT: Disable record_put.
CONSERVATIVE AXIOM: p_record_put_intro
let s1 be p_record_put (r, fn, v, s0)

in
((determinate (s1) A (cond™ (s1) = ’normal))

30

— (sequal (s1, store_value (*result”, record_put (r, fn, v), s0))
A determinate (record_put (7, fn, v))))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_record_put.

DEFINITION:
gpf_record_put (sr, sfn, sv, s0)
= let r be state_check (list (sr, sfn, sv), s0)
in
if normal state (r)
then p_record_put (result™ (sr), result™ (sfn), result”™ (sv), s0)
else r endif endlet

EVENT: Disable mapping_put.

CONSERVATIVE AXIOM: p_mapping_put_intro
let s be p_mapping_put (m, d, v, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (’result”™, mapping_put (m, d, v), s0))
A determinate (mapping_put (m, d, v))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_mapping_put.

DEFINITION:
gpf_mapping_put (sm, sd, sv, s0)
= let r be state_check (list (sm, sd, sv), s0)
in
if normal state (r)
then p_mapping_put (result™ (sm), result™ (sd), result™ (sv), s0)
else r endif endlet

EVENT: Disable sequence_put.

CONSERVATIVE AXIOM: p_sequence_put_intro
let sI be p_sequence_put (s, i, v, s0)

31

in
((determinate (s1) A (cond™ (sf) = ’normal))
— (sequal (s1, store_value (*result”, sequence_put (s, i, v), s0))
A determinate (sequence_put (s, i, v))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_sequence_put.

DEFINITION:
gpf_sequence_put (ss, si, sv, s0)
= let r be state_check (list (ss, si, sv), s0)
in
if normal state (r)
then p_sequence_put (result™ (ss), result™ (si), result”™ (sv), s0)
else r endif endlet

DEFINITION:
gpf_put_op (sbv, ss, sv, s0)
= let r be state_check (cons (sbv, rcons (ss, sv)), s0)
in
if = normal state (r) then r
elseif ss ~ nil then store_result™ (result™ (sv), s0)
else case on mode (type (result™ (sbv))):
case = array
then gpf_array_put (sbv,

car (ss),
gpf_put_op (gpf_array_get (sbv,
car (ss),
s0),
cdr (ss),
s,
s0),
s0)
case = record
then gpf_record_put (sbv,
car (ss),
gpf_put_op (gpf_record_get (sbv,
car (ss),
s0),
cdr (ss),
sv,
s0),

32

s0)
case = mapping
then gpf_mapping_put (sbv,

car (ss),
gpf_put_op (gpf_mapping_get (sbv,
car (ss),
s0),
cdr (ss),
sv,
s0),
s0)
case = sequence
then gpf_sequence_put (sbv,
car (ss),
gpf_put_op (gpf_sequence_get (sbv,
car (ss),
s0),
cdr (ss),
sv,
s0),
s0)

otherwise store_result”™ (marked (component_assign_error (result”™ (sbv)),
default_value (INTEGER_DESC)),
s0) endcase endif endlet

EVENT: Disable gmapomit.

CONSERVATIVE AXIOM: p_gmapomit_intro
let sI be p_gmapomit (m, i, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result”, gmapomit (m, ©), s0))
A determinate (gmapomit (m, i))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gmapomit.
DEFINITION:
gpf_gmapomit (sm, si, s0)

= let r be state_check (list (sm, si), s0)
in

33

if normal state (r) then p_gmapomit (result™ (sm), result”™ (si), s0)
else r endif endlet

EVENT: Disable gseqomit.

CONSERVATIVE AXIOM: p_gseqomit_intro
let sI be p_gseqomit (s, i, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (’result™, gseqomit (s, 7), s0))
A determinate (gseqomit (s, 7))))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gseqomit.

DEFINITION:

gpf_gseqomit (ss, si, s0)

= let r be state_check (list (ss, si), s0)
in
if normal state (r) then p_gseqomit (result™ (ss), result™ (si), s0)
else r endif endlet

EVENT: Disable gmap_insert.

CONSERVATIVE AXIOM: p_gmap_insert_intro
let s be p_gmap_insert (m, d, v, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result”, gmap_insert (m, d, v), s0))
A determinate (gmap_insert (m, d, v))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gmap_insert.
DEFINITION:
gpf_gmap_insert (sm, sd, sv, s0)

= let r be state_check (list (sm, sd, sv), s0)
in

34

if normal state (1)
then p_gmap_insert (result™ (sm), result™ (sd), result™ (sv), s0)
else r endif endlet

EVENT: Disable gseq_insert_before.

CONSERVATIVE AXIOM: p_gseq-insert_before_intro
let sI be p_gseq_insert_before (s, i, v, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1,
store_value (’result”, gseq-insert_before (s, i, v), s0))
A determinate (gseq-insert_before (s, i, v))))

A ((determinate (s1) A (cond™ (sI) # ’normal))

— (implementation_constrained (s1, s0)

A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gseq_insert_before.

DEFINITION:
gpf_gseq_insert_before (ss, si, sv, s0)
= let r be state_check (list (ss, si, sv), s0)
in
if normal state (r)
then p_gseq_insert_before (result™ (ss),
result”™ (s1),
result”™ (sv),
s0)
else r endif endlet

EVENT: Disable gseq_insert_behind.

CONSERVATIVE AXIOM: p_gseq_insert_behind_intro
let sI be p-gseq-insert_behind (s, i, v, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1,
store_value (’result”, gseq_insert_behind (s, i, v), s0))
A determinate (gseq-insert_behind (s, i, v))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

35

Simultaneously, we introduce the new function symbol p_gseq_insert_behind.

DEFINITION:
pf gseq-insert_behind (ss, si, sv, s0)
= let r be state_check (llbt (ss st, sv), s0)
in
if normal state (r)
then p_gseq-insert_behind (result™ (ss),
result” (si),
result™ (sv),
s0)
else r endif endlet

EVENT: Disable gseq.

CONSERVATIVE AXIOM: p_gseq_intro
let s be p_gseq (es, td, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (sI, store_value (*result”, gseq (es, td), s0))
A determinate (gseq (es, td))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gseq.

DEFINITION:

gpf gseq (ses, td, s0)

= let r be state_check (ses, s0)
in
if normal_state () then p_gseq (result™_list (ses), td, s0)
else r endif endlet

EVENT: Disable gset.

CONSERVATIVE AXIOM: p_gset_intro
let sI be p_gset (es, td, s0)

36

in
((determinate (s1) A (cond™ (sf) = ’normal))
— (sequal (s1, store_value (*result”, gset (es, td), s0))
A determinate (gset (es, td))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gset.

DEFINITION:

gpf_gset (ses, td, s0)

= let r be state_check (ses, s0)
in
if normal_state (r) then p_gset (result™_list (ses), td, s0)
else r endif endlet

EvVENT: Disable grange_elements.

CONSERVATIVE AXIOM: p_grange_elements_intro
let sI be p_grange_elements (lo, hi, s0)
in
((determinate (s1) A (cond™ (sf) = ’normal))
— (sequal (s1, store_value (*result”, grange_elements (lo, hi), s0))
A all_determinate (grange_elements (lo, hi))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_grange_elements.

DEFINITION:
range_element_state_list2 (es, s)
= if es ~ nil then nil
else cons (store_result™ (car (es), s),
range_element_state_list2 (cdr (es), s)) endif

DEFINITION:

range_element_state_list (s)

= if normal state (s) then range_element_state_list2 (result™ (s), s)
else list (s) endif

37

DEFINITION:
gpf_grange_elements (slo, shi, s0)
= let r be state_check (list (slo, shi), s0)
in
if normal state (1)
then range_element_state_list (p_grange_elements (result”™ (slo),
result™ (shi),
50))
else r endif endlet

DEFINITION:
gpf_gset_or_seq (m, ses, td, s0)
= if rule (m, prodn (tag (’ set_or_seqmark, ’m), list (’set, >colon)))
then gpf_gset (ses, td, s0)
elseif rule (m,
prodn (tag (’set_or_seq mark, ’m), list (’seq, ’colon)))
then gpf_gseq (ses, td, s0)
else gpf_gseq (ses, td, s0) endif

EvVENT: Disable gminus.

CONSERVATIVE AXIOM: p_gminus_intro
let s be p_gminus (v, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result”, gminus (v), s0))
A determinate (gminus (v))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gminus.

DEFINITION:

gpf_gminus (sv, s0)

= let r be state_check (list (sv), s0)
in
if normal state (r) then p_gminus (result™ (sv), s0)
else r endif endlet

38

EvVENT: Disable gnot.

CONSERVATIVE AXIOM: p_gnot_intro
let s be p_gnot (v, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result”, gnot (v), s0))
A determinate (gnot (v))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s, s0)

A (cond™ (s1)

€ ’(routineerror spaceerror)))) endlet
Simultaneously, we introduce the new function symbol p_gnot.

DEFINITION:
pf gnot (sv, s0)
let r be state_check (list (sv), s0)
in
if normal_state (r) then p_gnot (result™ (sv), s0)
else r endif endlet

DEFINITION:

gpf apply_unary_op (op, sv, s0)

= if rule (op, prodn (tag(unary_operator, ’op), ’minus))
then gpf_gminus (sv, s0)
elseif rule (op, prodn (tag (’unary_operator, ’op), ’not))
then gpf_gnot (sv, s0)
else mark state_indeterminate (s0) endif

EVENT: Disable gequal.

CONSERVATIVE AXIOM: p_gequal_intro
let sI be p_gequal (v, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s, store_value (*result”, gequal (v1, v2), s0))
A determinate (gequal (v1, v2))))
A ((determinate (s1) A (cond™ (s1) # ’normal))

39

— (implementation_constrained (s1, s0)
A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gequal.

DEFINITION:

gpf gequal (svl, sv2, s0)

= let r be state_check (list (sv!, sv2), s0)
in
if normal_state () then p_gequal (result™ (svl), result™ (sv2), s0)
else r endif endlet

EVENT: Disable gne.

CONSERVATIVE AXIOM: p_gne_intro
let sI be p_gne(vl, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result”, gne (v1, v2), s0))
A determinate (gne (v1, v2))))

A ((determinate (s1) A (cond™ (sI) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gne.

DEFINITION:
pf gne (svl, sv2, s0)
= let r be state_check (list (sv1, sv2), s0)
in
if normal_state () then p_gne (result™ (svl), result™ (sv2), s0)
else r endif endlet

EVENT: Disable glt.

CONSERVATIVE AXIOM: p_glt_intro
let s1 be p.glt(vl, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s, store_value (’result™, glt (vl, v2), s0))
A determinate (glt (v1, v2))))
A ((determinate (s1) A (cond™ (s1) # ’normal))

40

— (implementation_constrained (s1, s0)
A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_glt.

DEFINITION:

gpf glt (svl, sv2, s0)

= let r be state_check (list (sv!, sv2), s0)
in
if normal_state () then p_glt (result™ (svl), result™ (sv2), s0)
else r endif endlet

EVENT: Disable gor.

CONSERVATIVE AXIOM: p_gor_intro
let s1 be p_gor (vl, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result”, gor (vi, v2), s0))
A determinate (gor (v1, v2))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gor.

DEFINITION:
pf gor (svl, sv2, s0)
= let r be state_check (list (sv1, sv2), s0)
in
if normal_state () then p_gor (result™ (sv!), result™ (sv2), s0)
else r endif endlet

EVENT: Disable gle.

CONSERVATIVE AXIOM: p_gle_intro
let sI be p_gle(vl, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s, store_value (’result™, gle (v1, v2), s0))
A determinate (gle (v1, v2))))
A ((determinate (s1) A (cond™ (s1) # ’normal))

41

— (implementation_constrained (s1, s0)
A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gle.

DEFINITION:

gpf gle (svl, sv2, s0)

= let r be state_check (list (sv!, sv2), s0)
in
if normal_state (r) then p_gle (result™ (sv1), result™ (sv2), s0)
else r endif endlet

EVENT: Disable ggt.

CONSERVATIVE AXIOM: p_ggt_intro
let s1 be p_ggt (vl, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result”, ggt (vi, v2), s0))
A determinate (ggt (v1, v2))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_ggt.

DEFINITION:

pf get (svl, sv2, s0)

= let r be state_check (list (sv1, sv2), s0)
in
if normal_state (r) then p_ggt (result™ (sv!), result™ (sv2), s0)
else r endif endlet

EVENT: Disable gge.

CONSERVATIVE AXIOM: p_gge_intro
let s1 be p_gge(vl, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s, store_value (’result™, gge (v1, v2), s0))
A determinate (gge (v1, v2))))
A ((determinate (s1) A (cond™ (s1) # ’normal))

42

— (implementation_constrained (s1, s0)
A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gge.

DEFINITION:

gpf gge (svl, sv2, s0)

= let r be state_check (list (sv!, sv2), s0)
in
if normal_state () then p_gge (result™ (sv1), result™ (sv2), s0)
else r endif endlet

EVENT: Disable gand.

CONSERVATIVE AXIOM: p_gand_intro
let s1 be p_gand (v, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result”, gand (v1, v2), s0))
A determinate (gand (vI, v2))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gand.

DEFINITION:
pf gand (svl, sv2, s0)
= let r be state_check (list (sv1, sv2), s0)
in
if normal_state (r) then p_gand (result™ (svl), result™ (sv2), s0)
else r endif endlet

EVENT: Disable gimp.

CONSERVATIVE AXIOM: p_gimp_intro
let sI be p_gimp (v1, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s!, store_value (*result”, gimp (vI, v2), s0))
A determinate (gimp (v1, v2))))
A ((determinate (s1) A (cond™ (s1) # ’normal))

43

— (implementation_constrained (s1, s0)
A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gimp.

DEFINITION:

gpf gimp (svl, sv2, s0)

= let r be state_check (list (sv1, sv2), s0)
in
if normal_state (r) then p_gimp (result™ (svl), result”™ (sv2), s0)
else r endif endlet

EVENT: Disable giff.

CONSERVATIVE AXIoM: p_giff_intro
let s1 be pgiff (v1, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result”, giff (v1, v2), s0))
A determinate (giff (v1, v2))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_giff.

DEFINITION:

pf giff (sv1, sv2, s0)

= let r be state_check (list (sv1, sv2), s0)
in
if normal_state () then p_giff (result™ (sv1), result™ (sv2), s0)
else r endif endlet

EVENT: Disable gpower.

CONSERVATIVE AXIOM: p_gpower_intro
let sI be p_gpower (v, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (sI, store_value (*result”, gpower (v1, v2), s0))
A determinate (gpower (v1, v2))))
A ((determinate (s1) A (cond™ (s1) # ’normal))

44

— (implementation_constrained (s1, s0)
A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gpower.

DEFINITION:

gpf_gpower (svl, sv2, s0)

= let r be state_check (list (sv!, sv2), s0)
in
if normal_state () then p_gpower (result”™ (svl), result”™ (sv2), s0)
else r endif endlet

EVENT: Disable gtimes.

CONSERVATIVE AXIOM: p_gtimes_intro
let s1 be p_gtimes (vl, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result”, gtimes (v1, v2), s0))
A determinate (gtimes (v1, v2))))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gtimes.

DEFINITION:

gpf_gtimes (sv1, sv2, s0)

= let r be state_check (list (sv1, sv2), s0)
in
if normal_state () then p_gtimes (result™ (sv1), result™ (sv2), s0)
else r endif endlet

EVENT: Disable gquotient.

CONSERVATIVE AXIOM: p_gquotient_intro
let s1 be p_gquotient (v1, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s, store_value (’result™, gquotient (v1, v2), s0))
A determinate (gquotient (v1, v2))))
A ((determinate (s1) A (cond™ (s1) # ’normal))

45

— (implementation_constrained (s1, s0)
A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gquotient.

DEFINITION:
gpf_gquotient (svl, sv2, s0)
= let r be state_check (list (svl, sv2), s0)
in
if normal state (r)
then p_gquotient (result™ (sv1), result™ (sv2), s0)
else r endif endlet

EVENT: Disable gdiv.

CONSERVATIVE AXIOM: p_gdiv_intro
let sI be p_gdiv(vl, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s!, store_value (*result”, gdiv (vl, v2), s0))
A determinate (gdiv (v1, v2))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gdiv.

DEFINITION:

gpf_gdiv (svl, sv2, s0)

= let r be state_check (list (sv1, sv2), s0)
in
if normal state (r) then p_gdiv (result™ (sv1), result™ (sv2), s0)
else r endif endlet

EVENT: Disable gmod.

CONSERVATIVE AXIOM: p_gmod_intro
let s be p_gmod (v, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s!, store_value (*result”, gmod (v, v2), s0))
A determinate (gmod (v1, v2))))

46

A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gmod.

DEFINITION:
pf gmod (svl, sv2, s0)
let r be state_check (list (sv1, sv2), s0)
in
if normal state (r) then p_gmod (result™ (sv1), result™ (sv2), s0)
else r endif endlet

EVENT: Disable gplus.

CONSERVATIVE AXIOM: p_gplus_intro
let sI be p_gplus (vl, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s, store_value (*result™, gplus (vI, v2), s0))
A determinate (gplus (v1, v2))))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gplus.

DEFINITION:
gpf gplus (svl1, sv2, s0)
let r be state_check (list (sv1, sv2), s0)
in
if normal state (r) then p_gplus (result™ (svl), result™ (sv2), s0)
else r endif endlet

EVENT: Disable gsubtract.

CONSERVATIVE AXIOM: p_gsubtract_intro
let sI be p_gsubtract (v1, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result”, gsubtract (v1, v2), s0))
A determinate (gsubtract (v1, v2))))

47

A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gsubtract.

DEFINITION:
gpf_gsubtract (svl, sv2, s0)
= let r be state_check (list (sv1, sv2), s0)
in
if normal state (1)
then p_gsubtract (result™ (sv1), result™ (sv2), s0)
else r endif endlet

EVENT: Disable gin.

CONSERVATIVE AXIOM: p_gin_intro
let sI be p-gin (v, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result”, gin (v, v2), s0))
A determinate (gin (v1, v2))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gin.

DEFINITION:

gpf_gin (sv1, sv2, s0)

= let r be state_check (list (sv1, sv2), s0)
in
if normal state (r) then p_gin (result™ (sv1), result™ (sv2), s0)
else r endif endlet

EvVENT: Disable gunion.

CONSERVATIVE AXIOM: p_gunion_intro
let sI be p_gunion (v1, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (’result™, gunion (v1, v2), s0))

48

A determinate (gunion (v1, v2))))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gunion.

DEFINITION:

gpf gunion (sv1, sv2, s0)

= let r be state check (list (sv1, sv2), s0)
in
if normal state (r) then p_gunion (result™ (sv1), result™ (sv2), s0)
else r endif endlet

EVENT: Disable gadjoin.

CONSERVATIVE AXIOM: p_gadjoin_intro
let sI be p-gadjoin (v1, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result”, gadjoin (v1, v2), s0))
A determinate (gadjoin (v1, v2))))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gadjoin.

DEFINITION:
gpf gadjoin (svl, sv2, s0)
= let r be state_check (list (sv1, sv2), s0)
in
if normal state (r)
then p_gadjoin (result™ (sv1), result™ (sv2), s0)
else r endif endlet

EVENT: Disable gomit.
CONSERVATIVE AXIOM: p_gomit_intro
let sI be p_gomit (v1, v2, s0)

in
((determinate (s1) A (cond™ (s1) = ’normal))

49

— (sequal (s1, store_value (*result”, gomit (v1, v2), s0))
A determinate (gomit (v1, v2))))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gomit.

DEFINITION:

gpf_gomit (sv1, sv2, s0)

= let r be state_check (list (svl, sv2), s0)
in
if normal state (r) then p_gomit (result™ (svl), result™ (sv2), s0)
else r endif endlet

EvVENT: Disable gsub.

CONSERVATIVE AXIOM: p_gsub_intro
let s be p_gsub (vi, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (’result™, gsub (v1, v2), s0))
A determinate (gsub (v1, v2))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gsub.

DEFINITION:

gpf_gsub (sv1, sv2, s0)

= let r be state_check (list (sv1, sv2), s0)
in
if normal state (r) then p_gsub (result™ (svl), result™ (sv2), s0)
else r endif endlet

EVENT: Disable gintersect.

CONSERVATIVE AXIOM: p_gintersect_intro

let s be p_gintersect (v1, v2, s0)

in

((determinate (s1) A (cond™ (s1) = ’normal))

50

— (sequal (s1, store_value (*result”, gintersect (v1, v2), s0))
A determinate (gintersect (v1, v2))))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gintersect.

DEFINITION:
gpf_gintersect (sv1, sv2, s0)
= let r be state_check (list (svl, sv2), s0)
in
if normal state (r)
then p_gintersect (result™ (sv1), result™ (sv2), s0)
else r endif endlet

EvENT: Disable gdifference.

CONSERVATIVE AX1OoM: p_gdifference_intro
let s1 be p_gdifference (v1, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result”, gdifference (v1, v2), s0))
A determinate (gdifference (v1, v2))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gdifference.

DEFINITION:
gpf_gdifference (sv1, sv2, s0)
= let r be state_check (list (sv1, sv2), s0)
in
if normal state (r)
then p_gdifference (result™ (svl), result™ (sv2), s0)
else r endif endlet

EVENT: Disable gappend.

CONSERVATIVE AXIOM: p_gappend_intro
let sI be p_gappend (v, v2, s0)

o1

in
((determinate (s1) A (cond™ (sf) = ’normal))
— (sequal (s1, store_value (*result”, gappend (v1, v2), s0))
A determinate (gappend (v1, v2))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gappend.

DEFINITION:
gpf gappend (svl, sv2, s0)
= let r be state check (list (sv1, sv2), s0)
in
if normal state (r)
then p_gappend (result™ (sv1), result™ (sv2), s0)
else r endif endlet

EVENT: Disable gcons.

CONSERVATIVE AXIOM: p_gcons_intro
let sI be p_gcons (vl, v2, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s!, store_value (*result”, gcons (vi, v2), s0))
A determinate (gcons (v1, v2))))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_gcons.

DEFINITION:

gpf geons (svl, sv2, s0)

= let r be state_check (list (sv1, sv2), s0)
in
if normal state (r) then p_gcons (result™ (svl), result”™ (sv2), s0)
else r endif endlet

EVENT: Disable grcons.
CONSERVATIVE AXIOM: p_grcons_intro

92

let
in

sl be p_grcons (vl, v2, s0)

((determinate (s1) A (cond™ (s1) = ’normal))
(sequal (s1, store_value (’result”, grcons (v1, v2), s0))

—

A

A determinate (grcons (v1, v2))))
((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)

€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_grcons.

DEFINITION:

gpf_

greons (svl, sv2, s0)
let r be state_check (list (sv1, sv2), s0)
in

if normal state () then p_grcons (result™ (svl), result”™ (sv2), s0)

else r endif endlet

DEFINITION:

gpf_

apply_binary_op (op, sv1, sv2, s0)

if rule (op, prodn (tag (’binary_operator, ’op), ’eq))
vV rule (op, prodn (tag (’binary_operator, ’op), ’equal))

then gpf_gequal (sv1, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator,
then gpf_gne (svl, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator,
then gpf_glt (svl, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator,
then gpf_gle (sv1, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator,
then gpf_ggt (svl, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator,
then gpf_gge (sv1, sv2, s0)
elseif rule (op, prodn (tag (’binary operator,
then gpf_gand (sv1, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator,
then gpf_gor (sv1, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator,
then gpf_gimp (svl, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator,
then gpf_giff (sv1, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator,
then gpf_gpower (sv1, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator,

93

’op),
’op),
’op),
’op),
’op),
’op),
’op),
’op),
’op),
’op),

’op),

’and))

or))

’imp))
iff))
’star_star))

’star))

then gpf_gtimes (sv1, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator, ’op), ’slash))
then gpf_gquotient (sv1, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator, ’op), *div))
then gpf_gdiv (svl, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator, ’op), ’mod))
then gpf_gmod (sv1, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator, ’op), ’plus))
then gpf_gplus (svl, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator, ’op), ’minus))
then gpf_gsubtract (sv1, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator, ’op), ’in))

then gpf_gin (sv1, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator, ’op), ’adjoin))
then gpf_gadjoin (sv1, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator, ’op), ’omit))
then gpf_gomit (sv1, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator, ’op), ’sub))
then gpf_gsub (svl, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator, ’op), ’union))
then gpf_gunion (svl, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator, ’op), ’intersect))
then gpf_gintersect (sv1, sv2, s0)

elseif rule (op, prodn (tag (’binary operator, ’op), ’difference))
then gpf_gdifference (sv1, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator, ’op), ’colon_gt))
then gpf_geons (sv1, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator, ’op), ’1t_colon))
then gpf_grcons (svl, sv2, s0)

elseif rule (op, prodn (tag (’binary_operator, ’op), ’append))
then gpf_gappend (sv1, sv2, s0)

else mark state_indeterminate (s0) endif

5 kokokokokskokokokok ko ok ok ok sk ok ok ok ok
; Standard Functions

5 Fokskokokokokok ok sk ok sk ok sk ok ok ok ok k

EVENT: Disable std_domain.

CONSERVATIVE AXIOM: p_std_domain_intro
let s be p-std_domain (d, s0)

in

((determinate (s1) A (cond™ (s1) = ’normal))

o4

— (sequal (s1, store_value (*result”, std_domain (d), s0))
A determinate (std_domain (d))))
A ((determinate (s1) A (cond™ (sI) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_std_domain.

DEFINITION:

gpf_std_domain (sd, s0)

= let r be state_check (sd, s0)
in
if normal state (r) then p_std_domain (result™_list (sd), s0)
else r endif endlet

EVENT: Disable std_first.

CONSERVATIVE AXIOM: p_std_first_intro
let s1 be pstd-first (d, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (’result™, std_first (d), s0))
A determinate (std_first (d))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_std_first.

DEFINITION:

gpf_std_first (sd, s0)

= let r be state_check (sd, s0)
in
if normal state (r) then p_std first (result™ list (sd), s0)
else r endif endlet

EVENT: Disable std_initial.

CONSERVATIVE AXIOM: p_std_initial_intro

let sI be p_std.initial (d, s0)

in

((determinate (s1) A (cond™ (s1) = ’normal))

95

— (sequal (s1, store_value (*result”, std_initial (d), s0))
A determinate (std_initial (d))))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_std_initial.

DEFINITION:

gpf_std_initial (sd, s0)

= let r be state_check (sd, s0)
in
if normal state (r) then p_std_initial (result™_list (sd), s0)
else r endif endlet

EVENT: Disable std_last.

CONSERVATIVE AXIOM: p_std_last_intro
let s1 be pstd-last (d, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (’result™, std_last (d), s0))
A determinate (std_last (d))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_std_last.

DEFINITION:

gpf_std_last (sd, s0)

= let r be state_check (sd, s0)
in
if normal state (r) then p_std_last (result™_list (sd), s0)
else r endif endlet

EVENT: Disable std_lower.

CONSERVATIVE AXIOM: p_std_lower_intro

let s1 be pstd_lower (d, s0)

in

((determinate (s1) A (cond™ (s1) = ’normal))

o6

— (sequal (s1, store_value (*result”, std_lower (d), s0))
A determinate (std_lower (d))))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_std_lower.

DEFINITION:

gpf_std_lower (sd, s0)

= let r be state_check (sd, s0)
in
if normal state (r) then p_std_lower (result™ _list (sd), s0)
else r endif endlet

EVENT: Disable std_max.

CONSERVATIVE AXIOM: p_std_max_intro
let s be pstd-max(d, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (’result”, std_max (d), s0))
A determinate (std_max (d))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_std_mazx.

DEFINITION:

gpf_std_max (sd, s0)

= let r be state_check (sd, s0)
in
if normal state (r) then p_std_max (result™_list (sd), s0)
else r endif endlet

EVENT: Disable std_min.

CONSERVATIVE AXIOM: p_std_min_intro

let s be p_std-min (d, s0)

in

((determinate (s1) A (cond™ (s1) = ’normal))

o7

— (sequal (s1, store_value (*result”, std_min (d), s0))
A determinate (std_min (d))))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_std_min.

DEFINITION:

gpf_std_min (sd, s0)

= let r be state_check (sd, s0)
in
if normal state (r) then p_std_min (result™_list (sd), s0)
else r endif endlet

EVENT: Disable std_nonfirst.

CONSERVATIVE AXIOM: p_std_nonfirst_intro
let s be p_std-nonfirst (d, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (’result”, std_nonfirst (d), s0))
A determinate (std_nonfirst (d))))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_std_nonfirst.

DEFINITION:

gpf_std_nonfirst (sd, s0)

= let r be state_check (sd, s0)
in
if normal state (r) then p_std nonfirst (result™_list (sd), s0)
else r endif endlet

EVENT: Disable std_nonlast.

CONSERVATIVE AXIOM: p_std_nonlast_intro
let sI be pstdnonlast (d, s0)

in

((determinate (s1) A (cond™ (s1) = ’normal))

o8

— (sequal (s1, store_value (’result™, std_nonlast (d), s0))
A determinate (std_nonlast (d))))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_std_nonlast.

DEFINITION:

gpf_std_nonlast (sd, s0)

= let r be state_check (sd, s0)
in
if normal state (r) then p_std nonlast (result™ list (sd), s0)
else r endif endlet

EVENT: Disable std_null.

CONSERVATIVE AXIOM: p_std_null_intro
let s1 be pstd-null(d, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (’result”, std_null (d), s0))
A determinate (std_null (d))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_std_null.

DEFINITION:

gpf_std_null (sd, s0)

= let r be state_check (sd, s0)
in
if normal state (r) then p_std_null (result™ list (sd), s0)
else r endif endlet

EVENT: Disable std_ord.
CONSERVATIVE AXIOM: p_std_ord_intro
let s be pstd_ord(d, s0)

in
((determinate (s1) A (cond™ (s1) = ’normal))

99

— (sequal (s1, store_value (’result™, std_ord (d), s0))
A determinate (std_ord (d))))
A ((determinate (s1) A (cond™ (sI) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_std_ord.

DEFINITION:

gpf_std_ord (sd, s0)

= let r be state_check (sd, s0)
in
if normal state (r) then p_std_ord (result™list (sd), s0)
else r endif endlet

EVENT: Disable std_pred.

CONSERVATIVE AXIOM: p_std_pred-intro
let s be pstd_pred(d, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (’result”, std_pred (d), s0))
A determinate (std_pred (d))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_std_pred.

DEFINITION:

gpf_std_pred (sd, s0)

= let r be state_check (sd, s0)
in
if normal state (r) then p_std_pred (result™_list (sd), s0)
else r endif endlet

EVENT: Disable std_range.

CONSERVATIVE AXIOM: p_std_range_intro

let s be p-std_range(d, s0)

in

((determinate (s1) A (cond™ (s1) = ’normal))

60

— (sequal (s!, store_value (*result”, std_range (d), s0))
A determinate (std_range (d))))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_std_range.

DEFINITION:

gpf_std_range (sd, s0)

= let r be state_check (sd, s0)
in
if normal state (r) then p_std_range (result™ list (sd), s0)
else r endif endlet

EVENT: Disable std_scale.

CONSERVATIVE AXIOM: p_std_scale_intro
let s be p_std_scale (d, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (’result”, std_scale (d), s0))
A determinate (std_scale (d))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_std_scale.

DEFINITION:

gpf_std_scale (sd, s0)

= let r be state_check (sd, s0)
in
if normal state (r) then p_std_scale (result™_list (sd), s0)
else r endif endlet

EVENT: Disable std_size.

CONSERVATIVE AXIOM: p_std_size_intro

let s be p_stdsize(d, s0)

in

((determinate (s1) A (cond™ (s1) = ’normal))

61

— (sequal (s!, store_value (*result”, std_size (d), s0))
A determinate (std_size (d))))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_std_size.

DEFINITION:

gpf_std_size (sd, s0)

= let r be state_check (sd, s0)
in
if normal state (r) then p_std_size (result™_list (sd), s0)
else r endif endlet

EVENT: Disable std_succ.

CONSERVATIVE AXIOM: p_std_succ_intro
let s be p_std-succ(d, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (’result”, std_succ (d), s0))
A determinate (std_succ (d))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_std_succ.

DEFINITION:

gpf_std_succ (sd, s0)

= let r be state_check (sd, s0)
in
if normal state (r) then p_std_succ (result™_list (sd), s0)
else r endif endlet

EVENT: Disable std_upper.

CONSERVATIVE AXIOM: p_std_upper_intro

let s be p.std_upper (d, s0)

in

((determinate (s1) A (cond™ (s1) = ’normal))

62

— (sequal (s1, store_value (’result™, std_upper (d), s0))
A determinate (std_upper (d))))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_std_upper.

DEFINITION:

gpf_std_upper (sd, s0)

= let r be state_check (sd, s0)
in
if normal state (r) then p_std_upper (result™_list (sd), s0)
else r endif endlet

3 Rokskokokokokokokokok

; Variables

5 Rkskokokkokokokok ok

CONSERVATIVE AXIOM: p_apply_var_intro
let sI be p.apply_var (fn, s0, d)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1,
store_value (’result”, apply_var (fn, map (s0), d), s0))
A determinate (apply_var (fn, map (s0), d))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_apply_var.

DEFINITION:
gpf-apply-var (fn, s, d)
= if normal_state (s)
then if state_componentp (fn, s)
then let r» be state_check (d, s)
in
if normal state (7)
then p_apply_var (fn, s, result”_list (d))
else r endif endlet
else set_condition (s, ’routineerror) endif
else s endif

63

5 okskokokokokok ok ok ok ok ok ok

; Bound Values

5 Rksokokkskokokokokokok ok

EVENT: Disable bound_values.

CONSERVATIVE AXIOM: gpf bound_values_intro
let sI be gpfbound_values (e, ¢, s0, x)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— (sequal (s1, store_value (*result™, bound_values (e, ¢,), s0))
A all_determinate (bound_values (e, ¢, z))))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol gpf bound_values.

5 Rkskokokokokokook ok skok ok ok sk ok ok ok ok ok ok skok ok ok skok ok ok skok ok ok k ok

; Space Allocation and Deallocation
s kokskskokokokokskokokokok sk sk sk ok ok skok sk ok sksk sk ok sk sk ok ok ok

CONSERVATIVE AXIOM: allocate_intro
let sI be allocate (k, v, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— sequal (s1, store_value (k, v, s0)))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol allocate.

CONSERVATIVE AXIOM: allocate_const_intro

let s1 be allocate_const (k, v, sc, s0)

in

((determinate (s1) A (cond™ (s1) = ’normal))

— sequal (s1, store_const (k, v, sc, s0)))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

64

Simultaneously, we introduce the new function symbol allocate_const.

DEFINITION:
gp_deallocate_locals (s)

>

>

’

’

deallocate_vars (local_vars (s),
deallocate_consts (local_consts (),

deallocate_conds (local_conds (s), s)))

>k >k >k 3k ok ok ok ok 5k %k >k >k %k >k k k k k

Name Expressions
skeokok sk sk sk sk sk sk sk sk ok ok ok ok ok

; A name expression is a marked object, with

mark = ’name_expression

object = (id . <evaluated selector_list>)

DEFINITION:

name_exp (id, ss) = marked (’name_expression, cons (id, ss))

DEFINITION:

DEFINITION:
ne_name (v)

if namep (v) then car (object (v))
else f endif

DEFINITION:
ne_selectors (v)

>
>

)

)

if namep (v) then cdr (object (v))
else nil endif

>k 3k 5k 5k >k >k %k 5k 5k >k >k %k %k %k 5k > %k *k

Retyping Result”
ktokok ok skokok ok o skokok ok ok ok

; This is used in constant interpretation.

DEFINITION:
retype_result” (s, td)

if determinate (result™ (s)) A truep (in_type (¢d, result™ (s)))

then store_value (’result”,

marked (nil, typed (td, value (result™ (s)))),

s)

else set_condition (s, *routineerror) endif

65

namep (v) = (mark (v) = ’name_expression)

CONSERVATIVE AXIOM: p_retype_result™ _intro
let sI be p.retype_result™ (s0, td)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— sequal (s1, retype_result™ (s0, td)))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_retype_result”.

DEFINITION:

gpf_retype_result”™ (s, td)

= if normal state (s) then p._retype_result”™ (s, td)
else s endif

§ KRR KRR KRR K KoK K

; Functions on Type Descriptors

3Rk KKK KRR K KKK oK K ok kK

’

DEFINITION:
subtype_irange (t1, t2)
= if bounded_typep (¢1)
then if bounded_typep (¢2)
then if integerp (tmin (¢1))
A integerp (tmax (1))
A integerp (tmin (¢2))
A integerp (tmax (t2))
then ileq (tmin (¢2), tmin (¢1)) A ileq (tmax (¢1), tmax (£2))
else f endif
else t endif
elseif bounded_typep (¢2) then f
else t endif

DEFINITION:
subtype_rrange (1, t2)
= if bounded_typep (1)
then if bounded_typep (¢2)
then if rationalp (tmin (¢1))

A rationalp (tmax (¢1))

A rationalp (tmin (£2))

A rationalp (tmax (¢2))

then rleq (tmin (¢2), tmin (¢1)) A rleq (tmax (1), tmax (¢2))

66

else f endif
else t endif
elseif bounded_typep (¢2) then f
else t endif

DEFINITION:

subtype_size (s1, s2)

= if s1 = nil then s2 = nil
elseif s2 = nil then s1 €¢ N
elseif (s1 € N) A (s2 € N) then s1 < s2
else f endif

#1
(do-mutual ’(

(defn subtype_fields (t1 t2)
(if (nlistp t1)
T
(and (subtype (cdar t1) (mapped_value t2 (caar t1)))
(subtype_fields (cdr t1) t2)))
((lessp (tree_size t1))))

(defn subtype (t1 t2)
(if (and (type_descp tl1) (type_descp t2)
(equal (mode t1) (mode t2)))
(case (mode t1)
(integer (subtype_irange tl t2))
(rational (subtype_rrange t1 t2))
(scalar (and (equal (tid t1) (tid t2))
(equal (sid t1) (sid t2))
(type_vequal (crd t1) (crd t2) (integer_desc))
(subtype_irange t1 t2)))
(array (and (type_equal (selector_td tl) (selector_td t2))
(subtype (component_td t1) (component_td t2))))
(record (and (set_equal (field_names t1) (field_names t2))
(subtype_fields (field_tds t1) (field_tds t2))))
(mapping (and (subtype_size (max_size tl1) (max_size t2))
(subtype (selector_td tl) (selector_td t2))
(subtype (component_td t1) (component_td t2))))
(sequence (and (subtype_size (max_size t1) (max_size t2))
(subtype (component_td t1) (component_td t2))))
(set (and (subtype_size (max_size tl1) (max_size t2))
(subtype (component_td t1) (component_td t2))))
(pending (and (equal (tid t1) (tid t2))

67

(equal (sid t1) (sid t2))))

(otherwise F))

F)

((lessp (tree_size t1))))

))
| #

DEFINITION:

mutual-subtype-

subtype_fields (mutual-flg, t1, t2)

= if mutual-flg = ’subtype
then if type_descp (1)

A\
A\
then

type_descp (12)

(mode (t1) = mode (£2))
case on mode (¢1):
case = integer
then subtype_irange (t1, t2)
case = rational

then subtype_rrange (t1, t2)
case = scalar

then (tid (¢1) = tid (¢2))

A (sid (¢1) = sid (£2))

A type-vequal (crd (1), crd (¢2), INTEGER_DESC)

A subtype_irange (¢1, t2)

case = array
then type_equal (selector_td (¢1), selector_td (¢2))

A mutual-subtype-subtype_fields (> subtype,
component_td (¢1),
component_td (¢2))

case = record
then set_equal (field_names (¢1), field_names (£2))

A mutual-subtype-subtype_fields (> subtype_fields,
field-tds (¢1),
field_tds (¢2))

case = mapping
then subtype_size (max_size (¢1), max_size (t2))

A mutual-subtype-subtype_fields (> subtype,
selector_td (¢1),
selector_td (£2))

A mutual-subtype-subtype_fields (’ subtype,
component_td (¢1),
component_td (¢2))

case = sequence

68

then subtype_size (max_size (¢1), max_size (t2))

A mutual-subtype-subtype_fields (* subtype,
component_td (¢1),
component_td (£2))

case = set
then subtype_size (max_size (t1), max_size (¢2))

A mutual-subtype-subtype_fields (* subtype,
component_td (¢1),
component_td (£2))

case = pending
then (tid (¢1) = tid (¢2)) A (sid (¢1) = sid (¢2))
otherwise f endcase
else f endif
elseif ¢/ ~ nil then t
else mutual-subtype-subtype_fields (’ subtype,
cdar (t1),
mapped_value (¢2, caar (t1)))
A mutual-subtype-subtype_fields (> subtype_fields,
cdr (t1),
t2) endif

DEFINITION:
subtype (t1, t2) = mutual-subtype-subtype_fields (’ subtype, tI, t2)

DEFINITION:
subtype_fields (¢1, t2)
= mutual-subtype-subtype_fields (’ subtype_fields, tI, t2)

DEFINITION:

type_check (td, s)

= if determinate (result™ (s)) A truep (in-type (td, result” (s))) then s
else set_condition (s, ’routineerror) endif

CONSERVATIVE AXIOM: p_type_check_intro
let sI be p_type_check (td, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— sequal (s1, type_check (td, s0)))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_type_check.

69

DEFINITION:

gpf_type_check (td, s)

= if normal state (s) then p_type_check (td, s)
else s endif

J Rk kR Rk Kk Kk K K

; Type Name Arguments

oA KRR

)

DEFINITION:
type-name_arg (tn, sn, s,)
= store_value (*result”,
marked (’type_descriptor,
type_desc (mk_identifier (¢n), sn, nil, z)),
)

CONSERVATIVE AXIOM: p_type_name_arg_intro

let sI be p_typename_arg (tn, sn, s0, x)

in

((determinate (s1) A (cond™ (s1) = ’normal))

— sequal (s1, type_name_arg (tn, sn, s0,)))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_type_name_arg.

DEFINITION:

gpf_type name_arg (tn, sn, s, z)

= if normal state (s) then p_type name_arg (tn, sn, s, x)
else s endif

5 Rkskokokokokokokokskok kok ok ok ok kok ok k ok

; Specification Values
3Rk skskok ok sk sk ok ok ok ok sk ok sk ok

)

DEFINITION:

set_entry (e, ¢, s, n, x)

= let v be gf(e, ¢, map(s), n, x)
in
if boolean_typep (type (v)) then store_value (’entry, v, s)
else store_value (’entry,

70

marked (entry_not_boolean_error (e, ¢),
default_value (BOOLEAN_DESC)),
s) endif endlet

CONSERVATIVE AXIOM: p_set_entry_intro
let sI be pset_entry (e, ¢, s0, n, z)
in
((determinate (s1) A (cond™ (s!) = ’normal))
— sequal (s1, set_entry (e, ¢, s0, n,)))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_set_entry.

DEFINITION:

gp_set_entry (e, ¢, s, n, z)

= if normal state (s) then p_set_entry (e, ¢, s, n,)
else s endif

DEFINITION:
exit_labels_ok (cs, $)
= (setp (cs) A all_conditionsp (cs, store_cond (’normal, ’formal, s)))

DEFINITION:
set_exit (e, ¢, s, n,)
= if exit_labels_ok (exit_labels (e), s)
then let v be gf (postc (e, cond™ (s)), ¢, map (s), n, z)
in
if boolean_typep (type (v)) then store_value (’exit, v, s)
else store_value (’exit,
marked (exit_not_boolean_error (e, c),
default_value (BOOLEAN_DESC)),
s) endif endlet
else store_value (’exit,
marked (exit_label_error (e, ¢),
default_value (BOOLEAN_DESC)),
s) endif

CONSERVATIVE AXIOM: p_set_exit_intro

let sI be psetexit(e, ¢, s0, n, x)

in

((determinate (s1) A (cond™ (s1) = ’normal))
— sequal (s1, set_exit (e, ¢, s0, n, z)))

71

A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_set_ezit.

DEFINITION:

gp-set_exit (e, ¢, s, n, x)

= if normal_state (s) then p_set_exit (e, ¢, s, n, z)
else s endif

DEFINITION:
update_keep (s, ¢, n, z)
= store_value (’keep, gand (keep (s), gf (keep™ (s), ¢, map (s), n, x)), §)

CONSERVATIVE AXIOM: p_update_keep_intro

let sI be p_update_keep (s0, ¢, n,)

in

((determinate (s1) A (cond™ (s1) = ’normal))

— sequal (s1, update keep (s0, ¢, n,)))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_update_keep.

DEFINITION:

gp-update_keep (s, ¢, n, z)

= if normal state (s) then p_update keep (s, ¢, n,)
else s endif

DEFINITION:

gp-set_keep (k, s, ¢, n, x)

= if normal state (s) then gp_update_keep (allocate (*keep™, k,), ¢, n,)
else s endif

DEFINITION:
update_assert (e, ¢, s, n,)
= store_value (’assert, gand (assert (s), gf (e, ¢, map (s), n, z)), s)

CONSERVATIVE AXIOM: p_update_assert_intro
let s be p_update_assert (e, ¢, s0, n, z)

in

((determinate (s1) A (cond™ (s1) = ’normal))

72

— sequal (s, update_assert (e, ¢, s0, n, x)))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)
A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_update_assert.

DEFINITION:

gp_update_assert (e, ¢, s, n, z)

= if normal state (s) then p_update_assert (e, c, s, n, x)
else s endif

DEFINITION:
record_assert (v, s) = store_value (’assert, gand (assert (s), v), s)

CONSERVATIVE AXIOM: p_record_assert_intro
let s1 be p_record_assert (v, s0)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— sequal (s1, record_assert (v, s0)))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_record_assert.

DEFINITION:

gp_record_assert (v, s)

= if normal state (s) then p._record_assert (v, s)
else s endif

§ KRR KK

; Assignment

§ KRR KRR KK

)

DEFINITION:
mapping_selectionp (ss, td)
= if ss ~ nil then f
else case on mode (td):
case = array
then mapping_selectionp (cdr (ss), component_td (¢d))
case = record

73

then mapping_selectionp (cdr (ss),
field_td (value (car (ss)), td))
case = mapping
then t
case = sequence
then mapping_selectionp (cdr (ss), component_td (¢d))
otherwise f endcase endif

DEFINITION:

mapping_element_lhsp (n, s)

= if namep (n)
then mapping_selectionp (ne_selectors (n), type_of (ne_name (n), s))
else f endif

DEFINITION:
gassign0 (ne, v, s)
= if namep (ne)
A variablep (ne_name (ne), s)
A (- mapping_element_lhsp (ne, s))
then let id be ne_name (ne),
ss be ne_selectors (ne)
in
if state_componentp (id, $)
then let td be type_of (id, s),
v2 be put_op (state_component (id, s), ss, v)
in
if determinate (v2) A truep (in_type (td, v2))
then store_value (id,
marked (nil,
typed (td, value (v2))),
)

else set_condition (s, ’routineerror) endif endlet
else set_condition (s, ’routineerror) endif endlet
else set_condition (s, *routineerror) endif

DEFINITION:
gassign (ne, v, s, ¢, n,) = gp_update_keep (gassign0 (ne, v, s), ¢, n, z)

CONSERVATIVE AXIOM: p_assign_intro
let sI be p_assign(ne, v, s0, ¢, n,)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— sequal (sI, gassign (ne, v, s0, ¢, n, z)))
A ((determinate (s1) A (cond™ (s1) # ’normal))
— (implementation_constrained (s1, s0)

74

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_assign.

DEFINITION:
gp-assign (sne, sv, s0, ¢, n,)
= let r be state_check (list (sne, sv), s0)
in
if normal state (r)
then p_assign (result™ (sne), result™ (sv), s0, ¢, n, x)
else r endif endlet

s kskokokokokokok koo k ok ok ok
; New Statement
Fokok ok ok ok ok ok ok ok Kk ok

>

DEFINITION:
gnew0 (dc, v, ne, s)
= let id be nename (ne),
ss be ne_selectors (ne)
in
if rule (dc,
prodn (tag (’new_dynamic_variable_component,
dc),
list (’into, tag (’name_expression, ’ne))))
then gassign0 (name_exp (id, redr (ss)),
gmap_insert (apply_var (id, map (s), redr (ss)),
rcar (ss),
),

5)
elseif rule (dc,
prodn (tag (’new_dynamic_variable_component,
'dc),
list (’into,
’set,
tag (’name_expression, ’ne))))
then gassign0 (ne, gadjoin (apply_var (id, map (s), ss), v),)
elseif rule (dc,
prodn (tag (’new_dynamic_variable_component,
dc),
list (*before,
tag (’name_expression, ’ne))))
then gassign0 (name_exp (id, redr (ss)),

()

gseq_insert_before (apply_var (id, map (s), redr (ss)),
rcar (ss),
),
5)
elseif rule (dc,
prodn (tag (’new_dynamic_variable_component,
'dc),
list (*before,
’seq,
tag (’name_expression, ’ne))))
then gassign0 (ne, geons (v, apply_var (id, map (s), ss)), s)
elseif rule (dc,
prodn (tag (’new_dynamic_variable_component,
dc),
list (*behind,
tag (’name_expression, ’ne))))
then gassign0 (name_exp (id, redr (ss)),
gseq-insert_behind (apply_var (id, map (s), redr (ss)),
rcar (ss),
),
5)
elseif rule (de,
prodn (tag (’new_dynamic_variable_component,
dc),
list (> behind,
’seq,
tag (’name_expression, ’ne))))
then gassign0 (ne, grcons (apply_var (id, map (s), ss), v), §)
else mark state_indeterminate (s) endif endlet

DEFINITION:
gnew (dc, v, ne, ¢, s, n, r) = gp_update_keep (gnew0 (dc, v, ne, s), ¢, n, x)

CONSERVATIVE AXIOM: p_new_intro

let s1 be pnew (dc, v, ne, ¢, s0, n, x)

in

((determinate (s1) A (cond™ (s1) = ’normal))

— sequal (s, gnew (dc, v, ne, ¢, s0, n, x)))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_new.

76

DEFINITION:
gp-new (dc, sv, sne, ¢, s0, n, x)
= let r be state_check (list (sv, sne), s0)
in
if normal state (r)
then p_new (de, result”™ (sv), result™ (sne), ¢, s0, n, z)
else r endif endlet
s skrokokokskokok kR kokok ook ok K

)
; Remove Statement
s skokskokokokok ok ok ok ook ok ok

>

DEFINITION:
gremove0 (v, ne, s)
= let id be nename (ne),
ss be ne_selectors (ne)
in
if v = nil
then if mapping_descp (type (apply_var (id, map (s), redr (ss))))
then gassign0 (name_exp (id, redr (ss)),
gmapomit (apply_var (id, map (s), redr (ss)),
rear (ss)),
s)

else gassign0 (name_exp (id, redr (ss)),
gseqomit (apply_var (id, map (s), redr (ss)),
rcar (ss)),
s) endif
else gassign0 (ne, gomit (apply_var (id, map (s), ss), v), s) endif endlet

DEFINITION:
gremove (v, ne, ¢, s, n, r) = gp-update keep (gremove0 (v, ne, s), ¢, n, x)

CONSERVATIVE AXIOM: p_remove_intro

let s be p._remove (v, ne, ¢, s0, n, z)

in

((determinate (s1) A (cond™ (s1) = ’normal))

— sequal (s1, gremove (v, ne, ¢, s0, n, x)))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_remove.

T

DEFINITION:
gp_remove (sv, sne, ¢, s0, n, x)
= let r be if sv = nil then state_check (list (sne), s0)
else state_check (list (sv, sne), s0) endif
in
if normal state (r)
then p_remove (if sv = nil then nil
else result™ (sv) endif,
result”™ (sne),
¢,
s0,
n,
7)

else r endif endlet

5 Rkskokokskokokokokokokkokok ok

; Move Statement
ok ok ok ok ok ok ok K ok ok ok ok ok ok

’

DEFINITION:
stored_value (n, s) = apply_var (ne_name (n), map (s), ne_selectors (n))

DEFINITION:
gmove_assign (cd, v, ne, s)
= if rule(cd,
prodn (tag (’ component_destination, ’d),
tag (’new_dynamic_variable_component, ’dc)))
then gnewO (subtree (cd, *new_dynamic_variable_component),
v,
ne,
s)
elseif rule (cd,
prodn (tag (’ component_destination, ’d),
list (’to, tag (’name_expression, ’ne))))
then if sequence_descp (type (stored_value (name_exp (ne_name (ne),
redr (ne_selectors (ne))),
s))) then gassign0 (ne, v, s)
else set_condition (s, ’routineerror) endif
else mark_state_indeterminate (s) endif

DEFINITION:

same_selectors (s, s2)

= if s1 ~ nil then s2 ~ nil
elseif s2 ~ nil then f

78

else ((car (s1) = car (s2)) V gtruep (gequal (car (s1), car (s2))))
A same_selectors (cdr (s1), cdr (s2)) endif

DEFINITION:
same_names (n1, n2)
= (namep (n1)
A namep (n2)
A (ne_name (n1) = ne_name (n2))
A same_selectors (ne_selectors (n1), ne_selectors (n2)))

DEFINITION:

remove_dynamic_name (rv, rne)

= if rv = nil then name_exp (ne_name (rne), redr (ne_selectors (rne)))
else re endif

DEFINITION:
assign_dynamic_name (cd, nne)
= if rule(cd,
prodn (tag (’ component_destination, ’d),
tag (’new_dynamic_variable_component, ’dc)))
then assign_dynamic_name (subtree (cd,
’new_dynamic_variable_component),
nne)
elseif rule (cd,
prodn (tag (’new_dynamic_variable_component, ’dc),
list (’into, tag (’name_expression, ’ne))))

vV rule (cd,
prodn (tag (’new_dynamic_variable_component,
’dc),
list (’before,
tag (’name_expression, ’ne))))
Vv rule (cd,
prodn (tag (’new_dynamic_variable_component,
’dc),
list (*behind,
tag (’name_expression, ’ne))))
Vv rule (cd,

prodn (tag (’ component_destination, ’d),
list (*to, tag (’name_expression, ’ne))))
then name_exp (ne_name (nne), redr (ne_selectors (nne)))
else nne endif

DEFINITION:
gmove (rv, rne, cd, nne, ¢, $, n, T)
= if same_names (remove_dynamic_name (rv, rne), assign_dynamic_name (cd, nne))

79

then set_condition (s, ’routineerror)
else let 1 be gmove_assign (cd,
if rv = nil
then stored_value (rne, s)
else rv endif,
nne,
s)
in
if normal state (1)
then let 72 be gremove0 (rv, rne, s)
in
if normal state (r2)
then gp_update keep (12, ¢, n, z)
else marked (mark (r2),
map (set_condition (s,
cond” (r2)))) endif endlet
else r1 endif endlet endif

CONSERVATIVE AXIOM: p_move_intro
let sI be p_move (rv, rne, cd, nne, ¢, s0, n, x)
in
((determinate (s1) A (cond™ (s1) = ’normal))
— sequal (s1, gmove (rv, rne, cd, nne, ¢, s0, n, x)))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)

A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_move.

DEFINITION:
gp move (srv, srne, cd, snne, ¢, $, N, x)
= let r be if srv = nil then state_check (list (srne, snne), s)
else state_check (list (srv, srne, snne), s) endif
in
if normal state (r)
then p_move (if srv = nil then nil
else result™ (srv) endif,
result” (srne),
cd,
result” (snne),
C,
S,
n,

z)

80

else r endif endlet

5 RKRKOKOK %k %k %k %k ok kK Kk Kk k

I
; Procedure Calls
ook ok ok ok ok ok ok ok ok ok ok ok K

’

; Argument Checking for Procedure Calls

; Formals OK

DEFINITION:

pformals_ok (fs)

— if fs ~nil then t
elseif reserved_idp (car (fs)) then f
elseif car (fs) € cdr (fs) then f
else pformals_ok (cdr (fs)) endif

DEFINITION:
selectors_aliasedp (s1, s2)
= if (s! ~nil) V (s2 ~nil) then t
else ((car (s1) = car (s2)) V gtruep (gequal (car (s1), car (s2))))
A selectors_aliasedp (cdr (s1), cdr (s2)) endif

DEFINITION:
harmful_aliasp (a1, a2, f1, f2)
= if (access (fI) = ’var) V (access (f2) = ’var)
then if namep (af) A namep (a2)
then (ne_name (a!) = ne_name (a2))
A selectors_aliasedp (ne_selectors (al), ne_selectors (a2))
else f endif
else f endif

DEFINITION:
harmfully_aliasedp (ap, as, fp, fs)
= if as ~nil then f
else harmful_aliasp (ap, car (as), fp, car (fs))
V' harmfully_aliasedp (ap, cdr (as), fp, cdr (fs)) endif

81

DEFINITION:
no_harmful_aliasing (as, fs)
= if as ~ nil then t
elseif namep (car (as))
then (— harmfully_aliasedp (car (as), cdr (as), car (fs), cdr (fs)))
A no-harmful_aliasing (cdr (as), cdr (fs))
else no_harmful_aliasing (cdr (as), cdr (fs)) endif

DEFINITION:
one_parg_check (fp, ap, fsn, s, x)
= let ft be type_desc (formal_type (fp), fsn, nil, z),
av be if namep (ap)
then apply_var (ne_name (ap), map (s), ne_selectors (ap))
else ap endif

in
if indeterminate (av) then set_condition (s, ’routineerror)
elseif access (fp) = ’*var

then if namep (ap)
A variablep (ne_name (ap), s)
A (= mapping_element_lhsp (ap, s))
then if subtype (ft, type (av)) A truep (in_type (ft, av))
then s
else set_condition (s, ’routineerror) endif
else set_condition (s, ’routineerror) endif
elseif truep (in_type (ft, av)) then s
else set_condition (s, >routineerror) endif endlet

EVENT: Disable set_condition.
EVENT: Disable one_parg_check.
EVENT: Disable normal_state.

DEFINITION:
parg-check2 (fs, as, fsn, s, z)
= if as ~nil
then if fs ~ nil then s
else set_condition (s, ’routineerror) endif

82

elseif fs ~ nil then set_condition (s, ’routineerror)
else let s2 be one_parg_check (car (fs), car (as), fsn, s, x)
in
if normal_state (s2)
then parg_check2 (cdr (fs), cdr (as), fsn, s,)
else 52 endif endlet endif

DEFINITION:
cond.arg_check (fes, acs, s)
= if length (fcs) = length (acs)
then if all_conditionsp (acs, s) then s
else mark state_indeterminate (s) endif
else set_condition (s, >routineerror) endif

DEFINITION:
parg_check (u, usn, ads, acs, s, x)
= let fds be formal dargs (u),
fes be formal_cargs (u)
in
case on kind (u):
case = function
then if pformals_ok (append (cons (’result,
dparam_name_list (fds)),
append (fes,
> (routineerror
spaceerror))))
A (farg_check (fds, ads, usn, x) = nil)
then cond_arg_check (fes, acs, $)
else set_condition (s, ’routineerror) endif
case = procedure
then if pformals_ok (append (dparam_name_list (fds),
append (fes,
’ (routineerror
spaceerror))))
then let s2 be parg_check?2 (fds, ads, usn, s, z)
in
if normal_state (s2)
then if no_harmful_aliasing (ads, fds)
then cond_arg_check (fes, acs, s)
else set_condition (s,

83

’routineerror) endif
else s2 endif endlet
else set_condition (s, ’routineerror) endif
otherwise set_condition (s, ’routineerror) endcase endlet

)

; New State for Procedure Call

’

DEFINITION:
padd_darg (fp, ap, fsn, sa, s, z)
= let ft be type_desc (formal_type (fp), fsn, nil, z),
av be if namep (ap)
then apply_var (ne_name (ap), map (sa), ne_selectors (ap))
else ap endif

in
let fu be marked (nil, typed (ft, value (av)))
in
if access (fp) = ’var
then store_const (mk_entry_name (dparam_name (fp)),
v,
’formal,
store_var (dparam_name (fp),
fo,
’formal,

s))

else store_const (dparam_name (fp), fv, *formal, s) endif endlet endlet

DEFINITION:

pbind_dargs (fs, as, fsn, s, x)

= if as ~ nil then DEFAULT_STATE

else padd_darg (rcar (fs),

rcar (as),
fsn,
S,
pbind_dargs (redr (fs), redr (as), fsn, s, x),
z) endif

DEFINITION:

padd_result (s, ftype)

= let v be std-initial (list (marked (’ type_descriptor, ftype)))
in
if determinate (v)
then store_const (mk_entry name (’result),

84

1}’

’formal,

store_var (’result, v, *formal, s))
else set_condition (s, ’routineerror) endif endlet

DEFINITION:

call_state (u, usn, ads, acs, s, x)

= let r1 be parg_check (u, usn, ads, acs, s, z)
in
if normal state (1)
then let 72 be note_conds (formal_cargs (u),

’formal,

pbind_dargs (formal_dargs (u),
ads,
usn,
S,

|)
in
if kind (u) = *function
then let ftype be type_desc (result_type (u),
usn,
nil,
)
in
padd_result (12, ftype) endlet

else r2 endif endlet
else r1 endif endlet

EVENT: Disable call_state.
EVENT: Disable determinate.
EVENT: Enable sequal.

CONSERVATIVE AXIOM: p_call_state_intro
(determinate (p_call_state (u, usn, ads, acs, s0,))
A (= sequal (p_call_state (u, usn, ads, acs, s0,),

call_state (u, usn, ads, acs, s0, x))))

— (cond” (p-call_state (u, usn, ads, acs, s0, z))

€ ’(routineerror spaceerror))

Simultaneously, we introduce the new function symbol p_call_state.
EVENT: Enable determinate.

85

EVENT: Disable sequal.

DEFINITION:
gp call_state (u, usn, sads, acs, s, x)
= let r be state Check(sads s)
in
if normal state (r)
then p_call_state (u, usn, result”™_list (sads), acs, s, x)
else r endif endlet

)

; State Update for Call Effects

’

DEFINITION:
map_cond_effects (fe, fes, acs, s)
= if fc = ’normal then s
elseif fc € ’ (routineerror spaceerror)
then set_condition (s, fc)
elseif listp (fes) A listp (acs)
then if fc = car(fes) then set_condition (s, car (acs))
else map_cond_effects (fe, cdr (fes), cdr (acs), s) endif
else mark state_indeterminate (s) endif

DEFINITION:
map_var_effects (fs, as, 2, s1)
= if fs ~ nil then s1
elseif access (car (fs)) = ’var
then map_var_effects (cdr (fs),
cdr (as),
s2,
gassign0 (car (as),
state_component (dparam_name (car (fs)), s2),

s1))

else map_var_effects (cdr (fs), cdr (as), s2, s1) endif

DEFINITION:
map_call_effects (s2, u, ads, acs, ¢, s1, n, x)
= if indeterminate (s2) then mark_state_indeterminate (s1)
elseif kind (u) = ’function
then if condition_normal (s2)
then allocate (’result”, state_component (’result, s2), s1)
else map_cond_effects (cond™ (s2), formal_cargs (u), acs, s1) endif

86

else gp_update_keep (map_cond_effects (cond™ (s2),
formal _cargs (u),

acs,
map_var_effects (formal_dargs (u),

ads,
s2,
51))’

C,

n,

x) endif

EVENT: Enable sequal.

CONSERVATIVE AXIOM: gp_map_call_effects_intro
sequal (gp-map_call_effects (s2, u, ads, acs, ¢, s, n,),
map_call_effects (s2, u, ads, acs, ¢, s1, n, x))

Simultaneously, we introduce the new function symbol gp_map_call_effects.
EVENT: Disable sequal.

DEFINITION:

gp_new_namep (id, s)

= ((~ inmap (map (s), id))
A (= in_map (cond+ (s), id))
A (= reserved_idp (id)))

)

; Local Variables

>

DEFINITION:

bind local (a, id, td, iv,)

= if gp_new_namep (id, s)

then let v be if v = nil
then std_initial (list (marked (’type_descriptor,
td)))
else v endif
in

87

if determinate (v) A truep (in_type (td, v))
then if ¢ = ’var
then store_var (id,
marked (nil, typed (td, value (v))),
’local,
s)
else store_const (id,
marked (nil, typed (td, value (v))),
’local,
s) endif
else set_condition (s, ’routineerror) endif endlet
else set_condition (s, *routineerror) endif

CONSERVATIVE AXIOM: p_bind_local_intro

let sI be p_bind_local (a, id, td, v, s0)

in

((determinate (s1) A (cond™ (s1) = ’normal))

— sequal (s1, bindlocal (a, id, td, v, s0)))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)
A (cond” (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_bind_local.

DEFINITION:
gp _bind_local (a, id, td, iv, s)
let r be if v = nll then s
else state_check (list (iv), s) endif
in
if normal state (1)
then p_bind local (a,
id,
td,
if s = nil then w
else result™ (iv) endif,
5)

else r endif endlet

DEFINITION:
gp_bind_ locals (a, ids, td, iv, s)
= if ids >~ nil then s
else gp_bind_locals (a,
cdr (ids),
td,

88

w,

gp-bind_local (a, car (ids), td, i, s)) endif

DEFINITION:

gp_local_conds (ids, s)

= if (ids ~ nil) V (- normal state (s)) then s
elseif gp_new_namep (car (ids), s)
then gp_local_conds (cdr (ids), store_cond (car (ids), *1local, s))
else set_condition (s, ’routineerror) endif

5 RKRKOKOK %k %k ok ok ok k kK Kk k

)

; Case Statement
ook ok ok ok ok ok ook o ok ok ok K

)

DEFINITION:
case_label_check (k, cs, s)
= let td be base_type (type (k))
in
if non _rational simple_typep (¢d)
A (arg_check (cs, ncopies (length (c¢s), td)) = nil)
A vsetp (values (¢s), td) then s
else set_condition (s, ’routineerror) endif endlet

CONSERVATIVE AXIOM: p_case_label_check_intro

let sI be p_case_label_check (k, cs, s0)

in

((determinate (s1) A (cond™ (s1) = ’normal))

— sequal (s, case_label_check (k, cs, s0)))

A ((determinate (s1) A (cond™ (s1) # ’normal))

— (implementation_constrained (s1, s0)
A (cond™ (s1)
€ ’(routineerror spaceerror)))) endlet

Simultaneously, we introduce the new function symbol p_case_label_check.

DEFINITION:
gp-_case_label_check (sk, scs, s0)
= let r be state_check (cons (sk, scs), s0)
in
if normal state (1)
then p_case_label _check (result™ (sk), result™_list (scs), s0)
else r endif endlet

DEFINITION:
condition_labels ok (¢s, s) = (setp (¢s) A all_conditionsp (c¢s, $))

89

>

3k 5k 3k 5k >k 5k >k 3k 5k 3k 5k %k 5k >k 5k >k %k 5k %k >k %k k

; The Meta-Function GP

)

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

>k >k K K 3K 3K 3k 5k 5k 5k 3k %k %k >k %k Xk Xk K >k K >k 5k

Disable *1*boolean_desc.

Disable gpf_gand.

Disable gpf_gchar.

Disable gpf_gin.

Disable gpf_gmap_insert.

Disable gpf_gmapomit.

Disable gpf_gor.

Disable gpf_grange_elements.

Disable gpf_gseq_insert_before.

Disable gpf_gseq-insert_behind.

Disable gpf_gseqomit.

Disable gpf_gset.

Disable gpf_gset_or_seq.

Disable gpf_gstring_seq.

Disable gpf_apply_binary_op.

Disable gpf_apply_unary_op.

90

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

Disable gpf_apply_var.

Disable gpf_bound _values.

Disable gpf_false.

Disable gpf_minteger.

Disable gpf_put_op.

Disable gpf_record_get.

Disable gpf_retype_result-

Disable gpf_select_op.

Disable gpf_std_domain.

Disable gpf_std_first.

Disable gpf_std_initial.

Disable gpf_std_last.

Disable gpf_std_lower.

Disable gpf_std_max.

Disable gpf_std_min.

Disable gpf_std_nonfirst.

Disable gpf_std_nonlast.

Disable gpf_std_null.

91

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

Disable gpf_std_ord.

Disable gpf_std_pred.

Disable gpf_std_range.

Disable gpf_std_scale.

Disable gpf_std_size.

Disable gpf_std_succ.

Disable gpf_std_upper.

Disable gpf_subsequence_get.

Disable gpf_true.

Disable gpf_type_check.

Disable gpf_type_name_arg.

Disable gp_assign.

Disable gp_bind_locals.

Disable gp_call_state.

Disable gp_case_label_check.

Disable gp_deallocate_locals.

Disable gp_local_conds.

Disable gp_map_call_effects.

92

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

Disable gp_move.

Disable gp_new.

Disable gp_new_namep.

Disable gp_record_assert.

Disable gp_remove.

Disable gp_set_entry.

Disable gp_set_exit.

Disable gp_set_keep.

Disable gp_update_assert.

Disable gtruep.

Disable access.

Disable actual_cargs.

Disable actual_dargs.

Disable allocate.

Disable allocate_const.

Disable arg_list.

Disable base_type.

Disable boolean_desc.

93

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

Disable bound_id.

Disable case_labels.

Disable cdr_quantified_exp.

Disable character_valuep.

Disable condition_labels_ok.

Disable condition_non_normal.

Disable condition_normal.

Disable conditionp.

Disable cond-

Disable constant_body.

Disable digit_listp.

Disable each_clausep.

Disable entry_name.

Disable entry_valuep.

Disable exit_spec.

Disable expression_from_spec.

Disable fn_call_formp.

Disable formal _cargs.

94

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

Disable formal _dargs.

Disable gname.

Disable handler.

Disable handler_labels.

Disable id_list.

Disable identifierp.

Disable if_else_exp.

Disable if_statement_else_part.

Disable indeterminate.

Disable internal_initial _value_exp.

Disable keep_spec.

Disable kind.

Disable length.

Disable map.

Disable map_cond_effects.

Disable mark_state_indeterminate.

Disable mk_name_expression.

Disable mk_signal_stmt.

95

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

EVENT:

Disable mk_unary_operator.

Disable name_exp.

Disable new_name_arg.

Disable normal_state.

Disable object_name.

Disable prec.

Disable procedure_body.

Disable rcar.

Disable redr.

Disable ref.

Disable remove_exp_arg.

Disable remove_name_arg.

Disable reset_leave_to_normal.

Disable result_type.

Disable result~

Disable result™_list.

Disable set_condition.

Disable state_.componentp.

96

EVENT: Disable string_valuep.

EVENT: Disable type.

EVENT: Disable type_desc.

EVENT: Disable type_name_expp.

#1
(do-mutual ’(

5 KRRk okskokook ok skok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok ok ok sk ok ok ok ok k ok ook ok sk ok ok ok ok ok ok sk ok ok ok sk ok ok ok ok ok sk kok ok ok kok ok ok skok ok ok ok

; THE EXPRESSION INTERPRETER

5 Rkskokokkokokok ok skok ok ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok skok ok ok skok ok ok ok ok ok ok ok

5 skokokokokskk ok ok ok ok ok ok ok sk sk ok sk sk sk ok ok ok ok ok ok
; Set/Sequence Constructors
3 skskokokokoskokok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk ok

;3 This returns a list of states rather than a single state.
(defn GPF_element_list (e ¢ s n x)

(if (not (normal_state s))
(list s)

(if (zerop (fix n))
(list (mark_state_indeterminate s))

(if (rule e (prodn (tag ’range ’r)
(list ’OPEN_PAREN (tag ’range_limits ’r2) °CLOSE_PAREN)))
(GPF_element_list (subtree e ’range_limits) ¢ s (subl n) x)

(if (rule e (prodn (tag ’element_list ’e)
(tag ’value_list ’v)))
(GPF_element_list (subtree e ’value_list) c s (subl n) x)

(if (rule e (prodn (tag ’element_list ’e)

(tag ’range_limits ’r)))
(GPF_element_list (subtree e ’range_limits) c s (subl n) x)

97

(if (rule e (prodn (tag ’range_limits ’r)

(list (tag ’expression ’lo) ’DOT_DOT
(tag ’expression ’hi))))

(GPF_Grange_elements (GPF (subtree_i e ’expression 1) ¢ s (subl n) x)
(GPF (subtree_i e ’expression 2) ¢ s (subl n) x)

s)

(if (rule e (prodn (tag ’value_list ’v)
(tag ’expression ’e)))
(rcons nil (GPF (subtree e ’expression) c s (subl n) x))

(if (rule e (prodn (tag ’value_list ’v)
(list (tag ’value_list ’v2) ’COMMA

(tag ’expression ’e))))
(rcons (GPF_element_list (subtree e ’value_list) c s (subl n) x)
(GPF (subtree e ’expression) ¢ s (subl n) x))

(list (mark_state_indeterminate s))))))))))
((lessp (count n))))
; Unlike most of the other functions here, this doesn’t store the value in
; the state.
(defn GPF_element_type (e ¢ s n x)

(if (zerop (fix n))
(mark_state_indeterminate s)

(if (rule e (prodn (tag ’range ’r)
(list ’OPEN_PAREN (tag ’range_limits ’r2) ’CLOSE_PAREN)))
(GPF_element_type (subtree e ’range_limits) c s (subl n) x)

(if (rule e (prodn (tag ’element_list ’e)

(tag ’value_list ’v)))

(GPF_element_type (subtree e ’value_list) c s (subl n) x)
(if (rule e (prodn (tag ’element_list ’e)

(tag ’range_limits ’r)))

(GPF_element_type (subtree e ’range_limits) ¢ s (subl n) x)

(if (rule e (prodn (tag ’range_limits ’r)

98

(list (tag ’expression ’lo) ’DOT_DOT
(tag ’expression ’hi))))

(base_type (type (result™ (GPF (subtree_i e ’expression 1)
¢ s (subl n) x))))

(if (rule e (prodn (tag ’value_list ’v)
(tag ’expression ’e)))

(base_type (type (result™ (GPF (subtree e ’expression) c s (subl n) x))))

(if (rule e (prodn (tag ’value_list ’v)
(list (tag ’value_list ’v2) ’COMMA
(tag ’expression ’e))))
(GPF_element_type (subtree e ’value_list) c s (subl n) x)

nil)>)))))

((lessp (count n))))

5 okokokookokokook ok ok ok ok ok ok ok ok ok ok ok ok ok k ok

; Quantified expressions
5 Rkskokokokokokok ok skok ok ok sk ok ok k ok ok ok kok ok

(defn GPF_all (id vs e ¢ s n X)

(if (nlistp vs)

(GPF_true s)
(if (GP_new_namep id s)

(if (zerop n)
(mark_state_indeterminate s)

(GPF_Gand (GPF_all id (rcdr vs) e ¢ s (subl n) x)
(GPF e c (allocate_const id (rcar vs) ’local s) (subl n) x)
s))
(set_condition s ’routineerror)))

((lessp (count n))))

(defn GPF_some (id vs e ¢ s n x)
(if (nlistp vs)
(GPF_false s)
(if (GP_new_namep id s)
(if (zerop n)
(mark_state_indeterminate s)
(GPF_Gor (GPF_some id (rcdr vs) e ¢ s (subl n) x)

99

(GPF e c (allocate_const id (rcar vs) ’local s) (subl n) x)
s))
(set_condition s ’routineerror)))
((lessp (count n))))

5 Rkskokokskokokokokoskokokok ok ok kkok ok

; Value Modifications
s kokskskokokokokskokosk ko ksk ok ok ok ksk ok

(defn GPF_each (id vs sBV e ¢ s n x)
; e is the <component modification>
; sBV is the state whose result”™ component is the value being modified
(if (not (normal_state s))
s
(if (nlistp vs)
sBV
(if (GP_new_namep id s)
(if (zerop n)
(mark_state_indeterminate s)
(GPF_each id (cdr vs)
(GPF_modifiers sBV e c (allocate_const id (car vs) ’local s)
(subl n) x)
e ¢ s (subl n) x))
(set_condition s ’routineerror))))
((lessp (count n))))

(defn GPF_adp (e ¢ s n x)

(if (not (normal_state s))
(list s)

(if (zerop (fix n))
(list (mark_state_indeterminate s))

(if (rule e (prodn (tag ’arg_list ’as)

(list ’OPEN_PAREN (tag ’value_list ’vs)
’CLOSE_PAREN)))

(GPF_adp (subtree e ’value_list) c s (subl n) x)

(if (rule e (prodn (tag ’value_list ’vs)

(tag ’expression ’e)))
(rcons nil (GPF (subtree e ’expression) c s (subl n) x))

100

(if (rule e (prodn (tag ’value_list ’vs)
(list (tag ’value_list ’vs2)

’COMMA (tag ’expression ’e))))
(rcons (GPF_adp (subtree e ’value_list) c s (subl n) x)
(GPF (subtree e ’expression) ¢ s (subl n) x))

(list (mark_state_indeterminate s)))))))
((lessp (count n))))
(defn GPF_selectors (e ¢ s n x)

(if (not (normal_state s))
(list s)

(if (zerop (fix n))
(list (mark_state_indeterminate s))

(if (rule e (prodn (tag ’selector_list ’s)
(tag ’component_selectors ’s2)))
(GPF_selectors (subtree e ’component_selectors) ¢ s (subl n) x)

(if (rule e (prodn (tag ’selector_list ’s)
(list (tag ’selector_list ’s2)

(tag ’component_selectors ’s3))))
(append (GPF_selectors (subtree e ’selector_list) ¢ s (subl n) x)
(GPF_selectors (subtree e ’component_selectors) ¢ s (subl n) x))

(if (rule e (prodn (tag ’component_selectors ’s)
(1ist ’DOT (tag ’IDENTIFIER ’fn))))
(list (allocate ’result”
(marked ’field_name (gname (subtree e ’IDENTIFIER)))
s))

(if (rule e (prodn (tag ’component_selectors ’s)
(tag ’arg_list ’d)))
(GPF_adp (subtree e ’arg_list) c s (subl n) x)

(if (rule e (prodn (tag ’arg_list ’as)

(list ’OPEN_PAREN (tag ’value_list ’vs)
’CLOSE_PAREN)))

(GPF_adp (subtree e ’value_list) c s (subl n) x)

101

(list (mark_state_indeterminate s)))))))))
((lessp (count n))))

(defn GPF_modifiers (sBV e ¢ s n x)
; e is the <value modifiers>
; sBV is the state whose result”™ component is being modified

(if (not (normal_state s))
s

(if (not (normal_state sBV))
sBV

(if (zerop (fix n))
(mark_state_indeterminate s)

(if (rule e (prodn (tag ’value_modifiers ’m)
(tag ’component_selectors ’s)))
(GPF_modifiers sBV (subtree e ’component_selectors) c s (subl n) x)

(if (rule e (prodn (tag ’component_selectors ’s)

(list ’DOT (tag ’IDENTIFIER ’fn))))
(GPF_record_get sBV
(allocate ’result”

(marked ’field_name

(gname (subtree e ’IDENTIFIER)))

s)
s)

(if (rule e (prodn (tag ’component_selectors ’s)
(tag ’arg_list ’d)))
(GPF_select_op sBV (GPF_adp (subtree e ’arg_list) c s (subl n) x) s)

(if (rule e (prodn (tag ’value_modifiers ’m)
(tag ’range ’r)))
(GPF_modifiers sBV (subtree e ’range) c¢ s (subl n) x)
(if (rule e (prodn (tag ’range ’r)
(list ’OPEN_PAREN (tag ’range_limits ’r2)
’CLOSE_PAREN)))

(GPF_modifiers sBV (subtree e ’range_limits) c s (subl n) x)

(if (rule e (prodn (tag ’range_limits ’r)

102

(list (tag ’expression ’lo) ’DOT_DOT
(tag ’expression ’hi))))

(GPF_subsequence_get sBV
(GPF (subtree_i e ’expression 1) ¢ s (subl n) x)
(GPF (subtree_i e ’expression 2) c s (subl n) x)

s)

(if (rule e (prodn (tag ’value_modifiers ’m)
(tag ’value_alterations ’a)))
(GPF_modifiers sBV (subtree e ’value_alterations) c¢ s (subl n) x)

(if (rule e (prodn (tag ’value_alterations ’a)
(list ’WITH ’OPEN_PAREN
(tag ’component_alterations_list ’al)
’CLOSE_PAREN)))
(GPF_modifiers sBV (subtree e ’component_alterations_list)
¢ s (subl n) x)

(if (rule e (prodn (tag ’component_alterations_list ’al)
(tag ’component_alterations ’a)))
(GPF_modifiers sBV (subtree e ’component_alterations) c¢ s (subl n) x)

(if (rule e (prodn (tag ’component_alterations_list ’al)
(list (tag ’component_alterations_list ’al2)
’SEMI_COLON (tag ’component_alterations ’a))))
(GPF_modifiers (GPF_modifiers sBV
(subtree e ’component_alterations_list)
c s (subl n) x)
(subtree e ’component_alterations) c¢ s (subl n) x)

(if (rule e (prodn (tag ’component_alterations ’as)
(list (tag ’opt_each_clause ’e)
(tag ’component_assignment ’a))))
(if (each_clausep (subtree e ’opt_each_clause))
(let ((sVS (GPF_bound_values (subtree e ’opt_each_clause) c s x)))
(if (normal_state sVS)
(GPF_each (bound_id (subtree e ’opt_each_clause))
(result”™ sVS) sBV (subtree e ’component_assignment)
¢ s (subl n) x)
sVs))
(GPF_modifiers sBV (subtree e ’component_assignment) ¢ s (subl n) x))

(if (rule e (prodn (tag ’component_alterations ’as)
(list (tag ’opt_each_clause ’e)

103

(tag ’component_creation ’c))))
(if (each_clausep (subtree e ’opt_each_clause))
(let ((sVS (GPF_bound_values (subtree e ’opt_each_clause) c s x)))
(if (normal_state sVS)
(GPF_each (bound_id (subtree e ’opt_each_clause))
(result™ sVS) sBV (subtree e ’component_creation)
¢ s (subl n) x)
sVs))
(GPF_modifiers sBV (subtree e ’component_creation) c s (subl n) x))

(if (rule e (prodn (tag ’component_alterations ’as)
(list (tag ’opt_each_clause ’e)
(tag ’component_deletion ’d))))
(if (each_clausep (subtree e ’opt_each_clause))
(let ((sVS (GPF_bound_values (subtree e ’opt_each_clause) c s x)))
(if (normal_state sVS)
(GPF_each (bound_id (subtree e ’opt_each_clause))
(result™ sVS) sBV (subtree e ’component_deletion)
c s (subl n) x)
sVs))
(GPF_modifiers sBV (subtree e ’component_deletion) c s (subl n) x))

(if (rule e (prodn (tag ’component_assignment ’a)
(list (tag ’selector_list ’s)
>COLON_EQUAL (tag ’expression ’e))))
(GPF_put_op sBV
(GPF_selectors (subtree e ’selector_list)
c s (subl n) x)
(GPF (subtree e ’expression) ¢ s (subl n) x)

s)

(if (rule e (prodn (tag ’component_creation ’c)
(list ’BEFORE (tag ’selector_list ’s)

’COLON_EQUAL (tag ’expression ’e))))

(let ((sS (GPF_selectors (subtree e ’selector_list) ¢ s (subl n) x))
(sU (GPF (subtree e ’expression) c s (subl n) x)))
(GPF_put_op sBV (rcdr sS)

(GPF_Gseq_insert_before (GPF_select_op sBV (rcdr sS) s)
(rcar s8) sU s)

s))
(if (rule e (prodn (tag ’component_creation ’c)

(l1ist ’BEHIND (tag ’selector_list ’s)
’COLON_EQUAL (tag ’expression ’e))))

104

(let ((sS (GPF_selectors (subtree e ’selector_list) c s (subl n) x))
(sU (GPF (subtree e ’expression) c¢c s (subl n) x)))
(GPF_put_op sBV (rcdr sS)
(GPF_Gseq_insert_behind (GPF_select_op sBV (rcdr sS) s)
(rcar sS) sU s)

s))

(if (rule e (prodn (tag ’component_creation ’c)
(list ’INTO (tag ’selector_list ’s)

’COLON_EQUAL (tag ’expression ’e))))

(let ((sS (GPF_selectors (subtree e ’selector_list) c s (subl n) x))
(sU (GPF (subtree e ’expression) c s (subl n) x)))
(GPF_put_op sBV (rcdr sS)

(GPF_Gmap_insert (GPF_select_op sBV (rcdr sS) s)
(rcar sS) sU s)

s))

(if (rule e (prodn (tag ’component_deletion ’d)
(list ’SEQOMIT (tag ’selector_list ’s))))
(let ((sS (GPF_selectors (subtree e ’selector_list) c s (subl n) x)))
(GPF_put_op sBV (rcdr sS)
(GPF_Gseqomit (GPF_select_op sBV (rcdr sS) s)
(rcar sS) s)

s))

(if (rule e (prodn (tag ’component_deletion ’d)
(l1ist ’MAPOMIT (tag ’selector_list ’s))))
(let ((sS (GPF_selectors (subtree e ’selector_list) c s (subl n) x)))
(GPF_put_op sBV (rcdr sS)
(GPF_Gmapomit (GPF_select_op sBV (rcdr sS) s)
(rcar sS) s)

s))
(mark_state_indeterminate s)))))))))))))))))))))))

((lessp (count n))))

5 RKRKROK Kk %k %k %k %k %k %k %k XK K 3K 5K 5k 5k 5k 3k 5k %k >k %k %k X K 3k 3k 3k %k %k %k k k

’

; Name references and function calls
s skokokok ok ook ok ok ok ok ook s ok ok ook ok ook sk ok ok ook ok ook ok ok ok

)

(defn GPF_apply_fun (fn adp acp sn s n x)

105

(if (zerop (fix n))
(mark_state_indeterminate s)
(let ((h (car (ref fn sn x))) ; scope fn is declared in
(u (cdr (ref fn sn x)))) ; the function declaration
(if (equal (kind u) ’function)
(let ((fs (formal_dargs u))) ; formals
(let ((ds (if (equal (length fs) 0) nil adp)) ; actuals
(ss (if (equal (length fs) 0) adp nil))) ; selectors
(GPF_select_op (GP_procedure_call fn ds acp sn s (subl n) x)
ss s)))
(if (equal (kind u) ’constant)
(if (equal acp nil)
(GPF_select_op
(GPF_retype_result™ (GPF (constant_body u) h s (subl n) x)
(type_desc (result_type u) h nil x))
adp s)
(set_condition s ’routineerror))
(set_condition s ’routineerror)))))
((lessp (count n))))

(defn GPF_apply (fn adp acp sn s n x)
; adp is a list of states
(if (state_componentp fn s)
(if (equal acp nil)
(GPF_apply_var fn s adp)
(set_condition s ’routineerror))
(if (equal fn ’false)
(if (equal acp nil)
(GPF_select_op (GPF_false s) adp s)
(set_condition s ’routineerror))
(if (equal fn ’true)
(if (equal acp nil)
(GPF_select_op (GPF_true s) adp s)
(set_condition s ’routineerror))
(if (type_name_expp fn adp sn x)
(if (equal acp nil)
(GPF_type_name_arg fn sn s x)
(set_condition s ’routineerror))
(if (equal fn ’domain)
(if (equal acp nil)
(GPF_std_domain adp s)
(set_condition s ’routineerror))
(if (equal fn ’first)

106

(if (equal acp nil)
(GPF_std_first adp s)
(set_condition s ’routineerror))
(if (equal fn ’initial)
(if (equal acp nil)
(GPF_std_initial adp s)
(set_condition s ’routineerror))
(if (equal fn ’last)
(if (equal acp nil)
(GPF_std_last adp s)
(set_condition s ’routineerror))
(if (equal fn ’lower)
(if (equal acp nil)
(GPF_std_lower adp s)
(set_condition s ’routineerror))
(if (equal fn ’max)
(if (equal acp nil)
(GPF_std_max adp s)
(set_condition s ’routineerror))
(if (equal fn ’min)
(if (equal acp nil)
(GPF_std_min adp s)
(set_condition s ’routineerror))
(if (equal fn ’nonfirst)
(if (equal acp nil)
(GPF_std_nonfirst adp s)
(set_condition s ’routineerror))
(if (equal fn ’nonlast)
(if (equal acp nil)
(GPF_std_nonlast adp s)
(set_condition s ’routineerror))
(if (equal fn ’null)
(if (equal acp nil)
(GPF_std_null adp s)
(set_condition s ’routineerror))
(if (equal fn ’ord)
(if (equal acp nil)
(GPF_std_ord adp s)
(set_condition s ’routineerror))
(if (equal fn ’pred)
(if (equal acp nil)
(GPF_std_pred adp s)
(set_condition s ’routineerror))
(if (equal fn ’range)

107

(if (equal acp nil)
(GPF_std_range adp s)
(set_condition s ’routineerror))
(if (equal fn ’scale)
(if (equal acp nil)
(GPF_std_scale adp s)
(set_condition s ’routineerror))
(if (equal fn ’size)
(if (equal acp nil)
(GPF_std_size adp s)
(set_condition s ’routineerror))
(if (equal fn ’succ)
(if (equal acp nil)
(GPF_std_succ adp s)
(set_condition s ’routineerror))
(if (equal fn ’upper)
(if (equal acp nil)
(GPF_std_upper adp s)
(set_condition s ’routineerror))
(if (zerop (fix n))
(mark_state_indeterminate s)
(GPF_apply_fun fn adp acp sn s (subl n) x))))))))))IIINININI)
((lessp (count n))))

(defn GPF_list (es ¢ s n X)
(if (nlistp es)
nil
(if (zerop (fix n))
(list (mark_state_indeterminate s))
(cons (GPF (car es) c¢ s (subl n) x)
(GPF_list (cdr es) c s (subl n) x))))
((lessp (count n))))

(defn GPF (e ¢ s n x)
; The meta-function GPF(e,c,s,n,x) gives the state that results when the
; expression e is interpreted for at most n steps, in the context of scope
; ¢, initial state s, and Gypsy sentence x.
>
; The domain and range of GPF(e,c,s,n,x) are as follows:
; € is the parse tree of an expression which describes a mechanism.
; ¢ is the (litatom) name of the Gypsy scope in which e appears.
; 8 is the marked, initial state on which the expression mechanism

108

; e begins to operate.

; n is the maximum number of steps that the expression mechanism is

; allowed to operate.

; x is the parse tree of the program description sentence which

; defines the library which contains the declarations of the

; Gypsy units which are referred to by e.

; gPF(e,c,s,n,x) is the marked, final state which results from operating the
; mechanism on the initial state s for at most n steps. If

; the mechanism has not completed all of its operations in n
; steps, then the final state is marked as indeterminate.

(if (not (normal_state s))
S

(if (zerop (fix n))
(mark_state_indeterminate s)

5 Rokskskokokokokok kokokok sk skok ok sk skok ok ok k ok

; <expression> ::= ...
ook s ok ok 3k ok ok ok o ok ok sk ok ok ok ok ok ok K

(if (rule e (prodn (tag ’expression ’e)
(tag ’modified_primary_value ’m)))
(GPF (subtree e ’modified_primary_value) c¢ s (subl n) x)

(if (rule e (prodn (tag ’expression ’e)

(list ’ALL (tag ’bound_expression ’b))))
(let ((sVS (GPF_bound_values e ¢ s x)))
(if (normal_state sVS)

(GPF_all (bound_id (subtree e ’bound_expression))
(result™ sVS) (cdr_quantified_exp e)
c s (subl n) x)

sVs))

(if (rule e (prodn (tag ’expression ’e)
(list ’SOME (tag ’bound_expression ’b))))
(let ((sVS (GPF_bound_values e ¢ s x)))
(if (normal_state sVS)
(GPF_some (bound_id (subtree e ’bound_expression))
(result™ sVS) (cdr_quantified_exp e)
¢ s (subl n) x)

109

sVs))

(if (rule e (prodn (tag ’expression ’e)
(list (tag ’unary_operator ’op) (tag ’expression ’e2))))
(GPF_apply_unary_op (subtree e ’unary_operator)

(GPF (subtree e ’expression) ¢ s (subl n) x)

s)

(if (rule e (prodn (tag ’expression ’e)
(list (tag ’expression ’el) (tag ’binary_operator ’op)
(tag ’expression ’e2))))
(GPF_apply_binary_op (subtree e ’binary_operator)
(GPF (subtree_i e ’expression 1) ¢ s (subl n) x)
(GPF (subtree_i e ’expression 2) c s (subl n) x)

s)

5 Rokskokokokokokok kokok ok sk skok ok ok skok ok ok sk ok ok ok sk ok k ok ok ok

; <modified primary value> ::=

§ KRR AR KKKk KKK KK KoK Kok KoK K KoK Ko

(if (rule e (prodn (tag ’modified_primary_value ’m)
(tag ’primary_value ’p)))
(GPF (subtree e ’primary_value) c¢ s (subl n) x)

(if (rule e (prodn (tag ’modified_primary_value ’m)
(list (tag ’modified_primary_value ’m2)
(tag ’value_modifiers ’vm))))
(if (fn_call_formp e)
(GPF_apply (object_name (subtree e ’modified_primary_value))
(GPF_adp (arg_list (subtree e ’value_modifiers))
c s (subl n) x)
nil ¢ s (subl n) x)
(GPF_modifiers (GPF (subtree e ’modified_primary_value)
c s (subl n) x)
(subtree e ’value_modifiers) c s (subl n) x))

(if (rule e (prodn (tag ’modified_primary_value ’m)
(list (tag ’modified_primary_value ’m2)
(tag ’actual_condition_parameters ’cp))))
(if (fn_call_formp e)
(GPF_apply (object_name (subtree e ’modified_primary_value))

110

(GPF_adp (arg_list (subtree e ’modified_primary_value))
¢ s (subl n) x)
(actual_cargs e)
¢ s (subl n) x)

(set_condition s ’routineerror))

5 RoKRskskokokokokok kokok ok ok kok ok ok kok ok ok ok

>

<primary value> ::=

3k >k 3k 5k 3k 5k >k 5k >k 3k 5k 5k 5k %k 5k %k >k >k k >k k >k %k

(if (rule e (prodn (tag ’primary_value ’p)

(tag ’literal_value ’1)))
(GPF (subtree e ’literal_value) c s (subl n) x)

(if (rule e (prodn (tag ’primary_value ’p)

(tag ’set_or_sequence_value ’s)))
(GPF (subtree e ’set_or_sequence_value) ¢ s (subl n) x)

(if (rule e (prodn (tag ’primary_value ’p)

(tag ’ENTRY_VALUE ’e)))
(GPF (subtree e ’ENTRY_VALUE) ¢ s (subl n) x)

(if (rule e (prodn (tag ’primary_value ’p)

(tag >IDENTIFIER ’on)))
(GPF (subtree e ’IDENTIFIER) c s (subl n) x)

(if (rule e (prodn (tag ’primary_value ’p)

(tag ’if_expression ’i)))
(GPF (subtree e ’if_expression) c¢ s (subl n) x)

(if (rule e (prodn (tag ’primary_value ’p)

>
>

)

(list ’OPEN_PAREN (tag ’expression ’e) ’CLOSE_PAREN)))
(GPF (subtree e ’expression) c¢ s (subl n) x)

From here down to parse tree leaves, clauses are in alphabetical order
by the left-hand side of the productions. Everything that is a parse
tree for an expression should be covered.

111

5 RRROKRKOK Ok ok %k %k %k %k %k %k %k K ok ok ok 5k %k %k k

; <constant body> ::=

3k >k >k %k %k X 3K 3K 3K 5k 5k 5k %k %k %k >k %k kK kK Kk

(if (rule e (prodn (tag ’constant_body ’b)
(tag ’expression ’e)))
(GPF (subtree e ’expression) c s (subl n) x)

(if (rule e (prodn (tag ’constant_body ’b)
>PENDING))
(mark_state_indeterminate s)

3 RRRKRKOK K 5k %k %k %k %k %k %k Xk XK K K 5k %k %k %k k

b
; <if expression> ::=
stk sk sk ok sk sk sk sk ok sk ok sk ok ok sk ok ok

(if (rule e (prodn (tag ’if_expression ’i)
(list ’IF (tag ’expression ’b) ’THEN

(tag ’expression ’p)

(tag ’if_expression_else_part ’e))))

; Note: this does not require all potential value expressions to be the
; same type or all boolean expressions to be boolean.
(let ((bv (GPF_type_check (boolean_desc)
(GPF (subtree_i e ’expression 1)
c s (subl n) x))))
(if (not (normal_state bv))
bv
(if (Gtruep (result™ bv))
(GPF (subtree_i e ’expression 2) c s (subl n) x)
(GPF (if_else_exp (subtree e ’if_expression_else_part))
¢ s (subl n) x))))

5 Rokokokokskok ok kok ok ok ok ok ok ok ok sk k ok ok k

>

112

; <literal value> ::=

3k >k >k >k %k % 3K 3K 3K 5k 5k 5k 5k %k %k >k >k >k kK Kk Xk

(if (rule e (prodn (tag ’literal_value ’1)
(tag ’CHARACTER_VALUE ’ch)))
(GPF (subtree e ’CHARACTER_VALUE) c¢ s (subl n) x)

(if (rule e (prodn (tag ’literal_value ’1)
(tag ’number ’n)))
(GPF (subtree e ’number) c¢ s (subl n) x)

(if (rule e (prodn (tag ’literal_value ’1)
(tag ’STRING_VALUE ’s)))
(GPF (subtree e ’STRING_VALUE) c s (subl n) x)

5 kokskokokokokokok kokok ok ok kok

; <number> ::=
5

5 RRKKRoKRoKkokok ok ko k ok ok k ok k

)

(if (rule e (prodn (tag ’number ’n)
(tag ’DIGIT_LIST ’s)))
(GPF_minteger e s)

(if (rule e (prodn (tag ’number ’n)

(list (tag ’base ’b) (tag ’DIGIT_LIST ’s))))
(GPF_minteger e s)

5 Rokokokokosk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok sk ok ok k ok

; <pre-computable label expression> ::=

>k >k >k >k >k >k 5k 5k >k 5k 5k 5k %k >k >k %k %k >k >k >k 5k 5k 5k 5k %k >k >k >k %k >k >k >k >k >k >k %k %k >k >k k%

)

(if (rule e (prodn (tag ’pre_computable_label_expression ’p)
(tag ’number °’n)))
(GPF (subtree e ’number) c¢ s (subl n) x)

(if (rule e (prodn (tag ’pre_computable_label_expression ’p)
(list °MINUS (tag ’number ’n))))

113

(GPF_apply_unary_op (mk_unary_operator ’MINUS)
(GPF (subtree e ’number) c s (subl n) x)
s)

(if (rule e (prodn (tag ’pre_computable_label_expression ’p)
(tag ’CHARACTER_VALUE ’ch)))
(GPF (subtree e ’CHARACTER_VALUE) c¢ s (subl n) x)

(if (rule e (prodn (tag ’pre_computable_label_expression ’p)
(tag ’IDENTIFIER ’i)))
(GPF (subtree e ’IDENTIFIER) c s (subl n) x)

5 RoRskskokokokokok kookokok ok skok ok ok skok ok ok skok ok ok sk ok k ok ok ok

H <set or sequence value> ::=

3k 3k 3k 5k %K K 3K 3K 3K 3K 5k 5k 5k 5k %k 5k >k %k %k % >k 3K 5k 5k 5k 5k %k %k %k >k k%

(if (rule e (prodn (tag ’set_or_sequence_value ’s)
(list ’OPEN_PAREN (tag ’set_or_seq_mark ’m)
(tag ’element_list ’e) ’CLOSE_PAREN)))
(GPF_Gset_or_seq (subtree e ’set_or_seq_mark)
(GPF_element_list (subtree e ’element_list)
¢ s (subl n) x)
(GPF_element_type (subtree e ’element_list)
¢ s (subl n) x)

s)

(if (rule e (prodn (tag ’set_or_sequence_value ’s)
(tag ’range ’r)))
(GPF_Gset_or_seq nil
(GPF_element_list (subtree e ’range) c s (subl n) x)
(GPF_element_type (subtree e ’range) c s (subl n) x)
s)

5 Rokokokokoskok skok kok ok ok ok ok ok ok ok sk k ok

H PARSE TREE LEAVES
sokokokosk sk sk sk sk sk sk ok ok kokok ok ok sk ok ok

)

(if (character_valuep e)

114

(GPF_Gchar e s)

(if (digit_listp e)
(GPF_minteger e s)

(if (entry_valuep e)
(GPF_apply_var (entry_name e) s nil)

(if (identifierp e)
(GPF_apply (gname e) nil nil ¢ s (subl n) x)

(if (string_valuep e)
(GPF_Gstring_seq e s)

(mark_state_indeterminate £)))))))))))))))))))))))))IINININIID)

((lessp (count n))))

5 KKOKkk 5k ok ok ok ok ok >k ok ok ok ok ok ok 5k 5k >k >k >k >k >k >k ok 5k 5k 5k 5k 5k %k >k >k >k >k >k >k >k >k 5k 5k 5k %k %k %k >k >k >k >k >k >k >k 5k 5k 5k %k >k >k >k >k %k >k >k >k >k >k >k >k %k >k >k >k %k %

>

; THE PROCEDURAL INTERPRETER

>k >k 3K 3K 3K 3k 3k 5k 5k 3k 3k 5k 5k >k %k %k >k 3k 3k 3k 3k 5k 5k 3k 5k 5k 5k %k %k >k >k 3k 3k 3k 3k %k %k %k >k %k %k % >k 5k 5k 5K 5k %k 3k %k %k >k >k %k %k K 3K >k 5k 5k >k %k %k >k >k >k >k %k % >k >k >k >k %k >k k

’

>

; Computation of Actual Data Parameters for Procedure Call

>

(defn GP_parg (e ¢ s n x)
(if (zerop (fix n))
(mark_state_indeterminate s)
(let ((e2 (mk_name_expression e)))
(if (rule e2 (prodn (tag ’name_expression ’e)
(tag ’IDENTIFIER ’i)))
(let ((vn (gname (subtree e2 ’IDENTIFIER))))
(let ((r (GPF_apply_var vn s nil)))
(if (normal_state r)
(allocate ’result” (name_exp vn nil) s)

r)))

(if (rule e2 (prodn (tag ’name_expression ’e)
(list (tag ’IDENTIFIER ’i)

115

(tag ’selector_list ’ss))))
(let ((vn (gname (subtree e2 ’IDENTIFIER)))
(ss (GPF_selectors (subtree e2 ’selector_list)
¢ s (subl n) x)))
(let ((r (GPF_apply_var vn s ss)))
(if (normal_state r)
(allocate ’result” (name_exp vn (result™_list ss)) s)

r)))
(GPF e ¢ s (subl n) x)))))
((lessp (count n))))

(defn GP_parg_list (as ¢ s n x)
(if (nlistp as)
nil
(if (zerop (fix n))
(list (mark_state_indeterminate s))
(cons (GP_parg (car as) c s (subl n) x)
(GP_parg_list (cdr as) ¢ s (subl n) x))))
((lessp (count n))))

; The Procedure Call

)

(defn GP_procedure_call (pn Sadp acp ¢ s n x)
; pn is the called procedure name
; Sadp is the list of states resulting from evaluation of actual data
; parameters
; acp is the list of actual condition paramters
; entry (normal_state s)
(if (zerop (fix n))
(mark_state_indeterminate s)
(let ((h (car (ref pn c x)))
(u (cdr (ref pn c x))))
(if (or (equal (kind u) ’procedure)
(equal (kind u) ’function))
(let ((s1 (GP_call_state u h Sadp acp s x)))
(if (normal_state s1)
(GP_map_call_effects
(GP_procedure_body (procedure_body u) h sl (subl n) x)

116

u (result”_list Sadp) acp ¢ s n x)
(map_cond_effects (cond™ s1) (formal_cargs u) acp
(marked (mark s1) (map s)))))
(set_condition s ’routineerror)))) ; indeterminate?
((lessp (count n))))

(defn GP_procedure_body (m ¢ s n x)

(if (zerop (fix n))
(mark_state_indeterminate s)

(if (rule m (prodn (tag ’procedure_body ’b)
’PENDING))
(mark_state_indeterminate s)

(if (rule m (prodn (tag ’procedure_body ’b)
(list ’BEGIN
(tag ’external_operational_specification ’es)
(tag ’opt_internal_environment ’iv)
(tag ’opt_keep_specification ’k)
(tag ’opt_internal_statements ’st)
’END)))
(let ((r (GP_deallocate_locals
(GP (subtree m ’opt_internal_statements)
c
(GP_set_keep
(keep_spec m)
(GP_locals (subtree m ’opt_internal_environment)

c
(GP_set_entry (prec m) ¢ s n x)
(subl n) x)

cn x)
(subl n) x))))
(if (indeterminate r)
r
(if (or (equal (cond™ r) ’normal)
(conditionp (cond™ r) r))
(GP_set_exit (exit_spec m) ¢ r n x)
(if (equal (cond™ r) ’leave)
; leave statement was not in a loop
(set_condition r ’routineerror)
; condition signalled was not a forward condition; we are not
; allowed to signal routineerror
(mark_state_indeterminate r)))))

117

(mark_state_indeterminate s))))
((lessp (count n))))
(defn GP_locals (m ¢ s n x)

(if (not (normal_state s))
s

(if (zerop n)
(mark_state_indeterminate s)

(if (rule m (prodn (tag ’opt_internal_environment ’iv)
’empty))
s

(if (rule m (prodn (tag ’opt_internal_environment ’iv)
(tag ’internal_environment ’iv2)))
(GP_locals (subtree m ’internal_environment) c s (subl n) x)

(if (rule m (prodn (tag ’internal_environment ’iv)
(tag ’internal_data_or_condition_objects ’iv2)))
(GP_locals (subtree m ’internal_data_or_condition_objects)
¢ s (subl n) x)

(if (rule m (prodn (tag ’internal_environment ’iv)
(list (tag ’internal_environment ’iv2)
(tag ’internal_data_or_condition_objects ’iv3))))
(GP_locals (subtree m ’internal_data_or_condition_objects) c

(GP_locals (subtree m ’internal_environment) c¢ s (subl n) x)
(subl n) x)

(if (rule m (prodn (tag ’internal_data_or_condition_objects ’iv)
(list (tag ’access_specification ’a)
(tag ’identifier_list ’is) ’COLON
(tag ’type_specification ’ts)
(tag ’opt_internal_initial_value ’v)
’SEMI_COLON)))
(let ((ie (internal_initial_value_exp m)))
(let ((iv (if (equal ie nil)
ie
(GPF ie c s (subl n) x))))
(GP_bind_locals (access m)

118

(id_list (subtree m ’identifier_list))
(type_desc (subtree m ’type_specification) ¢ nil x)

iv s)))

(if (rule m (prodn (tag ’internal_data_or_condition_objects ’iv)
(list ’COND (tag ’identifier_list ’is) ’SEMI_COLON)))

(GP_local_conds (id_list (subtree m ’identifier_list)) s)
(mark_state_indeterminate s)))))))))

((lessp (count n))))

§ kKKK kR KoKk kR Kok ok
; Case Statement
§ KRR KKK KKK KKK KoK K

(defn GP_case_body (km ¢ s n x)

(if (not (normal_state s))
s

(if (zerop (fix n))
(mark_state_indeterminate s)

(if (rule m (prodn (tag ’case_composition_body ’b)
’empty))
s

(if (rule m (prodn (tag ’case_composition_body ’b)
(list ’ELSE ’COLON (tag ’opt_internal_statements ’ss))))
(GP (subtree m ’opt_internal_statements) ¢ s (subl n) x)

(if (rule m (prodn (tag ’case_composition_body ’b)
(list ’IS (tag ’case_labels ’cs) ’COLON
(tag ’opt_internal_statements ’ss)
(tag ’case_composition_body ’b2))))
(let ((s1 (GPF_Gin k
(GPF_Gset (GPF_list (case_labels m) c s (subl n) x)
(base_type (type (result” k)))
s)
§)))

119

(if (normal_state s1)
(if (Gtruep (result” sl1))
(GP (subtree m ’opt_internal_statements) c s (subl n) x)
(GP_case_body k (subtree m ’case_composition_body)
c s (subl n) x))
s1))

(mark_state_indeterminate s))))))

((lessp (count n))))

>k >k >k 3K 3K 3K 3k 3k 5k 3k 3k 3k 5k >k %k %k >k 3k 3k 3k 3k 3k 3k %k %k 5k %k %k % >k 3K 3K 5k 5k 3k 3k %k 5k >k %k %k XK K 5K 3k 5k 5k 5k %k %k >k >k >k %k X %k 3K >k >k %k %k %k k k

; HANDLING CONDITIONS

; <opt_condition_handlers> ::= <empty> | WHEN <opt handler list>
; <opt_handler_list> ::= empty | <handler_list>
; <handler_list> ::= <handler> { <handler> }

§ AR R KR KoK KKK K oK KK K R KoK K oK KK K ok K oK KoK Kok Kok oK K Kok K oK K kK ok Kok K ok ok
(defn GP_cond (m ¢ s n x)
(if (or (indeterminate s) (condition_normal s))
s
(if (or (zerop n)
(not (condition_labels_ok (handler_labels m) s)))
(mark_state_indeterminate s)
(let ((h (handler m (cond™ s))))
(if (equal h nil)
s
(GP h c (set_condition s ’normal) (subl n) x)))))
((lessp (count n))))

;3 *%%x The strange commented characters in the following function allow GNU
H Emacs to count parentheses correctly.

(defn GP (m ¢ s n x)
; The meta-function GP (m,c,s,n,x) gives the state that results
; when the program fragment m is interpreted for at most n steps, in the

120

; context of scope c, initial state s, and Gypsy sentence x.

; The domain and range of GP (m,c,s,n,x) are as follows:

¥ B wn o B

is the parse tree which describes a computer program mechanism.

is the (litatom) name of the Gypsy scope in which m appears.

is the marked, initial state on which the mechanism m begins to operate.
is the maximum number of steps the mechanism is
is the parse tree of the program description sentence which

allowed to perform.

; defines the library which contains the declarations of the

; Gypsy units which are referred to by m.

; GP(m,c,s,n,x) is the marked, final state which results from operating
; the mechanism on the initial state s for at most n steps.

; If the mechanism has not completed all of its operation

; in n steps, then the final state is marked as indeterminate.

(if (not (normal_state s))
s

(if (zerop (fix n))
(mark_state_indeterminate s)

3k 3k >k >k >k >k 3K 3K 5K 3k 5k 5k 5k 5k 5k 5k 5k %k >k 3K 3K 5K 3k 3k 3k 5k 5k 5k 5k %k % 3K 3K 3K 5K 5k 5k %k %k 5k >k %k %k XK K 3k >k >k %k >k k

; STATEMENT LISTS
; <statement list> ::= <statement> {; <statement> }

3k 3k >k >k >k >k 3K 3K 3k 3k 5k 5k 3k 3k 5k 5k 5k %k %k >k 3K 5k 3k 3k 3k %k %k >k %k %k X K 3K 3K 5K 5k 3k %k %k %k >k %k %k X K >k >k >k %k >k k

(if (rule m (prodn (tag ’statement_list ’ss)
(tag ’statement ’s)))
(GP (subtree m ’statement) c s (subl n) x)

(if (rule m (prodn (tag ’statement_list ’ss)
(list (tag ’statement_list ’ss2) ’SEMI_COLON
(tag ’statement ’s))))
(GP (subtree m ’statement)
c
(GP (subtree m ’statement_list) ¢ s (subl n) x)
(subl n)
x)

121

3 oKk sk ok ok skok ok o ok sk ok ok o ok ok ok o sk sk ok o o sk sk ok sk o sk ok sk o sk sk ok s o ok sk ok sk o sk sk ok ok o ok sk sk ok o ok sk ok o o sk sk ok ok ok ok
; <statement> ::= <procedural statement> | <procedure composition rule>
; | <assert specification>

3 okokskokokokokskkok ok skeskok sk ok sk skok sk ok sksk sk ok sksk sk ok stk sk sk ok sksk sk sk ok stk sk ok stk sk ok sk sk sk sk ok sksk ok ok sk sk ok sk ok ok ok
(if (rule m (prodn (tag ’statement ’s)

(tag ’procedural_statement ’s2)))
(GP (subtree m ’procedural_statement) c¢ s (subl n) x)

(if (rule m (prodn (tag ’statement ’s)
(tag ’procedure_composition_rule ’s2)))
(GP (subtree m ’procedure_composition_rule) ¢ s (subl n) x)

(if (rule m (prodn (tag ’statement ’s)
(tag ’assert_specification ’s2)))
(GP (subtree m ’assert_specification) c¢ s (subl n) x)

>k >k >k >k >k >k 3k 5k 5k ok 5k 5k 5k 5k %k %k >k >k >k >k 5k 5k 5k 5k 5k %k >k >k %k %k %k >k >k >k 5k 5k 5k 5k >k >k >k >k %k >k >k >k >k >k %k %k >k >k >k >k >k *k *k *k >k *k

; PROCEDURAL STATEMENT

; <procedural statement> ::= <assignment statement>
<leave statement>
<move statement>

<new statement>
<procedure statement>
<remove statement>
<signal statement>

3k 5k 3k >k >k >k 5k 3k >k >k >k 5k 5k >k >k >k >k 3k 5k 5k >k >k >k 5k 5k >k >k >k 5k 5k 5k >k >k >k >k >k >k >k >k >k %k >k >k >k >k >k >k >k >k >k >k >k %k >k > >*k %k >k >k >k

(if (rule m (prodn (tag ’procedural_statement ’s)
(tag ’assignment_statement ’s2)))
(GP (subtree m ’assignment_statement) c¢ s (subl n) x)

(if (rule m (prodn (tag ’procedural_statement ’s)
(tag ’leave_statement ’s2)))

(GP (subtree m ’leave_statement) c¢ s (subl n) x)

(if (rule m (prodn (tag ’procedural_statement ’s)
(tag ’move_statement ’s2)))

122

(GP (subtree m ’move_statement) c s (subl n) x)

(if (rule m (prodn (tag ’procedural_statement ’s)
(tag ’new_statement ’s2)))
(GP (subtree m ’new_statement) c s (subl n) x)

(if (rule m (prodn (tag ’procedural_statement ’s)
(tag ’procedure_statement ’s2)))
(GP (subtree m ’procedure_statement) ¢ s (subl n) x)

(if (rule m (prodn (tag ’procedural_statement ’s)
(tag ’remove_statement ’s2)))
(GP (subtree m ’remove_statement) c¢ s (subl n) x)

(if (rule m (prodn (tag ’procedural_statement ’s)
(tag ’signal_statement ’s2)))
(GP (subtree m ’signal_statement) c s (subl n) x)

5 Rokokokokokokook ok ok ok ok ok ok ok ok ok ok ok k ok

; ASSIGNMENT STATEMENT

§ KKK KK KKK ok Kok KoK KK K o
(if (rule m (prodn (tag ’assignment_statement ’s)
(list (tag ’name_expression ’n) ’COLON_EQUAL
(tag ’expression ’e))))
(GP_assign (GP_parg (subtree m ’name_expression) c s (subl n) x)
(GPF (subtree m ’expression) c¢ s (subl n) x)
s cmn x)

5 RRRKKK KK %k k ok ok k kKKK

)

; LEAVE STATEMENT

5 Rokokskokskok koK skok kok kok sk ok

(if (rule m (prodn (tag ’leave_statement ’s)
’LEAVE))
(set_condition s ’leave)

123

5 Rodokokoko ok ok ok ok sk ok ok ke ok sk ok ok ok sk ok sk ok sk ok ok ok ok ok sk ok sk ok ok ok s ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok kok sk ok kok ok

; MOVE STATEMENT

; <move_statement> ::= MOVE <removable component> <component destination>
; <component destination> ::= <new dynamic variable component>
; | TO <sequence element name expression>

3k 3k 3k 3k 3k 3k >k 3k 3k >k 5k k Sk >k 3k Sk k ok 5k Sk >k 3k Sk sk ok k 3k 5k 3k Sk k >k 5k Sk >k 3k Sk 3k ok K 3k 5k 5k Sk k >k 3k Sk 3k 3k Sk 3k >k 3k Sk 5k ok ok sk >k 3k Sk >k ok Sk sk >k ok Sk %k >k 5k %k
;o I<<

>

(if (rule m (prodn (tag ’move_statement ’s)
(list ’MOVE (tag ’removable_component ’c)
(tag ’component_destination ’d))))
(let ((e (remove_exp_arg m)))
(GP_move (if (equal e nil) nil (GPF e c¢ s (subl n) x))
(GP_parg (remove_name_arg m) c¢ s (subl n) x)
(subtree m ’component_destination)
(GP_parg (new_name_arg m) ¢ s (subl n) x)
csmnx))

>k >k >k >k >k >k 5k ok ok ok ok 5k 5k >k >k >k >k >k >k >k >k 5k ok 5k 5k 5k %k %k >k %k %k >k >k >k 5k 5k 5k 5k %k >k >k %k %k >k >k >k >k 5k 5k 5k 5k >k >k >k >k >k %k >k >k >k >k >k >k >k >k >k >k >k >k %k %

; NEW STATEMENT
; <new_statement> ::= NEW <expression> <new dynamic variable component>

3k 5k 3k >k >k 3k 5k 5k >k >k 5k 5k 5k 5k >k >k >k 3k 5k 5k >k >k >k 3k 5k >k >k %k >k 5k >k %k >k >k > >k %k >k >k >k

(if (rule m (prodn (tag ’new_statement ’s)
(list ’NEW (tag ’expression ’e)

(tag ’new_dynamic_variable_component ’dc))))
(GP_new (subtree m ’new_dynamic_variable_component)
(GPF (subtree m ’expression) c s (subl n) x)
(GP_parg (new_name_arg m) c s (subl n) x)
csmnx)

5 Rokokoskokskokskok skok sk ok kok ok

; PROCECURE CALL

>k >k >k >k %k %k 3k 5k 5k 5k %k %k %k %k %k %

124

(if (rule m (prodn (tag ’procedure_statement ’s)
(list (tag ’IDENTIFIER ’pn)
(tag ’arg_list ’dp)
(tag ’opt_actual_condition_parameters ’cp))))
(GP_procedure_call (gname (subtree m ’identifier))
(GP_parg_list (actual_dargs m) c s (subl n) x)
(actual_cargs m)
c s (subl n) x)

3 RoRRoKk kKoK ok ok ok ok ok >k ok ok >k ok ok ok ok ok ok 5k k >k >k >k >k >k >k >k 5k 5k ok ok 5k %k %k >k %k >k >k >k >k >k >k >k >k 5k %k %k >k >k >k >k k k%

> REMOVE STATEMENT

; <remove_statement> ::= REMOVE <removable component>

; <removable component> ::=

; ELEMENT <expression> FROM SET <name expression>
; | <name expression>

3k >k >k >k >k >k 3K 3K 3k 3k 5k 5k 3k 3k 5k >k >k %k >k >k 5k 3k 3k 3k 3k 3k %k %k %k %k %k XK >k 3k 5k 5k 5k 3k %k %k >k >k %k X XK K >k 5k %k %k %k %k >k >k k k Kk *k

(if (rule m (prodn (tag ’remove_statement ’s)
(list ’REMOVE (tag ’removable_component ’c))))
(let ((e (remove_exp_arg m)))
(GP_remove (if (equal e nil) nil (GPF e c¢ s (subl n) x))
(GP_parg (remove_name_arg m) c s (subl n) x)
csmnx))

5 Rokskskokokokokok kokok ok kkok ok

; SIGNAL STATEMENT

§ kKRR KRRk KKK K
(if (rule m (prodn (tag ’signal_statement ’s)
(list ’SIGNAL (tag ’IDENTIFIER ’c))))
(if (conditionp (gname (subtree m ’IDENTIFIER)) s)
(set_condition s (gname (subtree m ’IDENTIFIER)))
(mark_state_indeterminate s))

5 Rokokokokook ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok sk ok sk ok sk ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok k ok k

125

; PROCEDURE COMPOSITION

; <procedure composition> :: <if_composition> | <case_composition>

; | <loop_composition> | <begin_composition>

>

(if (rule m (prodn (tag ’procedure_composition_rule ’s)
(tag ’if_composition ’s2)))
(GP (subtree m ’if_composition) c¢ s (subl n) x)

(if (rule m (prodn (tag ’procedure_composition_rule ’s)
(tag ’case_composition ’s2)))
(GP (subtree m ’case_composition) ¢ s (subl n) x)

(if (rule m (prodn (tag ’procedure_composition_rule ’s)
(tag ’loop_composition ’s2)))
(GP (subtree m ’loop_composition) ¢ s (subl n) x)

(if (rule m (prodn (tag ’procedure_composition_rule ’s)
(tag ’begin_composition ’s2)))
(GP (subtree m ’begin_composition) ¢ s (subl n) x)

3k >k >k >k >k >k 3K 3K 3k 3k 5k 5k 3k 3k 5k >k >k %k >k >k 3k 3k 3k 3k 3k %k 3k %k >k %k %k K >k 3k 5k 5k 5k 3k %k %k >k >k %k % K 3K 3K 5k 5k 5k 3k %k >k >k >k >k %k % >k >k >k >k %k %k >k >k k

; IF COMPOSITION

; <if composition> ::=

; IF <boolean expression> THEN <opt internal statements>

H <if composition else part>
H <opt condition handlers>
H END

; <if composition else part> ::=
; <empty>
; | ELSE <opt internal statements>

; | ELIF <boolean expression> THEN <opt internal statements>

; <if composition else part>

(if (rule m (prodn (tag ’if_composition ’s)
(1ist ’IF (tag ’expression ’b) ’THEN

126

3k 3k >k >k >k >k 3K 3K 3K 3k 3k 3k 3k 3k 5k >k 5k %k >k >k 3k 3k 3k 3k 3k 5k %k 5k >k 5k %k %K >k 3K 5K 5k 3k 3k %k %k >k >k %k % XK 3K 3K 5K 5k 5k 3k %k 5k >k >k >k Xk %k >k > 5 >k %k %k %k >k k

3k 5k 3k >k >k >k 5k 5k >k >k >k 5k 5k 3k >k >k >k 3k 5k 5k >k >k 5k 5k 5k >k >k >k >k 5k 5k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k 5k >k >k >k >k 5k >k >k >k >k >k >k >k >k >k >k >k >k > > *k >k >k >k

’

(tag ’opt_internal_statements ’ss)
(tag ’if_composition_else_part ’ep)
(tag ’opt_condition_handlers ’cs) ’END)))
(let ((bv (GPF_type_check (boolean_desc)
(GPF (subtree m ’expression)
¢ s (subl n) x)))
(ep (if_statement_else_part m)))
(GP_cond (subtree m ’opt_condition_handlers) c
(if (normal_state bv)
(if (Gtruep (result™ bv))
(GP (subtree m ’opt_internal_statements)
c s (subl n) x)
(if (equal ep nil)
S
(GP ep ¢ s (subl n) x)))
bv)
(subl n) x))

3 Rskokokokokokokoksksk sk sk sk ok ok sk ok ok ok sk sk sk sk sk sk sk sk sk ko sk sk sk sk sk sk sk sk sk sk sk ko sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk ok ok sk sk sk ok
H CASE COMPOSITION

; <case composition> ::= CASE <label expression>

; { IS <case labels> : [<internal statements>] }
; [ELSE : [<internal statements>] 1]
; [<condition handlers>]

; END

3k >k >k >k >k K 3K 3K 3K 3k 5k 5k 3k 3k 5k 5k 5k %k %k 5k 3K 3K 3k 3k 3k 3k 3k 5k 5k >k %k % >k 3K 3K 5k 3k 3k %k %k 5k >k 5k %k XK K 5K 3K 5K 5k 3k %k %k >k >k >k %k % K 3K 3K 5k %k >k %k %k >k >k >k k Kk Kk Xk

(if (rule m (prodn (tag ’case_composition ’s)
(list ’CASE (tag ’expression ’e)
(tag ’case_composition_body ’b)
(tag ’opt_condition_handlers ’c) ’END)))
(let ((k (GPF (subtree m ’expression) c¢ s (subl n) x)))
(let ((r (GP_case_label_check k
(GPF_list (case_labels m) c¢c s (subl n) x)
s)))
(GP_cond (subtree m ’opt_condition_handlers) c
(if (normal_state r)
(GP_case_body k (subtree m ’case_composition_body)
c s (subl n) x)

r)

127

(subl n) x)))

K 3K 3K 3k 3k ok 5k 5k 3k 5k 5k %k %k >k >k 3k 5k 5k 5k 3k 5k %k %k %k %k %k >k >k >k 5k 5k 5k 5k %k %k %k >k %k %k K >k >k >k >k >k %k %k >k >k >k >k *k *k Kk

; LOOP COMPOSITION

; <loop composition> ::= LOOP [<internal statements>]
; [<condition handlers>]
; END

3k 3k 3k 3k 5k >k >k 3k 3k ok 5k ok 3k 3k Sk ok ok >k >k >k Sk 3k ok >k 5k Sk 5k sk >k >k >k 3k Sk ok ok >k 3k 3k Sk ok ok %k %k k ok ok >k %k >k Sk sk ok k k >k

(if (rule m (prodn (tag ’loop_composition ’s)
(list ’LO0OP (tag ’opt_internal_statements ’ss)
(tag ’opt_condition_handlers ’c) ’END)))
(let ((p1 (GP (subtree m ’opt_internal_statements) c¢ s (subl n) x)))
(GP_cond (subtree m ’opt_condition_handlers) c
(if (condition_non_normal pl)
(reset_leave_to_normal pl)
(GP m ¢ pl (subl n) x))
(subl n) x))

stk ok ok ok ok ok sk ok ook ok ok ok sk sk ok sk ok sk ok ok ok sk sk ok sk ok sk ok ok sk sk sk ok sk ok ok sk sk ok sk ok sk ok ok sk ok ok sk ok
; BEGIN COMPOSITION

; <begin composition> ::= BEGIN [<internal statements>]
; [<condition handlers>]
; END

>k >k 3k 5k 3k >k >k >k 5k 5k >k >k >k 3k 5k 5k >k >k >k 5k 5k >k >k >k >k 5k >k >k >k >k >k >k >k >k >k >k >k 5k >k >k >k >k >k >k >k >k >k >k %k >k >k >k %k >k >k >k *k

(if (rule m (prodn (tag ’begin_composition ’s)
(list ’BEGIN (tag ’opt_internal_statements ’ss)
(tag ’opt_condition_handlers ’c) ’END)))
(GP_cond (subtree m ’opt_condition_handlers) c
(GP (subtree m ’opt_internal_statements) ¢ s (subl n) x)
(subl n) x)

K 3K 3K 5k ok ok 5k 5k k >k >k >k >k >k >k 5k 5k 5k 5k 5k 5k >k >k %k >k %k >k >k >k 5k 5k 5k 5k %k >k >k >k %k %k >k >k >k >k 5k 5k 5k %k >k >k >k >k %k >k >k >k >k >k >k %k >k >k k

128

; INTERNAL STATEMENTS

; <opt_internal_statements> ::= <empty> | <statement list> [;]
; | PENDING [;]

3R KK KR KoK KKK KoK Kok oK KoK Kok Kok oK oK oK ok Kok oK ok oK oK ok Kok oK ok koK ok ok K ok ok oK
(if (rule m (prodn (tag ’opt_internal_statements ’ss)
’empty))

s

(if (rule m (prodn (tag ’opt_internal_statements ’ss)
(list (tag ’statement_list ’ss2) ’opt_semi_colon)))
(GP (subtree m ’statement_list) c¢ s (subl n) x)

(if (rule m (prodn (tag ’opt_internal_statements ’ss)
(list ’PENDING ’opt_semi_colon)))
(mark_state_indeterminate s)

>k >k >k >k >k >k 3k 3k 5k ok 5k %k %k %k >k %k %k >k *k kK k

; ASSERT SPECIFICATION

3k >k >k >k %k % K 3K 3k 5k 5k 5k %k %k %k >k >k k kK K Xk

; Whenever an assertion is encountered in executable code, it is evaluated
; and the result AND’d to the assertion-accumulator component of the map.

(if (rule m (prodn (tag ’assert_specification ’s)
(list ’ASSERT (tag ’specification_expression ’e))))
(GP (subtree m ’specification_expression) c s (subl n) x)

(if (rule m (prodn (tag ’specification_expression ’e)
(tag ’non_validated_specification_expression ’e2)))
(GP_update_assert (expression_from_spec m) ¢ s n Xx)

(if (or (rule m (prodn (tag ’specification_expression ’e)
(tag ’validated_specification_expression ’e2)))
(rule m (prodn (tag ’specification_expression ’e)
(1ist ’OPEN_PAREN
(tag ’validated_specification_expression ’e2)
’CLOSE_PAREN))))
(GP (subtree m ’validated_specification_expression)

129

c s (subl n) x)

(if (rule m (prodn (tag ’validated_specification_expression ’e)
(list (tag ’non_validated_specification_expression ’e2)
’OTHERWISE (tag ’IDENTIFIER ’i))))
(let ((r (GPF_type_check (boolean_desc)
(GPF (expression_from_spec m)
c s (subl n) x))))
(if (normal_state r)
(if (Gtruep (result”™ r))
(GP_record_assert (result”™ r) s)
(GP (mk_signal_stmt (subtree m ’IDENTIFIER))
¢ (GP_record_assert (result™ r) s) (subl n) x))

r))

(mark_state_indeterminate £)))))))))))))))))))))INIIIINININIIDD
((lessp (count n))))
))

| #

DEFINITION:
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-gpf_

= case on mutual-fig:

130

case = gp
then if — normal state (s) then s

elseif fix (n) ~ 0 then mark_ state_indeterminate (s)
elseif rule (m,

prodn (tag (’statement_list, ’ss),
tag (’statement, ’s)))

then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg _list-

elseif rule (m,

prodn (tag (’statement_list, ’ss),

list (tag (’statement_list, ’ss2),
’semi_colon,

tag (’statement, ’s))))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

131

elseif rule (m,
prodn (tag (’statement, ’s),
tag (’procedural statement, ’s2)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

132

elseif rule (m,
prodn (tag (’statement, ’s),
tag (’procedure_composition_rule, ’s2)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

elseif rule (m,
prodn (tag (’statement, ’s),
tag (’assert_specification, ’s2)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

133

elseif rule (m,
prodn (tag (’procedural _statement, ’s),
tag (’assignment_statement, ’s2)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

elseif rule (m,
prodn (tag (’procedural _statement, ’s),
tag (’leave_statement, ’s2)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

134

elseif rule (m,
prodn (tag (’procedural_statement, ’s),
tag (’move_statement, ’s2)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg _list-

elseif rule (m,
prodn (tag (’procedural _statement, ’s),
tag (’new_statement, ’s2)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

135

elseif rule (m,
prodn (tag (’procedural_statement, ’s),
tag (’procedure_statement, ’s2)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

elseif rule (m,
prodn (tag (’procedural _statement, ’s),
tag (’remove_statement, ’s2)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

136

elseif rule (m,
prodn (tag (’procedural _statement, ’s),
tag (’signal_statement, ’s2)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

elseif rule (m,
prodn (tag (’assignment_statement, ’s),
list (tag (’name_expression, ’n),
’colon_equal,
tag (’expression, ’e))))
then gp_assign (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-g]

137

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gj

»

9

)

7

S

)
z)
elseif rule (m, prodn (tag (’leave_statement, ’s), *leave))
then set_condition (s, *leave)
elseif rule (m,

138

prodn (tag (’move_statement, ’s),
list (’move,
tag (’removable_component, ’c),
tag (’component_destination, ’d))))
then gp_move (if remove_exp_arg (m) = nil then nil
else mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_cz

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp

subtree (m, ’component_destination),

139

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp

» O

)

)
)
elseif rule (m,
prodn (tag (’new_statement, ’s),
list (’new,
tag (’expression, ’e),
tag (’new_dynamic_variable_component,

’dc))))

then gp_new (subtree (m, ’new_dynamic_variable_component),
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_j

8 3

140

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_j

®» O

)

)
elseif rule (m,
prodn (tag (’procedure_statement, ’s),
list (tag (> identifier, ’pn),
tag (’arg_list, ’dp),
tag (’opt_actual _condition parameters,

’cp))))

then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

8 3

141

elseif rule (m,
prodn (tag (’remove_statement, ’s),
list (*remove,
tag (’removable_component, ’c))))
then gp_remove (if remove_exp_arg (m) = nil then nil
else mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure.

142

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-g

®» O

b

)
elseif rule (m,
prodn (tag (’signal statement, ’s),
list (*signal, tag (’identifier, ’c))))
then if conditionp (gname (subtree (m, >identifier)), s)
then set_condition (s, gname (subtree (m, ’>identifier)))
else mark state_indeterminate (s) endif
elseif rule (m,
prodn (tag (’procedure_composition_rule, ’s),
tag (’if _composition, ’s2)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

8 3

143

elseif rule (m,
prodn (tag (’procedure_composition_rule, ’s),
tag (’case_composition, ’s2)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

elseif rule (m,
prodn (tag (’procedure_composition_rule, ’s),
tag (> loop_composition, ’s2)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

144

elseif rule (m,
prodn (tag (’procedure_composition_rule, ’s),
tag (’begin_composition, ’s2)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg _list-

elseif rule (m,
prodn (tag (’if _composition, ’s),

145

list (if,
tag (’expression, ’b),
’then,
tag (’opt_internal_statements, ’ss),
tag (’if composition_else_part,
’ep),
tag (’opt_condition handlers, ’cs),
‘end)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

146

147

148

elseif rule (m,
prodn (tag (’ case_composition, ’s),
list (’ case,
tag (’expression, ’e),
tag (’ case_composition_body, ’b),
tag (’opt_condition handlers, ’c),
‘end)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

149

150

151

elseif rule (m,
prodn (tag (’ loop_composition, ’s),
list (? Loop,
tag (’opt_internal _statements, ’ss),
tag (’opt_condition handlers, ’c),
rend))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

152

153

elseif rule (m,
prodn (tag (’begin_composition, ’s),
list (*begin,
tag (’opt_internal _statements, ’ss),
tag (’opt_condition handlers, ’c),
‘end)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

154

elseif rule (m,
prodn (tag (’opt_-internal statements, ’ss),
’empty)) then s
elseif rule (m,
prodn (tag (’opt_internal statements, ’ss),
list (tag (’statement_list, ’ss2),
’opt_semi_colon)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

155

elseif rule (m,
prodn (tag (’opt_internal statements, ’ss),
> (pending opt_semi_colon)))
then mark state_indeterminate (s)
elseif rule (m,
prodn (tag (’assert_specification, ’s),
list (’assert,
tag (’specification_expression, ’e))))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

elseif rule (m,
prodn (tag (’specification_expression, ’e),
tag (’non_validated_specification_expression,

’e2)))

156

then gp_update_assert (expression_from_spec (m), ¢, s, n, x)
elseif rule (m,
prodn (tag (’specification_expression, ’e),
tag (’validated_specification_expression,
'62)))
vV rule (m,
prodn (tag (’specification expression,
’ e),
list (> open_paren,
tag (’validated_specification_expression,
re2),
’close_paren)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg _list-

elseif rule (m,
prodn (tag (’validated specification expression,
) e)’
list (tag (*non_validated_specification_expression,
’e2),
’otherwise,
tag (’identifier, ’i))))
then if normal state (gpf_type_check (BOOLEAN_DESC,
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_bod

157

then if gtruep (result™ (gpf_type_check (BOOLEAN_DESC,
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_proced

then gp_record_assert (result”™ (gpf_type_check (BOOLEAN_DESC,
mutual-gp-gp_cond-gp_case_body-gp_loc:

158

s)

else mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-g

159

else gpf_type_check (BOOLEAN_DESC,
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procec

else mark state_indeterminate (s) endif
case = gp_cond
then if indeterminate (s) V condition_normal (s) then s
elseif (n ~ 0)
V (= condition_labels_ok (handler_labels (m), s))
then mark state_indeterminate (s)
elseif handler (m, cond™ (s)) = nil then s
else mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

160

case = gp_case_body
then if — normal state (s) then s
elseif fix (n) ~ 0 then mark state_indeterminate (s)
elseif rule (m,
prodn (tag (’ case_composition_body, ’b),
’empty)) then s
elseif rule (m,
prodn (tag (’ case_composition_body, ’b),
list (’else,
’colon,
tag (’opt_internal statements,

’ss))))

then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

161

elseif rule (m,
prodn (tag (’ case_composition_body, ’b),

list (*is,
tag (’case_labels, ’cs),
’colon,
tag (’opt_internal statements,

’ss),
tag (’ case_composition_body, ’b2))))
then if normal_state (gpf_gin (k,
gpf_gset (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_b

base_type (type (result™ (k))),
s),
5))
then if gtruep (result”™ (gpf_gin (k,
gpf_gset (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_proc

162

b;mse,type (type (result™ (k))),
»

then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_cal

else mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-

163

else gpf_gin (k,
gpf_gset (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_pro

base_type (type (result™ (k))),
5);
s) endif
else mark state_indeterminate (s) endif
case = gp_locals
then if — normal_state (s) then s
elseif n ~ 0 then mark state_indeterminate (s)
elseif rule (m,
prodn (tag (’opt_internal environment, ’iv),
’empty)) then s
elseif rule (m,
prodn (tag (’opt_internal _environment, ’iv),
tag (’internal _environment, ’iv2)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

164

elseif rule (m,
prodn (tag (’ internal _environment, ’iv),
tag (’internal _data or_condition_objects,
?iv2)))

then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

elseif rule (m,
prodn (tag (’internal_environment, ’iv),
list (tag (’internal_environment, ’iv2),
tag (’internal data or_condition objects,

’1v3))))

165

then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

elseif rule (m,
prodn (tag (’internal data_or_condition_objects,
2iv),
list (tag (*access_specification, ’a),
tag (’identifier list, ’is),

166

’colon,
tag (’type_specification, ’ts),
tag (’opt_internal_initial_value,
),
’semi_colon)))
then gp_bind locals (access (m),
id_list (subtree (m, ’identifier_list)),
type_desc (subtree (m,
’type_specification),
C,
nil,
z),
if internal_initial_value_exp (m) = nil
then internal_initial_value_exp (m)
else mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_proce

s)
elseif rule (m,
prodn (tag (’ internal data_or_condition_objects,
’iv),
list (? cond,
tag (’identifier_list, ’is),
’semi_colon)))
then gp_local_conds (id-list (subtree (m, >identifier_list)),
5)
else mark state_indeterminate (s) endif
case = gp_procedure_body

167

then if fix (n) ~ 0 then mark state_indeterminate (s)
elseif rule (m, prodn (tag (’procedure_body, ’b), ’pending))
then mark state_indeterminate ()
elseif rule (m,
prodn (tag (’procedure_body, ’b),
list (’begin,
tag (’external operational specification,
res),
tag (’opt_internal_environment,
iv),
tag (’opt_keep_specification, ’k),
tag (’opt_internal statements,
'st),
'end)))
then if indeterminate (gp-deallocate_locals (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedt

168

then gp_deallocate_locals (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp

169

elseif (cond™ (gp-deallocate_locals (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure

170

= ’normal)
vV conditionp (cond™ (gp-deallocate_locals (mutual-gp-gp_cond-gp_case_body-gp_local

171

gp_deallocate_locals (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_pr

172

then gp_set_exit (exit_spec (m),
C,
gp_deallocate locals (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_proced

173

n,

z)

elseif cond™ (gp_deallocate_locals (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_]

174

= ’leave
then set_condition (gp_deallocate_locals (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_proc

175

176

’routineerror)
else mark_state_indeterminate (gp_deallocate_locals (mutual-gp-gp_cond-gp_case_body-gp_loc

177

else mark state_indeterminate (s) endif
case = gp_procedure_call
then if fix (n) ~ 0 then mark state_indeterminate (s)
elseif (kind (cdr (ref (pn, ¢, x))) = ’procedure)
Vv (kind (cdr (ref (pn, ¢, z))) = function)

then if normal_state (gp_call_state (cdr (ref (pn, ¢, x)),
car (ref (pn, ¢, z)),
sadp,
acp7
87
7))

then gp_map_call_effects (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp.

178

cdr (ref (pn, ¢, z)),
result”_list (sadp),
acp,

C7

S?

n7

z)

else map_cond_effects (cond ™ (gp_call_state (cdr (ref (pn,

m))?

car (ref (pn,

z)),

sadp,
acp,

z)),
formal_cargs (cdr (vef (pn, ¢, z))),
acp,

marked (mark (gp_call_state (cdr (ref (pn,

z)),

car (ref (pn,

x))?

sadp,
acp,

‘/E))7
map (s))) endif
else set_condition (s, ’routineerror) endif
case = gp_parg_list
then if as ~ nil then nil
elseif fix (n) ~ 0 then list (mark_state_indeterminate (s))

else cons (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_par

179

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_par

case = gp_parg
then if fix (n) ~ 0 then mark_state_indeterminate (s)
elseif rule (mk_name_expression (¢e),
prodn (tag (’name_expression, ’e),
tag (’identifier, ’i)))
then if normal state (gpf_apply_var (gname (subtree (mk_name_expression (e),
’identifier)),
S,
nil))
then allocate (’result”,
name_exp (gname (subtree (mk_name_expression (e),
’identifier)),
nil),

180

s)
else gpf_apply_var (gname (subtree (mk_name_expression (e),
>identifier)),
S,
nil) endif
elseif rule (mk_name_expression (¢e),
prodn (tag (’name_expression, ’e),
list (tag (*identifier, ’i),
tag (’selector_list, ’ss))))
then if normal_state (gpf_apply_var (gname (subtree (mk_name_expression (e),
’identifier)),
S,
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_bod

then allocate (*result”,
name_exp (gname (subtree (mk_name_expression (e),
>identifier)),
result”_list (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedu

181

s)
else gpf_apply_var (gname (subtree (mk_name_expression (e),
’identifier)),
87
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procec

else mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

182

case = gpf
then if — normal state (s) then s

elseif fix (n) ~ 0 then mark state_indeterminate (s)
elseif rule (e,
prodn (tag (’expression, ’e),
tag (’modified _primary_value, ’m)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

elseif rule (e,
prodn (tag (’expression, ’e),
list (>all, tag (’bound_expression, ’b))))
then if normal state (gpf_bound_values (e, ¢, s, z))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_p:

183

else gpf_bound_values (e, ¢, s, z) endif
elseif rule (e,
prodn (tag (’expression, ’e),
list (’ some, tag (’bound_expression, ’b))))
then if normal state (gpf_bound _values (e, ¢, s, z))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_p:

184

else gpf_bound_values (e, ¢, s, z) endif
elseif rule (e,
prodn (tag (’expression, ’e),
list (tag (*unary_operator, ’op),
tag (’expression, ’e2))))
then gpf_apply_unary_op (subtree (e, >unary_operator),
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_proce

)
elseif rule (e,
prodn (tag (’expression, ’e),
list (tag (’expression, ’el),
tag (’binary_operator, ’op),
tag (’expression, ’e2))))
then gpf_apply_binary_op (subtree (e, *binary_operator),
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_proc

185

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_proc

5)
elseif rule (e,
prodn (tag (’modified primary value, ’m),
tag (’primary_value, ’p)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

186

elseif rule (e,
prodn (tag (’modified primary value, ’m),
list (tag (’modified primary_value, ’m2),
tag (’value modifiers, *vm))))
then if fn_call_formp (e)
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_p:

187

else mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_pa

188

elseif rule (e,
prodn (tag (’modified_primary value, ’m),
list (tag (’modified primary_value, ’m2),
tag (’actual_condition parameters,
'cp)))
then if fn_call_formp (e)
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_p:

189

else set_condition (s, ’routineerror) endif
elseif rule (e,
prodn (tag (’ primary_value, ’p),
tag (’literal_value, ’1)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

elseif rule (e,
prodn (tag (’primary_value, ’p),
tag (’set_or_sequence_value, ’s)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

190

elseif rule (e,
prodn (tag (’primary_value, ’p),
tag (’entry_value, ’e)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

elseif rule (e,
prodn (tag (’primary_value, ’p),
tag (’identifier, ’on)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

191

elseif rule (e,
prodn (tag (’primary_value, ’p),
tag (’if _expression, ’1i)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

elseif rule (e,
prodn (tag (’ primary_value, ’p),
list (> open_paren,
tag (’expression, ’e),
’close_paren)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

192

elseif rule (e,
prodn (tag (’ constant_body, ’b),
tag (’expression, ’e)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

elseif rule (e, prodn (tag (’ constant_body, ’b), ’pending))
then mark state_indeterminate ()

193

elseif rule (e,
prodn (tag (> if _expression, ’i),
list (*if,

tag (’expression, ’b),

’then,

tag (’expression, ’p),

tag (’if_expression_else_ part, ’e))))
then if — normal state (gpf_type_check (BOOLEAN_DESC,

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_]

then gpf_type_check (BOOLEAN_DESC,
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_proc

194

elseif gtruep (result™ (gpf_type_check (BOOLEAN_DESC,
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedt

then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_p:

195

else mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_pa

elseif rule (e,
prodn (tag (’literal_value, ’1),
tag (’ character_value, ’ch)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

196

elseif rule (e,
prodn (tag (’literal value, ’1),
tag (’number, ’n)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

elseif rule (e,
prodn (tag (’literal_value, ’1),
tag (’string_value, ’s)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

197

elseif rule (e,
prodn (tag (’number, ’n), tag (’digit-list, ’s)))
then gpf minteger (e, s)
elseif rule (e,
prodn (tag (’number, ’n),
list (tag (*base, ’b), tag (*digit_list, ’s))))
then gpf minteger (e, s)
elseif rule (e,
prodn (tag (’pre_computable_label_expression,
’P),
tag (’number, ’n)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

elseif rule (e,
prodn (tag (’ pre_computable_label expression,
’ P)»
list (’minus, tag (’number, ’n))))
then gpf_apply_unary_op (mk_unary_operator (’minus),
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_proce

198

s)
elseif rule (e,
prodn (tag (’pre_computable_label_expression,
’P);
tag (’ character_value, ’ch)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

199

elseif rule (e,
prodn (tag (’ pre_computable_label expression,
’p)s
tag (’identifier, ’i)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

elseif rule (e,
prodn (tag (’set_or_sequence_value, ’s),
list (’ open_paren,
tag (’set_or_seqmark, ’m),
tag (’element list, ’e),
’close_paren)))
then gpf_gset_or_seq (subtree (e, ’set_or_seq-mark),
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure

200

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure

s)
elseif rule (e,
prodn (tag (’set_or_sequence_value, ’s),
tag (’range, ’r)))
then gpf_gset_or_seq (nil,
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure

201

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure

s)
elseif character_valuep (e) then gpf_gchar (e, s)
elseif digit_listp (e) then gpf minteger (e, s)
elseif entry_valuep (e) then gpf_apply_var (entry_name (e), s, nil)
elseif identifierp (e)
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

202

elseif string_valuep (e) then gpf_gstring seq (e, s)
else mark_state_indeterminate (s) endif
case = gpf.list
then if es ~ nil then nil
elseif fix (n) ~ 0 then list (mark_state_indeterminate (s))
else cons (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_par

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_par

203

case = gpf-apply
then if state_componentp (fn, s)
then if acp = nil then gpf_apply_var (fn, s, adp)
else set_condition (s, *routineerror) endif
elseif fn = false
then if acp = nil then gpf select_op (gpf_false (s), adp, s)
else set_condition (s, >routineerror) endif
elseif fn = *true
then if acp = nil then gpf_select_op (gpf_true (s), adp, s)
else set_condition (s, ’routineerror) endif
elseif type name_expp (fn, adp, sn,)
then if acp = nil then gpf_type_name_arg (fn, sn, s, z)
else set_condition (s, ’routineerror) endif
elseif fn = ’domain
then if acp = nil then gpf_std_domain (adp, s)
else set_condition (s, ’routineerror) endif
elseif fn = *first
then if acp = nil then gpf_std_first (adp, s)
else set_condition (s, ’routineerror) endif
elseif fn = ’initial
then if acp = nil then gpf_std_initial (adp, s)
else set_condition (s, ’routineerror) endif
elseif fn = ’last
then if acp = nil then gpf_std_last (adp, s)
else set_condition (s, ’routineerror) endif
elseif fn = ’lower
then if acp = nil then gpf std_lower (adp, s)
else set_condition (s, >routineerror) endif
elseif fn = *max
then if acp = nil then gpf std_max (adp, s)
else set_condition (s, ’routineerror) endif
elseif fn = ’min
then if acp = nil then gpf std_min (adp, s)
else set_condition (s, ’routineerror) endif
elseif fn = ’nonfirst
then if acp = nil then gpf std_nonfirst (adp, s)
else set_condition (s, ’routineerror) endif

204

elseif fn = ’nonlast
then if acp = nil then gpf_std_nonlast (adp, s)
else set_condition (s, ’routineerror) endif
elseif fn = ’null
then if acp = nil then gpf_std_null (adp, s)
else set_condition (s, *routineerror) endif
elseif fn = >ord
then if acp = nil then gpf std_ord (adp, s)
else set_condition (s, ’routineerror) endif
elseif fn = ’pred
then if acp = nil then gpf std_pred (adp, s)
else set_condition (s, *routineerror) endif
elseif fn = ’range
then if acp = nil then gpf_std_range (adp, s)
else set_condition (s, ’routineerror) endif
elseif fn = ’scale
then if acp = nil then gpf_std_scale (adp, s)
else set_condition (s, ’routineerror) endif
elseif fn = ’size
then if acp = nil then gpf_std_size (adp, s)
else set_condition (s, ’routineerror) endif
elseif fn = ’succ
then if acp = nil then gpf std_succ (adp, s)
else set_condition (s, >routineerror) endif
elseif fn = ’upper
then if acp = nil then gpf_std_upper (adp, s)
else set_condition (s, *routineerror) endif
elseif fix (n) ~ 0 then mark state_indeterminate (s)
else mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-

205

case = gpfapply_fun
then if fix (n) ~ 0 then mark state_indeterminate (s)
elseif kind (cdr (ref (fn, sn, z))) = *function
then gpf_select_op (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_c

if length (formal_dargs (cdr (vef (fn, sn, z))))
= 0 then adp
else nil endif,
s)
elseif kind (cdr (rvef (fn, sn,))) = ’constant
then if acp = nil
then gpf_select_op (gpf_retype_result™ (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_proced

206

type_desc (result_type (cdr (ref (fn,
sn,

z)));

car (ref (fn,

adp,
5)
else set_condition (s, ’routineerror) endif
else set_condition (s, ’routineerror) endif
case = gpf-modifiers
then if — normal state (s) then s
elseif — normal state (sbv) then sbv
elseif fix (n) ~ 0 then mark state_indeterminate (s)
elseif rule (e,
prodn (tag (’value modifiers, ’m),
tag (> component_selectors, ’s)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

207

elseif rule (e,
prodn (tag (’ component_selectors, ’s),
list (’dot, tag (’identifier, ’fn))))
then gpf_record_get (sbv,
allocate (’result”,
marked (’field name,
gname (subtree (e,
’identifier))),
s),
s)
elseif rule (e,
prodn (tag (’ component_selectors, ’s),
tag (’arg_list, ’d)))
then gpf select_op (sbv,
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_c.

208

s)
elseif rule (e,
prodn (tag (’valuemodifiers, ’m),
tag (’range, ’r)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

elseif rule (e,
prodn (tag (’range, ’r),
list (’ open_paren,
tag (*range_limits, ’r2),
’close_paren)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

209

elseif rule (e,
prodn (tag (’range_limits, ’r),
list (tag (’expression, ’lo),
’dot_dot,
tag (’expression, ’hi))))
then gpf_subsequence_get (sbv,
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_proc

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_proc

210

s)
elseif rule (e,
prodn (tag (’value modifiers, ’m),
tag (’value_alterations, ’a)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

elseif rule (e,
prodn (tag (’value_alterations, ’a),
list (’with,
’open_paren,
tag (’ component_alterations_list,
'al),

’close_paren)))

then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

211

elseif rule (e,
prodn (tag (’ component_alterations_list, ’al),
tag (’ component_alterations, ’a)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

elseif rule (e,
prodn (tag (’ component_alterations_list, ’al),
list (tag (’ component_alterations_list,
’al2),
’semi_colon,

212

tag (> component_alterations, ’a))))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

elseif rule (e,
prodn (tag (’ component_alterations, ’as),
list (tag (’opt_each_clause, ’e),
tag (’ component_assignment, ’a))))

213

then if each_clausep (subtree (e, >opt_each_clause))
then if normal_state (gpf_bound_values (subtree (e,
’opt_each_clause),
C7
s’
z))

then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_cal

else gpf_bound_values (subtree (e,
’opt_each_clause),
C’
87
z) endif
else mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_pa

214

elseif rule (e,
prodn (tag (’ component_alterations, ’as),
list (tag (’opt_each_clause, ’e),
tag (’ component_creation, ’c))))
then if each_clausep (subtree (e, ’opt_each_clause))
then if normal_state (gpf_bound_values (subtree (e,
’opt_each_clause),
¢,
S,
z))

then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_cal

215

else gpf_bound_values (subtree (e,
’opt_each_clause),
C’
87
z) endif
else mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_pa

elseif rule (e,
prodn (tag (’ component_alterations, ’as),
list (tag (’opt_each_clause, ’e),
tag (’ component_deletion, ’d))))
then if each_clausep (subtree (e, *opt_each_clause))
then if normal_state (gpf_bound_values (subtree (e,
’opt_each_clause),
¢,
S,
z))

then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_cal

216

else gpf_bound_values (subtree (e,
’opt_each_clause),
C’
87
z) endif
else mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_pa

217

elseif rule (e,
prodn (tag (> component_assignment, ’a),
list (tag (?selector_list, ’s),
’colon_equal,
tag (’expression, ’e))))
then gpf_put_op (sbv,
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call

218

)
elseif rule (e,
prodn (tag (’ component_creation, ’c),
list (*before,

tag (’selector_list, ’s),

’colon_equal,

tag (’expression, ’e))))
then gpf_put_op (sbv,

redr (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedur

gpf_gseq-insert_before (gpf_select_op (sbv,
redr (mutual-gp-gp_cond-gp_case_body-gp_l

219

s),

rcar (mutual-gp-gp-cond-gp_case_body-gp_locals-gp_proce

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure._

220

s),

s)
elseif rule (e,
prodn (tag (’ component_creation, ’c),
list (*behind,

tag (’selector_list, ’s),

’colon_equal,

tag (’expression, ’e))))
then gpf_put_op (sbv,

redr (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedur

gpf_gseq_insert_behind (gpf_select_op (sbv,

221

redr (mutual-gp-gp_cond-gp_case_body-gp]

s),

rcar (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_proce

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure

222

s),
s)
elseif rule (e,
prodn (tag (’ component_creation, ’c),
list (?into,
tag (’selector_list, ’s),
’colon_equal,
tag (’expression, ’e))))
then gpf_put_op (sbv,
redr (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedur

gpf_gmap_insert (gpf_select_op (sbv,
redr (mutual-gp-gp_cond-gp_case_body-gp_locals-¢

223

s),

rcar (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_l

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-

224

5),
5)
elseif rule (e,
prodn (tag (’ component_deletion, ’d),
list (> seqomit, tag (’selector_list, ’s))))
then gpf_put_op (sbv,
redr (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedur

gpf_gseqomit (gpf_select_op (sbv,
redr (mutual-gp-gp_cond-gp_case_body-gp locals-gp_]

225

5);

rcar (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_bod

s),
s)
elseif rule (e,
prodn (tag (’ component_deletion, ’d),
list (’mapomit, tag (’selector_list, ’s))))
then gpf_put_op (sbv,
redr (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedur

226

gpf_gmapomit (gpf_select_op (sbv,
redr (mutual-gp-gp_cond-gp_case_body-gp_locals-gp

s),

rcar (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_bo

227

s),
s)

else mark_state_indeterminate (s) endif

case = gpf_selectors

then if — normal state (s) then list (s)
elseif fix (n) ~ 0 then list (mark_state_indeterminate (s))
elseif rule (e,
prodn (tag (’selector_list, ’s),
tag (> component_selectors, ’s2)))

then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

elseif rule (e,

228

prodn (tag (’selector_list, ’s),
list (tag (*selector_list, ’s2),
tag (’ component_selectors, ’s3))))
then append (mutual-gp-gp-cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp

elseif rule (e,

229

prodn (tag (’ component_selectors, ’s),
list (’dot, tag (’identifier, ’fn))))
then list (allocate (’result”,
marked (’field name,
gname (subtree (e, ’identifier))),
s))
elseif rule (e,

prodn (tag (’ component_selectors, ’s),
tag (’arg_list, ’d)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

elseif rule (e,
prodn (tag (’arg_list, ’as),
list (’ open_paren,
tag (’value_list, ’vs),
’close_paren)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

230

else list (mark_state_indeterminate (s)) endif
case = gpf-adp
then if — normal state (s) then list (s)
elseif fix (n) ~ 0 then list (mark_state_indeterminate (s))
elseif rule (e,
prodn (tag (’arg-list, ’as),
list (’ open_paren,
tag (’value_list, ’vs),
’close_paren)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

elseif rule (e,
prodn (tag (’value_list, ’vs),
tag (’expression, ’e)))
then rcons (nil,
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_p

231

elseif rule (e,
prodn (tag (’value_list, ’vs),
list (tag (*value_list, ’vs2),
’comma,
tag (’expression, ’e))))
then rcons (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_p

232

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_p

else list (mark_state_indeterminate (s)) endif
case = gpf_each
then if - normal state (s) then s
elseif vs ~ nil then sbv
elseif gp_new_namep (id, s)
then if n ~ 0 then mark state_indeterminate (s)
else mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_pa

233

else set_condition (s, ’routineerror) endif
case = gpf.some
then if vs ~ nil then gpf_false (s)
elseif gp_new_namep (id, s)
then if n ~ 0 then mark state_indeterminate (s)
else gpf_gor (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_cz

234

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_c:

s) endif
else set_condition (s, ’routineerror) endif
case = gpf_all
then if vs ~ nil then gpf_true (s)
elseif gp new_namep (id, s)
then if n ~ 0 then mark state_indeterminate (s)
else gpf_gand (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure._

235

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure._

s) endif
else set_condition (s, ’routineerror) endif
case = gpf-element_type
then if fix (n) ~ 0 then mark state_indeterminate (s)
elseif rule (e,
prodn (tag (’range, ’r),
list (> open_paren,
tag (’range_limits, ’r2),
’close_paren)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

236

elseif rule (e,
prodn (tag (’element_list, ’e),
tag (’value_list, ’v)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

elseif rule (e,
prodn (tag (’element_list, ’e),
tag (’range_limits, ’r)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

237

elseif rule (e,
prodn (tag (’range_limits, ’r),
list (tag (’expression, ’1lo),
’dot_dot,
tag (’expression, ’hi))))
then base_type (type (result™ (mutual-gp-gp_cond-gp_case_body-gp-locals-gp_procedure_body-gp_-p

elseif rule (e,
prodn (tag (’value_list, ’v),
tag (’expression, ’e)))
then base_type (type (result™ (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_p

238

elseif rule (e,
prodn (tag (’value_list, ’v),
list (tag (*value_list, ’v2),
’comma,
tag (’expression, ’e))))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_lis

239

else nil endif
otherwise if = normal_state (s) then list (s)
elseif fix (n) ~ 0 then list (mark_state_indeterminate (s))
elseif rule (e,
prodn (tag (’range, ’r),
list (’ open_paren,
tag (’range_limits, ’r2),
’close_paren)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_par

elseif rule (e,
prodn (tag (’element_list, ’e),
tag (’value_list, ’v)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_par

240

elseif rule (e,
prodn (tag (’element_list, ’e),
tag (’range_limits, ’r)))
then mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_par

elseif rule (e,
prodn (tag (’range limits, ’r),
list (tag (’ expression, ’lo),
’dot_dot,
tag (’expression, ’hi))))
then gpf_grange_elements (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp-

241

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_

s)
elseif rule (e,
prodn (tag (’value_list, ’v),
tag (’expression, ’e)))
then rcons (nil,
mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-

242

elseif rule (e,
prodn (tag (’value_list, ’v),
list (tag (*value_list, ’v2),
’comma,
tag (’expression, ’e))))
then rcons (mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-

mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-

243

else list (mark_state_indeterminate (s)) endif endcase

DEFINITION:

gp(m, ¢, s, n, x)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

DEFINITION:
gp_cond (m, ¢, s, n,)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

244

DEFINITION:
gp_case_body (k, m, ¢, s, n, z)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

DEFINITION:
gplocals (m, ¢, s, n, z)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

245

DEFINITION:
gp_procedure_body (m, ¢, s, n,)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

DEFINITION:
gp_procedure_call (pn, sadp, acp, ¢, s, n, x)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

246

DEFINITION:
gp-parglist (as, ¢, s, n, x)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

DEFINITION:

gp-parg (e, ¢, s, n, z)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

247

DEFINITION:

gpf(e, ¢, s, n, z)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

DEFINITION:
gpflist (es, ¢, s, n, x)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

248

DEFINITION:

gpf-apply (fn, adp, acp, sn, s, n, x)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

DEFINITION:
gpfapply_fun (fn, adp, acp, sn, s, n, z)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

249

DEFINITION:
gpf_modifiers (sbv, e, ¢, s, n, x)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

DEFINITION:
gpf_selectors (e, ¢, s, n,)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

250

DEFINITION:
gpfadp (e, ¢, s, n,)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

DEFINITION:
gpf_each (id, vs, sbv, e, ¢, s, n, x)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

251

DEFINITION:
gpf_some (id, vs, e, ¢, s, n, x)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

DEFINITION:
gpf_all (id, vs, e, ¢, s, n,)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

252

DEFINITION:
gpf_element_type (e, ¢, s, n,)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

DEFINITION:
gpf_element_list (e, ¢, s, n,)
= mutual-gp-gp_cond-gp_case_body-gp_locals-gp_procedure_body-gp_procedure_call-gp_parg_list-gp_parg-gpf-

253

5 Fokokokokokookok ok ok ok sk ok ok ok ok ok ok ok ok ok

; The Meta Function P

5 okskokookokokok ok ok ok ok ok sk ok ok ok ok ok

DEFINITION:
meta_p (m, ¢, s, n, x)
= let ptm be pt(m, ’statement),
ptz be pt(z, ’program description)
in
if ptm = nil then marked (’statement_syntax_error, nil)
elseif ptr = nil
then marked (’program description_syntax_error, nil)
else gp (ptm, ¢, s, n, ptz) endif endlet

254

Index

access, 81, 82, 84, 86, 167

actual_cargs, 5, 6, 141, 189

actual_dargs, 6, 7, 142

add_to_map, 20

all_conditionsp, 19, 71, 83, 89

all_determinate, 20, 37, 64

allocate, 64, 72, 86, 181, 182, 208,
230

allocate_const, 64, 234-236

allocate_const_intro, 64

allocate_intro, 64

apply_var, 63, 75-78, 82, 84

arg_check, 89

arglist, 187, 189

array_get, 25

array_put, 30

assert, 19, 20, 72, 73

assign_dynamic_name, 79

base_type, 89, 162-164, 238, 239

bind_local, 87, 88

boolean_desc, 71, 146, 148, 157-160,
194, 195

boolean_typep, 70, 71

bound.id, 184, 214, 215, 217

bound_values, 64

bounded_typep, 66, 67

call_state, 85

case_label_check, 89

case_labels, 4, 5, 150, 151, 162, 164

cdr_quantified_exp, 184

character_valuep, 202

component_assign_error, 33

component_selectors, 2, 3

component_td, 68, 69, 73, 74

cond+, 19-21, 87

cond_arg_check, 83

cond; 19, 20, 23-27, 29-64, 66, 69—
77, 80, 85-89, 160, 161, 171,
172, 175, 179

255

condition_labels_ok, 89, 160
condition_non_normal, 19, 153
condition_normal, 19, 86, 160
conditionp, 19, 143, 173
const, 19-21

constant_body, 5, 207

crd, 68

deallocate, 21

deallocate_conds, 21, 65

deallocate_consts, 21, 65

deallocate_vars, 21, 65

default_state, 18, 84

default_value, 29, 33, 71

determinate, 19, 20, 23-27, 29-66,
69-74, 76, 77, 80, 84, 85,
88, 89

digit_listp, 202

dparam_name, 84, 86

dparam_name_list, 83

each_clausep, 214-216

entry, 18

entry_name, 202
entry_not_boolean_error, 1, 71
entry_valuep, 202

exit, 18

exit_label_error, 1, 71
exit_labels, 7-9, 71
exit_labels_ok, 71
exit_not_boolean_error, 2, 71
exit_spec, 9, 10, 173
expression_from_spec, 157-160
extend_name_selectors, 3

farg_check, 83
field_names, 68
field_td, 74

field_tds, 68
fn_call_formp, 187, 189
forall, 22

formal_cargs, 7, 83, 85-87, 179
formal _dargs, 83, 85, 87, 206
formal_type, 82, 84

gadjoin, 49, 75
gand, 20, 43, 72, 73
gappend, 52
gassign, 74
gassign0, 74-78, 86
gchar, 24

gcons, 52, 76
gdifference, 51
gdiv, 46

gequal, 22, 39, 79, 81
gf, 70-72

gfalse, 23

gge, 42

ggt, 42

giff, 44

gimp, 43

gin, 48

gintersect, 51
gizero, 18

gle, 41

glt, 40
gmap_insert, 34, 75
gmapomit, 33, 77
gminus, 38

gmod, 46

gmove, 79, 80
gmove_assign, 78, 80

gname, 5, 9, 142, 143, 180182, 202,

208, 230
gne, 40
gnew, 76
gnew0, 75, 76, 78
gnot, 39
gomit, 50, 77
gor, 41
gp, 244, 254
gp-assign, 75, 138
gp_bind_local, 88, 89
gp_bind_locals, 88, 89, 167
gp-call_state, 86, 178, 179

256

gp_case_body, 245

gp_case_label_check, 89, 150, 152

gp-cond, 244

gp-deallocate_locals, 65, 169-176, 178

gp-local_conds, 89, 167

gp_locals, 245

gp_-map_call_effects, 87, 179

gp_map_call_effects_intro, 87

gp-move, 80, 140

gp-new, 77, 141

gp-new_namep, 87, 89, 233-235

gp_parg, 247

gp_parg_list, 247

gp-procedure_body, 246

gp-procedure_call, 246

gp-record_assert, 73, 159, 160

gp-_remove, 78, 143

gp-set_entry, 71, 169-177

gp-set_exit, 72, 174

gp-set_keep, 72, 169-177

gp-update_assert, 73, 157

gp_update_keep, 72, 74, 76, 77, 80,
87

gpf, 248

gpf_adp, 251

gpf_all, 252

gpf_apply, 249

gpf_apply_binary_op, 53, 186

gpf_apply_fun, 249

gpf_apply_unary_op, 39, 185, 199

gpf_apply_var, 63, 180-182, 202, 204

gpf_array_get, 26, 29, 32

gpf_array_put, 30, 32

gpf_bound_values, 64, 183-185, 214~
217

gpf_bound_values_intro, 64

gpf_each, 251

gpf_element _list, 253

gpf_element_type, 253

gpf_false, 23, 204, 234

gpf_gadjoin, 49, 54

gpf_gand, 43, 53, 236

gpf_gappend, 52, 54

gpf_gchar, 25, 202

gpf_gcons, 52, 54

gpf_gdifference, 51, 54

gpf_gdiv, 46, 54

gpf_gequal, 40, 53

gpf_gge, 43, 53

gpf_ggt, 42, 53

gpf_giff, 44, 53

gpf_gimp, 44, 53

gpf_gin, 48, 54, 162-164

gpf_gintersect, 51, 54

gpf_gle, 42, 53

gpf_glt, 41, 53

gpf_gmap_insert, 34, 225

gpf_gmapomit, 33, 228

gpf_gminus, 38, 39

gpf_gmod, 47, 54

gpf_gne, 40, 53

gpf_gnot, 39

gpf_gomit, 50, 54

gpf_gor, 41, 53, 235

gpf_gplus, 47, 54

gpf_gpower, 45, 53

gpf_gquotient, 46, 54

gpf_grange_elements, 38, 242

gpf_grcons, 53, 54

gpf_gseq, 36, 38

gpf_gseq_insert_before, 35, 221

gpf_gseq_insert_behind, 36, 223

gpf_gseqomit, 34, 226

gpf_gset, 37, 38, 162-164

gpf_gset_or_seq, 38, 201, 202

gpf_gstring_seq, 25, 203

gpf_gsub, 50, 54

gpf_gsubtract, 48, 54

gpf_gtimes, 45, 54

gpf_gunion, 49, 54

gpf_list, 248

gpf_mapping_get, 26, 29, 33

gpf_mapping_put, 31, 33

gpf_minteger, 24, 198, 202

gpf_modifiers, 250

gpf_put_op, 32, 33, 219, 221, 223,
225, 226, 228

gpf_record_get, 27, 29, 32, 208

gpf_record_put, 31, 33
gpf_retype_result; 66, 207
gpf_select_op, 28, 29, 204, 206, 207,
209, 220, 222, 224, 226, 227
gpf_selectors, 250
gpf_sequence_get, 27, 29, 33
gpf_sequence_put, 32, 33
gpf_some, 252
gpf_std_domain, 55, 204
gpf_std_first, 55, 204
gpf_std_initial, 56, 204
gpf_std_last, 56, 204
gpf_std_lower, 57, 204
gpf_std_max, 57, 204
gpf_std_min, 58, 204
gpf_std_nonfirst, 58, 204
gpf_std_nonlast, 59, 205
gpf_std_null, 59, 205
gpf_std_ord, 60, 205
gpf_std_pred, 60, 205
gpf_std_range, 61, 205
gpf_std_scale, 61, 205
gpf_std_size, 62, 205
gpf_std_succ, 62, 205
gpf_std_upper, 63, 205
gpf_subsequence_get, 29, 30, 211
gpf_true, 24, 204, 235
gpf_type_check, 70, 146-148, 158-160,
194, 195
gpf_type_name_arg, 70, 204
gplus, 47
gpower, 44
gquotient, 45
grange_elements, 37
grcons, 53, 76
gremove, 77
gremovel, 77, 80
gseq, 36
gseq_insert_before, 35, 76
gseq_insert_behind, 35, 76
gseqomit, 34, 77
gset, 37
gstring_seq, 25
gsub, 50

gsubtract, 47

gtimes, 45

gtrue, 18, 24

gtruep, 22, 79, 81, 147, 158, 163,
195

gunion, 48, 49

handler, 10, 11, 160, 161
handler_labels, 11, 160
harmful_aliasp, 81
harmfully aliasedp, 81, 82

id list, 5-7, 11, 12, 167
identifierp, 4, 5, 9, 202
if_else_exp, 196
if_statement_else_part, 13, 14, 147,
148
ileq, 66
implementation_constrained, 22-27,
29-53, 5564, 66, 69-74, 76,
77, 80, 88, 89
implementation_constrained-nec
c, 23
implementation_constrained-off, 22
implementation_constrained-suf
f, 22
in_map, 18, 19, 22, 87
in_type, 65, 69, 74, 82, 88
indeterminate, 82, 86, 160, 169
integer_desc, 29, 33, 68
integerp, 66
internal_initial_value_exp, 12, 167

k, 22

keep, 19, 72

keep_spec, 12, 13, 168-172, 174-177
keep; 19, 72

kind, 83, 85, 86, 178, 206

length, 83, 89, 206
local_conds, 20, 65
local_consts, 20, 65
local_vars, 20, 65
locals, 19, 20

258

map, 18-23, 63, 70-72, 75-78, 80,
82, 84, 87, 179

map_call_effects, 86, 87

map_cond_effects, 86, 87, 179

map_var_effects, 86, 87

mapped_value, 18, 19, 22, 23, 69

mapping_descp, 77

mapping_element_lhsp, 74, 82

mapping_get, 26

mapping_put, 31

mapping_selectionp, 73, 74

mark, 20-23, 65, 80, 179

mark_state_indeterminate, 20, 39, 54,
76, 78, 83, 86, 131, 143,
156, 160, 161, 164, 167, 168,
178-180, 183, 193, 203, 205~
207, 228, 231, 233-236, 240,
244

marked, 18, 20, 21, 23, 29, 33, 65,
70, 71, 74, 80, 84, 87, 88,
179, 208, 230, 254

max_size, 68, 69

meta_p, 254

minteger, 24

mk_elif_into_if_statement, 2, 14

mk_empty, 2

mk_entry_name, 84

mk _error, 1, 2

mk _identifier, 2, 70

mk_name_expression, 3, 4, 180-182

mk_opt_condition_handlers, 2

mk_reserved_word, 2

mk _signal stmt, 2, 159

mk _tree, 2-4

mk_true_expression, 13, 18

mk_unary_operator, 198

mode, 19, 29, 32, 68, 73

mutual-gp-gp_cond-gp_case_bo

dy-gp_locals-gp_procedure_body-

gp_procedure_call-gp_parg_list-
g..., 130-167, 169-204, 206
254

mutual-subtype-subtype_fields, 68, 69

name_exp, 65, 75-79, 180, 182

namep, 65, 74, 79, 81, 82, 84

ncopies, 89

ne_name, 65, 74, 75, 77-79, 81, 82,
84

ne_selectors, 65, 74, 75, 77-79, 81,
82, 84

new_name_arg, 14, 15, 140, 141

no_harmful_aliasing, 82, 83

non_rational_simple_typep, 89

normal_state, 19, 23-28, 30-32, 34—
53, 5563, 66, 70-73, 75,
77, 78, 80, 83, 85, 86, 88,
89, 131, 146, 150, 158, 161,
162, 164, 178, 180, 181, 183,
184, 194, 207, 214-216, 228,
231, 233, 240

not_selectable_error, 29

note_conds, 20, 85

object, 18, 65
object_name, 188, 189
one_parg_check, 82, 83

p-apply_var, 63
p-apply_var_intro, 63
p-array_get, 25, 26
p-array_get_intro, 25
p-array_put, 30
p-array_put_intro, 30
p-assign, 74, 75
p-assign_intro, 74
p-bind_local, 88
p-bind_local_intro, 88
p-call_state, 85, 86
p-call_state_intro, 85
p-case_label _check, 89
p-case_label_check_intro, 89
p-gadjoin, 49
p-gadjoin_intro, 49
p-gand, 43
p-gand_intro, 43
p-gappend, 51, 52
p-gappend_intro, 51

259

p-gchar, 24, 25
p-gchar_intro, 24
p-geons, 52
p-gecons_intro, 52
p-gdifference, 51
p-gdifference_intro, 51
p-gdiv, 46
p-gdiv_intro, 46
p-gequal, 39, 40
p-gequal_intro, 39
p-gfalse, 23
p-gfalse_intro, 23
p-gge, 42, 43
p-gge-intro, 42
p-ggt, 42
p-ggt_intro, 42
p-giff, 44
p-giff_intro, 44
p-gimp, 43, 44
p-gimp_intro, 43
p-gin, 48
p-gin_intro, 48
p-gintersect, 50, 51
p-gintersect_intro, 50
p-gle, 41, 42
p-gle_intro, 41

p-glt, 40, 41
p-glt_intro, 40
p-gmap_insert, 34, 35
p-gmap-insert_intro, 34
p-gmapomit, 33, 34
p-gmapomit_intro, 33
p-gminus, 38
p-gminus_intro, 38
p-gmod, 46, 47
p-gmod_intro, 46
p-gne, 40
p-gne_intro, 40
p-gnot, 39
p-gnot_intro, 39
p-gomit, 49, 50
p-gomit_intro, 49
p-gor, 41
p-gor_intro, 41

p-gplus, 47

p-gplus_intro, 47
p-gpower, 44, 45
p-gpower_intro, 44
p-gquotient, 45, 46
p-gquotient_intro, 45
p-grange_elements, 37, 38
p-grange_elements_intro, 37
p-grcons, 53
p-grcons_intro, 53
p-gseq, 36
p-gseq_insert_before, 35
p-gseq_insert_before_intro, 35
p-gseq-insert_behind, 35, 36
p-gseq-insert_behind_intro, 35
p-gseq-intro, 36
p-gseqomit, 34
p-gseqomit_intro, 34
p-gset, 36, 37
p-gset_intro, 36
p-gstring_seq, 25
p-gstring_seq-intro, 25
p-gsub, 50

p-gsub_intro, 50
p-gsubtract, 47, 48
p-gsubtract_intro, 47
p-gtimes, 45
p-gtimes_intro, 45
p-gtrue, 24

p-gtrue_intro, 24
p-gunion, 48, 49
p-gunion_intro, 48
p-mapping_get, 26
p-mapping_get_intro, 26
p-mapping-put, 31
p-mapping_put_intro, 31
p-minteger, 24
p-minteger_intro, 24
p-move, 80

p-move_intro, 80

p-new, 76, 77
p-new_intro, 76
p-record_assert, 73
p-record_assert_intro, 73

260

p-_record_get, 26, 27
p-record_get_intro, 26
p-record_put, 30, 31
p-record_put_intro, 30
p-_remove, 77, 78
p-remove_intro, 77
p_retype_result; 66
p_retype_result™ _intro, 66
p-sequence_get, 27
p-sequence_get_intro, 27
p-sequence_put, 31, 32
p-sequence_put_intro, 31
p-set_entry, 71
p-set_entry_intro, 71
p-set_exit, 71, 72
p-set_exit_intro, 71
p-std_domain, 54, 55
p-std_domain_intro, 54
p-std_first, 55
p-std-first_intro, 55
p-std_initial, 55, 56
p-std_initial_intro, 55
p-std_last, 56
p-std_last_intro, 56
p-std_lower, 56, 57
p-std_lower_intro, 56
p-std_max, 57
p-std_max_intro, 57
p-std_min, 57, 58
p-std_min_intro, 57
p-std_nonfirst, 58
p-std_nonfirst_intro, 58
p-std_nonlast, 58, 59
p-std_nonlast_intro, 58
p-std_null, 59
p-std_null_intro, 59
p-std_ord, 59, 60
p-std_ord_intro, 59
p-std_pred, 60
p-std_pred_intro, 60
p-std_range, 60, 61
p-std_range_intro, 60
p-std_scale, 61
p-std_scale_intro, 61

p-std_size, 61, 62

p-std_size_intro, 61

p-std_succ, 62

p-std_succ_intro, 62

p-std_upper, 62, 63

p-std_upper_intro, 62

p-_subsequence_get, 29, 30

p-_subsequence_get_intro, 29

p-type_check, 69, 70

p-type_check_intro, 69

p-type_name_arg, 70

p-type_name_arg_intro, 70

p-update_assert, 72, 73

p-update_assert_intro, 72

p-update_keep, 72

p-update_keep_intro, 72

padd_darg, 84

padd_result, 84, 85

parg_check, 83, 85

parg_check2, 82, 83

pbind_dargs, 84, 85

pformals_ok, 81, 83

postc, 71

prec, 168, 170-177

procedure_body, 17, 178

prodn, 3-17, 38, 39, 53, 54, 75, 76,
78, 79, 131-146, 149, 152,
154-157, 161, 162, 164, 165,
167, 168, 180, 181, 183-187,
189-194, 196-201, 207213,
215, 216, 218, 219, 221, 223,
225, 226, 228-232, 236-243

pt, 254

put_op, 74

range_element_state_list, 37, 38

range_element_state_list2, 37

rationalp, 66

rcar, 75-77, 84, 220, 222, 224, 226,
228, 235, 236

redr, 75-79, 84, 219-227, 235, 236

rcons, 4-7, 32, 232, 233, 243, 244

record_assert, 73

record_assertion, 20

record_get, 26

record_put, 31

ref, 178, 179, 206, 207

remove, 21

remove_dynamic_name, 79

remove_exp_arg, 15, 16, 139, 142

remove_name_arg, 16, 139, 143

reserved_idp, 81, 87

reset_leave_to_normal, 20, 153

result_type, 85, 207

result; 19, 26, 27, 29-53, 65, 69, 75,
77,78, 80, 88, 89, 147, 158—
160, 162-164, 184, 185, 195,
214, 216, 217, 238, 239

result”_list, 19, 36, 37, 55—63, 86,
89, 179, 182

retype_result; 65, 66

rleq, 66

root, 3, 19

rule, 3-17, 38, 39, 53, 54, 75, 76,
78, 79, 131-146, 149, 152,
154-157, 161, 162, 164, 165,
167, 168, 180, 181, 183-187,
189-194, 196201, 207213,
215, 216, 218, 219, 221, 223,
225, 226, 228-232, 236-243

same_names, 79

same_selectors, 78, 79

scomp_equal, 22

selector_td, 68

selectors_aliasedp, 81

sequal, 22-27, 29-53, 55-64, 66, 69—
74, 76, 77, 80, 85, 87-89

sequence_descp, 78

sequence_get, 27

sequence_put, 32

set_condition, 20, 23, 63, 65, 69, 74,
78, 80, 82-86, 88, 89, 138,
143, 161, 177,179, 190, 204,
205, 207, 234-236

set_entry, 70, 71

set_equal, 22, 68

set_exit, 71

setp, 71, 89

sid, 68, 69

smap_equal, 22

ssubmap, 22

state_check, 23, 26-28, 30-53, 55—
63, 75, 77, 78, 80, 86, 88,
89

state_component, 18, 19, 74, 86

state_componentp, 18, 19, 63, 74,
204

std_domain, 55

std_first, 55

std_initial, 56, 84, 87

std_last, 56

std_lower, 57

std_max, 57

std_min, 58

std_nonfirst, 58

std_nonlast, 59

std_null, 59

std_ord, 60

std_pred, 60

std_range, 61

std_scale, 61

std_size, 62

std_succ, 62

std_upper, 63

store_cond, 20, 71, 89

store_const, 20, 64, 84, 85, 88

store_result; 20, 29, 32, 33, 37

store_value, 20, 21, 23-27, 29-53,
55-65, 70-74

store_var, 21, 84, 85, 88

stored_value, 78, 80

string_valuep, 203

subsequence_get, 29

subtree, 2—-17, 78, 79, 131-140, 142—

157, 159, 161, 163, 165-177,
180-185, 187193, 196-202,
207-209, 211-233, 236-241,

243, 244

subtree_i, 185, 186, 194, 195, 210,
238, 241, 242

subtype, 69, 82

subtype_fields, 69
subtype_irange, 66, 68
subtype_rrange, 66, 68
subtype_size, 67-69

tag, 3-17, 38, 39, 53, 54, 75, 76,
78, 79, 131-146, 149, 152,
154-157, 161, 162, 164-168,
180, 181, 183187, 189-194,
196-201, 207213, 215, 216,
218, 219, 221, 223, 225, 226,
228-232, 236-243

tid, 68, 69

tmax, 66

tmin, 66

tree_equal, 22

type, 19, 22, 26, 27, 29, 32, 70, 71,
77,78, 82,89, 162-164, 238,
239

type_check, 69

type_desc, 70, 82, 84, 85, 167, 207

type_descp, 68

type_equal, 68

type-name_arg, 70

type_name_expp, 204

type_of, 19, 74

type_vequal, 68

typed, 65, 74, 84, 88

update_assert, 72, 73
update_keep, 72

value, 65, 74, 84, 88
values, 89

var, 19-21
variablep, 19, 74, 82
vsetp, 89

