
;;;; proof of completeness of ground resolution

;;;; Matt Wilding April 1988

;;;; This proof script executes on Matt Kaufmann’s interactive enhancement
;;;; to the Boyer-Moore system

;; This proof script is a proof of the completeness of ground resolution
;; using Bledsoe’s excess literal technique. The final theorem is:

;; (implies
;; (and
;; (unsatisfiable x)
;; (validclauses x))
;; (finishedproof x (getproof x)))

;; The proof script is in several sections:

;; 1) definitions required for understanding the theorem
;; 2) definition of getproof (a function that is conjectured to return a valid
;; resolution proof that ends in box)
;; 3) proof of theorem

;; Section 1 is, strictly speaking, the only section needed to understand what has
;; been proven.

Event: Start with the initial nqthm theory.

;; added by Matt Kaufmann just to make nqthm-1991 happy!

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Section 1: definitions of terms in theorem

Definition:
subset (x , y)
= if listp (x )

then if car (x ) ∈ y then subset (cdr (x ), y)
else f endif

1



else t endif

Definition:
set-equal (s1 , s2 ) = (subset (s1 , s2 ) ∧ subset (s2 , s1 ))

Definition:
set-member (x , list)
= if listp (list)

then if set-equal (x , car (list)) then t
else set-member (x , cdr (list)) endif

else f endif

;; define what it means to be a valid set of clauses
;; (ex. (validclauses ’((a b) ((not a) (not b)) ((not a) b) (a (not b)))) = t)

Definition:
validliteral (l)
= ((litatom (l) ∧ (l 6= nil))

∨ (listp (l)
∧ (car (l) = ’not)
∧ litatom (cadr (l))
∧ (cadr (l) 6= nil)
∧ (cddr (l) = nil)))

Definition:
validclause (c)
= if listp (c)

then validclause (cdr (c))
∧ validliteral (car (c))
∧ (car (c) 6∈ cdr (c))

else c = nil endif

Definition:
validclauses (cs)
= if listp (cs) then validclause (car (cs)) ∧ validclauses (cdr (cs))

else cs = nil endif

;; unsatisfiablility of a set of clauses

Definition:
unsatwith (clause, cs, values)
= if listp (clause)

then if (list (’not, car (clause)) ∈ values)
∨ (cadar (clause) ∈ values)

2



then unsatwith (cdr (clause), cs, values)
else unsatwith (cdr (clause), cs, values)

∧ if listp (cs)
then unsatwith (car (cs),

cdr (cs),
cons (car (clause), values))

else f endif endif
else t endif

Definition:
unsatisfiable (cs)
= if listp (cs) then unsatwith (car (cs), cdr (cs), nil)

else f endif

Definition:
takeout (list , x )
= if listp (list)

then if x = car (list) then takeout (cdr (list), x )
else cons (car (list), takeout (cdr (list), x )) endif

else nil endif

;; resolvent is valid resolvent of p1 and p2 resolving on something in p1list

Definition:
resolvent-help (resolvent , p1list , p1 , p2 )
= if listp (p1list)

then if list (’not, car (p1list)) ∈ p2
then subset (takeout (p1 , car (p1list))

∪ takeout (p2 , list (’not, car (p1list))),
resolvent)

∨ resolvent-help (resolvent , cdr (p1list), p1 , p2 )
elseif cadar (p1list) ∈ p2
then subset (takeout (p1 , car (p1list))

∪ takeout (p2 , cadar (p1list)),
resolvent)

∨ resolvent-help (resolvent , cdr (p1list), p1 , p2 )
else resolvent-help (resolvent , cdr (p1list), p1 , p2 ) endif

else f endif

Definition: resolvent (r , p1 , p2 ) = resolvent-help (r , p1 , p1 , p2 )

;; a valid resolution proof for a set of axioms is a set of triples where
;;each line of the proof has a resolvent and two (axiomatic or derived) parents

Definition:

3



validproof (axioms, proof )
= if listp (proof )

then set-member (cadar (proof ), axioms)
∧ set-member (caddar (proof ), axioms)
∧ resolvent (caar (proof ), cadar (proof ), caddar (proof ))
∧ validproof (cons (caar (proof ), axioms), cdr (proof ))

else t endif

;; the empty clause is in a set of clauses

Definition:
box-in-axioms (axioms)
= if listp (axioms)

then if listp (car (axioms)) then box-in-axioms (cdr (axioms))
else t endif

else f endif

Definition:
last-element (list)
= if listp (list)

then if listp (cdr (list)) then last-element (cdr (list))
else car (list) endif

else nil endif

;; proof is a finished proof of axioms if there are no axioms, if
;; there are no axioms (and therefore satisfiable), if axioms include box,
;; or if proof is valid and has as its last resolvent box.

Definition:
finishedproof (axioms, proof )
= ((¬ listp (axioms))

∨ box-in-axioms (axioms)
∨ (validproof (axioms, proof ) ∧ (car (last-element (proof )) ' nil)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Section 2: getproof function developement

Definition:
length (list)
= if listp (list) then 1 + length (cdr (list))

else 0 endif

Theorem: list-means-length-more-0
listp (x ) → (0 < length (x ))

4



Definition:
takeout1 (list , x )
= if listp (list)

then if x = car (list) then cdr (list)
else cons (car (list), takeout1 (cdr (list), x )) endif

else nil endif

Definition:
listofcars (list)
= if listp (list) then cons (caar (list), listofcars (cdr (list)))

else nil endif

;; some really useful rewrite rules for sets

Theorem: membership-on-subsets
((e ∈ a) ∧ subset (a, b)) → (e ∈ b)

Theorem: equals-has-same-members
set-equal (a, b) → ((e ∈ a) = (e ∈ b))

Theorem: subset-is-transitive
(subset (x , y) ∧ subset (y , z )) → subset (x , z )

Theorem: subset-fact-1
subset (x , y) → subset (x , cons (a, y))

Theorem: set-equals-fact
set-equal (x , y) → set-equal (cons (a, x ), cons (a, y))

Theorem: subset-of-self
subset (x , x )

Theorem: set-equal-self
set-equal (x , x )

Theorem: member-is-setmember
(a ∈ x ) → set-member (a, x )

Theorem: setmember-is-setmember-of-superset
(set-member (a, x ) ∧ subset (x , y)) → set-member (a, y)

Theorem: takeout-fact1
subset (takeout (s, x ), takeout (cons (a, s), x ))

Theorem: subset-of-union-fact-1
subset (a ∪ b, c) = (subset (a, c) ∧ subset (b, c))

5



Theorem: takeout-fact2
(a 6∈ x ) → set-equal (takeout (x , a), x )

Theorem: stupid-lemma1
(l ∈ c) → (subset (cons (l , c), d) = subset (c, d))

Theorem: stupid-lemma2
(l ∈ d) → (subset (c, cons (l , d)) = subset (c, d))

Theorem: stupid-lemma3
(l ∈ c) → (set-member (cons (l , c), d) = set-member (c, d))

;; some useful oddball facts about append other things

Theorem: member-of-append-1
(a ∈ x ) → (a ∈ append (x , y))

Theorem: is-last-element-means-member
(listp (p) ∧ (car (last-element (p)) = x )) → (x ∈ listofcars (p))

Theorem: membership-of-append
(a ∈ x ) → (a ∈ append (y , x ))

Theorem: subset-of-append
subset (x , y) → subset (x , append (z , y))

Definition:
first-non-unit (clauses)
= if listp (clauses)

then if 1 < length (car (clauses)) then car (clauses)
else first-non-unit (cdr (clauses)) endif

else nil endif

Theorem: first-non-unit-fact2
(length (first-non-unit (x )) = 1) = f

Definition:
take-out-literal (cs, c)
= if listp (cs)

then if c = car (cs) then cons (cdr (c), cdr (cs))
else cons (car (cs), take-out-literal (cdr (cs), c)) endif

else nil endif

Definition:
take-out-clause (cs, c)
= if listp (cs)

then if c = car (cs) then cons (list (car (c)), cdr (cs))
else cons (car (cs), take-out-clause (cdr (cs), c)) endif

else nil endif

6



Theorem: subset-of-takeouts-fact
(validclauses (x )
∧ (a ∈ x )
∧ (list (car (a)) ∈ y)
∧ subset (takeout1 (x , a), y))
→ subset (take-out-clause (x , a), y)

Theorem: take-out-literal-communative-sort-of
(a ∈ x )
→ set-equal (take-out-literal (cons (y , x ), a), cons (y , take-out-literal (x , a)))

Theorem: take-out-literal-preserves-validclauseness
((¬ box-in-axioms (cs)) ∧ validclauses (cs))
→ validclauses (take-out-literal (cs, x ))

Theorem: take-out-clause-preserves-validclauseness
((¬ box-in-axioms (cs)) ∧ validclauses (cs))
→ validclauses (take-out-clause (cs, x ))

Definition:
find-contradiction (cs)
= if listp (cs)

then if length (car (cs)) = 1
then if list (list (’not, caar (cs))) ∈ cdr (cs)

then list (nil, car (cs), list (list (’not, caar (cs))))
elseif list (cadaar (cs)) ∈ cdr (cs)
then list (nil, car (cs), list (cadaar (cs)))
else find-contradiction (cdr (cs)) endif

else list (nil, nil, nil) endif
else nil endif

Definition:
number-of-lits (cs)
= if listp (cs) then length (car (cs)) + number-of-lits (cdr (cs))

else 0 endif

Definition:
excess-literal (cs) = (number-of-lits (cs) − length (cs))

Theorem: first-non-unit-fact
((excess-literal (cs) 6' 0) ∧ (¬ box-in-axioms (cs)))
→ ((1 < length (first-non-unit (cs))) = t)

Definition:
adjust (proof , cs, l)

7



= if listp (proof )
then if set-member (cadar (proof ), cs)

then if set-member (caddar (proof ), cs)
then cons (car (proof ),

adjust (cdr (proof ), cons (caar (proof ), cs), l))
else cons (list (add-to-set (l , caar (proof )),

cadar (proof ),
add-to-set (l , caddar (proof ))),

adjust (cdr (proof ),
cons (add-to-set (l , caar (proof )), cs),
l)) endif

elseif set-member (caddar (proof ), cs)
then cons (list (add-to-set (l , caar (proof )),

add-to-set (l , cadar (proof )),
caddar (proof )),

adjust (cdr (proof ), cons (add-to-set (l , caar (proof )), cs), l))
else cons (list (add-to-set (l , caar (proof )),

add-to-set (l , cadar (proof )),
add-to-set (l , caddar (proof ))),

adjust (cdr (proof ),
cons (add-to-set (l , caar (proof )), cs),
l)) endif

else nil endif

Theorem: adjust-is-listp-when
listp (p) → listp (adjust (p, x , l))

Theorem: when-first-non-unit-gives-clause
((¬ box-in-axioms (cs)) ∧ (excess-literal (cs) 6' 0))
→ (first-non-unit (cs) ∈ cs)

Theorem: no-box-fact
(¬ box-in-axioms (cs)) → (number-of-lits (cs) 6< length (cs))

Theorem: excess-literal-in-terms-of-cdr
(listp (cs) ∧ (¬ box-in-axioms (cs)))
→ (excess-literal (cs)

= ((length (car (cs)) + excess-literal (cdr (cs))) − 1))

Theorem: when-take-out-literal-does-something
((¬ box-in-axioms (cs)) ∧ (excess-literal (cs) 6' 0))
→ ((excess-literal (take-out-literal (cs, first-non-unit (cs)))

< excess-literal (cs))
= t)

8



Theorem: not-box-when-clause-taken
((¬ box-in-axioms (cs)) ∧ (1 < length (x )))
→ (¬ box-in-axioms (take-out-clause (cs, x )))

Theorem: no-box-zero-el-fact
(listp (x ) ∧ (¬ box-in-axioms (x )) ∧ (excess-literal (x ) ' 0))
→ (excess-literal (cdr (x )) ' 0)

Theorem: take-out-clause-fact
((¬ box-in-axioms (cs)) ∧ (1 < length (x )) ∧ (x ∈ cs))
→ ((excess-literal (take-out-clause (cs, x )) < excess-literal (cs)) = t)

Theorem: when-take-out-clause-does-something
((¬ box-in-axioms (cs)) ∧ (excess-literal (cs) 6' 0))
→ ((excess-literal (take-out-clause (cs, first-non-unit (cs)))

< excess-literal (cs))
= t)

Definition:
getproof (cs)
= if box-in-axioms (cs) then nil

elseif excess-literal (cs) ' 0 then list (find-contradiction (cs))
elseif car (last-element (adjust (getproof (take-out-literal (cs,

first-non-unit (cs))),
cs,
car (first-non-unit (cs)))))

= nil
then adjust (getproof (take-out-literal (cs, first-non-unit (cs))),

cs,
car (first-non-unit (cs)))

else append (adjust (getproof (take-out-literal (cs,
first-non-unit (cs))),

cs,
car (first-non-unit (cs))),

getproof (take-out-clause (cs, first-non-unit (cs)))) endif

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Section 3. Proof of the completeness theorem

;; the format of a resolution proof (implicit in validproof but useful to make explicit

Definition:
proof-form (p)
= if listp (p)

9



then validclause (caar (p))
∧ validclause (cadar (p))
∧ validclause (caddar (p))
∧ (cdddar (p) = nil)
∧ proof-form (cdr (p))

else p = nil endif

;; some useful facts about valid proofs

Theorem: validproof-on-subset
(subset (x , y) ∧ validproof (x , p)) → validproof (y , p)

Theorem: validproof-clauses-commutative
set-equal (x , y) → (validproof (x , p) = validproof (y , p))

;; A useful fact about unsatisfiable sets of clauses

Theorem: assignment-interchangeable
(unsatwith (c, cs, z ) ∧ set-equal (y , z )) → unsatwith (c, cs, y)

;; lemmas about preservation of unsatisfiablility of clauses with some of
;; the literals removed

Theorem: take-out-literal-helper
unsatwith (clause, cs, v)
→ unsatwith (car (take-out-literal (cons (clause, cs), x )),

cdr (take-out-literal (cons (clause, cs), x )),
v)

Theorem: without-literal-still-unsatisfiable
(unsatisfiable (cs) ∧ listp (cs)) → unsatisfiable (take-out-literal (cs, x ))

Theorem: unsat-stepper
(listp (x ) ∧ unsatwith (x , cs, v)) → unsatwith (list (car (x )), cs, v)

Theorem: take-out-clause-helper
(listp (x ) ∧ unsatwith (clause, cs, v))
→ unsatwith (car (take-out-clause (cons (clause, cs), x )),

cdr (take-out-clause (cons (clause, cs), x )),
v)

Theorem: when-unsatisfiable
unsatwith (clause, cs, z ) → unsatwith (clause, cs, cons (x , z ))

10



Definition:
unsat-induct (c, x , cs, v)
= if listp (cs)

then if (x = cadr (car (c))) ∨ (x = list (’not, car (c))) then t
else unsat-induct (car (cs), x , cdr (cs), cons (car (c), v)) endif

else t endif

;; useful facts about negations of literals

Theorem: reversible-nots-1
((length (y) = 1)
∧ litatom (x )
∧ (x 6= nil)
∧ validclause (y)
∧ (x = cadar (y)))
→ (list (list (’not, x )) = y)

Theorem: reversible-nots-2
((length (y) = 1)
∧ listp (x )
∧ validclause (y)
∧ (x = list (’not, car (y))))
→ (list (cadr (x )) = y)

;; useful definition of set of clauses with all unit clauses

Definition:
allunits (x )
= if listp (x ) then (length (car (x )) = 1) ∧ allunits (cdr (x ))

else t endif

Theorem: allunit-means
allunits (x ) → (¬ listp (cdar (x )))

Theorem: allunits-if
((¬ box-in-axioms (x )) ∧ (excess-literal (x ) ' 0)) → allunits (x )

Theorem: unit-clause-fact
(length (x ) = 1) → (takeout (x , car (x )) = nil)

Theorem: restriction-list-commutative
set-equal (z1 , z2 ) → (unsatwith (x , y , z1 ) = unsatwith (x , y , z2 ))

Theorem: unsat-ignore-first-helper
((litatom (x ) → (list (list (’not, x )) 6∈ cons (c, cs)))
∧ (listp (x ) → (list (cadr (x )) 6∈ cons (c, cs)))

11



∧ allunits (cons (c, cs))
∧ validclause (list (x ))
∧ validclauses (cons (c, cs))
∧ unsatwith (c, cs, cons (x , v)))
→ unsatwith (c, cs, v)

;; base case of main theorem - if all clauses unit then getproof finds a proof

Theorem: no-excess-literal-proof
(validclauses (cs)
∧ (¬ box-in-axioms (cs))
∧ (excess-literal (cs) ' 0)
∧ unsatisfiable (cs))
→ finishedproof (cs, list (find-contradiction (cs)))

;; useful definition of "almost" valid proof. p is validproof of cs except that
;; some clauses in proof are missing literal l

Definition:
validproof-but-for-literal (cs, p, l)
= if listp (p)

then (set-member (cadar (p), cs)
∨ set-member (add-to-set (l , cadar (p)), cs))
∧ (set-member (caddar (p), cs)

∨ set-member (add-to-set (l , caddar (p)), cs))
∧ resolvent (caar (p), cadar (p), caddar (p))
∧ validproof-but-for-literal (cons (caar (p), cs), cdr (p), l)

else t endif

;; some facts about validproof-but-for-literal

Theorem: validproof-but-for-literal-clauses-commutative
set-equal (x , y)
→ (validproof-but-for-literal (x , p, l)

= validproof-but-for-literal (y , p, l))

Definition:
adding-literal-induct (cs, p)
= if listp (p) then adding-literal-induct (cons (caar (p), cs), cdr (p))

else t endif

Theorem: adding-literal-fact
validproof-but-for-literal (cons (x , cs), p, l)
→ validproof-but-for-literal (cons (add-to-set (l , x ), cs), p, l)

;; facts about adjusting clauses by adding literals and still getting valid resolvents

12



Theorem: resolvent-with-extra-literal-fact1b
(validliteral (l)
∧ (l 6∈ p2 )
∧ (l ∈ r)
∧ validclause (p1 )
∧ validclause (p2 )
∧ validclause (p1list)
∧ resolvent-help (r , p1list , p1 , p2 ))
→ resolvent-help (r , p1list , p1 , cons (l , p2 ))

Theorem: resolvent-with-extra-literal-fact1c
(validliteral (l)
∧ (l 6∈ r)
∧ (l 6∈ p2 )
∧ validclause (p1 )
∧ validclause (p2 )
∧ validclause (p1list)
∧ resolvent-help (r , p1list , p1 , p2 ))
→ resolvent-help (cons (l , r), p1list , p1 , cons (l , p2 ))

Theorem: resolvent-with-extra-literal-fact2a
((l 6∈ r)
∧ (l 6∈ p1 )
∧ validliteral (l)
∧ validclause (p1 )
∧ validclause (p2 )
∧ validclause (p1list)
∧ resolvent-help (r , p1list , p1 , p2 ))
→ resolvent-help (cons (l , r), p1list , cons (l , p1 ), p2 )

Theorem: resolvent-with-extra-literal-fact2b
((l ∈ r)
∧ (l 6∈ p1 )
∧ validliteral (l)
∧ validclause (p1 )
∧ validclause (p2 )
∧ validclause (p1list)
∧ resolvent-help (r , p1list , p1 , p2 ))
→ resolvent-help (r , p1list , cons (l , p1 ), p2 )

Theorem: resolvent-with-extra-literal-fact3a
((l 6∈ r)
∧ (l 6∈ p1 )
∧ (l 6∈ p2 )
∧ validliteral (l)

13



∧ validclause (p1 )
∧ validclause (p2 )
∧ validclause (p1list)
∧ resolvent-help (r , p1list , p1 , p2 ))
→ resolvent-help (cons (l , r), p1list , cons (l , p1 ), cons (l , p2 ))

Theorem: resolvent-fact
resolvent-help (a, b, c, d) → resolvent-help (cons (l , a), b, c, d)

Theorem: extra-try-resolvent-fact
resolvent-help (a, b, c, d) → resolvent-help (a, cons (l , b), c, d)

Theorem: when-not-member-of-take-out-literal
((1 < length (c)) ∧ (a ∈ take-out-literal (x , c)) ∧ (a 6∈ x ))
→ (cons (car (c), a) ∈ x )

Theorem: take-out-literal-is-validclause
(validclauses (x ) ∧ (1 < length (c)))
→ validclauses (take-out-literal (x , c))

Theorem: member-of-validclause-is-validlit
(validclause (cs) ∧ (l ∈ cs)) → validliteral (l)

Theorem: when-literal-not-there
(validclauses (cs) ∧ (x 6∈ cs)) → (take-out-literal (cs, x ) = cs)

Theorem: real-proof-implies-almost-proof
validproof (cs, p) → validproof-but-for-literal (cs, p, x )

Theorem: when-not-in-bigger-clauses
((¬ set-member (x , cs)) ∧ set-member (x , take-out-literal (cs, p)))
→ set-equal (cdr (p), x )

Theorem: take-out-literal-produces-almost-proof
(proof-form (p)
∧ validproof (take-out-literal (cs, c), p)
∧ validclauses (cs)
∧ (1 < length (c)))
→ validproof-but-for-literal (cs, p, car (c))

Theorem: member-of-validclauses-is-validclause
(validclauses (x ) ∧ (a ∈ x )) → validclause (a)

Theorem: find-contradiction-returns-proof-form
((¬ box-in-axioms (x ))
∧ (excess-literal (x ) ' 0)
∧ unsatisfiable (x )
∧ validclauses (x ))
→ proof-form (list (find-contradiction (x )))

14



Theorem: proofs-together-have-form-if-both-do
(proof-form (x ) ∧ proof-form (y)) → proof-form (append (x , y))

Theorem: adjust-does-not-unform-proofs
(proof-form (x ) ∧ validliteral (l)) → proof-form (adjust (x , cs, l))

;; getproof returns something that is of a resolution proof form
;; (later we show that this proof is "valid")

Theorem: getproof-gives-proof-form
(unsatisfiable (x ) ∧ validclauses (x )) → proof-form (getproof (x ))

Theorem: allunits-means-no-excess-literal
allunits (x ) → (excess-literal (x ) ' 0)

Theorem: find-contradiction-returns-box
(unsatisfiable (x )
∧ (¬ box-in-axioms (x ))
∧ (excess-literal (x ) ' 0)
∧ validclauses (x ))
→ (car (find-contradiction (x )) = nil)

Theorem: last-element-fact
listp (x ) → (last-element (append (y , x )) = last-element (x ))

Theorem: getproof-is-list-when
(¬ box-in-axioms (x )) → listp (getproof (x ))

;; the last resolvent in a getproof-generated proof is box

Theorem: getproof-returns-box
(unsatisfiable (x ) ∧ validclauses (x ) ∧ (¬ box-in-axioms (x )))
→ (car (last-element (getproof (x ))) = nil)

;; adjusting a proof ending in box yields a proof ending in box or a proof
;; whose last resolvent has just the literal used to adjust the proof

Theorem: adjusted-proof-gets
(car (last-element (p)) = nil)
→ ((car (last-element (adjust (p, x , l))) = nil)

∨ (car (last-element (adjust (p, x , l))) = list (l)))

Theorem: what-adjusted-proof-returns
(unsatisfiable (x )
∧ validclauses (x )
∧ (¬ box-in-axioms (x ))
∧ (car (last-element (adjust (getproof (x ), y , l))) 6= nil))
→ (car (last-element (adjust (getproof (x ), y , l))) = list (l))

15



;; adjusting an "almost" correct proof yields a correct proof

Theorem: adjusting-makes-proofs-valid
(validliteral (l)
∧ proof-form (p)
∧ validclauses (cs)
∧ validproof-but-for-literal (cs, p, l))
→ validproof (cs, adjust (p, cs, l))

Theorem: validproof-of-append
(proof-form (x )
∧ proof-form (y)
∧ validclauses (cs)
∧ validproof (cs, x )
∧ validproof (append (listofcars (x ), cs), y))
→ validproof (cs, append (x , y))

Theorem: getproof-returns-validproof
(unsatisfiable (x ) ∧ validclauses (x )) → validproof (x , getproof (x ))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; the completeness theorem

Theorem: resolution-is-complete
(unsatisfiable (x ) ∧ validclauses (x )) → finishedproof (x , getproof (x ))

16



Index
adding-literal-fact, 12
adding-literal-induct, 12
adjust, 7–9, 15, 16
adjust-does-not-unform-proofs, 15
adjust-is-listp-when, 8
adjusted-proof-gets, 15
adjusting-makes-proofs-valid, 16
allunit-means, 11
allunits, 11, 12, 15
allunits-if, 11
allunits-means-no-excess-litera

l, 15
assignment-interchangeable, 10

box-in-axioms, 4, 7–9, 11, 12, 14, 15

equals-has-same-members, 5
excess-literal, 7–9, 11, 12, 14, 15
excess-literal-in-terms-of-cdr, 8
extra-try-resolvent-fact, 14

find-contradiction, 7, 9, 12, 14, 15
find-contradiction-returns-box, 15
find-contradiction-returns-proo

f-form, 14
finishedproof, 4, 12, 16
first-non-unit, 6–9
first-non-unit-fact, 7
first-non-unit-fact2, 6

getproof, 9, 15, 16
getproof-gives-proof-form, 15
getproof-is-list-when, 15
getproof-returns-box, 15
getproof-returns-validproof, 16

is-last-element-means-member, 6

last-element, 4, 6, 9, 15
last-element-fact, 15
length, 4, 6–9, 11, 14
list-means-length-more-0, 4

listofcars, 5, 6, 16

member-is-setmember, 5
member-of-append-1, 6
member-of-validclause-is-validlit, 14
member-of-validclauses-is-valid

clause, 14
membership-of-append, 6
membership-on-subsets, 5

no-box-fact, 8
no-box-zero-el-fact, 9
no-excess-literal-proof, 12
not-box-when-clause-taken, 9
number-of-lits, 7, 8

proof-form, 9, 10, 14–16
proofs-together-have-form-if-bot

h-do, 15

real-proof-implies-almost-proof, 14
resolution-is-complete, 16
resolvent, 3, 4, 12
resolvent-fact, 14
resolvent-help, 3, 13, 14
resolvent-with-extra-literal-fa

ct1b, 13
ct1c, 13
ct2a, 13
ct2b, 13
ct3a, 13

restriction-list-commutative, 11
reversible-nots-1, 11
reversible-nots-2, 11

set-equal, 2, 5–7, 10–12, 14
set-equal-self, 5
set-equals-fact, 5
set-member, 2, 4–6, 8, 12, 14
setmember-is-setmember-of-super

set, 5
stupid-lemma1, 6

17



stupid-lemma2, 6
stupid-lemma3, 6
subset, 1–3, 5–7, 10
subset-fact-1, 5
subset-is-transitive, 5
subset-of-append, 6
subset-of-self, 5
subset-of-takeouts-fact, 7
subset-of-union-fact-1, 5

take-out-clause, 6, 7, 9, 10
take-out-clause-fact, 9
take-out-clause-helper, 10
take-out-clause-preserves-valid

clauseness, 7
take-out-literal, 6–10, 14
take-out-literal-communative-so

rt-of, 7
take-out-literal-helper, 10
take-out-literal-is-validclause, 14
take-out-literal-preserves-vali

dclauseness, 7
take-out-literal-produces-almost

-proof, 14
takeout, 3, 5, 6, 11
takeout-fact1, 5
takeout-fact2, 6
takeout1, 5, 7

unit-clause-fact, 11
unsat-ignore-first-helper, 11
unsat-induct, 11
unsat-stepper, 10
unsatisfiable, 3, 10, 12, 14–16
unsatwith, 2, 3, 10–12

validclause, 2, 10–14
validclauses, 2, 7, 12, 14–16
validliteral, 2, 13–16
validproof, 3, 4, 10, 14, 16
validproof-but-for-literal, 12, 14, 16
validproof-but-for-literal-clau

ses-commutative, 12
validproof-clauses-commutative, 10

validproof-of-append, 16
validproof-on-subset, 10

what-adjusted-proof-returns, 15
when-first-non-unit-gives-clause, 8
when-literal-not-there, 14
when-not-in-bigger-clauses, 14
when-not-member-of-take-out-lite

ral, 14
when-take-out-clause-does-somet

hing, 9
when-take-out-literal-does-somet

hing, 8
when-unsatisfiable, 10
without-literal-still-unsatisfi

able, 10

18


