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Abstract. We have formally described a substantial subset of the MC68020, a widely
used microprocessor built by Motorola, within the mathematical logic of the automated
reasoning system Nqthm; a.k.a. the Boyer-Moore Theorem Prover [6]. Using this
formal description, we have mechanically checked the correctness of MC68020 object
code programs for binary search, Hoare’s Quick Sort, twenty-one functions from the
Berkeley Unix C string library, and other well-known algorithms. The object code for
these examples was generated using the Gnu C, the Verdix Ada, and the Gnu Common
Lisp compilers. We have mechanized a mathematical theory to facilitate automated
reasoning about object code programs. We describe a two stage methodology we use
to do our proofs.
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1 Introduction

To search for mistakes in a computer program one can try to prove that the
execution of the program according to a formal model of computation satisfies
a formal specification. To reduce the chance of mistakes in such proofs, one can
use an automated reasoning system. Thus far, the bulk of research in formal,
mechanical program proving has focused on programs written in higher-level
languages.

This paper describes how we have formally defined, within the logic of the
automated reasoning system Nqthm [6], a substantial subset of the user model
of the widely used Motorola MC68020 microprocessor. Using Nqthm, we have
proved that some object code generated by “industrial strength” high-level pro-
gramming language compilers, such as the Gnu C compiler, satisfies certain
formal specifications.

1The work described here was supported in part by NSF Grant MIP-9017499.
2The current address for Yuan Yu is Digital Equipment Corporation, Systems Research
Center, 130 Lytton Ave, Palo Alto, CA 94301.



Why study program proving at the object code level?

o If we take as our goal ensuring that programs are executed correctly on
particular processors, then the semantics of machine code on those pro-
cessors must be considered.?

e Some of the most critical programs in the world are currently studied at the
object code level anyway, even though written in higher-level programming
languages, and for several good reasons:

— Many high-level programming languages, especially those typically
used in industrial practice, are not precisely specified. It is not easy,
or even possible, to give the semantics of some programming language
features, for example, the volatile type in C.

— Some “industrial strength” compilers produce erroneous code.

e Programs written in high-level languages may have assembly code em-
bedded in them, in order to communicate with external devices. But no
high-level formal language semantics we have seen has yet made clear the
semantics of the embedding of assembler instructions.

e Real-time analysis is typically done at the machine instruction level be-
cause manufacturers often state how long an instruction takes to execute,
but the definers of higher-level languages do not.

Our approach of proving theorems about object code rather than higher
level programs addresses all these problems. For example, when we are proving
theorems about object code, we have no need for a formal semantics of the
higher-level language in which the program may have originally been written.
Any mistakes in the object code introduced by the compiler can be revealed by
studying the object code.

Our approach of studying the object code produced by higher-level lan-
guage compilers permits a programmer to continue to code in any higher-level
language. We are not advocating a return to coding in assembler or binary.

Throughout this paper, the word “formalize” means to write specifications
in a formal logic. In our work, we write specifications in the logic of Nqthm.

2 The Automated Reasoning System Nqthm

We briefly review the automated reasoning system Nqthm, also known as “the
Boyer-Moore Theorem Prover.” Detailed knowledge of Nqthm is unnecessary

31t is relevant to review Knuth’s defense, in the Preface to The Art of Computer Program-
ming [18], of his decision to present algorithms in assembly code rather than in a higher-level
language.



for those who are happy enough with the informal paraphrases of the formulas
in the remainder of this paper. Nqthm is a Common Lisp program for proving
mathematical theorems. Since A Computational Logic [5] was published in 1979,
Nqthm has been used by several dozen users to check proofs of over 16,000 the-
orems from many areas of number theory, proof theory, and computer science.
An extensive partial listing may be found in [6, pages 5-9]. See also [2]. For a
thorough and precise description of the Nqthm logic, we refer the reader to the
rigorous treatment in [6], especially Chapter 4, in which the logic is precisely
defined. In the body of this paper, we use a conventional syntax rather than
the official Lisp-like syntax of Nqthm.*

2.1 The Logic

The logic of Nqthm is a quantifier-free first order logic with equality. The basic
theory includes axioms defining the following:

e the Boolean constants t and f, corresponding to the true and false truth
values.

e equality. z = y is t or f according to whether z is equal to y.

e an if-then-else function. if z then y else z endif is z if z is f, and y
otherwise.

e the Boolean arithmetic operations: z A y is f if either z or y is f, and t
otherwise. z V y is fif both z and y are f, and t otherwise. - z is t if z
is f, and f otherwise. £ — y is f if z is non-f and y is f, and t otherwise.
z < y is t if both z and y are non-f or if both are f, but is f otherwise.

The logic of Nqthm contains two “extension” principles under which the user
can introduce new concepts into the logic with the guarantee of consistency.

o The Shell Principle allows the user to add axioms introducing “new” in-
ductively defined “abstract data types.” Nonnegative integer, ordered
pairs, and symbols are axiomatized in the logic by adding shells:

— Nonnegative Integer. The nonnegative integers are built from the
constant 0 by successive applications of the constructor function
‘add1’. The function ‘numberp’ recognizes nonnegative integers. The
function ‘subl’ returns the predecessor of a non-0 nonnegative inte-
ger. z € N abbreviates numberp(z).

4The translation between the conventional syntax and the official Lisp-like syntax is dis-
cussed in [7].



— Symbols. The data type of symbols, e.g., >running, is built using the
primitive constructor ‘pack’ and O-terminated lists of ASCII codes.
The symbol *nil, also abbreviated nil, is used to represent the empty
list.

— Ordered Pairs. Given two arbitrary objects, the function ‘cons’ builds
an ordered pair of these two objects. The function ‘listp’ recognizes
ordered pairs. The functions ‘car’ and ‘cdr’ return the first and sec-
ond component of such an ordered pair. Lists of arbitrary length
are constructed with nested pairs. Thus list(args,...,arg,) is an
abbreviation for cons(arg, ..., cons(argn, nil)).

e The Definitional Principle allows the user to define new functions in the
logic. For recursive functions, there must be an ordinal measure of the
arguments that can be proved to decrease in each recursion, which, intu-
itively, guarantees that one and only one function satisfies the definition.
Many functions are added as part of the basic theory by this definitional
principle. For example, we define for the nonnegative integers these fa-
miliar expressions: 4 + 5,4 — 7,1 < j, 4 xj,4 = j, and ¢ mod j. exp (4,
§) is 7. i ~ 0 returns f if and only if i is a positive integer. evenp ()
returns f if and only if z is an odd positive integer. fix (z) returns z if is
a nonnegative integer, and otherwise returns 0.

The rules of inference of the logic are those of propositional logic and equality
with the addition of mathematical induction.

2.2 The Theorem Prover

Nqgthm is a mechanization of the preceding logic. It takes as input a term in
the logic, and repeatedly transforms it in an effort to reduce it to non-f. Many
heuristics and decision procedures are implemented as part of the transformation
mechanism.

The theorem prover is fully automatic in the sense that once a proof attempt
has started, the system accepts no advice or directives from the user. The
only way the user can interfere with the system is to abort the proof attempt.
However, on the other hand, the theorem prover is interactive: the system may
gain more proving power through its data base of lemmas, which have already
been formulated by the user and proved by the system. Each conjecture, once
proved, is converted into some “rules” which influence the prover’s action in
subsequent proof attempts.

The commands to the theorem prover include those for defining new func-
tions, proving lemmas, and adding shells. The following two commands are the
most often used.

e To admit a new function under the definitional principle we invoke:



DEFINITION: fn-name (z, y) = body

e Toinitiate a proof attempt for the conjecture statement, naming it lemma-
name, we invoke

THEOREM: lemma-name
statement

Typically, the checking of difficult theorems by Nqthm requires extensive
user interaction. The behavior of the prover is influenced profoundly by the
user’s actions. The user first formalizes the problem to be solved in the logic.
The formalization may involve many concepts and so the specification may be
very complicated. The user then leads the theorem prover to a proof of the goal
theorem by proving lemmas that, once proved, control the search for additional
proofs. Typically, the user first discovers a hand proof, identifies the key steps
in the proof, formulates them as a sequence of lemmas, and gets each checked
by the prover.

3 The MC68020 Instruction Set Specification

We have formalized most of the user programming model of the MC68020 micro-
processor. The formal specification is intended to reflect as closely as possible
the user’s manual view of the MC68020 [22]. (A closely related instruction
set will also be found on other Motorola MC68xxx microprocessors and micro-
controllers, but we focused our formalization effort entirely on the MC68020.)
We, at the present time, have avoided considering the supervisor level of the
MC68020. Any exception caused by user programs simply halts our formalized
machine. Before presenting our formal specification, we first give an informal
description of the user programming model of the MC68020 and our formalism.

3.1 Formalizing the MC68020 Instruction Set Architec-
ture

We have followed the state transition approach to formalizing the MC68020 mi-
croprocessor. We define the MC68020 as an abstract machine and the MC68020
instructions as operations on the states of the abstract machine. We specify the
“semantics” of this abstract machine as a function in the Nqthm logic in the
most straightforward way: fetch the current instruction in the current state,
decode the instruction, perform the operation, and return a new machine state
suitably altered.

Figure 1 provides an informal, two dimensional picture of the user “program-
ming model” for the MC68020, as described in [22]. This model has 16 32-bit
general-purpose registers (8 data registers, D0-D7, and 8 address registers, AO-
AT), a 32-bit program counter PC, and an 8-bit condition code register, CCR.



MC68020 User Programming Model

Memory
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Figure 1: The User Visible Machine State

The address register A7 is also used as the user stack pointer (USP). The 5
least significant bits in CCR are condition codes for carry, overflow, zero, neg-
ative, and extend. This “model” is the only part of the state of an MC68020
that a user program can read or write under our formal semantics. Not present
in this model are such processor actualities as the instruction cache, memory
management, and the supervisor stack.

In our formalization, we have focused exclusively on the user available in-
structions of the MC68020 instruction set. Our specification consists of about
80% of all the user available instructions. Most of the instructions we have
left unspecified have some undefined effects on the machine state. For example,
some of the condition codes of the instruction CMP2 are described as undefined
in [22]. We have deliberately excluded these instructions in our specification.
Fortunately, these instructions constitute only a small portion of the instruction
set, and most of them are rarely used.® We summarize below those instructions
formalized.

The instructions of the MC68020 instruction set are classified into ten cate-
gories according to their functions [22].

5We have not yet encountered such instructions in the programs we have studied.



10.

. Data Movement. We have included all the data movement instructions:

EXG, LEA, LINK, MOVE, MOVEA, MOVEM, MOVEP, MOVEQ, PEA.

. Integer Arithmetic. We have included all the integer arithmetic instruc-

tions except CMP2: ADD, ADDA, ADDI, ADDQ, ADDX, CLR, CMP, CMPA,
CMPI, CMPM, DIVS, DIVSL, DIVU, DIVUL, EXT, EXTB, MULS, MULSL,
MULU, MULUL, NEG, NEGX, SUB, SUBA, SUBI, SUBQ, SUBX.

. Logical Operations. We have included all the logical instructions: AND,

ANDI, EOR, EORI, NOT, OR, ORI, TAS, TST

. Shift and Rotate. We have included all the shift and rotate instructions:

ASL, ASR, LSL, LSR, ROL, ROR, ROXL, ROXR, SWAP.

. Bit Manipulation. We have included all the bit manipulation instructions:

BCHG, BCLR, BSET, BTST.

. Bit Field. We have included all the bit field instructions: BFCHG, BFCLR,

BFEXTS, BFEXTU, BFFFO, BFINS, BFSET, BFTST.

. Binary coded decimal. None of the binary coded decimal instructions has

been considered.

. Program Control. We have included all the program control instructions

except a pair of instructions CALLM and RTM: Bcc, DBcc, Scc, BRA, BSR,
JMP, JSR, NOP, RTD, RTR, RTS.

. System Control. Only 5 of the 21 system control instructions are for-

malized: ANDI to CCR, EORI to CCR, MOVE from CCR, MOVE to CCR,
ORI to CCR.

Multiprocessor. None of the multiprocessor instructions have been consid-
ered.

We have formalized all eighteen MC68020 addressing modes. An addressing
mode can specify a constant that is the operand, a register that contains the
operand, or a location in memory where the operand is stored. For a complete
description of the MC68020 addressing modes, we refer the reader to Motorola’s
MC68020 user’s manual [22].

3.2

The Formal Instruction-Level Specification

Before we present some details of the formal specification, we first formally
define the user visible state and its internal representation.



3.2.1 The User Visible State

The only type of object manipulated at the instruction level is the bit vector,
which is represented as a nonnegative integer in our specification. For example,
the content of the program counter is represented as a nonnegative integer with
range between 0 and 232 — 1, inclusive. Each of the operations on bit vectors
can then be formalized as an operation on nonnegative integers. Here are a few
basic operations on bit vectors and their definitions in the Nqthm logic.

DEFINITION: bcar (z) = (z mod 2)

DEFINITION: bedr (z) = (z + 2)

DEFINITION: head (z, n) = (z mod exp (2, n))

DEFINITION: tail (z, n) = (z + exp (2, n))

DEFINITION: bitn (2, n) = bear (tail (z, n))

DEFINITION: mbit (z, n) = bitn (z, n — 1)

DEFINITION: app (7, 2, y) = (head (z, n) + (y * exp (2, n)))
DEFINITION: bits (z, 4, j) = head (tail (z, i), 1 + (j — 1))

Intuitively, ‘head’ returns the bit vector of the first n low-order bits of z;
‘tail’ returns the bit vector obtained by discarding the first n low-order bits of
z; ‘bear’ and ‘bedr’ are simply the special cases of ‘head’ and ‘tail’ with n = 1;
‘bitn’ returns the nth bit of the bit vector z; ‘mbit’ is simply a special case of
‘bitn’, returning the most significant bit of x; and ‘app’ returns the bit vector
obtained by concatenating = and y.

A wuser visible state is represented as a list of length five, e.g., list (status,
regs, pc, ccr, mem), where the contents of each of the five fields has the following
interpretation:

e status is the machine status word, which is either the symbol ’running
or some error message if an exception occurs. This status field is not
actually present in any MC68020. Rather, it is the artifice of our state
formalization by which we indicate that an actual error has arisen or
that an aspect of the MC68020 not defined in our formalization has been
encountered during execution.

e regs is the register file, which is represented as a list of 16 nonnegative
integers.

e pc is the program counter, which is represented as a nonnegative integer.



e ccr is the condition code register, which is represented as a nonnegative
integer.

e mem is the memory, which is represented as a pair of binary trees. A
binary representation for memory provides some efficiency for simulating
MC68020 instructions. One of the binary trees is a formalization of mem-
ory protection—one may specify that any byte of memory is ’ram, ’rom,
or ’unavailable; the other binary tree holds the data, i.e., the actual
bytes stored. As discussed elsewhere in this paper, we use the notion of
read-only memory to deal with the issue of cache consistency. We also
believe that it is unrealistic to assert the correctness of machine-code pro-
grams without carefully characterizing which parts of memory are read
and written—few MC68020 chips are connected to a full 4 gigabytes of
RAM. Memory protection issues are not specified in [22].

The functions ‘mec-status’, ‘me-rfile’, ‘mc-pc’, ‘mc-cer’ and ‘mc-mem’ are ac-
cessors to the machine status word, the register file, the program counter, the
condition codes and the memory, respectively. We use the function ‘mc-haltp’
to check whether a machine state is illegal:

DEFINITION: mc-haltp (s) = (mec-status (s) # ’running)

In this work, function names, such as ‘mc-haltp’, which end in the letter
“p” generally name predicates, i.e., functions that return ‘t’ or ‘f’, in the Lisp
tradition.

Individual registers are accessed with the following functions. read-rn (oplen,
rn, regs) returns the content in the register indexed by rn in the register file regs.
The functions ‘read-dn’ and ‘read-an’ are used to obtain the register contents
of the address and data register files respectively.

DEFINITION:
read-dn (oplen, dn, s) = read-rn (oplen, dn, mc-rfile (s))

DEFINITION:
read-an (oplen, an, s) = read-rn (oplen, 8 + an, mec-rfile (s))

As a special case of ‘read-an’, ‘read-sp’ returns the stack pointer in the given
state:

DEFINITION: SP =7
DEFINITION: L = 32

DEFINITION: read-sp (s) = read-an (L, SP, s)



Memory contents are accessed primarily by ‘read-mem’. read-mem (addr,
mem, k) returns the nonnegative integer obtained by appending together the &
consecutive bytes from the memory mem starting at location addr.

‘rts-addr’ returns the address of the current subroutine call, which is on the
user stack pointed by the user stack pointer.

DEFINITION:
rts-addr (s) = read-mem (read-an (32, 7, s), mc-mem (s), 4)

We now list some constants and very simple functions which are used in
the subsequent sections, but whose definitions may be happily skipped on first
reading:

DEFINITION: WSZ = 2

DEFINITION: PC-SIGNAL = ’pc_outside_rom
DEFINITION: PC-ODD-SIGNAL = ’pc_at_odd_address
DEFINITION: Bl =1

DEFINITION: B0 =0

DEFINITION: bOp (z) = (z = BO)

DEFINITION:

b-not (z)

= if bOp (z) then B1
else BO endif

DEFINITION:

b-and (z, y)

= if bOp (z) then BO
elseif bOp (y) then BO
else Bl endif

DEFINITION:
b-or (.”L‘, y)
= if bOp (=)
then if bOp (y) then BO
else B1 endif
else B1 endif

DEFINITION:

fix-bit (¢)

= if bOp (¢) then BO
else B1 endif

10



DEFINITION: nat-rangep (nat, n) = (nat < exp (2, n))
DEFINITION: bes (¢) = fix-bit (¢)
DEFINITION: nat-to-uint (z) = fix (z)

DEFINITION:

nat-to-int (z, n)

= if z <exp(2, n — 1) then fix(z)
else — (exp (2, n) — z) endif

DEFINITION:
iread-dn (oplen, dn, s) = nat-to-int (read-dn (oplen, dn, s), oplen)

DEFINITION: asl(len, z, cnt) = head (z * exp (2, cnt), len)

DEFINITION: mod32-eq (z, y) = (head (z, 32) = head (y, 32))

3.2.2 The Specification

Because of space limitations, we necessarily omit some of the details of our
M68020 definition. The complete description may be found in [7].

The top-level loop of our specification is defined by a pair of functions, the
single-stepper function ‘stepi’ and the stepper function ‘stepn’, which executes
n instructions.

DEFINITION:
stepi (s)
= if evenp (mc-pc(s))
then if pc-word-readp (me-pe (s), me-mem (s))
then execute-ins (current-ins (me-pc (s), s),
update-pc (add (L, mc-pc(s), Wsz), s))
else halt (PC-SIGNAL, s) endif
else halt (PC-ODD-SIGNAL, s) endif

DEFINITION:

stepn (s, n)

= if mc-haltp (s) V (n ~0) then s
else stepn (stepi (s), n — 1) endif

‘stepi’ calls ‘execute-ins’ to compute the new machine state from the current
state s by executing the current instruction if the program counter is aligned on
a word boundary, as required by the MC68020, and points to readable memory,
as is checked by the function ‘pc-word-readp’. The function ‘add’ is defined
below.

11



‘stepn’ executes n instructions by calling the single stepper ‘stepi’. But
‘stepn’ halts prematurely if the status field of s ceases to be ’running. The
function ‘halt’ sets the status field of its second argument to be its first argument.

Roughly speaking, ‘execute-ins’ decodes the current instruction according to
the opcode and jumps to the specification of the instruction identified. ‘current-
ins’ obtains the current instruction. ‘update-pc’ updates the program counter
in the current machine state to point to the next instruction.

In formalizing each individual instruction, we always proceed by the follow-
ing four steps that are explained with our specification of the ADD instruction.

Addressing Modes. We first specify which addressing modes are available
to the instruction. For each instruction, an addressing mode predicate is
defined. For example, as a part of the ADD instruction, we define a function
‘add-addr-modepl’ to express the constraint that all the addressing modes
are available to the ADD instruction except that a byte operation is not
allowed in address register direct mode.%

Operation. We then define the operation performed by each of the instruc-
tions. The operation of the ADD instruction is:

DEFINITION: add (n, z, y) = head (z + y, n)

which is simply modulo addition: (z + y) mod 2™.

Condition Codes. We then specify the new values of the five condition codes
returned by each of the instructions. In our example, we formalize the
five condition codes by the following four functions, paraphrasing the de-
scription given in Table 3-11 of the MC68020 manual [22]. For the ADD
instruction, the X condition is the same as the C condition. The function
add-cvznz creates the new condition code register.

DEFINITION:
add-c (n, sopd, dopd)
= let result be add(n, sopd, dopd)
in
b-or (b-or (b-and (mbit (sopd, n), mbit (dopd, n)),
b-and (b-not (mbit (result, n)), mbit (dopd, n))),
b-and (mbit (sopd, n), b-not (mbit (result, n)))) endlet

DEFINITION:
add-v (n, sopd, dopd)
= let result be add(n, sopd, dopd)

6This is only one of the two cases in the ADD instruction; please refer to [22] and [7] for
more details.
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in
b-or (b-and (b-and (mbit (sopd, n), mbit (dopd, n)),
b-not (mbit (result, n))),
b-and (b-and (b-not (mbit (sopd, n)), b-not (mbit (dopd, n))),
mbit (result, n))) endlet

DEFINITION:

add-z (oplen, sopd, dopd)

= if add (oplen, dopd, sopd) = 0 then B1
else BO endif

DEFINITION:
add-n (oplen, sopd, dopd) = mbit (add (oplen, dopd, sopd), oplen)

The auxilliary function ‘cvznx’ does the arithmetic to pack the fields into
a bit vector.

DEFINITION:
cvznx (¢, v, 2z, n, T)
= (fix-bit (¢)
+  ((2 * fix-bit (v))
+  ((4 * fix-bit (2))
+ ((8 x fix-bit (n))
+ (16 * fix-bit (z))))))

DEFINITION:
add-cvznx (oplen, sopd, dopd)
= cvznx (add-c (oplen, sopd, dopd),
add-v (oplen, sopd, dopd),
add-z (oplen, sopd, dopd),
add-n (oplen, sopd, dopd),
( )

add-c (oplen, sopd, dopd
Next Machine State. Finally, we define a main function for each of the in-
structions, a function that specifies the new machine state produced by
the effects of the execution of that instruction. In our example, ‘add-effect’
returns the effects of the ADD instruction and ‘add-ins1’ returns the new
machine state.”

DEFINITION:
add-effect (oplen, sopd, dopd)
= cons (add (oplen, dopd, sopd), add-cvznx (oplen, sopd, dopd))

"In the definition of ‘add-insl’, the ampersand character in the identifier ‘s&addr’ has the
same status as an ordinary alphabetic character in an Nqthm identifier.

13



DEFINITION:
add-ins1 (oplen, ins, s)
= if add-addr-modepl (oplen, ins)
then let séaddr be mc-instate (oplen, ins, s)
in
if mc-haltp (car (sé&addr)) then car (s&addr)
else d-mapping (oplen,
add-effect (oplen,
operand (oplen,
cdr (séaddr),
$),
read-dn (oplen,
d_rn (ins),

5));
d_rn (ins),
car (s€addr)) endif endlet
else halt (MODE-SIGNAL, s) endif

Roughly speaking, ‘add-ins1’ checks whether ins is a legal ADD instruction,
and, if so, proceeds to calculate the effective addresses, fetch the source
and destination operands (with the functions ‘operand’ and ‘read-dn’),
perform the specific operation, and finally update the condition codes and
store the results by calling the function ‘d-mapping’. It may return an
error state with a signal indicating the type of error encountered. The
auxilliary function ‘mc-instate’ calculates a pair representing an internal
state in the execution; in the case of an illegal instruction the pair’s ‘car’
will be a halt signal.

Altogether, our formal specification consists of 569 function definitions. It
takes up approximately 80 pages of text. About two thirds of the specification
is devoted to the formalization of individual instructions.

Rather than giving more details for any particular instruction, all of which
have been fully documented in [7], we instead focus on some of the interesting
issues that have come up in the specification.

Cache Consistency. The MC68020 has an on-chip instruction cache, but a
write operation does not invalidate or modify the corresponding entry in
the instruction cache. Rather than formalizing the details of the MC68020
cache (which usually changes from MC680x0 processor to processor), we
have adopted, for the time being, the strategy of requiring that instruc-
tion fetches be from read-only parts of the memory, and therefore, if the
instruction cache is entirely valid at the beginning of the execution, it will
remain valid all throughout the execution.

14



Evaluation Order. We found some MC68020 instructions are sensitive to in-
ternal evaluation order. For instance, the MOVE instruction has two
effective address calculations. Because of the side effect of effective ad-
dress calculation, it is necessary to know which address is calculated first.
This information is not specified in the Motorola literature, but by speak-
ing with Motorola engineer Jim Eifert in April 1990, we learned that it
is an internal Motorola policy that the source effective address is always
calculated first.

Condition Code Computation. Ideally, we would specify the condition codes
in a way most natural to the “user.” But in order to assure full compli-
ance with the MC68020 specification [22], we have followed the syntactical
definition described in Table 3-11 of [22]. For instance, we define the carry
bit of the SUB instruction as follows:

DEFINITION:
sub-c (n, sopd, dopd)
= let result be sub(n, sopd, dopd)
in
b-or (b-or (b-and (mbit (sopd, n), b-not (mbit (dopd, n))),
b-and (mbit (result, n), b-not (mbit (dopd, n)))),
b-and (mbit (sopd, n), mbit (result, n))) endlet

To paraphrase this, the carry bit is set to (SmADm)V (RmADm)V(SmA
Rm), where Sm, Dm, and Rm denote the most significant bit of source,
destination and result, respectively. This characterization is perhaps not
the way the programmer views the carry bit of a SUB (subtraction) in-
struction! One of the problems we have to deal with in the verification
phase is to eliminate these “semantic gaps.”

Effective Address Calculation. The MC68020 provides a very rich set of
addressing modes. The definition of effective address calculation is rather
complicated and required great care to formalize completely and in a form
amenable to formal reasoning.

In addition to using the Nqthm prover to prove general theorems about the
correctness of MC68020 programs under the semantics provided by ‘stepn’, as
we discuss in subsequent sections, it is noteworthy that it is actually possible for
us, within Nqthm, to run ‘stepn’ on concrete data. That is, Nqthm together with
‘stepn’ provides a simulator for the MC68020, albeit one that requires approx-
imately 1,000,000 Sun-3 (MC68020) instructions to simulate a single MC68020
instruction. We mention this simulation possibility only to emphasize the im-
portant point: our “semantics” for the MC68020 is an operational semantics in
the strictest sense of the word. There are several advantages to having such an
operational characterization of the semantics of our computational model:
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o It is possible to “test” the specification’s correctness by executing it on
specific data and comparing the result with the behavior of an actual
MC68020. While testing does not find all bugs, it does find some, and that
helps us gain confidence in our formal model. Kenneth Albin of Computa-
tional Logic devoted several weeks to testing our formal MC68020 model
against an MC68020, the processor of a Sun-3, on approximately 40,000
instructions, a substantial portion of the approximately 45,000 opcode
combinations covered by the specification. Albin uncovered approximately
a dozen errors in the formal specification, which we have corrected. It is
interesting to note that all of the errors he found were in instructions,
or modes of instructions, not exercised in any of the many machine-code
programs verified. Most of the errors Albin found were of a typographic
character, e.g., a left-for-right swap.

e By giving the MC68020 semantics entirely with definitions instead of with
an ad hoc collection of axioms, we are guaranteed that the specification is
consistent, relative to the consistency of elementary number theory.

e The executability of our formal model supports a fast means of symbolic
manipulation in some cases during program proving, viz., when an expres-
sion is encountered that is variable free.

e As with most uses of Nqthm, we rely heavily on symbolic execution in our
proofs. Our formal model was fine-tuned to increase the likelihood that
the Nqthm simplifier would perform symbolic execution.

4 Object Code Proofs

Among the possible applications of the MC68020 formal specification, we are
currently primarily concerned with studying the verification of specific object
code programs. To date we have successfully verified many small object code
programs generated from their C, Ada, and Common Lisp counterparts with
the Gnu C compiler, the Verdix Ada compiler, and the Gnu Common Lisp
Compiler. This section describes our work in this direction.

Our formal model gives a semantics for MC68020 machine-code programs.
From a strictly formal perspective, this semantics is all that is needed to prove
the correctness of MC68020 machine-code programs. Indeed, some theorems
about explicitly given machine states can be proved by direct execution. But
practically speaking, to get Nqthm to check the correctness of MC68020 machine-
code programs, it is necessary first to develop a library of Nqthm-checked lem-
mas, a library that describes some of the useful mathematical properties of our
formal semantics. In this section, we first describe our lemma library.
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4.1 A Library of Lemmas

The development of lemmas is the key to success in any use of an interactive
theorem proving system, certainly of Nqthm. Lemmas are saved as derived
inference rules that affect the future behavior of the system. The quality of the
lemmas often determines the success of the entire proof effort. Our approach to
developing a lemma library can be roughly viewed as “bottom-up.” We carefully
study each of the concepts involved, in the hope of proving a set of lemmas that
fully characterizes these concepts. In general, the library is intended to be the
mechanization of a basic theory of formal reasoning about object code programs
which will have utility in the verification of many different programs.

We have invested more time creating our lemma database than on any other
aspect of this multi-year project. It takes a lot of effort to formulate the lemmas
in such a way that the theorem prover can find them at the “right time” and
apply them automatically. This investment has paid off, because many proofs
involve the application of a large collection of lemmas. Each of the lemmas is
proved by Nqthm before it is admitted into the system. Allowing users of theo-
rem provers to assert without proof the lemmas they think correct seems, with
some historical experience, a pretty sure way to render the system inconsistent.
A persistent experience of Nqthm users, many with deep previous training in
mathematics, is the high likelihood of their making mistakes in the formula-
tion of lemmas, mistakes that are caught in the attempt to have Nqthm check
them. Therefore, the proofs we describe are based solely on the definitions of
our MC68020 model, and not on any nondefinitional axioms added during the
project.

Currently, our library of lemmas consists of approximately 1500 lemmas,
about 120 pages of text. The full lemma library is presented in [30]. We give a
few examples of typical lemmas below. Our experiments with the library, the
topic of the next section, have been very satisfactory. Next, we briefly review
some of the important issues we have dealt with in our development of the
library.

4.1.1 Arithmetic

All the bit vector operations are defined with nonnegative integer arithmetic;
hence theorems about bit vectors are merely theorems about nonnegative integer
arithmetic. We have focused on reasoning about these operations: z + y, = * y,
z —y, z mod y, £ + ¥y, and exp (z, y). During the development, we have been
greatly benefited from an integer library developed at Computational Logic,
Inc.

Due to the fixed size of operations at the machine-code level, it is inevitable
that we study modulo arithmetic. Our purpose here is to establish a set of
proof rules to support modulo arithmetic reasoning at a relatively high level.
For example, recall that add (z, y, n) is defined as (z + y) mod 2™. One of the
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rules for modulo addition is associativity:

THEOREM: add-associativity
add (n, add (n, z, v), 2) = add (n, z, add (n, y, 2))

It is worth noting that some meta lemmas about modulo arithmetic have
been proved by Nqthm and incorporated into our theory, which demonstrates
the usefulness of the Nqthm’s meta extension mechanism [3, 6]. This meta exten-
sion technique permits the proof of the correctness of simplification procedures,
which once proved are then embedded into Nqthm’s simplification machinery.
A simple example of such a meta lemma is the statement that identical terms
may be cancelled from opposite sides of an additive arithmetic equation. Such
meta lemmas permit the user a degree of control over Nqthm’s simplification
procedure that can be difficult, if not possible, to achieve by the mere addition
of ordinary lemmas.

4.1.2 Alternative Interpretations

In order to formalize the MC68020 microprocessor as accurately as possible,
we followed Motorola’s description of the MC68020 very literally while writing
our formal specification. But it is sometimes the case that the descriptions
Motorola provides are not the most useful mathematical characterizations of
operations to use when it is time to prove the correctness of particular programs.
An important type of lemma in our library is the kind which expresses in a
more useful or intuitive fashion the semantics of an operation. For example,
we have previously discussed the rather syntactic formulation of the changes
to the condition codes given in the Motorola manual. The following lemma
establishes, roughly speaking, that the carry bit after a subtraction instruction
is set iff y < x. ‘nat-to-uint’ gives the unsigned integer interpretation of a bit
vector, while ‘nat-to-int’ gives the signed integer interpretation.

THEOREM: sub-bes&cc
(nat-rangep (z, n) A nat-rangep (y, n) A (n % 0))
—  (bes (sub-c(n, z, y))
= if nat-to-uint (y) < nat-to-uint (z) then 1
else 0 endif)

In a similar vein, the following lemma characterizes in arithmetic terms
(using exponentiation) the effects of arithmetic shifting, which is defined in the
specification by “bit movement.”

THEOREM: asl-int
(nat-rangep (z, n) A int-rangep (nat-to-int (z, n), n — s))
—  (nat-to-int (asl(n, z, s), n) = itimes (nat-to-int (z, n), exp (2, s)))
Roughly, this lemma says that shifting x left s bits equals multiplying « by
25, if there is no overflow. ‘int-rangep’ returns t, if ((— exp (2, n — 1)) < int)
A (int < exp (2, n — 1)), and returns f, otherwise. ‘itimes’ multiplies integers.
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4.1.3 Machine State Management

Machine state management is probably the most difficult part of the library. It
mainly concerns general theorems about the machine state and its components.
In proofs of programs, machine states are the objects the theorem prover has
to reason about and the user has to inspect when the proof fails. The machine
state is often very complex and unmanageable. By developing carefully a set of
lemmas for each of the components of the machine state, we are able to gain
some level of abstraction that helps the theorem prover focus on the relevant
part of the proof and helps the user understand the proof script, in particular,
when the proof attempt fails.

For example, one of the lemmas about memory “tells” the prover how to
read the byte at memory location z.

THEOREM: byte-read-write
byte-read (z, byte-write (v, y, mem))
= if mod32-eq(z, y)
then if nat-rangep (v, 8) then fix (v)
else head (v, 8) endif
else byte-read (z, mem) endif

Roughly, this says that the result of reading at location = after writing v at
location y is either v or the previous contents of x, according to whether z is
equal to y or not.

4.2 Correctness Proofs

We turn now to the most interesting part of our project—the correctness proof
of object code generated from programs written in higher-level languages. In
this section, we will explain our approach with the correctness proof of some
MC68020 object code that computes the greatest common divisor of two non-
negative integers by Euclid’s algorithm. One may find the complete script of
our GCD proof in [30].

To obtain our object code, we start with the following C program.

int gcd(int a, int b)
{
while (a !'= 0){
if (b == 0) return (a);
if (a > b)
a=af% b;
else b =b % a;
};

return (b);
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We next run this C program through the Gnu C compiler, load the object
code into memory, and use the Gnu debugger to obtain the object code both
in symbolic format (for human consumption, only) and in numeric format (for
Nqthm’s consumption). The symbolic format is:

ged: linkw a6,#0
moveml d2-d3,sp@-
movel a6@(8),d2
movel a6@(12),d3
gcd+16: tstl d2
beq 0x22f6 <gcd+48>
tstl d3
bne 0x22e2 <gcd+28>
movel d2,d0
bra 0x22f8 <gcd+50>
gcd+28: cmpl d2,d3
bge 0x22ee <gcd+40>
divsll d43,d0,d2
movel d0,d2
bra 0x22d6 <gcd+16>
gcd+40: divsll d2,d0,d3
movel d0,d3
bra 0x22d6 <gcd+16>

gcd+48: movel d3,d0

gcd+50: moveml a6@(-8),d2-d3
unlk a6
rts

The numeric format, expressed as a list of nonnegative integers, is given by this
Nqthm function:

DEFINITION:

GCD-CODE

= (78 86 0 0 72 231 48 0 36 46 0 8 38 46 0 12 74
130 103 28 74 131 102 4 32 2 96 22 182 130 108 8
76 67 40 0 36 0 96 232 76 66 56 0 38 0 96 224 32
3 76 238 0 12 255 248 78 94 78 117)

The above list of numbers (bytes) is the object subject to proof.

4.2.1 The Correctness Statement

The correctness statement for the foregoing GCD program should fully charac-
terize the effects of the execution of the program on the machine state. The
most important requirement of the correctness statement is that it be “context-
free” and “universally” applicable so that we can reuse the theorems in the
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proofs of other programs that use this program as a subprogram. Our correct-
ness theorem at the object code level is more elaborate than it would be for a
program written in a higher-level language. This is not particularly surprising
to us, since our proofs assert more properties about a program than would a
higher-level specification.

In general, the correctness of object code in our formalism means:

e The execution terminates, and the new machine state is “normal,” e.g.,
no read or write to unavailable memory occurred, no illegal instruction
was executed.

e The program counter is set to the “right” location.
e The correct results are stored in the right place.

e The register file is properly managed, e.g., A7, the User Stack Pointer, is
set to the right location, and some registers used as temporary storage are
restored to their original values.

e The program only accesses and changes the intended portion of memory.

In our example, the correctness of our GCD program is given by the following
theorem, which formalizes exactly what we have described above.

THEOREM: gcd-correctness
let sn be stepn (s, gcd-t (a, b))
in
ged-statep (s, a, b)
—  ((mc-status (sn) = ’running)
A (mc-pc(sn) = rts-addr (s))
A (read-rn (32, 14, mc-rfile (sn))
= read-rn (32, 14, mc-rfile (s)))
A (read-rn (32, 15, mc-rfile (sn))
= add (32, read-an (32, 7, s), 4))
A ((d2-7a2-5p (rn) A (oplen < 32))
—  (read-rn (oplen, rn, mc-rfile (sn))
= read-rn (oplen, rn, me-rfile (s))))
A (disjoint (z, k, sub (32, 12, read-sp (s)), 24)
—  (read-mem (z, mc-mem (sn), k)
= read-mem (z, mc-mem (s), k)))
A (iread-dn (32, 0, sn) = ged (a, b))) endlet

where ged-statep (s, a, b), given below, is the hypothesis that specifies the
assumptions on the initial state.

DEFINITION:
ged-statep (s, a, b)
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= ((mec-status(s) = ’running)

A evenp (mc-pc (s))

A rom-addrp (mc-pe (s), me-mem (s), 60)

A mcode-addrp (me-pe (s), me-mem (s), GCD-CODE)

A ram-addrp (sub (32, 12, read-sp (s)), me-mem (s), 24)

A (a = iread-mem (add (32, read-sp (s), 4), mc-mem (s), 4))
A (b = iread-mem (add (32, read-sp (s), 8), mc-mem (s), 4))
A (a €N)

A (b eN))

ged-statep (s, a, b), roughly speaking, asserts:
e The machine state s is in the user mode.
e The program counter of s is even.

e The 60 consecutive bytes in the memory of s, starting from the address
pointed to by the program counter of s, store the GCD program given
above by GCD-CODE, in ROM.

e There are 24 bytes available on the stack.

o The integers a and b are on the stack, and both are nonnegative.

Informally, the theorem ‘gcd-correctness’ states that if s is as characterized
by ged-statep (s, a, b), then there is an integer n, given by the expression ged-
t (@, b), which tells us how many instructions to run the MC68020 starting with
s before the GCD program returns, such that after running s for n steps the
resulting state s’ has these properties:

e g’ is still running, i.e., no errors occurred.

e The pc of s’ points to the return address on the top of the stack in s.
e Register A6, which is used by the LINK instruction, is unchanged.

o Register A7, the stack pointer, has been incremented by 4.

e All of the registers of s’ have the same values as those of s, except DO,
D1, A0, A1, A6, and AT.

e Every memory location of s’ has the same value as it did in s, except for
the 12 bytes on either side of the stack pointer of s.

o Register DO of s’ contains ged (a, b).

The function ‘ged’ is formally defined as a recursive function, patterned after
Euclid’s algorithm. Lemmas later proved about ‘ged’ establish that it does in
fact return the greatest common divisor of its two arguments.

The completeness of detail that is necessary when proving the correctness of
object code programs is especially obvious when one verifies programs involving
subroutine calls and recursions, such as we have done with Quick Sort.
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4.2.2 The Proof

In our approach to the verification of specific object code programs, there are
always two independent phases: one deals with the correctness of the underlying
algorithm and the other deals with the correctness of its implementation. Suc-
cess in separating the two issues and tackling each of them in isolation makes the
correctness proof easier. Therefore, our correctness proofs are always divided
into two steps:

1. We formalize the underlying algorithm as a function in the Nqthm logic
and prove the equivalence of the algorithm with the result of running the
MC68020 specification on the given object code. What we establish in
this step is that the implementation does implement the algorithm. Note
that this says nothing about the correctness of the algorithm.

2. We prove that the algorithm, formalized as an Nqthm function, is correct.
Note here we do not need to deal with any MC68020 related specifics in
this step. We can therefore focus completely on the mathematics of the
algorithm, and fully enjoy many of the mathematical laws that are not
available at the processor level.

Illustrating the first step. Thus, for the GCD example, we formalize
Fuclid’s algorithm in Ngthm as follows:

DEFINITION:

ged(a, b)

= if ¢ ~ 0 then fix(b)
elseif b ~ 0 then «
elseif b < a then gcd (@ mod b, b)
else gcd (a, b mod a) endif

The first step is to prove that the functional behavior of the object code is
equivalent to the above function, which is one of the many properties proved by
‘ged-correctness’.

The work involved in this step depends on the complexity of the flow of
the control of the program. For each loop in the program, we need to prove
two intermediate lemmas that correspond to the base case and inductive case
of an inductive proof. These intermediate lemmas are quite analogous to the
verification conditions in proof by the Floyd method[11]. The lemmas differ
from typical verification conditions largely because of very detailed attention to
the number of machine instructions being executed. Since we do not consider
the mathematical properties of the program here, the typical invariant proofs
found in Floyd/Hoare method are delayed to the second step. For straight-line
programs, there is no need to introduce any intermediate lemmas.

In our GCD example, the most crucial lemma towards the first step is stating
and checking with Nqthm that we can “go around the loop.” The following is
part of this “go around the loop” lemma:
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(ged-sOp (s, a, b) A (a 20) A (b 20)A(b< a))
= gcd-sOp (stepn (s, 9), a mod b, b)

which states that if the state s satisfies a certain invariant condition ‘ged-sOp’
with respect to a and b, and if @ < b, then after 9 machine instructions, the
machine will be in a new state that satisfies the same invariant condition with
respect to @ mod b and b. ged-sOp (s, a, b) requires, among other things, that
GCD-CODE be loaded in ROM memory starting at an appropriate place, namely
16 locations before the program counter of s, and that a and b be in registers 2
and 3 respectively. Given the extensive effort that was put into formulating the
lemma library, and the consequent ability of the Nqthm simplifier to execute
machine-code programs symbolically, it is generally easy to state and check such
lemmas once one gets used to counting instructions and attending to registers
and memory locations instead of symbolically named variables. So routine is
the formulation and proving of the lemmas in this step of verification that we
feel there is some hope for automation here, much as verification condition
generation has been automated.

Illustrating the second step. The second step, in our GCD example,
is to prove that the function ‘ged’ does indeed compute the greatest common
divisor of @ and b. This is stated with the following two theorems:

e ged(a, b) is a common divisor of ¢ and b.

THEOREM: gcd-is-cd
((a mod ged (a, b)) = 0) A ((b mod ged(a, b)) = 0)

e gcd (a, b) is the greatest, i.e., it is no less than any common divisor of a
and b.

THEOREM: gcd-the-greatest
((a 20) A (b#0)A ((ed mod z) =0) A ((b mod z) = 0))
—  (ged(a, b) £ x)
To get Nqthm to check such theorems, one must, in general, discover, state, and
mechanically check a number of intermediate lemmas that capture all the key

ideas in the underlying mathematics. For example, in the case of the proof of
the immediately preceding theorem, we need the following intermediate lemma:

THEOREM: remainder-remainder
((b mod ¢) =0) — (((¢ mod b) mod ¢) = (a mod ¢))

This lemma in turn was dependent upon some previously proven results in
our lemma library, such as,

THEOREM: remainder-times
(((z * y) mod y) = 0) A (((y * ) mod y) = 0)
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and

THEOREM: remainder-quotient-elim
((y £0) A (z €N)) = (((z mod y) + (y * (z + y))) = z)

4.2.3 Timing Analysis for GCD

The function ‘ged-t’, which was used above in the theorem ‘ged-correctness’, re-
turns the exact number of MC68020 instructions executed by the GCD program.
The definition of ‘ged-t’ is:

DEFINITION:

ged-t1(a, b)

= if a ~ 0 then 6
elseif b ~ 0 then 9
elseif b < a then 9 + ged-t1(a mod b, b)
else 9 + ged-tl (e, b mod a) endif

DEFINITION: gcd-t (a, b) = (4 + ged-t1(a, b))

Using the definition of ‘ged-t’, we have mechanically proved that the number
of instructions executed by the GCD program is at most 598.

THEOREM: gecd-t-ubound
((a < exp(2,31)) A (b <exp(2,31))) — (ged-t(a, b) < 580)

Thus we can easily obtain a crude upper bound on the real-time execution
of GCD, given a worst-case single instruction execution figure. For a less crude
real-time bounds analysis, we would need to incorporate time information for
each individual instruction, something that seems to us a quite natural and an
easy extension to our specification.

5 The Results

Using the techniques described here, we have managed to verify mechanically
the object code produced by the Gnu C compiler for hundreds of lines of C,
including some of the C code in Kernighan and Ritchie’s book [17], in particular
binary search and Quick Sort.

We have also tried to verify the Berkeley Unix C string library. Twenty-one
functions out of twenty-two functions specified in the ISO standard [29, 16] have
been mechanically verified. The function strerror, though mathematically
trivial, is the only one left out because of the need to formalize IO, which we
have not treated in our work. In the process of verifying the Berkeley C string
library, three C programming errors were revealed. Two were in the Berkeley
Unix C string library. One error was undetected when we reported it to the
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author [27], and was to have been corrected for the release of BSD4.4. The
second error had already been fixed by the author [27] when we reported it.
A third error was in Plauger’s book The Standard C Library [24]. This error
had been detected by the author by the time we reported it to him [23]. These
errors and all the C string library proofs are discussed in detail in Yuan Yu'’s
dissertation [30].

Primarily to provide concrete evidence that this work is easily applicable
to many other languages other than C, we have also mechanically verified the
object code produced by the Verdix Ada compiler for an integer square root
algorithm. Furthermore, we have mechanically verified the object code produced
by the Gnu Common Lisp compiler for a “fixnum” GCD program.

Via a few examples, we have also shown how it is possible to check me-
chanically the correctness of machine-code programs that call other, previously
verified, machine-code programs as subroutines. Our verification of Quick Sort,
for example, illustrates subroutine calling, even recursion. Another example is
the strstr function in the Berkeley Unix C string library which calls the strlen
and strncmp functions. Handling subroutines raises such obvious issues as the
correct passage of the return program counter on the stack and the location
of the code for the called subroutine, both where it is located in memory and
how that location is indicated by the calling subroutine. In addition to subrou-
tines, we have studied some other interesting C language issues in the context of
machine-code programs for the MC68020, such as functional parameters, com-
puted jumps, and embedded assembly code. For a detailed discussion of these
issues, we refer interested readers to Chapter 6 of [30].

6 Future Directions

As a next step, we plan to apply the mathematics so developed to another
computer architecture, say, Alpha or Sparc. We believe we can do it but dealing
with the nondeterminism introduced via instructions such as “delayed branch,”
which may leave the program counter in an indeterminate state during some
instructions, will be a challenge.

A greater challenge is to specify and prove programs involving supervisor
mode, especially interrupt handling.

The formal specification we have already developed allows us to investigate:

e The correctness of some moderate sized piece of software that is in critical
use. One good example is the verification of microcontroller programs, an
important subject that has been largely ignored by the formal verification
community. The MC68332 microcontroller contains a processor with an
instruction set quite close to that of the MC68020.

e The real-time execution bounds of programs. By reasoning at the ob-
ject code level, we are able to prove properties about real-time behavior
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for some programs, which is an advantage over a higher-level language
approach.

e The correctness of high-level programming language compilers. FEven
though compiler verification may have little practical impact in the near
future, it is a research area with many interesting problems.

e The correctness of some lower level software, e.g., software for cache and
memory management.

We believe that success in any of these directions would be a major contri-
bution to formal methods. One of the authors has applied the same approach
to prove properties of Alpha PALcode (Privileged Architecture Library)[26].

7 Related Work

There is a large body of literature on the topic of program proving. This section
is by no means an exhaustive survey of the whole scientific field. Rather, we
provide a brief account of related work, with an emphasis on mechanical program
proving.

Our work has built on the work of many others. Of historic interest is the
early work of Turing [28] and Goldstine and von Neumann [12]. The careful
proof of machine-code programs is coincident with the foundations of the von
Neumann machine, first presented in [12]. In those classic papers of von Neu-
mann and Goldstine, we find discussed the specification and correctness proofs
for fifteen programs at the machine-code level. Proving the correctness of pro-
grams written in the assembly language MIX is a main feature of Knuth’s mag-
num opus [18]. The informal, hand proof of object code produced by “industrial
strength” compilers is not unheard of today for especially critical programs.

Methods for program proving have been advanced most notably by Mc-
Carthy [21], Floyd [11], and Hoare [13]. In the last twenty years, many research
projects have investigated the formal, mechanical verification of programs writ-
ten in higher-level languages. Omne can mention as examples the initial work
of Floyd and King; London and Musser’s group at ISI; Luckham’s Pascal and
Ana groups at Stanford; Good’s Gypsy group at the University of Texas and
Computational Logic; Milner and Gordon’s LCF and HOL groups in Stanford,
Edinburgh, and Cambridge; Huet’s Coq group at INRIA; Craigen and Pase’s
Never group at ORA; Burstall and Plotkin’s group in Edinburgh; Constable’s
NuPrl group at Cornell; and several projects led by Levitt, Neumann, and
Rushby at SRI. Most of these projects are based on Floyd’s inductive asser-
tion method. For a survey of many of these projects, see [4]. Our work differs
from this previous work in that we address the correctness of programs at the
machine-code level executed on a widely used processor.
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In only a very few cases, however, does research on formal, mechanical soft-
ware correctness address the machine-code level for actually fabricated proces-
sors. To the best of our knowledge, Maurer [20, 19] was the first to consider the
verification, with an automated reasoning system, of machine-code programs for
a fabricated microprocessor. Subsequently, Clutterbuck and Carré[8] argued for
the importance of the verification of low-level code, and, in a separate paper [15],
reported their effort to analyze and verify the LUCOL assembly code modules
used in the fuel control unit of the Rolls-Royce RB211-524G jet engine designed
for Boeing 747-400. Like most work on software verification, this work is based
upon the use of a Floyd-style verification condition generator. The problem of
assembler correctness was not addressed in their work. Since the semantics of
assembly language is normally rather complicated,® many restrictions had to be
imposed on the assembly language, and complex annotations had to be inserted
into the programs being verified.

Our work, in contrast, is based on an explicit, formal, operational semantics,
i.e., a definition in the logic of the automated reasoning system being used. One
advantage of such a semantics is that it is not restricted to considering only
programs that can be analyzed into preestablished patterns of loops or variables
to help the verification condition generator produce conjectures to verify. Our
approach can be used to address the correctness of any machine-code program
that uses only instructions in the subset defined by our formal model. Our
proofs are completely based on this formal model. Simplicity greatly increases
our confidence in our formal models and formal proofs.

The first example we know of formal, mechanical verification of binary pro-
grams based on such an operational semantics for a von Neumann machine is
the work of Bevier [1], also reported in [2]. In proving the correctness of a
small operating system kernel, Bevier proves the correctness of several hundred
lines of machine code produced by his own assembler for a von Neumann style
machine of his own design.

In contrast to our approach to machine-code proof, compiler verification
attempts to establish the correctness of the compiler, so that we are ensured
that the compiler always generates correct binary code. Polak’s work [25] seems
the most ambitious compiler verification effort. Polak mechanically verified a
compiler for a fairly substantial subset of Pascal. Moore’s Piton and Young’s
Micro-Gypsy [2], two components of the CLI short stack, are major compiler
verification efforts targeted on a more realistic von Neumann architecture—the
verified and fabricated FM9001.

Even with such fairly encouraging results, it seems to us that the formal,
mechanical verification of ‘industrial strength’ compilers may be a considerable
distance off into the future because of the sheer complexity of those compilers.

Microcode verification is closely related to our work. Among the most sig-
nificant reported work is the C/30 microcode verification using the State Delta

81t is no simpler than high-level programming language semantics.
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Verification System(SDVS) [10]. A large majority of the C/30’s instructions
were proven to be correctly implemented by approximately 1000 MBB microin-
structions.

Microcode verification is often part of some larger hardware verification ef-
fort. Hunt [14] and Cohn [9] are two major hardware design verification projects
involving microcode verification. Some of our techniques developed here can be
applied to microcode verification.

8 Remarks

It has been asked “Why not dispense with the high-level language implementa-
tion and code directly in assembler?” Certainly, we can use, and have used, our
approach to verify programs coded directly in machine code. Some examples
are presented in [30]. However, since almost all programs are now written in
higher-level languages, we believe it is useful to demonstrate that it is feasi-
ble, at least in some instances, to address directly the correctness of the actual
“bits” generated by “industrial strength” compilers without first obtaining both
a formalization of the semantics of the higher-level language and a proof of the
correctness of a serious compiler for such a language. Given that the informal
specification of C is book length, and given that the sources for, say, the Gnu C
Compiler exceeds 20 megabytes, such compiler proofs can be rather expensive.

It might also be asked whether a compiler proof for a higher-level language
would make verification of “bits” easier. It is certainly the case that the ver-
ification of algorithms written in higher-level languages, using the Floyd [11]
approach, is somewhat easier than the method we have described because in
the Floyd approach one is relieved of attention to such details as instruction
counting, the identification of variables with specific machine locations, and, es-
pecially, the layout of code in memory. However, our experience is that it is not
greatly more expensive, in the verification of a specific algorithm, to address the
“bits” directly as opposed to treating the algorithm as coded in a higher-level
language. The hard work in either case is similar: writing the formal specifica-
tions, finding the key loop invariants, and checking that the invariants are indeed
preserved during execution. Furthermore, by addressing machine code directly,
one can obtain exact instruction-count and stack-utilization information, which
have relevance to real-time and real-space analysis, issues quite important for
critical software.

Certainly, the specific compiler used may affect the intellectual “distance”
between the expression of an algorithm in a higher-level language and the
machine-code representation. A very clever compiler could, in principle, make
verification with our approach very difficult. However, in the examples we have
studied, we have found that even when using the highest optimization settings,
the correspondence between the high-level expression and the machine code was
sufficiently obvious as not to be a source of difficulty.
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9 Conclusions

We believe that the work reported here is the first instance of the formal ver-
ification, by an automated reasoning system, of the binary code for software
produced by “industrial strength” higher-level compilers targeting a widely used
microprocessor whose semantics was formalized with an operational semantics
in the logic of the reasoning system used.

We are optimistic that this verification technique can be applied to many
programs on many different microprocessors and for many different higher-level
language compilers.

In our opinion, the major scientific obstacle to the formal verification of
small, single-process programs is obtaining formal specifications of what a given
program is supposed to do.

One important lesson we learned, or confirmed, is that formal specifications
should be developed together with their intended applications because the form
and details of a specification so influence the resulting proof obligations. Our
MC68020 specification has been greatly influenced by the need for reasoning
about machine-code programs.

Building our library of lemmas consumed most of our time in this endeavor—
many months of work. However, given the previous development of the lemma
library, it would take one of us about two to three hours to complete a proof
such as the GCD example presented in this paper, assuming that we start
with a complete understanding of the correctness of the underlying informal
algorithm. This time estimate has been repeatedly confirmed by experience
in verifying small examples similar in complexity to our GCD example. As a
general rule of thumb, it seems that a very highly skilled Nqgthm user, given
a clear understanding of a proof in elementary, discrete mathematics, can get
Ngthm to check the proof in a period of time no greater than ten times the
amount of time it takes to write up such a proof at the level of an advanced
undergraduate mathematics textbook.

The library is still under development as we increase our ability to handle
more and more programming language constructs and data types and other
microprocessors. So far, we have dealt with many language features in our
proofs:

e various data types: several sizes of signed and unsigned integers, boolean,
characters, strings, arrays, structures, and static variables.

e subroutine: macro, recursion, standard subroutine calling, and functional
parameters.

e various control structures: if-then-else, loop, goto, and case.
e pointer manipulation.

o higher-level language programs with embedded assembly code.
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In pursuit of the objective of ensuring that any change to our collection
of lemmas is indeed an improvement, we have fruitfully followed the proveall
discipline described in [6], i.e., the practice of making sure that after we make
changes, we can still prove the most important of our previous results.
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