The Rigor Resolution on
Undergraduate Education
proposed for consideration by the

Department of Computer Sciences
University of Texas at Austin

by
Robert S. Boyer, Professor

September, 1995

Preamble

Computer science is a mathematical rather than a physical science. Fol-
lowing Church’s thesis, we believe that the class of computations based on
any currently imagined digital technology is completely characterized by the
mathematical objects known as the partial recursive functions. That is, com-
puter scientists need not make observations and experiments to determine
the laws of the physical world relevant to their discipline; rather, computer
scientists already know the fundamental law of computing, namely that we
can compute exactly what can be computed by a universal Turing machine.

Ideally, an undergraduate computer science curriculum should take as its
principal goal that the students become skilled in reasoning rigorously about
computing. And just as mathematics majors are taught rigorous mathemat-
ical thinking entirely by the method of rigorously proving theorems about
specific objects such as groups and continuous functions, computer science
undergraduates should be taught rigorous mathematical thinking exclusively
by the method of rigorously proving theorems about specific computational
objects, such as specific partial recursive functions, i.e., algorithms.

Unfortunately, our computer science undergraduate curriculum has been
so driven by concerns unrelated to science that the scientific component has
been unreasonably neglected. Principal among these unscientific concerns is
the desire to provide students with skills which we or they think will most
suit them for jobs in the computing industry. This concern with employment
has resulted in a very bad effect upon the undergraduate computer science

curriculum: the students receive a vast but sloppy and unrigorous knowledge
of many programming language constructs, architectures, and systems. How
many of our undergraduate students, even at the conclusion of their edu-
cation, can assert with perfect accuracy and defend with perfect logic any
interesting scientific statements about these many constructs, architectures,
and systems to which they have been exposed? 1 conjecture that the answer
is: “Essentially none.” Even if such an education is producing students who
can easily find jobs, this policy of rapid, sloppy exposure to many aspects
of computing, all poorly learned, is spreading a thesis that pollutes not only
our students’ minds but also the entire future of computing—that there are
no real truths in computing, no science, only layers of partial, vague rules of
thumb among which trial and error is preeminent.

As an antidote to what I perceive as a great overemphasis upon unrigorous
teaching in computing, | propose, by the following four resolutions, a major
change of direction in our undergraduate curriculum.

The Rigor Resolution

RR-1. Resolved, that the Computer Sciences Department takes it as an
objective, over the next ten years, to revise completely the undergraduate
curriculum so that the following result is obtained, to wit, that every course in
computing shall be taught upon a strict, mathematical basis. In every case
that a computing system, language, architecture, algorithm, or technique
is discussed, it will be presented to (or developed by) the students in a
strictly rigorous fashion. Any program or system developed in such a class
shall be developed in such a way that “correct” has a strictly mathematical,
proven meaning. For example, the program or system may be proved to
satisfy precisely given functional or performance requirements. This rigor
requirement shall be extended to any prerequisite course that we require a
student to take outside of computer science.

RR-2. Resolved, that those faculty members most skilled and expe-
rienced in reasoning rigorously about programs, and who also have some
experience with undergraduate teaching, shall be mainly responsible for de-
signing and teaching the introductory courses. A skill is best learned from
the best. A skill badly learned is almost impossible to unlearn.

RR-3. Resolved, that in systematically reconsidering each and every
course in the undergraduate curriculum, we shall insist upon identifying and
publishing an answer to the question “What precise, incontrovertible scien-
tific propositions are stated and proved in this course?”

RR-4. Resolved, that the primary societal objective we shall pursue in
educating our undergraduate majors will be to prepare students for admission
to and success in first rate graduate computer science programs, with the
hope that these students will go on to advance the science of computing. (We
take it that an analogous objective is currently followed in the departments
of the two paradigm sciences, mathematics and physics.)

Some Discussion Points

1. Whatever do you mean by rigor? Rigor is admittedly a vague term
with differing meanings. We have, from the Frege-Whitehead-Russell-Godel
tradition, the idea of a formal mathematical proof. Even though very few
people today produce formal proofs, by rigorous I mean an argument for
which the advocate has a “well-informed belief” that it is possible to trans-
form the argument into a formal one, given time and incentive to do so. The
degree of rigor used in mathematics undergraduate education increases be-
tween freshman and senior level courses, and I think it would be sufficient if
our freshman courses were as rigorous as a good freshman calculus course,
the kind that spends some time on definitions and proofs, not merely on
unjustified symbolic manipulations. Our junior and senior courses should be
as rigorous as junior and senior math courses in algebra and analysis.

2. What do you do with facully who have no interest or ability in teaching
such rigorous courses? 1 believe that we have quite a good department,
and I doubt that anyone in our department is incapable of giving rigorous
courses. But as a strong advocate of academic freedom, | have no intention
of attempting to force anyone to teach certain subjects or to force them to
teach in a certain way. On the contrary, I am hoping by this resolution to
help develop our understanding of what computer science is. I suspect that
if by some miracle a majority of the members of our department were to
agree with this resolution, then a high percentage of the dissenting faculty
members would conscientiously, gladly, and voluntarily adapt their teaching
to suit.

3. [Insisting upon the universal use of formal methods would have the
unfortunate effect of abolishing intuition from the classroom. 1 want to make
it clear that although T am, by this resolution, insisting upon rigor, I am not
insisting upon formality. While we may hope for the day in which students
learn to derive programs as correctly as they learn to derive results by long
division, I am not yet personally convinced that such formal methods as we
have are what we ought to be teaching exclusively. It seems to me that
for a while, at least, we must continue to tolerate the idea of conducting
mathematical arguments with the informal rigor that has been used at least
since Fuclid.

4. You have completely ignored the importance of practical system build-
ing experience in the education of a computer scientist. The programming

laboratory in computer science is as crucial as the laboratory in chemistry. 1
believe that there is a major difference of opinion here, and I cannot hope in
a few words to dislodge the long held opinions of so many on this topic. But
let me instead ask: What scientific principles are established in our com-
puting laboratories? I have a very good idea of what sorts of principles are
established in a chemistry or physics lab, e.g., inverse square law or periodic
table. But even though I have been a professor of computer science here for
a decade, I have no idea what scientific principles are being taught in our
labs! Frankly, I suspect that what is being taught in our labs is a form of
the cardinal virtue of fortitude: we teach our students to remain astutely
alert and persistent while enduring the overwhelming and excruciating pain
of learning vast, intricate, ever-changing, but largely unintelligible pseudo-
formalisms called “systems.” Probably this form of fortitude is essential for
success in coding programs in modern day, “industrial strength” languages
to be run under contemporary operating systems! And perhaps this form of
fortitude is highly valued by industry. But I do not believe that instruction
in this form of fortitude should be an essential part of a science curriculum.

5. In compuling, we must be largely concerned with what can be physically
realized today, not with what exists only theoretically or mathematically. An
operating system or Al system whose only existence is on paper is of liltle
value. Many ideas in computing have been found practically worthless when
people tried to implement the ideas. The way to validate an idea in computing
is to show, via an tmplementation, that the idea really works. 1 have great
personal and technical empathy with some who hold this view of computing.
But I believe that such a view properly belongs in a college of engineering
rather than in a college of science. (Indeed, I would admit that a substantial
part of my own technical work is properly called engineering.) I am not
opposed in any way to doing or teaching good engineering. But in science,
one seeks to find and state the truths of things quite independently of the
possibility of realizing those truths in the competitive products of today. Our
department is called the Department of Computer Sciences, not Computer
Engineering. Our department is in the College of Natural Sciences, not
Engineering.

6. Is it not important for a student to be exposed to the applications of
compuling in addition to the principles of computing? For example, in chem-
istry, should not students be made aware of such important applications as
DNA? Computing seems destined to have almost as many applications as

does the rest of mathematics or as does physics. Maybe computing already
does. An undergraduate education contains perhaps 600 hours of classroom
instruction in the major, a modest amount of time. Do mathematics majors
have the time in an undergraduate program to study applications of math-
ematics if they are, in the course of a major, to become fully grounded in
algebra and analysis? No. Do physics majors have the time in an under-
graduate program to study applications of physics if they are, in the course
of a major, to become fully grounded in classical mechanics, electro-magneto
dynamics, quantum mechanics, and relativity? No. I suspect that for an
undergraduate to become fully grounded in rigorous reasoning about compu-
tations would inevitably consume every available moment of time in a major,
and [suspect that attention to applications could be feasibly fit into a good
program only as illustrations. For example, one might attempt to specify
and prove the correctness of a simple operating system kernel or a compiler.

7. The function of a laboratory in compuling is not to explore physical
laws, as might be done in a physics or chemistry laboratory, but to allow the
students to play with computations hands-on, to see real compulations, to
have experimental fun and thus grow in their understanding of what can be
computed. There is no doubt that playing with computers can be fun, even as
addicting a habit as gambling. But I do not know a mathematical principle
that is more readily learned by bright undergraduates through playing with
physical objects than by simple reading, speaking, and thinking. How much
mathematics is learned by looking at physical conic sections? It may be
that computers will revolutionize educational practice someday, but it has
not happened yet. Let us help our students learn to think rigorously by
the old fashioned, known-to-work methods that require no more physical
support than chaulkboards and other ancient writing implements. Let us
not divert our limited energies by attempting to show, for the first time,
that computers can also be useful tools in helping students learn to think
rigorously. Frankly, I suspect that the mental and physical chaos associated
with using any popular current computing system is rather inimical to the
delicate process of learning rigorous thinking—a process that seems to require
a great deal of physical and mental peace. When, as at present, our students’
first exposure to computing science is via the “user friendly” Macintosh, how
can they fail to speculate that in computing, the key scientific principles are
“who needs documentation, much less specification?” “do what is meant,
not what is precisely requested,” “what you see is all you get,” “that feature

is coming in the next version,” “that’s not a bug, it’s a feature,” and, most
damning of all, that it is fair to lie when documenting what a feature does
in order not to confuse the novice.

8. Surely you do nol mean to require that every assertion mentioned
be proved? What about conjectures? Clearly, there must be room for the
discussion of conjectures. For example, the conjecture P # NP is one of
the most influential propositions in the history of computing. On the other
hand, the enumeration of theorems without proof is a potentially dangerous
enterprise that should not be encouraged, even if it is sometimes tolerated
for theorems whose proofs are extremely deep.

9. Our current methods of formal logic seem insufficient for expressing
all human knowledge about the world, as seems evidenced by the grave dif-
ficulties encountered in 35 years of attempts to formalize “common sense”
knowledge in artificial intelligence research, not to mention 2300 years of
philosophical attempts to improve upon Aristotelean logic in nonmathemati-
cal domains. Thus a too rigid emphasis upon current mathematical logic will
preclude progress in that part of computer science which aims at building com-
puting systems that deal intelligently with the world. We have now enjoyed
approximately 60 years of stability in the formal foundations of mathematics,
i.e., first order logic and set theory. One can hope and pray for advances in
logic that will permit computations to employ “common sense” knowledge
when dealing with the world. But it seems that every formal logic so far
proposed for reasoning about the world (e.g., temporal or circumscriptional)
can be easily understood (i.e., modeled) within first order logic with set the-
ory. While enhanced or alternative logics may someday dislodge the current
foundations for mathematics, it seems prudent to wait for these logics to be-
come established in the research and then graduate education communities
before worrying about their places in the undergraduate program.

10. Fven tf it be granted that the scientific principles of computing are
mathematical and hence not suitable for empirical verification in laboratory
experiment, nevertheless it may be arqued that exploring concepts of comput-
ing with “hands on” experience permils some, if not all, individuals to gain
a deeper insight into the mathematical principles of computing. Thus some
practical work is desirable. 1t seems to me that there is, indeed, some truth
to this position, but I believe that American computer science education has
erred so profoundly in the direction of “experimentation” that the establish-
ment of a curriculum somewhere with no “fooling around” would be a good

antidote to this national disaster. The dangers of “experimentalism” are pro-
found and they have been documented widely. Foremost among the dangers
is the ignorant and arrogant satisfaction to be derived by saying “I’ve got
something here that works, and that means a lot more than all your paper
studies.” This attitude has considerably delayed progress in some fields, for
example, artificial intelligence; funding agencies have been bamboozled into
supporting projects that merely produce superficial demos rather than sci-
entific results. This attitude encourages certain psychological pathologies,
including the gambler-hacker syndrome. This attitude gives moral support
to those software vendors whose only documentation is essentially the in-
struction to “try all the menus until you find something that works.” This
attitude also has the effect of spreading the theory that computing systems
are inherently too difficult to document precisely, much less verify against
precise documentation. | would support the use of any computing system
for which precise, formal, and complete documentation was available, if ever
such a thing becomes available.

11. The Computer Sciences Department serves and must continue to
serve two constituencies, industry and science. It has been said “No man
can serve two masters: for either he will hate the one, and love the other;
or else he will hold to the one, and despise the other. Ye cannot serve God
and mammon.” Is serving both science and the immediate needs of indus-
try possible for our department’s undergraduate program? Can the same
program both (a) train programmers to be ready to maintain and enhance
contemporary industrial computing systems and (b) train students in the
rigorous scientific foundations necessary for graduate studies and research
that will advance the science of computing? In my view, certainly not. We
have here an important question: How do you view the current state of in-
dustrial computing? Is it in awful shape, hobbled by a staggeringly large
accretion of nonsensical, unintelligible, pseudo-logical constructs, and thus
in need of a radically new, thoroughly scientifically based approach? Or is
it in ‘pretty good shape’ something for which gradual, gentle, inevitable, lit-
tle contributions from science are all that are required? If you think that
industrial computing is in as bad a shape as I think it is, then you will prob-
ably agree with me that we cannot simultaneously educate students who will
become scientists as we educate students to serve the immediate needs of
industry. An undergraduate trained to reason carefully about programs is
likely to become confused, perhaps even nauseated, when confronted with

typical industrial computing literature. But if we cannot effectively serve
both constituencies, which one should we serve? In my opinion, the choice
must clearly be science. The University of Texas at Austin is and ought to be
the premier public scientific institution for about 1,000 miles in any direction,
a very large portion of the inhabitable surface of the earth. It is our duty
in undergraduate education to produce students who are ready for graduate
training as scientists. It is our duty because: if we do not do it, no one else
will, because no one else can. There are over 2,000 colleges and universities
in this country; we strive to be in the top 20 of these institutions. Surely,
the science departments of the top 1% of all the colleges and universities can
focus on the needs of science, letting the other 99% worry about the needs
of industry.

12. Computer sciences ts an experimental science. One can prove this
by noting that the NSF explicitly supports experimental research in comput-
ing. It seems to me that a silly person could argue that even mathematics
is an experimental science, abusing the word experimental. After all, math-
ematicians are always trying out new definitions, new theorems, and trying
out new proof strategies. Let’s call each of the latter abandoned intellectual
efforts an experiment! Does this this really mean that mathematics is exper-
imental? I believe not. The two fundamental questions about any science
are What truths does it offer and How do we know those truths? In the nat-
ural sciences, such as physics, experimentation is a fundamental part of the
“knowing” process; the motions of specific physical objects help to confirm
or refute proposed theses of physics. I challenge anyone please to tell me an
important thesis in the science of computing that was confirmed or refuted
by experiment. I simply cannot think of one.

13. Computer science is really simply a branch of engineering. So you
should not apply to it the standards of a science. 1 believe that computing is
destined to become one of the greatest of the sciences. Perhaps it already has.
But currently things are moving very fast and it is hard to tell how things
will work out. We see computer science departments in colleges of engineer-
ing and in colleges of business, in addition to within colleges of science. [
will not be surprised to see something like computer science subdepartments
emerge within departments of physics and biology. Who knows what all these
entities associated with computing will eventually be named. Computing is
destined to have at least as many applications as mathematics. But mathe-
maticians do not attempt the ridiculous task of trying to include all uses of

mathematics, even all serious uses of advanced mathematics, within a math-
ematics department. Just as we need mathematics departments, we need to
have science departments for computing, separate from all of the applications
and practical engineering departments that use computing, even in extremely
sophisticated ways. It is for such a science department of computing that
this essay has been written.

10

