
MARCH 1999 SIMULATION 1

TECHNICAL ARTICLE SIMULATION 72:3, 170-186
© 1999, Simulation Councils, Inc.
ISSN 0037-5497/99
Printed in the United States of America

1. Introduction
Parallel Discrete-Event Simulation (PDES) has been a
widely researched area in recent years. There are two
main objectives in using PDES. First, the use of paral-
lel processors promises an increase in execution speed.
Second, the potentially larger amount of available
memory on parallel processors will enable the execu-
tion of larger simulation models, as compared to the
uni-processor version. Simulation of large-scale models
such as a virtual factory [1] would thus become feasible.

The widespread interest in PDES in the research
community, however, did not bring about the wide-
spread deployment of PDES in real-world applications
[2]. Most research has been focused on inventing new
algorithms and getting performance measurements
on specific applications [3]. There are two main rea-
sons for this phenomenon. First, parallel processing
machines, though in much abundance, are still mainly
used by the research community. Most users would
only have access to uni-processor machines. Second,
the effort of porting over a sequential simulation appli-
cation to a parallel one requires a substantial amount
of programming effort and expertise.

The first obstacle is purely an economical one. It is
in some ways related to the second obstacle in the
sense that companies would need justification to pur-
chase parallel processing machines. The easiest way
to do this would be to implement a prototype of the
existing model in PDES. The purpose is to demonstrate

Survey of Languages and Runtime Libraries
for Parallel Discrete-Event Simulation

Yoke-Hean Low1, Chu-Cheow Lim1, Wentong Cai2,
Shell-Ying Huang2, Wen-Jing Hsu2, Sanjay Jain1, and Stephen J. Turner3

1 Gintic Institute of Manufacturing Technology, Singapore
2 School of Applied Science, Nanyang Technological University, Singapore

3 Department of Computer Science, University of Exeter, Exeter, United Kingdom

To develop a parallel discrete-event simulation
from scratch requires in-depth knowledge of the
mapping process from the physical model to the
simulation model, and also a substantial effort
in coping with the numerous issues concerning
the underlying synchronization protocols in use.
Languages and libraries could reduce the devel-
opment effort significantly by providing the user
with a pre-built parallel simulation kernel as
well as application development tools. This pa-
per contains a survey of the existing languages
and libraries for parallel discrete-event simula-
tion. It is divided into two major sections: one
on the languages, the other on the libraries. The
discussions are mainly focused on the following
aspects: user model, programming framework
and language features, library API, protocols,
and system support and environment. The re-
ported performances of some packages are also
summarized.

Keywords: Parallel discrete-event simula-
tion, languages, libraries, APOSTLE, Parsec,
ParaSol, SPaDES, WARPED, language sur-
vey, library survey

2 SIMULATION MARCH 1999

to the management the potential benefits that can be
obtained by using PDES. However, this is not a simple
task in general. The personnel implementing the pro-
totype would have to be well versed in PDES issues,
such as synchronization, partitioning and load balanc-
ing, to even begin building a simple abstract model.
Because of this, very few attempts have been made by
commercial companies to experiment with PDES, not
to mention deploying parallel machines in the compa-
nies.

To encourage the adoption of PDES, the migration
process from a sequential simulation to PDES would
have to be made as smooth as possible. The user
should be able to concentrate his/her effort on the
modeling process and not be distracted by the under-
lying PDES synchronization protocol issues. To achieve
this goal, researchers have come forward and delivered
languages and libraries for PDES implementation. An
early survey on PDES languages and libraries can be
found in [4].

Research on PDES languages and libraries has been
especially active in the past few years. This is evident
by the availability of new packages, such as APOSTLE
[5], Parsec [6], ParaSol [7], SPaDES [8] and WARPED
[9]. Therefore, there is a need to once again compare
and contrast these languages and libraries to see how
the simulation community, in general, could benefit
from using them.

This paper contains a survey of the existing PDES
languages and libraries which could potentially be of
use in certain applications. We limit our discussion to
general-purpose PDES languages and libraries. Appli-
cation-specific PDES languages such as TeD (Tele-
communications Description Language) [10] are not
included in this survey.

We divide the packages surveyed into two catego-
ries: languages and libraries. A simulation language
usually provides a full set of well-defined language
constructs for the user to design simulation models,
whereas a library only provides a group of routines to
be used with a base programming language (e.g., C or
C++). Our list could not possibly include all the exist-
ing PDES languages and libraries in the literature. To
the best of our knowledge, they represent the more
commonly used and widely researched ones. A fuller
version of this paper, with a summary of each pack-
age surveyed, can be found in [11].

A quick introduction on the synchronization proto-
cols used in PDES is discussed in Section 2. This would
enable the readers to grasp the various concepts per-
taining to synchronization protocols discussed in the
subsequent sections. Section 3 gives a quick description
of the desired features needed in a PDES language or
library. Section 4 provides a description and compari-
son of the existing PDES languages surveyed. Section 5
provides a description and comparison of the existing
PDES libraries surveyed. Section 6 summarizes the
observations made on these packages together with
future work recommended along this line.

2. Parallel Simulation Protocols
Many parallel simulation protocols have been pro-
posed in the last 15 years [12, 13]. In general, PDES
can be broadly classified into two categories: those
implemented using a conservative algorithm and
those using an optimistic algorithm. Within every
PDES environment, be it conservative or optimistic, is
the concept of a Logical Process (LP), although some
languages or libraries may present a higher level of
abstraction to the user (for example, an object-oriented
language will allow an application to be modeled using
simulation objects that may not correspond directly to
LPs). Each LP interacts with one another using time-
stamped event messages. To model the application to
be simulated, the user must find a mapping from the
physical processes to the logical processes. The sequence
of steps to go about doing the mapping is referred to
as the modeling process. To preserve the correctness
of the simulation in a PDES simulation system, each
LP must execute all incoming event messages in a non-
decreasing timestamp order. This is commonly known
as preserving the causality constraint.

PDES implemented using a conservative algorithm
[14] strictly enforces the causality constraint. Each LP
only processes an incoming event message if it is cer-
tain that no other event messages with a lower time-
stamp will be sent by other LPs in the system connected
to it. With this constraint, there is thus a possibility
that deadlock will occur. Various algorithms have
been proposed to solve the deadlock issue. The most
commonly used algorithm involves the use of null-
messages to ensure continual progression of simula-
tion time on all communication links between LPs.
The main drawback of this algorithm is the overhead
in sending a potentially large number of null-messages
relative to actual event messages.

To generate the null-messages, the system must be
able to predict lookahead information in the simulation
model. Consider two LPs, Pi and Pj, sharing a com-
munication link Lij. Lookahead for the link Lij refers
to the guaranteed time interval Tla for Pi not to gener-
ate new events to Pj using the link Lij. Suppose Pi is at
local simulation time Tlocal and no pending events are
to be executed. If the lookahead information Tla is
known, Pi would be sure that the next time it is going
to send an event to Pj would be at time Tlocal+Tla. It
would then send a null-message with timestamp
Tlocal+Tla to Pj. This would allow Pj to go ahead in the
simulation time if it is only waiting for events from Pi.

However, lookahead depends very much on the
user’s knowledge of the simulation model and the run-
time characteristics of the system. A good lookahead
in the system is almost certain to improve the perfor-
mance of a conservative simulation significantly.
Other algorithms such as carrier null-messages [15]
and conservative time windows [16] have been pro-
posed in recent years. An algorithm that exploits both
local and global information to advance local simula-
tion time has also been demonstrated in [17].

MARCH 1999 SIMULATION 3

An optimistic algorithm [18], on the other hand,
allows events to be executed without considering if
executing the events will result in any casuality viola-
tion. Each LP in this case will proceed to execute each
incoming event as it happens. If an event message ar-
rives and has a timestamp that is lower than the ones
that have been processed, the LP must correct this er-
ror by undoing the events that have been executed.
This is commonly known as rollback.

Anti-messages are usually used by a rollback mecha-
nism to force local or remote LPs to roll back to a pre-
vious consistent state. In general, PDES using an opti-
mistic algorithm tends to require more memory than
the conservative one, due to the state-saving require-
ment of the optimistic algorithm. By periodically cal-
culating the Global Virtual Time (GVT), the system
can reclaim memory from obsolete saved states on LPs
as well as committed event messages. This process is
usually referred to as fossil collection. Many variations
of the optimistic protocol have been proposed, which
can be found in [12].

Selecting a suitable synchronization protocol to use
is a common issue faced by a user whether he/she
chooses to use a PDES language or library. Very often,
a simulation model may exhibit good performance
running with one protocol, but can deliver a slowdown
in performance when switching to another protocol.

To date, there is no good solution that would allow
users to know in advance what synchronization pro-
tocol best suits their applications. Different factors such
as the available platforms, the communication charac-
teristics of the model, granularity of each event, parti-
tioning, and load balancing issues need to be consid-
ered. In some cases, these factors can be determined
by constructing an abstract model of the actual simu-
lation application and executing it using both types of
synchronization protocols. Using the abstract model,
the user can then generate code for different simula-
tion systems or even for performance evaluation tools
such as N-MAP [19]. An example of constructing an
abstract model for manufacturing applications and
using the abstract model for protocol selection can be
found in [20].

However, one should always bear in mind that in
general, an abstract model can be completely unrepre-
sentative of the actual model to be simulated. The de-
cision on selecting which protocol to use can often be
determined only after the actual model has been tested
on a specific synchronization protocol.

3. Desired Features for PDES Languages and
Libraries

To compare and contrast various PDES languages and
libraries, we will look at the following aspects of each
package in the following sections:
• User model (or modeling capability);
• Programming framework (e.g., structured or ob-

ject-oriented);

• Language features and library API (e.g., for sched-
uling and communication);

• Protocols (e.g., conservative or optimistic);
• System support and environment (e.g., mapping

and program development support).
In addition, the reported performance of some pack-
ages will also be summarized.

All PDES languages and libraries require the user
to model the physical environment in a certain fash-
ion. This is referred to as the world view presented to
the user. The user may be allowed to provide a pro-
cess interaction world view of the model, where each
process represents an arbitrary long sequence of ac-
tivities. Alternatively, the user may be required to
provide an event scheduling view of the model where
each state change of a simulation object corresponds
to the scheduling of an event. Depending on the needs
of the user, the selected language or library must pro-
vide a modeling framework that allows the easy map-
ping of the user’s model. The user should not be ex-
pected to spend too much effort in converting a model
from one view to another just to suit the requirements
of the system selected.

The programming framework offered by the PDES
system to the user would directly affect the develop-
ment time and maintenance effort required by the
user in developing a PDES application. In general, if
the system offers an object-oriented programming
framework to the user, the development time of the
application will be much reduced. However, the price
to pay for using an object-oriented approach comes in
terms of the runtime overhead. This often results in
slower executing speed as compared to those based
on structured languages such as C.

If a PDES language is selected, it is crucial for the
PDES language to provide a set of language constructs
for simulation model construction. For example, the
language may need to provide language constructs
for the user to express a sense of time. The user might
also need to have certain control over the order of
event processing and dispatching. If necessary, the
user should also be able to specify a scheduling con-
struct such as wait until to suspend an LP for an arbi-
trary amount of time or until a certain condition
becomes true.

In parallel discrete-event simulation, different sim-
ulation objects may be simulated concurrently on dif-
ferent processors and thus will be at different simula-
tion times at any given instance. To allow shared states
between simulation objects, it is therefore necessary to
have a mechanism to exchange information. The com-
munication between simulation objects can be either
explicit or implicit, and implemented by either mes-
sage-passing or sharing of memory. Approaches to
the implementation of shared state are discussed in [2].

The advantage of using a PDES library over a PDES
language is that the user is given more flexibility in

4 SIMULATION MARCH 1999

controlling the simulation application in terms of the
behavior of the underlying synchronization protocol.
PDES libraries often come packaged with various op-
tions on the runtime characteristics of the protocol
that the user can selectively turn on. A knowledgeable
user may thus be able to exploit further performance
from a PDES library by fine-tuning the options pro-
vided. But, users of PDES libraries should also note
that if the options are not set correctly with respect to
the model that is to be simulated, the performance of
the simulation may degrade significantly. In this case,
the user might want to use a PDES language so as not
to get involved in the underlying synchronization is-
sues.

In the case of an optimistic PDES library, the user
may have the option of choosing between the differ-
ent kinds of rollback controls, state-saving mecha-
nisms and GVT calculation mechanisms. In the case of
a conservative PDES library, the user may be able to
specify lookahead information and assign network
topology. However, most PDES languages are de-
signed to hide these synchronization protocol issues
from the user. These languages would often adopt a
default set of options for the underlying synchroniza-
tion protocol and would not allow the user the option
of changing them.

The mapping of LPs to processors is an important
issue relating to partitioning and load-balancing. A
PDES system should ideally be able to automatically
assign LPs to physical processors based on some par-
titioning and load-balancing heuristics. Sometimes,
the user is in a much better position to know the run-
time characteristics of the processes and would want
to manually perform partitioning and load-balancing.
A PDES system should also allow the user this flex-
ibility.

Statistical information collected from the simula-
tion runs can be classified into two categories: statis-
tics counters (such as maximum queue length and
throughput) that provide the user with feedback re-
garding the simulated model itself; and execution in-
formation (such as simulation execution time, the
number of null-messages generated, memory usage
and number of rollback events) that allows the user to
assess the performance of the PDES runtime engine.

Although the user could manually track the desired
aspect of the simulation model and simulation execu-
tion, the PDES languages and libraries should ideally
provide the user with options to collect runtime statis-

tics automatically. The user should be allowed to turn
on the execution information collection when debug-
ging the simulation model and doing performance
analysis, and turn them off during the actual simula-
tion run. In general, the statistical information will
help the user to further understand the runtime char-
acteristics of the model. In the case of PDES libraries,
the execution information might help the user to assess
the efficiency of the synchronization protocol and to
decide which synchronization options to turn on/off.

In addition, all PDES systems should ideally be
equipped with visualization and debugging capabili-
ties to facilitate the process of developing an applica-
tion. Visualization tools allow the user to create the
simulation model graphically. They can also allow the
user to view the simulation as it progresses. Debug-
ging facilities often come in the form of a source-level
debugger or a program execution trace file. A source-
level debugger is required for runtime debugging. A
program execution trace file allows the user to do
post-mortem debugging and performance tuning.

4. Languages for Parallel Discrete-Event
Simulation

This section gives a brief description and comparison
on the list of existing languages for PDES implemen-
tation (see Table 1). An early effort by Jade Simula-
tions in developing the PDES language Sim++ was
reported in [21, 22]. As Sim++ is quite old and no con-
tinuing research efforts are carried out on it, the lan-
guage will not be discussed in this paper.

The motivation for the creation of these PDES lan-
guages rather than library routines is that users of
these languages would not need to be concerned with
the underlying PDES protocols, as they will be taken
care of by the language runtime system. In the case of
a PDES library, the user must explicitly make reference
to the library routines provided and very often needs
to be aware of certain runtime issues relating to PDES.
The main requirement of a good PDES language would
thus be the extent of transparency of the programming
model provided to the user.

APOSTLE (A Parallel Object-oriented SimulaTion
LanguagE) [5] is an object-oriented PDES language
based on an optimistic protocol. It is a project under
the DERA (Defence Evaluation and Research Agency).

Maisie [23] is a C-based PDES language developed
to support a number of different simulation protocols,

Language Organization Protocol

APOSTLE DERA Malvern Optimistic
Maisie/Moose/Parsec UCLA Conservative/Optimistic
ModSim CACI/Jade Simulations Optimistic
YADDES University of Waterloo Conservative/Optimistic

Table 1. Existing PDES languages discussed in this paper

MARCH 1999 SIMULATION 5

including both optimistic and conservative. Moose
(Maisie-Based Object-Oriented Simulation Environ-
ment) [24], is the object-oriented version of Maisie
that uses inheritance to support iterative design of ef-
ficient simulation models. Parsec [6] is derived from
Maisie, with several enhancements incorporated and
language constructs rewritten. The three packages
were developed at UCLA and have been used widely
for general-purpose PDES simulation.

ModSim [25] is an object-oriented simulation lan-
guage based on Modula-2. It was originally developed
by CACI Products, Inc., from 1987 to 1989, under con-
tract with the Army Model Improvement Program
(AMIP) Management Office using the Jet Propulsion
Laboratory’s TWOS [26]. The development was taken
over by Jade Simulations from 1990. A version of
ModSim based on Jade’s Time-Warp was released in
1991. A sequential version of ModSim, MODSIM II [27],
was later developed and released by CACI Products.

YADDES [28] was developed at the University of
Waterloo, Canada. It is a simulation-specification lan-
guage, which also provides support for a variety of
synchronization protocols.

4.1 User Model
All the PDES languages surveyed provide a process
interaction world view to the user. In Parsec, for ex-
ample, each process is represented by an entity. Each
entity will execute its own tasks, and if necessary, com-
municate with one another by sending and receiving
messages. In the following code example from Parsec,
the entity worker first performs some tasks, then receives
a storeRequest message from another entity, stores the
message, and resumes working on another task.

entity worker {
... ...;
doTask();
receive (storeRequest msg) {

storeMessage(msg);
}
doMoreTask();

}

Most PDES languages supporting the process inter-
action world view could also be programmed in an
event scheduling way. In the event scheduling ap-
proach, each task in a process will be activated on the
arrival of some triggering event. The process interac-
tion world view is more suitable for direct mapping
of a real-world process which consists of an arbitrarily
long sequence of activities. Event scheduling is conve-
nient for the direct mapping of a real-world resource-
oriented scenario where objects are exchanged
between resources.

In fact, one view could be converted to another by
performing additional analysis on the existing model
[29]. For example, to convert the above code segment
into an event scheduling world view, it is sufficient to

note that no other task or event comes before the func-
tion doTask() and thus doTask() is the first task in the
worker process. We could assign doTask() to correspond
to a processInit message. In addition, since doMoreTask()
is the last task in the process and no task or event
comes between it and the storeMessage() task, we could
group the two tasks together and activate them on re-
ceiving a storeRequest message. We further assume
that the stopWorker() function will terminate a worker
entity on receiving a processStop message. Using Par-
sec, the process modeled using the event scheduling
world view is as follows.

entity worker {
... ...;
for (;;) {

receive (processInit int_msg)
doTask();

or receive (storeRequest req_msg) {
storeMessage(req_msg);
doMoreTask();

}
or receive (processStop stop_msg)

stopWorker();
}

}

However, this conversion cannot be easily done in
the general case. For example, it would be very diffi-
cult to directly translate the Parsec code given above
to the event scheduling view if the receive(storeRequest
msg) statement is in a nested construct (e.g., a loop).

4.2 Programming Framework
The approach taken by the PDES languages towards
programming a simulation application can directly
affect the learning curve for using the language. A
PDES language can provide the user with a traditional
structured programming approach, or it can provide
the user with an object-oriented programming ap-
proach. It can hide the underlying process to processor
mapping, or make users responsible for the mapping
themselves. The language can also choose to allow or
disallow the user to exercise control on the event
scheduling. Depending on the needs of the user, some
languages may be deemed to be more restrictive than
others.

It is generally agreed that object-orientation reduces
development time and provides better code manage-
ment and reusability. However, the price to pay for
all the advantages comes in the form of runtime over-
head.

APOSTLE, ModSim and Moose provide the users
with an objected-oriented environment to develop
their applications. For example, in APOSTLE each
process is defined as an object and the behavior of a
process is indicated by its associated methods.
ModSim and Moose support class-based inheritance,
whereas APOSTLE has a delegation-based inheritance

6 SIMULATION MARCH 1999

that supports both part-of and inherits-from object rela-
tions [30].

In Maisie/Parsec, though the language used is C-
like, each process is modeled as a variable of type
entity which has a definition similar to that of a C
function. To create an instance of the entity, the key-
word new is used. All entities in Parsec can be cast to
type ename. The following code segment from Parsec
illustrates how entities are created:

entity worker() {
... ...

}

entity manager() {
... ...

}

entity factory() {
ename wl, ml;
wl=new worker();
ml=new manager();
... ...

}

where the entity factory defines two enames and as-
signs one to be of type worker and the other of type
manager.

YADDES requires the user to provide a specifica-
tion of the desired simulation in the form of a specifi-
cation source file. This will in turn be translated into a
collection of C language routines and linked to a run-
time synchronization library to produce the execut-
able code.

When two applications, one written using a tradi-
tional structured programming approach and the
other using an object-oriented approach, are having
comparable performance, the advantage of using an
object-oriented approach can sometimes outweigh the
overhead incurred by it. This is illustrated in the case
of APOSTLE, where it is reported in [31] that the per-
formance of a Petri Net simulation with places and
transitions defined as objects is very close to the one
in which places and transitions are defined as arrays.

4.3 Language Features
APOSTLE supports interrogative scheduling [32]. This
is useful if the user wants to model the passage of
time for simulation entities, or a simulation entity
waiting for an event to happen. The wait until con-
struct in APOSTLE allows waiting for simulation time
to elapse as well as a Boolean condition to become true.

The same behaviour can be achieved in Parsec us-
ing the wait construct together with a guarded mes-
sage. The wait construct in Parsec allows the user to
explicitly specify that a process is to be suspended for
a certain amount of simulation time. A guarded mes-
sage in Parsec allows the user to specify a side effect
free Boolean expression to be true for the process to

wake up. For example, the entity executing the follow-
ing statement would suspend itself until the message
queue contains a message of type storeRequest whose
message attribute unit is greater than 5.

receive (storeRequest msg) when (msg.units>5)

This message will then be removed from the queue
and the entity can resume execution. The entity
would potentially be waiting forever if the required
message never arrives. Thus, a language construct:

timeout after (t)

is also provided in Parsec to allow the entity to resume
execution after a simulation time period (i.e., t in the
above example) has elapsed.

As has been illustrated above, communications in
Maisie/Moose/Parsec are explicit. Entities communi-
cate with each other via buffered message-passing.
For instance, Parsec uses typed messages. Asynchro-
nous send and receive primitives are provided to re-
spectively deposit and remove messages from the
message buffer of an entity.

Communications in APOSTLE and ModSim are im-
plicit via method invocation. In APOSTLE, method
invocation is always synchronous. However, any ex-
pression containing one or more statement or method
invocation may be executed asynchronously using the
async construct. The result of the expression can be
collected later based on the handle returned. In the
following example, the first expression is executed
concurrently with the second one.

async(job())
async(wait for time_t; job())

ModSim supports both synchronous and asynchronous
method invocations. In ModSim, a method can be in-
voked synchronously using the ask method, which may
return values; the tell method is used for asynchro-
nous method invocation, which does not return values.

In APOSTLE, concurrency control is supported by
predicate path expression and ordering rules. There is
no concurrency control construct in either ModSim,
Maisie/Moose/Parsec, or YADDES.

YADDES is a specification language in the style of
Yacc and Lex, which provides a minimal set of lan-
guage constructs. The basic components of a YADDES
program are model specifications, process specifica-
tions, and connection specifications. Model specifica-
tions are used to describe general state machines.
Process specifications are used to create logical pro-
cesses by instantiating models. Connection specifica-
tions are used to describe the connections between the
inputs and the outputs of the logical processes.

4.4 Protocols
APOSTLE and ModSim support only optimistic simu-
lation based on the time-warp protocol, whereas

MARCH 1999 SIMULATION 7

Maisie/Moose/Parsec and YADDES provide support
for a variety of synchronization protocols. APOSTLE
and ModSim are more transparent to the user on the
underlying protocol implementation. In Maisie/Moose/
Parsec and YADDES, for the conservative protocol in
particular, the user is often required to provide addi-
tional information about the application for the un-
derlying runtime system.

All the PDES languages surveyed allow the user
the option of running the simulation sequentially. It is
often easier to first develop the simulation model on
the sequential runtime system. After the simulation
model is tested, the user can then turn on the parallel
runtime system and execute the simulation.

Maisie/Moose/Parsec supports both conservative
and optimistic simulations. In conservative simulation,
for instance, Maisie provides a function zzcla() to al-
low each entity to specify a lookahead value. In the case
of optimistic simulation, Maisie also allows the user to
set a number of parameters to control the frequency of
state-saving, the interval for processing GVT, the win-
dow within which an entity can process events aggres-
sively, and the interval to collect the state memory.
Different runtime libraries can be linked into the pro-
gram using command line parameters during compi-
lation time.

YADDES provides four runtime libraries to sup-
port four different execution mechanisms:
• Sequential discrete-event simulation using a single

event list;
• Distributed discrete-event simulation based on

multiple synchronized event lists;
• Conservative distributed discrete-event simulation

using null-messages; and
• Optimistic distributed discrete-event simulation

using time-warp.
However, the runtime library implementing the con-
servative distributed discrete-event simulation
mechanism leaves the prevention of deadlock (that is,
the generation of null-messages) to the user.

4.5 System Support and Environment
The mapping of logical processes to processors is an
important issue relating to partitioning and load bal-
ancing. More often than not, the PDES languages
leave the task to the programmers. This is found to be
the case for the list of PDES languages surveyed. Us-
ers are required to assign the logical processes or ob-
jects manually to the underlying physical processors.
The exception to this is ModSim, which can perform
automatic mapping of one ModSim object to the un-
derlying TWOS kernel process. However, an object-
oriented design, such as that supported by ModSim,
typically results in relatively fine-grained object defi-
nitions. For a big application, tens of thousands of ob-
jects may be created. In CACI’s implementation, mul-
tiple ModSim objects cannot be explicitly mapped

onto a single TWOS process [33]. To manage a large
number of TWOS processes will inevitably generate
considerable overhead due to the time-warp mecha-
nisms.

Statistics collection in a PDES language can be done
automatically by the runtime system, or manually
tracked by the user. Both YADDES and Maisie/Moose/
Parsec provide automatic runtime statistics collection
on items such as execution time, number of events re-
ceived per process, and (if a conservative protocol is
used) the number of null-messages generated. APOS-
TLE and ModSim do not provide any known built-in
statistics collection facilities.

Of the four PDES languages surveyed, only Maisie/
Moose/Parsec has a visual programming environ-
ment called MVPE (Maisie Visual Programming Envi-
ronment) [41]. A Maisie/Moose/Parsec program can
be verified using standard output facilities provided
by the C/C++ language. Debugging of a Maisie/
Moose/Parsec program can be done using traditional
source-level debuggers with the sequential kernel
turned on via compile time switches. In the case of
APOSTLE, debugging can only be done through a
simple form of unformatted stream output that prints
out debug messages during runtime. No known de-
bugging facilities are reported by YADDES and
ModSim. However, runtime messages for a YADDES
program can be printed out by specifying a command
line parameter when executing the program.

4.6 Summary
Table 2 shows a summary of the various features of
the PDES languages outlined above. Note that the sta-
tistics feature denotes whether the PDES language has
built-in functions for statistical purposes.

Table 3 shows some selected performance figures
reported in the publications related to the PDES lan-
guages surveyed. The performance of YADDES is un-
known.

As can be seen from Table 3, all packages reported
positive speedup. The performance figure of APOS-
TLE, as indicated in [5], is a speedup of 2 on 16 pro-
cessors on a 22-nodes Meiko CS-2. It is reported that
the APOSTLE granularity control mechanism reduces
the simulation runtimes by as much as 80%. For Mod-
Sim, in general, the performance is poor for fine-grain
event processing. For example, it is reported that only
a speedup of 2 was achieved on 48 processors when
event processing time is two milliseconds [37]. Maisie/
Parsec is used in many applications, including queue-
ing networks, VLSI design, mobile wireless communi-
cation and ATM networks simulation [35, 36, 38, 39,].

5. Libraries for Parallel Discrete-Event
Simulation

The following section consists of a list of existing li-
braries for PDES implementation. The list is by no
means an exhaustive one. There are several other PDES

8 SIMULATION MARCH 1999

libraries found in the literature but they are either
quite outdated, or no continuing research activities
are carried out on them. Examples of these libraries
are OLPS (Object Library for Parallel Simulation) by
Abrams [40] and TWOODS (Time Warp Object-Ori-
ented Distributed Simulation) by Jon Agre and Pete
Tinker [41]. The PDES libraries surveyed in this paper
are listed in Table 4, below.

Except for CPSim, which is a commercial conserva-
tive PDES library package offered by Boyan Tech, Inc.,
the rest of the library packages surveyed in this paper
are all research-oriented and based on optimistic pro-
tocols. In general, compared with optimistic protocols,
conservative protocols can be implemented with less
effort, and the optimization of the protocol is more
application-specific. For instance, lookahead informa-
tion, which is crucial for a conservative protocol to be
effective, is usually application-dependent. Therefore,
to implement a conservative protocol, the most effec-
tive approach is for the programmer to use a general-

purpose parallel runtime system, and implement opti-
mizations specific to the simulation application.

Due to the inherent complex and intractable nature
of the time-warp mechanisms (e.g. state saving, rollback
and fossil collection mechanisms), optimistic protocols
are far more difficult to implement than conservative
ones. Thus, contrary to conservative protocols, in or-
der to reduce the effort in developing a simulation
application using optimistic protocols, the most effec-
tive way is for the programmer to use a parallel simu-
lation language or library that hides the implementa-
tion details of the time-warp mechanisms. This may
explain why most of the libraries are developed for
optimistic protocols.

CPSim [42] is a C-based commercial PDES library
with a conservative simulation engine. CPSim was
initially developed as a parallel simulation tool by Dr.
Bojan Groselj. This was later commercialized and dis-
tributed by Boyan Tech, Inc., in March 1995.

Table 2. Comparison chart for different PDES languages

Table 3. Selected performance measurement for different PDES languages

Table 4. PDES libraries surveyed in this article

Features APOSTLE Maisie/Parsec Moose ModSim YADDES

Protocol Optimistic Various Various Optimistic Various
World View Process/ Event Process/ Event Process/ Event Process/ Event Process
Programming OO Structured OO OO Specification
Mapping Manual Manual Manual Automatic Manual
Visualization None MVPE MVPE None None
Debugging None Source Level Source Level None None
Statistics None Present Present None Present

Package Application Platform Speedup

APOSTLE Super-ping [5] 22-nodes Meiko CS-2 9 on 16 processors
Maisie Gate-level circuit simulation [35] 8-nodes SP-1 4
Parsec Wireless network simulation [36] 32-nodes SP-2 7.5 on 16 processors
ModSim Ground combat simulation [37] 48-nodes Computing Surface 6-10 on 32 processors

Library Organization Protocol

CPSim Boyan Tech, Inc. Conservative
GTW Georgia Tech Optimistic
ParaSol Purdue University Optimistic
PSK Royal Institute of Technology Optimistic
SimKit University of Calgary Optimistic
SPaDES National University of Singapore Optimistic
SPEEDES Jet Propulsion Laboratory Optimistic
TWOS Jet Propulsion Laboratory Optimistic
WARPED University of Cincinnati Optimistic

MARCH 1999 SIMULATION 9

GTW [43] and TWOS [26] are PDES libraries imple-
mented using C. GTW started out as a research project
at Georgia Institute of Technology, Atlanta, Georgia.
Early versions of GTW for shared-memory machines
were used as the basis for other time-warp systems,
including University of Calgary’s Warpkit system [44]
and SAIC’s Tempo system [45]. TWOS was developed
originally at the Jet Propulsion Laboratory (JPL), funded
by the U.S. Army Improvement Program (AMIP) Man-
agement Office (AMMO). It was no longer supported
after the project was terminated.

ParaSol [7], PSK [46], SimKit [47], SPaDES [8],
SPEEDES [48] and WARPED [9] are object-oriented
PDES libraries implemented using C++. ParaSol was
developed at Purdue University. PSK stands for Paral-
lel Simulation Kernel and was developed at the Royal
Institute of Technology, Sweden, in 1994. It has since
been used to study applications specific to mobile
telecommunication. SPaDES stands for Structured Par-
allel Discrete-Event Simulation and was developed at
the National University of Singapore. SPEEDES was
developed at JPL, California Institute of Technology,
during 1990-1991. The project was sponsored by the
U.S. Air Force Electronics-Systems Division, Hanscom
Air Force Base, Maryland. WARPED was developed
at the University of Cincinnati.

Some of these packages are created to support fur-
ther research interest in the development of synchro-
nization protocols. For example, PSK has been used
extensively over the years to evaluate the effect of us-
ing different state-saving strategies on the time-warp
system. ParaSol is used as a testbed for the study of
the advantage of using thread-based active-transac-
tions in optimistic parallel simulations.

5.1 User Model
Library packages such as CPSim, GTW, PSK, SPEEDES,
TWOS and SimKit present the user with an event
scheduling world view. For example, to model the
worker process given in Section 4.1, the following code
in CPSim specifies the corresponding event handling
routine, appl(), for the worker (i.e., node or LP in CPSim
terms). The CPSim runtime system will call the appl()
function to activate the event handling routine on a
particular node. Note that in CPSim a single event
handling routine is defined for all the nodes.

appl(int senderLP, int receiverLP, int indexRec,
struct e_node *event, struct lst_node *p_lst)

{
... ...
switch (event->type) {

case processInit:
doTask();
break;

case storeRequest:
storeMessage();
doMoreTask();

break;
default:
printf(“appl->Unknown type: %d\n”, event->type);
break;

}
... ...

}

In the above code, different functions will be ex-
ecuted depending on the type of events received. In
executing a function, new events may be generated
for other nodes.

In these packages, new events generated need to be
passed explicitly to the simulation kernel for schedul-
ing. This can be done by calling some pre-defined li-
brary routines. For example, in CPSim, the function
esend() is used, and in TWOS, the function schedule() is
provided.

Both Parasol and SPaDES support the process inter-
action world view in simulation modeling. For example,
ParaSol provides the user with the process interaction
world view based on active thread transactions [7]. Pas-
sive simulation entities (e.g., servers in a queueing
network) are modeled as objects (or LPs); and active
simulation entities (e.g., jobs in queueing network) are
modeled as active transactions, each of which is imple-
mented using a thread. An active transaction describes
a sequence of activities that an active simulation entity
(e.g., a job) needs to accomplish. In ParaSol, objects
are mapped to different processors. Thus, to use an
object, threads are transparently migrated to the pro-
cessor where the object is currently resident. For ex-
ample, the following code describes a job in a queueing
network that first uses server A then server B:

ATHREAD jobThread(... ...) {
Server[serverA]- >reserve();
Server[serverA]- >hold(expon(5));
Server[serverA]- >release();
Server[serverB]->reserve();
Server[serverB]- >hold (expon(4));
Server[serverB]->release();
... ...

}

If server A and server B are mapped to different pro-
cessors, the thread will be migrated to where server B
is after releasing server A.

5.2 Programming Framework and Library API
Although CPSim, GTW and TWOS are C-based librar-
ies, they provide users with function templates for sim-
ulation program construction. For example, in GTW,
the user needs to specify three procedures for each LP:
initialization, event-handling and clean-up. In CPSim, the
user needs to: initialize the simulation environment
(e.g., simulation end time) using function init_app();
define the nodes (i.e., LPs), the connection between the
nodes and the mapping of nodes to processors using

10 SIMULATION MARCH 1999

the function init(); and specify event handling proce-
dures for all the nodes in appl().

ParaSol, PSK, SimKit, SPaDES, SPEEDES and
WARPED provide an object-oriented framework for
simulation program construction. In SimKit, for ex-
ample, the programming interface consists of three
classes:
• sk_lp, from which LPs are derived;
• sk_event, from which messages (or events) are de-

rived; and
• sk_simulation, that provides the initialization inter-

face to the kernel.
In SPaDES, the user is presented with two pre-

defined classes: processes and resources, which model
job entities and servers respectively. A process has
four predefined methods:
• activate(), to create and schedule a new process;
• work(), to make a request for a resource;
• wait(), to suspend a process for a specified time in-

terval; and
• terminate(), to destroy a process that has com-

pleted.
In addition, SPaDES also provides an executive class

that allows the user to initialize and control the simu-
lation run. Its predefined methods include:
• initServer(), to create a new LP for each server in

the model; and
• initProcess(), to initialize a process object.

Using an object-oriented PDES library, the user
usually creates a simulation application by deriving
objects from some pre-defined kernel classes. In gen-
eral, to provide support for object-oriented model
construction, the simulation kernel itself also needs to
be implemented using an object-oriented language.
Although object-oriented design methodology has
been recognized as a very useful approach to simula-
tion model construction, the price paid for an object-
oriented design can be high. As reported in [49], a
significant amount of time was spent on tuning and
modifying the design of the PSK kernel in order to
obtain acceptable performance.

5.3 Protocols
In addition to the parallel protocols supported, CPSim,
GTW, WARPED, TWOS and SimKit also provide the
user with a sequential kernel. In the case of WARPED,
the use of a sequential kernel is not transparent in the
sense that the user needs to change some of the simu-
lation codes before the sequential kernel can be used.
In CPSim and SimKit, on the other hand, an applica-
tion model can be executed on both the sequential
and parallel engines without any code change. SimKit
has a highly optimized sequential kernel that uses the
splay tree implementation for the future event list.
TWOS provides a sequential simulator named TWSIM
which also provides the same interface as TWOS.

PDES libraries using a conservative protocol are
much easier to implement as compared to the optimistic
ones. Conservative protocols often do not provide dif-
ferent runtime options for the user to choose from.
What the user needs to do at most is to specify the to-
pology and some lookahead information associated
with the application. On the other hand, various
runtime options can often be found in the optimistic
protocols. The user may often need to turn on/off
some of these options to gain additional performance
improvement.

5.3.1 Conservative Protocol
CPSim is the only conservative library package avail-
able in the list of library packages surveyed. It provides
a set of C library functions for the user to build the
simulation applications. The user is required to initial-
ize certain system variables through CPSim function
calls. In some cases, the user also needs to provide the
implementation of some predefined functions needed
by the CPSim runtime system.

As CPSim uses the conservative protocol, it also
requires the use of null-messages to ensure a deadlock
will not occur during the simulation. The user needs
to supply lookahead information in the simulation
model to avoid the deadlock and to improve the per-
formance of the simulation. Lookahead information in
CPSim is specified for each pair of links between two
LPs. It can be defined during the initialization of the
simulation using the function connect() and subse-
quently updated during the execution of the simula-
tion using the function appoint().

... ...;
lp1 = new_lp_h(“worker”, 0, 1);
lp2 = new_lp_h(“manager”, 0, 1);
connect(lp1, lp2, 5, 0);
... ... ;

For example, the above code segment in function
init() tells the simulation kernel to create a new worker
and a manager node, both with one server and identi-
fier 0; and that the lower bound on service time for an
event that is processed at worker node and sent to
manager node is 5.

5.3.2 Optimistic Protocol
The rest of the library packages are implemented using
the optimistic protocol. SPEEDES provides the time-
warp protocol as an option and implements a default
Breathing Time Buckets (BTB) protocol. Although BTB
is an optimistic protocol, all the rollbacks occur locally
on each LP. This is different from the time-warp pro-
tocol which allow rollbacks to propagate to other LPs.
Other packages provide the user with a default stan-
dard implementation of the time-warp protocol and
allow the user to turn on certain options to use other
variants of the time-warp mechanisms. The options
often revolve around choices, such as, which state-

MARCH 1999 SIMULATION 11

saving mechanism is used, how often GVT computa-
tion is performed, how memory is managed, and how
rollback is controlled.

State-saving is an important issue in a PDES appli-
cation running the time-warp protocol. It directly af-
fects the efficiency of the simulation performance and
also the amount of memory required to run the simu-
lation. The size of the state to save and the frequency
of state-saving affects the performance of the system
significantly. Different state-saving strategies have
been proposed and some have been incorporated into
these packages.

The default state-saving implemented on most of
these packages is the Full State-Saving (FSS) policy,
where the system would save the complete state of an
LP after each time increment. This is as opposed to the
Sparse State-Saving (SSS) policy, where the system only
saves the full state of the LP after every fixed time in-
terval. SPEEDES only supports Incremental State-Saving
(ISS), where the changes of the state variables from
the previous saved state are saved. ISS is useful if the
state of an LP is large and not changed often. Adaptive
State-Saving (ASS) is a variant of SSS in that the time
interval between each state saving is determined dur-
ing runtime based on some heuristics and not fixed by
the user input.

Packages such as SimKit and GTW allow the user
to perform ISS. However, the user is required to explic-
itly insert incremental state-saving code using the li-
brary routines provided whenever the state is changed.
In the case of PSK, ISS is done transparently using
C++ operator overloading. The user needs only to de-
fine the state of the LP using a system-supplied tem-
plate State class. Operators within the State class have
been overloaded and automatic ISS will be performed
whenever the user does any modification to the state
variables of an LP. The PSK kernel also provides ASS
through runtime statistics analysis.

The message cancellation policy, otherwise known
as rollback control, determines how anti-messages are
generated. The default rollback control is known as
aggressive cancellation policy, whereby anti-messages are
immediately sent to other LPs on receiving a straggler
message.

Another form of message cancellation policy is
known as lazy cancellation. In lazy cancellation, an LP
receiving a straggler message does not send out anti-
messages immediately, but does a local rollback and
re-simulates up to the simulation time when the roll-
back occurred. If all output messages generated dur-
ing the re-simulation are the same as those generated
before the rollback, then no anti-messages need to be
sent at all. This policy prevents the potential cancella-
tion of correct messages sent to other LPs. However,
additional memory would be required to perform
bookkeeping on the anti-messages maintained in the
rollback queue. The cancellation of actual wrong out-
put messages may be delayed, resulting in further
propagation of the rollback chain.

Aggressive message cancellation is employed by
the time-warp protocol in SPEEDES and is the default
policy in GTW, whereas TWOS provides a default
lazy message cancellation policy. WARPED allows
the user to specify lazy/aggressive/adaptive message
cancellation. In the case of GTW and PSK, automatic
direct cancellation is activated if a shared memory
machine is used. This is a form of optimization avail-
able only on shared memory platforms where all LPs
keep track of any output messages they sent using
pointers. If cancellation of these messages is required,
these pointers can be used to remove or free the mes-
sages efficiently. The BTB protocol in SPEEDES only
involves local rollback, so message cancellation is
never required.

Global Virtual Time (GVT) update is used in a time-
warp system to restrict the extent of rollback and also to
reclaim unused memory space from committed events.
Most of the packages surveyed do not make the GVT
update requirement transparent to the user. For example,
in GTW, a GVT Period parameter in the configuration
file must be set to tell the runtime system how often to
do GVT update. A PE_Event_Memory parameter
must be set to allocate the size of memory per pro-
cessing element for events. In the case of WARPED,
each LP will manually call the calculateLGVT() method
of the GVTManager class at the end of each simulation
cycle to compute an estimation of local GVT (LGVT)
based on the simulation time of all the simulation ob-
jects local to the LP. Each LP then sends the LGVT
computed to a central GVTManager. The GVTManager
will compute the GVT of the system based on the
pGVT algorithm [50] and broadcast the new GVT to
all the LPs.

5.4 System Support and Environment
Users of these PDES libraries would need to have as
much control of the system as possible. In the last sec-
tion, we have discussed the extent of control the user
can exercise on the underlying characteristics of the
synchronization protocols. This section will further
outline other kinds of control the user would like to
have on the programming environment of the systems.

Most of the library packages require the user to
specify the mapping of LPs to processors and do not
perform dynamic load balancing during runtime. Ex-
amples of such packages are SPaDES, WARPED and
GTW. The following code segment shows how LP-to-
processor mapping is done in GTW.

TWLP[0].Map = 0;/* map LP 0 to processor 0 */
if (TWnpe==1) /* if only 1 processor available */

TWLP[l].Map=0; /* map LP 1 to processor 0 */
else /* otherwise */

TWLP[l].Map=1; /* map LP 1 to processor 1 */

TWOS also uses manual allocation of LPs to proces-
sors but performs dynamic runtime LP migration
based on information about processor utilization. PSK

12 SIMULATION MARCH 1999

does a round-robin allocation of LPs to the available
processors if no user-defined mapping is specified.
CPSim and SimKit, on the other hand, provide both
manual and automatic mapping of LPs to processors.

Depending on the PDES libraries used, the user
may be able to map multiple simulation objects onto a
single LP. If there are more LPs than physical proces-
sors, multiple LPs may be mapped onto a single pro-
cessor. In the case of multiple simulation objects being
mapped to a single LP, these simulation objects would
typically share the event list of the LP. If multiple LPs
are mapped to a single processor, some PDES libraries
also allow the user to specify the scheduling of these
LPs on the processor. For example, in ParaSol, the user
can create a customized scheduler to tell the processor
which LP to run next. WARPED also provides two
types of schedulers for the user to choose from: a round-
robin scheduler and a least-timestamp scheduler.

Visualization tools allow the user to create the sim-
ulation model graphically and also perhaps to view
the simulation visually as it progresses. PSK has a vis-
ualization tool for mobile telecommunication applica-
tions [49]. GTW has visualization support known as
PVaniM-GTW [51] that is used for parallel simulations
in Network Computing Environments. TWOS has a
Time-Warp Progress Graph [52] which serves as a visu-
alization tool to depict the progress of simulation on
multiple processor nodes. However, this visualization
tool only runs on Sun workstations using the Sunview
graphics package.

Debugging a PDES application is often a tedious
and intractable process. Runtime information needs to
be extracted to verify the correctness of the simulation
executed. This information can either be extracted
during runtime via debug messages or gathered after
the simulation run has completed using a program
execution trace file. Often, these PDES libraries also
provide a sequential runtime kernel for the user to run
the simulation as well. As sequential debugging tools
are more widely available and easier to use, the user
could make use of the sequential kernel whenever
possible to debug the simulation application, before
proceeding to use the parallel kernel to run the simu-
lation. However, using the sequential simulation ker-
nel can only allow the user to verify the correctness of
the simulation model, and may not reveal the bugs that
only exist in the execution of the parallel simulation.

Packages such as GTW, SimKit, WARPED and
CPSim allow the user to debug the parallel program
via runtime messages. The user may often need to
specify some compilation flags to enable these mes-
sages. For example, in GTW, the configuration file
must be modified to enable debug messages to be
printed prior to the compilation of the application.
During runtime, a warning will be printed whenever
a message is sent or received by an LP.

Statistics generation is an important feature in a
PDES library. Very often, the user of the PDES library

would like to know how to improve the performance
of the simulation further. If the null-message protocol
is used, the user would want to know how many mes-
sages are generated during the simulation, and how
many of those are null-messages. This would allow
the user to measure the performance of the synchroni-
zation protocol. If the time-warp protocol is used, the
user may also want to know on average how many
rollbacks occur on an LP, and the memory consump-
tion during runtime. Statistics pertaining to the per-
formance of the model are also needed by the user. If
a manufacturing plant planner is looking at the simu-
lation, he/she would want to know information, such
as which machine is having the longest queue in the
system and the average cycle time of the system.

WARPED relies on the user to track runtime statis-
tics manually using the C++ language itself. The com-
mercial product CPSim provides a standard report
generation function which lists information such as
throughput, minimum/maximum queue size, and
utilization. Other research packages, such as TWOS,
also keep runtime statistic counters such as the number
of anti-messages, queue statistics, and cache statistics,
and output them to a file at the end of a simulation run.

Most of the packages also provide an output mech-
anism for the system to output user-defined mes-
sages. Since most of these packages are operating
using an optimistic protocol, to ensure that these out-
put messages do not get rolled back, messages are out-
put only when GVT is updated and the events
corresponding to the output are committed. This
would often result in messages being output in a
burst manner. The output generated from the simula-
tion can potentially be used to drive other visualiza-
tion packages, such as ParaGraph [53].

5.5 Summary
Table 5 shows a comparison chart based on the dis-
cussions presented above. The row on programming
indicates the programming style supported by the li-
braries. For packages like CPSim, although the frame-
work is imperative and structured programming, the
simulation model can be constructed using the func-
tion templates provided by the library. If the library
supports sequential simulation, the debugging of the
simulation model can also be carried out using the
sequential kernel.

Some of the performance figures as reported in the
publications related to these PDES library packages
are listed in Table 6. There are no application-specific
performance figures available to us on CPSim, ParaSol,
and SimKit.

For a fine-grained application such as a 8×8 torus
network, SPaDES shows a negative speedup. How-
ever, when the network size is increased to 32×32, the
speedup is improved from 0.03 to 4.59 on 16 processors.

The application SPEEDES simulates a fully con-
nected FIFO queueing network. The speedup is relative

MARCH 1999 SIMULATION 13

to the doubling of the number of nodes, that is, the
improvement on the speedup is ranging from 1.5 to
1.9 every time the number of nodes doubles.

6. Conclusion
Different PDES languages and libraries have been dis-
cussed in this paper. A PDES language ideally hides
the underlying synchronization protocol from the user
and allows the user to get on with the task of doing
actual coding using the language constructs. However,
most existing PDES languages have not achieved total
transparency in this aspect. Without good partitioning
heuristics, users must be concerned with the mapping
of LPs to processors. Runtime options must still be
manually set in order to achieve optimal performance.
PDES languages like Maisie/Moose/Parsec that offer
support for various kinds of synchronization proto-
cols would allow the user to write one version of the
application program and experiment on it with differ-
ent runtime engines.

Visualization tools are still absent from most pack-
ages, be it languages or libraries. Given that most of
the packages surveyed are products of research pro-
jects, visualization support may come across as a not-

immediately-rewarding feature. Nevertheless, a pack-
age with visualization support can certainly help to
speed up the adoption process of using PDES lan-
guages and libraries.

The fact that only CPSim uses a conservative proto-
col reflects the general consensus that implementing a
time-warp optimistic protocol requires much effort.
More emphasis is therefore placed by the research
community on developing optimistic libraries. This is
not to say that languages and libraries implemented
using a conservative protocol are not needed, but that
most users would be more willing to code a conserva-
tive protocol engine from scratch, rather than a time-
warp one. However, to the user outside the PDES com-
munity, to code a conservative PDES engine would
still be a formidable task. Hence, more libraries based
on a conservative protocol should be developed to
further promote the use of PDES in the sequential
simulation community.

An interesting development in recent years is the
United State Department of Defense (DoD) High Level
Architecture (HLA) [57] effort to “provide a specifica-
tion of a common technical architecture for use across
all classes of simulations.” In particular, the Runtime

Table 5. Comparison chart for different PDES libraries

Features CPSim GTW ParaSol PSK SimKit

Protocol Conservative Optimistic Optimistic Optimistic Optimistic
Sequential Sequential Sequential

World View Event Event Process Event Event
Programming Function

Template
Function
Template

Object-
Oriented

Object-
Oriented

Object-
Oriented

Mapping Manual &
Automatic

Manual Manual Automatic Manual

Visualisation None Present None Present None
Debugging Debug Message Debug Message Not known Debug Message Debug Message
Statistics Present Present None None None

Features SPaDES SPEEDES TWOS WARPED

Protocol Optimistic Optimistic Optimistic
Sequential

Optimistic
Sequential

World View Process Event Event Event
Programming Object-

Oriented
Object-
Oriented

Function
Template

Object-
Oriented

Mapping Manual Manual Manual &
Automatic

Manual

Visualisation None None Present None
Debugger Not known Debug Message Debug Message Debug Message
Statist ics None None Present None

14 SIMULATION MARCH 1999

Infrastructure (RTI) component of the HLA provides
a distributed operating system to support simulation
interaction and management. Synchronization mecha-
nism for event ordering is provided in the time man-
agement component of the HLA [58]. By expanding
its services to include repeatable execution and order-
ing of simultaneous events [59], HLA provides a
framework into which research in the PDES commu-
nity can be readily applied onto real-world systems.

Most of the PDES libraries surveyed offer the user a
whole range of options to choose from if the optimis-
tic protocol is used. The different kinds of runtime op-
tions offered by these optimistic PDES libraries allow
the user to fine-tune the performance of the simula-
tion application. However, to someone new to PDES,
these options may mean nothing to them. All they are
concerned with is how a PDES engine is going to make
his/her application run faster, or run with a larger
model. Research into automatically setting these op-
tions during runtime would make the PDES libraries
more readily acceptable by new users to PDES.

As has been summarized in Bagrodia’s 1994 survey
[60] and also evident in the above discussion, the re-
search directions for PDES languages and libraries are
still mainly in the areas of application partitioning
support, automatic mapping and load balancing, and
program development environments (including GUI
for model construction, debugging,visualization, and
statistics collection). It is believed that PDES languages
and libraries will remain as an active research area in
the years to come. Therefore, this survey could help
the researchers in this area to understand how the
present situation has come about, what was tried, what
worked and what did not.

7. References
[1] Jain, S. “Virtual Factory Framework: A Key Enabler for Agile

Manufacturing.” In Proceedings of 1995 INRIA/IEEE Symposium
on Emerging Technologies and Factory Automation, pp 247-258,
IEEE Computer Society Press, 1995.

[2] Fujimoto, R.M. “Parallel Discrete-Event Simulation: Will the
Field Survive?” ORSA Journal on Computing, Vol. 5, No. 3,
pp 213-230, Summer 1993.

[3] Nicol, D. “Parallel Discrete-Event Simulation: So Who Cares?”
Keynote Speech, 11th Workshop on Parallel and Distributed
Simulation (PADS’97), June 1997.

[4] Rajaei, H., Ayani, R. “Design Issues in Parallel Simulation
Languages.” IEEE Design and Test of Computers, pp 53-63,
Dec. 1993.

[5] Wonnacott, P., Bruce, D. “The APOSTLE Simulation Language:
Granularity Control and Performance Data.” In Proceedings
of 10th IEEE/ACM/SCS Workshop on Parallel and Distributed
Simulation (PADS’96), pp 114-123, May 1996.

[6] Bagrodia, R. PARSEC User Manual, Release 1.0, UCLA Parallel
Computing Lab, 1997.

[7] Edward, M., Felipe, K., Veron, R. “ParaSol: A Multithreaded
System for Parallel Simulation Based on Mobile Threads.” In
Proceedings of 1995 Winter Simulation Conference, pp 690-697,
Arlington, VA, Dec. 1995.

[8] Teo, Y.M., Tay, S.C., Kong, S.T. “SPaDES: An Environment for
Structured Parallel Simulation.” Technical Report, TR20/96,
Department of Information Systems and Computer Science,
National University of Singapore, Lower Kent Ridge Road,
Singapore, Oct. 1996.

[9] Dale, E.M., Wilsey, P.A., Timothy, J.M. WARPED Simulation
Kernel Documentation (Version 0.5), Sept. 1995.

[10] Special issue on TeD, Performance Evaluation Review, Vol. 25,
No. 4, March 1998.

[11] Low, Y.H., Lim, C.C., Cai, W., Huang, S.Y., Hsu, W.J., Jain, S.,
Turner, S.J., “Survey of Languages and Runtime Systems for
Parallel Discrete-Event Simulation.” Upstream Project Techni-
cal Report, Gintic Institute of Manufacturing Technology,
Singapore, Jan. 1998.

[12] Ferscha, A. “Parallel and Distributed Simulation of Discrete-
Event Simulation.” In Handbook of Parallel and Distributed
Computing, McGraw-Hill, 1995.

[13] Fujimoto, R.M., “Parallel Discrete-Event Simulation.” Commu-
nications of the ACM, Vol. 33, No. 10, pp 31-53, Oct. 1990.

Table 6. Selected performance measurement for different PDES libraries

Package Application Platform Performance

GTW PCS network simulation [43] 42-CPU KSR-2 speedup of 38, with
335,000 committed
events per second

PSK Telecommunication network [49] 8-CPU SparcCenter
2000

speedup of 4

SPaDES Torus network message routing [54] Fujitsu AP3000 with
32 143MHz Sun Ultra-
Sparc processors

speedup ranging from
0.03 to 4.59 on 16
processors

SPEEDES Queueing network [48] Caltech.JPL MarkIII
64-node hypercube

1.5-1.9 relative
speedup every time
the number of nodes
doubles

TWOS Theater-level combat simulation [55] 60-node BBN
Butterfly GP1000

speedup of 24

WARPED Synthetic model [56] Sun SparcCenter 1000
with 4 processors

6500 events/sec event
rate on 100 simulation
objects

MARCH 1999 SIMULATION 15

[14] Misra, J., “Distributed Discrete-Event Simulation.” ACM Com-
puting Surveys, Vol. 18, No. 1, pp 39-65, 1986.

[15] Cai, W., Turner, S.J. “An Algorithm for Distributed Discrete-
Event Simulation - The ‘Carrier Null Message’ Approach.”
In Proceedings of the SCS MultiConference on Distributed Simu-
lation, Vol. 22, No. 1, pp 3-8, Jan. l990.

[16] Nicol, D. “Performance Bound on Parallel Self-initiating Dis-
crete-Event Simulations.” ACM Transactions on Modeling and
Computer Simulation, Vol. 1, No. 1, pp 24-50, Jan. 1991.

[17] Cai, W., Letertre, E., Turner, S.J. “Dag Consistent Parallel Sim-
ulation: a Predictable and Robust Conservative Algorithm.”
In Proceedings of 11th Workshop on Parallel and Distributed Sim-
ulation (PADS’97), pp 178-181, Lockenhaus, Austria, June 1997.

[18] Jefferson, D. “Virtual Time.” ACM Transactions on Program-
ming Languages and Systems, Vol. 7, No. 3, pp 404-425, 1985.

[19] Ferscha, A., Johnson, J., Turner, S.J. “Early Performance Pre-
diction of Parallel Simulation Protocol.” In Proceedings of the
1st World Congress on System Simulation, pp 282-287, Aug. 1997.

[20] Turner, S.J., Lim, C.C., Low, Y.H., Cai, W., Hsu, W.J., Huang,
S.Y. “A Methodology for Automating the Parallelisation of
Manufacturing Simulations.” In Proceedings of the 12th Work-
shop on Parallel and Distributed Simulation (PADS’98),
pp 126-133, May 1998.

[21] Lomow, G., Baezner, D. “A Tutorial Introduction to Object-
Oriented Simulation and Sim++.” In Proceedings of the 1991
Winter Simulation Conference, pp 157-163, 1991.

[22] Baezuer, D., Lomow, G., Unger, B. “Sim++: The Transition to
Distributed Simulation.” In Proceedings of the 1990 SCS
MultiConference on Distributed Simulation, D. Nicol, editor,
Vol. 22, No. 2, pp 211-218, San Diego, CA, Jan. 1990.

[23] Bagrodia, R. and Liao, W.-T. Maisie User Manual, Release 2.2,
UCLA Parallel Computing Lab, 1995.

[24] J. Waldorf, Bagrodia, R. “MOOSE: A Concurrent Object-Ori-
ented Language for Simulation.” International Journal of Com-
puter Simulation, Vol. 4, No. 2, pp 235-257, 1994.

[25] J. West, Mullarney, A. “ModSim: A Language for Distributed
Simulation.” In Proceedings of SCS MultiConference on Distrib-
uted Simulation, pp 155-159, 1988.

[26] Peter, L.R. “Parallel Simulation Using the Time Warp Operat-
ing System.” In Proceedings of 1990 Winter Simulation Confer-
ence, Dec. 1990.

[27] CACI. MODSIM II—The Language for Object-Oriented Program-
ming: Reference Manual, CACI Products Company, l993.

[28] Preiss, B.R. “YADDES—Yet Another Distributed Discrete-
Event Simulator: User Manual.” Technical Report, Depart-
ment of Electrical and Computer Engineering, University of
Waterloo, Canada, 1990.

[29] Mathewson, S. “Simulation Program Generators.” SIMULA-
TION, Vol. 23, No. 4, pp 181-189, 1974.

[30] Lieberman, H. “Using Prototypical Objects to Implement
Shared Behavior in Object-Oriented Systems.” In Proceedings
of 1st Conference on Object-Oriented Programming: Systems,
Languages and Applications, pp 214-223, Portland, USA, 1986.

[31] Turner, S.J. “Simulating Timed Petri Net using the APOSTLE
Language.” Research Report 382, Department of Computer
Science, University of Exeter, United Kingdom, 1998.

[32] Evans, J.B. Structures of Discrete-Event Simulation: An Introduc-
tion to the Engagement Strategy, Ellis Horwood Ltd.,
Chichester, 1988.

[33] Rich, D.O., Michelsen, R.E. “An Assessment of the ModSim/
TWOS Parallel Simulation Environment.” In Proceedings of
the 1991 Winter Simulation Conference, pp 509-518, 1991.

[34] Meyer, R., Bagrodia, R. “MVPE: Visual Design of Parallel
Simulation Models.” In Proceedings of the Fourth International
Workshop on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, pp 227-230, San Jose, CA,
Feb. 1-3, 1996.

[35] Bagrodia, R., Chen, Y., Jha, V., Sonpar, N. “Parallel Gate-level
Circuit Simulation on Shared Memory Architectures.”In Pro-
ceedings of the Ninth Workshop on Parallel and Distributed Simu-
lations (PADS’95), pp 170-174, Lake Placid, NY, June 1995.

[36] Bagrodia, R., Meyer, R., Takai, M., Chen, Y., Zeng, X., Martin,
J., Park, B., Song, H. “Parsec: A Parallel Simulation Environ-
ment for Complex Systems.” IEEE Computer, Vol. 31, No. 10,
pp 77-85, Oct. 1998.

[37] Baezner, D., Rohs, C., Jones, H. “U.S. Army ModSim on Jade’s
TimeWarp.” In Proceedings of the 1992 Winter Simulation Con-
ference, pp 665-671, 1992.

[38] Bagrodia, R., Li, Z., Jha, V., Chen, Y., Cong, J. “Parallel Logic
Level Simulation of VLSI Circuits.” In Proceedings of the 1994
Winter Simulation Conference, pp 1354-1361, 1994.

[39] Bagrodia, R., Gerla, M., Kleinrock, L., Short, J., Tsai, T.-C. “A
Hierarchical Simulation Environment for Mobile Wireless
Networks.” In Proceedings of the 1995 Winter Simulation Con-
ference, pp 563-570, Arlington, VA, Dec. 1995.

[40] Abrams, M. “The Object Library for Parallel Simulation.” In
Proceedings of the 1988 Winter Simulation Conference,
pp 210-219, 1998.

[41] Agre, J.R., Johnson, A., Tinker, P.A., Vopova, S. “Time Warp
Object Oriented Distributed Simulation System
(TWOODS).” In Proceedings of Rockwell Software Engineering
Symposium (SES) III, Dallas, TX, pp 9.2.1-9.2.13, Oct. 1989.

[42] Groselj, B. “CPSim: A Tool for Creating Scalable Discrete-
Event Simulations.” In Proceedings of 1995 Winter Simulation
Conference, pp 579-583, Arlington, VA, Dec. 1995.

[43] Das, S., Fujimoto, R.M., Panesar, K., Allison, D., Hybinette, M.
“GTW: A Time Warp System for Shared Memory Multipro-
cessors.” In Proceedings of 1994 Winter Simulation Conference,
pp 1332-1339, Dec. 1994.

[44] Xiao, Z., “Preliminary Report on Warpkit Performance.”
Technical Report, Department of Computer Science, Univer-
sity of Calgary, Canada, March 1994.

[45] West, D., Mellon, L., Ramsey, J., Cleary, J. Hofmann, J. “Infra-
structure for Rapid Execution of Strike-Planning Systems.”
In Proceedings of the 1995 Winter Simulation Conference,
pp 1207-1214, Arlington, VA, Dec. 3-6, 1995,

[46] Ronngren, R., Liljenstam, M., Ayani, R., Montagnat, J. “A Com-
parative Study of State Saving Mechanism for Time Warp
Synchronized Parallel Discrete-Event Simulation.” IEEE Pro-
ceedings of Simulation, 1996.

[47] Gomes, F., Franks, S., Unger, B., Xiao, Z., Cleary, J., Covington,
A. “SimKit: A High Performance Logical Process Simulation
Class Library in C++.” In Proceedings of the 1995 Winter Simu-
lation Conference, pp 706-713, Arlington, VA, Dec. 1995.

[48] Steinman, J.S. “SPEEDES: A Multiple-Synchronization Environ-
ment for Parallel Discrete-Event Simulation.” International
Journal in Computer Simulation, Vol. 2, No. 3, pp 251-286, 1992.

[49] Lijenstam, M., Ayani, R. “MOBSIM++: An Environment for
Parallel Simulation of PCNs.” In Proceedings of 1st World Con-
gress on Systems Simulation, pp 272-281, Singapore, Sept. 1997.

[50] D’Souza, L.M., Fan, X., Wilsey, P.A. “pGVT: An Algorithm for
Accurate GVT Estimation.” In Proceedings of the 8th Workshop
on Parallel and Distributed Simulation (PADS’94), pp 102-109,
July 1994.

[51] Carothers, C.D., Topol, B., Fujimoto, R.M., Stasko, J.T.,
Sunderam, V. “Visualizing Parallel Simulations in Network
Computing Environments: A Case Study.” In Proceedings of
1997 Winter Simulation Conference, Atlanta, GA, pp 110-117,
1997.

[52] JPL. Time Warp Operating System Version 2.5.1, User’s Manual,
Jet Propulsion Laboratory, CA Institute of Technology, Pasa-
dena, CA, Sept. 1991.

[53] Heath, M. and Etheridge, J. “Visualizing the Performance of
Parallel Programs.” IEEE Software, Vol. 8, No. 5, pp 29-39,
Sept. 1991.

[54] Teo, Y.M., Tay, S.C. “SPaDES/C++ Distributed Simulation on
the AP3000.” 8th International Parallel Computing Workshop
(PCW’98), pp 347-354, Singapore, Sept. 1998.

[55] Wieland, F., Hawley, L., Feinberg, A., Di Loreto, M., Blurne,
L., Ruffles, J., Reiher, P., Beckman, B., Hontalas, P., Bellenot,
S. “The Performance of a Distributed Combat Simulation
with the Time Warp Operating System.” Concurrency: Prac-
tice and Experience, Vol. 1, No. 1, pp 35-50, 1989.

16 SIMULATION MARCH 1999

[56] Balakrishnan, V., Frey, P., Abu-Ghazaleh, N., Wilsey, P.A. “A
Framework for Performance Analysis of Parallel Discrete-
Event Simulators.” In Proceedings of the 1997 Winter Simula-
tion Conference, Dec. 1997.

[57] Dahmann, J.S., Fujimoto, R.M., Weatherly, R.M. “The Depart-
ment of Defense High Level Architecture.” In Proceedings of
the 1997 Winter Simulation Conference, Atlanta, GA, pp 142-
149, 1997

[58] Fujimoto, R.M., Weatherly, R.M. “Time Management in the
DoD High Level Architecture.” 1996 Workshop on Parallel and
Distributed Simulation, May 1996.

[59] Fujimoto, R.M., “Zero Lookahead and Repeatability in the
High Level Architecture.” 1997 Spring Simulation Interoper-
ability Workshop, March 1997.

[60] Bagrodia, R. “Language Support for Parallel Discrete-Event
Simulations.” In Proceedings of 1994 Winter Simulation Confer-
ence, pp 1324-1331, 1994.

8. Additional Reading
Wonnacott, P., Bruce, D. “A Prototype Implementation of

APOSTLE and its Performance.” In Proceedings of the l995 SCS
Summer Computer Simulation Conference, pp 197-205, l995.

Teo, Y.M., Tay, S.C., Kong, S.T. “SPaDES: A Parallel Simulation
Environment.” In Proceedings of 1st World Congress on Systems
Simulation, pp 293-298, Singapore, Sept. 1997.

Yoke-Hean Low received his BASc
in Computer Engineering in 1997
from the Nanyang Technological
University, Singapore. He is cur-
rently a Research Associate at the
Gintic Institute of Manufacturing
Technology. His current project in-
volves the use of parallel and dis-
tributed simulation in the modeling
of a virtual factory. His research in-
terests include parallel and distrib-
uted simulation, parallel program-
ming tools and the Internet. He is a

member of the Association for Computing Machinery and
the Institute of Electrical and Electronics Engineers.

Lim Chu Cheow obtained his BSc in
Mathematical and Computational
Sciences and his MSc in Computer
Science, both from Stanford Univer-
sity. He received his PhD in Com-
puter Science from the University of
California at Berkeley. He is a mem-
ber of Phi Beta Kappa. He worked
on the implementation of the Public
Domain Compiler (V0.1) for the ob-
ject-oriented language Sather at the
International Computer Science In-

stitute at Berkeley. While with the Defence Science Organi-
zation, he worked on the use of high-performance tech-
niques in engineering and scientific applications. He is now
a Research Fellow at Gintic Institute of Manufacturing
Technology. His current project is applying parallel and
distributed simulation techniques to models of a virtual fac-
tory and manufacturing supply chains. His research inter-
ests include high-performance computing (both system and
algorithmic issues), compilers, object-oriented program-
ming languages, simulations and the Internet.

Sanjay Jain is a Senior Research Fel-
low and the Manager of the Manu-
facturing Planning and Scheduling
Group at Gintic Institute of Manufac-
turing Technology, Singapore. His
research interests include using mod-
eling and analysis techniques in the
development and operation of manu-
facturing systems, and in improving
performance of simulation systems
through parallel and distributed ex-
ecution. Prior to joining Gintic, he
worked as a Senior Project Engineer

with General Motors’ North American Operations Techni-
cal Center. He earned a Bachelors of Engineering from the
University of Roorkee, India, a Postgraduate Diploma from
the National Institute for Training in Industrial Engineer-
ing, Bombay, India, and a PhD in Engineering Science from
Rensselaer Polytechnic Institute, Troy, New York. Dr. Jain
has contributed in the area of manufacturing scheduling and
simulation at international conferences and in publications
such as the Winter Simulation Conference, the INRIA/IEEE
Symposium on Emerging Technologies and Factory Auto-
mation, and Rensselaer’s Conference on Agile Integrated
and Computer Integrated Manufacturing. He is a member
of the Institute of Industrial Engineers.

Wentong Cai is currently an Associ-
ate Professor in the School of Ap-
plied Science, Nanyang Technologi-
cal University, Singapore. He
obtained his BSc in Computer Sci-
ence from Nankai University, China,
in 1985, and his PhD from the Uni-
versity of Exeter, United Kingdom,
also in Computer Science, in 1991.
Dr. Cai was a Post-Doctoral Re-
search Fellow at Queen’s University,
Canada, and later joined Nanyang

Technology University. Dr. Cai is a member of IEEE, and
has published more than 50 refereed journal and conference
articles in the areas of parallel processing. His current re-
search interests include parallel and distributed simulation,
parallel programming tools and environments, and perfor-
mance analysis.

Shell Ying Huang obtained her BSc
degree in Engineering and her PhD
from the Department of Computing,
Imperial College, London Univer-
sity. After working as a Teaching
Assistant and then a Research Assis-
tant at the Department of Comput-
ing, Imperial College, she joined the
School of Applied Science, Nanyang
Technological University,
Singapore, as a Lecturer in 1991 and
became a Senior Lecturer in 1998.

Her research interests include task scheduling for parallel
programs, parallel and distributed simulation, scheduling
and routing for automated guided vehicles.

MARCH 1999 SIMULATION 17

Hsu Wen Jing is a Faculty Member
of the School of Applied Science,
Nanyang Technological University
(NTU), Singapore. He is currently
the Director of the Centre for Ad-
vanced Information Systems, School
of Applied Science, NTU. Before
joining NTU, he was on the faculty
of National Chiao Tung University,
Taiwan, and Michigan State Univer-
sity, USA. He also worked as a Vis-
iting Scientist at the IBM Palo Alto
Scientific Center and IBM’s T.J.

Watson Research Center for two years. His present research
interests are in the algorithms, architectures and applica-
tions of parallel computers, simulation and decision sup-
port, the scheduling and routing of automated guided ve-
hicles. His technical papers have been published in
reviewed journals and conferences. He is involved in a
large-scale project funded by the National Science and
Technology Board concerning computer simulations for
manufacturing industries. He is also a consultant in indus-
try-related projects, including the anchorage management
and conflict prediction systems for the Maritime and Port
Authority of Singapore.

Stephen Turner graduated from
Trinity College, Cambridge, United
Kingdom, with a BA in Mathematics
and Computer Science in 1971 and
received a PhD in Computer Science
from the University of Manchester,
United Kingdom, in 1979. He is cur-
rently a Senior Lecturer in Com-
puter Science at the University of
Exeter, where he directs the research
of a group working in the area of
distributed and parallel systems.
His current research interests in-

clude parallel and distributed simulation, visual program-
ming environments, parallel programming models, and
agent technology. He served on the ACM/IEEE/SCS Paral-
lel and Distributed Simulation (PADS) steering committee
from 1994 through 1997 and is Program Chair of PADS ’99.

