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Abstract

We survey parallel programming models and languages using six criteria to assess their suitability
for realistic portable parallel programming. We argue that an ideal model should be easy to program,
should have a software development methodology, should be architecture-independent, should be easy
to understand, should be efficiently implementable, and should provide accurate information about
the cost of programs. These criteria reflect our belief that developments in parallelism must be driven
by a parallel software industry based on portability and efficiency. We consider programming models
in six categories, depending on the level of abstraction they provide. Those that are very abstract
conceal even the presence of parallelism at the software level. Such models make software easy to
build and port, but efficiency is usually hard to achieve. At the other end of the spectrum, low-level
models make all of the messy issues of parallel programming explicit (how many threads, how to
place them, how to express communication, and how to schedule communication), so that software
is hard to build and not very portable, but is usually efficient. Most recent models are near the center
of this spectrum, exploring the best trade-offs between expressiveness and efficiency. However, there
are models that are both abstract and able to be implemented efficiently, opening the prospect of
parallelism as part of the mainstream of computing, rather than a high-performance backwater.

ACM Classification: D.1 Programming Techniques, C.4 Performance of Systems, D.3.2
Language Classifications.

General Terms: Languages, Performance, Theory.

Other Keywords: Parallel programming models, parallel programming languages, general-
purpose parallel computation, taxonomy, software development methods, object-oriented lan-
guages, logic programming languages.

1 Introduction

Parallel computing is about twenty years old, with roots that can be traced back to the CDC6600
and IBM360/91. In the years since then, parallel computing has permitted complex problems to
be solved and high-performance applications to be implemented, both in traditional areas, such
as science and engineering, and in new application areas such as artificial intelligence and finance.
Despite some successes and a promising beginning, parallel computing did not become a major
methodology in computer science, and parallel computers represent only a small percentage of



the computers sold over the years. Parallel computing creates a radical shift in perspective, so
it is perhaps not surprising that it has not yet become a central part of practical applications of
computing. Given that opinion over the past twenty years has oscillated between wild optimism
(“whatever the question, parallelism is the answer”) and extreme pessimism (“parallelism is a
declining niche market”), it is perhaps a good time to examine the state of parallel computing.
We have chosen to do this by an examination of parallel programming models. Doing so addresses
both software and development issues, and performance and hardware issues.

We begin by discussing reasons why parallel computing is a good idea, and suggest why it has
failed to become as important and central as it might have done. In section 2, we review some basic
aspects of parallel computers and software. In section 3, we discuss the concept of a programming
model, and list some properties that we believe models of parallel programming ought to have if
they are to be useful for software development, and also for effective implementation. In section 4
we assess a wide spectrum of existing parallel programming models, classifying them by how well
they meet the requirements we have suggested.

Here are some reasons why parallelism has been a topic of interest:

e The real world is inherently parallel, so it is natural and straightforward to express compu-
tations about the real world in a parallel way, or at least in a way that does not preclude
parallelism. Writing a sequential program often involves imposing an order on actions that
are independent and could be executed concurrently. The particular order in which they
are placed is arbitrary and hence a barrier to understanding the program, since the places
where the order is significant are obscured by those where it is not. Arbitrary sequencing
also makes compiling more difficult, since it is much harder for the compiler to infer which
code movements are safe. The nature of the real world also often suggests the right level of
abstraction at which to design a computation.

e Parallelism makes available more computational performance than is available in any single
processor, although getting this performance from parallel computers is not straightforward.
There will always be applications that are computationally-bounded in science (the grand
challenge problems), and in engineering (weather forecasting). There are also new application
areas where large amounts of computation can be put to profitable use, such as data mining
(extracting consumer spending patterns from credit card data), and optimisation (just-in-time
retail delivery).

e There are limits to sequential computing performance that arise from fundamental physical
limits such as the speed of light. It is always hard to tell how close to such limits we are.
At present, the cost of developing faster silicon and gallium arsenide processors is growing
much faster than their performance and, for the first time, performance increases are being
obtained by internal use of parallelism (superscalar processors), although at a very small
scale. So it is tempting to predict that performance limits for single processors are near.
However, optical processors could provide another large jump in computational performance
within a few decades, and applications of quantum effects to processors may provide another
large jump over a longer time period.

e Even if single-processor speed improvements continue on their recent historical trend, parallel
computation is still likely to be more cost-effective for many applications than using leading-
edge uniprocessors. This is largely because of the costs of designing and fabricating each
new generation of uniprocessors. These costs are unlikely to drop much until the newer



technologies, such as optical computation, mature. Because the release of each new, faster
uniprocessor drives down the price of previous generations, putting together an ensemble
of older processors provides cost-effective computation, if the cost of the hardware required
to connect them is kept within reasonable limits. Since each new generation of processors
provides a decimal order of magnitude increase in performance, modestly-sized ensembles of
older processors are competitive in terms of performance. The economics of processor design
and production favor replication over clever design.

Given these reasons for using parallelism, we might expect parallelism to have rapidly moved into
the mainstream of computing. This is clearly not the case. Indeed, in some parts of the world
parallel computing is regarded as marginal. We turn now to examining some of the problems
and difficulties with using parallelism, which explain why its advantages have not (yet) led to its
widespread use.

o Conscious human thinking appears to us to be sequential, so that there is something appealing
about software that can be considered in a sequential way — a program is rather like the
plot of a novel, and we have become used to designing, understanding, and debugging it in
a sequential way. This property in ourselves makes parallelism seem difficult, although of
course much human cognition does take place in a parallel way.

e The theory required for parallel computation is immature and was developed after the tech-
nology, rather than suggesting directions, or at least limits, for technology. As a result, we
do not yet know much about abstract representations of parallel computations, logics for
reasoning about them, or even parallel algorithms that are effective on real architectures.

e It is taking a long time to understand the balance necessary between the performance of
different parts of a parallel computer, and the way this balance has an effect on performance.
Careful control of the relationship between processor speed and communication interconnect
performance is necessary for good performance, and this must also be balanced with memory-
hierarchy performance. Historically, parallel computers have failed to deliver more than a
small fraction of their apparently-achievable performance, and it has taken several generations
of using a particular architecture to learn the lessons on balance.

e Parallel computer manufacturers have targeted high-performance scientific and numerical
computing as their market, rather than the much larger high-effectiveness commercial market.
The high-performance market has always been small, and has tended to be oriented towards
military applications. Recent world events have seen this market dwindle, with predictable
consequences for the profitability of parallel computer manufacturers. The small market for
parallel computing has meant that parallel computers are expensive, because so few of them
are sold, and has increased the risk for both manufacturers and users, further dampening
enthusiasm for parallelism.

e The cost of a sequential program changes by no more than a constant factor when it is moved
from one uniprocessor to another. Unfortunately, this is not true for a parallel program,
whose cost may change by an order of magnitude when it is moved across architecture fam-
ilies. The fundamental non-local nature of a parallel program requires it to interact with a
communication structure, and the cost of this communication depends heavily on how both
program and interconnect are arranged and what technology is used to implement the in-
terconnect. Portability is therefore a much more serious issue in parallel programming than



in sequential. Transferring a software system from one parallel architecture to another may
require an amount of work up to and including rebuilding the software completely. For fun-
damental reasons, there is unlikely ever to be one best architecture family, independent of
technological changes. Therefore parallel software users must expect continual changes of
architecture, which at the moment implies continual redesign and rebuilding of software. The
lack of a long-term growth path for parallel software systems is perhaps the major reason for
the failure of parallel computation to become mainstream.

Approaches to parallelism have been driven either from the bottom, by the technological possibili-
ties, or from the top, by theoretical elegance. We argue that the most progress has been made so
far and the best hope for the future lies in driving developments from the middle, attacking the
problem at the level of the model that acts as an interface between software and hardware issues.

In the next section we review basic concepts of parallel computing. In section 3, we define the
concept of a model, and construct a checklist of properties that a model should have to provide
the right kind of interface between software and architectures. In section 4 we then assess a large
number of existing models using these properties, beginning with those that are most abstract and
working down to those that are very concrete. We show that several models raise the possibility
of both long-term portability and performance. This suggests a way to provide the missing growth
path for parallel software development, and hence a mainstream parallel computing industry.

2 Basic Concepts of Parallelism

In this section we briefly review some of the essential concepts of parallel computers and parallel
software. We begin by considering the components of parallel computers.

Parallel computers consist of three building blocks: processors, memory modules, and an in-
terconnection network. There has been steady development of the sophistication of each of these
building blocks but it is their arrangement that most differentiates one parallel computer from
another. The processors used in parallel computers are increasingly exactly the same as processors
used in single-processor systems. Present technology, however, makes it possible to fit more onto
a chip than just a single processor, so there is considerable work going on to decide what compo-
nents give the greatest added value if included on-chip with a processor. Some of these, such as
communication interfaces, are relevant to parallel computing.

The interconnection network connects the processors to each other, and sometimes to memory
modules as well. The major distinction between variants of the multiple-instruction multiple-data
(MIMD) architectures is whether each processor has its own local memory, and accesses values in
other memories using the network; or whether the interconnection network connects all processors
to memory. These alternatives are called distributed-memory MIMD and shared-memory MIMD
respectively, and are illustrated in Figure 1.

Distributed-memory MIMD architectures can be further differentiated by the capacity of their
interconnection networks. For example, an architecture whose processor-memory pairs (sometimes
called processing elements) are connected by a mesh require the same number of connections to the
network for each processor no matter how large the parallel computer of which it is a member. The
total capacity of the network grows linearly with the number of processors in the computer. On
the other hand, an architecture whose interconnection network is a hypercube requires the number
of connections per processor to be a logarithmic function of the total size of the computer. The
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Figure 1: Distributed-Memory MIMD and Shared-Memory MIMD Architectures

network capacity grows faster than linearly in the number of processors.

Another important style of parallel computer is the single-instruction multiple-data (SIMD)
class. Here a single processor executes a single instruction stream, but broadcasts the instruction
to be executed to a number of data processors. These data processors may either interpret the
instruction’s addresses as local addresses in their own local memories, or as global addresses, perhaps
modified by adding a local base address to them.

We now turn to the terminology of parallel software. The code executing in a single processor
of a parallel computer is in an environment that is quite similar to that of a processor running in
a multiprogrammed single-processor system. Thus we talk of processes or tasks to describe code
executing inside an operating-system-protected region of memory. Because many of the actions
of a parallel program involve communicating with remote processors or memory locations, which
takes time, most processors execute more than one process at a time. Thus all of the standard
techniques of multiprogramming apply: processes become descheduled when they do something
involving a remote communication, and are made ready for execution when a suitable response
is received. Often we talk about the wvirtual parallelism of a program, the number of logically-
independent processes it contains, and the physical parallelism, the number of processes that can
be active simultaneously (which is, of course, equal to the number of processors in the executing
parallel computer).

Because of the number of communication actions that occur in a typical parallel program,
processes are interrupted more often than in a sequential environment. Process manipulation is
expensive in a multiprogrammed environment so, increasingly, parallel computers use threads rather
than processes. Threads do not have their own operating-system-protected memory region. As a
result there is much less context to save when a context switch occurs. Using threads is safe because
the contexts in a parallel program are all cooperating, and were consistently created by a compiler,
which can be made responsible for enforcing their safe interaction.

Processes communicate in a number of different ways, constrained, of course, by what is possible
in the executing architecture. The three main ways are:

o Message passing. The sending process packages the message with a header indicating to
which processor and process the data is to be routed, and inserts it into the interconnection
network. Once the message has been passed to the network, the sending process can continue.



This kind of send is called a non-blocking send. The receiving process must be aware that
it is expecting data. It indicates its readiness to receive a message by executing a receive
operation. If the expected data has not yet arrived, the receiving process suspends until it
does.

o Transfers through shared memory. In shared-memory architectures, processes communicate
by having the sending process places values in designated locations, from which the receiving
process can read them. The actual process of communication is thus straightforward. What
is difficult is detecting when it is safe either to put a value into the location or to remove it.
Standard operating system techniques such as semaphores or locks may be used for this pur-
pose. However, this is expensive and complicates programming. Some architectures provide
full/empty bits associated with each word of shared memory. These provide a lightweight
and high-performance way of synchronizing senders and receivers.

e Direct remote-memory access. Early distributed-memory architectures required the processor
to be interrupted every time a request was received from the network. This is very poor use of
the processor and so, increasingly, distributed-memory architectures use a pair of processors
in each processing element. One, the application processor, does the program’s computation;
the other, the messaging processor, handles traffic to and from the network. In the limit, this
makes it possible to treat message passing as direct remote memory access to the memories
of other processors. This is a hybrid form of communication, in that it applies to distributed-
memory architectures, but has many of the properties of shared-memory.

These communication mechanisms do not have to correspond directly to what the architecture
provides. It is straightforward to simulate message passing using shared memory, and possible to
simulate shared memory using message passing (an approach known as virtual shared memory).

3 Models and Their Properties

A model of parallel computation is an interface, separating high-level properties from low-level ones.
More concretely, a model is an abstract machine, providing certain operations to the programming
level above, and requiring implementations for each of these operations on all of the architectures
below. It is designed to separate software development concerns from effective parallel execution
concerns. It provides both abstraction and stability. Abstraction arises because the operations that
the model provides are much higher-level than those of the underlying architectures, simplifying
the structure of software, and reducing the difficulty of its construction. Stability arises because
software construction can assume a standard interface that remains stable over long time frames,
regardless of developments in parallel computer architecture. At the same time, the model forms
a fixed starting point for the implementation effort (transformation system, compiler, and runtime
system) directed at each parallel computer. The model therefore insulates those issues that are
the concern of software developers from those that are the concern of implementers. Furthermore,
implementation decisions, and the work they imply, are made once for each target, rather than
once for each program.

Since a model is just an abstract machine, models exist at many different levels of abstraction.
For example, every programming language is a model in our sense, since they each provide some
simplified view of the underlying hardware. This makes it hard to compare models neatly because
of the range of levels of abstraction involved, and because many high-level models can be emulated



by other lower-level models. There is not even a necessary one-to-one connection between models:
a low-level model may naturally emulate several different higher-level ones, and a high-level model
may be naturally emulated by different low-level ones. We will not explicitly distinguish between
programming languages and more abstract models (such as asynchronous order-preserving message
passing) in what follows.

An executing parallel program is an extremely complex object. Consider a program is running
on a hundred-processor system, large but not unusual today. There are one hundred active threads
at any given moment. To conceal the latency of communication and memory access, each processor
is probably multiplexing several threads, so the number of active virtual threads is several times
larger (say 300). Any thread may communicate with any of the other virtual threads, and this
communication may be asynchronous or may require a synchronization with the destination thread.
So there are up to 300? possible interactions “in progress” at any instant. The state of such a
program is very large. The program that gives rise to this executing entity must be significantly
more abstract than a description of the entity itself if it is to be manageable by humans. To put
it another way, a great deal of the actual arrangement of the executing computation ought to
be implicit and capable of being inferred from its static description (the program), rather than
having to be stated explicitly. This implies that models for parallel computation require high
levels of abstraction, much higher than for sequential programming. It is still (just) conceivable
to construct modestly-sized sequential programs in assembly code, although the newest sequential
architectures make this increasing difficult. It is probably impossible to write a modestly-sized
MIMD parallel program for one hundred processors in assembly code in a cost-effective way.

Furthermore, the detailed execution behavior of a particular program on an architecture of one
style is likely to be very different from the detailed execution on another. Thus abstractions that
conceal the differences between architecture families are necessary.

On the other hand, a model that is abstract is not of great practical interest if an efficient method
for executing programs written in it cannot be found. Thus models must not be so abstract that it
is intellectually, or even computationally, expensive to find a way to execute them with reasonable
efficiency on a large number of parallel architectures. A model, to be useful, must address both
issues, abstraction and effectiveness, which are summarized in the following set of requirements
[181]. A good model of parallel computation should have the following properties:

1. Easy to Program. Because an executing program is such a complex object, a model must
hide most of the details from programmers if they are to be able to manage, intellectually,
the creation of software. As much as possible of the exact structure of the executing program
should be inserted by the translation mechanism (compiler and run-time system) rather than
by the programmer. This implies that a model should conceal:

e Decomposition of a program into parallel threads. A program must be divided up into
the pieces that will execute on distinct processors. This requires separating the program
code and data structures into a potentially large number of pieces.

e Mapping of threads to processors. Once the program has been divided into pieces, a
choice must be made about which piece is placed on which processor. The placement
decision is often influenced by the amount of communication that takes place between
each pair of pieces, so that pieces which communicate a lot are placed near each other in
the interconnection network. It may also be necessary to ensure that particular pieces
are mapped to particular processors that may have some special hardware capability,
for example a high-performance floating-point functional unit.



o (Communication among threads. Whenever non-local data is required, a communication
action of some kind must be generated to move the data. Its exact form will depend
heavily on the target architecture, but the processes at both ends must arrange to treat
it consistently, so that one process does not wait for data that will never come.

o Synchronization among threads. There will be times during the computation when a pair
of threads, or even a larger group, must know that they have jointly reached a common
state. Again the exact mechanism used will be target-dependent. There is enormous
potential for deadlock in the interaction between communication and synchronization.

Decomposition and mapping are known to be exponentially expensive to compute optimally.
Communication requires placing two ends of communication in the correct threads at the
correct place in their respective sequences. Synchronization requires understanding the global
state of the computation, which we have already observed is very large. Requiring humans to
understand programs at this level of detail effectively rules out scalable parallel programming.

Thus models ought to be as abstract and simple as possible. There should be as little coupling
as possible between the natural way in which to express the program and that demanded by
the programming language. For many programs, this may mean that parallelism is not
even made explicit in the program text. For applications that are naturally expressed in
a concurrent way, it means that the apparent parallel structure need not be related to the
actual way in which parallelism is exploited at execution.

. Software Development Methodology. The previous requirement implies a large gap
between the information provided by the programmer about the semantic structure of the
program, and the detailed structure required to execute it. Bridging it requires a firm semantic
foundation on which transformation techniques can be built. Ad hoc compilation techniques
cannot be expected to work on problems of this complexity.

There is a further large gap between specifications and programs, which must also be ad-
dressed by firm semantic foundations. Existing sequential software is, with few exceptions,
built using standard building blocks and algorithms. The correctness of such programs is
almost never properly established; rather they are subjected to various test regimes, designed
to increase confidence in the absence of disastrous failure modes. This methodology of testing
and debugging will not extend to portable parallel programming for two reasons. First, the
new degree of freedom created by partitioning and mapping hugely increases the state space
that must be tested. Debugging thus requires interacting with this state space in which even
simple checkpoints are difficult to construct. Second, the programmer is unlikely to have
access to more than a few of the target architectures on which the program will eventually
execute, and therefore cannot even begin to test the software on other architectures. Verifica-
tion of program properties after construction also seem too unwieldy for practical use. Thus
only a process aiming to build software that is correct by construction can work in the long
term. Such calculational approaches have been advocated for sequential programming, but
they seem essential for parallel programming.

. Architecture Independent. The model should be architecture-independent, so that pro-
grams can be migrated from parallel computer to parallel computer without having to be
redeveloped, or indeed modified in any non-trivial way. This requirement is essential to
permit a widespread software industry for parallel computers.

Computer architectures have comparatively short life spans, because of the speed with which
processor and interconnection technology are developing. Users of parallel computing must be



prepared to see their computers replaced, perhaps every five years. Furthermore, it is unlikely
that each new parallel computer will much resemble the one that it replaces. Redeveloping
software more or less from scratch whenever this happens is not cost-effective, although this
is usually what happens today. If parallel computation is to be useful, it must be possible to
insulate software from changes in the underlying parallel computer, even when these changes
are substantial.

This requirement means that a model must abstract from the features of any particular style
of parallel computer. Such a requirement is easy to satisfy in isolation, since any sufficiently
abstract model satisfies it, but is more difficult with the other requirements.

4. Easy to Understand. A model should be easy to understand and to teach, since otherwise
it is impossible to educate existing software developers to use it.

If parallelism is to become a mainstream part of computing, large numbers of people have to
become proficient in its use. If parallel programming models are able to hide the complexities
and offer an easy interface they have a greater chance of being accepted and used. Generally,
easy-to-use tools with clear goals, even if minimal, are preferable to complex ones that are
difficult to use.

These properties ensure that a model forms an effective target for software development. How-
ever, this is not useful unless, at the same time, the model can be implemented effectively on a
range of parallel architectures. Thus we need some further requirements:

5. Efficiently Implementable. A model should be efficiently implementable over a useful vari-
ety of parallel architectures. Note that efficiently implementable should not be taken to mean
that implementations extract every last ounce of performance out of a target architecture.
Parallel computation is useful over a large range of problems, not just the high-performance
numerical computations that have historically formed its application domain. For most prob-
lems, a level of performance as high as possible on a given architecture is unnecessary, es-
pecially if it is obtained at the expense of much higher development and maintenance costs.
Implementations should aim to preserve the order of the apparent software complexity and
keep constants small.

Fundamental constraints on architectures, based on their communication properties, are now
well-understood. Architectures can be categorized by their power in the following sense: an
architecture is powerful if it can execute an arbitrary computation without inefficiency. The
most powerful architecture class contains shared-memory MIMD computers and distributed-
memory MIMD computers whose interconnection network capacity grows faster than the
number of processors, at least as fast as plog p, where p is the number of processors. For such
computers, an arbitrary computation with parallelism p and taking time ¢ can be executed
in such a way that the product pt (called the work) is preserved [198]. The apparent time of
the abstract computation cannot be preserved in a real implementation since communication
(and memory access) imposes latencies, typically proportional to the diameter of the inter-
connection network. However, the time dilation that this causes can be compensated for by
using fewer processors, multiplexing several threads of the original program on to each one,
and thus preserving the product of time and processors. There is a cost to this implementa-
tion, but it is an indirect one — there must be more parallelism in the program than in the
target architecture, a property known as parallel slackness.



Architectures in this class are powerful but do not scale well because an increasing proportion
of their resources must be devoted to interconnection network hardware. Worse still, the
interconnection network is typically the most custom part of the architecture, and therefore
by far the most expensive part.

The second class of architectures are distributed-memory MIMD computers whose intercon-
nection network capacity grows only linearly with the number of processors. Such computers
are scalable because they require only a constant number of communication links per proces-
sor (and hence the local neighborhoods of processors are unaffected by scaling) and because
a constant proportion of their resources are devoted to interconnection network hardware.
Implementing arbitrary computations on such machines cannot be achieved without loss of
efficiency proportional to the diameter of the interconnection network. Computations taking
time ¢ and p processors have an actual work cost of ptd (where d is the diameter of the
interconnection network). What goes wrong in emulating arbitrary computations on such ar-
chitectures is that, during any step, each of the p processors could generate a communication
action. Since there is only capacity proportional to p in the interconnection network, these
communications use its entire capacity for the next d steps in the worst case. Communication
actions attempted within this window of d steps can only be avoided if the entire program is
slowed by a factor of d to compensate.

Architectures in this class are scalable, but they are not as powerful as those in the previous
class.

The third class of architectures are SIMD machines which, though scalable, emulate arbitrary
computations very inefficiently. This is because of their inability to do more than a small
constant number of different actions on each step [179].

Thus scalable architectures are not powerful and powerful architectures are not scalable. To
achieve efficient implementation across many architectures, these results imply that we must

e reduce the amount of communication allowed in programs by a factor proportional to
the diameter of realistic parallel computers (that is by a factor of logp or 1/p); and

e make computations more regular, so that processors do fewer different operations at
each moment, if SIMD architectures are considered as viable target architectures.

The amount of communication that a program carries out can be reduced in two ways:
either by reducing the number of simultaneous communication actions, or by reducing the
distance that each travels. It is attractive to think that distance could always be reduced
by clever mapping of threads to processors, but this does not work for arbitrary programs.
Even heuristic algorithms for placement to maximize locality are expensive to execute, and
cannot guarantee good results. Only models that limit the frequency of communication or are
restricted enough to make local placement easy to compute can be efficiently implemented
across a full range of target parallel computers.

. Cost Measures. Any program’s design is driven, more or less explicitly, by performance
concerns. Fxecution time is the most important of these, but others such as processor uti-
lization or even cost of development are also important. We will describe these collectively as
the cost of the program. The interaction of cost measures with the design process in sequen-
tial software construction is a relatively simple one. Because any sequential machine executes
with speed proportional to any other, design decisions that change the asymptotic complexity
of a program can be made before any consideration of which computer it will eventually run
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3.1

on. When a target decision has been made, further changes may be made, but they are of
the nature of tuning, rather than algorithm choice. In other words, the construction process
can be divided into two phases. In the first, decisions are made about algorithms and the
asymptotic cost of the program may be affected; in the second, decisions are made about

arrangements of program text, and only the constants in front of the asymptotic costs are
affected [132].

This neat division cannot be made for parallel software development, because small changes
in program text and choice of target computer are both capable of affecting the asymptotic
cost of a program. If real design decisions are to be made, a model must make the cost
of its operations available during all stage of software development, before either the exact
arrangement of the program or the target computer have been decided. Intelligent design
decisions rely on the ability to decide that Algorithm A is better than Algorithm B for a
particular problem.

This is a difficult requirement for a model, since it seems to violate the notion of an abstrac-
tion. We cannot hope to determine the cost of a program without some information about
the computer on which it will execute, but we must insist that the required information be
as minimal as possible (since otherwise the actual computation of the cost will be too tedious
for practical use). We will say that a model has cost measures if it is possible to determine
the cost of a program from its text, minimal target computer properties (at least the number
of processors it has), and information about the size, but not the values, of its input. This
is essentially the same view of cost that is used in theoretical models of parallel complexity
such as the PRAM [128].

This requirement is the most contentious of all of them. It requires that models provide
predictable costs and that compilers do not optimise programs. This is not the way in which
most parallel software is regarded today, but we reiterate that design is not possible without
it. And without the ability to do design, parallel software construction will remain a black
art rather than an engineering discipline.

A further requirement on cost measures is that they are well-behaved with respect to mod-
ularity. Modern software is almost always developed in pieces by separate teams and it is
important that each team need only know details of the interface between pieces. This means
that it must be possible to give each team a resource budget, such that the overall cost goal
is met if each team meets its individual cost allocation. This implies that the cost measures
must be compositional so that the cost of the whole is easily computable from the cost of its
parts, and convez, so that is it is not possible to reduce the overall cost by increasing the cost
of one part. Naive parallel cost measures fail to meet either of these requirements.

Implications

These requirements for a model are quite demanding, and several subsets of them are strongly in
tension with each other. Abstract models make it easy to build programs but hard to compile them
to efficient code, while low-level models make it hard to build software but easy to implement it
efficiently. We will use these requirements as a metric by which to classify and assess models.

The level of abstraction that models provide is used as the primary basis for categorizing them.

It acts as a surrogate for simplicity of the model, since in an abstract model less needs to be said
about details of thread structure, and points at which communication and synchronization take
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place. Level of abstraction also correlates with quality of software development methodology since
abstract operations can typically only be mapped to implementations if they are semantically clean.

The extent to which the structure of program implementations is constrained by the structure
of the program text acts as a surrogate for efficient implementation and the existence of cost
measures. Efficient and predictable implementation depends on known placement of computations,
and limitations on communication volume. A model that allows fully dynamic behavior by processes
is not going to be efficiently implementable or possess cost measures because it has the potential
to generate too much communication, and because the cost of communication depends on the
interactions of processes whose existence and placement is not known until run-time. A model that
does not allow dynamic creation of threads is more likely to permit predictable performance, but
may still allow too much communication. Only when the structure of the program is static, and
the amount of communication is bounded, can a model satisfy both of these requirements. We will
use control of structure and communication as the secondary basis for categorizing models.

This choice of priorities for classification reflects our view that parallel programming can become
a mainstream part of computing. In specialized areas, some of these requirements may be less im-
portant. For example, in the domain of high-performance numerical computing, program execution
times are often quadratic or even worse in the size of the problem. In this setting the inefficiency
introduced by execution on a distributed-memory MIMD computer with a mesh topology, say, may
be insignificant compared to the flexibility of an unrestricted-communication model. There will
probably never be a model that satisfies all potential users of parallelism. However, models that
satisfy many of the requirements above are good candidates for general-purpose parallelism, the
application of parallelism across wide problem domains [144].

4 Overview of Models

We now turn to assessing existing models according to the criteria outlined in the previous section.
Most of these models were not developed with the ambitious goal of general-purpose parallelism,
S0 it is not a criticism to say that some of them fail to meet all of the requirements. Our goal is
to provide a picture of the state of parallel programming today, but from the perspective of seeing
how far towards general-purpose parallelism it is reasonable to get.

We have not covered all models for parallel computation, but we have tried to include those
that introduce significant ideas, together with some sense of the history of such models. We do not
give a complete description of each model but instead concentrate on the important features, and
provide comprehensive references. Many of the most important papers on programming models
and languages have been reprinted in [184].

Models are presented in decreasing order of abstraction, in the following six categories:

1. Models that abstract from parallelism completely. Such models describe only the purpose of
a program and not how it is to achieve this purpose. Software developers do not need to know
even if the program they build will execute in parallel. Such models are necessary abstract
and relatively simple, since programs need be no more complex than sequential ones.

2. Models in which parallelism is made explicit, but decomposition of programs into threads is
implicit (and hence so is mapping, communication, and synchronization). In such models,
software developers are aware that parallelism will be used, and must have expressed the
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potential for it in programs, but do not know even how much parallelism will actually be
applied at run-time. Such models often require programs to express the maximal parallelism
present in the algorithm, and then reduce that degree of parallelism to fit the target archi-
tecture, at the same time working out the implications for mapping, communication, and
synchronization.

3. Models in which parallelism and decomposition must both be made explicit, but mapping,
communication, and synchronization are implicit. Such models require decisions about the
breaking up of available work into pieces to be made, but they relieve the software developer
of the implications of such decisions.

4. Models in which parallelism, decomposition, and mapping are explicit, but communication
and synchronization are implicit. Here the software developer must not only break the work up
into pieces, but must also consider how best to place the pieces on the target processor. Since
locality will often have a marked effect on communication performance, this almost inevitably
requires an awareness of the target processor’s interconnection network. It becomes very hard
to make such software portable across different architectures.

5. Models in which parallelism, decomposition, mapping, and communication are explicit, but
synchronization is implicit. Here the software developer is making almost all of the imple-
mentation decisions, except that fine-scale timing decisions are avoided by having the system
deal with synchronization.

6. Models in which everything is explicit. Here software developers must specify all of the detail
of the implementation. As we noted earlier, it is extremely difficult to build software using
such models, because both correctness and performance can only be achieved by attention to
vast numbers of details.

Within each of these categories, we present models according to their degree of control over structure
and communication, in these categories:

e Models in which thread structure is dynamic. Such models cannot usually be either efficient,
since they have no way to limit communication volume, and hence will overrun the communi-
cation capacity of some architectures. Nor can they have cost measures, since program costs
depend on run-time decisions, and hence cannot be inferred during program design.

e Models that are static, but do not limit communication. Such models cannot be efficient, be-
cause again they have no way to prevent interconnection network capacity overruns. However,
because they are static, it is possible for them to have cost measures.

e Models that are static and limit communication. Such models can suitably restrict communi-
cation, and so may be efficient, and may possess cost measures, because their execution-time
structure is implicit in each program’s structure.

Within each of these categories we present models based on their common paradigms. Tables 1
and 2 show a classification of models for parallel computation in this way.
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Nothing Explicit, Parallelism Implicit
Dynamic
Higher order functional-Haskell
Concurrent Rewriting—OBJ, Maude
Interleaving—Unity
Implicit Logic Languages—PPP, AND/OR, REDUCE/OR, Opera, Palm,
concurrent constraint languages
Static
Algorithmic Skeletons—P3L, Cole, Darlington
Static and Communication-Limited
Homomorphic Skeletons—Bird-Meertens Formalism
Cellular Processing Languages—Cellang, Carpet, CDL, Ceprol
Crystal
Parallelism Explicit, Decomposition Implicit
Dynamic
Dataflow—Sisal, Id
Explicit Logic Languages—Concurrent Prolog, PARLOG, GHC,
Delta-Prolog, Strand
Multilisp
Static
Data Parallelism Using Loops—Fortran variants, Modula 3*
Data Parallelism on Types—pSETL, parallel sets,
match and move, Gamma, PEI, APL, MOA, Nial and AT
Static and Communication-Limited
Data-Specific Skeletons—scan, multiprefix, paralations,
dataparallel C, NESL, CamlFlight
Decomposition Explicit, Mapping Implicit
Dynamic
Static
BSP, LogP
Static and Communication-Limited

Table 1: Classification of Models of Parallel Computation
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Mapping Explicit, Communication Implicit
Dynamic
Coordination Languages—Linda, SDL
Non-message Communication Languages—-ALMS, PCN,
Compositional C++
Virtual Shared Memory
Annotated Functional Languages—ParAlf
RPC-DP, Cedar, Concurrent CLU, DP
Static
Graphical Languages—Enterprise, Parsec, Code
Contextual Coordination Languages—Ease, ISETL-Linda, Opus
Static and Communication-Limited
Communication Skeletons
Communication Explicit, Synchronization Implicit
Dynamic
Process Networks—Actors,Concurrent Aggregates, ActorSpace, Darwin
External OO-ABCL/1, ABCL/R, POOL-T, EPL, Emerald,
Concurrent Smalltalk
Objects and processes—Argus, Presto, Nexus
Active Messages—Movie
Static
Process Networks—static dataflow
Internal OO—-Mentat
Static and Communication-Limited
Systolic Arrays—Alpha
Everything Explicit
Dynamic
Message Passing-PVM, MPI
Shared Memory-FORK, Java, thread packages
Rendezvous—Ada, SR, Concurrent C
Static
Occam
PRAM

Table 2: Classification of Models of Parallel Computation (cont.)
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4.1 Nothing Explicit

The best models of parallel computation for programmers are those in which they need not be
aware of parallelism at all. Hiding all of the activities that are required to execute a parallel
computation means that software developers can carry over their existing skills and techniques for
sequential software development. Of course, such models are necessarily abstract, which makes the
implementer’s job difficult since the transformation, compilation, and run-time systems must infer
all of the structure of the eventual program. This means deciding how the specified computation is
to be achieved, dividing it into appropriately-sized pieces for execution, mapping those pieces, and
scheduling all of the communication and synchronization among them.

At one time it was widely believed that automatic translation from abstract program to imple-
mentation might be effective starting from an ordinary sequential imperative language. Although
a great deal of work was invested in parallelizing compilers, the approach was defeated by the
complexity of determining whether some aspect of the program was essential or simply an artifact
of its sequential expression. It is now acknowledged that a highly-automated translation process is
only practical if it begins from a carefully-chosen model that is both abstract and expressive.

Inferring all of the details required for an efficient and architecture-independent implementation
is possible, but it is difficult and, at present, few of such models can guarantee efficient implemen-
tations.

We consider models at this high level of abstraction in subcategories: those that permit dynamic
structure and communication, those that have static structure and communication, and those that
also limit the amount of communication in progress at any given moment.

4.1.1 Dynamic.

A popular approach to describing computations in a declarative way, in which the desired result is
specified without saying how that result is to be computed, is using a set of functions and equations
on them. The result of the computation is a solution, usually a least fixed point, of these equations.
This is an attractive framework in which to develop software, for such programs are both abstract
and amenable to formal reasoning by equational substitution. The implementation problem is then
to find a mechanism for finding solutions to such equations.

Higher-order functional programming treats functions as A-terms and computes their values us-
ing reduction in the A-calculus, allowing them to be stored in data structures, passed as arguments,
and returned as results. An example of a language that allows higher-order functions is Haskell
[119]. Haskell also includes several typical features of functional programming such as user-defined
types, lazy evaluation, pattern matching, and list comprehensions. Further, Haskell has a parallel
functional I/O system and provides a module facility.

The actual technique used in higher order functional languages for computing function values
is called graph reduction [164]. Functions are expressed as trees, with common subtrees for shared
subfunctions (hence graphs). Computation rules select graph substructures, reduce them to simpler
forms, and replace them in the larger graph structure. When no further computation rules can be
applied, the graph that remains is the result of the computation.

It is easy to see how the graph reduction approach can be parallelized in principle — rules can
be applied to non-overlapping sections of the graph independently, and hence concurrently. Thus
multiple processors can search for reducible parts of the graph independently, and in a way that
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depends only on the structure of the graph (and so does not have to be inferred by a compiler
beforehand). For example, if the expression (expl * exp2), where expl and exp2 are arbitrary
expressions, is to be evaluated, two threads may independently evaluate expl and exp2, so that
their values are computed concurrently.

Unfortunately, this simple idea turns out to be quite difficult to make work effectively. First,
only computations that contribute to the final result should be executed, since doing others is
wasteful of resources, and alters the semantics of the program if a non-essential piece fails to
terminate. For example, most functional languages have some form of conditional like this

if b(x) then
f(x)
else
g(x)

Clearly exactly one of the values of £(x) or g(x) is needed, but which one isn’t known until the
value of b(x) is known. So evaluating b(x) first prevents redundant work, but on the other hand
lengthens the critical path of the computation (compared to evaluating f(x) and g(x) specula-
tively). Things are even worse if, say, f(x) fails to terminate, but only for values of x for which
b(x) is false. For now evaluating f (x) speculatively will cause the program not to terminate, while
the other evaluation order does not.

It is quite difficult to find independent program pieces that are known to be required to com-
pute the final result without quite sophisticated analysis of the program as a whole. Also, the
actual structure of the graph changes dramatically during evaluation, so that it is difficult to do
load-balancing well and to handle the spawning of new subtasks and communication effectively.
Parallel graph reduction has been a limited success for shared-memory distributed computers, but
its effectiveness for distributed-memory computers is still unknown [67, 119, 129, 163, 166, 193]. Such
models are simple and abstract, and allow software development by transformation, but they are not
efficiently implementable and much of what happens during execution is determined dynamically
by the run-time system so that cost measures (in our sense) cannot practically be provided.

Concurrent rewriting is a closely-related approach in which the rules for rewriting parts of
programs are chosen in some other way. Once again programs are terms describing a desired
result. They are rewritten by applying a set of rules to subterms repeatedly until no further rules
can be applied. The resulting term is the result of the computation. The rule set is usually
chosen to be both terminating (there is no infinite sequence of rewrites) and confluent (applying
rules to overlapping subterms gets the same result in the end), so that the order and position
where rules are applied makes no difference to the final result. Some examples of such models
are OBJ [97-99], a functional language whose semantics is based on equational logic, and Maude
[136,151,152,203]. An example, based on one in [139], will give the flavor of this approach. The
following is a functional module for polynomial differentiation, assuming the existence of a module
that represents polynomials and the usual actions on them. The lines beginning with eq are rewrite
rules. The line beginning with ceq is a conditional rewrite rule.

fmod POLY-DER is
protecting POLYNOMIAL .
op der : Var Poly -> Poly .
op der : Var Mon -> Poly .
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var A : Int .
var N : NzNat .
vars P Q : Poly .
vars UV : Mon .
eq der(P + Q)

der(P) + der(Q).
eq der(U . V) (der(U) . V) + (U . der(V))
eq der(A * U) = A * der(U)
ceqder(X " N) =Nx* (X~ (N -1)) if N > 1 .
eq der(X - 1) =1 .
eq der(d) =0 .

endfm

An expression such as
der(X "5 +3*X "4 +7*X"2)

can be computed in parallel because there are soon multiple places where a rewrite rule can be
applied. This simple idea can be used to emulate many other parallel computation models.

Models of this kind are simple and abstract, and allow software development by transformation,
but again they are hard to implement efficiently, and are too dynamic to allow useful cost measures.

Interleaving is a third approach that derives from multiprogramming ideas in operating systems
via models of concurrency such as transition systems. If a computation can be expressed as a
set of subcomputations that commute, that is can be evaluated in any order and repeatedly, then
there is considerable freedom for the implementing system to decide on the actual structure of the
executing computation. It might be quite hard to express a computation in this form, but it is
made considerably easier by allowing each piece of the computation to be protected by a guard,
that is a boolean-valued expression. Informally speaking, the semantics of a program in this form is
that all of the guards are evaluated, and one or more subprograms whose guards are true are then
evaluated. When they have completed, the whole process begins again. Guards could determine
the whole sequence of the computation, even sequentializing it by having guards of the form step
= i, but the intent of the model is rather to use the weakest guards, and therefore say the least,
about how the pieces are to be fitted together.

This idea lies behind UNITY [29, 49, 95, 168], and an alternative that considers independence of
statements more: action systems [12-15]. UNITY (Unbounded Nondeterministic Iterative Trans-
formations) is both a computational model and a proof system. A UNITY program consists of
a declaration of variables, a specification of their initial values, and a set of multiple-assignment
statements. In each step of execution some assignment statement is selected nondeterministically
and executed. For example, the following program

Program P

initially x=0

assign x:= a(x) || x:= b(x) || x:i=c(x)
end {P}

consists of three assignments that are selected nondeterministically and executed. The selection
procedure obeys a fairness rule: every assignment is executed infinitely often.
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Like rewriting approaches, interleaving models are abstract and simple, but efficient implemen-
tations seem unlikely and cost measures are not possible.

Implicit logic languages exploit the fact that the resolution process of a logic query contains
many activities that can be performed in parallel [71]. In particular, the main types of inherent
parallelism in logic programs are OR parallelism and AND parallelism. OR parallelism is exploited
by unifying a subgoal with the head of several clauses in parallel. For instance, if we have to solve
the subgoal ?7-a(x) and the matching clauses are

a(x):- b(x). a(x):- c(x).

then OR parallelism is exploited by unifying in parallel the subgoal with the head of each of the
two clauses. AND parallelism divides the computation of a goal into several threads, each of which
solves a single subgoal in parallel. For instance, if the goal to be solved is

7- a(x), b(x), c(x)

the subgoals a(x), b(x), and c(x) are solved in parallel. Minor forms of parallelism are search
parallelism, and unification parallelism where parallelism is exploited respectively in the searching
of clause database and in the unification procedure.

Implicit parallel logic languages provide automatic decomposition of the execution tree of a
logic program into a network of parallel threads. This is done by the language support both by
static analysis at compile time, and at run time. No explicit annotations of the program are needed.
Implicit logic models include PPP [85], the AND/OR process model [58], the REDUCE/OR model
[127], OPERA [39], and PALM [45]. These models differ in the way they view parallelism and their
target architectures are varied, but they are mainly designed to be be implemented on distributed-
memory MIMD machines [192]. To implement parallelism these models use either thread-based or
subtree-based strategies. In thread-based models each single goal is solved by starting a thread. In
subtree-based models the search tree is divided into several subtrees, with one thread associated
with each subtree. These two different approaches correspond to different grain sizes. In thread-
based models the grain size is fine, whereas in the subtree-based models the parallelism grain size
is medium or coarse.

Like other approaches discussed in this section, implicit parallel logic languages are highly
abstract. Thus they are hard to to implement efficiently, although some of them exhibit good per-
formance. Cost measures cannot be provided because implicit logic languages are highly dynamic.

Constraint logic programming is an important generalization of logic programming aimed at
replacing the pattern matching mechanism of unification by a more general operation called con-
straint satisfaction [172]. In this environment a constraint is a subset of the space of all possible
values that a variable of interest can take. A programmer does not explicit use parallel constructs
in a program, but defines a set of constraints on variables. This approach offers a framework for
dealing with domains other than Herbrand terms, such as integers and booleans. In concurrent
constraint logic programming a computation progresses by executing threads that concurrently
communicate by placing constraints in a global store and synchronize by checking that a constraint
is entailed by the store. The communication patterns are dynamic, so that there is no predeter-
mined limited set of threads with which a given thread may interact. Moreover, threads correspond
to goal atoms, so they are activated dynamically during program execution. Concurrent constraint
logic programming models include cc [172], the CHIP CLP language [199], and CLP [122]. As in
other parallel logic models, concurrent constraint languages are too dynamic to allow practical cost
measures.
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4.1.2 Static.

One way to infer the structure to be used to compute an abstract program is to insist that the
abstract program be based on fundamental units or components whose implementations are prede-
fined. In other words, programs are built by connecting together ready-made building blocks. This
approach has the following natural advantages:

e The building blocks raise the level of abstraction because they are the fundamental units in
which programmers work. They may hide an arbitrary amount of internal complexity.

e The building blocks can be internally parallel, but composable sequentially, in which case
programmers do not need to be aware that they are programming in parallel.

e The implementation of each building block needs to be done only once for each architecture.
The implementation can be done by specialists, and time and energy can be devoted to
making it efficient.

In the context of parallel programming, such building blocks have come to be called skeletons [54],
and they underlie a number of important models. For example, a common parallel programming
operation is to sum the elements of a list. The arrangement of control and communication to do
this is exactly the same as that for computing the maximum element of a list, and for several
other similar operations. Observing that these are all special cases of a reduction provides a new
abstraction for programmer and implementer alike. Furthermore, computing the maximum element
of an array or of a tree is not very different from computing it for a list, so that the concept of a
reduction carries over to other potential applications. Observing and classifying such regularities
is an important area of research in parallel programming today. An overview and classification of
skeletons can be found as part of the Basel Algorithm Classification Scheme [42].

For the time being, we restrict our attention to algorithmic skeletons, those that encapsulate
control structures. The idea is that each skeleton corresponds to some standard algorithm or
algorithm fragment, and that these skeletons can be composed sequentially. Software developers
select the skeletons they want to use and put them together. The compiler or library writer
chooses the way in which each encapsulated algorithm is implemented and how parallelism intra—
and inter—skeleton is exploited for each possible target architecture.

We briefly mention some of the most important algorithmic skeleton approaches. The Pisa
Parallel Programming Language (P3L) [16, 64-66] uses a set of algorithmic skeletons that capture
common parallel programming paradigms such as pipelines, worker farms, and reductions. For
example, in P3L worker farms are modeled by means of the farm constructor as follows:

farm P in (int data) out (int result)
W in (data) out (result)
result = f(data)
end

end farm

When the skeleton is executed, a number of workers, W, are executed in parallel with the two
P processes (the emitter and the collector). Each worker executes the function £() on its data
partition. Similar skeletons were developed by Cole, who also computed cost measures for them
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on a parallel architecture [54-57]. Work of a similar sort, using skeletons for reduce and map over
pairs, pipelines, and farms, is also being done by Darlington’s group at Imperial College [68].

Algorithmic skeletons are simple and abstract. However, because programs must be expressed
as compositions of the skeletons provided, the expressiveness of the abstract programming language
is open to question. None of the approaches described above addresses this explicitly, and nor is
there any natural way in which to develop algorithmic skeleton programs, either from some higher-
level abstraction or directly at the skeleton level. On the other hand, efficient implementations for
skeletons are possible, provided that they are chosen with care, and because of this, cost measures
can be provided.

4.1.3 Static and Communication-Limited.

Some skeleton approaches bound the amount of communication that takes place, usually because
they incorporate awareness of geometric information.

One such model is homomorphic skeletons based on data types, an approach that was developed
from the Bird-Meertens formalism [181]. The skeletons in this model are based on particular data
types, one set for lists, one set for arrays, one set from trees and so on. All homomorphisms on
a data type can be expressed as an instance of a single recursive and highly-parallel computation
pattern, so that the arrangement of computation steps in an implementation needs only to be done
once for each datatype.

Consider the pattern of computation and communication shown in Figure 2. Any list homo-
morphism can be computed by appropriately substituting for f and g, where g must be associative.
For example,

sum f=id, g=+

maximum f =1id, g = binary max

length f =K1, g =+ (where K is the function that always returns 1)
sort f =1id, g = merge

Thus a template for scheduling the individual computations and communications can be reused
to compute many different list homomorphisms by replacing the operations that are done as part
of the template. Furthermore, this template can also be used to compute homomorphisms on
bags (multisets), with slightly weaker conditions on the operations in the g slots — they may be
commutative, as well as associative.

The communication required for such skeletons is deducible from the structure of the data type,
so each implementation needs to construct an embedding of this communication pattern in the
interconnection topology of each target computer. Very often the communication requirements
are mild — for example, it is easy to see that list homomorphisms require only the existence of a
logarithmic depth binary tree in the target architecture interconnection network. Then all com-
munication can take place with nearest neighbors (and hence in constant time). Homomorphic
skeletons have been built for most of the standard types: sets and bags [181], lists [31, 142, 186],
trees [96], arrays [20,21], molecules [180], and graphs [177].

The homomorphic skeleton approach is simple and abstract, and the method of construction of
data type homomorphisms automatically generates a rich environment for equational transforma-
tion. The communication pattern required for each type is known as the standard topology for that
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Figure 2: A Skeleton for Computing Arbitrary List Homomorphisms

type. Efficient implementations can be built for any target computers into whose interconnection
topologies the standard topology can be embedded. Because the complete schedule of computation
and communication is determined in advance by the implementer, cost measures can be provided

[183].

Cellular processing languages are based on the execution model of cellular automata. A cellular
automaton consists of a possibly infinite n-dimensional lattice of cells. Each cell is connected to
a limited set of adjacent cells. A cell has a state chosen from a finite alphabet. The state of a
cellular automaton is a completely specified by the values of the variables at each cell. The state
of a single cell is a simple or structured variable that takes values in a finite set. The states of all
cells in the lattice are updated simultaneously in discrete time steps. Cells update their values by
using a transition function. The transition function takes as input the current state of the local
cell and some limited collection of nearby cells that lie within some bounded distance, known as a
neighborhood. Simple neighborhoods of a cell (C) in a 2D lattice are

N NNN NN
NCN NCN C
N NNN NN

Cellular processing languages, such as Cellang [75], CARPET [185], CDL, and CEPROL [173],
allow cellular algorithms to be described by defining the state of cells as a typed variable, or a
record of typed variables, and a transition function containing the evolution rules of an automaton.
Further, they provide constructs for the definition of the pattern of the cell neighborhood. These
languages implement a cellular automaton as an SIMD or SPMD program, depending on the target
architecture. In the SPMD (Single Program Multiple Data) approach, cellular algorithms are
implemented as a collection of medium-grain processes mapped onto different processing elements.
Each process executes the same program (the transition function) on different data (the state
of cells). Thus all the processes obey, in parallel, the same local rule, which results in a global
transformation of the whole automaton. Communication occurs only among neighboring cells, so
the communication pattern is known statically. This allows efficient and scalable implementations,
both on MIMD and SIMD parallel computers [44]. Moreover, cost measures can be provided.

Another model that takes geometric arrangement explicitly into account is Crystal [50, 204-206].
Crystal is a functional language with added data types, called index domains to represent geometry,
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that is locality and arrangement. The feature which distinguishes Crystal from other languages
with geometric annotations is that index domains can be transformed, and the transformations
reflected in the computational part of programs. Crystal is simple and abstract, and possesses a
transformation system based both on its functional semantics and transformations of index domains.
Index domains are a flexible way of incorporating target interconnection network topology into
derivations, and Crystal provides a set of cost measures to guide such derivations. A more formal
approach that is likely to lead to interesting developments in this area is Jay’s shapely types [123].

4.2 Parallelism Explicit.

The second major class of models are those in which parallelism is explicit in abstract programs,
but software developers do not need to be explicit about how computations are to be divided
into pieces, and how those pieces are mapped to processors and communicate. There are two main
strategies for implementing decomposition, both depending on making decomposition and mapping
computationally possible and effective. The first is to renounce temporal and spatial locality and
assume low-cost context switch, so that decomposition does not matter very much for performance.
In this situation, any decomposition is effective, so a simple algorithm can be used to compute it.
The second is to use skeletons that have a natural mapping to target processor topologies, skeletons
based on the structure of the data that the program uses.

4.2.1 Dynamic.

Dataflow [115] expresses computations as operations, which may in principle be of any size but are
usually small, with explicit inputs and results. The execution of these operations depends solely
on their data dependencies — an operation is computed after all of its inputs have been computed,
but this moment is determined only at run-time. Operations that do not have a mutual data
dependency may be computed concurrently.

The operations of a dataflow program are considered to be connected by paths, expressing data
dependencies, along which data values flow. They can be considered, therefore, as collections of
first-order functions. Decomposition is implicit, since the compiler can divide the graph repre-
senting the computation in any way. The cut edges become the places where data moves from
one processor to another. Processors execute operations in an order that depends solely on those
that are ready at any given moment. There is therefore no temporal context beyond the execution
of each single operation, and hence no advantage to temporal locality. Because operations with
a direct dependence are executed at widely different times, possibly even on different processors,
there is no advantage to spatial locality either. As a result, decomposition has little direct effect
on performance (although some caveats apply). Decomposition can be done automatically by de-
composing programs into the smallest operations and then clustering to get pieces of appropriate
size for the target architecture’s processors. Even random allocation of operations to processors
performs well on many dataflow systems.

Communication is not made explicit in programs. Rather the occurrence of a name as the
result of an operation is associated, by the compiler, with all of those places where the name is
the input of an operation. Because operations execute only when all of their inputs are present,
communication is always unsynchronized.

Dataflow languages have taken different approaches to expressing repetitive operations. Lan-
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guage such as Id [77] and Sisal [147, 148, 178] are first-order functional (or single assignment) lan-
guages. They have syntactic structures looking like loops, which create a new context for each
execution of the ‘loop body’ (so that they seem like imperative languages except that each variable
name may only be assigned to once in each context). For example, a Sisal loop with single-
assignment semantics can be written as follows:

for i in 1, N

x := A[i] + B[i]
returns value of sum x
end for

In Sisal parallelism is not explicit at the source level. However, the language run-time system
may exploit parallelism. In this example, all of the loop bodies could be scheduled simultaneously
and then their results collected.

Dataflow languages are abstract and simple, but they do not have a natural software devel-
opment methodology. They can be efficiently implemented; indeed Sisal performs competitively
with the best Fortran compilers on shared-memory architectures [148]. However, performance on
distributed-memory architectures is still not competitive. Because so much scheduling is done
dynamically at run-time, cost measures are not possible.

Ezplicit logic languages are those in which programmers must specify the parallelism explicitly
[175]. They are also called concurrent logic languages. Examples of languages in this class are
PARLOG [102], Delta-Prolog [162], Concurrent Prolog [174], GHC[195], and Strand [90].

Concurrent logic languages can be viewed as a new interpretation of Horn clauses, the process
interpretation. According to this interpretation, an atomic goal <- C can be viewed as a process,
a conjunctive goal < C1,...,Cn as a process network, and a logic variable shared between two
subgoals can be viewed as a communication channel between two processes. The exploitation of
parallelism is achieved through the enrichment of a logic language like Prolog with a set of mech-
anisms for the annotation of programs. One of these mechanisms, for instance, is the annotation
of shared logical variables to ensure that they are instantiated by only one subgoal. For example,
the model of concurrency utilized by PARLOG and Concurrent Prolog languages is based on the
CSP (Communicating Sequential Processes) model. In particular, communication channels are im-
plemented in PARLOG and Concurrent Prolog by means of logical variables shared between two
subgoals (e.g., p(X,Y), q(Y,Z)). Both languages use the guard concept to handle non-determinism
in the same way as it is used in CSP to delay communication between parallel processes until a
commitment is reached.

A program in a concurrent logic language is a finite set of guarded clauses:
H<-Gl, G2,..., Gn | B1, B2,..., Bm. n,m >0

where H is the clause head, the set Gi is the guard, and Bi is the body of the clause. Operationally
the guard is a test that must be successfully evaluated with the head unification for the clause to
be selected. The symbol | is called the commit operator, and it is used as a conjunction between
the guard and the body. If the guard is empty, the commit operator is omitted.

The declarative reading of a guarded clause is: H is true if both Gi and Bi are true. According
to the process interpretation, to solve H it is necessary to solve the guard Gi, and if its resolution
is successful, B1, B2,..., Bm are solved in parallel.
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These languages require programmers to explicitly specify, using annotations, which clauses can
be solved in parallel [191]. For example, in PARLOG the . and ; clause separators control the
search for a candidate clause. Each group of . separated clauses are tried in parallel. The clauses
following a ; are only tried if all the clauses that precede the ; have been found to be noncandidate
clauses. For instance, suppose that a relation is defined by a sequence of clauses

ci. C2; C3.

The clauses C1 and C2 will be tested for candidacy in parallel but the clause C3 will be tested only if
both C1 and C2 are found to be noncandidate clauses. Although concurrent logic languages extend
the application areas of logic programming from artificial intelligence to system-level applications,
program annotations require a different style of programming. They weaken the declarative nature
of logic programming by making the exploitation of parallelism the responsibility of the program-
mer.

Another symbolic programming language in which parallelism is made explicit by the pro-
grammer is Multilisp. The Multilisp [126] language is an extension of Lisp in which opportunities
for parallelism are created using futures. In the language implementation there is a one-to-one
correspondence between threads and futures. A future applied to an expression creates a thread
to evaluate in parallel that expression which begins immediately, that is eagerly. The expression
(future X) immediately returns a suspension for the value of X and creates a thread to concur-
rently evaluate X, allowing parallelism between the process computing a value and the process using
that value. When the value of X is computed, the value replaces the future. Futures give a model
that represents partially-computed values; this is especially significant in symbolic processing where
operations on structured data occur very often. An attempt to use the result of a future suspends
until the value has been computed. Futures are first-class objects and can be passed around re-
gardless of their internal status. The future construct creates a computation style much like that
found in the dataflow model. In fact, futures allow eager evaluation in a controlled way that fits
between the fine-grained eager evaluation of dataflow and the laziness of higher-order functional
languages.

4.2.2 Static.

Turning to models with static structure and communication, we re-encounter the skeleton concept,
but this time skeletons based around single data structures. At first glance it would seem that
monolithic operations on objects of a data type, doing something to every item of a list or array, is
a programming model of very limited expressiveness. However, it turns out to be a powerful way
of describing many interesting algorithms.

Data parallelism arose historically from the attempt to use computational pipelines. Algorithms
were analysed for situations in which the same operation applied repeatedly to different data and
where the separate applications did not interact. Such situations exploit vector processors to
dramatically reduce the control overhead of the repetition, since pipeline stalls are guaranteed not
to occur because of the independence of the steps. With the development of SIMD computers, it was
quickly realised that vectorisable code is also SIMD code, except that the independent computations
proceed simultaneously instead of sequentially. SIMD code can be efficiently executed on MIMD
computers as well, so vectorisable code situations can be usefully exploited by a wide range of
parallel computers.
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Such code situations often involve arrays, and can be seen more abstractly as instance of maps,
the application of a function to each element of a data structure. Having made this abstraction,
it is interesting to ask what other operations might be useful to consider as applied monolithically
to a data structure, and many answers have been suggested. Thus data parallelism is a general
approach in which programs are compositions of such monolithic operations applied to objects of
a data type, and producing results of that same type.

We distinguish two approaches to describing parallelism: the first based on (parallel) loops, and
the second based on monolithic operations on data types.

Consider Fortran with the addition of a ForAll loop, in which iterations of the loop body are
conceptually independent and can be executed concurrently. For example, a ForAll statement
such as

ForAll (I = 1:N, J = 1:M)
A(I,J) = I x B(J)

on a parallel computer can be executed in parallel. Care must be taken to ensure that the loops
do not reference the same locations, for example by indexing the same element of an array via
a different index expression. This cannot be checked automatically in general, so most Fortran
dialects of this kind place the responsibility on the programmer to make the check. Such loops are
maps, although not always over a single data object.

Many Fortran dialects such as Fortran-D [194] and High Performance Fortran (HPF) [116, 187]
start from this kind of parallelism and add more direct data parallelism by including constructs for
specifying how data structures are to be allocated to processors, and operations to carry out other
data-parallel operations, such as reductions. In particular, HPF is a parallel language based on
Fortran—90, Fortran D, and SIMD Fortran. It includes the Align directive to specify that certain
data are to be distributed in the same way as certain other data. For instance

'HPF$ Align X (:,:) with D (:,:)

aligns X with D. Further, the Distribute directive specifies a mapping of data to processors; for
example
'HPF$ Distribute D2 (Block, Block)

specifies that the processors are to be considered a two-dimensional array, and the points of D2 are
to associate with processors in this array in a blocked fashion. HPF offers also a directive to inform
the compiler that operations in a loop can be executed independently (in parallel). For example,
the following code asserts that A and B do not share memory space

'HPF$ Independent
Do I =1, 1000
A(I) = B(I)
end Do

Other related languages are Pandore II [6-8,124] and C** [134]. This work is beginning to
converge with skeleton approaches: for example Darlington’s group have developed a Fortran ex-
tension that uses skeletons [69]. Another similar approach is the latest language in the Modula
family, Modula 3* [112]. Modula 3* supports forall-style loops over data types in which each loop
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body executes independently, and the loop itself ends with a barrier synchronization. It is compiled
to an intermediate language that is very similar in functionality to HPF.

Data-parallel languages based on data types other than arrays have also been developed. Some
examples are: parallel SETL [120,121], parallel sets [130, 131], match and move [176], Gamma
[19, 60, 158], and PEI [200]. Parallel SETL is an imperative-looking language with data-parallel
operations on bags. For example, the inner statement of a matrix multiplication looks like

c(i,j) := +/{a(i,k) * b(k,j) : k over {1..n}}

Gamma is a language with data-parallel operations on finite sets. For example, the code to find
the maximum element of a set is

maxM:=x:M,y:M = x: M+~ x>y

which specifies that any pair of elements x and y may be replaced in a set by the element x, provided
the value in x is larger than the value in y.

There are also models based on arrays, but which derive from APL rather than Fortran. These
include Mathematics of Arrays (MOA) [156], and Nial and Array Theory [154].

Data-parallel languages simplify programming because operations that require loops in lower-
level parallel languages can be written as single operations (which are also more revealing to the
compiler since it does not have to try and infer what pattern was intended by the programmer).
With a sufficiently-careful choice of data-parallel operations, some program transformation capa-
bility is often achieved. The natural mapping of data-parallel operations to architectures, at least
for simple types, makes efficient implementations, and also cost measures, possible.

4.2.3 Static and Communication-Limited.

The data-parallel languages of the previous section were developed with program construction
primarily in mind. There are another set of similar languages whose inspiration was primarily
architectural features. Because of these origins, they typically pay more attention to the amount
of communication that takes place in computing each operation.

A wide variety of languages were developed whose basic operations were data-parallel list op-
erations, inspired by the architecture of the Connection Machine 2. These often included a map
operation, some form of reduction, perhaps using only a fixed set of operators, and later scans
(parallel prefixes) and permutation operations. In approximately chronological order, these models
are: scan [32], multiprefix [170], paralations [100, 171], the C* data—parallel language [111, 165], the
scan-vector model and NESL [33-38], and CamlFlight [109]. As for other data-parallel languages,
these models are simple and fairly abstract. For instance, C* is an extension of the C language
that incorporate features of the SIMD parallel model. In C* data parallelism is implemented by
defining data of parallel kind. C* programs map variables of a particular data type, defined as
parallel by the keyword poly, to separate processing elements. In this way each processing element
executes in parallel the same statement for each instance of the specified data type. Data—parallel
languages usually provide efficient implementations, at least on some architectures, by design, and
for the same reason have accurate cost measures. Their weakness is that the choice of operations
is made on the basis of what can be efficiently implemented, so that there is no basis for a formal
software development methodology.
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Figure 3: A BSP superstep

4.3 Decomposition Explicit.

Models of this kind require abstract programs to specify the pieces into which they are to be divided
but the placement of these pieces on processors and the way in which they communicate does not
have to be described so explicitly.

4.3.1 Static.

The only examples in this class are those that renounce locality, which ensures that placement does
not matter to performance.

Bulk synchronous parallelism (BSP) [143,144,146,196-198] is a model in which interconnec-
tion network properties are captured by a few architectural parameters. A BSP abstract machine
consists of a collection of p abstract processors, each with local memory, connected by an inter-
connection network whose only properties of interest are the time to do a barrier synchronization
(1), and the rate at which randomly-addressed data can continuously be delivered (g). These BSP
parameters are determined experimentally for each parallel computer.

A BSP (abstract) program consists of p threads and is divided into supersteps. Each superstep
consists of: a computation in each processor, using only locally-held values; a global message
transmission from each processor to any set of the others; and a barrier synchronization. At the
end of a superstep, the results of global communications become visible in each processor’s local
environment. A superstep is shown in Figure 3. If the maximum local computation on a step takes
time w, and the maximum number of values sent by or received by any processor is h then the total
time for a superstep is given by

t=w+hg+1

(where g and [ are the network parameters above) so that it is easy to determine the cost of a
program. This time bound depends on randomizing the placement of threads, and using randomized
or adaptive routing to bound communication time.

Thus BSP programs must be decomposed into threads, but the placement of threads is then

28



done automatically. Communication is implied by the placement of threads, and synchronization
takes place across the whole program. The model is simple, fairly abstract, but lacks a software
construction methodology. The cost measures give the real cost of a program on any architecture,
and implementations are as efficient as any BSP program could be (but there could be other
programs in a different style that were more efficient).

The current implementation of BSP uses an SPMD library that can be invoked from C and
Fortran. The library provides operations to put data into the local memory of a remote process,
to get data from a remote process, and to synchronize. We illustrate with a small program to
compute prefix sums:

int prefixsums(int x) {
int i, left, right;
bsp_pushregister (&left,sizeof (int)) ;
bsp_sync () ;

right = x;
for(i=1;i<bsp_nprocs();i*=2) {
if (bsp_pid()+i < bsp_nprocs())
bsp_put (bsp_pid()+i,&right,&left,0,sizeof (int));
bsp_sync();
if (bsp_pid()>=i) right = left + right;
}
bsp_popregister (&left) ;
return right;

The bsp_pushregister and bsp_popregister calls are needed so that each process can refer to
variables in remote processes by name, even though they might have been allocated in heap or
stack storage.

Another related approach is LogP [61], which uses similar threads with local contexts, updated
by global communications. However, LogP does not have an overall barrier synchronization. The
LogP model is intended to serve as an abstract model that is able to captures the technological
reality of parallel computation. LogP models parallel computations using four parameters: the
latency (L), overhead (o), bandwidth (g) of communication, and the number of processors (P). A
set of programming examples have been designed with the LogP model and implemented on the
CM-5 parallel machine to evaluate the model’s usefulness. However, the LogP model is no more
powerful than BSP [30], so BSP’s simpler style is perhaps to be preferred.

4.4 Mapping Explicit.

Models in this class require abstract programs to specify how programs are decomposed into pieces
and how these pieces are placed, but they provide some abstraction for the communication actions
among the pieces. The hardest part about describing communication is the necessity to label
the two ends of each communication action to say that they belong together, and to ensure that
communication actions are properly matched. Given the number of communications in a large
parallel program, this is a tedious burden to place on software developers. All of the models in this
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class try to reduce this burden, by decoupling the ends of the communication from each other, by
providing higher-level abstractions for patterns of communication, or by providing better ways of
specifying communication.

4.4.1 Dynamic

Coordination languages simplify communication by separating the computation aspects of programs
from their communication aspects, and providing a separate language in which to specify commu-
nication. This separation makes the computation and communication orthogonal to each other, so
that a particular coordination style can be applied to any sequential language.

The best known example is Linda [4, 46-48], which replaces point-to-point communication with
a large shared pool into which data values are placed by processes, and from which they are retrieved
associatively. This shared pool is known as a tuple space. The Linda communication model contains
three communication operations: in which removes a tuple from tuple space, based on its arity and
the values of some of its fields, filling in the remaining fields from the retrieved tuple; read (rd)
which does the same except that it copies the tuple from tuple space, and out which places a tuple
in tuple space. For example, the read operation

rd("Canada", ?X, "USA")

searches the tuple space for tuples of three elements, first element “Canada” and last element
“USA”, and middle element of the same type as variable X. Besides these three basic operations,
Linda provides the eval(t) operation that implicitly creates a new process to evaluate the tuple
and insert it in the tuple space.

The Linda operations decouple the send and receive parts of a communication — the “sending”
thread does not know the “receiving” thread, not even if it exists. Although the model for finding
tuples is associative matching, implementations typically compile these away, based on patterns
visible at compile time. The Linda model requires programmers to manage the threads of a program,
but reduces the burden imposed by managing communication. Unfortunately, a tuple space is not
necessarily efficiently implementable, so that the model cannot provide cost measures — worse,
Linda programs can deadlock. Another important issue is a software development methodology.
To address this issue a high-level programming environment, called the Linda Program Builder
(LPB), has been implemented to support the design and development of Linda programs [3]. The
LPB environment guides a user through program design, coding, monitoring, and execution of
Linda software.

Non-message communication languages reduce the overheads of managing communication by
disguising communication in ways that fit more naturally into threads. For example, ALMS [11, 161]
treats message passing as if the communication channels were memory mapped. Reference to certain
message variables appearing in different threads behaves like a message transfer from one to the
others. PCN [89, 91, 92] and Compositional C++ also hide communication by single-use variables.
An attempt to read from one of these variables blocks the thread if a value has not already been
placed in it by another thread. These approaches are very similar to the use of full/empty bits on
variables, an old idea coming back to prominence in multithreaded architectures.

In particular, the PCN (Program Composition Notation) language is based on two simple con-
cepts, concurrent composition and single-assignment variables. In PCN single-assignment variables
are called definitional variables. Concurrent composition allows parallel execution of statement
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blocks to be specified, without specifying how the composed blocks are to be mapped to processors.
Processes that shares a definitional variable can communicate with each other through it. For
instance, in the parallel composition

{ Il producer(X), consumer(X)}

the two processes producer and consumer can use X to communicate regardless of their location
on the parallel computer.

The logical extension of mapping communication to memory is virtual shared memory, in which
the abstraction provided to the program is of a single, shared address space, regardless of the
real arrangement of memory. This requires remote memory references either to be compiled into
messages or to be effected by messages at run-time. So far, results have not suggested that this
approach is scalable, but it is an ongoing research area [53, 138, 169, 201].

Annotated functional languages make the compiler’s job easier by allowing programmers to
provide extra information about suitable ways to partition the computation into pieces and place
them [129]. The same reduction rules apply, so that the communication and synchronization
induced by this placement follows in the same way as in pure graph reduction.

An example of this kind of languages is Paralf [118]. Paralf is a functional language based on
lazy evaluation, that is an expression is evaluated on demand. However, Paralf allows a user to
control the evaluation order by explicit annotations. In Paralf communication and synchronization
are implicit, but it provides a mapping notation to specify which expression’s are to be evaluated
on which processor. An expression followed by the annotation $on proc will be evaluated on the
processor identified by proc. For example, the expression

(f(x) $on ($self+1)) * (h(x) $on ($self))

denotes the computation of the f (x) subexpression on a neighbor processor in parallel with the
execution of h(x).

Remote Procedure Call. The remote procedure call (RPC) mechanism is an extension of the
traditional procedure call. An RPC is a procedure call between two different processes, the caller
and the receiver. When a process calls a remote procedure on another process, the receiver executes
the code of the procedure and passes back to the caller the output parameters. Like rendezvous,
RPC is a synchronous cooperation form. During the execution of the procedure, the caller is
blocked and is reactivated by the arrival of the output parameters. Full synchronization of RPC
might limit the exploitation of a high degree of parallelism among the processes that compose a
concurrent program. In fact, when a process P calls a remote procedure r of a process T, the caller
process P remains idle until the execution of r terminates, even if P could execute some other
operation during the execution of r. To partially limit this effect, most new RPC-based systems
use lightweight threads. Languages based on the remote procedure call mechanism are DP [110],
Cedar [81], and Concurrent CLU [59].

4.4.2 Static

Graphical languages simplify the description of communication by allowing it to be inserted graph-
ically and at a higher, structured level. For example, the language Enterprise [141,190] classifies
program units by type and inserts some of the communication structure automatically based on
type. The metaphor is of an office, with some program units communicating only through a
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‘secretary’, for example. Parsec [88] allows program units to be connected using a set of prede-
fined connection patterns. Code [159] is a high-level dataflow language in which computations are
connected together graphically, and a firing rule and result-passing rule are associated with each
computation. Decomposition in these models is still explicit, but communication is both more
visible and simpler to describe. The particular communication patterns available are chosen for
applicability reasons rather than efficiency, so efficient implementations are not guaranteed, and
nor are cost measures.

Coordination languages with contexts extend the Linda idea. One of the weaknesses of Linda
is that it provides a single global tuple space and thus prevents modular development of software.
A model that extends Linda by including ideas from Occam is the language Ease [207-210]. Ease
programs have multiple tuple spaces, which are called contezrts and may be visible only to some
threads. Because those threads that may access a particular context are known, contexts take on
some of the properties of Occam-like channels. Threads read and write data to contexts as if they
were Linda tuple spaces, with associative matching for reads and inputs. However, they may also
use a second set of primitives that move data to a context and relinquish ownership of the data,
or retrieve data from a context and remove it from the context. Such operations can use pass-by-
reference since they guarantee that the data will only be referenced by one thread at a time. Ease
has many of the same properties as Linda, but makes it easier to build efficient implementations.
Fase also helps with decomposition by allowing process structuring in the style of Occam.

Another related language is ISETL-Linda [74], which is an extension to the SETL paradigm
of computing with sets as aggregates. It adds Linda-style tuple spaces as a data type, and treats
them as first-class objects. To put it another way, ISETL-Linda resembles a data-parallel language
in which bags are a data type, and associative matching is a selection operation on bags. Thus
ISETL-Linda can be seen as extending SETL-like languages with a new data type, or as extending
Linda-like languages with skeletons.

A language of the same kind derived from Fortran is Opus [149]. It is a language with both
task and data parallelism, but communication is mediated by shared data abstractions. These are
autonomous objects that are visible to any subset of tasks, but which are internally sequential,
that is only one method within each object is active at a time. They are a kind of generalization
of monitors.

4.4.3 Static and Communication-Limited

Communication skeletons extend the idea of prestructured building blocks to communication [182].
A communication skeleton is an interleaving of computation steps, which consist of independent
local computations, and communication steps, which consist of fixed patterns of communication in
an abstract topology. These patterns are collections of edge-disjoint paths in an abstract topology,
each of which functions as a broadcast channel. Figure 4 shows a communication skeleton using
two computation steps, interleaved with two different communication patterns. This model is a
blend of ideas from BSP and from algorithmic skeletons, together with concepts such as adaptive
routing and broadcast that are supported by new architectural designs. The model is moderately
architecture-independent because communication skeletons can be built assuming a weak target
topology, and then embedding results used to build implementations for targets with richer inter-
connection topologies. It can be efficiently implemented and does have cost measures.

32



Processors

| [

<

Figure 4: A Communication Skeleton

4.5 Communication Explicit.

Models in this class require communication to be explicit, but reduce some of the burden of synchro-
nization associated with it. Usually this is done by having an asynchronous semantics: messages are
delivered but the sender cannot depend on when it will happen, and delivery of multiple messages
may be out of order.

4.5.1 Dynamic.

Process nets resemble dataflow in the sense that operations are independent entities that respond
to the arrival of data by computing and possibly sending on other data. The primary differences
are that the operations may individually decide what their response to data arrival will be, and
may individually decide to change their behavior. They therefore lack the global state that exists,
at least implicitly, in dataflow computations.

The most important model in this class is actors [1,22,23]. Actor systems consist of collec-
tions of objects called actors, each of which has an incoming message queue. An actor repeatedly
executes the following sequence: read the next incoming message, send messages to other actors
whose identity it knows, and define a new behavior that governs its response to the next message.
Names of actors are first-class objects and may be passed around in messages. Messages are deliv-
ered asynchronously and unordered. However, efficient implementations of actors are not possible
without restricting the total communication, and the distributed nature of the model makes this
impossible to do. This and the nature of the communication delivery system makes cost measures
impossible. The actor model is quite low level, but it is straightforward and modular.

A different kind of process net is provided by the language Darwin [76, 167] which is based on the
m-calculus. The language provides a semantically-well-founded configuration subset for specifying
how ordinary processes are connected and how they communicate. Unlike most configuration
languages, the binding of the semantics of communication to connections is dynamic.

One of the weaknesses of the actor model is that an actor processes its message queue sequen-
tially and this can lead to bottlenecks. Two extensions of the model that address this issue have
been proposed: Concurrent Aggregates [51,52] and ActorSpace [2]. Concurrent Aggregates (CA)
is an object-oriented language well-suited to exploit parallelism on fine-grain massively-parallel
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computers. In it, unnecessary sources of serialization have been avoided. An aggregate in CA is
an homogeneous collection of objects (called representatives) that are grouped together and may
be referenced by a single aggregate name. Each aggregate is multi-access, so it may receive sev-
eral messages simultaneously, unlike other object-oriented languages such as the actor model and
ABCL/1. Concurrent aggregates incorporates many other innovative features like delegation, intra-
aggregate addressing, first-class messages, and user continuations. Delegation allows the behavior of
an aggregate to be constructed incrementally from that of many other aggregates. Intra-aggregate
addressing makes cooperation among parts of an aggregate possible.

The ActorSpace model extends the actor model to avoid unnecessary synchronizations. In
the ActorSpace model, communications are asynchronous, so an actor sending a message need
not block its execution until the recipient is ready to receive or process the message. Thus pro-
grammers are freed from explicitly specifying code to manage messages when an actor is not in
a state to process them. By not creating unnecessary data dependencies, the message-driven ap-
proach of the ActorSpace model allows maximum concurrency to be exploited. An actor space
is a computationally-passive container of actors that acts as a context for matching patterns. In
fact, the ActorSpace model uses a communication model based on destination patterns. Patterns
are matched against listed attributes of actors and actor spaces that are visible in the actor space.
Messages can be sent to one arbitrary member of a group or broadcast to all members of a group
defined by a pattern.

External OO models. Actors are regarded as existing whether or not they are being commu-
nicated with. A superficially similar approach, but one which is quite different underneath, is to
extend sequential object-oriented languages so that more than one thread is active at a time. There
are two ways to do this. The first, which we have called external object-orientation, is to allow
multiple threads of control at the highest level of the language. Objects retain their traditional
role of collecting together code that logically belongs together. Object state can now act as a com-
munication mechanism since it can be altered by a method executed by one thread, and observed
by a method executed as part of another thread. The second approach, which we call internal
object orientation, encapsulates parallelism within the methods of an object, but the top level of
the language appears sequential. It is thus closely related to data-parallelism. We return to this
second case later, but here we concentrate on external OO models and languages.

Some interesting external object-based models are ABCL/1 [80], ABCL/R [82], POOL-T [5],
EPL [78], Emerald [79], and Concurrent Smalltalk [83]. In these languages, parallelism is based on
assigning a thread to each object, and asynchronous message passing is used to increase concurrency
further. EPL is an object-based language that influenced the design of Emerald. In Emerald all
entities are objects that can be passive (data) or active. Each object consists of four parts: a name,
a representation (data), a set of operations and an optional process that can run in parallel with
invocations of object operations. Active objects in Emerald can be moved from one processor to
another. Such a move can be initiated by the compiler or by the programmer using simple language
constructs. The primary design principles of ABCL/1 (An Object-Based Concurrent Language)
are practicality and clear semantics of message passing. Three types of message passing are defined:
past, now, and future. The now mode operates synchronously, whereas the past and future modes
operate asynchronously. For each of the three message passing mechanisms ABCL/1 provides two
distinct modes, ordinary and ezpress, which correspond to two different message queues. To give
an example, past type message passing in ordinary and ezpress modes is respectively

[Obj <= msg] and [0bj <<= msg]
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where 0Obj is the receiver object and msg is the sent message.

In ABCL/1 independent objects can execute in parallel, but, like the actor model, messages are
processed serially within an object. Though message passing in ABCL/1 programs may take place
concurrently, no more than one message can arrive at the same object simultaneously. This limits
the concurrency between objects. An extension of ABCL/1 is ABCL/R where reflection has been
introduced.

Objects and processes. Parallelism in external object-oriented languages can be exploited in two
principal ways: using the objects as the unit of parallelism by assigning one or more processes to
each object, or defining processes as components of the language. In the first approach, languages
are based on active objects. Each process is bound to a particular object for which it is created.
In the latter approach two different kinds of entities are defined, objects and processes. A process
is not bound to a single object, but it is used to perform all the operations required to satisfy an
action. Therefore, a process can execute within many objects, changing its address space when
an invocation to another object is made. Whereas the object-oriented models discussed before use
the first approach, systems like Argus [140] and Presto [28] use the second approach. In this case,
languages provide mechanisms for creating and controlling multiple processes external to the object
structure.

Argus supports coarse-grain and medium-grain objects, and dynamic process creation. In Argus
guardians contain data objects and procedures. A guardian instance is created dynamically by a
call to a creator procedure and it can be explicitly mapped to a processor:

guardianType$creator(parameters) processor X

The expense of dynamic process creation is reduced by maintaining a pool of unused processes. A
new group of processes is created only when the pool is emptied. In these models, parallelism is
implemented on top of the object organization and explicit constructs are defined to ensure object
integrity. It is worth noticing that these models were developed for programming coarse-grain
programs in distributed systems, not tightly-coupled, fine-grain parallel machines.

Active messages is an approach that decouples both communication and synchronization by
treating messages as active objects rather than passive data. Essentially a message consists of two
parts: a data part, and a code part that executes on the receiving processor when the message has
been transmitted. Thus a message changes into a process when it arrives at its destination. There
is therefore no synchronization with any process at the receiving end, and hence a message ‘send’
does not have a corresponding ‘receive’. This approach is used in the Movie system [86], and the
language environments for the J-machine [52, 62, 160].

4.5.2 Static.

Internal object-oriented languages. We now return to object-oriented languages in which parallelism
occurs within single methods. The Mentat Programming Language (MPL) is an parallel object-
oriented system designed to address the problems of developing architecture-independent parallel
applications. The Mentat system integrates a data-driven computation model with the object-
oriented paradigm. The data-driven model supports a high degree of parallelism, while the object-
oriented paradigm hides much of the parallel environment from the user. MPL is an extension
of C++ which supports both intra- and inter-object parallelism. The compiler and the run-time
support of the language are designed to achieve high performance. The language constructs are
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mapped to the macro dataflow model that is the computation model underlying Mentat. Tt is
a medium-grain data-driven model in which programs are represented as directed graphs. The
vertices of the program graphs are computation elements that performs some function. The edges
model data dependencies between the computation elements. The compiler generates code to
construct and execute data dependency graphs. Thus interobject parallelism in Mentat is largely
transparent to the programmer. For example, suppose that A, B, C, D, E, and M are vectors and
consider the statements

=
I

vect_op.add (B,C);
vect op.add (A, vect op.add (D,E));

=
I

The Mentat compiler and run-time system detect that the two additions (B 4+ C) and (D + E) are
not data dependent on one another and can be executed in parallel. Then the result is automatically
forwarded to the final addition. That result will be forwarded to the caller and associated with
M. In this approach the programmer makes granularity and partitioning decisions using Mentat
class definition constructs, while the compiler and the run-time support manage communication
and synchronization [103-108, 150].

4.5.3 Static and Communication-Limited.

Systolic arrays. A systolic array is a gridlike architecture of processing elements or cells that process
data in an n-dimensional pipelined fashion. By analogy with the systolic dynamics of the heart,
systolic computers perform operations in a rhythmic, incremental, and repetitive manner [133] and
pass data to neighbor cells along one or more directions. In particular, each computing element
computes an incremental result and the systolic computer derives the final result by interpreting the
incremental results from the entire array. A parallel program for a systolic array must specify how
data are mapped onto the systolic elements and the data flow through the elements. In particular
high-level programmable arrays allow the developments of systolic algorithms by the definition
of inter- and intra-cell concurrency, and cell-to-cell data communication. Clearly, the principle
of rhythmic communication separates systolic arrays from other parallel computers. However,
even if high-level programmability of systolic arrays creates a more flexible systolic architecture,
penalties can occur because of complexity and possible slowing of execution due to the problem
of data availability. High-level programming models are necessary for promoting widespread use
of programmable systolic arrays. One example is the language Alpha [70], where programs are
expressed as recurrence equations. These are transformed into systolic form by regarding the data
dependencies as defining an affine space which can be geometrically transformed.

4.6 Everything Explicit.
The next category of models are those that do not hide much detail of decomposition and commu-

nication. Most of the first-generation models of parallel computation are at this level, designed for
a single architecture style, explicitly managed.
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4.6.1 Dynamic.

Most models provide a particular paradigm for handling partitioning, mapping, and communica-
tion. There are a few models that have tried to be general enough to provide multiple paradigms,
for example Pi [63,202], by providing sets of primitives for each style of communication. Such
models can be efficiently implemented and can have cost measures, but they make the task of
software construction difficult because of the amount of detail that must be given about a compu-
tation. Another set of models of the same general kind are the programming languages Orca [18]
and SR [9,10]. Orca is an object-based language which uses shared data-objects for interprocess
communication. The Orca system is a hierarchically-structured set of abstractions. At the lowest
level, reliable broadcast is the basic primitive so that writes to a replicated structure can rapidly
take effect throughout a system. At the next level of abstraction, shared data are encapsulated in
passive objects that are replicated throughout the system. Parallelism in Orca is expressed through
explicit process creation. A new process can be created through the fork statement

fork proc name (params) [on (cpu_number)]

The on part optionally specifies the processor on which to run the child process. The parameters
specify the shared data-objects that are used for communication between the parent and the child
processes. Synchronizing Resources (SR) is based on the resource concept. A resource is a module
that can contain several processes. A resource can be dynamically created by the create command
and its processes can communicate by the use of semaphores. Processes belonging to different
resources can communicate using only a restricted set of operations explicitly defined in the program
as procedures.

There are a much larger set of models or programming languages based on a single communi-
cation paradigm. We consider three paradigms: message passing, shared memory, and rendezvous.

Message passing is the basic communication technology provided on distributed-memory MIMD
architectures, and so message-passing systems are available for all such machines. The interfaces
are low level, using sends and receives to specify the message to be exchanged, process identifier
and address.

It was quickly realised that message-passing systems look much the same for any distributed-
memory architecture, so it was natural to build standard interfaces to improve the portability of
message-passing programs. The most recent example of this is MPI (Message Passing Interface)
[72, 153], which provides a rich set of messaging primitives, including point-to-point communication,
broadcasting, and the ability to collect processes in groups and communicate only within each group.
MPI has been defined to become the standard message passing interface for parallel applications
and libraries [73]. Point-to-point communications are based on send and receive primitives

MPI Send (buf, bufsize, datatype, dest, ..... )
MPI Recv (buf, bufsize, datatype, source, ..... )

Moreover, MPI provides primitives for collective communication and synchronization such as
MPI Barrier, MPI Bcast, and MPI_Gather. In its first version, MPI does not make provision for
process creation, but in the MPI2 version additional features for active messages, process start-up,
and dynamic process creation are provided.

More architecture-independent message-passing models have been developed to allow transpar-
ent use of networks of workstations. In principle, such networks have much unused compute power
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to be exploited. In practice, the large latencies involved in communicating among workstations
make them low-performance parallel computers. Models for workstation message-passing include
systems such as PVM [24-27, 94,188, 189], Parmacs [113,114], and p4 [43]. Such models are ex-
actly the same as inter-multiprocessor message-passing systems, except that they typically have
much larger-grain processes to help conceal the latency, and they must address heterogeneity of the
processors. For example, PVM (Parallel Virtual Machine) has gained widespread acceptance as a
programming toolkit for heterogeneous distributed computing. It provides a set of primitives for
process creation and communication that can be incorporated into existing procedural languages
in order to implement parallel programs. In PVM a process is created by the pvm_spawn() call.
For instance, the statement

proc.num = pvm_spawn ("progril", NULL, PVMTaskDefault, O, n_proc)

spawns n_proc copies of the program progri. The actual number of processes started is returned
to proc_num. Communication between two processes can be implemented by the primitives

pvm_send (proc_id, msg) and pvm_rec (proc_id, msg).

For group communication and synchronization the functions pvm_bcast (), pvm_mcast (), pvm_barrier ()
can be used.

Using PVM and similar models, programmers must do all of the decomposition, placement,
and communication explicitly. This may be further complicated by the need to deal with several
different operating systems to communicate this information to the messaging software. Such
models may become more useful with the increasing use of optical interconnection and ATM for
connecting workstations.

Shared-memory communication is a natural extension of techniques used in operating systems,
but multiprogramming is replaced by true multiprocessing. Models for this paradigm are therefore
well understood. Some aspects change in the parallel setting. On a single processor it is never
sensible to busy-wait for a message, since this denies the processor to other processes; it might
be the best strategy on a parallel computer since it avoids the overhead of two context switches.
Shared-memory parallel computers typically provide communication using standard paradigms such
as shared variables and semaphores. This model of computation is an attractive one since issues
of decomposition and mapping are not important. However, it is closely linked to a single style of
architecture, so that shared-memory programs are not portable.

An important shared-memory programming language is Java [135], which has become popular
because of its connection with platform-independent software delivery on the Web. Java is thread-
based, and allows threads to communicate and synchronize using condition variables. Such shared
variables are accessed from within synchronized methods. A critical section enclosing the text
of the methods is automatically generated. These critical sections are rather misleadingly called
monitors. However, notify and wait operations must be explicitly invoked within such sections,
rather than being automatically associated with entry and exit. There are many other thread
packages available providing lightweight processes with shared-memory communication [40, 41, 87,
155].

Rendezvous. Rendezvous-based programming models are distributed-memory paradigms using a
particular cooperation mechanism. In the rendezvous communication model, an interaction between
two processes A and B takes place when A calls an entry of B, and B executes an accept for that
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entry. An entry call is similar to a procedure call and an accept statement for the entry contains a
list of statements to be executed when the entry is called. The best known parallel programming
languages based on rendezvous cooperation are Ada [157] and Concurrent C [93]. Ada was designed
on behalf of the U.S. Department of Defense mainly to program real-time applications both on
sequential and parallel distributed computers. Parallelism in the Ada language is based on processes
called tasks. A task can be created explicitly or can be statically declared. In this latter case, a
task is activated when the block containing its declaration is entered. Tasks are composed of a
specification part and a body. As discussed before, this mechanism is based on entry declarations,
entry calls, and accept statements. Entry declarations are only allowed in the specification part of
a task. Accept statements for the entries appear in the body of a task. For example, the following
accept statement executes the operation when the entry square is called.

accept SQUARE (X: INTEGER; Y: out INTEGER) do
Y := X *x X;
end;

Other important features of Ada for parallel programming are the use of the select statement,
which is similar to the CSP ALT command for expressing nondeterminism and the exception-
handling mechanism for dealing with software failures. On the other hand, Ada does not address
the problem of mapping tasks onto multiple processors and does not provide conditions to be
associated with the entry declarations.

Recent surveys of such models can be found in [17, 84, 101].

4.6.2 Static.

Most low-level models allow dynamic process creation and communication. An exception is Occam
[125], in which the process structure is fixed, and communication takes place across synchronous
channels. Occam programs are constructed from a small number of primitive constructs: assign-
ment, input (?), and output (!). To design complex parallel processes, primitive constructs can be
combined using the parallel constructor

PAR
Proci
Proc2

The two processes are executed in parallel and the PAR constructor terminate only after all of
its components have terminated. An alternative constructor (ALT) implements nondeterminism. It
waits for input from a number of channels and then executes the corresponding component process.
For example, the following code

ALT
request 7 data
DataProc
exec 7 oper
ExecProc
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waits to get a data request or an operation request. The process corresponding to the selected
guard is executed.

Occam has a strong semantic foundation in CSP [117], so that software development by trans-
formation is possible. However, it is so low-level that this is only practical for small or critical
applications.

4.7 PRAM.

A final model that must be considered is the PRAM model [128], which is the basic model for
much theoretical analysis of parallel computation. The PRAM abstract machine consists of a set
of processors, capable of executing independent programs but doing so synchronously, connected
to a shared-memory. All processors can access any location in unit time, but they are forbidden to
access the same location on the same step.

The PRAM model requires very detailed descriptions of computations, giving the code for each
processor, and ensuring that memory conflict is avoided. The unit-time memory access part of the
cost model cannot be satisfied by any real machine, so the cost measures of the PRAM model are
not accurate. Nor can they be made accurate in any uniform way, because the real cost of accessing
memory for an algorithm depends on the total number of accesses and the pattern in which they
occur. One attempt to provide some abstraction from the PRAM is the language FORK [137].

A good overview of models aimed at particular architectures can be found in [145].

5 Summary

We have presented an overview of parallel programming models and languages, using a set of six
criteria that an ideal model should satisfy. Four of the criteria relate to the need to be able to use
the model as a target for software development. They are: ease of programming, the existence of a
methodology for constructing software that handles issues such as correctness, independence from
particular architectures, and simplicity and abstractness. The two remaining criteria address the
need for execution of the model on real parallel machines. They are: efficient implementability, and
the existence of costs that can be inferred from the program. Together these ensure predictable
performance for programs.

We have assessed models by how well they satisfy these criteria, dividing them into six classes,
ranging from the most abstract, which generally satisfy software development criteria but not
predictable performance criteria, to very concrete models, that provide predictable performance
but make it hard to construct software.

The models we have described represent an extremely wide variety of approaches at many
different levels. Overall, some interesting trends are visible:

e Work on low-level models, in which the description of computations is very explicit, has
diminished significantly. We regard this as a good thing, since it shows that the importance
of abstraction is being realised by the research community.

e There is a concentration on models in the middle range of abstraction, with a great deal of
ingenuity being applied to concealing aspects of parallel computations, while struggling to
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retain the maximum expressiveness. This is also a good thing, since trade-offs among expres-
siveness, software development complexity, and runtime efficiency are subtle. Presumably a
blend of theoretical analysis and practical experimentation is the most likely road to success,
and this strategy is being applied.

e There are some very abstract models that also provide predictable and useful performance on
a range of parallel architectures. Their existence raises the hope that models satisfying all of
the properties with which we began will eventually be constructed.

These trends show that parallel programming models are leaving low-level approaches and moving
towards more abstract approaches, in which languages and tools make simpler the task of designers
and programmers. At the same time these trends provide for more robust parallel software with
predictable performance.

This scenario brings many benefits for parallel software development. Models, languages, and
tools represent an intermediate level between users and parallel architectures, and may allow the
simple and effective utilization of parallel computation in many application areas. The availability
of models and languages that abstract from architecture complexity has a significant impact on the
parallel software development process and from there on the widespread use of parallel computing
systems.

Thus we can hope that, within a few years, there will be models that are easy to program,
providing at least moderate abstraction, that can be used with a wide range of parallel computers,
making portability a standard feature of parallel programming, that are easy to understand, and
that can be executed efficiently. It will take longer for software development methods to come into
general use, but that should be no surprise because we are still struggling with software development
for sequential programming. Being able to compute costs for programs is possible for any model
with predictable performance, but integrating such costs into software development in a useful way
is much more difficult.
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