
www.ud.com

Desktop Grid Computing

Ashok Adiga
United Devices, Inc., Austin, Tx
Ashok@ud.com
(512) 294-4198

www.ud.com

Outline
Introduction to Desktop Grid Computing
UD Metaprocessor Overview
Desktop Grid Applications
Programming on the Metaprocessor
Conclusions

www.ud.com

What is the Grid?

“Software and technology infrastructure to
support the coordination and sharing of
resources in dynamic, distributed virtual
organizations.”

From “Physiology of the Grid”, by Foster, Kesselman, Nick & Tuecke

www.ud.com

What does this mean?
Resources can be compute cycles, data,
applications, storage and network IT resources
Virtual organizations can be intra-enterprise or
inter-enterprise

Departmental boundaries not necessarily defined by
location

Desktop Grid computing has always been
about coordinating resources for “virtual”
supercomputing

www.ud.com

Typical Grid Computing Resources
Supercomputers

High Speed, Reliable, Very Expensive
Low overhead communication (typically shared memory)
10s of CPUs

Clusters
High Speed, Reliable, Moderately Expensive
Low overhead communication (custom connections, Myrinet, SP
switch)
100s of CPUs

Desktop PCs and Workstations
Low Speed (but improving!), Heterogeneous, Unreliable, Non-
dedicated, Inexpensive
Generic connections (Ethernet connections)
1000s-10,000s of CPUs

www.ud.com

Desktop Grid Challenges
Scheduling heterogeneous, non-dedicated resources
Added Security requirement

Desktop machines typically not in secure environment
Unobtrusiveness

Harness underutilized computing resources without impacting the
primary Desktop user

Connectivity characteristics
Not always connected to network
Might not have fixed identifier (IP address)

Limited Network Bandwidth
Ideal applications have high compute to communication ratio
Data management is critical to performance

Fault Tolerant
Machines are typically more unreliable than clusters

Interoperability
Must adhere to Grid standards

www.ud.com

Existing Desktop Grid Solutions
Condor

University of Wisconsin
10+ years
Initially targeted at scheduling clusters, now supports Desktop PCs

Entropia
Startup based in San Diego
2+ years old
DC Grid Platform (commercially available)

Platform Computing
Startup based in Canada
10 years old
LSF, mainly targeted at scheduling clusters

United Devices
Startup based in Austin
2.5 years
Metaprocessor Platform (commercially available)

www.ud.com

UD Metaprocessor Overview

www.ud.com

MetaProcessor Architecture

MP Database

MP File System

• Authentication
• Job scheduling
• Result

collection

MP Services

G
rid Services Interface
(H

TTP, SO
A

P, XM
L)

Application Tier Services Tier Resource Tier

MP Agent

Check pointing
Monitoring

Task API (TAPI)

Batch
Application

• Run ‘as is’

Users

• Device registration
• Capability advertisement

Devices

MP Web Console
• Systems Management
• Application Management
• Job Management

Admin

Users

Reports

Automatic
Encryption &
Compression

Task

Jobs

T

W

WJob
W T

Workunits

W

T

Tasks

Tasks

R

R

R

R

Results

R

MP Application Service
• Partition Input
• Job submit/Control
• Merge output

Work
units

W
job

www.ud.com

Metaprocessor Architecture

MP Agents

Device Poll
Service

Dispatch
Service

File
Service

Authentication
Service

MetaProcessor Infrastructure Services

MP Console MP Application Service (CLI/GUI)

MetaProcessor Grid Services Interface (SOAP/XML-RPC)

Device
Management

User
Management

Application
Management

Data
Management

Workload
Management

Accounting
Reporting

Resource
Management

Archiving

MetaProcessor Functional Areas

DBMS
DB2

Oracle

www.ud.com

Metaprocessor Client Architecture

• Application is encapsulated with Task
Wrapper to obtain a Task Module

• Client agent is responsible for:
• Managing execution of task module
• Encryption of input/output files for

application
• Communications with the UD server
• Monitoring and reporting client

characteristics
• Enforcing device preferences
• Miscellaneous housekeeping

• Task Module communicates with UD agent
using the UD Task API, a published
interface (optional)
• Checkpointing
• Task monitoring

Client Agent

UD Task API

UD Task Wrapper

Application

www.ud.com

Features: IT Administrators
Comprehensive Security

Authentication – validates users & devices
Triple-DES encryption – protects data on the network and disk
Checksum & digital signature – tamper-proofs data from
modifications

Device Unobtrusiveness
Idle time execution – prevents disruption of work on the
desktop
Device usage preferences – ensures resources are used only
when they are needed

Platform Heterogeneity
Linux & Windows – covers most widely used operating
systems in the enterprise

Advanced Workload Scheduler
Priority, fairness and resource availability – optimizes
allocation of resources to jobs
Applications and resource constraints – ensures that jobs
are run on devices capable of running them

www.ud.com

Features: IT Administrators
High Scalability

Industry standard architecture – scales to millions of
resources with a single installation

Superior Manageability
Web-browser console – enables remote access for
both users and administrators
Self-updating infrastructure – ensures upgrades
without disrupting desktop users
Centralized infrastructure – simplifies maintenance
and control

Performance Optimizations
Node data caching - enables low network bandwidth
consumption
Data compression - reduces storage and network
usage
Data Affinity scheduling – optimizes data distribution
and network usage

www.ud.com

Features: Application Developers
Industry standards

Web services, XML & SOAP interfaces – simplifies application
migration and integrates easily into existing IT environments
GGF sponsorship – enables UD to incorporate important
customer features into the OGSA standards

Rapid Application Migration
Programming & command line interfaces – provides users
with a variety of usage options
Development toolkit – enables developers to quickly
understand the technology and migrate applications

Flexible Job Specification
Batch and data-parallel jobs – enables a large set of
applications on the MetaProcessor platform
Redundancy – ensures job completion in hostile environments
Runtime limits – prevents ‘run away’ jobs

Application Lifecycle Control
Versioning – simplifies application maintenance
Phases – ensures deployment of well tested applications

www.ud.com

Features: Application Users
Customizable User Interfaces

End-user transparency – enables users to continue
using their favorite interfaces

Performance Improvements
Throughput – jobs from multiple users complete
much faster
Response time – improves the performance of a
single job by nearly 100X

Application Data Management
Data registration and naming – enables users to
store data in the MetaProcessor, securely share it with
others and reuse it across many jobs

www.ud.com

Desktop Grid Applications

www.ud.com

Application Characteristics
Platform is ideally suited to running large, compute
intensive jobs
Programming model suited to coarse grained parallelism
Naturally supports Data Parallelism

Monte Carlo methods
Large Database searches
Genetic Algorithms
Exhaustive search techniques

Future direction includes P2P extensions to enable fine-
grained parallelism

MPI support
Data caching

www.ud.com

Reservoir Simulation (GeoSciences)
Landmark’s VIP product benchmarked on MP
Workload consisted of 240 simulations for 5 wells

Sensitivities investigated include:
- 2 PVT cases,
- 2 fault connectivity,
- 2 aquifer cases,
- 2 relative permeability cases,
- 5 combinations of 5 wells
- 3 combinations of vertical permeability multipliers

Each simulation packaged as a separate piece of work.
Client Devices

20 Devices, 800 MHz Celeron, 192 MB, 100 mbps network
Software

VIP (core and exec), UD MP v3.0

www.ud.com

VIP Response Times (measured)

37.9

7.7
4.0 2.1

0
5

10
15
20
25
30
35
40

1 5 10 20

No of Devices

E
la

p
se

d
 T

im
e

(H
o

u
rs

)

www.ud.com

Drug Discovery (LifeSciences)

THINK application
Internet Project in partnership
with Oxford University Model
interactions between proteins
and potential drug molecules
Virtual screening of drug
molecules to reduce time-
consuming, expensive lab
testing by 90%
Drug Database of 3.5 billion
candidate molecules.
Over 350K active computers
participating all over the world.

www.ud.com

THINK
Application Characteristics

Typical Input Data File: < 1 KB
Typical Output File: < 20 KB
Typical Execution Time: 1000-5000 minutes
Floating-point intensive
Small memory footprint
Fully resolved executable is ~3Mb in size.

Project now in 2nd Phase
More detailed analysis of “hits” from first phase
Ligandfit application from Accelrys

www.ud.com

Programming on the MetaProcessor

www.ud.com

OIC: Ordered Item Count

Example task that parses an input text file and
builds an ordered index of words in that file

Inputs:
- Text file
- List of words to exclude from the counts

Outputs:
- Ordered index of words along with frequency of occurrence

Command line options:
- Inclusion/exclusion; sleep

www.ud.com

OIC Parallelization

Input text file is split into several parts
Workdata = Input text file fragment + Options
Resdata = Exception word list
OIC code produces individual result lists
Result lists are merged to create one frequency list

www.ud.com

OIC Porting
Identify parallelism in application

break up textfile into smaller fragment
and process fragments independently

Create Taskmodule
wrapper, buildmodule, buildpkg

Upload task to MetaProcessor Console
Write Application Scripts

Split input data and merge results
Solution with UD MAPI and SOAP
two perl utilities to be run from any unix box:

- ete-submitjob.pl and ete-retrievejob.pl

UD TAPI integration (optional)
checkpointing

www.ud.com

Creating taskmodules
Create the Taskmodule with the ‘buildmodule’
utility

buildmodule will bundle your executable with a loader
called ‘wrapper.exe’ and a config file ‘mdf.xml’

Use ‘buildpkg’ to construct
workunits/resdatas

buildpkg will bundle your inputfiles into a tar package,
with optional compression, and a config file ‘pmf.xml’

Try out in the TestAgent
That’s all!

www.ud.com

Task Wrapper
Provides support for running executables on
MP client:

Command line arguments
Environment variables
Variable substitution in command line arguments and
environment variables
Redirection of stdin, stdout, stderr
Handling of multiple files in input or output packages
Compression of input and output files

www.ud.com

Application Scripts
Utilize UD MAPI to construct automated solution, called
“Application Service”

Management API uses XML-RPC or SOAP standard
XML-RPC and/or SOAP client libraries available in C/C++, C#, Java,
Perl, PHP and many more…

Typical preprocessing:
create new Job in this Task
split data, package data with buildpkg
submit resdata and workunits to Job through MAPI

Typical postprocessing:
get all results back through MAPI
do merging of data

www.ud.com

MAPI structures and calls
Various data entities in the system have XML-
RPC/SOAP equivalents

struct Workdata
int id // The unique id of this Workdata record.
int workdatasetid // The id of the Workdataset to which this Workdata record belongs. It

must be specified non-zero, and must point to an existing Workdataset
record. (required)

int taskid // The id of the Task to which this Workdata record applies. Needs to
correspond with the taskid of the Workdataset this Workdata belongs
to. (required)

string filename // The name of the Workdata file. (max length 254) (required)
boolean data_exists // This is true if the 'data' member of this structure contains file data.

(required)
base64 data // The actual Workdata file data. There are no restrictions on the

content of the data.
int index // Index field for this Workdata record. (required)

end struct

www.ud.com

MetaProcessor Management API
Various operations have
XML-RPC/SOAP ‘methods’
Inserting data in the system include:

addTask (auth, struct Task)
addResdataset (auth, struct Resdataset)
addResdatas (auth, struct[] Resdatas)
addWorkdataset (auth, struct Workdataset)
addWorkdatas (auth, struct[] Workdatas)
addJob (auth, struct Job)
addWorkunits (auth, struct[] Workunits)

www.ud.com

MetaProcessor Management API
Retrieving data include methods like:

struct Job getJob (auth, jobid)
struct JobStatus getJobStatus (auth, jobid)
struct[] Workunits getWorkunitsForJob (auth, jobid)
struct[] Results getResultsForWorkunit (auth, wuid)
struct Result getResult (auth, resultid)
deleteResults (auth, resultid)

www.ud.com

OIC example pre-processing in Perl
#!/usr/bin/perl -w
use Frontier::Client;
use LWP::UserAgent;

$auth = $server->call("login", "username", "password");
my $job_id = $server->call("addJob", $auth, $jobdef);

split the input text files
`/usr/bin/split --lines=$splitsize $textfile $textfile-split-`;
my @fragments = glob("$textfile-split-*");

foreach my $fragment (@fragments) {
first wrap up the textfragment into a workdata-package
my $wdfilename = $fragment.".tar";
`$buildpkg -f -DOTHEROPTIONS=$customoption $wdfilename $fragment=fragment.txt`;

upload the workunit-package
my $submiturl = “http://server/filesvr?auth=$auth&type=workdata&filename=$wdfilename";
my $request = HTTP::Request->new('POST', $submiturl);
open(F, $wufilename); $request->content(<F>); close (F);
my $response = $ua->request($request);

add the workdata through the XML RPC interface
my $workdatatid = $server->call("addWorkdata", $auth,

{ jobid=>$jobid, state=>1, filename=>$wdfilename);
}

add job

split work

package data

upload package

add workunit

login

www.ud.com

OIC example post-processing in Perl
my $jobstatus = $server->call("getJobStatus", $auth, $job_id);
if ($$jobstatus{done_workunits} < $$jobstatus{total_workunits})

die "job only at $$jobstatus{completed_percent}\n";

Retrieve all results for every workunit in this job
my %total_frequencies = ();
foreach my $workunit (@$workunits) {

my $results = $server->call("getResultsForWorkunit",
$auth, $$workunit{id}, $server->boolean(0), 0, 0);

my $result = @$results[0]; # 1st result only used here

#retrieve result file from MP Server
my $tempfile = `mktemp -q -u tmpresXXXXXX`;
my $resulturl = “http://server/filesvr?auth=$auth&type=result&resultid=$$result{id}";
my $request = HTTP::Request->new('GET', $resulturl);
my $response = $ua->request($request, $tempfile);

add data to total frequency list
open (RESULT, $tempfile);
my @wu_frequencies = <RESULT>;
foreach (@wu_frequencies) {

my ($freq, $word) = split;
$total_frequencies{$word} += $freq;

}
close (RESULT);
unlink $tempfile;

}

get status

retrieve results

transfers result

merge frequencies

www.ud.com

Porting options
Basic (just demonstrated)

fast turnaround
no code changes needed
file I/O systemcall interception for encryption
language independent

Advanced: use UD Task API
provides checkpointing of the application
Requires application code changes
provides graceful shutdown, suspension of application
available in C, C++, and Fortran

www.ud.com

Conclusions

www.ud.com

Resources

SDK available
Tools, Libraries, Documentation
Helper libraries in C++ and perl for UD MAPI
Application Developer’s Guide (ADG)
- Detailed documentation of Interfaces
- Comprehensive examples

Webpage at:
http://www.ud.com/products/sdk.htm

MP Currently deployed at UT
Bob Gloyd’s Engineering Labs
Being taken over by UT-TACC

http://www.ud.com/products/sdk.htm

www.ud.com

Future Directions

Align with Grid standards as they are accepted
OGSA/Globus

Enable P2P features
Aggregate other resources such as storage
Support hybrid models (MPI, data caching)

Enhance data management features
Define High Level Abstractions for specifying
Distributed Applications

www.ud.com

Backup Slides

www.ud.com

MetaProcessor Grid Interfaces
MetaProcessor Grid Services Interface (MGSI)

XML and SOAP-based programming interface for developing
distributed applications
First Grid vendor to offer industry standard Web services interface
Microsoft .NET-based reference implementation available
Supports 22 programming languages

Grid Command-line Interface for batch Job Processing
MPSUB command offers rich set of options to submit batch jobs
MPRESULT command tracks and controls batch job results

Grid Interoperability
MGSI easily is extendable to support emerging OGSA standards
Integrates easily with existing

back

www.ud.com

Workload Scheduler

Services

• Scheduler Engine
Dispatch tasks and

Work units to devices

M
anagem

ent A
PI

H
TTP, SO

A
P,XM

L

Application
Services

MPSUB
Batch Utility

Job Submission
Users

Database
• Application Tasks & Data
• Device statistics
• Device preferences

Device
Capabilities

Device
Preferences

PriorityData
Affinity Application

Attributes

back

www.ud.com

Job Specification
Batch Jobs

MPSUB & MPRESULT utilities to submit, control and obtain results for batch
jobs
Program and data submitted and run ‘as is’ on a suitable device

Data parallel Jobs
MetaProcessor job consists of a task and multiple work units
Job provides an SPMD abstraction enabling data parallel operations
MGSI offers programming interfaces to develop application services
Application service is used to submit and manage MP jobs
User typically invokes the application service through a user interface

Redundancy
Work units can be scheduled redundantly based on device availability
Redundant results can be compared for accuracy

Time Limits
Job deadline applicable to the entire job
Workunit timeout specifies total resident time of a workunit on a device back
CPU timeout specifies maximum run-time for a workunit on a device

www.ud.com

Application Management

• Registration
– Programs are registered as tasks in the system
– Registered tasks may be shared by one or more applications
– Tasks have platform-specific executables called task modules

• Versioning
– Tasks and task modules have versions
– Versions enable tasks to be centrally upgraded and managed

• Phases
– Tasks can be released in test, pilot and production phases
– Phases enable developers & administrators to unobtrusively release tasks

back

www.ud.com

Application Development Environment

back

• MetaProcessor Task Wrapper
– packages executable programs without source code modifications. Runs ‘as is’
– Automatically includes features such as encryption and compression
– Monitors and controls programs when executing on device

• MetaProcessor Grid Services Interface (MGSI)
– Programmatic Web services interface based on HTTP, SOAP and XML
– Support for 22 different programming languages
– Minimal effort to develop Application services, tools and utilities

• MetaProcessor Application Services
– Application services pre processes data, submit jobs and post processes results
– Uses MGSI to interface with the MetaProcessor. Optionally can use batch utilities

• MetaProcessor Task API
- Optional source code modifications for task check-pointing and monitoring

• MetaProcessor SDK
– Rapidly migrate existing applications
– Detailed documentation for all components
– Reference implementation and value-added modules for rapid development

www.ud.com

Data Management

• Registration
– Data is registered as work data and resident data using MGSI
– Data is uniquely named to avoid name collision
– Data can be grouped as work data set and resident data set

• Resident Data
– Data is read-only and cached on devices to reduce network traffic
– Data may be shared by many jobs
– Enables scheduling based on resident data affinity

• Annotation
– Enables application services to store information such as, a data index

back

www.ud.com

Product Scalability

1 Server – 1CPU, 1GB RAM, 50 GB disk, Linux83 conn/hr,
4 MB/hr

500

1 Server–4cpu, 8
GB RAM, 150 GB
disk, AIX +
Failover +
Warehousing

1 Server-1cpu,
1GB RAM, 20 GB
disk, Linux

1 Server-2 cpu
512 MB RAM,
500 GB shared
disk, Linux

3 Servers-2 cpu, 1
GB RAM, Linux

25,000 conn/hr
1,250 MB/hr

150,000

1 Server-2cpu
8 GB RAM, 150
GB disk. Linux +
Warehousing

1 Server-1cpu
1 GB RAM, 20 GB
disk, Linux

1 Server-1cpu
512 MB RAM
100 GB shared
disk, Linux

1 Server- 2 cpu, 1
GB RAM, Linux

4,167 conn/hr
208 MB/hr

25,000

1 Server-2cpu, 4
GB RAM, 100 GB
disk, Linux

1 Server-1 cpu, 512 MB RAM, 30 GB
disk (shared w/UD servers), Linux

1 Server-1cpu,
1 GB RAM, Linux

1,667 conn/hr
83 MB/hr

10,000

1 Server-1cpu,
1GB RAM, 50 GB
disk, Linux

1 Server – 1 CPU, 1GB RAM, 20 GB disk, Linux167 conn/hr
8 MB/hr

1,000

MP DatabaseApplication
Service

Management
Service

MP Dispatch
Service

Connections per
hour,

Data-In/hour
Devices

back next

www.ud.com

Manageability

• Web-based administration Console
– Remote administration of users, devices, applications and jobs
– Features accessible based on role and access control policies
– System management functions to control core services

• Self-updating infrastructure
– Automatic update of MP Agent and tasks
– Phases and versioning enable smooth transition to new code

• Automated systems management
– Periodic review and cleanup of stale data in the database and file system
– Manager process restarts failed slave service processes

• Rapid installation and upgrades
– Single command installation of MetaProcessor services in most environments
– MP Agent compatible with most software distribution tools
– Average time for MetaProcessor deployment is less than a day
– Customized migration scripts to enable smooth upgrades

back

www.ud.com

Security
• Authentication

– User access to MetaProcessor requires an identifier and password
– SSL-like protocol for authentication and network encryption key generation
– Unique device identifiers and network session keys for authenticating devices

• Encryption and Checksum
– Network communications encrypted using triple-DES network key
– All data stored on devices is encrypted using triple-DES device key
– All files stored on the devices are tamper-proofed using checksum validation

• Organizations and Roles
– Users and applications allocated into organizations
– User roles based on four levels of access control to the system

• Digital Signature
– Application executable modules may be signed and validated on devices
– DSA signature keys can be modified for each customer

• Constrained execution environment
– MP Agent executes tasks in a sandbox with limited access to device resources

back

www.ud.com

Device Unobtrusiveness

back

• Preference profiles
– Control computation and communication time windows
– Control disk space usage on devices
– Control tasks that can execute on devices

• Agent deployment
– Installation does not require a machine reboot
– Deployed silently using enterprise software distribution tools
– Run as a protected process such as, ‘WinNT Service’ or a user level application

• Optimal usage of resources
– MP agent has a negligible memory foot-print
– Lowest priority supported by the operating system
– Network communication only after task completion
– Limit disk usage based on device preference settings
– Optionally configured to run in ‘screen saver only’ mode

• Optional User control
– User can snooze the task on non-dedicated devices
– User can shutdown MP agent

www.ud.com

Platform Heterogeneity

• MetaProcessor Agent
– Windows 98, Window NT 4.0, Windows 2000 & Window XP
– Linux Red Hat 7.2. Easily portable to other Unix versions

• MetaProcessor Services
– Linux Red Hat 7.2. Portable to other Unix versions based on customer demand
– MGSI accessible via 22 programming languages. Microsoft .NET-enabled
– Highly portable Perl-based command line utilities

back

www.ud.com

Highly Scalable Architecture – 1.5M Devices

Job
Dispatch
Service

Network Load
Balancer

ISPs 10 Mbps typical (45 Mbps max)Average
~150K unique devices/day
~300K results/day
~5K SQL statements/day
Peak
~300K unique devices/day
~1M results/day
~15M SQL statements/day

LAN

Intel Server
Linux
2 CPU
2 GB RAM
(3 online, 3 backup)

Application
Service

Database
Service

MetaProcessor
Grid Service

(MGSI)

Shared
File

Service

Intel
Server
Linux
1 CPU
1 GB RAM

Intel
Server
Linux
1 CPU
1 GB RAM

Intel Server
BSD
1 CPU
1 GB RAM

IBM
AIX, DB2
4 CPU
8 GB RAM back

	Desktop Grid Computing
	Outline
	What is the Grid?
	What does this mean?
	Typical Grid Computing Resources
	Desktop Grid Challenges
	Existing Desktop Grid Solutions
	UD Metaprocessor Overview
	MetaProcessor Architecture
	Metaprocessor Architecture
	Metaprocessor Client Architecture
	Features: IT Administrators
	Features: IT Administrators
	Features: Application Developers
	Features: Application Users
	Desktop Grid Applications
	Application Characteristics
	Reservoir Simulation (GeoSciences)
	VIP Response Times (measured)
	Drug Discovery (LifeSciences)
	THINK
	Programming on the MetaProcessor
	OIC: Ordered Item Count
	OIC Parallelization
	OIC Porting
	Creating taskmodules
	Task Wrapper
	Application Scripts
	MAPI structures and calls
	MetaProcessor Management API
	MetaProcessor Management API
	OIC example pre-processing in Perl
	OIC example post-processing in Perl
	Porting options
	Conclusions
	Resources
	Future Directions
	Backup Slides
	MetaProcessor Grid Interfaces
	Workload Scheduler
	Job Specification

