

Course Outline

CS371S
Object-oriented Software Development

(Actually – Model Driven Software Development)

Instructor - J.C. Browne
Fall 2005

Course Approach and Goal

This course will introduce a model of software system development where an executable
program is derived directly from an executable specification called an analysis model.
This development process for which the name “Model Driven Development” or “Model
Driven Architecture” has recently emerged, is a major innovation in software
development. The software system is developed in an executable design language,
xUML, and the code in C or C++ or Java is compiled from the executable design. No
“code” is written except for a reusable software architecture.

Model driven development moves software development away from programming into
design and creation of intellectual property. The instructor has had numerous students
who have taken the course in the past report that having mastered this material was a
significant plus in applications for positions in information technology organizations.
Model driven development transforms software development from a commodity skill to a
professional skill.

The steps in the model driven development cycle are:
a) The system is defined as an executable specification which is an object-oriented
model. The executable specification is written in an executable version of UML.
b) The program is validated and verified at the model level.
c) A software and execution architecture is defined as a set of class templates in an
object-oriented programming system.
d) The executable system is realized by compilation of the validated analysis model to
the software execution architecture.

This method of software development is now being used for high-reliability long-lived
systems by leading embedded systems vendors such as Motorola, Xerox and Kodak, Ford
and others in the automotive industry.

Web Background Material

The philosophy of model driven development can be found on this web site.

http://www-106.ibm.com/developerworks/rational/library/3100.html

The two textbooks available can be found at:

http://www-106.ibm.com/developerworks/rational/library/3100.html

http://www.executableumlbook.com/

and

http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521537711

Course Materials
The course materials include a textbook and some supplementary materials including
papers and software system manuals.

The texts are “Executable UML” A Foundation for Model-Driven Architecture” by S.J.
Mellor and M.J. Balcer and “Model Driven Architecture with Executable UML” by C.
Raistrick, et.al.

The lecture notes will be distributed for the first few weeks and will then be available
over the web and in hard copy through a distribution service.

Work Statement

This is essentially a laboratory class. The lectures will cover the xUML and the
executable specification based development method in detail and other methods as
alternatives. The main goal of the course will be to carry through a complete
development of a small software system using object-oriented development methods.
There will be one class examinations but no final examination. The examinations is
open-book and open-notes. The course grade will be two thirds on the project and one
third on the examination. Use will be made of commercial software tools which are used
in industry.

Project Specifications

Project Structure - The project will be development of a small software system through
the executable specification development methodology. The projects will be executed by
small teams of co-workers. I have a set of possible projects. Each team will do a
different project. A team can suggest a project of their own definition by preparing a
requirements specification and getting it approved. The scale and scope should be
similar to the requirements I will circulate.

Communication between Students and Instructor

The instructor is email oriented. He answers email almost every morning. This is by far
the best way to communicate. Formulate your questions in writing and send them to
browne@cs. Announcements concerning the class will be sent by email. Read your mail
every day.

Standards for Conduct

http://www.executableumlbook.com/
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521537711

Standard University of Texas rules for conduct of classes will be followed. Please make
yourself familiar with those rules.

Lecture Schedule
CS371S –Fall 2005

There follows an approximate schedule of lectures for the fall semester. There may be
minor variations if some topics take more time than anticipated and/or some additional
guest lecturers of interest become available.

Lecture
Date

Lecture Topic Reference Material

9/1/05 Model Driven
Development – What,
Why and How

Mellor-Chapter 1
Raistrick – Chapters 1 and 2

9/6/05 Introduction to
Executable UML

Mellor – Chapter 2
Lecture Notes and Web Materials

9/8/05 Design Principles and
Process

Mellor – Chapter 3
Raistrick – Chapter 3, 5
 Lecture Notes

9/13/05 Project Specifications and
Responsibilities

Lecture Notes

9/15/05 Requirements
Specifications – Use
Cases

Mellor – Chapter 4
Raistrick – Chapter 4

9/22/05 Domains and the
Modeling of Classes

Mellor – Chapter 5
Raistrick – Chapter 6

9/24/05 Modeling of
Relationships and
Interactions

Mellor – Chapter 6
Raistrick – Chapter 7

9/29/05 Modeling of Control
Flow and Data Flow

Mellor - Chapter 10
Raistrick – Chapters 8 and 9

10/4/05 State Machines and
Dynamic Behavior

Mellor – Chapters 9, 10 and 11
Raistrick – Chapters 9 and 10

10/6/05 Project Presentations
10/11/05 Project Presentations

10/13/05 Case Studies and Review

or Project Presentations

10/18/05 Class Examination
10/20/05 Action Language Mellor – Chapter 7

Raistrick – Chapter 10
10/25/05 Action Language
10/27/05 Constraints and

Behavioral Specifications
Mellor – Chapter 8

11/1/05 Verification and
Validation

Mellor – Chapter 15

11/3/05 Verification and
Validation

Lecture Notes

11/8/05 Multiple Domains and
Bridges

Mellor – Chapters 16 and 17
Rasitrick – Chapter 12

11/10/05 Code Generation Mellor – Chapter 18

Raistrick – Chapter 13
Lecture Notes

11/15/05 Code Generation
11/17/05 Project Presentations
11/22/05 Project Presentations
11/29/05 Project Presentations
12/1/05 Project Presentations
12/6/05 Case Study – Guest

Lecture

12/8/05 Case Study – Guest
Lecture

Appendix A – Analysis of Software Development Methods

Why Software Development by the Conventional Process is Difficult

Development of complex software systems has always been a challenging task. (We
assume the reader is familiar with the conventional software development process based
on manual translation of application designs to implementations in conventional
procedural programming languages such a C or C++. The steady increase in functional
complexity required for competitive capabilities in software products is compounded by
implementation of these systems on distributed and networked systems. But the root
causes of the problems of developing software by the convention process of manually
programming application operations in procedural programming languages are:

(a) The wide conceptual gap between the operations defined in typical application

domains and the operations defined in conventional programming languages. The
results of this gap are: high complexity for the manual translations from application
concepts to programming language concepts and high complexity and low readability
of the programs which result. This conceptual gap also impedes validation.

(b) In the conventional development process end-user operations of the application are

not validated until the programs in procedural programs are have been completed.
When complex application operations are realized through complex transformations
to complex programs in procedural programming languages, errors of translation are
inevitable and execution behaviors become unpredictable. The level of complexity of
the program in the procedural language precludes detailed understanding of the entire
system while at the same time the system must be validated in terms of application
level operations. Additionally there is no provision for validation of the increasing
important requirements for performance.

(c) Each software development project can make little use of artifacts from past

development projects except at the lowest level of data structure library routines.

(d) Modifications of functional requirements expressed in application concepts must be

done by modification of the procedural program in a different conceptual framework
and at a much higher level of complexity.

(e) Modifications in execution environment lead to complex ports of the procedural
program.

It is often difficult to estimate the effort necessary to realize products when the
conventional process is used. The products often contain many defects due the difficulty
of validation of the procedural program representations. The costs of modifications are
high and error prone because they must be done on the procedural program.

It is apparent that a qualitative improvement in software development must automate
translations from application specifications to procedural languages and that validation
must be done in terms of application concepts.

Foundations of a New Paradigm

The preceding section makes it clear that qualitative improvement in software
development process cannot be expected to arise in evolutionary enhancement based on
the conventional process. And the analysis given in Section b identifies the steps in the
development process which must be replaced.

(a) Manual translation from application operations to procedural programs must be

automated.

(b) The application system must be validated in the conceptual basis of the application.

Validation must include conformance to performance specifications as well as
functional specifications.

The innovations which enable a process which removes these fundamental barriers are:

Separation of Concerns – Specifications for the application operations are done
separately from specification of the execution environment.

Executable Specifications – The operations of the application are defined in a
specification language with an executable semantics in the application conceptual
domain.

Software Architectures – A software architecture is a specification of a set of operation
and data structure templates to which the operations of an application can be translated.
A software architecture is a virtual machine to which application level operations can
readily be compiled. Execution environments for the applications are defined as software
architectures in a standard procedural programming language.

Associative Objects – Associative objects are conventional objects extended and
encapsulated to support automation of reuse and composition of systems from
components. Associative interfaces replace and extend the concept of relationships in
conventional object models.

The steps in the development process based upon these concepts are as follows:

(a) Requirements are captured in a traceable form in a database.
(b) An executable representation of the application system is captured in application

concepts as an analysis level associative object model in which the constructs of the
analysis model all have an operational semantics.

(c) A software architecture is selected or constructed.
(d) A simulation model of the execution environment is selected or constructed.
(e) The executable specification of the application is validated by execution over a

workload (test suite) defined in terms of invocations of “end user” operations of the
application.

(f) The functionally validated executable specification of the application is used as a
workload generator for the simulation model of the execution environment to validate
the performance behavior of the application operations.

(g) The fully validated executable specification of the application is translated to the
software architecture by a compiler.

(h) The resulting program is compiled and linked by the standard compilers for the
procedural languages to realize the production system.

This development process leads to a qualitative improvement over conventional
development processes because it avoids the sources of difficulty listed in above. The
characteristics of the new development process are:

(a) The application is validated in application concepts and with application based test

cases. The immense complexity of validation of the procedural program is avoided.
(b) Modifications driven by changes in functional requirements are made to the

executable representation of the application. Error-prone modifications of procedural
program representations are avoided.

(c) Modifications driven by changes in execution environment are made to the software
architecture and the simulation model of the execution environment. Production
systems for new platforms are accomplished by compiling the application
specification to the new software architecture. Error-prone ports of procedural
programs to new platforms are avoided.

(d) Each software development task is accomplished by an appropriate expert.
Application experts construct the executable specification of the application.
Software designers develop the software architectures.

(e) Reuse of application level objects is enabled by defining the application objects as
associative objects.

(f) The software architecture can often used for multiple projects with little or no change,
particularly in the common case of a family of software products with similar
characteristics.

Appendix B

Example Project for CS371S – Fall 2005

Reservation System for Avis Rent a Car

Avis has a set of offices in a set of cities. Each city/office pair has a set of cars available
for rental. Each car is belongs to a rental class. A rental class has a model name, a
manufacturer and a base daily rental price. Each car belongs to some rental location but
may at any given time be in some other location.

Avis is putting in a web-based reservation system. Customers request a reservation for a
specific class of car in some city at some location for some span of dates and specifying a
location to which to return the car. Many customers may be simultaneously attempting to
make reservations. Requests are accepted in FIFO order. A customer either gets the
class of car desired or a notification that a car in the rental class he/she requested is not
available. The customer will sometimes then request another class of car. If the
customer accepts the available rental car then he/she then presents a credit card against
which the rental charges will be made. The system obtains an authorization from the
credit card company for the expected charge. The rental is denied if the credit card
company refuses to authorize the charge.

If a customer has requested to return the rental car to a location different from the renting
location then the system will choose a car belonging to the return site if one is available
at the rental site.

A reservation may be cancelled before its initiating date and time. When the customer
picks up the car a rental is initiated. A rental may be extended while the customer is in
possession of the car. If a car has not been returned 24 hours after the scheduled date and
the customer has not requested an extension the car is reported to the local Police
Department of the location as being missing or stolen.

 Each customer belongs to an organization. Each organization has a discount percentage
for each car class. Rental rates are determined by the organization to which a customer
belongs. The discounts are revised fairly often as a function of contracts and competitive
pressures.

The software system you are to develop should support making and canceling of
reservations in a fair and orderly manner. It should also keep track of when cars are
returned and create a bill for the rental of each car and send copies of that bill to the
organization and the customer. Your software should cover the cases when a car is not
available and where a given class of car is not available. The software should keep track
of the number of rental days for each class of cars by manufacturer to enable optimization
of the mix of cars in the rental fleet. The GUI is a separate domain with which your
system just exchanges messages.

	Appendix A – Analysis of Software Development Methods
	Foundations of a New Paradigm
	Appendix B
	
	Example Project for CS371S – Fall 2005
	
	Reservation System for Avis Rent a Car

