
3/21/2000 Systems Modeling - Spring 2000 1

Parallel/Distributed Discrete Event Simulation

Execution of a Sequential Process

1. A process which has a local clock executes by processing events.  The 
order in which the events are processed (occur) is determined by the 

control flow logic  of the program. The sequential order is usually 
represented as the values read from the local clock but any monotone 

sequence of numbers could be used as well.

2. While we can say that an event occurred at a specific time, the 
correctness of the execution does not depend upon the time of occurrence 

of the event, only that each event occurs in a specified order in the 
sequence of events.



3/21/2000 Systems Modeling - Spring 2000 2

Parallel/Distributed Discrete Event Simulation

Execution of Parallel/Distributed Processes

1. Execution of a program is partitioned among a set of logical processes each of 
which has its own local clock and executes a stream of events.  Execution of 
local events assigns a sequential order to the occurrence of the local events. 

2. The set of processes must collaborate to attain some goal.

3. Therefore the local sequences of events generated by the execution of each 
process must be interleaved to create a global sequence of events.

4. The processes interact only by sending messages.

5. Each message is time-stamped with the local time of the sending process.

6. A Lamport clock can be used to generate a global sequence of event 
occurrence which is consistent with some sequence which would have been 

generated by a sequential execution of the same program.



3/21/2000 Systems Modeling - Spring 2000 3

Parallel/Distributed Discrete Event Simulation

Single Clock Execution of Discrete Event Simulations

1.  Events are generated and assigned a time to be executed.

2. The events must be executed in the order determined by their assigned 
times.

3. Events are placed on a queue or list ordered by their time for execution.

4. The simulation engine fetches the events from the queue and invokes the 
evaluator for each event.  

5. Evaluation of an event typically generates other events each of  which has a 
time to be executed.

6. This process requires that all of the events be assigned times from a single 
clock or a single monotone sequence.



3/21/2000 Systems Modeling - Spring 2000 4

Parallel/Distributed Discrete Event Simulation

Parallel Execution of Discrete Event Simulation

1. Generation and evaluation of events is partitioned among several logical 
processes which are implemented on some number of physical processors.

2.  A means of generating consistent times and evaluating the events in a 
sequence which will conform to some sequential execution must be developed.

3. We will now take a look at the several methods which have been proposed 
for parallel/distributed execution of a single system simulation.

4. There are many approaches for parallel execution of simulations.  We will 
examine the general problem of parallel/distributed simulation before looking 

at individual algorithms.



3/21/2000 Systems Modeling - Spring 2000 5

Parallel/Distributed Discrete Event Simulation

Why is Parallel Simulation Hard?

•• Causality: Sequencing constraints must be maintained in order foCausality: Sequencing constraints must be maintained in order for the r the 
computation to be correct (free of causality errors). computation to be correct (free of causality errors). 

•• For example, if events E1 and E2 occur at times T1 and T2, whereFor example, if events E1 and E2 occur at times T1 and T2, where T1 < T1 < 
T2, and E1 writes into a state variable that is read by E2, thenT2, and E1 writes into a state variable that is read by E2, then E1 must be E1 must be 
executed before E2.executed before E2.

• Unpredictability: Because simulations involve random events, we cannot 
predict the precise sequence or pattern of events that will occur in either a 
sequential or parallel simulation.  
– In general, each process in a parallel simulation cannot advance

beyond the earliest time that it MIGHT receive a message from 
another process.



3/21/2000 Systems Modeling - Spring 2000 6

Parallel/Distributed Discrete Event Simulation

How we we sequence across multiple sites?

Logical 
Process 2

Event 3
Time 5

Logical 
Process 1

Event 2
Time 15

Event 4
Time 30

Might schedule 
a new event at 
time 20

Event 1
Time 10

Cannot (in general) execute 
Event 4 before Event 2



3/21/2000 Systems Modeling - Spring 2000 7

Parallel/Distributed Discrete Event Simulation

Conservative (Chandy-Misra-Bryant) Parallel/Distributed Simulation

1. Let us partition the system into subsystems and agree to process the events in
each subsystem by a separate process.  The processes are connected by a set of 
one way channels.  The processes interact by sending messages on the channels.

P1

P2

P3

2. Each process may generate events for local processing, send events to other 
processes for evaluation and receive events from other processes.



3/21/2000 Systems Modeling - Spring 2000 8

Parallel/Distributed Discrete Event Simulation

3. Each process has a local clock which is updated by the evaluation of 
events.  The current time on the local clock is called the local virtual time or 
LVT.  LVT is monotone non-decreasing and is updated when an event is 
evaluated.

4. Each event that is sent to another process for evaluation is given the LVT 
as a timestamp.

Process 1 Might send message
as early as time 15

Process 3
current time = 10Might send message

as early as time 25Process 2 Cannot (in general)
advance beyond
time 15



3/21/2000 Systems Modeling - Spring 2000 9

Parallel/Distributed Discrete Event Simulation

5. Each channel has a FIFO queue at the sink end of the channel. The 
events in each queue come from a single source.  Therefore no event can be 
received from the source process with a timestamp smaller than the event at 
the tail of the channel queue.

Process 1

New message with
time stamp 25

Will proceed to process message with 
time stamp 15 only if it is guaranteed 
not to receive a message with a time 
stamp earlier than time 15.

Process 4

New message with
time stamp 15 Process 3

last message processed at
time 10Process 2



3/21/2000 Systems Modeling - Spring 2000 10

Parallel/Distributed Discrete Event Simulation

6. A process can evaluate any locally generated events up to the minimum 
timestamp among the events at the tails of the channel queues.  (Call it LVTH)  
But it cannot process any local events with time stamps larger than than LVTH 
since it might receive an external event with an earlier timestamp.

7. Suppose process P1 completes (or will not send any more messages) but P2 
and P3 have additional work to do.  Given this execution model P2 and P3 
cannot progress unless they know that P1 has completed or will not further 
communicate. 

8. One solution is for P1 to send a special event which notifies its neighbors of 
its termination if it terminates.  Or if is still active it could send messages with 
null events and updated timestamps periodically.  The receiving processes 
could close the incoming channel.



3/21/2000 Systems Modeling - Spring 2000 11

Parallel/Distributed Discrete Event Simulation

9. Or when P2 or P3 want to execute past a LVTH grounded on the channel 
from P1 they ask permission.  (Note this may require additional channels and 
that P1 remains alive to respond.) 

10 Lookahead - A process can often look at its internal event list and predict
when it will send out the next event.  It can then send out a null message with 
a timestamp of the time the next actual event will be generated. This will 
enable the other processes to proceed up to the time of the next event.

11. There are certain simulation models which cannot be executed using the 
CMB algorithm.



3/21/2000 Systems Modeling - Spring 2000 12

Parallel/Distributed Discrete Event Simulation

Optimistic (Jefferson or Time Warp) Parallel/Distributed Simulation

1. Let us partition the system into subsystems and agree to process the events in
each subsystem by a separate process.  The processes are connected by a set of 
one way channels.  The processes interact by sending messages on the channels.

P1

P2

P3

Each message carries an event, a timestamp and a directional marker.  The 
directional marker may be either forward (positive) or backward (negative).  
More on the directional marker later.



3/21/2000 Systems Modeling - Spring 2000 13

Parallel/Distributed Discrete Event Simulation

2. Each process may generate events for local processing, send events to 
other processes for evaluation and receive events from other processes.

3. Each process has a local clock which is updated by the evaluation of 
events.  The current time on the local clock is called the local virtual time or 
LVT.  LVT is monotone non-decreasing and is updated when an event is 
evaluated.

4. Each event that is sent to another process for evaluation is given the LVT 
as a timestamp.

Process 1 Might send message
as early as time 15

Process 3
current time = 10Might send message

as early as time 25Process 2
Will continue to 
process events beyond
time = 10.



3/21/2000 Systems Modeling - Spring 2000 14

Parallel/Distributed Discrete Event Simulation

5. Each Process has an single input queue for messages which are received 
from other processes and a single output queue for messages which are sent 
to other processes. 

Process 1

New message with
time stamp 25

Process 4

New message with
time stamp 15 Process 3

last message processed at
time 10Process 2

Executes all events in
timestamp order.



3/21/2000 Systems Modeling - Spring 2000 15

Parallel/Distributed Discrete Event Simulation

6. Each process maintains a checkpoint and a log which enables it to rollback 
to a correct state.  It also maintains a log of messages sent back to the 
checkpoint.

7. A process executes all events in timestamp order unless it encounters a 
message with a timestamp earlier than some event it has already processed or a 
message with a backward directional marker. 

8. If a process does receive a message with a timestamp earlier than some 
messages it has already processed this is a violation of causality and the 
processing after this point must be rolled back.

9. But it can be even worse.  Suppose that the process has, as a part of the 
processing events which must now be rolled back, sent messages to other 
processes.  

10. Then each process while has received a message since the violation of 
causality occurred must be notified that it must rollback any processing it has 
done since receiving the first out-of-sequence message.



3/21/2000 Systems Modeling - Spring 2000 16

Parallel/Distributed Discrete Event Simulation

11. This is where the directional marker on the messages comes into play.  
The messages (with timestamps later than the timestamp of the out of order 
message) which have been sent by the process which received the out of order 
message are resent with a negative directional marker.

12. When a process receives a message with a negative directional marker one 
of two things can happen.  The original message with positive direction is 
removed from the queue if it has not yet been processed.  If there is any 
negative message which is not cancelled then the process knows it must 
rollback.  Therefore it rolls back. 

If it has also sent messages with timestamps later than the timestamp with the 
negative directional marker it will resend those messages with negative 
directional markers.

This is the cascading rollback phenomena.  Clearly the depth of the rollback 
must be bounded.



3/21/2000 Systems Modeling - Spring 2000 17

Parallel/Distributed Discrete Event Simulation

14. Define a Global Virtual Time which is a lower bound to the minimum
LVT of any process in the set of processes.  There are many algorithms for 
computing a GVT. 

15.  Make the checkpoints for each process at the GVT and keep all of the 
messages received back to the GVT.  The rollbacks will then go back no 
further than the GVT.

16. GVT is updated periodically at which times new checkpoints are taken.

17. Note that the optimistic algorithm can function with a dynamic set of 
processes.  

A) Create a process with an LVT equal to the current GVT.

B) Initiate a protocol to introduce the new process into the 
namespace of the processes.

C) Initiate processing by the new process.



3/21/2000 Systems Modeling - Spring 2000 18

Parallel/Distributed Discrete Event Simulation

Data Flow Graph Model of Parallel/Distributed Simulation
1. The execution model for the simulation is traversal of a dependence graph 
where the nodes are simulation engines which evaluate some set of events 
and the arcs carry the events which specify the dependences (causal 
relationships) among the events processed by the source and sink nodes of 
the arc. 
2. There is a designated start node where execution begins.  There is a 
designated stop node where execution terminates.
3. Each node is a seven tuple 

a) a set of input ports - ports are typed FIFO queues
b) a set of output ports
c) a firing rule - a predicate over port states and local state
d) a simulation engine
e) a local clock - the LVT is updated as events are evaluated
f) a routing rule - a predicate over port and local state which selects 

which output ports receive events.
g) local state including a termination state which is set to true if it 
can be guaranteed that the node will not be enabled for execution 
again.



3/21/2000 Systems Modeling - Spring 2000 19

Parallel/Distributed Discrete Event Simulation

4. An arc binds an output port of one node to an input port of another 
node.

5. A port is a FIFO queue of messages (events).  A node may have many 
ports.  Each port receives only one type of event.

6. A message is a three tuple (timestamp, event/data, termination state of 
the node.)  A null message has a null event.

7. A firing rule is a predicate over the states of the input ports and the local 
state of the node.  When it evaluates to true, events are taken from 
some set of input ports and bound to local state of the node and
the node is enabled for execution.

8. A routing rule is a predicate over the local state of the node which selects 
one or more output ports to receive non-null messages.  It may 
choose to place null messages on other ports.



3/21/2000 Systems Modeling - Spring 2000 20

Parallel/Distributed Discrete Event Simulation

Data Flow Execution Model

1.  Execution begins at the start node and progresses by control flowing from 
node to node as the nodes complete processing of their internal 
events and send a message to their successor nodes.

2.  The execution cycle of a node proceeds as follows:
a) The firing rule becomes true, the node is enabled and the 
Lamport clock algorithm is invoked to establish an LVT.
b) The simulation engine of the node begins execution with the 
initial state generated by satisfaction of the firing rule and executes 
until it completes the local processing associated with this firing.
c) The routing rule is evaluated to select which output ports are to 
receive non-null messages and the messages are bound to the 
output ports.
d) If this node is not a part of a backward loop then the 
termination state is set.

3. Execution completes when the stop node is executed.



3/21/2000 Systems Modeling - Spring 2000 21

Parallel/Distributed Discrete Event Simulation

How is this model of execution different from the interacting set of processes 
model of execution?

a) There is a concept of progress induced by traversal of the 
graph.  Progress through the graph is captured by Lamport clocks.

b) Relationships among externally events are explicitly modeled.

c) The execution of each node is atomic.  All events generated for 
local processing in a given cycle are evaluated in that cycle.  A node, 
once, initiated will always complete execution of all locally generated 
events before receiving another externally generated event. 

d) Because execution order is determined by data flow graph 
structure a node cannot receive an event with a timestamp earlier 
than the time stamp which initiated its current execution cycle.



3/21/2000 Systems Modeling - Spring 2000 22

Parallel/Distributed Discrete Event Simulation

Start

SE1 SE2

SE3

Stop

Let us look at some of the possible cases for 
control flow.

1. The firing rule for the SE3 node is an “and” 
over the two inputs from SE1 and SE2.  The 
Lamport clock algorithm (LCA) will initiate 
execution of SE3 with a LVT which is the largest 
of the LVTs of SE1, SE2 and SE3.

2. The firing rule for the SE3 node is an “or” over 
the two inputs from SE1 and SE2. SE3 will be 
enabled for execution whenever one of SE1 or SE2 
places an message in a port of SE3.  The LCA  will 
initiate execution of SE3 with an LVT which is the 
largest of the local LVT and the LVT of the 
enabling event.



3/21/2000 Systems Modeling - Spring 2000 23

Parallel/Distributed Discrete Event Simulation

3. A possible sequence of execution is that an event arrives at SE3 from 
SE1 with a timestamp of 5.  SE3 has an initialized timestamp of 0. 
Execution of SE3 therefore begins with an LVT of 5.

4. The next event may be the arrival at SE3 of a message from SE2 with a 
timestamp of 4. 

5. Does this violate causality?

A) Yes - because the event from SE2 arrived at SE3 with a 
timestamp less than the event from SE1.

B) No - Because the execution of SE3 is enabled by the arrival 
of an event from either of SE1 or SE2.   

6. Is the result of the simulation reproducible?

Yes - so long as the same random number seeds are used in each 
simulation. 



3/21/2000 Systems Modeling - Spring 2000 24

Parallel/Distributed Discrete Event Simulation

7. Will this execution model produce a sequence of events consistent with 
some correct serial execution of the simulation? 

Yes - because the times taken to follow each path may be chosen by 
random selection of execution times.

8. If the execution times are deterministic will this execution model produce 
a sequence of events consistent with some correct serial execution of the 
simulation?

Yes - It will produce the same sequence as would be generated by 
the CMB simulation.



3/21/2000 Systems Modeling - Spring 2000 25

Parallel/Distributed Discrete Event Simulation

The logic of the program is 
made explicit by the firing 
rules and the dependence 
relations.    The routing rule of 
SE5 must be an “or” if the 
simulation is to terminate.

Each node can chose to send a 
null message to those 
successors which do not 
receive an event.

The order in which SE3 
should receive events from 
SE1, SE2 and SE5 is not 
determined.  The simulation 
must be correct for any order 
of receipt of events.

Start

SE1 SE2

SE3

SE4

SE5

Stop


