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Concurrent programs that embed specifications of synchronizations in the body
of their component are difficult to extend and modify. Small changes in a con-
current program, particularly changes in the interactions among components,
may require re-implementation of a large number of components. Even
specifications of components cannot be reused easily. This paper presents a
concurrent program composition mechanism in which both specification and
implementation of computations and interactions are completely separated.
Separation of specifications and implementations facilitates extensions and
modifications of programs by allowing one to separately change the implemen-
tations of computations and interactions. It also supports their reusability. The
paper also describes the design and implementation of a concurrent object-
oriented programming language based on this model, including a compiler for
the language, and reports on the execution behavior of programs written in the
language.

KEY WORDS: Software evolution; concurrent programming; object-oriented
programming; inheritance; genericity.

1. INTRODUCTION

Software systems are evolutionary entities. They change during the initial
development stage, and often after they have been deployed. These changes
may occur due to changes in its requirements, in hardware configurations,
and/or in the execution environment. Such changes often mean that new
software components must be added and/or existing components must be
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re-defined. The fundamental principle for managing the evolution of com-
plex software systems states that changes in a system should be propor-
tional to the size of the changes, and not the size of the system. Specifically,
small changes in a system should be entail modifications of only a small
number of components.

In poorly designed systems, software components and relationships
among them are not clearly defined. Making minor changes in such
systems often requires major effort because components that are directly
affected and those that are affected due to the relationships may be difficult
to identify and modify. Changing the implementation may, thus, require
re-implementing a large number of the components.

In this paper, we explore the ability to modify concurrent systems that
are developed using the traditional concurrent programming methodologies.
Concurrent systems are difficult to design and implement because several
factors (such as nondeterminism, complex interactions among programes,
program granularity, data partitioning, data distribution, load balancing,
and target machine configurations) drive the design of a concurrent
program. An efficient and correct implementation of a concurrent program
involves careful analysis of these factors, interactions among them, and
their representation. Ability to change implementations of concurrent
systems add to the complexity of developing concurrent systems. Specifically
we are interested in the following in this paper:

o How suitable are many traditional programming methodologies for
supporting evolutionary concurrent systems? In this paper, we show
that it is often difficult to change implementations of concurrent
systems: changes in the implementations of a small number of
components may require the implementations of a disproportionately
large number of components. Also, concurrent program abstractions
cannot be composed easily with existing program abstractions. This
inhibits re-usability of the components of a program.

o Why are such systems difficult to change? Also, what kinds of
programming techniques are needed to support incremental changes in
such systems? We show that the ability to change systems depends
on how computational and synchronization aspects of the systems
are specified. We present a structuring scheme in which implemen-
tations of computational and synchronization aspects are completely
separated. Separation has direct implications on the extensibility and
modifiability of concurrent systems. Concurrent systems can be
extended and modified by adding and modifying implementations
of either computational, synchronization, or both aspects. Further,
the scheme advocates a programming design methodology where
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concurrent systems can be quickly constructed from existing com-
putational and synchronization components.

o How are computational and synchronization aspects of programs
specified? We describe a concurrent programming model that defines
general mechanisms for representing computations and a declarative
mechanism for specifying synchronization. We also describe the
design of a concurrent object-oriented programming language, called
CYES-C++, based on the above scheme. CYES-C++ supports
extensibility and modifiability of concurrent programs as well as
re-usability of computational and synchronization components.

This paper is organized as follows: In Section 2, we illustrate the difficulty
of extending or modifying concurrent systems. We analyze the reasons for
the problems, and show how some of these problems can be resolved in
Section 3. We then present the details of a concurrent programming model,
and how it supports implementation of evolutionary concurrent systems.
Section 4 briefly describes a concurrent object-oriented programming
language that is based on the idea of separation. We briefly describe the
implementation details of the language in Section 5. We present the related
work in Section 6. Section 7 contains concluding remarks, status of the
research, and discusses our future work.

2. SUPPORT FOR EVOLUTIONARY CONCURRENT SYSTEMS

We begin by first examining the implications of changing concurrent
programs.

In a majority of concurrent programming languages, the approach to
implementing a concurrent program involves partitioning a problem into a
set of components, each implemented as a process, task, or thread. An
implementation of a component usually contains operations that imple-
ment its computations, synchronization with other components, data
decomposition, and distributions and task scheduling algorithms. We now
show that concurrent programs specified in this manner are difficult to
change and modify: extensions and modifications in a concurrent program
may require that a large number of its components be modified. We
illustrate this through a simple example. We show that changes in the inter-
action among the components of a simple concurrent program require
re-implementation of some or all of the components.

Example 1 (Modifiability of concurrent programs). Let examprog1
be a concurrent program containing two components: producer and
consumer. producer repeatedly produces data, which are consumed by
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examprogl () {

channel buf;

producer(buf) || consumer (buf);
}

producer (channel buf){
while (TRUE) {
info = produce();
send(buf, info);

}

consumer (channel buf){
while (TRUE) {
info = receive(buf);
consume (info) ;

}

Fig. 1. An example concurrent program.

consumer. We show implementations of examprog1, producer and con-
sumer in Fig. 1. The components interact with each other through send
and receive primitives over a mailbox'!" where programs can deposit and
retrieve information in a FIFO manner. We assume that send is nonblocking
whereas receive is blocking. Note that the synchronization operations (send
and receive) are embedded within the implementations of the components.

We first consider a simple extension of examprog1 that involves add-
ing another consumer component, for instance because consumer is slow
relative to producer. Assume that data are now shared between the two
consumer components alternately. The extended program requires modi-
fying producer, consumer, or both components. We show one possible
implementation of the extended program in Fig. 2. Here, consumerl (Fig. 2)
is a modified version of consumer. In this program, operations send
and receive on sync represent the interaction between the two consumer
components.

We now look at the modifiability of examprog1. We do that by defin-
ing additional constraints between producer and consumer: there are at
most N unconsumed values. producer therefore must wait for consumer if
there are N unconsumed values. One possible implementation is shown in
Fig. 3. In the implementation, consumer sends an acknowledgment after
every received message.

2.1. Conclusions

Even though examprog1 is a simple program with two components
and simple computational and synchronization operations, the potential
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consumeri(channel buf, sync) {
myTurn = myld % 2;
while (TRUE) {
if (myTurn) {
info = receive(buf);
consume (info) ;
send (sync, ack);
myTurn = FALSE;
} else {
ack = receive(sync);
myTurn = TRUE;

}

examprog2() {
channel buf;
channel sync;

producer (buf) || consumeri(buf, sync) ||
consumerl (buf, sync);

}

Fig. 2. A representation of an extended con-
current program.

produceri(channel buf) {
while (TRUE) {
info = produce();
send(buf, info);
count = count+l;
if (count == N) {
ack = receive(buf);
count = count - 1;

}

consumer2(channel buf) {
while (TRUE) {
info = receive(buf);
consume (info) ;
send (buf, ack);

}

examprog3() {
channel buf;
producerl(buf) || consumer2(buf);

}

Fig. 3. An implementation of a
modified concurrent program.

405
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implications of the changes and extensions are widespread. Specifically,
they demonstrate the following weaknesses in the programming methodology:

o Changes in the implementations of a small number of components may
affect the implementations of large number of components. For
instance, a simple modification in the concurrent program results in
possible re-implementation of producer and consumer. A concurrent
programming language must provide mechanisms that encapsulate
different components of a concurrent system so that changes in com-
ponents or additions of components do not involve changing some
or all existing components of the concurrent program. However, as
we saw earlier, changes in concurrent programs are often visible in
most components. Implementations of component programs are,
therefore, not encapsulated.

o Implementations of components cannot be reused easily. For instance,
in the three different versions of the example program, much of the
behaviors of producer and consumer remains unchanged. However,
we create the different versions of the components by manually
copying code from one version to the other. In addition, we cannot
use synchronization code easily because it is embedded procedurally
inside component implementations.

o Modifications in components often involve making modifications in
existing source code. Such modifications in source programs are
error prone. Indeed, they are one of the major sources of bugs in
concurrent programs.

There are alternative designs for the concurrent producer/consumer
problem where the interactions of the producer and consumer are mediated
by a shared buffer. In this design, the implementations of the producer and
consumer are stable under modification of interactions through buffer.
However, the implementation of the buffer must be modified to implement
any new interactions. Implementing interaction control in the buffer
violates fundamental tenants of distributed systems: it centralizes control of
an inherently distributed set of processes. Further, it places a third part in
control of independent distributed entities.

2.2. Program Composition Anomaly

More importantly, the example underlines the problem associated
with constructing new concurrent program abstractions in terms of existing
program abstractions.
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Definition 1 (Program composition anomaly). The phenomenon
in which the composition of program abstractions requires changes and
modifications in the program abstractions themselves is called the program
composition anomaly.

The program composition anomaly highlights the inability to compose
concurrent program abstractions from existing program abstractions. For
instance, program abstractions producer and consumer of Example 1. may
not be simply composed with other program abstractions without requiring
changes in them in many cases. Since programming languages use many
composition mechanisms for defining abstractions in terms of other
abstractions, the presence of the program composition anomaly causes
breakdowns in many of these composition mechanisms. We enumerate two
such cases.

2.2.1. Program Composition Anomaly in Concurrent Object-Oriented
Programming Languages

There exists, in addition to the encapsulated data structure view, an
active view>? of concurrent objects. In this view, a concurrent program
can be associated (either explicitly® or implicitly®®) with a concurrent
object. The program determines the manner in which methods are executed
and scheduled. The composition of the program is derived from the
methods to which the object responds, the manner in which they are
executed, and the synchronization mechanisms employed.

Object-oriented languages support two fundamental composition
mechanisms: aggregation and inheritance. Aggregation is used to define the
structure of an object in terms of its component objects. Inheritance, on the
other hand, is used to extend the structure of an object. Both aggregation
and inheritance can be viewed as implicit concurrent program composition
mechanisms: aggregation as defining the concurrent program associated
with an object as a composition of programs associated with its component
objects, and inheritance as a means for extending the program composition
of concurrent objects. The underlying characteristics behind the two is that
of constructing new abstractions from existing abstractions. Here, it means
combining, modifying, and extending concurrent programs. As we showed
earlier, the program composition anomaly occurs precisely in these situa-
tions. We illustrate each through examples.

2.2.1.1. Aggregation Anomaly. The aggregation anomaly occurs
when an object defines additional synchronization behavior for the methods
of its component objects:
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Example 2 (Aggregation anomaly). Assume that a concurrent
class AtomicBuffer defines two methods: Read and Write. The two
methods synchronize with each other while accessing common data struc-
tures of AtomicBuffer. Implementations of Read and Write contain codes
for their computations and synchronization with each other.

Assume that a concurrent class TwoBuffers defines two components
objects: LargeBuffer and SmallBuffer of class AtomicBuffer. In addition,
it defines the following constraints on invocations of Read and Write over
LargeBuffer and SmallBuffer objects: Write invocations on LargeBuffer
have higher priority than Write invocations on SmallBuffer.

Since the synchronization operations of Write are embedded inside
the implementation of Write in AtomicBuffer, the new synchronization
behavior can be specified by re-implementing the method in AtomicBuffer,
thereby requiring redefinition of AtomicBuffer.

In this example, class TwoBuffer is derived by composing two instances
(LargeBuffer and SmallBuffer) of the abstraction AtomicBuffer along with
additional synchronization constraint. However, such a composition requires
changes in the abstractions (Read and Write).

2.2.1.2. Inheritance Anomaly. The second problem, termed the
inheritance anomaly,"*® arises due to the diverse synchronization require-
ments of a class and its subclasses.

Example 3 (Inheritance anomaly). Let class NewBuffer extend
AtomicBuffer by defining a new method PickLast (Fig. 4). Method Pick-
Last interacts with Read and Write of AtomicBuffer. This implies that the
synchronization properties of Read and Write change. Since implementa-
tions of Read and Write include synchronization code, synchronization
properties of the methods can be changed only by re-implementing them.
This can be achieved either by re-implementing AtomicBuffer or by re-im-
plementing Read and Write in NewBuffer. In the latter case, implementa-
tions of Read and Write cannot be inherited in NewBuffer.

Read Write l PickLast

AtomicBuffer NewBuffer

Fig. 4. The inheritance anomaly.
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The inheritance anomaly is another instance of the program composi-
tion anomaly. Here, a subclass extends the program composition associated
with a concurrent object either by adding new methods or by modifying
inherited methods. Such extensions may require changes in the composition,
which, in this case, means redefinition of the methods.

We therefore see that changes and modifications in a concurrent
program often require re-implementation of some or all components. In
addition, concurrent program abstractions cannot be composed easily
with other program abstractions. This causes breakdown in many existing
program composition mechanisms such as inheritance and aggregation.

3. THE C-YES MODEL OF CONCURRENT COMPUTATION

In this section, we describe a model of concurrent computation, called
the C-YES model, that addresses the problem of concurrent program
evolution. Before we describe the model of computation, we define several
terms used in the rest of the paper.

Definition 1 (Action). An action is an identifiable operation.
Actions represent the alphabet that a programmer uses for constructing a
program. An action may denote a named function call or a labeled state-
ment. For instance, operation produce denotes an action.

Definition 2 (Program). A program represents a set of primitive
and nonprimitive actions that are combined using the constructs of a
programming language.

Definition 3 (Computation). A computation denotes a specific
execution of a program. Every program has a set of computations
associated with it.

Definition 4 (Event). An event is an identifiable occurrence of an
action in a computation. We illustrate the relationship between an action
and an event through the following program:

for (i=0;i<5;i=i+1)
sum( );
In this program sum denotes an action. In a computation of the

program, action sum is executed five times. Every execution of sum within
the context of the computation denotes a unique event.
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Notation. We represent an event in a computation by Action[ Selector].
Here, the term Selector is used to uniquely identify an occurrence of
Action. We use the notion of event occurrence number as a selector. An
event occurrence number, i, of an event specifies that the event is the ith
invocation of an action in a given computation. For instance, term
produce[i] denotes the ith invocation of produce action in a computation
of examprog1. Note that relative orderings in occurrence numbers merely
specify the order in which invocations of an action occur; they do not
suggest that executions of the invocations are serialized. For instance, it is
possible for an event, say X[5], to terminate before an event, X[4], in a
computation.

3.1. Resolution of Problems

We first examine the reasons for the occurrence of the program com-
position anomaly. There are two distinct behaviors of a component: com-
putational behavior and interaction behavior. The computational behavior
of a component specifies the operations performed during an execution
of the component. For instance, the computational behavior of producer
(Example 1) is to produce data. The interaction behavior of a component
determines the manner in which the component affects or is affected by
other components. It represents the component’s semantic relationship with
other components. For instance, the interaction behavior of consumer
(Example 1) specifies that every invocation of consume depends on a
preceding invocation of produce, representing a data dependency rela-
tionship between the actions.

The program composition anomaly arises because implementations of
both—computational and interaction—behaviors of a component are
embedded within an implementation of the component. This is because
changes in components may induce changes in interaction behaviors of
other components. Since implementations of the interaction behaviors are
distributed in the implementation of the components, the changes can be
effected only by re-implementing all components that contain the
implementations of the interaction behavior. For instance, the computa-
tional behaviors of producer and consumer remain unchanged in the dif-
ferent extensions; only their interaction behaviors change. However, one
must create the different versions because the interaction behaviors are
embedded in the component implementations.

Our approach is based on a structuring technique for concurrent
programs in which implementations of computational and interaction
behaviors are completely separated. A concurrent program is, thus, com-
posed from separate implementations of computational and interaction
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behaviors. The requirement for the separation highlights the orthogonality
of the two behaviors. We think of the computational behavior of a compo-
nent as its intrinsic property. It exists independently from the component’s
possible inclusions in different concurrent programs. For instance, the role
of producer is to produce certain value. It is independent of the fact that
it can be combined with a single consumer, multiple consumers, or even
another producer. The intrinsic property—producing information—does
not change. Its interaction behavior, on the other hand, is dependent on
other components of a concurrent program. It should, therefore, be
specified separately from the implementations of the computational
behavior, and when the concurrent program is defined.

3.2. Elements of the Model

The C-YES model contains a concurrent program composition
mechanism, an extended model of components, and a declarative interac-
tion specification mechanism. We first describe the composition
mechanism.

3.3. Concurrent Program Composition

Definition 5 (Constrained concurrent program composition). The
expression

C=(C | G -+ | C) where ¢

specifies a concurrent program C that is composed from components
C,, C,,..., and C, and interaction behavior ¢.

Components C;, C,,..., and C, contain implementations of their com-
putational behaviors only. ¢ specifies the interaction among the com-
ponents. The semantics of the composition is that events of C;, C,,...,, and
C, are concurrent by default. Hence, during an execution of C, they may
occur in parallel. However, there are certain events that interact with each
other. Occurrences of these events must satisfy all constraints specified

by ¢.

3.4. Representation of Component Programs

Given that implementations of component programs do not include
implementations of interaction behavior, the question that needs to be
answered is: how are component programs represented so that their inter-
action behaviors can be specified?
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We construct a model of component programs by observing the execu-
tion behavior of a component: during an execution of a concurrent
program, a component repeatedly performs certain actions. Occasionally, it
interacts with its environment (other components) during the executions of
certain actions. We call these actions interaction points. Interaction points
of a component represent those invocations of actions where the compo-
nent may need to be synchronized with other components. For instance,
in CSP'® a process represents a component. A process interacts with other
processes by sending and receiving messages on communication channels.
Thus, actions, send and receive, form the process’ interaction points.

There are two parts of an interaction point: identity and role. The
identity of an interaction point determines the action at which a compo-
nent may interact. In CSP, for instance, the names of the communication
channels along with the actions identify the interaction points of a process.
The role of an interaction point determines the manner in which a program
participates in an interaction at the interaction point. For instance, the role
associated with a synchronous “receive” interaction point determines a
process’s behavior at the interaction point: the process is delayed until a
message arrives.

In the C-YES model, the two elements of an interaction point—iden-
tity and role—are separated. Its identity is defined when the component is
specified. Its role, on the other hand, is defined when the component is
composed with other programs. A component program in the C-YES
model is, thus, represented by its computations and interaction points. We
call such components interacting components.

We represent the interaction points of a component implicitly: all
actions on objects denoted by parameter variables are the interaction
points of the component. (We assume that the parameters represent
objects.) For instance, we show the interacting program representations of
producer and consumer in Fig. 5. Interaction points of producer are
represented by the term info.produce(), which denotes the set of all
produce events associated with producer in a computation.

info.produce info.consume

producer(buffer info) consumer(buffer info)
—

Interaction ki
Point wvhile (true) {

while (true) {

info.consume() ;

info.produce();

Interface

— )

Body

}

Fig. 5. Representations of interacting components.
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3.5. Interaction Specification: Event Ordering Constraint
Expressions

Interaction among programs in the C-YES model is specified by an
algebraic expression, called the event ordering constraint expression. It is
used to represent semantic dependencies among events of component
programs by specifying execution orderings—deterministic or nondeter-
ministic—among the events. An event ordering constraint expression is
constructed from a set of primitive ordering constraint expressions and a set
of interaction composition operators.

3.5.1. Primitive Event Ordering Constraint Expression

A primitive event ordering expression defines the interaction rela-
tionship between specific occurrences of two actions. It imposes constraints
on execution orderings of two events. It is defined:

p=(e;<ey)
A computation satisfies ¢ if e, occurs before e, in the computation.

3.5.2. Interaction Composition Operators

Interaction composition operators are used to combine primitive and
nonprimitive event ordering constraint expressions. There are four inter-
action composition operators:

o And constraint operator (&&): The and constraint operator && is
used for combining event ordering expressions in order to represent
interactions among sets of events. It is defined:

¢= (¢1 && ¢2)
Intuitively, a computation satisfies event ordering constraint expres-
sion ¢ if it satisfies both ¢; and ¢,.

e Or constraint operator (||): The or constraint operator || is used to
incorporate nondeterminism in the orderings of events. It is defined:

¢=(d1 1l ¢2)

Intuitively, a computation satisfies ¢ if it satisfies at least one of
event ordering constraint expressions ¢, or ¢,.

o Forall operator: The and constraint operator is used for combining
two event ordering constraint expressions. Forall extends && in
order to specify ordering constraints over sets of events. There are
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two versions of forall: forall var and forall occ. We first describe
forall var. Let S be a set of events and ¢(e) be an event ordering
constraint expression over event e. The relationship between forall
and && is shown next:

forall var ¢ in S _ &)

¢(€) eeS

forall occ is similar to forall var in that it is used to enumerate over
a set of events. While forall var iteratively binds a variable with the
events of a set, forall occ binds a variable with the occurence num-
ber of the events.

Exists operator: The exists operator is similar to forall in that it
extends the or constraint operator over a set of events. There are
two versions of exists: exists var and exists occ. We first describe
exists var. Let S be a set of events and ¢(e) be an event ordering
constraint expression over event e. The relationship between exists
and || is shown here:

exists var e in S I
= (e)

¢(€) ~ eeS

exists occ is used to bind a variable with the occurrence number of
events of a set.

3.6. Examples

We now present several examples. The goal here is to not only

illustrate the manner in which the C-YES model can be used for specifying
concurrent programs, but also to highlight the various characteristics of the

model.

3.6.1. Mutual Exclusion

The simplest constraint is that of mutual exclusion between events of

two sets S; and S,. For events e¢; and e, such that e¢; €S, and e,€.S,,
mutual exclusion between e, and e, can be represented as nondeterministic
orderings of occurrences of e¢; and e,:

MutexEvents(e,, e,) = (e; <e,) || (ep<e;)
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This relationship holds for all events of sets ¢; and e,. Therefore,

MutuallyExclusive(S,, S,) =forall var ¢, in S,
forall var e, in S,

MutexEvents(e,, e,)

3.6.2. Producer and Consumer

Assume that we construct a concurrent program by composing com-
ponents producer and consumer of Example 1. Let info.produce and
info.consume respectively denote the interaction points of producer and
consumer. We define an event ordering constraint expression, ConsExp,
that represents the constraint that a consume event cannot occur until a
corresponding produce event has terminated:

ConsExp = forall occ i in info.produce

info.produce[i] <info.consume[i]

In this expression, term info.produce[i] denotes the ith possible invocation
of produce in a computation.

3.7. Discussions

We now discuss the different aspects of the C-YES model. We show
that the C-YES model supports extensibility and modifiability of con-
current programs and re-usability of both computational and interaction
behavior implementations.

3.7.1. Extensibility of Concurrent Programs

In order to show that implementations of a concurrent program can
be easily extended, we derive a concurrent program for examprog2 of
Example 1. examprog?2 is defined:

examprog2 = (producer || consumer || consumer) where ConsExp2

There are no changes in implementations of either producer or consumer.
ConsExp2 implements the modified interaction behaviors of the three com-
ponents. We derive it by observing that there are two sets of relationships
among the events of producer and consumer (Fig. 6). The first is between
odd events of produce and consume events of the one consumer compo-
nent, and the second is between even events of produce and consume
events of the other consumer component. Let consume1 and consume2
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denote the interaction points of the two consumer components. The
following event ordering constraint expressions represents the two relation-
ships:

odd(i) = (produce[2xi+ 1] <consume1[i])

even(i) = (produce[2*i] <consume2[i])

Since this relationship holds for all events of produce, ConsExp2 is defined
as:

ConsExp2 = forall occ i in produce

odd(i) && even(i)

3.7.2. Modifiability of Concurrent Programs

We now look at the modifiability of concurrent programs. This next
example highlights a program design methodology where concurrent
programs can be constructed quickly from existing core components.

In this example, we derive an implementation for examprog3 of
Example 1. In this program, there is additional constraint between the
producer and consumer components: there can be at most N outstanding
un-consumed values. An implementation of examprog3 is shown:

examprog3 = (producer || consumer) where ConsExp3
In this program, there is a relationship—in addition to the one defined by

event ordering constraint expression ConsExp1 of Example 1—between the
info.produce and info.consume interaction points: a produce event cannot
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( 4
) IT 1)
[i+1] l ""‘/‘/‘*,l [i+1]
// ’/
[i+N] @---9----- [i+N]
. Fig. 7. Interaction relationship among events in a
AN _/ computation of a modified program.

occur until a consume event has occurred (see Fig. 7). ConsExp3 is defined
by including the following additional constraint:

ConsExp3 = ConsExp1 &&
forall occ i in consume

(info.consume[i] < info.produce[i+ N])

We observe from these examples that the C-YES model supports re-
usability of both computational and interaction behavior implementations.

3.7.3. Resolution of Aggregation and Inheritance Anomalies

Separation also forms the basis for the resolution of the aggregation
and inheritance anomalies. In the case of the inheritance anomaly, inter-
action behavior of inherited methods can be extended and/or modified by
defining interaction behaviors in a subclass.® The inheritance anomaly has
been studied in great detail and many solutions’"'®) have been proposed.
Most of these solutions are based on the separation of the implementations
of synchronization behavior from the implementations of the methods.

4. CYES-C++

In this section, we describe the design of a concurrent object-oriented
programming language, called CYES-C++. CYES-C++ is a concurrent
extension of C++ Y and is based on the C-YES model.

4.1. Concurrent Class

CYES-C++ supports both intra- and inter-object concurrency.
Concurrent objects in CYES-C++ are represented by defining a concurrent



418 Pandey and Browne

concurrent class Queue {
public:

Queune();
~Queue () ;
void Put(char);
char Get();
Boolean Full(Q);
Boolean Empty();

interaction:
SeqPuts; // serialize execution of puts
SeqGets; // serialize execution of gets
DelayPutIfFull; // delay put if queue is full
DelayGetIfEmpty; // delay get if queue is empty

private:

Fig. 8. Specification of a concurrent class, Queue.

class. In Fig. 8, we show an example of a concurrent class, Queue. A con-
current class is similar to C++ classes, except that it contains an addi-
tional section, called the interaction section. The interaction section of a
concurrent class defines a set of event ordering constraint expressions that
represent the interactions among the public methods. The semantics asso-
ciated with a concurrent class specifies that all invocations of the public
methods on one of its instances execute in parallel, except for those whose
executions must satisfy a// ordering constraints specified in the interaction
section. A concurrent object, thus, is a constrained composition of method
invocations and the event ordering constraint expressions.

In Fig. 8, we show four interaction constraints: (i) Put invocations are
sequential; (ii) Get invocations are sequential; (iii) Put events are delayed if
the Queue is full; and (iv) Get events are delayed if the Queue is empty. In
the figure, we represent the constraints symbolically. The constraints deter-
mine if Put and Get invocations can be executed or should be delayed. We
derive event ordering constraint expressions for the constraints in Example 4.

4.1.1. Declaration of Concurrent Objects

Concurrent objects are declared by the declarator mechanism of C++.
Next we show some examples of concurrent object declaration and usage:

Queue q; // create a concurrent object
Queue *gptr; // create a pointer to a concurrent object

Queue garray[100]; // create 100 queue objects

gptr = new Queue(); // create a concurrent queue object

gptr = Put(val); // invoke a method on a queue object
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4.1.2. Method Invocation

CYES-C++ supports both synchronous and asynchronous invoca-
tions of methods. In synchronous method invocation, the invoking method
is blocked until the invoked method terminates. For instance, during an
execution of the expression

q.Put(val);

the invoking method is blocked until Put terminates.
A method func can be invoked asynchronously in the following way:

par obj.func(p1, p2,..., pn)

where evoce

The term evoce is an event ordering constraint expression. It represents the
interaction among the interaction points of the calling method and an
occurrence of func. CYES-C++ also supports a parallel iterator operator:

parfor (inti=0;i<n;i++)

obj.func(p1, p2,..., pn) where evoce

This operator is similar to parfor of CC++.% However, invocations of
methods are asynchronous in CYES-C++. The above statement terminates
once all methods have been invoked. This is unlike the parfor operator of
CC++ where a parfor expression terminates only after all invoked
methods have terminated.

Note that unlike C++, CYES-C++ does not support the call-by-
value semantics for concurrent object parameters. Instead, concurrent
objects are always passed by reference.

4.2. Interaction Specification

Interaction in CYES-C++ is represented by event ordering constraint
expressions. Now we describe how events, event sets and event ordering
constraint expressions are expressed in CYES-C++.

4.2.1. Event Sets

Events sets form the abstraction for identifying and representing
invocations of methods that interact with other method invocations. An
event set is either a primitive event set or is constructed from other event
sets.
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CYES-C++ supports the following primitive event sets for every
method M: (i) Set M denoting all invocations of M; (ii) Set M:waiting
denoting all invocations of M currently waiting; (iii) Set M:running denot-
ing all invocations of M currently executing, and (iv) set M:terminated
denoting all terminated invocations of M.

Nonprimitive event sets are constructed from other event sets through
the following mechanisms:

o Method parameters: Event sets can be constructed on the basis of
the values of the parameters of method invocations. For instance,
the expression add(2) denotes an event set containing all invoca-
tions of method add with the parameter value 2. Such event sets are
useful in representing interactions among method invocations that
can be distinguished by the values of their parameters. Currently we
support only integer parameters.

¢ Conditional event sets: A conditional event set, written M:B,
denotes all events of M for which the Boolean condition B is true.

o« Named event sets: Event sets can be named. For instance, expres-
sion fullqueue = Put:Full() defines an event set fullqueue that con-
tains all Put events for which Full() is true.

e Event set expressions: Event sets can be combined with other event
sets through the union ( 4 ) and difference ( —) operators. Hence, the
expression

fullqueue = fullqueue + putlast:Full()

extends the event set fullqueue to include the events of set putlast:
Full().

Example 4 (Interaction specification). We now show how event
sets and event ordering constraint expressions can be used for deriving
expressions for the interaction section of Queue in Fig. 8.

We first define two named event ordering constraint expressions:

Serialize(S) { Priority(S1, S2) {
forall occiin S forall var ain S1
S[i]<S[i+1] forall var b in S2
a<b
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Expression Serialize orders events of set S according to their occurrence
numbers. Expression Priority gives events of S1 higher priority over events
of S2. We now define four event sets:

AddQ = Put RemQ = Get
QEmpty = Get:Empty( ) QFull = Put:Full()

Set AddQ contains all Put events. Set RemQ contains all Get events. Set
QEmpty contains all Get events for which the queue is empty. Similarly, set
QFull contains all Put events for which the queue is full.

We now instantiate the named event ordering constraint expressions
with suitable named event sets:

SeqgPuts = Serialize(AddQ)
SeqGets = Serialize(RemQ)
DelayPutlfFull = Priority(AddQ, QEmpty)
DelayGetIfEmpty = Priority(RemQ, QFull)

4.3. Inheritance

In this section, we examine what it means to extend a concurrent class.
We also present a model of inheritance that specifies the manner in which
the interaction behavior of a method can be extended in subclasses.

The model is derived from the idea of representing interactions as
semantic dependencies among methods. A class may extend its superclasses
by adding new methods, by modifying the existing methods, and by defin-
ing new interaction behaviors among the methods. These modifications
engender additional semantic dependencies among methods. In the C-YES
model, since semantic dependencies are represented by defining ordering
relationships among events, changes in interaction behaviors of methods
imply additional ordering relationships among the methods. The and con-
straint operator && precisely captures such additions of relationships. For-
mally, let class C and class S define event ordering constraint expressions
¢. and ¢, respectively for representing the interaction behavior of the
methods. Interaction behavior of the methods of class S is defined by event
ordering constraint expression ¢:

P=9¢, && ¢, (1)

We now present several examples that illustrate the ways in which con-
current classes can be extended.
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Example 5 (Method addition). In this example, we show how
interaction behaviors of methods of a class can be extended. Let readlast-
queue be a subclass of class Queue:

concurrent class ReadLastQueue: public Queue {
public:
char GetLast();

interaction:

}

Method GetLast retrieves the last element of a Queue object. It inter-
acts with both Put and Get of Queue: Invocations of GetLast must wait
for invocations of Put if the Queue is empty. Similarly, invocations of Put
must wait for invocations of GetlLast if the Queue is full.

We can represent the interactions between the added method and the
inherited methods by adding invocations of GetLast in the named event
sets of Queue:

RemQ = RemQ + GetLast

QEmpty = QEmpty + GetLast:Empty( )
ReadLastQueue inherits both computational and interaction behavior of
Queue. In addition, the event ordering constraint expression specified in
Queue over the named event sets apply to the invocations of GetLast
as well. DelayGetlfEmpty in ReadlLastQueue ensures that both Get and

GetLast events are delayed if the queue is empty. Further, SeqPuts ensures
that Get and GetlLast events are serialized.

Example 6 (Concurrent object state partitioning). In this example
we show how we can use event sets to model states and partitioning of
states in inherited classes. Let queueone be a subclass of Queue:

concurrent class QueueOne: public Queue {
public:

void GetTwo(char val[]);
interaction:

SyncQueueOne
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Method GetTwo accesses two elements of a Queue object atomically.
Invocations of GetTwo are delayed with respect to Put if the buffer is
empty or has one element. Note that a Queue object can be in one of
the three states: full, empty, or partially filled. The addition of method
GetTwo partitions the partially filled state into two: queue with one item,
and queue with more than one item. We can model state partitions by
defining new event sets. Let method One() return true if a QueueOne
object contains one item. The event ordering constraint expression to
represent the interaction between GetTwo and events of AddQ is defined
as follows:

QueueOneObject = GetTwo:One( )

QEmpty = QEmpty + GetTwo:empty( )

RemQ = RemQ + GetTwo

SyncQueueOne = WaitWhile(AddQ, QueueOneObiject)

The event ordering constraint expressions of Queue apply to invocations of
GetTwo as well.

4.4. Generic Concurrent Classes

C++ provides the template mechanism for specifying generic classes.
Templates allow one to capture essential elements of objects or functions.
In this section, we describe the manner in which the template mechanism
can be extended to define generic concurrent classes.

Generic concurrent classes capture common computational and inter-
action behavior specifications of methods of concurrent classes. They can
be instantiated with user classes to associate specific computational and
interaction behaviors with the classes. Such classes support re-usability of
both computational and interaction behavior specifications. Next, we show
an example of a generic concurrent class.

Example 7 (Generic sync class). CC++® supports the notion of
sync synchronization variables. A sync variable is a write-once variable.
All reads to the variable are delayed until the first write has taken place.
We define a generic sync class in the following manner:
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template <class T> concurrent class Sync {
public:
virtual T & Read();
virtual Write(T &);
private:
int wrent;
T data;
interaction:
ReadSet = Read
WriteSet = Write
Interaction (WriteSet, ReadSet)

}

Interaction(WriteSet, ReadSet) is defined:

Interaction (WriteSet, ReadSet) {
forall occ i in ReadSet
WriteSet[ 0] < ReadSet[i]

}

Methods Read and Write are defined:

template<class T> T & sync<T>::Read() {
return(data);

}

template<class T> T & sync<T>:Write(T &val) {

if (wrecnt++ > 1) error(); else data =val;

}

The generic Sync class can now be instantiated to define different Sync
concurrent classes and objects. We show two instantiations of the Sync
generic concurrent class below:

Sync<int> intSyncVar;

typedef Sync<userClass> userClassSync;
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Variable intSyncVar is an integer Sync variable. Class userClassSync
is a Sync class whose contents are defined by userClass. Interaction
behaviors of reads and writes to intSyncVar and objects of userClassSync
are defined by Interaction(ReadSet, WriteSet): Reads are delayed until
the first write has occurred. We would like to underline the fact that there
are no restrictions on instantiations of the sync generic concurrent class:
Any user defined class can therefore behave like a Sync primitive.

The template and concurrent class mechanism can therefore be used to
define generic concurrent classes that capture essential concurrency, inter-
action, and computational attributes of concurrent classes. These generic
classes can then be composed with other classes to construct concurrent
classes.

We therefore observe that separation of specifications computational
and interaction behaviors have implications on language design as well.
Abstractions of computational and interaction behaviors can be composed
in many ways, some by extending existing program composition mechanisms,
and some by defining novel program composition mechanisms.

5. IMPLEMENTATION

We have implemented a distributed version of CYES-C++. The
current CYES-C++ implementation runs on a network of IBM RS/6000
workstations. It supports creation and distribution of concurrent objects
both on local and distributed nodes. In addition, it supports both syn-
chronous and asynchronous method invocations on local and remote
objects, and event ordering constraint expressions containing forall, &&,
and primitive event ordering constraint expressions. The current implemen-
tation uses the Nexus thread package'? for implementing multi-threading,
intra-machine synchronization, and communication.

The implementation identifies each method invocation as an event,
and maintains data structures corresponding to the default and user-
defined events sets. Inheritance of interaction specifications is implemented
by propagating the contents of the event sets and interaction specifications
in subclass implementations. We implement a primitive event ordering
constraint (a; <a,) by generating P and V operations on event-specific
semaphores that ensure that the events occur in right order. More complex
operators (such as forall) are implemented by associating an array of
semaphores with each event pair and iterating over the semaphores. Since
each event ordering constraint expression may iterate over infinitely many
events, the implementation manages the semaphore arrays through a pool-
ing mechanism.
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We have conducted several experiments that evaluate both macro-level
and micro-level performance of the current implementation. For details of
the experiments and results see Pandey.!® The experiments indicate that
for several applications (such as Gaussian algorithm for matrix multiplica-
tion, Barnes and Hut algorithm* and parallel pi evaluation algorithm )
achieves speed ups comparable to the speed ups obtained by native
implementation in Nexus. Further, the overhead of implementing CYES-
C++ on top of Nexus is low.

6. RELATED WORK

We divide the literature survey into two parts: (i) concurrent program
composition methodology, and (ii) synchronization mechanisms. While
there have been several extensions of existing programming languages, such
as C, C++, SmallTalk and Java, our focus in the section is more on the
mechanisms used for defining concurrent programs, and less on specific
concurrent programming languages.

6.1. Concurrent Program Composition Methodology

There has been extensive work done in the area of concurrent
programming. Most of this work has focused on developing methodologies,
languages, and tools for implementing concurrent programs. In many of
these approaches, implementations of computations and synchronization
are embedded within the implementation of components. Our approach
differs from these approaches in how concurrent programs are composed.
An extensive survey of the various concurrency mechanisms can be found
[see Pandey;"'® Andrews and Schneider;!® Bal et al;'” and Skillicorn
and Talia.!®]

The notion of separation has been proposed in various forms. Indeed,
the motivation in all of these approaches has been to use separation of
different elements for re-usability. The work closest to our approach is in
the area of software architectures!>2® and interconnection languages, "
which includes languages such as Wright,®?® UniCon,®* Darwin®* 2> and
Polylith.®®® In these languages, a component is defined in terms of com-
putations and a set of input and output ports. A component reads from
and writes to its input and output ports respectively. A concurrent program
is specified by binding input and output ports of components. Intercon-
nection languages, therefore, separate the structure (port bindings) from
components. These approaches differ in abstractions that they associate
with ports and bindings and their focus. For instance, focus of Darwin
and Polylith is on providing high-level concurrent programming models.
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Wright, on the other hand, focuses on analysis of programs. Also, Darwin
and Polylith support fixed sets of interaction; whereas Wright and UniCon
provides mechanisms for defining many kinds of component interactions
through connector mechanisms.

Our proposed approach is similar in that synchronization code is
separated from components. However, it differs from the interconnection
languages in two ways. First, there are no constraints on the nature of
ports; ports can be any objects. Second, synchronization behaviors of
operations on ports are specified explicitly, as opposed to interconnection
languages where it is implicit in the semantics of the operations. Our
approach therefore is more general than interconnection languages. An
element missing from our approach is an explicit language mechanism for
representing the interconnection structure of a concurrent program. We
plan to add it to our proposed language.

Lopes and Kiczales'?” also use the notion of separation in developing
an object-oriented programming language, called D. D includes aspects for
controlling concurrency and dataflow between different interfaces. CYES-
C++ differs from D in how synchronization is represented and integrated
with other abstractions of the programming language. Separation of
implementation of computational and interaction behaviors has been
proposed for the resolution of the inheritance anomaly.®?® However, focus
here has mostly been on resolving a specific instance of the program com-
position anomaly. It has not been studied within the general context of
concurrent program composition. Svend and Agha® also use the notion
of separation of implementations of object and coordination constraints in
order to define a distributed coordination structure. However, the focus
here is on re-usability of object and coordination constraints, and not on
the modifiability and extensibility of concurrent programs in general.

Foster®® also introduces the notion of separation of implementations
of architectural elements from task implementations in order to support
re-usability of implementations of the architectural specifications, and por-
tability of concurrent programs. However, in the proposed approach,
specifications of synchronization is not separated from computations.

6.2. Synchronization Mechanisms

We classify synchronization mechanisms into two types: primitive-
based and declarative approaches. In primitive-based approaches, the
semantics of a synchronization primitive associates predefined execution
orderings among the invocations of the primitive. Some examples of synchro-
nization primitives are semaphores, ®!* 32 write-once-read-many variables,
data flow based data dependencies,®® signal variables, enable-based
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approaches,®343% disable based approaches,®” and behavior abstraction
based approaches.>*? In our approach, there are no synchronization
primitives. Also, there are no fixed ordering relationships. Synchronization
is specified by defining ordering relationships among operations of com-
ponents explicitly. Such a specification allows us to create, in many cases,
precise ordering relationships among operations of components. Further,
we support abstractions for defining interaction behaviors. The abstrac-
tions can be modified and extended in isolation from other abstractions.
Also, they can composed with other computational abstractions in many
different ways to construct powerful program abstractions.

An example of a declarative mechanism is Path Expression.*!) Event
ordering constraint expressions differ from Path Expressions in that they
are used to specify the ordering constraints that must be satisfied. Path
expressions, on the other hand, are used to specify the valid sequences of
operations through a regular expression. Further, Bloom® shows that
path expressions do not adequately support modular development of inter-
action specifications because path expressions do not contain general
mechanisms for directly representing states of objects, and for specifying
interactions that depend on the states. States in event ordering constraints
expressions can be easily captured through event sets.**)

7. CONCLUSIONS

Concurrent programs are difficult to extend and modify in concurrent
programming approaches that do not separate implementations of com-
putations and interactions. More importantly, concurrent programs cannot
be composed easily from existing program abstractions. Such compositions
may often require changing the abstraction. Also, since programming
languages use composition mechanisms for defining abstractions in terms
of other abstractions, the inability to construct new program abstractions
from existing program abstractions causes breakdowns in many of these
composition mechanisms. Two examples of such breakdowns occur during
definition of concurrent objects through the aggregation and inheritance
mechanisms.

Concurrent programs can be easily modified and extended if imple-
mentations of both computational and interaction behaviors are separated.
Separation supports encapsulation of implementations of both computa-
tional and interaction behaviors. It localizes the effects of changes in a
concurrent program to specific implementations of computational and inter-
action behaviors. Further, implementations of both computational and inter-
action behaviors can be reused. In addition, implementations of computational
and interaction behaviors can each be represented as separate abstractions.
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These abstractions can be combined with other programming language
composition mechanisms such as aggregation, inheritance, and genericity
to construct new and powerful concurrent programming abstractions.
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