
 1

A Formal Model for Incorporating End-to-End
Performance Guarantees in Grid Based Systems

Anish Desai Nishit Shah

anish_desai@dell.com nishit@cs.utexas.edu

Abstract: Grid systems are moving from the Academic and Research domain to a
Commercial environment. Such an environment demands more than just ‘Best Effort’
delivery. In fact what is needed by the participants is a guarantee of performance. This
requires addressing the issue of incentive for resources to operate at higher reliability. In
this paper we propose a System Engineering Approach to introduce guarantees within
Grid Systems. Our goal is to design a model that could be easily incorporated in an
OGSA Architecture based Grid. One important factor we keep in mind while designing
this system is to make sure that the key component in our design has the ability to remain
distributed. The key component viz., the Guarantee and Quality of Service Engine
(GQoSE) takes care of resource discovery, reliability, pricing and most importantly
guaranteed delivery. We shall describe various components to build such a system and
discuss the subsequent concepts of reliability, pricing models and techniques to
guarantee delivery.

I Introduction
As we move from the academic and research
environment to a commercialized one, there is a need to
do better than just ‘Best Effort’ delivery. Here we have
to consider issues relating to pricing model and
mechanisms to guarantee delivery. Related works
[2,3,4] have proposed solutions to the issues relating to
this field known as ‘Grid Economics’. We work
towards extending this field to incorporate the feature
of guarantees along with pricing. Here we take a
System Engineering approach and define the
architectural components needed to provide
performance guarantees using Distributed Components
called the GQoSE.

Within the context of a Grid System, Computation,
Storage, Network & Applications could be considered
as primary resource offerings [5]. Secondary resource
offerings could be any specialized units that are shared
between peers in a Grid. The resource offerings are
abstracted away from the individual nodes and
absorbed into a “Common Grid Resource Pool” to be
made available seamlessly on demand. The collective

resource is managed through an abstraction layer that
collects these resources into a Virtual Organization
(VO)[6]. The VO binds the resources and presents them
through a designated interface. In such a model the
resource structure is opaque to the Grid Resource
Consumer (GRC). Thus introducing a limitation that
forces the GRC to rely on a “best-effort” paradigm.
Such Grid systems therefore need to rely on Prediction
models and complex resource allocation schemes to
achieve an expected level of performance.

In this paper we discuss a Resource Management layer
that is partially opaque. In the proposed model we offer
the GRC the option to choose the level of performance
and enforce a grid protocol that responds with a
guarantee for deliverance of said performance. We
begin by defining Performance in the context of a Grid
system.

II Performance for Grid Systems
The concept of Quality of Service (QoS)[12,13,14] is
closely related to Performance. While QoS is defined
in terms of metrics that are indicative of performance,
performance itself is a broader concept than QoS since

 2

extends to metrics such as viability, availability &
assurance. Especially in case of commercial grid
systems, the question of performance guarantees plays a
decisive role in various business goals. Thus, we begin
by identifying the performance components for each
grid resource.

A few performance components that would be common
to all four Resources [5] could be:
 Availability, Security, Cost, Reliability
Some of the more resource specific components are:

1. Computation: MTOPS
2. Storage: Throughput, Response Time, Capacity
3. Network: Throughput, Latency, Jitter
4. Application: Space/Time Complexity, Custom

(e.g. : Accuracy, Efficiency, manageability)
Each of the above mentioned metrics carry the well
known industry definitions. While our model attempts
to call out the major components that would define the
performance index of a particular resource. We propose
an extensible performance model that will scale as per
the users definition.

Our proposal is not centered around the specific nature
of performance; rather it focuses on the adaptability of
the model as per the needs of the Grid Users. This
ability allows the user to introduce the grid to the
custom notion of performance. The performance
metrics are laid out in the Resource Discovery
Engine[23]. This engine is responsible for collating and
tracking the various resources. In order to accept a
resource in the VO of the Grid; each resource must
provide the performance signature that fits the boiler
plate description of the Grid Performance Model as
defined by the user. Once the individual resource
entities agree to speak using the same performance
signatures [consistent protocol]; the Resource
Discovery Engine assimilates the resource into the VO.
Later in the paper we shall give the protocol that will be
followed for join and leave of resource.

In this section we have defined the notion of
performance within grid systems; while keeping it
scalable. The metrics listed in this section will suffice
well for any basic interpretation of performance within

a grid system. We now move on to better define the
terms reliability index [7] and guarantee factor.

III Reliability Index
Each resource in the Grid pool of resources has an
index associated with it, what we call the reliability
index (R) [related to 7]. This index is a measure of the
past performance of the resource. (R) varies from 0 to 1
in accordance with the commitment to perform
according to the agreements of a transaction. Initially,
when the resource has no previous record, the Grid
Administrator can set the Reliability index as per
choice. A recommended value for this would be 0.5.
The change in the Reliability index can be defined by
the Grid Administrator. We suggest a ‘step-wise’
approach to the changing of this index. E.g. in fig [i] the
gradient is bell shaped. It can also be implemented as
logarithmic, incremental, linear or flat.

 Fig i

IV The ‘Guarantee’ Factor
The reliability of individual components goes on to
form the Guarantee Factor with which the Grid will
deliver the results as per the negotiated performance. A
greater Guarantee will necessitate more reliable
components or redundancy in execution of the jobs.
We define guarantee as the degree of assurance with
regards to a particular service level and performance
factors as described in the previous section. However,
the degree of assurance can only be quantified as a
probability factor. Therefore we state guarantee as the
‘probability of deliverance’. There are several
standardized reliability models which can be used to
provide the guarantee [7]. E.g., given a simple serial

 3

reliability model we can mathematically define the
Guarantee as:
Probability of deliverance
= � (Ri) over resources 1 to n

As one can quickly deduce, such a model of guarantee
within a grid system relies on availability of each
individual component. There can be several other
models which incorporate redundancy for assurance.
On the other end of the spectrum for reliability would
be a complex system of serial and parallel sub-systems.
The individual resources could be identical or non-
identical [7].

 Fig ii
The overall guarantee in such a case can be calculated
using Decomposition, Event Space or Path Tracing [7].
E.g. in fig [ii] using key element ‘A’ the Guarantee
Factor can be given as: _ _
G = P(s|A)P(A) + P(s|A)P(A)
 = RBRF[1-(1-RC)(1-RB)]RA + RBRDRERF(1-RA)
The discussion of Guarantee on such a model would not
be complete without the factor of cost. In any grid
system, redundancy directly translates into cost.
However, we expect that combined with a historical
tracker and prediction based engine; the amortized cost
of such a model shall be minimal. Cost nevertheless
will continue to remain a dictating factor for negotiating
the appropriate performance guarantee as we shall
illustrate in section VII.

As mentioned above, in order to have greater reliability,
the GQoSE may opt to have redundancy to meet a
particular Guarantee. These components will be in one

of two states: Active or Quiescent. When a redundant
resource is used as a ‘backup’ to the primary resource
in the transaction, it is said to be in Quiescent state and
is called a cold swap. However, if the computation is
being performed on the redundant resource in parallel
with the other resources, it is said to be in Active state
and it is called a Hot Swap. It is important to note that
the probability of success of a resource is different in
these two states.

V Challenges in applying QoS Guarantee within a
Grid Paradigm
Our guarantee model revolves around the fact that
resources can be either ‘immediately allocated’ to meet
the requested guarantee factor or the resource requester
must await ‘future allocation’ until the grid can provide
the requested assurance. While in the later scenario,
where the requestor waits for the right resource, may
seem easier, both conditions offer unique challenges
within a grid environment. Namely:

1.Resource Flux: A Grids resources are in
continuous flux. Resource must therefore be
discovered/relinquished & accounted for dynamically
from a complex set.

2.Resource Flavors: A Grid could be composed from
a heterogeneous resource set. Even identical resources
could offer themselves to the Virtual Organization of
a Grid with different properties. We refer to these
properties as flavors. These flavors are characteristics
that cause the Virtual Organization to access/use the
resource only in a particular manner. For example, a
resource could offer itself only through particular
security restrictions, or only for particular job roles
and guarantee expectations.

The flavors are not necessarily restrictive. For
example a computation unit that offers a high
FLOPS/second could be reserved for long-running
scientific calculations only. This way the smaller and
less CPU intensive jobs would not cause the blocking
of such a computational resource in turn, requiring
less resource management and less resource switching
when a truly large scientific job requests the resource.

 4

Fig iii. Example of Instantiation

 5

 Fig iv. Components
We define two resource flavors, internal and external

Internal Flavors are those characteristics which are
advertised by the resource e.g. speed, latency,
capacity. External Flavors are those characteristics
which are determined by the Grid, and GQoSE, e.g.
Reliability, Pricing. While modules such as GARA
exist within system like Globus for the actual
reservation of resource, they are not designed to
cater for the consideration of resource flavors.

3. Resource Performance-Guarantee sub-system:
Grid resources do not offer any inherent guarantee
to the reservation mechanisms. This means the roles
of resource arbitration and management now must
be extended through the “performance-guarantee
sub system”. Potentially building upon & extending,
any default grid resource management sub-system
that may exist such as GRAM[22] in case of Globus.

VI Architectural Components
1. GQoSE Factory/Instantiation

• Triggered with every Join and registered with a
Directory Service of the Grid Sub-system.

• Responsible for creating a node-local instance of
the GQoSE engine.

• Binds the instance to the distributed GQoSE
sub-system.

2. GQoSE Common-Knowledge
• Serves as the ledger of all sub-components.
• Modelled along the lines of distributed

databases that can retrieve and store
information over a distributed environment.

3. Guarantee Sub-system
• Monitors and issues Reliability Index for each

individual resource.
• Determines the guarantee for a job request.

4. Pricing Sub-system
• Serves as the distributed market maker for the

shared resource.
• Modelled as per the needs of the Pricing

structure that is practised within the grid; it
works in conjunction with the Guarantee sub-
system to determine appropriate pricing.

5. Negotiation Sub-system
• Primary responsibility is to arbitrate on behalf

of the GRC for Price-Guarantee negotiations.
6. Job Execution/Monitor Sub-system

• Responsible for the final committal of
resources to a job along with the negotiated
guarantee.

• Monitors and ensures the guarantee for the
job, while providing a feedback to the other
sub-systems in case of any post negotiation
discrepancies.

GQoSE
Instance
created
remotely

“Join”
causes
request for
GQoSE
instance

Job/Execution

Negotiation

Pricing
Sub System

Guarantee
Sub System

Common
Knowledge

GQoSE
Instance

OGSA/OGSI Grid

OGSA/OGSI Grid

GQoSE
Factory

 6

VII Protocol Specifics

In our model GRC requests are made in terms of
desired level of guarantee rather than relying on Best
Effort. There is inherent “cost-based” weighted
grading of requests. In a truly commercialized grid this
would be the appropriate assumption. The “cost”
payment is not necessarily expressed in terms of any
traditional currency amount. It may very well be a
credit exchange system. In which the seller of the
resource receives credits for the sharing within a
Virtual Organization. The physical resource owner
could later act as a GRC and utilize the accumulated
credits to buy into resource guarantees for a job it
needs to complete. Such a model offers incentive for
sharing resources in return for benefits at a later point
of need.

Resource Negotiation could be accomplished through
protocols such as SNAP, which fits very well into a
competitive space of Grid Resource Sharing. The
SNAP protocol calls for continuous negotiation for the
acquisition and binding of the resources. If in a later
competing bid for the same resource from a different
GRC is negotiated to be higher, it will allow for a pre-
emptive expiration of the said binding. The protocol
does allow the previous GRC to re-negotiate in order

to retain the binding with the particular resource. Let
us discuss the SNAP protocol a little further to
understand some of the overall behaviors expected
from the model.

SNAP[8] : Agreement State Transitions
The association of submitted activities with acquired
resources in a utilization agreement is not always a
protocol operation, but is nonetheless an observable
transition of the service state, as depicted in Fig [vi].
In essence there are four states through which planning
progresses:
S1: Submitted activities or acquired resources are not
matched with each other.
S2: Submitted activities are matched with appropriate
re-source acquisitions, and this grouping represents a
re-source utilization agreement meant to resolve the
activity.
S3: Acquired resources are being utilized for a
submitted activity and can still be controlled or
changed.
S4: The agreements have been resolved either by
successful completion of the activity, or by expiration
or cancellation of the agreements.
These states have a relationship to protocol messages
in that client messages can only create or operate on
active agreements. Inactive or finalized agreements
can only occur as a result of client messages and the

Grid
Resource
Consumer

GQoSE Factory

Virtual
Organization

OGSA

Exec Engine

Physical
Nodes

Resources

Grid
Resource
Consumer

GQoSE Factory

Virtual
Organization

OGSA

Exec Engine

Physical
Nodes

Resources

(1) Create Service

GQoSE
Instance

(2) Instantiate a local
 GQoSE Instance

GQoSE
Instance

(3) Negotiation

(4) Contact OGSA Exec Engine

 and Instantiate Monitor

Fig v.
Instantiation
Of GQoSE

 7

passing of time. However, the figure simplifies the
situation in that the state changes are not actually
synchronized between submission and assignment
agreements. Related submission or acquisition
agreements may in fact move through these planning
states at different rates, because activities may share
the same resource capability but also may consume
different capabilities sequentially.

 Fig vi [Source: SNAP[7]]
Major Operations within this system: Join, Leave,
Negotiate, and Monitor. We shall discuss each of these
operations within the context of the proposed model to
better understand the interactions between the
components of the grid.

A. Join
To begin with let us, consider a node joining the Grid
system. This node would contribute its resource to the
virtual organization or pool of resources already within
the grid. In order to do so it must first contact the
architectural component that plays the role of directory
service. And request for the GQoSE instance.
Assuming that the directory is capable of locating the
GQoSE factory it will bind a GQoSE instance with the
new node.

At this point it is important to note that the
performance sub-system (GQoSE) is distributed.
Which is to say, that unlike a master-worker paradigm
the GQoSE would be a peer to peer system, that relies
on common knowledge to be shared between each of
the nodes. This shared knowledge could be installed in
a indexed retrieval mechanism such as distributed hash
tables or filling-curves that keep this knowledge in
synch across the Grid.

Once the node has received the GQoSE instance, it
now declares the resources it intends to share through
this sub-system. GQoSE in turn makes this

information available to the Grid transparently. The
offer to share a particular resource is made through an
Offers Interface defined as follows.

Format of Offers Interface (OI):
1. Grid Unique ID for Resource.

Mandatory
This will act as the resource locator across the grid. It
is created by the local GQoSE instance before offering
it to the Grid.
2. Usage policy for resource

Mandatory
This field specifies the usage policies such as security
and domain restrictions etc.
3. Minimal Price expectation

Optional
This is the minimum price at which the node chooses
to offer the particular resource.

The last but most important index i.e. the guarantee
factor must be associated with each resource upon
joining. There are two scenarios to assign this.
Supposing that the resource offering has no prior
history GQoSE shall assign the mean value of the
guarantee factor associated with that particular
resource type within the Grid System. On the other
hand, if that resource type has a history with the Grid,
the GQoSE sub-system would have the pre-calculated
Guarantee Index. This concludes the Join Operation.

B. Leave
A node may leave the Grid system either as a result of
a failure or voluntarily. In either case, this event will
trigger a set of operations:
Case i: Node resources were not in use.
The distributed GQoSE subsystem shall detect this
absence and initiate the appropriate corrections in the
common knowledge such as marking the resources
unavailable and recalculating the guarantee factor due
to lack of availability which is then stored in the
history associated with the particular resource.
Case ii: Node resources were in use.
This scenario is of particular interest to our discussion
since this model offers Guarantee through redundancy.
This requires redundant instances of the GQoSE to
exist through similar resource offerings. As a
conglomerate the GQoSE subsystem shall detect the

 8

abrupt departure of a peer GQoSE instance. This
triggers the redundant GQoSE instances to take over
the responsibility, for availability of lost resources and
thus maintaining the Guarantee factor to the GRC.
Subsequently performing the housekeeping operations
as discussed in Case i.

C. Reservation-Negotiate
Reservation is done through redundant resource. The
resources offer themselves in one of two states:
1. Active Resources (Hot Swap)
2. Passive Resources (Cold Swap)
This is a characteristic with respect to the GRC and not
a characteristic of the resource itself. The Passive
resource offers itself to the Grid with a Guarantee
Index of zero.

D. Usage Monitor
The GRC prepares a Requests Interface (RI) based on
the application it wants to run.
Format of RI:
1. Application type:
2. Estimated Resources Required:
3. Desired Level of Security:
4. Required Band Width:
5. Required Custom Characteristic
 (E.g. Maximum Jitter, Maximum
 allowed delay)
6. Desired level of Guarantee
Messages could be exchanged in the following manner
1. GRC to GQoSE
The GRC(U1) gives his RI to his GQoSE. The GQoSE
looks up the DHT to determine the availability of the
resources and tries to find the closest match to the RI.
Since there will be several resources with similar
Offers Interface, the one with the least cost that
matches the RI will be chosen.
2. GQoSE to GRC
GQoSE replies to GRC with the available set of
resources and the bidding starts. Since there could be
multiple GQoSE instances competing for the same set,
the one with the highest bid shall be granted access.
3. GRC to GQoSE
The GRC then may increase its bid in order to gain
access to the resource.
4. GQoSE to GRC

The resource is 'Allocated' to the highest bidder and
the corresponding information is stored as part of the
common knowledge.
5. GQoSE instantiates the Performance Monitor
The monitor ensures that the GRC and the Resource
are 'Well-Behaved'. The details of the current
transaction get added to the Historical Information
associated with the resource and becomes common
knowledge.
6. If the Resource provider is unable to deliver
The Guarantee associated with the Provider is reduced
and the corresponding new value is made available
through common knowledge. At the same time, the
current transaction is broken and the monitor hands the
control to the GQoSE.
7. When the processing completes, the resource is
marked as free.

VIII Incentive and Pricing Models [9,10]
For the successful adoption and implementation of the
proposed Architectural Model in this paper it is
important that the appropriate economic incentive be
provided. Grid systems assume an implicit sharing of
resources but the said sharing occurs on behest of a
contributor only via an economic motivator. Except, in
the case of special interest groups or institutes
involved in academic research. We therefore shall
discuss some fair market pricing models that have
been exercised for similar resource sharing business
endeavors. Two such prominent pricing models are the
Market Maker and the Double Auction Model[9].

A. Market Maker Model[9]
This pricing model is based on the basic principle of
supply-demand. A central entity or arbitrator gathers
and monitors the supply-demand characteristics of a
designated commodity. This entity is deemed as the
“market-maker” for the commodity and regulates a fair
market price for the same. The Market Maker pools
together the resources and categorizes them as per
“advertised” flavors. The buyers or consumers for the
resource must pay the “Market-Maker Suggested
Retail Price” or MSRP in order to complete a
transaction. The continuous availability and sale of
resources dictates the MSRP for the particular
resource; besides shared factors such as

 9

“reliability/guarantee”, speed, latency etc. The
resource characteristics or flavors increase the
complexity of the pricing model. A simple
determination based on searching the availability &
reliability index of the resource is not sufficient. A
complex analytical linear programming model is
required to weigh in all the flavors and determine an
appropriate MSRP.

Double Auction Model[9]
In this model the “single market maker” is removed
from the equation. Instead each commodity owner
represents himself and directly negotiates with the
buyer. In such a model, where there a number of
buyers and sellers each transparent to the others
existence; the pricing structure is much more dynamic.
Each buyer can advertise a custom set of flavors
exacting a different price for a similar commodity.
Allowing a more flexible auctioning model where the
buyers get to balance the cost against their custom
needs. This model can prove very attractive in a
heterogeneous Grid system where the contributors as
well as the consumers are highly diverse; and demand
a variety of services and resources thereof. But such a
market can also be quite volatile in its cost structure,
as opposed to, a relatively homogeneous environment,
where the Market Maker model can prove to offer
much more stability.

The pricing models could potentially be exercised
within the same physical grid; allowing the users to
choose the model they would like to work with.

Further more, the GQoSE does not restrict the pricing
structure to these two models alone. In fact any
number of pricing engines could be introduced to suit
the needs of the grid community that is being served.

IX Use Cases and Frequently Asked Questions

What if a Resource fails to perform according to
Guarantee?
 Punish the resource by reducing Reliability Index
and Price offering
What if a Resource performs better than expected?
 Reward the resource by recording the higher
Reliability Index and increasing the cost for procuring
the resource in the history
What if the Grid Resource Consumer goes down?
 Job Execution/Monitor Sub-system destroys Job
What should be the Guarantee Index of a new
node?
 Starting value can be fixed, suggested 0.5
What if there is a special resource/application?
 The model is scalable to incorporate custom
resources and the flavours thereof
How do I implement the Sub-system?

This is left to the discretion of the implementer.
This paper only proposes the architecture

What if a node claims to have characteristics which
are falsified?

History accounts for falsification & adjusts Indexes
Can credits be transferred between GQoSE’s?

This would be a factor of the pricing model
currently being exercised

Fig vii. Source [9]

 10

How do Guarantee Factor and Price relate?
A resource with a lower Guarantee would mean that
GRC are sceptical to use its resource. In order to
map this to price, we can use a simple relation:

 Price = Market Price of Resource * Reliability
factor. However, the implementer is free to choose any
relation desired
Can different nodes have different Guarantee
Factors of the same resource depending upon their
location or other characteristics?
 Yes
What if the resources were in not use when a
Resource Provider “leaves”?
 This could impact Price structure (Supply/Demand)
What if the resources were in use when a Resource
Provider “leaves”?
 Fault Tolerance kicks in and Drops Reliability factor
 for provider and records this in history

X Conclusion

In this paper we proposed a method to incorporate a
guarantee model and its architectural components
combining it with the concepts of Grid Economics. We
showed how it fits into the OGSA[23] architectural
paradigm. However, a conscious attempt was made not
to bind the architecture to a particular implementation.
While a number of recommendations were made for
the particular sub-components, the flexibility of the
architecture comes from its ability to adapt to the
needs of the particular grid systems, as long as the
major subcomponents and their overall responsibilities
are addressed. To that intent, the responsibilities for
each subcomponent within the system were discussed,
in an attempt to surface the various design
considerations that must be kept in mind during actual
implementation.

XI Future Work

Our architectural proposal was designed to fit into the
OGSA model based Grids. The OGSA architecture
presents a well structured approach with separate Tiers
designated for particular roles. This offers an inherent
“extensibility” for the addition of architectural
components such as ours. However, in case of non-

OGSA based grids it is quite possible that our
proposed model would need to be modified and
adapted to work with the new environment.

References
1.End-to-End Quality of Service for High-End

Applications
2.Grid Economics: http://www.zurich.ibm.com/g

rideconomics/
3. Grid Economics: 10 Lessons from Finance Raj Buyya
4.Economics of Grid Computing and Web Services
5.Globus – http://www.globus.org
6.Virtual Organisations www.cs.adelaide.edu.au /~waltz/

research/vo.pdf
7.Reliability Models http://www.weibull.com/

SystemRelWeb/series_system.htm
8.SNAP: A Protocol for Negotiating Service Level

Agreements and Coordinating Resource
Management in Distributed Systems

9.Scaling Web Services with Capacity Provision
Networks – Andrew Whinston et al.

10. Market-Based Optimization Algorithms for
Distributed Systems

11. Cactus Application : Performance Predictions in
Grid Environments

12. QoS as Middleware: Bandwidth Reservation
System Design

13. The Cactus Worm: Experiments with Dynamic Resource
Discovery and Allocation in a Grid Environment

14. A Quality of Service Architecture that Combines
Resource Reservation and Application Adaptation

15. Qualis: the Quality of Service Component for the
Globus Meta-computing System

16. Predicting Application Run Times Using Historical
Information

17. Nimrod-G and Virtual Lab Tools for Data
Intensive Computing on Grid: Drug Design Case
Study

18. Management += Grid
19. SLA Management and Resource Modeling for

Grid Computing
20. Towards a Unified Towards a Unified Monitoring

and Performance Analysis System for the Grid
21. Performance evaluation on grid
22. The Physiology of the Grid
23. Open Grid Services Infrastructure (OGSI) Version

1.0 (draft)

