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Abstract:  We survey four secure fault-tolerance distributed file systems: Farsite, OceanStore, 
Ivy, and Frangipani.  We analyze each with respect to fault-tolerance, scalability, usability, 
maintenance overhead, and consistency.  Finally, we present a taxonomy for such file systems 
based upon their failure models, update mechanisms, and data location schemes. 



 
 
1.  Introduction:   
 
One of the fundamental abstractions that a computer user expects is a file system.  A file system 
provides an interface to the user where he can read, write, copy, and remove files.  The most 
common file systems are the ones provided locally on a machine.  The disadvantage of this 
approach is that if the machine fails, then all users of that file system will have lost all their data.  
The common solution to this problem is for a system administrator to make backups of the 
system in case of failure.  This technique, however, is slow, cumbersome, and does not scale 
once hundreds of individual computers are involved. 
 
An attractive solution to guarding against failures is a distributed file system, one in which the 
designers have spread the actual implementation of the file system across multiple computers 
connected through a network.  Simply distributing a file system is often not enough to yield 
desirable properties that outweigh the work involved in building it.  Designers have to make 
careful choices to yield guarantees of fault-tolerance, usability, scalability, and consistency. 
 
This work surveys secure, fault-tolerant, distributed file systems.  In particular, we aim to compare 
Farsite [1], OceanStore [6], Ivy [11], and Frangipani [16].  We will discuss each system with 
respect to our metrics of fault-tolerance, usability, scalability, and consistency.  The closest work 
to ours is a survey by Satyanarayanan [17].  However, he conducted his survey several years 
ago, at a time when fault-tolerance and scalability were not the mainstream concerns.  Guan et 
al. [4] discuss more recent file systems, but neither present structured metrics for comparison nor 
suggest a taxonomy.  Finally, we will introduce a taxonomy that highlights critical design choices 
for any secure, fault-tolerant, distributed file system. 
 
We organize the rest of the paper as follows.  Section 2 presents our approach to comparing 
distributed file systems, detailing our four metrics.  Section 3 discusses each file system with 
respect to these metrics.  Section 4 introduces our taxonomy for categorizing secure fault-tolerant 
distributed file systems.  Section 5 comments on related work and concludes our paper. 
 
2.  Research Approach: 
 
We begin by discussing desirable properties of any distributed file system.  After deciding upon 
these, we describe four metrics that encapsulate our properties and allow us to qualitatively 
measure each system. 
 
By distributing a file system across multiple computers, we increase the likelihood of a single 
component failure.  However, users of a distributed file system actually expect the system to be 
tolerant of such local failures.  If it were not, then one of the major motivations for building 
distributed file systems evaporates.  Moreover, as users hear more about hacker attacks, they 
wish for their distributed file system to be secure even under drastic conditions, such as when a 
hacker is actually successful in taking over a computer.  In short, users expect some level of fault-
tolerance from a distributed file system. 
 
 
Metric 1:  Fault-tolerance – The ability of a system to continue normal operation despite failure of 
one or more of its components.  In the context of distributed file systems, a fault could be a server 
crash resulting in loss of data, or a server acting in an arbitrary manner (Byzantine), as would 
occur due to a bug or malicious operation.  The difference in approaches lies in the techniques 
each file system employs to handle failures. 
 
 
Distributed file systems are prevalent in universities, corporations, and government offices.  Each 
of these is a dynamic entity, expecting to grow and change with time.  A corporation with five 



thousand employees has little need for a static file system that can only handle up to six thousand 
users.  If the company grows at only five percent every year, then the file system will be obsolete 
in just four years.  Further, system performance should degrade gracefully as usage steadily 
increases.  An important measure of a file system is its scalability. 
 
 
Metric 2: Scalability -- A system's ability to easily adapt to changes in size and use while 
maintaining acceptable performance. With considerable effort put in designing such systems, it 
becomes imperative that these systems be viable for an extended period of time. 
  
 
Though a file system may be able to grow with the addition of more computers, this advantage 
could be overshadowed if it requires a system administrator to power down all current machines 
at night, manually reconfigure each one, and power up the machines again.  From the system 
administrator’s perspective, such a system would not be practical.  Similarly, a distributed file 
system should not require users to learn an obtuse interface.  From the user’s perspective, the 
system should export semantics and interfaces similar to systems they have already used, such 
as Windows and Unix.  
 
 
Metric 3:  Usability/Manageability -- The ease and effectiveness with which a system can be used 
and maintained in the manner intended by the designers.  Interfaces presented to users should 
be intuitive and familiar.  Maintenance operations should be straightforward and require minimal 
manual reconfiguration by the administrator.  
 
 
Distributed file systems must solve some issues that a local file system does not, e.g., 
concurrency.  Consider a situation where two users concurrently write to the same file.  When 
they later read the file, what should they see?  Perhaps they would see only one user’s version of 
the file, discarding the other user’s work.  Or perhaps they would see an interleaved file.  Or 
perhaps each user would somehow still see the version of the file he wrote.  Designers of 
distributed file systems must provide consistency. 
 
 
Metric 4:  Consistency – The formal semantics that a file system guarantees all users even under 
concurrent operations and failures.  Reading from a file after a successful write should return the 
updated data, provided no intermediate writes committed in the meantime.   
 
 
 
3.  Case studies: 
 
In this section, we outline four distributed file systems and analyze each along the four metrics we 
proposed in section 2. 
 
3.1 Farsite 
 
Farsite is a serverless distributed file system that is implemented on a set of incompletely trusted 
desktop machines [1].  A subset of desktop machines collectively acts as a centralized server.  
The main design goal of Farsite is to provide secure, reliable file service by using unreliable, 
insecure desktop workstations.  The system administrator designates a set of machines as the 
directory group (or logical server).  Farsite achieves security through public key cryptography.  A 
certificate authority grants each user and machine a digital certificate.  Farsite validates users, 
machines and directory groups through their respective certificates. 
 



Each member of a directory group runs a Byzantine agreement protocol with the other members 
to ensure they all perform the same operations in exactly the same order.  Thus, meta-data is 
replicated across all members of a directory group.  Unlike metadata, Farsite does not replicate 
file data across each member of the directory group.  Instead, it stores file data on separate 
machines (file hosts) and keeps the secure hash of the contents with the directory group. 
 
3.1.1  Fault Tolerance 
 
Farsite assumes a Byzantine failure model in which any machine (directory group member, file 
host, or client) can crash or begin performing malicious actions.  We describe what mechanisms 
are in place for each of these scenarios. 
 
Since operation of the directory group can tolerate Byzantine failures, we need only worry about a 
machine that leaks information to the outside world.  Users can guard their privacy by encrypting 
the contents of their files with their private keys.  Thus, a malicious directory group member can 
only corrupt data.  However, this is not even allowed since all members execute a Byzantine 
agreement protocol. 
 
Farsite tolerates failures of file hosts by replicating file data across multiple hosts.  If a file host 
crashes, then the replicas are still available.  If a file host corrupts file data, the tampering can be 
detected because directory group members store a secure hash of the file contents. 
 
A user cannot affect another user’s files because all file operations are mediated by the directory 
group.  Further, a user must sign his file operations.  If your signature does not match the list of 
authorized users for a particular file, then the directory group rejects your request. 
 
Farsite achieves increased availability by migrating the operations of failed machines to 
operational ones.  Farsite performs the above migrations based on the replicated information 
available on other machines.  
 
 
3.1.2 Scalability 
 
The ideal model of decentralization is one in which users perceive the system as monolithic even 
when their accesses span many machines. Farsite achieves this by exporting a logical file server 
while implementing the server on a group of machines. The novelty of Farsite is that it provides 
reliability and availability from the collective performance of a group of unreliable and untrusted 
machines. 
 
Designating a group of machines to act as a logical server rather than employing a centralized 
server, however, does not remove the bottleneck. For example, a directory group of five 
machines would be a potential bottleneck when handling thousands of clients. Farsite therefore 
employs delegation of namespace.   A directory group can issue delegation certificates 
designating a chosen set of machines to act as a different directory group, managing a part of the 
namespace.  The original directory group redirects all future accesses from clients for files in the 
delegated namespace to the new directory group. 
 
To improve performance, clients cache mappings of pathnames to directory groups.  Farsite 
employs hint-based pathname translation.  When requesting a certain file, a client first finds the 
directory group with the longest matching prefix. If that directory group no longer manages the 
namespace, the client is either redirected to the directory group that actually manages that 
namespace or it finds the next longest matching prefix and repeats the process.  
 
The disadvantage in executing a Byzantine agreement protocol for fault-tolerance is performance 
– a serious concern with respect to scalability.  Farsite employs a lease mechanism to manage 
concurrent accesses to files.  A user can only write to a file provided he has the corresponding 
lease.  Farsite also places a hard limit on the number of files that can be opened concurrently for 



writing and a soft limit on the files opened for reading to prevent excessive consistency 
management.  
 
 
3.1.3  Usability / Manageability 
 
Farsite provides the benefits of a local desktop file system (low cost and privacy) along with the 
benefits of a central file server (location-transparent access and a shared namespace).  Multiple 
roots each acting as a virtual file server can exist in the system. 
 
It requires no central administration beyond that needed to bootstrap the initial system and 
authenticate new users and machines.  While running, a Farsite system will autonomously 
replicate files, migrate operations, and delegate namespaces without human intervention.  The 
authors claim that overhead after configuration is minimal. 
  
 
Other possible tasks for local administration like hardware upgrades and backup of private data 
also have appropriate support. Hardware upgrades are treated as just another case of machine 
failures, in which case the system responds by migrating responsibilities to operational machines.  
However, a system administrator could of course notify the system that a particular machine will 
go down soon, so that Farsite can take proactive measures. 
 
 
3.1.4  Consistency 
 
Farsite maintains directories and files in consistent states through two techniques:  Byzantine 
agreement protocols and lease mechanisms. 
 
Each directory group member stores a current replica of the metadata that the group manages.  
Upon receiving a client request, each member runs a Byzantine agreement protocol to ensure 
consistency in the face of replication.  The Byzantine protocol guarantees agreement as long as 
fewer than a third of the machines misbehave.  
 
Farsite controls accesses to files for reads and writes through a lease mechanism.  For example, 
to write to a file, a client must obtain a write lease, whose semantics guarantee that no other 
client has an unexpired write lease for the same file.  Similarly, clients obtain read leases to read 
from files.  If a client requests a write lease while other clients hold unexpired read leases, all 
outstanding read leases are revoked and the corresponding clients are notified of the concurrent 
access.   
 
Different types of leases exist in a Farsite system.  A read-only 'content' lease guarantees that the 
client always sees fresh data, a read-write 'content' lease is effectively a lock that enables the 
client to make consistent modifications to the file locally.  The lease is recalled when another 
client makes a request for read-write content lease on the same file. This mechanism, however, is 
not suitable for large-scale write sharing that would result in frequent lease recalls. A maximum 
lease expiration time is provided to safeguard against the failure of a client while it holds the 
lease. 
 
A 'namespace' lease is provided for exclusivity in renaming and/or creating files in a namespace 
region.   With the exclusivity provided by the lease mechanism there is no need in Farsite for 
conflict detection and resolution as employed in other distributed file systems. The disadvantage, 
however, is that this mechanism incurs overhead even for non-concurrent accesses. 
 
 
 
3.2 OceanStore 
 



OceanStore [6] is a global storage utility that guarantees a number of desirable properties:  fault-
tolerance, availability, consistency, and durability.  It is unique in that the designers of 
OceanStore targeted it for global scale storage.  It presents many new concepts like deep 
archival storage and nomadic data.  Deploying a global-scale storage utility immediately opens 
the door for malicious attacks, and thus, OceanStore assumes a Byzantine failure model. 
 
Objects - the fundamental units in OceanStore are assigned globally unique identifiers (GUIDs) 
and can only be modified through updates. 
 
 
3.2.1  Fault-tolerance 
 
OceanStore addresses an issue of fault-tolerance that many other file systems do not consider: 
regional disasters.  Even in the presence of such disasters, OceanStore aims for availability, 
consistency, and reliability.  It does so through nomadic data, a concept that objects (the 
fundamental units in OceanStore) are not bound to a particular machine.   Rather, they can float 
from machine to machine, dispersing and replicating themselves around the world and thus 
tolerating local power outages and natural disasters.  OceanStore also tolerates Byzantine 
failures by placing a set of replicas for a file in charge of all updates to that file.  These primary 
replicas run a Byzantine agreement protocol and disseminate the results of each update to all 
other (secondary) replicas. 
 
OceanStore provides a third fault-tolerant mechanism unseen in our other file systems: deep 
archival storage.  The goal of deep archival storage is for a user to be able to store a file and be 
assured with high probability that the file will remain in the system years later in the presence of 
numerous faults.  OceanStore achieves this through Merkle trees (for integrity) [10] and erasure 
codes (for data loss) [8, 13].  The erasure code mechanism treats an input file as n fragments, 
and transforms them into m (m > n) fragments such that the original input file can be 
reconstructed using any n of the m fragments. OceanStore then distributes these fragments 
across multiple servers, preventing regional disasters from making a file unavailable.   
 
Similar to Farsite, OceanStore users can prevent leaking of sensitive information by encrypting 
their files prior to storing them on servers.  Servers guard against unauthorized writes by running 
a Byzantine agreement protocol. 
  
3.2.2  Scalability 
 
The designers of OceanStore envisioned a global scale data utility.  It is not surprising, therefore, 
that OceanStore scales up to 1010 users with approximately 1014 files. Operation on this scale 
necessitates mechanisms different from those of other distributed systems. For example, due to 
the sheer size of the system with servers spread across the globe, the need to provide 
transparency and reduce latency of access becomes even more important.  Hence, OceanStore 
supports nomadic data and promiscuous caching. 
 
Objects in OceanStore migrate from server to server.  They do this for fault-tolerance, and to 
adapt to changing usage patterns.  Replicas roam (like nomads) closer to sites of frequent 
accesses.  This reduces network latency, and thus, improves performance for the end user.  In 
addition, users can aggressively cache objects anytime and anywhere.  These two design 
choices greatly improve performance.  However, they complicate data location. 
 
OceanStore locates objects in one of two ways.  First, a server attempts to find an object using a 
fast probabilistic algorithm based on attenuated Bloom filters [2].  If the first technique fails, then a 
server uses a slower deterministic algorithm.  A Plaxton-like distributed data structure [14] stores 
the location of each OceanStore object.  Using a Plaxton-like algorithm, servers locate any object 
in O(log n) hops, where n is the number of servers in the system. 
 
 
3.2.3  Usability / Manageability 



 
The OceanStore API provides a clean abstraction divorcing the details of a global-scale file 
system from the properties desirable of a distributed file system.  The API provides a user with full 
access to sessions, sessions guarantees, updates, and callbacks.  For users who want to use 
OceanStore like a prototypical Unix file system, OceanStore also provides interfaces to the API, 
deemed facades.  Different facades exist for different semantics.  The designers of OceanStore 
have implemented a façade that emulates traditional Unix file system semantics. 
 
An important property of OceanStore is introspection, the ability for the system to adapt its 
behavior to usage patterns and current conditions.  Objects in OceanStore are not limited to files 
and directories; an object in OceanStore can monitor usage patterns and take proactive actions 
to enhance performance and load balance the system. 
 
 
3.2.4  Consistency 
 
OceanStore’s ideas of nomadic data and promiscuous caching benefit scalability and 
performance.  However, they make maintaining consistency and coherence more difficult.  Earlier 
systems such as Coda [5] and Bayou [15] compromised consistency for high availability, while 
systems such as Farsite assumed only small scale write sharing and hence found the lease 
mechanism (effectively a lock) satisfactory.  
 
OceanStore allows large-scale write sharing.  Therefore, OceanStore employs an update model 
based on conflict resolution that can support strong consistency (ACID semantics) as well as 
weaker consistency semantics.  An update in OceanStore is a list of predicates and 
corresponding actions.  An update is applicable to a file if at least one predicate evaluates to true.  
In that event, the actions associated with the first true predicate are applied to the file. 
 
Recall that each file in OceanStore has a primary set of replicas in charge of updating it.  The 
primaries are usually machines located in high-connectivity, high-bandwidth regions of the 
network.  To resolve conflicts, the primaries use a Byzantine agreement protocol to decide on a 
total ordering of conflicting updates.  Once decided, they apply each update sequentially and 
notify other replicas in the system of the total ordering.  Depending on an application’s semantics, 
secondary replicas can sometimes propose a tentative total ordering that application’s can use.  
Of course, the primaries’ decision will overwrite any tentative ordering, but this provides better 
performance, provided an application is willing to tolerate weaker semantics. 
 
3.3 Ivy 
 
Ivy [11] is a distributed read/write peer-to-peer filesystem. The file system itself consists solely of 
a set of logs, one log per participant with permissions to update the filesystem. Each participant 
finds data by consulting the logs of all such participants, but appends only to its own log to record 
changes.  Given the same set of logs, all participants establish identical total orderings on log 
records, and thus, form the same view of the file system, even in the presence of concurrent 
updates. 
 
Participants store their logs in DHash [3], a secure distributed hash table.  DHash performs much 
of the authentication and replication necessary for handling benign failures and limiting malicious 
activity.  Each participant maintains a pointer to the end of his log in a publicly readable data 
block.  Therefore, an Ivy file system is uniquely determined by a set of these pointers.  A view 
block in DHash is an immutable data block that identifies where each participant stores the 
pointer to the end of his log.  Ivy uniquely identifies a file system with the content-hash key of the 
view block, which is essentially a self-certifying pathname [9].  
 
3.3.1  Fault-tolerance 
 



Since Ivy stores all logs in DHash, it is resilient to crash failures.  DHash replicates each record 
that a participant appends to his log.  Further, DHash also replicates the pointers to the end of 
participants’ logs.  Therefore, even if a participant crashes, his log is still available, and remaining 
participants still see the changes he made to the file system through his log.   
 
Against more malicious behavior, Ivy adopts a novel idea of trust.  Participants cooperate to form 
a file system, and thus, each participant implicitly trusts every other participant.  Ivy does not 
provide any level of access control.  However, if a participant misbehaves, the remaining 
participants can essentially force him out of the file system.  They accomplish this by establishing 
a new view block that no longer contains a pointer to that participant’s log.  Henceforth, they 
ignore that participant’s log.  Observe that they have essentially undone all his malicious actions 
because a participant cannot modify any other log but his own.  However, by ignoring his log, the 
remaining users may need to fix some resulting inconsistencies.  They do so through the 
ivycheck tool. 
 
3.3.2 Scalability 
 
If each participant iterated through every participant’s log for every file operation, the system 
would not scale beyond a few dozen peers.  To avoid this operation, Ivy provides a snapshot 
mechanism where each participant stores the most up-to-date state of the file system. Ivy uses 
the underlying DHash server to store the snapshots. Though each participant has his own private 
snapshot, the snapshots across many participants are largely identical, and hence, DHash 
automatically shares their storage. 
 
Though snapshots obviate the need for a participant to iterate through entire logs, each 
participant must still contact everyone else for the newest updates before attempting any file 
operation.  The communication bottleneck as the system scales up becomes acute. 
 
A more severe bottleneck for scalability is the overhead in adding and removing participants from 
a file system.  Any time Ivy adds or removes a participant from the file system, it must create a 
new file system (a view block) and, in the case of removal, must repair potential inconsistencies.  
Existing participants must also agree on the new membership. 
 
 
3.3.3 Usability / Manageability 
 
Ivy provides a kernel device driver so that users of an Ivy file system are (ideally) unaware of the 
underlying infrastructure.  A system administrator simply needs to mount an Ivy file system by 
specifying a view block.  In ideal conditions, users can treat the file system similarly to NFS.  
However, Ivy does not currently support mechanisms to inform the user in case of a write/write 
conflict. The user must explicitly run the provided lc tool to detect that a write has been missed. 
 
An Ivy file system continues to function even in disconnected operation.  Each participant in a 
partition can still append records to his log and access files that were in the system prior to the 
partition.  However, when two partitions merge, unexpected and undesirable results may occur.  
When connected operation resumes, Ivy does not notify users even if there were conflicting 
updates.  Since log records are totally ordered, merging logs that were updated in different 
partitions may yield undesirable interleavings.  An Ivy user can only detect such a problem by 
running a separate tool that presents the user with the state of the file systems in different 
partitions prior to the merge.  A user can then manually make the appropriate changes. 
 
As discussed earlier, Ivy also makes removing a user from the system very cumbersome.  
 
3.3.4 Consistency 
 
Ivy achieves much of its consistency through immutable log records.  Ivy attaches version vectors 
on each log record (similar to vector clocks).  This establishes a partial order on all log records.  
Users also agree on a total ordering among participants, and thus, establish a total ordering on 



log records.  This common total ordering allows two participants to view the same file system 
even if concurrent reads and writes occurred in the past.  However, at the time participants 
execute concurrent operations, Ivy’s semantics allow unintuitive events to occur. 
 
This occurs because an operation may come after another in the total ordering, but commit first in 
real time.  For example, consider two concurrent operations “delete file1“ and “rename file1 file2”.  
Suppose the rename operation commits and then the delete commits.  In the window of time 
between the two commits, a participant could see file2, and an instant later, find neither file1 nor 
file2, though only a “delete file1” operation occurred.  In summary, at any time participants may 
only see a subset of concurrent operations that will be totally ordered after operations that will 
commit later in real time. 
 
As mentioned earlier, Ivy does not notify users when connected operation resumes, which may 
result in file system inconsistencies. 
 
 
3.4 Frangipani 
 
Frangipani [14] is a cluster file system, where every client trusts every server.  The structure of 
Frangipani is similar to Ivy in that it is a file system layer implemented on top of a storage 
abstraction layer.  Petal [7] is a distributed storage service that provides a virtual disk abstraction 
with a distributed lock server, and Frangipani is the file system implemented on top of Petal. As a 
consequence, Frangipani inherits much of its scalability, fault tolerance and easy administration 
from this underlying storage system.  The Petal storage system can tolerate one or more disk or 
server failures, provided a majority of servers are operational and each replicated data block 
remains somehow physically accessible. Petal and the lock service are also distributed for fault-
tolerance, scalability and load balancing. 
 
 
3.4.1  Fault-tolerance 
 
Unlike our other file systems, Frangipani assumes a crash failure model (as does Petal).  Further, 
servers can communicate securely with each other (without cryptographic techniques).  
Frangipani relies on the underlying Petal replication scheme to provide availability in the face of 
failures.  To provide further fault-tolerance, each Frangipani server maintains a log that all other 
servers can read, but to which only it can write.  A server’s log contains changes that this server 
was supposed to carry out on behalf of users.  When a server crashes, other servers can run a 
recovery algorithm to replay all pending operations in the crashed server’s log.  The recovery 
algorithm ensures that the Frangipani file system stays in a consistent state. 
 
Frangipani allows transparent server addition, deletion and failure recovery by utilizing persistent 
logs, locks, and the underlying Petal service.  Frangipani uses write-ahead redo logging (i.e. for 
every update performed, a record describing the update is appended to the log) of metadata to 
simplify failure recovery.  Failures may be detected either by a client, or when the lock service 
asks the failed server to return a lock it is holding and receives no reply. As long as the underlying 
Petal volume remains available, the system tolerates n-1 Frangipani server failures, where n is 
the number of servers. 
 
 
3.4.2  Scalability 
 
Since Frangipani is a cluster file system, its scalability properties do not compare well to systems 
such as Farsite and OceanStore.  The most recent implementation only uses 256 servers.  The 
designers of Frangipani intended it for an environment of engineers working cooperatively.  
However, for its given audience, it offers many valuable properties. 
 



Frangipani provides improved load balancing over a centralized network file server by splitting up 
the file system load and shifting it to the machines that are actually using the files.  This is a 
consequence of using a crash failure model instead of Byzantine.  Frangipani allows transparent 
server addition, deletion and failure recovery by utilizing logs, locks and Petal. 
  
Frangipani allows server addition and removal with little overhead.  New servers need only know 
how to access the lock server and how to access its log for recording updates.  Administrators 
remove servers by optionally forcing modified blocks to be written to disk or simply powering 
down the servers.  Petal servers and lock servers can also be added and removed with equal 
ease. 
 
 
3.4.3   Usability / Manageability  
 
The implementers of Frangipani provide a kernel device driver for Unix systems.  System 
administrators simply need to ensure that each computer appropriately mounts the Frangipani file 
system on start up.  After this point, users see little difference between a Frangipani file system 
and the local file system. 
 
Frangipani facilitates server addition and removal as mentioned above. 
 
 
3.4.4  Consistency 
 
Frangipani guarantees consistency through a distributed lock service.  It employs multiple 
reader/single writer locks to coordinate access to the virtual disk and to keep the buffer caches 
coherent across the multiple servers.  The granularity of locks is on files; in this case, Frangipani 
trades performance for simplicity. 
 
Programs running on different machines have a coherent view of the file system, i.e., changes 
made to files or directories on one machine are immediately visible on all others.  Frangipani 
provides the same semantic guarantees as on a local Unix file system through the distributed lock 
service.  When the lock service detects conflicting lock requests, it asks the current holder of the 
lock to release or downgrade it to remove the conflict.  The lock service handles server failures by 
letting locks expire.  
 
 
4.  Taxonomy:   
 
This section describes a taxonomy that divides secure, fault-tolerant distributed file systems into 
categories.  The difficulty in constructing taxonomies is that one design decision for a file system 
influences other design decisions significantly.  The taxonomy should target the original design 
decision and not its effects.  For example, an important design decision in OceanStore is to 
provide low latency access.  This design choice manifests itself through nomadic data and 
promiscuous caching. This nomadic data concept in turn affects the fault-tolerance model. We 
aim to establish a taxonomy that cleanly classifies the original design decisions. 
 
 
 
4.1  Update model 
 
In a practical distributed file system, users should be able to read and write files without high 
overhead.  However, any distributed file system must handle the scenario in which two users 
attempt to update a file concurrently.  Designers of a file system have to make a decision to either 
allow conflicting updates or not.  Choosing either one has its ramifications. 
 



OceanStore and Ivy allow users to make conflicting updates.  This decision allows a user to 
update a file at any time.  However, the file system must then decide how to resolve the conflict 
when it is (and must be) detected.  In OceanStore, users submit updates to any replica.  Updates 
eventually propagate to a set of primary replicas, which execute a Byzantine agreement protocol 
and apply the updates to their copies of the file.  The primaries then push the updates to all other 
replicas in the system. Ivy, on the other hand, decides on a total order based on the public keys 
of the participants responsible for concurrent updates.  All participants a priori agree on this total 
order and get a consistent view of the file system. 
 
All updates to a file in OceanStore pass through a primary tier of replicas. This primary tier is 
responsible for establishing a total order over the conflicting updates and then sequentially 
applying them. However, an application with weak consistency semantics may retrieve a copy of 
the file from a secondary tier before the primaries push the final update to all replicas. 
 
Farsite and Frangipani do not allow concurrent updates to a file.  Both employ a lease/lock 
mechanism, where a user has exclusive write access to a file for a finite time interval.  When that 
time expires, the user pushes his updates to the servers.  The advantage of this approach is that 
the file system does not have to provide any conflict resolution schemes.  In addition, all requests 
for a particular file will always return the most recent version (as opposed to OceanStore).  On the 
other hand, if a user crashes while in possession of a lease, then the file system must either wait 
for the lease to expire or revoke it before letting another user access that file. 
 
There is a distinct tradeoff between allowing conflicts and not.  If a system allows conflicting 
updates, users can update the file at any time, but may have to accept stale files and unexpected 
results when another user's update immediately overwrites his.  By not allowing conflicts, the 
system provides stronger consistency guarantees, but at the cost of sacrificing availability since 
users must obtain a lease before proceeding. 
 
 
4.2 Failure model 
 
The ability to deal with failures is crucial to any distributed file system.  As a file system scales up, 
the probability of faults increases.  When such situations arise, the system must still provide the 
same guarantees (consistency, availability, security) as normal operation. 
 
Frangipani is a cluster file system, where a set of trusted servers communicate securely and only 
fail by crashing.  Users submit updates to a server.  That server then logs that update onto stable 
storage and proceeds to actually update the corresponding file.  In the presence of crash failures, 
the surviving members can consult the logs of failed servers and replay the appropriate updates.  
As a consequence of a crash failure model, data does not have to be encrypted when stored on 
servers.  Further, the degree of replication can be much less since a server can only fail by 
crashing. 
 
Farsite and OceanStore assume a Byzantine failure model.  Each system maintains a set of 
servers responsible for a set of directories and files.  Since users do not implicitly trust any single 
server, every request and update triggers the execution of a Byzantine agreement protocol. 
In addition, files must be encrypted to prevent servers from leaking the contents of the file to 
unauthorized individuals. Further, users should have access to secure hashes of each file to 
validate the retrieved contents. The immediate consequences of designing a Byzantine fault-
tolerant file system include higher overhead and replication. 
 
Ivy is unique in its approach to fault-tolerance. By storing the logs on the DHash server, it ensures 
their availability even when the participant has crashed or is disconnected. Hence, it handles 
crash failures effectively. However, it implicitly trusts every peer that is participating in the file 
system.  When a peer fails or acts maliciously, the other peers in the system form a new file 
system, excluding the ill-behaved peer from the group.  The disadvantage of this approach is that 
a malicious peer could wreak havoc on the system until he was detected.  Ivy does not address 
the problem of detecting such behavior.  Once detected, however, correct participants can form a 



new file system, excluding the malicious peer.  Unfortunately, excluding a previously trusted user 
may leave the resulting file system inconsistent. 
 
 
4.3 Locating files 
 
As a distributed file system scales up, the contents of the file system will be spread across 
multiple computers to support low latency and highly available access.  Such a system must 
provide a means to efficiently locate files and return errors only if the file does not actually exist. 
 
In Farsite, clients contact a directory group.  The directory group then responds with a list of 
nodes that store the file.  A client can then contact any one of those nodes to retrieve the desired 
file.  The basic scheme remains the same when a directory group delegates a section of its 
namespace to another directory group, except that only the second directory group responds to 
the client's request. 
 
OceanStore uses two mechanisms to efficiently locate files. The first is a fast probabilistic 
algorithm using Bloom filters and the second is a deterministic solution using a Plaxton-like data 
structure.  Each server maintains an attenuated Bloom filter that reflects which files it holds and 
which files its neighbors hold.  By consulting these Bloom filters, a request can be satisified if the 
file is 'close' to the requestor.  Otherwise, the servers resort to a deterministic mechanism that 
uses O(log n) hops.   
 
Ivy and Frangipani are file system abstractions that reside on top of a storage layer.  Both derive 
their locating mechanisms from the underlying storage layer, DHash for Ivy and Petal for 
Frangipani.  
 
 
5.  Conclusions: 
 
Distributed file systems have evolved from experiments confined to research labs into practical 
systems that thousands of users in universities and corporations expect.  Researchers have 
proposed numerous techniques to address issues such as fault-tolerance, scalability, availability, 
and security, all properties that were weaknesses of distributed file systems only a decade ago.     
 
We have examined four secure, fault-tolerant, distributed file systems with respect to four metrics.  
We have seen a profound interdependence among these metrics, namely meeting one metric 
may sacrifice another.  File system designers have usually focused on a specific issue, taking it to 
a logical extreme (e.g. Coda’s disconnected operation), or they have tried to strike a balance 
among a number of design issues.  The taxonomy presented tries to underscore some of the 
fundamental choices in designing distributed file systems. 

From our analysis of distributed file systems, we see two areas for future work: 1) the integration 
of group key management with these systems to facilitate sharing, and 2) support for data access 
from devices with limited resources. We believe that the recent trend towards mobile and 
ubiquitous computing introduces additional design issues for file systems.  File systems may be 
expected to support efficient access from devices limited in connectivity as well as resources, 
e.g., PDAs, cellular phones, and palmtops.   

Given the continued interest in distributed file systems as a data sharing utility, we foresee these 
systems integrated into everyday life.  We anticipate distributed file systems integrated into every 
household computer, allowing seamless sharing of files between any two home users. 
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