
Property Specifications - Lecture 2

Assertions
Basics
JML

Verification Conditions,
Hoare Logics,

Assertations/Specifications

Assertions/Specifications
Precise, formal specifications concerning
the behavior of some unit of code
Usually written in a language separate
from programming language.
Used for documentation, verification,
runtime monitoring, testing

Assertions - Types

Invariants (from Wikipedia) - A predicate that will always keep its truth
value throughout a specific sequence of operations, is called (an)
invariant to that sequence.

State Invariants

Loop Invariants

Pre-conditions/Post-Conditions - Pre- and post-conditions are
constraints that define a contract that an implementation of the operation
has to fulfill. A precondition must hold when an operation is called, a
postcondition must be true when the operation returns.

-

http://en.wikipedia.org/wiki/Predicate
http://en.wikipedia.org/wiki/Operation_%28mathematics%29

Invariants
• Definition

– An invariant is a property that is always true of
an object’s state (when control is not inside the
object’s methods).

• Invariants allow you to define:
– Acceptable states of an object, and
– Consistency of an object’s state.

//@ public invariant !name.equals(“”) && weight
>= 0;

Pre and Postconditions
• Definition

– A method or function precondition says what
must be true to call it.

– A method or function normal postcondition says
what is true when it returns normally (i.e., without
throwing an exception).

– A method or function exceptional postcondition
says what is true when a method throws an
exception.

//@ signals (IllegalArgumentException e) x < 0;

Relational Model of Methods

• Can think of a method as a relation:
Inputs ↔ Outputs

Input Output

100 10
-10

…

…
…

…

0 0
postcondition

precondition

Assertions – How Used

Program annotated with invariants,
pre/post-conditions

Verification
condition
generator

Source to
source
Compiler

Test
generation
compiler

Theorem
Prover

Runtime
Monitor

Testing
Environment

Relationship to Temporal Logic

Temporal logic predicates are same as
assertion/specfication predicates.

Assertion specifications are local with
respect to some code unit (composed by
Hoare logic rules)

Temporal logic predicates apply to states
during execution of some code unit and
are defined on paths or structures of paths

Relationship to Temporal Logic

Temporal logic properties for code units can
be composed into properties for larger
code units

System level temporal logic can be
decomposed into component level
properties.

Component level temporal logic properties
can be translated into invariants,
preconditions and postconditions

Relationship to Temporal Logic

System Level
Temporal Logic
Properties

Environment
Specifications

Temporal
Logic
Properties for
Components

Invariants,
Preconditions and
Postconditions for
Components

Automatable?

Automatable

Temporal Logic Composition

Component A

Properties and
environment

Component B

Properties and
environment

Component C

Properties and
environment

Component D

Properties and
environment

Component E

Properties and
environment

Component E

Properties and
environment

System

Properties and
Environment

Decomposition of I/P/P Specifications

System Level Preconditions == Environment Specifications

Component Level Preconditions

Component Level Invariants and Postconditions

Automatable?

Composition of I/P/P Specifications

System Level Preconditions == Environment Specifications

Component Level Preconditions

Component Level Invariants and Postconditions

??

Composition of I/P/P Specifications

Component A

Invariants, P/P
Conditions

Component B

Invariants, P/P
Conditions

Component C

Invariants, P/P
Conditions

Component D

Invariants, P/P
Conditions

Component E

Invariants, P/P
Conditions

Component E

Invariants, P/P
Conditions

System

Invariants, P/P
Conditions

Hoare Rules for
composition
should apply.
Automatable??

Tools for JML-Based Verification

Java Modeling Language

Ilustrate Assertions with Java Modeling
Language
– Hoare-style (Contracts).
– Method pre- and postconditions.
– Invariants.

Java Modeling Language
• JML Annotations/Assertions
• Top-level in classes and interfaces:

– invariant
– spec_public
– nullable

• For methods and constructors:
– requires
– ensures
– assignable
– pure

Example JML
public class ArrayOps {
private /*@ spec_public @*/ Object[] a;
//@ public invariant 0 < a.length;
/*@ requires 0 < arr.length;
@ ensures this.a == arr;
@*/

public void init(Object[] arr) {
this.a = arr;
}

spec_public, nullable, and
invariant

• spec_public
– Public visibility.
– Only public for specification purposes.

• nullable
– field (and array elements) may be null.
– Default is non_null.

• invariant must be:
– True at end of constructor.
– Preserved by each method.

requires and ensures

• requires clause:
– Precondition.
– Obligation on callers, after parameter passing.
– Assumed by implementor.

• ensures clause:
– Postcondition.
– Obligation on implementor, at return.
– Assumed by caller.

assignable and pure

• assignable
– Frame axiom.
– Locations (fields) in pre-state.
– New object fields not covered.
– Mostly checked statically.
– Synonyms: modifies, modifiable

• pure
– No side effects.
– Implies assignable \nothing
– Allows method’s use in specifications.

Redundant Clauses

• ensures_redundantly
– Alerts reader.
– States something to prove.
– Must be implied by:

• ensures clauses,
• assignable clause,
• invariant, and
• JML semantics.

• Also requires_redundantly, etc.

Formal Specifications
• Formal assertions are written as Java

expressions, but:
– Can’t have side effects

• No use of =, ++, --, etc., and
• Can only call pure methods.

– Can use some extensions to Java:
Syntax Meaning

\result result of method call
a ==> b a implies b
a <== b b implies a
a <==> b a iff b
a <=!=> b !(a <==> b)
\old(E) value of E in the pre-state

BoundedStack’s Data and Invariant

BoundedStack’s Data and Invariant
public class BoundedStack {
private /*@ spec_public nullable @*/
Object[] elems;
private /*@ spec_public @*/ int size = 0;
//@ public invariant 0 <= size;
/*@ public invariant elems != null
@ && (\forall int i;
@ size <= i && i < elems.length;
@ elems[i] == null);
@*/

BoundedStack’s Constructor

BoundedStack’s Constructor
/*@ requires 0 < n;
@ assignable elems;
@ ensures elems.length == n;
@*/
public BoundedStack(int n) {
elems = new Object[n];
}

BoundedStack’s push Method

BoundedStack’s push Method
/*@ requires size < elems.length1;
@ assignable elems[size], size;
@ ensures size == \old(size+1);
@ ensures elems[size1] == x;
@ ensures_redundantly
@ (\forall int i; 0 <= i && i < size1;
@ elems[i] == \old(elems[i]));
@*/
public void push(Object x) {
elems[size] = x;
size++;
}

BoundedStack’s pop Method

BoundedStack’s pop Method
/*@ requires 0 < size;
@ assignable size, elems[size1];
@ ensures size == \old(size1);
@ ensures_redundantly
@ elems[size] == null
@ && (\forall int i; 0 <= i && i < size1;
@ elems[i] == \old(elems[i]));
@*/
public void pop() {
size;
elems[size] = null;
}

BoundedStack’s top Method

BoundedStack’s top Method
/*@ requires 0 < size;
@ assignable \nothing;
@ ensures \result == elems[size1];
@*/
public /*@ pure @*/ Object top() {
return elems[size1];
}
}

	Property Specifications - Lecture 2
	Assertations/Specifications
	Assertions - Types
	Invariants
	Pre and Postconditions
	Relational Model of Methods
	Assertions – How Used
	Relationship to Temporal Logic
	Relationship to Temporal Logic
	Relationship to Temporal Logic
	Temporal Logic Composition
	Decomposition of I/P/P Specifications
	Composition of I/P/P Specifications
	Composition of I/P/P Specifications
	Tools for JML-Based Verification
	Java Modeling Language
	Java Modeling Language
	Example JML
	spec_public, nullable, and invariant
	requires and ensures�
	assignable and pure�
	Redundant Clauses
	Formal Specifications
	BoundedStack’s Data and Invariant�
	BoundedStack’s Constructor
	BoundedStack’s push Method
	BoundedStack’s pop Method
	BoundedStack’s top Method

