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Why to care about specification languages. 
Reasoning About Executions

• Test Specifications – A test (A test is a 
specification of an input/output relation.) is a 
statement about the execution of a (sequential) 
program for the path taken from a given initial 
condition. So to test a program we need many 
tests.

• Desired Specifications – Specifications which 
make statements about many paths and many 
initial conditions. If we can establish such a 
property – we have made a lot of progress.
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Property Specifications

• Complete specifications are an alternative 
statement of the behavior of the 
implementation in a formal language.

• Partial specifications are statements in a 
formal language about a program which 
are deemed critical to meeting 
requirements.
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Property Specifications
State of the Art

• There are two main branches of 
specification languages:
– Temporal Logics
– Floyd/Hoare Logics

• There are many different dialects of each 
language
– Linear temporal logic (LTL), Computational 

tree logic (CTL)
– Java Modeling Language (JML), etc.
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Unified Property Specification 
Language

• Unified Property Specification Language 
(UPSL) - Single language for expressing 
properties which is readily translatable to 
the input property language of any tool. 
Example – Accellera PSL for timed 
systems is readily translatable to multiple 
model checkers and simulation-based 
testing systems
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Equivalence/Translation Among 
Specification Languages

• Equivalence and translation – Write in one 
specification language and translate to 
other representations 
– Can use existing languages
– Specific translations may be incomplete.
– Many translators are needed
– Possible solution – common intermediate 

language for property specification languages.



9/4/2008 Unification of Verification and 
Validation

8

Property Specification and Evaluation

Temporal Logic
(LTL,PTTL,CTL)

Floyd/Hoare Logic 
JML, etc.

Implementation 
C    Java   xUML

Property/Environment 
Representation

Model Checkers Theorem Provers Instrumented 
Programs

Static Analysis 
Tools

Translators

Testing Systems Symbolic 
Execution



9/4/2008 Unification of Verification and 
Validation

9

•Properties = Knowledge of Component/System Behavior

•A property can usually be defined as a state machine.

•Properties are always defined with respect to an 
environment for the component/system.

•Environment = Set of properties which generates a closed 
system for execution or verification of a component or system.

•Environments should be specifiable as set of properties for 
an executable entity – sets of allowable input/output 
sequences

•Environments may be constraints on inputs
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What Types of Properties Should Be Specifiable?

Pre-Condition/Post-Condition pairs for units with 
identifiable semantics.

Occurrence or non-occurrence of specific states or events.

Sequences of states/events/operations which can or cannot 
occur => paths.

Security properties => information flow and access control.

Performance properties => time to execute a given path, etc.
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Representation Issues

1. Syntax should be consistent with programming system 
for components/systems

2. Language should provide a library of templates for 
commonly occurring properties. (Equivalent to libraries 
of components.)

3. Language should support extending the library of 
templates.

4. Language should practice separation of concerns.
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Pre-Condition => Post-Condition

Specify some subset of the state of the system before 
the execution of a component and some 
subset of the state after the execution of a 
component.

Pre-Condition => Post-Condition pairs can be specified 
in temporal logics

Input/Output Relation is an example of a pre-
condition => post-condition
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Temporal Logics – Reasoning about 
Executions

• Specify behaviors along paths (Linear 
Temporal Logic - LTL) 
– Specify environment such that all paths from 

all initial conditions are traversed.
• Specify behaviors for all paths on the tree 

of execution paths traversable from a 
given set of initial conditions (Computation 
Tree Logic – CTL)
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Reasoning about Executions

• We want to reason about execution trees
> tree node = snap shot of the program’s state

• Reasoning consists of two layers
> defining predicates on the program states (control points, variable 

values)
> expressing temporal relationships between those predicates

[L3, (mt3, vr3), ….]

Explored State-Space (computation tree)

Conceptual View

[L1, (mt1, vr1), ….]

[L2, (mt2, vr2), ….]

[L5, (mt5, vr5), ….]

L1 L4

L2

L3

L5

?b1

?err

?b0

?b1 !a1

?a1
?b0

?err

!a0
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Branching Time Logic

• Branching time logic views a 
computation as a (possibly infinite) tree
or dag of states connected by atomic 
events

• At each state the outgoing arcs 
represent the actions leading to the 
possible next states in some execution

• Example: 

P = (a → P) ⎡⎤ (b→ P) 

a b

a b a b
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Notation

• Variant of branching time logic that we 
will look at is called CTL*, for 
Computational Tree Logic (star)

• In this logic
> A = "for every path"
> E = "there exists a path"
> G = “globally” (similar to )
> F =  “future” (similar to ◊)
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Paths versus States

• A & E refer to paths
> A requires that all paths have some 

property
> E requires that at least some path has the 

property
• G & F refer to states on a path

> G requires that all states on the given path 
have some property

> F requires that at least one state on the path 
has the property
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Examples

• AG  p
> For every computation (i.e., path from the 

root), in every state, p is true
> Hence, means the same as p

• EG p
> There exists a computation (path) for which 

p is always true
> Note, unlike LTL not all executions need 

have this property 
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Examples

• AF p
> For every path, eventually state p is true
> Hence, means the same as ◊ p
> Therefore, p is inevitable

• EF p
> There is some path for which p is eventually 

true
> I.e. p is "reachable”
> Therefore, p will hold potentially
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More Examples

• EFAG p
> For some computation (E), there is a state 

(F), such that for all paths from that state 
(A), globally (G) p is true

• AGEF halt
> For all computations (A), and for all states in 

it (G), there is a path (E) along which 
eventually (F) halt occurs

• EGEF p
> For some computation (E), for all states in 

that computation (G), there is a path (E) in 
which p is eventually (F) true



© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 21

Other Operators for States

• Can also have next and until
> represented as X and U respectively
> AX p means that for all next states, p will 

hold
> E[p U q] means that for some path there is a 

state where q holds and p holds in all states 
up to that state
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More Examples

• Show that EGEF p is the same as EGF p 
or provide a counter example to 
illustrate why not

> EGEF p means that there is a path such that 
from all states, there is a path such that p is 
eventually true

> EGF p means that there is a path such that 
from all states, p is eventually true in that 
path

> Consider the following tree
First one is true
Second one is not

p p

p
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CTL

• In some versions the symbols are 
required to occur in pairs of the form

> AG, AF, EG, EF
> Called CTL (no star)
> Important restriction for tools such as 

model checkers
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Traffic Controller

• Consider a traffic controller on a north-
south highway with a road off to the 
east

• Each road has a sensor that goes to 
true when a car crosses it

• For simplicity, no north or south bound 
car will turn

s

s

s
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Traffic Controller

• To reason about them, we name the 
sensors

> N (north)
> S (south)
> E (east)

• We also name the output signals at 
each end of the intersection

> N-go (cars from the north can go)
> S-go (cars from the south can go)
> E-go (cars from the east can go)
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Safety Property

• If cars from the east have a go-signal, 
then no other car can have a go-signal

AG ¬ (E-go ∧ (N-go ∨ S-go))



© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 27

Liveness properties

• If a sensor registers a car, then the car 
will be able to go through the 
intersection

AG ( ¬ N-go ∧ N → AF N-go)
AG ( ¬ S-go ∧ S → AF S-go)
AG ( ¬ E-go ∧ E → AF E-go)

• If the above are true, then the controller 
is free of deadlock
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Efficiency

• Since north and south bound cars can 
safely pass by each other we can state 
a possibility

EF (N-go ∧ S-go)
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Fairness

• We can’t have a car stop in the 
intersection

AG ¬ (N-go ∧ N)
AG ¬ (S-go ∧ S)
AG ¬ (E-go ∧ E)
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Yet More Temporal Logics

• The logic we’ve used so far is 
concerned with instances of state

> assertions about a future state(s)
> predicate is applied to each selected state

• What about contiguous collections of 
states?

• Interval temporal logic
> assertions over intervals of time
> have to worry about overlapping intervals
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Reasoning about Executions

• We want to reason about execution trees
> tree node = snap shot of the program’s state

• Reasoning consists of two layers
> defining predicates on the program states (control points, variable 

values)
> expressing temporal relationships between those predicates

[L3, (mt3, vr3), ….]

Explored State-Space (computation tree)

Conceptual View

[L1, (mt1, vr1), ….]

[L2, (mt2, vr2), ….]

[L5, (mt5, vr5), ….]

L1 L4

L2

L3

L5

?b1

?err

?b0

?b1 !a1

?a1
?b0

?err

!a0
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Computational Tree Logic (CTL)

Φ ::=  P                                  …primitive propositions
| !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
| AG Φ | EG Φ | AF Φ | EF Φ …temporal operators
| AX Φ | EX Φ | A[Φ U Φ] | E[Φ U Φ]

Syntax

Semantic Intuition

AG p …along All paths p holds Globally

EG p …there Exists a path where p holds Globally

AF p …along All paths p holds at some state in the Future

EF p …there Exists a path where p holds at some state in the Future

path quantifier

temporal operator
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Computational Tree Logic (CTL)

Φ ::=  P                                  …primitive propositions
| !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
| AG Φ | EG Φ | AF Φ | EF Φ …path/temporal operators
| AX Φ | EX Φ | A[Φ U Φ] | E[Φ U Φ]

Syntax

Semantic Intuition

AX p …along All paths, p holds in the neXt state

EX p …there Exists a path where p holds in the neXt state

A[p U q] …along All paths, p holds Until q holds

E[p U q] …there Exists a path where p holds Until q holds
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Computation Tree Logic

p

p

p

p p p

p

p

p

p

p

p p p p

AG p
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Computation Tree Logic

EG p p

p

p

p



© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 36

Computation Tree Logic

AF p

p

p p p

p

p
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Computation Tree Logic

EF p

p
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Computation Tree Logic

AX p

p

p p

p

p p

p

p

p
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Computation Tree Logic

EX p

p

p

p

p p p
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Computation Tree Logic

A[p U q]
p

p

p

q q p

p

q

q

p

p
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Computation Tree Logic

E[p U q]
p

p

q q p

p

q

q

q
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Example CTL Specifications

• For any state, a request (for some resource) will eventually be 
acknowledged

AG(requested -> AF acknowledged)

• From any state, it is possible to get to a restart state

AG(EF restart)

• An upwards travelling elevator at the second floor does not 
changes its direction when it has passengers waiting to go to 
the fifth floor

AG((floor=2 && direction=up && button5pressed) 
-> A[direction=up U floor=5])
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CTL Notes

• Invented by E. Clarke and E. A. Emerson (early 
1980’s)

• Specification language for Symbolic Model Verifier 
(SMV) model-checker

• SMV is a symbolic model-checker instead of an 
explicit-state model-checker

• Symbolic model-checking uses Binary Decision 
Diagrams (BDDs) to represent boolean functions 
(both transition system and specification
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Linear Temporal Logic

Restrict path quantification to “ALL”  (no “EXISTS”)

Reason in terms of linear traces instead of branching trees
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Linear Temporal Logic (LTL)

Semantic Intuition

[]Φ …always Φ

<>Φ …eventually Φ

Φ  U Γ …Φ until Γ

Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ

Φ Φ

Φ Φ Φ Φ Φ Φ Γ Φ Γ

Φ ::=  P                               …primitive propositions
| !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
| []Φ | <>Φ | Φ U Φ     | X Φ …temporal operators

Syntax
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LTL Notes

• Invented by Prior (1960’s), and first use to reason 
about concurrent systems by A. Pnueli, Z. Manna, 
etc.

• LTL model-checkers are usually explicit-state 
checkers due to connection between LTL and 
automata theory

• Most popular LTL-based checker is Spin 
(G. Holzman)
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Comparing LTL and CTL

CTL LTL

CTL*

• CTL is not strictly more expression than LTL (and vice versa)
• CTL* invented by Emerson and Halpern in 1986 to unify CTL 

and LTL
• We believe that almost all properties that one wants to express about 

software lie in intersection of LTL and CTL
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Motivation for 
Specification Patterns

• Temporal properties are not always easy to write
• Clearly many specifications can be captured in both CTL and 

LTL

LTL: [](P -> <>Q) CTL: AG(P -> AF Q) 

Example: action Q must respond to action P

• Capure the experience base of expert designers
• Transfer that experience between practictioners.

We use specification patterns to:
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Pattern Hierarchy

Property Patterns

Occurrence Order

Absence
Universality

Bounded Existence Precedence

Response Chain 
Precedence

Chain 
ResponseExistence

Classification

• Occurrence Patterns: 
> require states/events to occur or not to occur 

• Order Patterns
> constrain the order of states/events
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Occurrence Patterns

• Absence: A given state/event does not occur within a scope
• Existence: A given state/event must occur within a scope
• Bounded Existence: A given state/event must occur k times 

within a scope
> variants: at least k times in scope, at most k times in scope

• Universality: A given state/event must occur throughout a scope
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Order Patterns

• Precedence: A state/event P must always be preceded by a 
state/event Q within a scope

• Response: A state/event P must always be followed a 
state/event Q within a scope

• Chain Precedence: A sequence of state/events P1, …, Pn must 
always be preceded by a sequence of states/events Q1, …, Qm
within a scope

• Chain Response:  A sequence of state/events P1, …, Pn must 
always be followed by a sequence of states/events Q1, …, Qm
within a scope
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Pattern Scopes

Global

Before Q

After Q

Between Q and R

After Q and R

State sequence Q R Q Q R Q
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The Response Pattern

To describe cause-effect relationships between a pair of events/states. An 
occurrence of the first, the cause, must be followed by an occurrence of the 
second, the effect. Also known as Follows and Leads-to.

Intent

Mappings: In these mappings, P is the cause and S is the effect

[](P -> <>S)

<>R -> (P -> (!R U (S & !R))) U R

[](Q -> [](P -> <>S))

[]((Q & !R & <>R) -> (P -> (!R U (S & !R))) U R)

[](Q & !R -> ((P -> (!R U (S & !R))) W R)

Globally:

Before R:

After Q:

Between Q and R:

After Q until R:

LTL:
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The Response Pattern (continued)

Mappings: In these mappings, P is the cause and S is the effect

AG(P -> AF(S))Globally:

A[((P -> A[!R U (S & !R)]) | AG(!R)) W R]

A[!Q W (Q & AG(P -> AF(S))]

Before R:

After Q:

AG(Q & !R -> A[((P -> A[!R U (S & !R)]) | AG(!R)) W R])Between Q and R:

AG(Q & !R -> A[(P -> A[!R U (S & !R)]) W R])After Q until R:

CTL:

Examples and Known Uses:
Response properties occur quite commonly in specifications of concurrent systems. 
Perhaps the most common example is in describing a requirement that a resource 
must be granted after it is requested. 

Relationships
Note that a Response property is like a converse of a Precedence property. 
Precedence says that some cause precedes each effect, and...
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Specify Patterns in Bandera

The Bandera Pattern Library is populated by writing pattern macros:

pattern {
name = “Response”
scope = “Globally”
parameters = {P, S}
format = “{P} leads to {S} globally”
ltl = “[]({P} –> <>{S})”
ctl = “AG({P} –> AF({S}))”

}
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Evaluation

• 555 TL specs collected from at least 35 different sources
• 511 (92%) matched one of the patterns
• Of the matches...

> Response: 245 (48%)
> Universality: 119 (23%)
> Absence: 85 (17%)
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Questions

• Do patterns facilitate the learning of specification formalisms like 

CTL and LTL?
• Do patterns allow specifications to be written more quickly?
• Are the specifications generated from patterns more likely to be

correct?
• Does the use of the pattern system lead people to write more 

expressive specifications?

Based on anecdotal evidence, we believe the answer to each of these 
questions is “yes”
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For more information...

http://www.cis.ksu.edu/santos/spec-patterns
• Pattern web pages and papers
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Property Specifications - Lecture 2 

Assertions
Basics
JML

Verification Conditions, 
Hoare Logics, 
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Assertations/Specifications

Assertions/Specifications 
Precise, formal specifications 
concerning the behavior of some unit of 
code
Usually written in a language separate 
from programming language.
Used for documentation, verification, 
runtime monitoring, testing
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Assertions - Types

Invariants (from Wikipedia) - A predicate that will always keep its truth 
value throughout a specific sequence of operations, is called (an) 
invariant to that sequence. 

State Invariants

Loop Invariants

Pre-conditions/Post-Conditions - Pre- and post-conditions are 
constraints that define a contract that an implementation of the operation 
has to fulfill. A precondition must hold when an operation is called, a 
postcondition must be true when the operation returns. 

-

http://en.wikipedia.org/wiki/Predicate
http://en.wikipedia.org/wiki/Operation_%28mathematics%29


© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 62

Invariants

• Definition
> An invariant is a property that is always true of an 

object’s state (when control is not inside the object’s 
methods).

• Invariants allow you to define:
> Acceptable states of an object, and
> Consistency of an object’s state.

//@ public invariant !name.equals(“”) && weight >= 0;
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Pre and Postconditions

• Definition 
> A method or function precondition says what must be 

true to call it.
> A method or function normal postcondition says what 

is true when it returns normally (i.e., without throwing 
an exception).

> A method or function exceptional postcondition says 
what is true when a method throws an exception.

//@ signals (IllegalArgumentException e) x < 0;
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Relational Model of Methods

• Can think of a method as a relation:
Inputs ↔ Outputs

Input Output

100 10
-10

…

…
…

…

0 0
postcondition

precondition
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Assertions – How Used

Program annotated with invariants, 
pre/post-conditions

Verification 
condition 
generator

Source to 
source 
Compiler

Test 
generation 
compiler

Theorem 
Prover

Runtime 
Monitor

Testing 
Environment
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Relationship to Temporal Logic

Temporal logic predicates are same as 
assertion/specfication predicates.  

Assertion specifications are local with 
respect to some code unit (composed 
by Hoare logic rules)

Temporal logic predicates apply to states 
during execution of some code unit and 
are defined on paths or structures of 
paths
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Relationship to Temporal Logic

Temporal logic properties for code units 
can be composed into properties for 
larger code units

System level temporal logic can be 
decomposed into component level 
properties.

Component level temporal logic 
properties can be translated into 
invariants, preconditions and 
postconditions
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Relationship to Temporal Logic

System Level 
Temporal Logic 
Properties

Environment 
Specifications

Temporal 
Logic 
Properties for 
Components 

Invariants, 
Preconditions and 
Postconditions for 
Components

Automatable?

Automatable
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Temporal Logic Composition

Component A

Properties and 
environment

Component B

Properties and 
environment

Component C

Properties and 
environment

Component D

Properties and 
environment

Component E

Properties and 
environment

Component E

Properties and 
environment

System

Properties and 
Environment
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Decomposition of I/P/P Specifications

System Level Preconditions == Environment Specifications

Component Level Preconditions

Component Level Invariants and Postconditions

Automatable?
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Composition of I/P/P Specifications

System Level Preconditions == Environment Specifications

Component Level Preconditions

Component Level Invariants and Postconditions

??
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Composition of I/P/P Specifications

Component A

Invariants, P/P 
Conditions

Component B

Invariants, P/P 
Conditions

Component C

Invariants, P/P 
Conditions

Component D

Invariants, P/P 
Conditions

Component E

Invariants, P/P 
Conditions

Component E

Invariants, P/P 
Conditions

System

Invariants, P/P 
Conditions

Hoare Rules for 
composition 
should apply.  
Automatable??
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Tools for JML-Based Verification



© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 74

Java Modeling Language

Ilustrate Assertions with Java Modeling 
Language 

> Hoare-style (Contracts).
> Method pre- and postconditions.
> Invariants.
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Java Modeling Language

• JML Annotations/Assertions
• Top-level in classes and interfaces:

> invariant
> spec_public
> nullable

• For methods and constructors:
> requires
> ensures
> assignable
> pure
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Example JML

public class ArrayOps {
private /*@ spec_public @*/ Object[] a;
//@ public invariant 0 < a.length;
/*@ requires 0 < arr.length;
@ ensures this.a == arr;
@*/

public void init(Object[] arr) {
this.a = arr;
}
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spec_public, nullable, and invariant

• spec_public
> Public visibility.
> Only public for specification purposes.

• nullable
> field (and array elements) may be null.
> Default is non_null.

• invariant must be:
> True at end of constructor.
> Preserved by each method.
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requires and ensures

• requires clause:
> Precondition.
> Obligation on callers, after parameter 

passing.
> Assumed by implementor.

• ensures clause:
> Postcondition.
> Obligation on implementor, at return.
> Assumed by caller.
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assignable and pure

• assignable
> Frame axiom.
> Locations (fields) in pre-state.
> New object fields not covered.
> Mostly checked statically.
> Synonyms: modifies, modifiable

• pure
> No side effects.
> Implies assignable \nothing
> Allows method’s use in specifications.
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Redundant Clauses

• ensures_redundantly
> Alerts reader.
> States something to prove.
> Must be implied by:

» ensures clauses,
» assignable clause,
» invariant, and
» JML semantics.

• Also requires_redundantly, etc.
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Formal Specifications

• Formal assertions are written as Java 
expressions, but:

> Can’t have side effects
» No use of =, ++, --, etc., and
» Can only call pure methods.

> Can use some extensions to Java:

Syntax         Meaning

\result          result of method call
a ==> b        a implies b
a <== b        b implies a
a <==> b      a iff b
a <=!=> b     !(a <==> b)
\old(E)          value of E in the pre-state
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BoundedStack’s Data and Invariant

BoundedStack’s Data and Invariant
public class BoundedStack {
private /*@ spec_public nullable @*/
Object[] elems;
private /*@ spec_public @*/ int size = 0;
//@ public invariant 0 <= size;
/*@ public invariant elems != null
@ && (\forall int i;
@ size <= i && i < elems.length;
@ elems[i] == null);
@*/
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BoundedStack’s Constructor

BoundedStack’s Constructor
/*@ requires 0 < n;
@ assignable elems;
@ ensures elems.length == n;
@*/
public BoundedStack(int n) {
elems = new Object[n];
}
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BoundedStack’s push Method

BoundedStack’s push Method
/*@ requires size < elems.length1;
@ assignable elems[size], size;
@ ensures size == \old(size+1);
@ ensures elems[size1] == x;
@ ensures_redundantly
@ (\forall int i; 0 <= i && i < size1;
@ elems[i] == \old(elems[i]));
@*/
public void push(Object x) {
elems[size] = x;
size++;
}
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BoundedStack’s pop Method

BoundedStack’s pop Method
/*@ requires 0 < size;
@ assignable size, elems[size1];
@ ensures size == \old(size1);
@ ensures_redundantly
@ elems[size] == null
@ && (\forall int i; 0 <= i && i < size1;
@ elems[i] == \old(elems[i]));
@*/
public void pop() {
size;
elems[size] = null;
}
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BoundedStack’s top Method

BoundedStack’s top Method
/*@ requires 0 < size;
@ assignable \nothing;
@ ensures \result == elems[size1];
@*/
public /*@ pure @*/ Object top() {
return elems[size1];
}
}
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