
Building an Encrypted and Searchable Audit Log

Brent R. Waters1∗, Dirk Balfanz2, Glenn Durfee2, and D. K. Smetters2

1 Princeton University
Computer Science Department

Princeton, NJ 08544
bwaters@cs.princeton.edu

2 Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304
{balfanz, gdurfee,

smetters}@parc.com

Abstract

Audit logs are an important part of any secure system,
and they need to be carefully designed in order to give a
faithful representation of past system activity. This is espe-
cially true in the presence of adversaries who might want
to tamper with the audit logs. While it is important that au-
ditors can inspect audit logs to assess past system activity,
the content of an audit log may contain sensitive informa-
tion, and should therefore be protected from unauthorized
parties.

Protecting the contents of audit logs from unauthorized
parties (i.e., encrypting it), while making it efficiently
searchable by authorized auditors poses a problem. We de-
scribe an approach for constructing searchable encrypted
audit logs which can be combined with any number of exist-
ing approaches for creating tamper-resistant logs. In par-
ticular, we implemented an audit log for database queries
that uses hash chains for integrity protection and identity-
based encryption with extracted keywords to enable search-
ing on the encrypted log. Our technique for keyword search
on encrypted data has wide application beyond searchable
audit logs.

1. Introduction

System logs provide an invaluable view into the current
and past state of almost any type of complex system. Most
server software in existence today includes some logging
mechanisms.

Secure versions of such logs, designed to defend against
malicious tampering, allow the current state of the system

∗The majority of this work was completed while the author was a sum-
mer intern at PARC.

to be audited even when that system has been under ac-
tive attack by malicious insiders or outsiders [7, 9]. Cor-
rectly designed secure audit logging mechanisms can de-
tect unauthorized past activity, even when the person per-
forming that action goes to great lengths to cover their
tracks. The existence of such logs can be used to en-
force correct user behavior, by holding users accountable
for their actions as recorded in the audit log. Such logs can
be used in a wide variety of systems, from a control system
that logs the commands a user issues, to a database system
that logs the queries a user makes.

Typically, when an organization wishes to inspect past
activity it will search the audit log for relevant informa-
tion. For example, if a certain user was suspected of be-
having improperly the organization might search for all ac-
tions performed by that particular user. If the organization
wishes to see all actions of a certain type, it might search
for all log entries that match a given keyword. For an audit
log to be useful in practice, it is critical that it be efficiently
searchable for keywords of interest.

At the same time, the contents of an audit log can be con-
sidered to be sensitive information. For instance, knowing
what actions are made by a certain user could violate that
individual’s privacy. If the log contains information about
not only what query was made, but what results were re-
turned, access to the audit log would imply effective ac-
cess to the database, circumventing database access con-
trols. The organization that owns the system being logged
might consider the information the log holds to be valuable
and not wish to share it with others, while for robustness’
sake, the organization may want to store backup copies of
the audit log information at sites it may not completely con-
trol. In general, this means that the contents of the audit log
must be encrypted. However, this makes it extremely diffi-
cult to search.

Using traditional techniques, searching the log would re-

quire decrypting every record. This approach has several
disadvantages. First, it requires decrypting all of the log
data, regardless of what information one is looking for; this
opens opportunities for unintended access to log records
other than the ones relevant to the current investigation.
Second, it requires the entity with the decryption key to
interactively process all the log data, which can be quite
large. In many applications, one would like to entrust the
ability to decrypt audit logs to an entity or system with high
levels of trust and assurance; requiring that system to also
be able to process large quantities of log data in an on-line
fashion limits one’s choice of trusted parties. It would be
preferable to be able to selectively delegate the ability to
search the log to parties with the means to process the data.

The key challenge to building a successful, secure audit
logging system is to simultaneously protect the integrity of
the audit log, control access to contents, and maintain its
usefulness by making it searchable.

In this paper, we present a design for an encrypted audit
log that allows a designated trusted party, theaudit escrow
agent, to constructkeyword search capabilities, which al-
low (less trusted)investigatorsin possession of such capa-
bilities to search for and decrypt entries matching a given
keyword. The escrow agent can distribute a capability to
an investigator if he deems it appropriate. Since we expect
keyword search capabilities to be distributed rather infre-
quently, the escrow agent can be made to be very secure
from attack.

We developed a public key based cryptographic scheme
that allows keyword searching on encrypted data by adapt-
ing Boneh and Franklin’s [3] Identity-Based Encryption
(IBE) scheme. (We note that the cryptographic scheme we
use is similar to a scheme that was independently discov-
ered by Boneh et al. [2]; see Section 2 for details.) In an
IBE scheme, public keys can be arbitrary strings –e.g.,
“bob@parc.com”. Private keys are derived from public
keys through use of a system-widemaster secret, known
by a trusted authority. In our design, search keywords are
used as IBE public keys, and themaster secretis held by
an authority trusted to issue keyword search capabilities for
a given audit log, in our case, theaudit escrow agentde-
scribed above.

In our design, the server generating audit log entries en-
crypts entries with the public keys corresponding to the
keywords that are derived from those entries. The escrow
agent, which holds the IBE master secret, can construct a
search capability for a given keyword as the private key cor-
responding to the given keyword. Furthermore, additional
security properties of Boneh and Franklin’s scheme imply
that an adversary cannot tell which public key was used to
create a ciphertext when given the ciphertext. Thus, when
an encrypted audit log entry is created, even its search key-
words are hidden.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe related work. Sections 3 and 4 introduce
secure audit logs in general, and our system in particular.
Section 5.1 presents a symmetric key based scheme, while
Section 5.2 presents an public-key scheme based on IBE. In
Section 6 we present our implementation of a proxy server
that creates a searchable audit log of database queries and
discuss its performance. Finally, we conclude in Section 7.

2. Related Work

SEARCHING ON ENCRYPTED DATA . Song et al. [11]
study the problem of searching on encrypted data in a
symmetric-key setting. In a symmetric key based scheme,
the keys that are used to create the encrypted entries also
allow search and decryption of the audit log. Thus, servers
that construct audit log entries possess keys capable of de-
crypting log entries. We discuss the shortcomings of such
an approach in Section 5.1 and contrast it with a public-key
based scheme. Our public-key based scheme easily allows
audit escrow agents (and only those agents) to create capa-
bilities to search the audit log for certain keywords.

Goh examines how Bloom Filters can be used to make
searching on encrypted data more efficient [4]. Like Song
et al., Goh presents a scheme in the symmetric key setting.
He presents a scheme where a encrypted data consists of
the encryption of a document and a Bloom Filter attached
that is used for keyword searching.

Boneh et al. [2] have also recently examined the problem
of searching on publicly encrypted data. They indepen-
dently devised a scheme based on the Identity-Based En-
cryption scheme of Boneh and Franklin [3]. Their scheme
is similar to our underlying cryptographic scheme in its
construction and security properties. The contribution of
their work is different, however: they provide a detailed
theoretical analysis which includes a precise definition of
what they callsearchable public-key encryption, along with
three constructions that are provably secure in their model
under suitable cryptographic assumptions. Our work, on
the other hand, introduces our independently developed
construction and focuses on the pragmatic security con-
cerns regarding integrating it in a system for creating se-
cure audit logs.

AUDIT LOGS. Schneier and Kelsey [7, 8, 9] describe a
secure audit logging scheme capable of detecting any at-
tempt to delete or alter past audit log entries, even on a
host that has been compromised (assuming the entries were
made before the compromise). Such tampering can be de-
tected even if the compromised host has not been able to
offload any state information to another host; an operation
referred to as “checkpointing” in the discussion below. To
accomplish this, a system opening a new audit log first es-
tablishes a shared secretA0 with a trusted third party. After

each audit record is generated, the current shared secret,
Ai , is evolved– it is completely replaced by a new shared
secret,Ai+1, computed as the cryptographic digest of the
previous shared secret,Ai . Each audit record is encrypted
under a keyKi which is derived from the current value of
Ai , and then the encrypted record is protected using a Mes-
sage Authentication Code (MAC) keyed withAi . Records
are linked using a hash chain [6].

Because the secrets used to encrypt and authenticate each
log record are completely replaced on the logging host af-
ter the record is generated, an attacker compromising that
host does not have the necessary information to go back
and replace, delete, or modify existing log records stored
on that host. Any attempt to do so can be detected by the
trusted third party, who retainsA0,and can check that there
is a valid record authenticated with each MAC keyAi . This
constitutes a form offorward securityfor the audit log.

The use of symmetric MACs to authenticate log records
means that only the trusted third party (or someone to
whom it has delegated a record authentication key,Ai) can
verify the audit log. As each record is encrypted with a
different key, the trusted third party can delegate the ability
to decrypt particular audit records to designated individu-
als, by giving them the keys used to encrypt those records.
However, it does not allow any form of search on the en-
crypted audit data.

3. Characteristics of a Secure Audit Log

We can identify three important properties a secure audit
log: those designed to prevent and detect tampering, and
those designed to control data and search access.

TAMPER RESISTANCE. A secure audit log must betamper
resistant– it must guarantee that no one other than the cre-
ator of the log can create valid entries, and that once entries
have been created, they cannot be altered.

One cannot prevent an attacker who has compromised
the system creating the log from altering what that system
will put in future log entries [7]. One also cannot prevent
him from deleting any log entries that have not already been
copied to another system. The goal of a secure audit log in
such cases is to make sure that he cannot alter existing log
entries, and that any attempts to delete such existing entries
will be detected. Ideally, one would like to detect attempts
to delete or alter any entries created up to the time a host
is compromised [7, 8]. For for some applications it may
be enough to have the logging host “checkpoint” its state
periodically – to copy its log data, or some function (e.g.,a
signature) of its log data to another host, and simply be able
to assure that no entries up till the most recent checkpoint
have been deleted or altered.

VERIFIABILITY . A secure audit log must also beverifiable
– it must be possible to check that all entries in the log are

present and have not been altered. Audit logs can either be
publicly verifiable– verifiable by anyone holding appro-
priately authenticated public information,e.g.,the logging
system’s public key, or an authenticated hash of all exist-
ing audit entries. Or, they may require atrusted verifier–
they can only be verified by a designated party holding one
or more secrets,e.g.,a MAC key. The choice of approach
is application-dependent. Publicly verifiable audit log sys-
tems,e.g.,systems that simply digitally sign each log entry
they generate, allow easy storage of audit logs on untrusted
systems, and the increased trust resulting from the ability
of any interested party to verify the log. On the other hand,
trusted verifier systems, such as the Schneier and Kelsey
scheme described in [7, 8, 9] allow for a greater degree of
forward security in an audit log system, making it possible
to detect attempts to delete audit log entries made any time
before a system is compromised, without requiring any in-
formation about those entries to be communicated to the
outside world.

To verify an audit log, it must contain two types of in-
formation. First, each entry must contain enough informa-
tion to verify its authenticity when considered on its own.
If some entries are altered or deleted, the ability to indi-
vidually verify the remaining entries (or blocks of entries)
makes it possible to recover some useful information from
the damaged log. Second, the individual entries must also
be linked together in a way that makes it possible to de-
termine whether any entries are missing. Serial numbers
allow one to check whether all entries are present, but turn
the problem of tampering with the log into one of attacking
each entry individually. Hash chaining [6, 7, 8, 9], where
each entry contains a cryptographic digest of the previous
entry, is a better solution, as it tightly links all entries in
the chain.1 It also allows a very simple form of public ver-
ifiability, where the hash of the most recent audit entry is
checkpointed, i.e., published via a trusted third party (e.g.,
the New York Times).

DATA ACCESSCONTROL AND SEARCHABILITY. Given
that the data in an audit log may be sensitive, it must be en-
crypted. However, one would like to be able to allow legit-
imate search access to a subset of all audit log entries (e.g.,
all entries matching the keyword “Smith”). We present a
new criteria for the construction of useful secure audit logs,
namely that they allow the secure delegation of search ca-
pabilities.

Delegation of capabilities is important so that an inves-
tigator can search and view entries of a narrow scope. For
example, if Alice Smith wanted to investigate all entries
related to her the audit escrow agent might give her the
capability to search for all entries matching the keyword

1In order to provide individual entry verifiability in a hash-chained
audit log, each log entry must explicitly contain the hash of the previous
entry to allow some recovery if that entry is missing.

“Smith”, but not give her anything more. The alternative
of having the master secret holder perform the searches is
undesirable since it unnecessarily exposes a highly trusted
component of the system.

For such delegation to be considered secure, it must be
impossible for an adversary to learn the content of entries
in the audit log that he should not have access to (up to the
security provided by the underlying encryption function,
which might not, for instance, disguise characteristics such
as the length of the audit log entry.) We allow our adversary
to be an insider in the sense that he may be both a user of
the system, and may have had some legitimate search ca-
pabilities explicitly given to him by the audit escrow agent.
We would like to ensure that, assuming he does not com-
promise the escrow agent itself, he is unable to view the
contents of any audit log entry, or even to learn which key-
words match an entry beyond those set of keywords and
entries for which he has legitimate access.

4. Audit Log Components and Notation

To make our presentation concrete, we take as an exam-
ple the problem of logging queries made by a set of au-
thenticated users against one or more SQL databases. The
mechanisms we describe can also be applied directly to
generate searchable secure audit logs for other system types
– only the actual content to be logged, and the choice of
keywords to support for search on that content need to be
customized to the application or system to log.

Our audit logL consists of a series of individualaudit
records, R0, R1, . . ., Rn. Each recordRi contains:

1. EKi (mi), the encryption of the data to be logged under
a keyKi . The stringmi consists of the database query
to be logged, along with metadata such as the identity
of the user who issued the query. Optionally, it could
also contain the query results. In our system, the key
Ki is chosen randomly for each log entry.

2. H(Ri−1), the hash of the previous record, to form a
hash chain.

3. cwa,cwb,cwc, . . ., information about the keywords
wa,wb,wc, . . . that can be used for searching.

4. Verification informationVi . In our implementation,
this is simply the hash to date of the current chain
of audit records (i.e., H(Ri)). We note that we could
also use a standard public key signature, or a MAC
created using a key shared with a trusted verifier. If
that shared key evolves with each record, we get desir-
able forward security properties as described in [7, 8]).
Vi must authenticate all of the other data in the audit
record, including the keyword informationcwn.

To construct a searchable secure audit recordRi , the
server first extracts keywords that characterize the record.

These are the keywords that can be used to search for that
record in the future. Next, it encrypts the entry using the
key Ki , producing the keyword search informationcwn in
the process. In Sections 5.1 and 5.2 we present two con-
crete instantiations of this procedure. Finally, the server
constructs the verification dataVi . In our implementation,
we periodically “checkpoint” the audit log by publishing
the most recent verification value,Vi , to one or more other
servers, producing a publicly verifiable audit log.

KEYWORD EXTRACTION. In our implementation, queries
are made in SQL. See Figure 1 for an explanation of how
we extract keywords from a query. Our set of keywords not
only contains keywords from the query, but also metadata
such as the user who made the query and the time when the
query was issued. Note that we prefix keywords with suit-
able labels so that we can distinguish the case where user
“Alice Smith” is making a query from the case where some-
one makes a query mentioning the name “Alice Smith”.

5. Searching on Encrypted Queries

If at some point an investigator wants to search an audit
log for entries matching a certain keyword, she must go to
the audit escrow agent for the organization that generated
the log and request a search capability for that keyword. If
the escrow agent deems it appropriate, he grants this capa-
bility to the investigator. She may then go to the audit log
and search through the entries and see which entries match
the keyword. For those audit log entries that match the
keyword, the investigator can decrypt the entry and view
its contents (see Figure 2).

In this section we present two schemes for creating en-
crypted and searchable entries. We first present a scheme
based on symmetric key cryptography. Although this
scheme is secure against a passive adversary, we find that
the scheme is insecure against an adversary that is able to
compromise an audit log server. The second scheme we
present is based on asymmetric key cryptography and ad-
dresses this issue.

5.1. Symmetric Key Scheme

We describe a symmetric key based scheme for encrypt-
ing searchable audit log entries. Our method is derived
from previous work on searching on encrypted data [4, 11].

Setup: Suppose there aret audit log servers. The audit
escrow agent generates independent and uniformly random
secretsS1, . . ., St and givesSj to the jth server.

Encryption: Suppose the audit escrow agent has issued
a secretS to a particular audit log server. LetH be a keyed
pseudorandom function (PRF); we denote byHS the PRF

user: Alice Smith
keyword: cars
keyword: make
keyword: ford
time: 2003/08/26 23:34:24

user: Alice Smith
keyword: cars
keyword: make
keyword: ford
time: 2003/08/26 23:34:24

authentication clockkeyword extraction

“select * from cars
where make=‘ford’”

databaseaudit record creation

keywords for audit record

Figure 1. Extracting keywords for an audit record: audit records cannot only be searched by key-
words contained in the query logged, but also by meta-data such as user name and time.

H keyed with the secretS. In practice, HMAC-SHA1 can
be used in place ofH. Let E be a symmetric encryption
function; we denote byEK the functionE keyed withK.

Suppose the server is to encrypt the log entry,m, along
with keywordsw1, w2, . . ., wn. Let flag be a constant bit-
string of length̀ . The server executes the following steps:

1. The server chooses a random symmetric encryption
key,K, to be used only for this entry.

2. The server computes the encryptionEK(m).
3. The server chooses a random bit stringr of some fixed

length. The random stringr is uniformly indepen-
dently drawn for each entry.

4. Fori from 1 ton the server computes

ai := HS(wi), bi := Hai (r), ci := bi ⊕ (flag|K).

In other words, for each keywordwi the PRF is first
keyed withS and is given inputwi . The resultai is
then used to key the PRF which is then called with
input r to give bi . The resultbi is then XORed with
the concatenation offlag and the symmetric keyK to
give the outputci .

5. The server writes〈EK(m), r, c1, c2, . . ., cn〉 as the en-
crypted entry to the audit log.

Informally, an adversary that does not knowS is unable
to computeai = HS(wi), and thus,bi , as long as the keyed
PRFH is secure. The adversary is thus unable to learnK,
and therefore cannot decrypt the entry. Additionally, the

adversary is unable to link queries that had similar key-
words, sincer is an uniformly independent random value.

Search and Decryption: Recall there aret audit log
servers in our scheme, with thejth server holding a se-
cretSj . Suppose an investigator wishes to obtain a search
capability for the keywordw. The audit escrow agent (if he
approves) constructs the search capability as

dw := 〈HS1(w), . . . ,HSt (w)〉.

We denoted j
w := HSj (w) as the search capability compo-

nent corresponding to thejth server.
Once given the capability, the investigator visits each au-

dit log server. At thejth server, the investigator executes
the following:

1. The investigator computesp := H
d j

w
(r), wherer is the

random string stored with the query.

2. For eachci in the entry, the investigator computes
p⊕ci . If the first` bits of the result matchesflag, then
the party extractsK as the remainder of the result; oth-
erwise, the computation is disregarded. If none of the
results begin withflag, then the query is not a keyword
match, and the investigator moves to the next query.

3. If one of the results did match, the investigator uses
the computedK to decryptEK(m) to obtainm, the
original audit log entry.

Suppose when encrypting an entry, thejth server uses the
keywordwi to createci . If wi = w, we haveH

d j
w
(r)⊕ci =

investigator audit escrow agent

master
secret

“user: Alice Smith”

capability
for search

investigator audit log

capability
for search

audit
record
audit
record

audit
record
audit
record

audit
record
audit
record…

1

2

Figure 2. Searching the log: First, the investigator has to obtain a search capability for the keyword
in question. Then, the she can search the audit log for that keyword.

(flag|K); otherwise, this XOR will look random. There-
fore, the beginning bits of the result can be tested against
flag to determine if there is a match. (There is a 2−l chance
of a false positive from this check. However, even in the
event of a false positive from this check the decryption at-
tempt will fail with very high probability. Since the length
of ` does not actually affect the security of the scheme, the
length of the bitstringflag can have a length significantly
less than that of an encryption key. We note that a CRC or
other simple checksum could also be used.) In the case of a
match, the remainder of the result is the symmetric keyK,
which can be used to decrypt the query.

We note that the use of a pseudorandom functionH to de-
rive the search keyword capability implies that capabilities
for different keywords appear to be independently random.
In other words, an investigator receiving a capabilitydw for
a keywordw learns no new information about the capability
corresponding to any other keywordw′.

Discussion: The primary problem with the symmetric
method occurs in the case where an adversary is able to
compromise a server’s secrets. If the adversary learnsSj ,
he can be able to create a search capability for any keyword
that he wishes that can be used to search and decrypt on the
jth server.

This problem is partially alleviated if we allow the server
keys to be updated or evolved over time. If a particular
secretSj was stolen from a server that used a key-update
scheme then the adversary will be able to useSj to search
all entries that were created since the last update, however,
he would not be able to read past log entries.

Nevertheless, even with an efficient key update mecha-
nism, this scheme has serious drawbacks. The most sig-
nificant is that in order for the servers to be updated, the
audit escrow agent must have a “live” connection to a net-
work shared with the servers. This makes the audit escrow
agent more vulnerable to attacks. Another concern is that
afterv key updates for each oft servers, the size of a key-
word search capability is proportional tovt (which can be-
come quite large). Finally, if the adversary compromises
the server, he may be able to learn a secret that would allow
him to act as the server and receive key updates from the
audit escrow agent. In this event, the audit log entries from
a compromised server will continue to be vulnerable, even
after the compromise was detected and the server repaired.
These security issues indicate that it is best to put as little
secret information into a server as possible, motivating the
asymmetric scheme outlined in the next section.

5.2. Asymmetric Scheme

The shortcomings of the symmetric key based scheme
suggest that an asymmetric key based scheme is necessary.
We now present an asymmetric key based scheme for cre-
ating encrypted and searchable log entries. Our scheme is
based on the Identity-Based Encryption scheme of Boneh
and Franklin [3]. We first provide the reader with a brief
review of IBE, then describe our scheme and discuss its
attributes.

Identity-Based Encryption: In this section, we provide
a brief review of Identity-Based Encryption and some nec-

essary mathematical details.2 The Identity-Based Encryp-
tion scheme we use is based on Tate pairings over super-
singular elliptic curves.

In an Identity-Based Encryption scheme, any arbitrary
string can comprise a public key. If Alice wishes to send a
message to Bob, she simply uses a string uniquely iden-
tifying Bob – say “bob@parc.com” – as the encryption
key to encrypt her message. A system-wide master secret
is used by a trusted escrow agent to generate the private
key corresponding to a public key. Bob authenticates to
the trusted third party (in the same way he might authen-
ticate to a CA) to obtain the private key corresponding to
“bob@parc.com”, which he then may use for decryption.

IBE SETUP. To set up the system, one first selects large
primesp andq, two groupsG1 andG2 of order3 q, and an
arbitrary generatorP0 ∈ G1. One also picks an admissible
bilinear mape: G1×G1 →G2 and two cryptographic hash
functionsH1 : {0,1}∗ → G1 andH2 : G2 → {0,1}n. The
master secret is a random values∈ Zq, known only to the
trusted escrow agent. The system parameters are

P = (p,q,G1,G2,e,P0,P1), where P1 = sP0,

and are known by all parties.

IBE KEY GENERATION. To issue the private key corre-
sponding to the public keyw, the escrow agent uses the
master secrets to computedw := sH1(w) ∈ G1.

IBE ENCRYPTION. To encrypt the plaintextm∈ {0,1}n

using a stringw as the public key, one (1) computesQw =
H1(w) ∈ G1, (2) computesgw = e(Qw,P1), (3) picks a ran-
domr ∈ Zq, and (4) computes

c = 〈rP0,m⊕H2(gr
w)〉.

IBE DECRYPTION. To decrypt a ciphertextc = 〈U,V〉 us-
ing dw as the private key, one computes

m= V ⊕H2(e(dw,U)).

Sincee is a bilinear map4, it follows that decryption opera-
tion is the inverse of the encryption operation. We refer the
reader to [2, 3] for the details regarding the security of this
scheme.

2There are actually two IBE schemes described by Boneh and
Franklin: the simpler is semantically secure, the other satisfies chosen
ciphertext security. To keep the presentation clear, we base our discussion
on the semantically secure scheme. It is straightforward to generalize our
work to the scheme satisfying chosen ciphertext security, and we recom-
mend using their more secure scheme in any implementation of the secure
audit log system described here.

3To be precise, for the scheme we use,G1 is an order-q subgroup of
elliptic curve group over a supersingular elliptic curve, whileG2 is an
order-q subgroupFp2 .

4That is,e(aP,bQ) = e(P,Q)ab for all P,Q∈ G1 and alla,b∈ Zq.

Setup: To set up our scheme, we first set up an instance
of the above Identity-Based Encryption scheme. In our sys-
tem, the audit escrow agent is given the IBE master secret
s, and all servers that contribute to the audit log are given
the system parametersP.

Encryption: Suppose the server is to encrypt the log en-
try m, along with keywordsw1,w2, . . . ,wn. The server per-
forms the following steps:

1. The server chooses a random symmetric encryption
key,K, to be used only for this entry.

2. The server encrypts the log entry usingK, to get
EK(m).

3. For each keywordwi , the server computes the
Identity-Based Encryptionci of the string(flag|K) us-
ing wi as the public key andP as the public parame-
ters.

4. The server writesEK(m),c1,c2, . . . ,cn as the entry to
the audit log.

Since a new keyK is generated for each log entry (and is
thrown away by the server immediately after the log entry
is generated), the only way to recover a log entry is to de-
crypt one of theci ’s and obtainK. It follows directly from
the security of Identity-Based Encryption [3] that the only
way to recoverm is to know the private key correspond-
ing to one of the keywordswi . The particular Identity-
Based Encryption scheme we have chosen also satisfies a
stronger security property, namelykey-privacy[1], which
implies that an adversary can obtain no information about
what public keywi was used to produce any ciphertextci .
(We refer the reader to [2] for a detailed proof of the key-
privacy property for IBE.) This implies that the presence
of theci in the log entry reveals no information about what
keywords are present in the log entry, and an attacker can-
not correlate entries in the audit log based on their keyword
tags.

Search and Decryption: Suppose an investigator wishes
to obtain a search capability for the keywordw. The audit
escrow agent (if he approves) constructs the capabilitydw

as the Identity-Based Encryption private key corresponding
to the stringw. For each audit log entry, the investigator
executes the following:

1. For eachci the investigator attempts to IBE-decrypt
ci using the private keydw. If the prefix of the result
matchesflag then the investigator extractsK as the
remainder of the result. If none of the results begin
with flag then the log entry does not match and the
investigator moves to the next log entry.

2. If one of the results did match, the capability holder
may computeK to decryptEK(m) to obtainm.

Notice that the investigator holding some capabilitydw

for keywordw will not be able to gain a capabilitydw′ to
search for another keywordw′. Again, this follows directly
from the security of the Identity-Based Encryption scheme:
the capabilities correspond to different private keys in an
Identity-Based Encryption scheme, which cannot be de-
rived from each other, even if large numbers private keys
are known.

Discussion: This asymmetric scheme corrects many of
the drawbacks of the symmetric scheme. Since each server
only stores public parameters, there are no secret keys for
an attacker to steal. Compromising a server does not allow
the attacker to search or decrypt any entries in the audit log
that have already been generated and stored.

A drawback of this scheme is the performance overhead
of using Identity-Based Encryption; however, optimiza-
tions (discussed in the next section) are available for speed-
ing up our use of IBE.

We note that this scheme is also easy to modify to al-
low separating the ability to find records matching a given
keyword from the ability to decrypt those records. To do
this, we omit the record keyK in the IBE encryptions per-
formed that generate the tagsci (leaving only theflag), and
add an encryption ofK encrypted under another public key
belonging to the escrow agent. This introduces an extra
“round trip” to the escrow agent to decrypt those records
for which a match is discovered.

5.3. Optimizations for the Asymmetric Scheme

The operations in the asymmetric scheme are signifi-
cantly more expensive than those of the symmetric scheme.
The main bottlenecks are the computations of the pairing
and modular exponentiations for each keywordw. How-
ever, if the same keywords are used frequently then inter-
mediate results can be reused. We discuss three such opti-
mizations in this section.

PAIRING REUSE. Our first observation is that the com-
putation ofgw only needs to be performed once per key-
word. Subsequent Identity-Based Encryptions usingw as
the public key can reusegw if it has already been computed
for some other log entry. Encryption then simply becomes
a matter of picking a randomr and following steps (3) and
(4) of encryption (see explanation of Identity-Based En-
cryption above). This speeds up encryption: over a set
of log entries in which a keyword repeatedk times, only
one pairing operation andk modular exponentiations are
required.

INDEXING. Further savings are possible by creating an in-
dex of keywords at periodic intervals in the log, instead of
storing IBE encryptions with each log entry. If the system
design allows buffering of entries sent to the audit log, then

the servers may collect queries into “blocks” to be sent to
the audit log all at once.

Suppose a server collects log entriesm1, . . . ,mt to be
sent to the audit log, sharing in total the set of keywords
w1, . . . ,wu. The server creates an audit log block and index
as follows.

1. The server chooses random symmetric encryption
keys,K1, . . ., Kt , for one-time use.

2. The server encrypts each log entrymi usingKi , to get
EKi (mi).

3. For each distinct keywordw j , the server finds the
indices{i j,1, . . ., i j,`(j)} for which w j is a keyword
where`(j) is the number of entries for whichw j is a
keyword. (That is,w j is a keyword inqi exactly when
i ∈ {i j,1, . . . , i j,`(j)}.)

4. The server computes the Identity-Based Encryptionc j

of the string

(flag|i j,1|Ki j,1| · · · |i j,`(j)|Ki j,`(j))

usingw as the public key andP as the public parame-
ters.

5. The server writesEK1(m1), . . . ,EKt (mt),c1, . . . ,cu as
the block and index to the audit log.

As the length of the IBE-encrypted strings grow we may
use hybrid encryption for efficiency: for a long stringM we
compute the IBE encryption a one-time symmetric keyK0,
then perform block encryption ofM using the symmetric
key K0. (This was not necessary in the non-indexed case,
as the strings encrypted were very short.)

Indexing introduces a significant performance advan-
tage for searching/decryption when keywords are repeated
among several audit log entries within a block. When a
keywordw is present ink entries in a log block, only one
pairing operation and one modular exponentiation are re-
quired to find and decrypt thek audit log entries.

Using indexing also results in a big performance win for
audit log generation. For a keywordw appearingk times
in a block, again only one pairing operation and one modu-
lar exponentiation are required to generate the index entry
relevant tow.

We note that this method may open up a slight vulner-
ability: an attacker may obtain partial information about
the frequency of keywords present in a single block by ob-
serving the lengths of the IBE encrypted strings within the
index. This can be thwarted by adjusting the block size to
be small enough to limit the amount of statistical knowl-
edge obtained (which, in the limit oft = 1, reduces to the
security of the non-indexed solution.)

RANDOMNESS REUSE. Lastly, we consider an optimiza-
tion for the decryption process. We perform an indepen-
dent IBE encryption to creating theci corresponding to the

optimization method encryption search/decryption
pairings exponentiations pairings

none t ·v t ·v t ·v
pairing reuse (PR) u t ·v t ·v

indexing u u u
randomness reuse (RR) t ·v t ·v t

PR + RR u t ·v t
all three u u 1

Table 1. Number of compute-intensive operations needed to process a block of t log entries, includ-
ing in total u distinct keywords, with an average of v keywords per log entry.

keywordswi for given log entry. However, it is possible to
reuse an intermediate result of the IBE encryption process:
we may save the valuer chosen in step (3) of the encryp-
tion that producesc1 to use in calculation ofc2, . . ., cn. As
long as thewi are distinct keywords, this reuse of the ran-
domness produces results indistinguishable from the origi-
nal method. This speeds up decryption, as only one pairing
is needed for each distinctr chosen. This implies that in-
stead ofn pairings required to test if any of theci match a
given keyword, only 1 pairing is required.

OPTIMIZATION SUMMARY Table 1 summarizes the num-
ber of compute-intensive operations to process (encrypt or
search/decrypt) a block of audit log entries. Table 2 sum-
marizes the storage requirements of a block of audit log
entries.

6. Implementation

We implemented a database audit log system that creates
asymmetrically encrypted and searchable entries. The log-
ger is implemented as a MySQL proxy server. The user
signs onto the proxy and makes SQL queries. The proxy
server, upon receiving a query, logs the query in addition to
passing it to the MySQL database server.

The proxy was developed on a Linux platform and is
multi-threaded so that multiple users can be served simul-
taneously and that the logging component runs in parallel
with the rest of the system. The audit log server attaches
the date and time to the audit log entry. The log entries are
written to another MySQL database server that is dedicated
to storing audit log entries.

We used the Stanford Identity-Based Encryption library
[12] for the basic IBE operations5 and the Cryptlib library
[5] as the implementation of the the symmetric encryp-
tion of the query itself. We parameterize IBE with values
p = 1024 andq = 160. We use a 128-bit AES key for the
symmetric encryption.

The server software has a cache that is used to reuse pair-

5We note that an implementation of IBE that is approximately twice
as fast has recently become available as part of the miracl package [10].

ings as described in Section 5.3. The cache is implemented
as a simple hash table which associates the pairing result
gw with the keywordw. Every time a keywordw that has
not been seen before is used, the newly computed pairing
gw is stored in the hash table. Another optimization we
implemented is the reuse of randomness described in Sec-
tion 5.3.

We also implemented the hash chain method of check-
pointing described in Section 4. The audit log server com-
putes the updated value of the hash chain for every audit
log entry it constructs. The current hash value can be read
at any point in time. A party which reads this value can use
it later to check the integrity of the audit log for all entries
written before the hash checkpoint.

Finally, we implemented the tool the investigator uses to
search the audit log when given a capability. The tool re-
trieves all records from the audit log and searches them one
record at a time. As mentioned above, our implementation
uses the same randomness for each encryption within an
entry. Therefore, searching an entry only requires one IBE
pairing. In future work, we plan to implement the indexing
algorithm described in Section 5.3.

Our performance measurements were taken on a Pentium
IV processor machine running RedHat Linux 9.0 with 2GB
of memory. The speed of the processor is 2.8GHz.

We measured the added cost of encryption for each
searchable keyword that is part of the query. If a keyword
w does not have a corresponding cache entrygw, then the
server must hashw into the groupG1, execute a pairing
to computegw, and also compute a modular exponentia-
tion. The cost of these operations totals 180ms. However,
if there is a cache entry forgw, the server only needs to
execute an exponentiation and the cost is 5ms.

Clearly, the use of the cache is important for efficient op-
eration of the system. We expect that in most applications
most extracted keywords will have a corresponding pub-
lic key in the cache (provided the system has been running
for a sufficient amount of time). We also do not anticipate
memory limitations to effect most caches. A 100MB cache
can hold approximately 800,000 public keys. In compari-

optimization method storage requirement (in bits)
none t · (M +v· log2 p+v·nH2)

indexing t ·M +u· (log2 p+nH2)+ t ·v· log2 t
randomness reuse (RR) t · (M + log2 p+v·nH2)

indexing + RR t ·M + log2 p+u·nH2 + t ·v· log2 t

Table 2. Storage requirements of a block of t log entries, including in total u distinct keywords, with
an average of v keywords per log entry. M is the average bit length of a log entry, p is the prime used
for IBE operations, and nH2 is the output bit length of the hash function H2 used for IBE operations.
Pairing reuse has no effect on storage requirements.

son the number of entries in the second edition of the Ox-
ford English Dictionary is approximately 300,000.

The tool which searches the encrypted audit log must
compute a pairing per entry. This operation takes 81ms.

7. Conclusion

Designing a secure audit log is not a trivial task. Apart
from guaranteeing properties such as tamper resistance and
verifiability, the contents of the audit log may itself be con-
sidered sensitive, and need to be protected from unautho-
rized access.

A natural approach to such protection is to encrypt the
audit log, which needs to be done in such a way that the log
still remains effectively searchable. We presented a scheme
in which we use identity-based encryption to protect sym-
metric keys that are used to encrypt audit log entries. Priv-
ileged audit escrow agentscan create search capabilities
that allow their bearer to search the audit log for records
matching certain keywords.

We implemented our scheme as a secure audit log for
MySQL database queries. It turns out that the identity-
based encryption scheme we use introduces considerable
overhead (although small enough to be negligible in an in-
teractive system), but it buys us security and convenience
over symmetric key based schemes.

Our current implementation relies on checkpointing to
secure the integrity and verifiability of the audit log. While
the focus of our work so far has been to investigate the
searchability of the audit log, we plan to implement more
advanced integrity protection mechanisms to improve the
overall security of the system.

8. Acknowledgments

This work was sponsored by DARPA grant F30602-03-
C-0037.

References
[1] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval.

Key-privacy in public-key encryption. Lecture Notes in
Computer Science, 2248, 2001.

[2] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano.
Searchable public key encryption. Submitted for publica-
tion. Seehttp://eprint.iacr.org/2003/195/ .

[3] D. Boneh and M. Franklin. Identity-based encryption from
the Weil pairing. InProc. CRYPTO 01, pages 213–229.
Springer-Verlag, 2001. LNCS 2139.

[4] E.-J. Goh. Building secure indexes for searching efficiently
on encrypted compressed data. Submitted for publication.
Seehttp://eprint.iacr.org/2003/216/ .

[5] P. Gutmann. cryptlib. http://www.cs.auckland.
ac.nz/˜pgut001/cryptlib/ .

[6] S. Haber and W. Stornetta. How to time-stamp a digital doc-
ument. In A. Menezes and S. A. Vanstone, editors,Proc.
CRYPTO 90, pages 437–455. Springer-Verlag, 1991. Lec-
ture Notes in Computer Science No. 537.

[7] B. Schneier and J. Kelsey. Cryptographic support for se-
cure logs on untrusted machines. InProceedings of the
7th USENIX Security Symposium, pages 53–62. USENIX
Press, 1998.

[8] B. Schneier and J. Kelsey. Minimizing bandwidth for re-
mote access to cryptographically protected audit logs. In
Web Proceedings of the 2nd International Workshop on
Recent Advances in Intrusion Detection. USENIX Press,
1999.

[9] B. Schneier and J. Kelsey. Secure audit logs to support com-
puter forensics.ACM Transactions on Information and Sys-
tem Security (TISSEC), 2(2):159–176, 1999.

[10] Shamus Software Ltd. MIRACL: Multiprecision Inte-
ger and Rational Arithmetic C/C++ Library.http://
indigo.ie/˜mscott/ .

[11] D. X. Song, D. Wagner, and A. Perrig. Practical techniques
for searches on encrypted data. InIEEE Symposium on Se-
curity and Privacy, pages 44–55, 2000.

[12] Stanford Applied Cryptography Group. IBE secure e-mail.
http://crypto.stanford.edu/ibe .

