
CS329E: Elements of Security
Covert Channels

Dr. Bill Young
Department of Computer Sciences

University of Texas at Austin

Last updated: February 16, 2015 at 11:41

CS329E Slideset 2b: 1 Covert Channels



The BLP Metapolicy

(H, {A, B})

(H, {B})(H, {A})

(L, {B})
(L, {A}

(L, {A, B})

(H, {})

(L,{})

Remember our distinction between
policy and metapolicy. The metapolicy
gives us a handle for tackling such questions.

The real security goal (metapolicy)
of any MLS scheme is to control the flow
of information in the system. I.e., sensitive
information should not flow “down” in
the system, from a high level to a low level.

CS329E Slideset 2b: 2 Covert Channels



The BLP Metapolicy

(H, {A, B})

(H, {B})(H, {A})

(L, {B})
(L, {A}

(L, {A, B})

(H, {})

(L,{})

To be precise, information
in a BLP system must flow through
the lattice only along upward channels.
That is the metapolicy that drives
and justifies the access control rules.

Is BLP adequate
to ensure this metapolicy? What would a
counterexample look like? What would it
mean?

CS329E Slideset 2b: 3 Covert Channels



A Simple BLP System

Consider an MLS system that has READ and WRITE operations
that follow the BLP rules. Just to be concrete, suppose we define
the semantics (meaning) of the rules as follows:

READ subj name obj name: if object exists and subject has read
access to it, return its current value to the subject;
otherwise, return a zero.

WRITE subj name obj name value: if object exists and the subject
has write access to it, change its current value to
value; otherwise, do nothing.

Ordinarily, the subject would be an implicit parameter to the
operation; we’re just making it explicit to simplify matters.

CS329E Slideset 2b: 4 Covert Channels



A BLP System (Cont.)

Now, suppose we want to add the following operations to our
simple secure system:

CREATE subject_name object_name

DESTROY subject_name object_name

Under what conditions would these operations be BLP secure? I.e.,
what should be the semantics of these operations, if they are not
to violate our intuitive notions of confidentiality?

CS329E Slideset 2b: 5 Covert Channels



A BLP System (Cont.)

Now, suppose we want to add the following operations to our
simple secure system:

CREATE subject_name object_name

DESTROY subject_name object_name

Under what conditions would these operations be BLP secure? I.e.,
what should be the semantics of these operations, if they are not
to violate our intuitive notions of confidentiality?

What is the level of a created object? What if an object by that
name already exists? What if we try to destroy an object that
doesn’t exist?

CS329E Slideset 2b: 6 Covert Channels



A BLP System (Cont.)

Suppose we define these operations as follows:

CREATE: if no object with name obj name exists, create a new
object at the subject’s level; otherwise, do nothing.

DESTROY: if an object with name obj name exists and the
subject has write access to it, destroy it; otherwise,
do nothing.

These rules seem to satisfy BLP, but are they “secure” by the
standards of the metapolicy? Why or why not?

CS329E Slideset 2b: 7 Covert Channels



Covert Channel Example

Consider the following program:

H Signals 0 H Signals 1

H: Create F0 H: do nothing
L: Create F0

L: Write F0, 1
L: Read F0

L: Destroy F0

That is, H performs one of two actions, but L always does the
same thing.
What does L see as a result of the its Read operation in the two
cases?

CS329E Slideset 2b: 8 Covert Channels



Covert Channel Example

H Signals 0 H Signals 1

H: Create F0 H: do nothing
L: Create F0

L: Write F0, 1
L: Read F0

L: Destroy F0

In one case, L sees a value of 0; in the second case, L sees a value
of 1. But, so what?

CS329E Slideset 2b: 9 Covert Channels



Covert Channel Example

H Signals 0 H Signals 1

H: Create F0 H: do nothing
L: Create F0

L: Write F0, 1
L: Read F0

L: Destroy F0

In one case, L sees a value of 0; in the second case, L sees a value
of 1. But, so what?

Using this mechanism, H can send one bit of information to L. If
they can repeat this multiple times, then H can send any amount
of information to L.

CS329E Slideset 2b: 10 Covert Channels



Covert Channel Questions

1 Must H and L work together for this channel to work?

2 Must H and L interleave their actions?

3 Must L see only 0 or 1, as in this case? Could it have been
different values?

4 H varies his action, but L always does the same thing. Is that
important?

5 Does one bit of information really matter?

CS329E Slideset 2b: 11 Covert Channels



Covert Channel Answers

1 Yes. L has to be “on the lookout” for the bit H is sending and
know how to read and store it.

2 Yes. It can’t really work otherwise.

3 No. As long as the results differ, L can interpret them as 0’s
and 1’s.

4 Very. L doesn’t know what bit H is sending, so couldn’t do
different things in the two cases.

5 Probably not. But if you do this in a loop, you can repeat it
thousands of times. Any information can be encoded as a
sequence of bits.

When students implement this channel in a simple BLP system (in
my security class for majors) they can transmit all of Moby Dick in
a few seconds.

CS329E Slideset 2b: 12 Covert Channels



Covert Channels

The weakness with Bell and
LaPadula, as in most access
control schemes, is that it only
controls the flow of information
via objects that are explicitly
recognized by the security policy
as carrying information.

But information can be carried in other ways as well. Such
information paths are called covert channels.

CS329E Slideset 2b: 13 Covert Channels



Covert Channel

Some sources define a covert channel as any channel in violation of
the security policy; that’s too broad to be useful. A better
definition is:

Definition: A covert channel is a path for the flow of information
between subjects within a system, utilizing system resources that
were not designed to be used for inter-subject communication.

Where did the bit of information reside in the previous channel?

CS329E Slideset 2b: 14 Covert Channels



Covert Channel

Some sources define a covert channel as any channel in violation of
the security policy; that’s too broad to be useful. A better
definition is:

Definition: A covert channel is a path for the flow of information
between subjects within a system, utilizing system resources that
were not designed to be used for inter-subject communication.

Where did the bit of information reside in the previous channel?

It wasn’t stored as the contents of F0! F0 contained a 1 in both
cases. It was “stored” in the level of F0 and the ability of L to read
it.

CS329E Slideset 2b: 15 Covert Channels



Covert Channel

Note the important features of this definition:

Information flows from one
subject to another, presumably in
violation of the security
metapolicy though not
necessarily in violation of the
policy.
The flow is within the system
(two human users talking over
coffee is not a covert channel).

The flow occurs via system resources (file attributes, flags,
clocks, etc.) that were not intended as communication
channels.

A system can satisfy an access control policy (such as BLP) and
still contain multiple covert channels.

CS329E Slideset 2b: 16 Covert Channels



Sample Covert Channel 1

Process p cannot communicate with process q directly. However, p
can create and delete files in a directory. q cannot read or modify
files in the directory, but can list them. To send a bit of
information, process p deletes any file named *bit, and then
creates a file called either 0bit or 1bit in the directory. Process q
detects it. This repeats until the message has been delivered.

This is a classic storage covert channel.

Note: If q could read files in the directory they wouldn’t need a
covert channel. Also, why doesn’t p just encode his message in the
filename (e.g., the-attack-is-at-dawn) for higher bandwidth?
Would that work?

CS329E Slideset 2b: 17 Covert Channels



Sample Covert Channel 2

The KVM/370 operating system isolated processes on separate
virtual machines. They shared the processor on a time-sliced basis.
Processes alternated using the CPU, with each allowed t units of
processing time. However, a process could relinquish the CPU
early.

Process p could send a bit to process q by either using its total
allocation or reliquishing the processor immediately. Process q
reads the bit by consulting the system clock to see how much time
has elapsed since it was last scheduled.

This is a classic timing covert channel.

CS329E Slideset 2b: 18 Covert Channels



Sample Covert Channel 3

Suppose two processes share a
disk. Process p either accesses
cylinder 140 or 160. Process q
requests accesses on cylinders
139 and 161. The scanning
algorithm services requests in
the order of which cylinder is
currently closest to the read
head.

Thus, q receives values from 139 and then 161, or from 161 and
then 139, depending on p’s most recent read.

Is this a timing or storage channel? Neither? Both?

CS329E Slideset 2b: 19 Covert Channels



Sample Covert Channel 4

An implicit channel is one that uses the control flow of a program.
For example, consider the following program fragment:

high := high mod 2;

low := 0;

if high = 1 then low := 1 else skip;

The resulting value of low depends on the value of high.

There are sophisticated language-based information flow tools that
check for these kinds of dependencies in programming languages.

CS329E Slideset 2b: 20 Covert Channels



Taxonomy of Covert Channels

It is possible to distinguish the following types of covert channels:

Implicit flows: signal information through the control structure of
the program.

Termination channels: signal information through termination or
non-termination of a computation.

Timing channels: signal via the amount of time a computation
takes.

Probabilistic channels: signal by changing the probability
distribution of observable data.

Resource exhaustion channels: signal via possible exhaustion of a
finite shared resource, such as memory or disk space.

Power channels: embed information in the power consumed (useful
for smartcards where the energy is supplied by the
host computer).

In practice, most researchers distinguish only storage and timing
channels.

CS329E Slideset 2b: 21 Covert Channels



Covert Channels: Who Cares

It might seem that these covert channels would be so slow that
you wouldn’t really care.

That’s not true. Covert channels on real processors operate at
thousands of bits per second with no appreciable impact on system
processing.

CS329E Slideset 2b: 22 Covert Channels



Covert Channels

The two important attributes of covert channels are existence and
bandwidth.

It is usually infeasible for
realistic systems to eliminate
every potential covert channel.
However it is important to
identify those that can be used
to advantage and to close
them or restrict them in such a
way that the bandwidth is
reduced to a negligible amount.

CS329E Slideset 2b: 23 Covert Channels



Noisy vs. Noiseless Channels

A characteristic of any communication channel that affects
bandwidth is whether it is noiseless or noisy. Information theory
provides a very precise definition; the following is an intuitive
approximation.

Definition: A noiseless channel is one where the message can be
transmitted without distortion or loss of information. A noisy
channel is one where there is distortion or loss of information.

For covert channels, a noiseless channel might be one where the
shared resource is only available to the two colluding parties. A
noisy channel might be one where there are other users potentially
accessing the resource.

CS329E Slideset 2b: 24 Covert Channels



Dealing with Covert Channels

Once a potential covert channel is identified, several responses are
possible.

We can eliminate it by modifying the system implementation.

We can reduce the bandwidth by introducing noise into the
channel.

We can monitor it for patterns of usage that indicate someone
is trying to exploit it. This is intrusion detection.

The solution could introduce other problems. For example, one
might eliminate a covert channel on a shared resource by always
giving priority to the low process (and possibly terminating the high
process). This obviously introduces a denial of service vulnerability.

CS329E Slideset 2b: 25 Covert Channels



Dealing with Covert Channels

In the early 1990’s the U.S. Government published guidelines for
covert channels in secure systems they certified:

“Covert storage channels shall be treated as follows:

1 There shall be no covert storage channels with a
capacity exceeding 100 bits/second;

2 All covert storage channels with capacities exceeding
10 bits/second shall be auditable;

3 All covert storage channels with capacities exceeding
1 bit/second shall be described in the product’s
covert channel analysis.”

These numbers are hopelessly out of date, but note that this
presumes that it is possible to find all covert channels in the
system. How might you do that?

CS329E Slideset 2b: 26 Covert Channels



Using a Covert Storage Channel

For a sender and receiver to use a covert storage channel, what
must be true?

CS329E Slideset 2b: 27 Covert Channels



Using a Covert Storage Channel

For a sender and receiver to use a covert storage channel, what
must be true?

1 Both sender and receiver must have
access to some attribute of a shared
object.

2 The sender must be able to modify the
attribute.

3 The receiver must be able to reference
(view) that attribute.

4 A mechanism for initiating both
processes, and sequencing their accesses
to the shared resource, must exist.

CS329E Slideset 2b: 28 Covert Channels



Using a Covertg Channel

For a sender and receiver to use a covert timing channel, the
following must be true:

1 Both sender and receiver must
have access to some attribute of
a shared object.

2 Both sender and receiver have
access to a time reference
(real-time clock, timer, ordering
of events).

3 The sender must be able to control the timing of the
detection of a change in the attribute of the receiver.

4 A mechanism for initiating both processes, and sequencing
their accesses to the shared resource, must exist.

CS329E Slideset 2b: 29 Covert Channels



Detecting Covert Channels

Richard Kemmerer introduced the Shared
Resource Matrix Methodology (SRMM). The idea
is to build a table for each command and its
potential effect on shared attributes of objects.

readFile writeFile deleteFile createFile

file existence R R R, M R, M
file owner R, M M
file name R R R, M M
file size R M M M

An R in the matrix means the operation References (provides
information about) the attribute under some possible
circumstances. An M means the operation Modifies (affects the
value of) the attribute under under some possible circumstances.

CS329E Slideset 2b: 30 Covert Channels



A Subtlety of SRMM

Suppose you have the following operation:

CREATE: if no object with name obj name exists, create a new
object at the subject’s level; otherwise, do nothing.

For the attribute file existence, should you have an R or not for
this operation? Consider this: you know that the file exists after
this operation. Why?

But that’s not enough. It’s not important that you know
something about the attribute; what’s important is that the
operation tells you something about the attribute. A low-level
process couldn’t use CREATE to get the information it would need
to carry out its part of a covert channel.

CS329E Slideset 2b: 31 Covert Channels



Working with the SRMM

The only resources/attributes that are potential channels are those
with both R and M in a row. Why?

Building the matrix requires detailed knowledge of the system
architecture.

The SRMM doesn’t identify shared resources, but suggests which
might be used as covert channels.

Any shared resource matrix is for a specific system. Other systems
may have different semantics for the operations.

CS329E Slideset 2b: 32 Covert Channels



Using the SRMM

Build a Shared Resource Matrix for each of the covert channel
examples on the previous slides.

Channel 1: Process p cannot communicate with process q
directly. However, both can list files in a common directory.
Process p creates a file called either 0bit or 1bit in the directory.
Process q detects it and deletes it. This repeats until the message
has been delivered.

Read Write Create Delete ListFiles

file existence R R R, M R, M R
file label R R R, M M R

Which R and M manifest the channel? Now try a similar exercise
for samples 2 and 3.

CS329E Slideset 2b: 33 Covert Channels



Covert Channels and System Analysis

One approach to secure system design is to use an access control
security model like Bell and LaPadula, and then to use a separate
technique (such as SRMM) to find and close covert channels.

The question arises: Is it possible to define a security model that is
strong enough to cover access control and covert channels?

CS329E Slideset 2b: 34 Covert Channels



Limits of Access Control

An access control policy says who may access information, but not
how that data is used after it is acquired.

To ensure confidentiality using an access control policy, it is
necessary to grant access only to subjects that will not improperly
transmit or leak the data—but that requires a stronger
“information flow” policy.

That is, an access control policy such as BLP tries to assign
accountability up front, by assigning a level. But if the process is
not trustworthy, access control is not enough.

CS329E Slideset 2b: 35 Covert Channels



Information Flow Policies

An alternative to access control
policies is a class of policies
called information flow policies.

If what we really care about (e.g.,
in military security) is where
information can flow, why not say
that directly instead of talking
about read and write access?

CS329E Slideset 2b: 36 Covert Channels



Non-Interference

The best known information flow policy is non-interference.

The non-interference policy of
the system is a binary relation
(a 7→ b) over the subjects of
the system that says which
subjects are permitted to
“interfere with” which other
subjects.

You can think of “can interfere with” as meaning “can
communicate to” or “can direct information to.” In the types of
systems we have been discussing, (a 7→ b) means that a can write
into b’s view, or b can read from a’s view. But there is no
distinction between these two.

CS329E Slideset 2b: 37 Covert Channels



Non-Interference (Cont.)

It is possible to take any MLS policy and turn it into a
non-interference policy.

Consider a BLP system with three subject’s:

A at (Secret: {Crypto, Nuclear}),

B at (Secret: {Crypto}), and

C at (Unclass: { }).

What is the corresponding NI policy? Suppose you add D at (Top
Secret: {Crypto, Nuclear})?

In general, given a BLP system, how do you compute the
corresponding NI policy?

CS329E Slideset 2b: 38 Covert Channels



Non-Interference (Cont.)

Intuitively, the idea of non-interference is that a low-level user’s
“view” of the system should not be affected by anything that a
high-level user does.

Though strictly speaking, talk of “high” and “low” here is
misleading. There is only a notion of who is allowed to interfere
with whom.

CS329E Slideset 2b: 39 Covert Channels



Levels of Concern

Recall that we considered the following different areas of concern:
policy, mechanism, and assurance.

Non-interference is another policy, more abstract than BLP. The
enforcement mechanisms may be anything, including the BLP
rules. In this context, enhancing our level of assurance could mean
formulating and proving a theorem about the system.

The policy of the system is a binary relation (a 7→ b) over the
subjects of the system that says which subjects are permitted to
“interfere with” which other subjects. What would this look like
for a BLP system?

CS329E Slideset 2b: 40 Covert Channels



Non-Interference

One way to formalize non-interference is as follows. Suppose L is a
subject in the system. Now suppose you:

1 run the system normally, interleaving the operations of all
users;

2 run the system again after deleting all operations requested by
subjects which should not be able to pass information to
(interfere with) L.

From L’s point of view, there should be no visible difference.
The system is non-interference secure if this is true of every subject
in the system.

CS329E Slideset 2b: 41 Covert Channels



Non-Interference (Cont.)

The policy can be made as strong as you like by characterizing
“point of view.” The more things that you consider to be within
the view of the user, the stronger the policy.

For example, if you include within a subject’s view the values of
system flags, then they could not be used in a covert channel. If
you include the system clock, then you could not use that in a
covert timing channel.

CS329E Slideset 2b: 42 Covert Channels



Non-Interference

How does non-interference address the problem of covert channels?

Answer: By adding to a subject’s view elements of the system
state other than files, it makes visible changes in those elements
that might convey information.

Note that this is a very powerful approach, but it has some
limitations. Ideally, a non-interference approach requires no
separate covert channel analysis.

CS329E Slideset 2b: 43 Covert Channels



Limitations of Non-Interference

Non-interference is very difficult to achieve for realistic systems.

It requires identifying within the view function all potential
channels of information.

Realistic systems have many such channels.

Modeling must be at very low level to capture many such
channels.

Dealing with timing channels is possible, but difficult.

Very few systems are completely deterministic.

Some “interferences” are benign, e.g., encrypted files.

CS329E Slideset 2b: 44 Covert Channels


