Foundations of Computer Security Lecture 50: Cryptographic Hash Functions

> Dr. Bill Young Department of Computer Sciences University of Texas at Austin

A *hash function* is a function that converts variable-sized text into a small datum, usually a fixed size integer.

A *cryptographic hash function* has the additional qualities:

- it is difficult to construct a text that has a given hash,
- it is difficult to modify a given text without changing its hash,
- it is unlikely that two different messages will have the same hash.

The hash value is sometimes called a *message digest*.

Cryptographic hash functions are used to protect integrity.

A function f is preimage resistant if, given h, it is hard to find any m such that h = f(m).

A function f is second preimage resistant if, given an input m_1 , it is hard to find $m_2 \neq m_1$ such that $f(m_1) = f(m_2)$. This is sometimes called weak collision resistance.

A function f is (strong) collision resistant if it is hard to find two messages m_1 and m_2 such that $f(m_1) = f(m_2)$.

If a function f(x) yields any of H different outputs with equal probability and H is sufficiently large, then we expect to obtain a pair of different arguments x_1 and x_2 with $f(x_1) = f(x_2)$ after evaluating the function for about $1.25\sqrt{H}$ different arguments on average.

What does this mean for a hash value of 128 bits? for 160 bits?

Hash functions usually are used for integrity, not confidentiality.

- In a document retrieval system containing legal records, it may be important to know that the copy retrieved is identical to that stored.
- In a secure communications system, the correct transmission of messages may override confidentiality concerns.

A cryptographic hash function "binds" the bytes of a file together in a way that makes any alterations to the file apparent. We say that we *seal* the file to make it tamper-proof (actually tamper-resistant). The process is as follows:

- Given a sensitive file f, compute the hash function h(f) and store the result securely.
- Each time the file is used or accessed, recompute the hash.
- Compare it to the stored value.

If the two values match, it is likely that no changes have occurred to the file. Two widely used cryptographic hash functions are:

MD5: (Message Digest 5) invented by Ron Rivest and RSA Labs;

SHA-1/SHA-2/SHS: (Secure Hash Algorithm or Standard) similar to MD5.

MD5 hashes a message of any size to a 128-bit digest. SHA/SHS produce a 160-bit digest.

- A cryptographic hash function takes an arbitrary text and produces a fixed size bit string that depends on each value of the text.
- It should be difficult to find collisions—values that hash to the same result.
- A hash can be used to show with high probability that a text has not changed.

Next lecture: Key Exchange